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Abstract

Methods for calculating the moments of an arbitrary polygon and for determining whether
a point lies within a polygon are derived and discussed. The methods are efficient, robust,
concise, and easily programmed in any computer language. A FORTRAN 77 subroutine which
calculates the first thres moments of an arbitrary polygon is also included, as is a subroutine
which determines whether a point lies in an arbitrary polygon.

On traite des méthodes permettant de calculer les moments d'un polygone
arbitraire ot de déterminer si un point est situé 4 1'intérieur d'un
polygone. Les méthodes sont efficaces, solides, concises et faciles A
programmer dans n'importe quel langage informatique. On présente aussi un
sous-programme on FORTRAN 77 qui calcule les trois premiers moments 4'un
polygone arbitraire, de mime qu'un sous-programme qui détermine si un point
est situé 4 1l'intérieur d'un polygone arbdbitraire.
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Notation

dx
(™)

1, 1,
£, 1,19:
[n):

fAA:

N:
Pown(x,y):
agn(z):

x":

'H

¢

2,y
2,9,
T -

§(=):

: The distance of the origin to the ! side of the polygon.

: The n'® moment tensor for the polygon.
Components of the first moment of the polygon.
Components of the second moment of the polygon.
The largest integer which does not exceed n.
Outward pointing unit normal.

The number of sides of the polygon.

Tensor permutation function defined in Section 2.1.
Function defined in equation (3.1).

Position vector.
n times
The tensor dyadic 5xx.. . X.

Arclength around the polygon perimeter.

Coordinates.

Unit vectors in the coordinate directions.
Coordinates of the k*? vertex of a polygon.
Dirac delta function.

Bold face characters are reserved for vectors and tensors.

LIS e

Variable used to parameterise a side of the polygon.
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1 Introduction

A problem that arises in many engineering applications is to find some moment (e.g the
area or the centroid) of an arbitrary polygon. At DREA the problem has arisen in the context
of the calculation of potential flows via panel methods(1]. At large distances, the potential due
to a panel is determined most efficiently by a multipole expansion in which the moments of
the polygonal panel appear. In this memorandum an efficient, robust, and easily programmed
method for calculating the moments of a polygon is derived. Although it seems likely that
the method has been derived previously, it does not appear to be widely known. Indeed, the
problem was considered suitable (though it was not discussed) for a seminar at the Mathematics
Dept. of Dalhousie University in which problems of unknown solution were to be tackled(2].
Further evidence comes from the potential flow program EN967(3] which calculates the moments
of quadrilateral panels using a method which is less efficient, less robust, and less general than
the one presented.

A simple and efficient solution to a related problem is also derived in this memorandum:
how does one determine whether a given point lies inside or outside an arbitrary polygon? It,
too, has arisen in the context of potential flow panel methods; it is sometimes necessary to
know whether a certain point lies within a panel. This problem has also arisen in modelling of
a “cycle of perception” for a computational vision problem by the Computer Aided Detection
Group at DREA[4].

Appendix A contains a FORTRAN subroutine which calculates the first three moments of
an arbitrary polygon using the method discussed in this memorandum. Appendix B contains
a FORTRAN subroutine which determines whether a point lies inside or outside an arbitrary
polygon.
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2 Calculation of the Moments of Polygons *

In this section the method of calculation of the moments of an arbitrary polygon is derived

and discussed. _ 2
2.1 Analytical Formulae for the Moments £
Let (z,y) be a coordinate system with unit vectors £ and § along its axes. Bold face -
characters will be used to denote vectors and tensors. Thus, 5
e
x =z +yf (2.1) ,::';

W

The notation x™ will be used to denote the tensor dyadic b
n times Y,
x" =X, X (2.2) e
0
The problem to be solved may be stated as follows: :::
e
Problem 1: Ifx,k=1,...,N are the vertices of a polygon tn order as one proceeds around jf;
its perimeter counterclockwise, calculate the n'® moment of the polygon, I
4
™ = / x"dzdy (2.3) 3»:
o ;
where the notation O denotes integration over the surface of the polygon. b
1(% is the area of the polygon and I(1) is its centroid times its area. If the polygon has uniform -
density, the second order tensor I(3) is proportional to its moment of inertia. :::'
The essence of the method is to express the x™ as the divergence of a tensor, so that the ::',‘
divergence theorem can be used to express the moment as a line integral around the perimeter '.n'g
of the polygon. The contribution to the line integral from each side is calculated easily. By : i
using tensor notation, one can obtain a single expression for any moment of the polygon. W
First, note that ,::
. ‘|.|
n-1 n-1 AN
V.x® = 6(?;z ), a(v;y ) e

L]
n—1 n—1 )
= 2x" 14z ol + 9x )
a dy o y
= 2x"14x.Vx"1 (2.4) ::
o:::
L

2 :

g R
st .H“l.'& I. .“.:....I. ‘0. ‘.. .‘. (N , :..

) ‘.1*!“ l.n l,t‘:,t .Q. .0.‘ ' ‘g‘ X




Now, since x - Vx = x, one has x - Vx" = nx"~1, whence from equation (2.4)

V.x"=(n+1)x""? (2.5) .
Therefore, using equation (2.5), the divergence theorem, and the definition of equation (2.3),
one obtains L )
(M~ / N1 - / n+l ] v
I ) c)V x""dzdy = — A-x""'ds (2.6) %
where 90 denotes the perimeter of the polygon, fi is an outward pointing unit normal, and ds j‘
is an increment of arclength. -~
The k't side of the panel may be parameterized by x = [(Xp+1 + X&) + t(Xa+1 — Xx)]/2, :‘.,
; t € [-1,1). The increment of arclength is then ds = |x34+; — Xi|dt/2. The outward pointing .:f
normal is parallel to (%341 — Xi) X £ where £ is a unit vector perpendicular to the plane Ly
of the polygon and such that £, {j, and 2 define a right handed coordinate system. Thus, ,1'
fids = (Xp4+1 — Xi) X £ dt/2 so that ;
o,
™ = Z / U [(xe41 = xk) x 2 [(xk+1 +33) + (%41 — Xi) "+1 :;;
n + 2 2 3
W
= > +1 Z [(x;,+1 — %) X 2] - [(xu41 +xx) + t(xp+1 — x)]"H1dt (2.7) :"
('l + 2)2” k=1 -1 3
4
In these expressions a subscript of N + 1 is equivalent to the subscript 1: that is, Xy 41 = X;. "
Now, )

[(x+1 — x&) X £] - [(xp+1 + Xi) + t(Xp41 — Xx2)] [((er+1 — x) X 2]+ (X412 + x2)
((Xk+1 + Xa) X (Xe41 — Xe)} - 2 A
2(xg X Xp41) - £

= 2(ZayYr+1 — Zh+1Vk) (2.8) :'a

and therefore, !

N _ 1 :
1005 C o) [ ) - (09
k=1 -

The tensor dyadic (x + y)™ can be expanded, but one must be careful not to use the

. binomial theorem which assumes commutativity of x and y in the terms: for example, xy # yx. '
Rather, &
n §;
i (xX+¥)" =Y Pomm(x.y) (2.10) %
where P, .(x,y) is the sum of all terms which are permutations of n copies of x and m copies )

of y: for example, v
"l

P, (x,y) = xxy + xyx + yxx (2.11) :
The definition for P, is extended to the case Py by defining Poo = 1.
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Substitution of equation (2.10) into equation (2.9) yields

N . 1
“*m=0

(n + 2)2"‘"
in/3] x
- P m ’ —
Z (Skv(;l 2?&-“”&) E n—2m,2 (xk;-I +xlk Xk+1 k) (2.12)

where [n/2] denotes the largest integer not exceeding n/2.

The expression in equation (2.12), though seemingly complicated, yields simple expressions
for the first few moments. In particular,

| 100 = = Z(zwkﬂ - Tp1Yk) (2.13)
| 2=
| 1) 1
| I = 3 (Zayr+1 — Ze+1Ve) (Xi+1 + Xi) (2'14)
| "
1 ¥ = 'Ts Z (Zeyre1 — Zuerye)[(Xesr + xe)? + (Xes1 — x2)?/3]
1
Y Z(zwtﬂ = Zh4198) [2X 11 + Xk 1%k + XeXe1 + 2] (2.15)
k=1

Alternatively, the components of the centroid and the second moment of area can be written

; 1
M = P Z(zﬂlb+l = Zes 1Yk ) (Ze41 + 2a) (2.16)
M = = Z(zwhﬂ - 3k+1w¢)(llk+l + ) (2.17)
6
.
3 = T Y (Zayrsr — Tusrve)[2hey + Terrzi + 2] (2.18)
k=1
N
@ - 1
ISV = ﬂ 2(2m+1 - 2k+1yk)[22g+1yk+1 + Te+1Ye + ThYrs1 + 21#!/*] (2’19)

i 1z ; Z(xkyk+l — Zer 1) [Vi4 + Ves1vk + Vi) (2.20)

These formulae are quite general, correctly calculating the moments of polygons with arbi-
trary connectivity. For example, Figure 1 indicates a correct ordering of vertices for calculating
the moments of two disconnected squares while Figure 2 indicates a correct ordering of vertices
to be used to calculate the moments of a square containing a square hole. Interior holes must
be traversed clockwise.
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Figure 1: Order of vertices for disconnected polygons.
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Figure 2: Order of vertices for polygons with holes.
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2.2 Avoiding Round-off Errors

When using the formulae derived in the previous section for numerical calculations, care
must be taken to avoid round-off error in the term (Zzxyr+1 — Zr+1yx) when the origin of the
coordinate system is many mean polygon diameters from the centroid of the panel. In this
case ZpYe+1 & Ti+1ye and the term (Zpyr+1 — Zr+1yx) is the difference of two large, nearly
equal numbers. Given any point xo which is close to the polygon, these round-off errors can be
avoided in two ways:

1. by using the expression

ZayYe+1 — Ze41¥k = (T — 20) (Ve+1 — ¥0) ~ (Ze+1 — Z0) (Vi — vo) + Zo(Yr+1 — ¥ ) — yo(Zi+1 —‘H;
(2.21

whose right hand side does not contain the product of two large numbers; or

2. by first shifting the coordinate origin to xp, calculating the moments, then using the
formulae
10 — I£°) (2.22)
10 = / xdzdy = / (% — xo)dzdy + / xodzdy = I + %1 (2.23)
o o o

1 = / x2dzdy
w]

= / (x — x0)2dzdy + / xxodzdy + / xoxdzdy — / x3dzdy
D o o W
= I((”) + xoI(M 4 1MWy, — x21(0) (2.24)

where the subscript O denotes a moment about xg.

Since the second method requires fewer arithmetic operations, it was used in the code provided
in Appendix A. The first vertex x; was chosen for xj.

Timing comparisons on the DREA DEC-20/60 computer suggest that the penalty in run
time paid for avoiding round-off errors is between 10% and 15% for polygons with small number
of vertices. If speed is of the essence and it is known that the origin of the coordinate system
will always lie near the panel, it may be best not to worry about round-off errors. On the other
hand, the following example (run on the DREA DEC-20/60) serves to illustrate the need in
general.

With N = 4, z; = (0,0), z2 = (1,0), z; = (1,1), and z; = (0,1), the code given in
Appendix A and similar code ignoring round-off errors both returned the following values for
the moments (correct to 7 significant figures):

1© = 1.0000000 IV = 0.5000000 I{") = 0.5000000 (2.25)

1) = 03333333 1)) = 0.2500000 I3 = 0.3333333 (2.26)




) ) |‘Q I'Q " '

However, when each vertex was displaced by adding (105%,108) to it, the code of Appendix A
returned

1 =1.000000 If") =1.000005 x 10°  I{!) = 1.000005 x 10'° (2.27)
1% = 19 = 1) = 1.000010 x 10*° (2.28)

which are again correct to 7 significant figures. However, the code ignoring round-off errors
returned

1% = 12800000 1M = 1{") = 8.566699 x 10° (2.29)
s v
I¥ = 1} = 1)) = 6.450141 x 10" (2.30)

2.3 Comparison with the Method of EN967

As mentioned in the introduction, the development of the above formulae for the moments
of a polygon was spurred by potential flow calculations using panel methods. For some years
DREA has used the program EN967 to calculate potential lows. The expressions given above
for the panel moments improve upon the EN967 expressions in the following ways.

1. The code is more efficient than that used by EN967. Timing comparisons indicate that the
new method calculates the first three panel moments (the ones required by the potential
flow calculations) in approximately 50% of the time taken by EN967.

2. The new method is more robust than that used by EN967. The analytic expressions
derived above, and hence the code derived from them, are completely free of singularities.
The EN967 code relied upon manipulations of the slopes of the panel sides to calculate
the moments of the panel. When the slopes were very large or very small (but non-zero),
very large relative errors could occur in the values of the moments. As an example,
both methods were used to calculate the moments of the panel having corner points
(z,y) = (1.0,0.0),(-1.0,0.5),(-1.0,—1.0), and (0.0,0.0). Both methods returned the
correct values of the moments I = 0.41667, Ig,) = 0.08333, 1) = 0.10417. However,
when the third point was changed to (—1.0000001,0.5), the new method returned the

correct values (which are as before to five significant figures) while EN967 gave I} @) =
-327,680.

3. The new method is more general allowing arbitrary polygons. The method of EN967
allowed only quadrilaterals.
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3 Determining if a Point is Inside a :
Polygon 3
The second problem to be addressed is whether a given point lies inside or outside an _ i::
arbitrary polygon. It is sufficient to consider the given point to be the origin, since it can .a:“
always be made to be so by a simple coordinate translation. o
e
Problem 2: If x;,k=1,...,N are the vertices of a polygon in order as one proceeds around .
its perimeter counterclockwise, is the origin inside or outside the polygonf ;::
¢
A simple and efficient solution to Problem 2 can be obtained by using the divergence :
theorem again. First define the function sgn(x) by "
sgn(z) = 1 ifz>0 '
= 0 ifz=0 (3.1) s‘z
-1ifz<0 Ny
t",v

It has the properties '
sgn(z) = -egn(-2) (32) R

sgn(zy) = sgn(z)sgn(y) (3.3) o~

sgn (;l'_-) = sgn(z) ifz#0 (3.4) g

d ]
Esgn(z) = 25(z) (3.5) .‘E
where §(z) is the Dirac delta function. It is straightforward to show that |::
2
’ v

| 8@)1(@)dz = 1(0){egn(s) - sga(a))/2 (34) '
and hence that :::
v

/ §(z)6(y)dzdy = 1 if (0,0) is inside the polygon :::
o .

1/2 if (0,0) is on an edge of the polygon
1/4 if (0,0) is on a vertex of the polygon
0 if (0,0) is outside the polygon
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Using equation (3.8) and the divergence theorem one has
[ sty = [ V- (s(z)ogn(s)idsay
o o
3, moemenr)ds (3.

This time the A*® side will be parameterised with respect to the £ coordinate:

y=ms (Buon )= (39)

Then, nyds = —dz and, using the properties listed in equations (3.2)-(3.#), one has

J. s(=)6(s)asdy
_ _li{ J22+" S(eiogn [ + (BUB) (s - 2] de €52 # 500
2.1l 0 if 24 = 241
= 155 ] len(ea) - sgn(ziogn [ - (Ba=m) 2] ifes # 5
41 {0 if 24 = a1
= -1 f: [sen(za41) — sgn(za)jogn (tIEML) f g, £ oy,
4 =1 0 ifz. =2y
_ 1 f: { [sgn(24+1) — sgn(xa)]sgn(za+1 — La)ogn(zasim — Tavas1) if 2 # 7asy
- 4 b=} 0 if zp = 234
N
= ‘% 3" [sen(za+1) - sgn(za)lsgn(za+1 — za)sgn(zasams — Zawas1)
k=1
N
= 1 healess) - sgnlzi)iogn(zamass — sae1m) (3.10)
b=1

The expression of equation (3.10) is very simple to calculate. Note, however, that its
efficiency can be enhanced by avoiding unnecessary multiplications and additions; this is done
in computer code by using appropriate [F THEN ELSE blocks or CASE statements. Thus, an
efficient way to calculate

N
Y isgn(zas1) - sgn(za)isgn(zays+s - 2as1ma)
b=}

is by the following algorithm.




sun = 0
tor k :» 1 to N do
1f 23 <0 thea
it 53,3 > 0 thea
sun := sum ¢ 28gn(zapa+1 — Zae1Ws)
eslse if =3,3 =0 thea
sum = sum ¢ sgA(Sam+1 — Sarite)
oad if
else if 53 > 0 then
12 2,3 <0 then
sum = sum + 20QA(Za¥e+1 — Zasite)
else if 23,3 =0 then
sun = sum ¢ sgn(zaga+1 — Zas1Mn)
end 1if
else if 23,3 # 0 then
sun = sun * ogA(Zaa+1 — Tae1Wa)
end 1f
end do

Timing comparisons on the DREA DEC-20/60 indicate that this algorithm is about 30-
50% more efficient than using equation (3.10) directly. This algorithm is used in the FORTRAN
77 subroutine INPOLY given in Appendix B.

Round-off errors associated with the term (ziya+1 — Zas1ya) are not as critical in this
problem as in Problem 1. In the critical case when both 2’s and y's are large, the term
|sgn(za+1) — sgn(=,)| is sero, so that there is no contribution to the sum. However, round-off
errors could be important for points lying very close to an edge, shifting them just enough so
that they no longer lie inside (or outside) the polygon. There is no simple means of correcting
for this, but a possible solution is to determine the minimum distance of the origin to the
perimeter, thus allowing the user to decide when the urigin is too close to an edge. The
distance of the origin to the k*® gide is

dy = Za¥as1 — Ta+ 10| (3.11)
el —Z3)° ) —
The distance to the perimeter is not calculated by the subroutine INPOLY in Appendix B be-

cause it decreases the efficiency of the subroutine, and is not necessary for all uses. Modification
of INPOLY to calculate the distance to the perimeter is straightforward.




4 Concluding Remarks

Analytic expressions for the moments of an arbitrary polygon have been derived and used
to develop a FORTRAN 77 subroutine which calculates the first three moments of an arbitrary
polygon. A similar expression (with corresponding subroutine) for determining whether a point
lies within a polygon has also been derived. These expressions have the following properties.

1. They are simple and concise and therefore easily programmed in a computer language
(see Appendices A and B).
2. They are computationally efficient.

3. The code derived from the expressions is robust provided care is taken to avoid round-off
errors in the terms (ziya+1 — Zus1Wa).

4. They are general, providing correct expressions for polygons with any number of sides or
any degree of connectivity.
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Appendix A FORTRAN 77 Subroutine
PLYMOM

The FORTRAN 77 subroutine PLYMOM calculates the first three moments of an arbitrary o
polygon using the methods discussed in Sections 2.1 and 2.2. - O

SUBROUTINE PLYMON(N,VERTEX,AREA,ACENT, SECMON)

c
C PLYNOM calculates the first three moments of an arbitrary polygon. by,
C It assumes counter-clockwise panel corner point order. Y
c o
C Subroutine PLYMOM was developed by the Canadian Department of "y
C National Defence. .
c .
C Author: David Hally, 14/1/87 ¢
c 4
C INPUT: L
"
c >
3 ] = The number of vertices of the polygon.
C VERTEX = A 2 x N array containing the vertices of the polygon. 0
c VERTEX(1,I) is the x-component of the Ith vertex. M
c VERTEX(2.I) is the y-component of the Ith vertex. ‘?:1
c )
C OUTPUT: o
C
C AREA = Area of the polygon A
C ACENT = First moments of the panel (centroid times ares) T
C SECMON = 2nd moments of area of the panel. SECMOM(1)=Ixx, N
c SECMOM(2)=Ixy=Iyx, SECMOM(3)=1lyy .
c .
INTEGER M, NP1, X 'y
REAL AREA, ACENT(2), SECMOM(S), VERTEX(2.N). YKXK, VSUMX, VSUNY, .
+ XXMO, XKPIMO, YKMO, YKP1MO :q
'.“
C Calculate momeats about [VERTEX(1,1) VERTEX(2.,1)]
AREA=0.0 o
ACENT(1)=0.0 o

ACENT(2)=0.0




m

SECHMON(1)=0.0

SECHNOM(2)=0.0

SECHON(3)=0.0

XKNO=0.0

YEKNO=0.0

DO 10 MN=1,X
NP1=hi+1
IF (M.EQ.N) MP1=1

¢ IXPIMO=VERTEX (1 ,MP1)-VERTEX(1,1)

YKPI1MO=VERTEX(2,MP1) -VERTEX(2,1)
VBUMX=XKP1M0+XKMO
VEUNY=YKP1MO+YKNO

C Calculate AREA
YKXK=YKP 1 MO+XKMO - YKMO*XKP 1MO
AREA=AREA+YKXK

C Calculate ACENT
ACENT (1)=ACENT (1) +VSUMX*YKXX
ACENT(2)=ACENT(2) +VSUMY*YKXK

C Calculate SECNDM
SECMOM (1) =SECMOM( 1) +YKXK* (XKP1MO*VSUMX+XKMO**2)
SECNOM(2) =SECMOM (2) + YKXK* (XKP1MO*YKP 1MO+XKMO*YKMO+VSUMX*VSUMY)
SECMON (3) =SECMOM(3) +YKXK* (YKP1MO*VSUMY+YKMO#**2)

XKNO=XIKP1NO
YKNO=YKP1MO
10 CONTINUE

C Cslculate moments about (0.,0)
AREA=AREA+Q .5
ACENT(1)=ACENT(1)/6.0+VERTEX(1,1)*=AREA
ACENT(2)=ACENT(2)/6.0+VERTEX(2,1)*=AREA
SECMOM(1)=SECMOM(1)/12.0+VERTEX(1,1)*(2.0*ACENT(1)-
* VERTEX(1,1)+*ARER)
- SECMOM(2) =BECMOM(2) /24 .O+VERTEX (1,1)sACENT(2)+
+ VERTEX(2,1)*(ACENT(1)-VERTEX(1,1)*AREA)
SECMOM(3)=BECMOM(3)/12.0+VERTEX(2,1)+(2.0sACENT(2)-
. VERTEX(2,1)+AREA)
RETURN
END
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Appendix B FORTRAN 77 Subroutine
INPOLY

The FORTRAN 77 subroutine INPOLY function determines whether a point is inside an
arbitrary polygon using the method discussed in Section 3.

SUBROUTINE INPOLY(N,VERTEX,X,IFLAG)

INPOLY deternines whether the point X lies inside an arbitrary
polygon. It assumes counter-clockwise panel cormer point order.

Subroutine INPOLY was developed by the Canadian Department of
National Defence.

Author: David Hally, 14/1/87
INPUT:

N = The number of vertices of the polygon.

VERTEX = A 2 x N array containing the vertices of the polygon.
VERTEX(1,1) is the x-component of the Ith vertex.
VERTEX(2,I) is the y-component of the Ith vertex.

) ¢ = An array of length 2 containing the point which is to be
checked.

X(1) is the x-component of the point.
X(1) is the y-component of the p-int.

OUTPUT:

IFLAG = 4, if X is inside the polygon

= 2, 11 X is on a side of the polygon

= 1, 12 X is on a vertex of the polygon
= 0, if X 1s outside the polygon

a0 000O0000O000C OO0 0n

INTEGER IFLAG, M, MP1, N, 8GN
REAL VERTEX(2,N), X(2), XXMO, XKPIMO, YKMO, YKPINO

IFLAG=0
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XXMO=VERTEX(1,1)-X(1)
YKNO=VERTEX(2,1) -X(2)
DO 10 N=i N
MP1=N+1
IF (M.EQ.N) MP1=1
* IKPINO=VERTEX(1,NP1)-X(1)
YKP1MO=VERTEX (2,MP1)-X(2)
IF (XKMO.LT.0) THEN
s IF (XKP1MO.GT.O) THEN
IFLAG=IFLAG+2*SGN (XKMO*YKP1MO-XKP1MO*YKMO)
ELSE IF (XKPiMO.EQ.0) THEN
IFLAG=IFLAG+SGN (XKMO*YKP1MO-XKP1MO*YKMO)
END IF
ELSE IF (XKMO.GT.0) THEN
IF (XKPIMO.LT.0) THEN
IFLAG=IFLAG+2+SGN (XKMO*YKP1MO-XKP1MO*YKMO)
ELSE IF (XKP1MO.EQ.O) THEN
IFLAG=IFLAG+SGN (XKMO*YKP1MO-XKP1MO*YKNO)
END IF
ELSE IF (XXPINO.NE.O) THEN
IFLAG=IFLAG+SGN (XKMO*YKP1MO-XKP1MO*YKMO)
END IF
XXMO=XKP1NO
YEMO=YKP1MO
10 CONTINUE
RETURN
END

INTEGER FUNCTION SGN(X)
C Calculates sgn(X)
REAL X
IF (X.GT.0.0) THEN
SGN=1
v ELSE IF (X.LT.0.0) THEN
8Gl=-1
ELSE
. 8GN=0
END IF
RETURN
END
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