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Abstract

Methods for calculating the momets of an arbitrary polygon and for determining whether
a point lies within a polygon ae derived and discussed. The methods are efficient, robust,
concise, and eaily programmed in any computer language. A FORTRAN 77 subroutine which
calculats. th first three moments of an arbitrary polygon is also included, as is a subroutine
which determins whether a point lie in an arbitrary polygon.

On traits des mthodes permettant de calculer los moment. d'un polygone
arbitraire et do d6torminer si un point eat situ6 & l'int6rieur d'un
polygone. Los m6thodes sent efficaces, solides, concises at facile. &
progremor dans n'iqporto quel langage inforuatique. On pr6sente aussi un
sous-progrnme en FORTUU 77 qui calcule les trois preiers moments d'un
polynone arbitraire, do mm qu'un sous-programee qui d6termine si un point
ast situ6 & l'int6riour d'un polyone arbitraire.
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Notation

dh: The distance of the origin to the k"h side of the polygon.

I(): The nth moment tensor for the polygon.

41), (): Components of the first moment of the polygon.

IL), 1() 1(W): Components of the second moment of the polygon.

[n]: The largest integer which does not exceed n.

A: Outward pointing unit normal.

N: The number of sides of the polygon.

P".(x,y): Tensor permutation function defined in Section 2.1.

gn(z): Function defined in equation (3.1).

x: Position vector.

ft times
x": The tensor dyadic .

s: Arclength around the polygon perimeter.

t: Variable used to parameterise a side of the polygon.

z, : Coordinates.

9, J, 1: Unit vectors in the coordinate directions.

z,, V1: Coordinates of the keb vertex of a polygon.

6(s): Dirac delta function.

Bold face characters ae reserved for vectors and tensors.
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1 Introduction

A problem that arises in many engineering applications is to find some moment (e.g the
area or the centroid) of an arbitrary polygon. At DREA the problem has arisen in the context
of the calculation of potential flows via panel methods[I]. At large distances, the potential due
to a panel is determined most efficiently by a multipole expansion in which the moments of
the polygonal panel appear. In this memorandum an efficient, robust, and easily programmed
method for calculating the moments of a polygon is derived. Although it seems likely that
the method has been derived previously, it does not appear to be widely known. Indeed, the
problem was considered suitable (though it was not discussed) for a seminar at the Mathematics
Dept. of Dalhousie University in which problems of unknown solution were to be tackled[2].
Further evidence comes from the potential flow program EN967[3] which calculates the moments
of quadrilateral panels using a method which is less efficient, less robust, and less general than
the one presented.

A simple and efficient solution to a related problem is also derived in this memorandum:
how does one determine whether a given point lies inside or outside an arbitrary polygon? It,
too, has arisen in the context of potential flow panel methods; it is sometimes necessary to
know whether a certain point lies within a panel. This problem has also arisen in modelling of
a acycle of perception' for a computational vision problem by the Computer Aided Detection
Group at DREA141.

Appendix A contains a FORTRAN subroutine which calculates the first three moments of
an arbitrary polygon using the method discussed in this memorandum. Appendix B contains
a FORTRAN subroutine which determines whether a point lies inside or outside an arbitrary
polygon.
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2 Calculation of the Moments of Polygons

In this section the method of calculation of the moments of an arbitrary polygon is derived
and discussed.

2.1 Analytical Formulae for the Moments

Let (z, y) be a coordinate system with unit vectors I and j along its axes. Bold face

characters will be used to denote vectors and tensors. Thus,

x - z + yo (2.1)

The notation *0 will be used to denote the tensor dyadic

n times
" z &' X(2.2)

The problem to be solved may be stated as follows:

Problem 1: If xk, k = 1... , N are the vertices of a polygon in order as one proceeds around
its perimeter counterclockwise, calculate the nth moment of the polygon,

=0Xddy (2.3)

where the notation E3 denotes integration over the surface of the polygon.

1(0) is the area of the polygon and I(1) is its centroid times its area. If the polygon has uniform
density, the second order tensor 1(2) is proportional to its moment of inertia.

The essence of the method is to express the xn as the divergence of a tensor, 5o that the
divergence theorem can be used to express the moment as a line integral around the perimeter
of the polygon. The contribution to the line integral from each side is calculated easily. By
using tensor notation, one can obtain a single expression for any moment of the polygon.

First, note that

V t = a (zx - -) a ( --n-1)

= 1 8ax ay= 2x n - I CjXn
- 1 8X n - 1

= + - -- + a

= 2xn - I +x.Vxn-1  (2.4)
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Now, since x. Vx = x, one has x. Vx" = nx"- , whence from equation (2.4)

V x" = (n + 1)x" - ' (2.5)

Therefore, using equation (2.5), the divergence theorem, and the definition of equation (2.3),
one obtains

I V. .X++dzdv=-i-j j (2.6)n )  + 2 .faSzd n + 2 foo-

where 613 denotes the perimeter of the polygon, A is an outward pointing unit normal, and ds
is an increment of arclength.

The kth side of the panel may be paraneterised by x = [(XI+l + xh) + t(XI+l - Xk)I/2,
t E [-1,1]. The increment of arclength is then do = jxk+I - x Idt/2. The outward pointing
normal is parallel to (xt+l - xk) x i where i is a unit vector perpendicular to the plane
of the polygon and such that &, 0, and I define a right handed coordinate system. Thus,

Sd = (xi+i - xi) x I dt/2 so that

n +2 2 2 dt

1 =N/ 1

(n + 2)2n+2 [(xi+l - xi) X 1]" I(xI+1 + xk) + t(xk+l - xk)]n+ldt (2.7)

In these expressions a subscript of N + 1 is equivalent to the subscript 1: that is, xN+l - x1 .
Now,

[(Xk+l - xk) . [(xi+i + xk) + t(xt+l - xi)] = [(xI+i - xk) X 2]. (xi+l + Xk)
= f(xi+I + Xk) X (xi+l - xk)].)i

= 2(xi x xi+i). 2

= 2(zAiy+l - zk+1yk) (2.8)

and therefore,

N -.(zk y+ - z+it) ' (-
E (f + _[(xk+l + xk) + t(xi+l - xi)]ndt (2.9)
k---=1 (n+2)n,

The tensor dyadic (x + y)n can be expanded, but one must be careful not to use the
binomial theorem which assumes commutativity of x and y in the terms: for example, xy # yx.
Rather,

(x + y)" = Pn_.,. (X,y) (2.10)
~M=0

where P,,m(x,y) is the sum of all terms which are permutations of n copies of x and m copies
of y: for example, -

P, 1(x,y) = xy + xyx + yxx (2.11)

The definition for P.,. is extended to the case Po,O by defining Po,0 = 1.

3
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Substitution of equation (2.10) into equation (2.9) yields

=(n T~ !Xk1.+ - b+vk I &.~IX+ kx41-Xk)tmdt

Z-1 (n +2)2-+l [n/2JX+ +Xk X+

= (zgtyk.i - Xik PR..2m,2mM(Xk+i + Xb,Xk+1 - Xk) (2.12)
k=] (n +2)2" , 2m+ 1

where [n/21 denote. the largest integer not exceeding n/2.

The expression in equation (2.12), though seemingly complicated, yields simple expressions
for the firt few moments. In particular,

-( 0 1 - a a )( . 3

1(1)_ - (Xk a+l - Zk+l a)k~ +X) (2.14)

N

j( 2)=- , (zask+l - Xk+ Y a)(XA;+ i + Xk) 2  +((2.14)&)1

N

- E(Xkvk+i Zk+li)I22i+l + Xk+lXk + XkXk+l + 2Xk] (2.15)

Alternatively, the components of the centroid and the second moment of area can be written

N
k=~(ZkYat+l - Zt+ip)(--k+1 + Zk) (2.16)

N

42(i) = k (2.17)

-V 24 (xkya+i zk+lyk)[2ZTk+lyk+l + xa+iyk + zak+1 + 2zXty), (2.19)

12 A = Z(avy+i - Xt+ipa)[yk21 + Va+1Ya + Y2] (2.20)

These formulae are quite general, correctly calculating the moments of polygons with arbi-

trary connectivity. For example, Figure 1 indicates a correct ordering of vertices for calculating
the moments of two disconnected squares while Figure 2 indicates a correct ordering of verticesI
to be used to calculate the moments of a square containing a square hole. Interior holes must
be traversed clockwise.

4
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3 2 7 6
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Figure 1: Order of vertices for disconnected polygons.

3, 2

8 9

10
7' 6

Figure 2: Order of vertices for polygons with holes.
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2.2 Avoiding Round-off Errors

When using the formulae derived in the previous section for numerical calculations, care
must be taken to avoid round-off error in the term (zkyk+i - wk+iyt) when the origin of the
coordinate system is many mean polygon diameters from the centroid of the panel. In this
case zhyk+l o zk+lyk and the term (zkyk+l - zk+lyk) is the difference of two large, nearly
equal numbers. Given any point x0 which is close to the polygon, these round-off errors can be
avoided in two ways:

1. by using the expression

zkyk+1--Zk+lyk = (zk-zo)(Yk+l-YO)-(h+-O)(k-YO)+zO(Yk+1-Yk)-YO(zk+1-zk)
(2.21)

whose right hand side does not contain the product of two large numbers; or

2. by first shifting the coordinate origin to xo, calculating the moments, then using the
formulae

4() = I$°) (2.22)

(i) = xdzdy- / (x - xo)dzdy + xodzdy- + xo f o)  (2.23)

1(2) = J x2dzdy

(X _ xXO)2ddyI+fxxodxdy + f xoxdxdy -fxddi

- 42) + xo0 (i) + (I)Xo - X9(°) (2.24)

where the subscript 0 denotes a moment about x0.

Since the second method requires fewer arithmetic operations, it was used in the code provided
in Appendix A. The first vertex xj was chosen for x0.

Timing comparisons on the DREA DEC-20/60 computer suggest that the penalty in run
time paid for avoiding round-off errors is between 10% and 15% for polygons with small number
of vertices. If speed is of the essence and it is known that the origin of the coordinate system
will always lie near the panel, it may be best not to worry about round-off errors. On the other
hand, the following example (run on the DREA DEC-20/60) serves to illustrate the need in
general.

With N = 4, zI = (0,0), z2 = (1,0), ZI = (1,1), and xi = (0,1), the code given in
Appendix A and similar code ignoring round-off errors both returned the following values for
the moments (correct to 7 significant figures):

I() - 1.0000000 Iii) - 0.5000000 i ) - 0.5000000 (2.25)

I(2P) = 0.3333333 J(2) - 0.2500000 .(2) = 0.3333333 (2.26)

6



However, when each vertex was displaced by adding (101, 105) to it, the code of Appendix A
returned

1(° ) = 1.000000 1) - 1.000005 x l0 j(1) = 1.000005 x 1010 (2.27)

1=(2) =(2) = 1(2) = 1.000010 X 1010 (2.28)

which are again correct to 7 significant figures. However, the code ignoring round-off errors
returned

-(o)= 128.00000 (1) = I ( ' = 8.566699 x 106 (2.29)

r{(2) = 1 = 1 ,2) = 6.450141 x 1011 (2.30)

2.3 Comparison with the Method of EN967

As mentioned in the introduction, the development of the above formulae for the moments
of a polygon was spurred by potential flow calculations using panel methods. For some years
DREA has used the program EN967 to calculate potential flows. The expressions given above
for the panel moments improve upon the EN967 expressions in the following ways.

1. The code is more efficient than that used by EN967. Timing comparisons indicate that the
new method calculates the first three panel moments (the ones required by the potential
flow calculations) in approximately 50% of the time taken by EN967.

2. The new method is more robust than that used by EN967. The analytic expressions
derived above, and hence the code derived from them, are completely free of singularities.
The EN967 code relied upon manipulations of the slopes of the panel sides to calculate
the moments of the panel. When the slopes were very large or very small (but non-zero),
very large relative errors could occur in the values of the moments. As an example,
both methods were used to calculate the moments of the panel having corner points
(Zy,) = (1.0,0.0),(-1.0,0.5),(-1.0,-1.0), and (0.0,0.0). Both methods returned the
correct values of the moments i') = 0.41667,4(2) = 0.08333, I2 ) = 0.10417. However,
when the third point was changed to (-1.0000001,0.5), the new method returned the

correct values (which are as before to five significant figures) while EN967 gave (2) =

-327,680.

3. The new method is more general allowing arbitrary polygons. The method of EN967
allowed only quadrilaterals.

71
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3 Determining if a Point is Inside a
Polygon

The second problem to be addressed is whether a given point lies inside or outside an
arbitrary polygon. It is sufficient to consider the given point to be the origin, since it can
always be made to be so by a simple coordinate translation.

Problem 2: If xt, k = 1,. . ., N are the vertices of a poLpgon in order as one proceeds. aroiund
its perimeter counterclockwise, is the origin ins~ide or outside the poLygoa?

A simple and efficient solution to Problem 2 can be obtained by using the divergence
theorem again. First define the function sgn(x) by

sgn(z) = 1 if z> 0

=O0ifz=O (3.1)
= -1 ifzX<O0

It has the properties

sgn(z) = -sgn(-z-) (32)1

sgnzp = sgn(z)sgn(y) (3.3)

sgn GX) = sg1z if z#O (3.4)

d
W-sgn(z) = 25(z) (3.5)

where 6(z) is the Dirac delta function. It is straightforward to show that

.1' (z)f (z)dz = f (0)[sgn(b) - sgn(a)1/2 (3.6)

and hence that

fa (z)6(y)dzdy = 1 if (0,0) is inside the polygon
= 1/2 if (0,0) is on an edge of the polygon
= 1/4 if (0,0) is on a vertex of the polygon

= 0 if (0,0) is outside the polygon (3.7)

8
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Using equation (3.5) and the divergence theorem one has

fa 6(x)J(,)dxd,= Io V ((z).p(V)ADdzdv

f n lO %(z)epf(v)do (3.8)

Thi time the Is side will be parneteise with respect to the x coordinate:

V = +(a+ - )

Ten, x,.d = -dx and, using the properties liod in equations (S.2)-(3.f), one has

fo S1z)O61y1,

- ,IV, + (z-.. . )] d. x if Zh# I
= S 0 if h =h+I

JIs(.+,n - (!aE.I) z.] if : : +

-4 I 0 ifZI,= +,

- -i j. JIsa(:a+a) - sg(:st)Js(zaj+i - 3h)sgn(z.+Ivb- zsyi+I) ifx iz & +1
-4 0 if a = a+l

h-i

I

= sgz l'P = ) - agnlu.)lisglf.v.+a - '5+,1s)(s 0

The expreesion o( equation (3.10) is very simple to calculate. Note, however, that its
efficiency can be enhanced by avoiding unnecessary multiplications and additions; this is done

in computer code by using appropriate IF THEN ELSE blocks or CASE statements. Thus, an
efficient way to calculate

N l sg(:a+,) - sgp(ua)lsgn(:aa+1 - za+iva)

is by the foilng algorith.

9g



m :° 0

for k a I to N 4
if sh <0 thea

If 26+1 > 0 tesn
m :a m , 2sva(Zbl,,- z-+IV)

else If NbA = 0 thm
m := m * msa(s&n ,- sa :ne)

end If
else If Nb > 0 USA

If 26+1 < 0 thea
am :- SUm 2op(:a,.,. - zb+,y,)

else If Nh+l = 0 thea
sum :- sm * s('a.I - zk+I ,)

end If
else It S.J. # 0 the

m :- aum + *g (s&aV+I -- +I )
end If

end do

Timing comparisos oan the DREA DEC-20/60 indicate that this algorithm is about 30-
50% more efficient than using equation (3.10) directly. This algorithm is used in the FORTRAN
77 subroutine INPOLY given in Appendix B.

Round-off errors associated with the term (zaV+i - zi+nyt) are not as critical in this
problem w in Problem I. In the critical case when both c's and y's are large, the term
Jsgn(zh+l) - gn(zk)I is ero, so that there is no contribution to the sum. However, round-off
errorn could be important for points lying very close to an edge, shifting them just enough so
that they no longer lie inside (or outside) the polygon. There is no simple means of correcting
for this, but a pomible solution is to determine the minimum distance of the origin to the
peimter, thus allowing the user to decide when the irigin is too close to an edge. The
ditance of the origin to the k side is

4- Izspa , - " +yi (.&I

V & I - ), + (P5*1 - v,)(
The distance to the perimeter is not calculated by the subroutine INPOLY in Appendix B be-
cause it decreses the efficiency of the subroutine, and is not necessary for all uses. Modification
of INPOLY to calculate the distance to the perimeter is straightforward.

10
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4 Concluding Remarks

Analytic expresons for the moments of an arbitrary polygon have been derived and used
to develop a FORTRAN 77 subroutine which calculates the first three moments of an arbitrary
polygon. A similar expremion (with corresponding subroutine) for determining whether a point
ie within a polygon ha also been derived. These expressions have the following properties.

1. They are simple and concise and therefore easily programmed in a computer language
(see Appendices A and 8).

2. They are computationally efficient.

3. The code derived from the expressions is robust provided cae is taken to avoid round-off
errors in the terms (zbyb+l -

4. They are general, providing correct expressions for polygons with any number of sides or
any degree of connectivity.

I1
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Appendix A FORTRAN 77 Subroutine
PLYMOM

The FORTRAN 77 subroutine PLYMOM calculates the first three moments of an arbitrary
polygon uing the methods discussed in Section. 2.1 and 2.2.

BUUOUTM PL"N(. VUTZx * ARE.A. ACr, *sCO)

C
C PLYNON calculates the first three moments of an arbitrary polygon.
C It assumes counter-clockvise panel corner point order.

C
C Subroutine PLYMON was developed by the Canadian Department of
C National Defence.
C
C Author: David Nally. 14/1/87
C
C INPUT:
C
C N a The number of vertices of the polygon.
C VURTU1 a A 2 x N array containing the vertices of the polygon.
C VKTI(1.I) Is the x-component of the Ith vertex.
C VKTEI(2.I) is the 7-component of the Ith vertex.
C
C OUTPUT:
C
C AREA a Area of the polygon
C ACENT a First moments of the panel (centroid times area)
C BECMON a 2nd moments of area of the panel. 8ECNNM(1)-Ixx.
C QNIMO(2)-Ixy-Iyx. 3ENOM(3)-Iyy
C

INTIG M. MPI. N V
REAL AUA. ACUNT(2). C1M.N(3). VERTE(2N,). TKIl. VSUs. VSUM .

* M1O . XKPINO. TKMO. YKPINO

C Calculate oments about [VERTE(.).VtTE(2.1)]
Ann-,,O. 0

ACRT?( 1) ,0.0
ACEr? (2),.o

12



in..I ) .0.0
U311100 00

IDIOW0 .0

DO t0 N-I.E
NP 14NI
if (MEBQ.) NPIi
IKPIOVEmT1K(I. .NP)-VERTEX(1. .1)
TKPlN-VURTKI(2. NPl)-VERTEX (2.1)
VowUK-1N0+IDIO
TUUNTKPlNO.YKNO

C Calculate AREA
YKXK-YKPIND*IKNO-YKNO*XKP1NO
AIKA-hEEA4YKXX

C Calculate ACEIT
ACENT (1)-ACEIT( 1) VSUNI4TKIK
ACEIT(2) -ACENT(2) .VSUNYKXK

C Calculate SECHON
3ECNON (1) -SCNON( 1) TKXK*(XX~PIdO*VSUNXKKO**2)
SECNO(2) -SEn N(2) .yrf* (XKP114*YKP1MO.XKO*YXO+VB1hi*VSUM)
SECNCN(3) -BECKON4(S) .TKXK* (TKP1MO*VSUN+TKNO* *2)

lIM-lKI NO

10 C0UT!U

C Calculate moments about (0.0)

ARRAmAREA*0.5

ACENTC1)-ACENT(l)/6.0eVERTEX(I .1)*AREA
ACENT(2)-ACENT(2)/..VERTI(2.1)*AREA
UEOIN(1)-SECMON(1)/12.0eVERTEI(1 .I)*(2.0*ACENT(1)-
* VERTEM(.1)*AREA)

EECNM(2)-SECNON(2)/24 .04VERTEI(1.,1)u'ACENT(2),+
* VZRTI1) *(ACENT(1) -VERTEX(0. 1) AREA)

3ECNON(3)-3ECMON(3)/12 .0.VERTEX(2, 1)*(2.0ACENT(2)-
+ VERTEX(2.1)AREA)

RETURN
END

13



Appendix B FORTRAN 77 Subroutine
INPOLY

The FORTRAN 77 subroutine INPOLY function determines whether a point is inside an
arbitrary polygon using the method discussed in Section 3.

SUBROUTINE INPOLY(N.VERTEXI,. IFLAG)
C
C INPOLY determines whether the point I lies inside an arbitrary
C polygon. It assumes counter-clockwise panel corner point order.
C
C Subroutine INPOLY was developed by the Canadian Department of
C National Defence.
C
C Author: David Rally. 14/1/87
C
C INPUT:
C
C N a The number of vertices of the polygon.
C VERTEX - A 2 x N array containing the vertices of the polygon.
C VERTEX(1.I) is the x-component of the Ith vertex.
C VEUTEI(2.I) is the y-component of the Ith vertex.
C I a An array of lengh 2 containing the point which is to be
C checked.
C 1(1) is the x-component of the point.
C 1(1) is the y-component of the p-int.
C
C OUTPUT:

C IFLG a 4. if I is inside the polygon
C a 2. ifX Is on a side of the polygon

C a 1. if I is on a vertex of the polygon
C - 0. If I Is outside the polygon
C

INTGER IFLAG. N. NP1. N. SON
REAL VERTIX(2.N). 1(2). 1MO. IKP1NO. TICNO, YKP1NO

IFLAG-0

14
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IDKo-VER.TEX(1 .1)-X~i)
TKNO-VERTEX(2.1) -X(2)
DO 10 M-1.N

Hpl-Nil
IF (N.EQ.N) XPl-l
XKPlMo-VERTEX(1.MPl)-X(l)
TKPIMO-'VERTEI(2 .MPl) -X(2)
IF (IMN.LT.0) THEN

IF (IKPIMO.GT.O) THEN
IFLAGoIFLAGe2*SGN (1K40*yTcp114-XIK1O*TKNO)

ELSE IF (XKP1MO.EQ.O) THEN
IFLAG-IFLAG+SGN (XKMO*TKP1MO-IKP1MO*TKMO)

END IF
ELSE IF (11C14.GT.O) THEN

IF (IKP1l4O.LT.0) THEN
IFLAG.IFLAG.2*SGN (XK140.KPNo-HKPIMO*TKNo)

ELSE IF (IKP1MO.EQ.0) THEN
IFLAG=IFLAG4SGN (IKIO*TKP1MO-XIKPMO*T1140)

END IF
ELSE IF (XKPIMO.NE.O) THEN

IFLAG-IFLAG.SGN (IDIO*TKP~I4O-IKP1MO*TKMO)
END IF
XKMOI1KP1NO
YKNOTIKP1NO

10 CONTINUE
RETURN
END

INTEGER FUNCTION SGN(I)
C Calculates agui(Z)

REAL X
IF (X.GT.O.0) THEN

SGN=1
ELSE IF (X.LT.0.0) THEN

SGN*-i
ELSE

301.0
END IF
RETURN
END
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