
iiN N7.

Lor t,__.o
11111.2 lao . _Jt 6

L IS 16

MICROCOPY RESOLUTION TEST CHART

Go
Tom

PROCEEDINGS OF THE

SECOND EUROPEAN SEMINAR ON INDUSTRIAL SOFTWARE ENGINEERING

Freiburg, West Germany

9 - 10 May 1985

C)~

4-. JAN2 Pli7

-- - A

87 1 99 O82

s i i I I I
" , •

COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:

TITLE: Proceedings of the European Seminar on Industrial
Software Engineering

(2nd) Held in Freiburg (Germany, FR.) on 9-10 May 1985.

To ORDER THE COMPLETE COMPILATION REPORT, USE AD-A183 434

THE COMPONENT PART IS PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY

AUTHORED SECTIONS OF PROCEEDING, ANNALS, SYMPOSIA, ETC. HOWEVER, THE COMPONENT

SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION REPORT AND

NOT AS A STAND-ALONE TECHNICAL REPORT.

THE FOLLOWING COMPONENT PART NUMBERS COMPRISE THE COMPILATION REPORT:

AD#: P005 554 Thru AD#: P005 566

AD#I: AN: __ _ _ _ _

AD#: AD#:_

DTIC
FI .. F (-T E

SAUG 261987j
.. i . AG 098

FORM : d .rent h-.s been approved
DTIC''M-. nr~d solo; its OPI: DTIC-TIDMTC RO 5 ,tir- i85 ','ited.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATIONl b. RESTRICTIVE MARKINGS.. J/-,
Unclassified WI4" . J/ IS'r

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unl imi ted
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

R&D 5031-CC-02
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Hatfield School of (if PliCeb/e)
Information Science USARDSG(UK)

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
PO Box 109
Hatfield Box 65
Herts AL1O 9AB FPO NY 09510-1500

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

USARDSG(UK) ARO-E AMXSN-UK-ZA DAJA45-85-M-0219
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITBox 65 ELEMENT NO. NO. NO. ACCESSION NO.

FPO NY 09510-1500 61102A 1L161102BH[7 03
11. TITLE (Include Security Classification)

(U) Proceedings of the Second European Seminar on Industrial Software Engineering

12. PERSONAL AUTHOR(S)IA. Ba zert .M . Jackson, P. Dencker, H.S. Jansohn G. Goos, E. J. Neuhold
D. G. Morgan, H. Weber, A. Popescu-Zeletin, G. Le Lann, M. R. Mouiding, J. Favaro, J. Hall

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT
Proceedings FROM 9 May 8 5To 10 May 15

16. SUPPLEMENTARY NOTATION

17. COSATI CODES lB. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP
09 02 (U) Software Engineering

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

It is now common knowledge that the announcement of the Japanese Fifth Generation
Computing Programme in 1982 led to the announcement of a number of national and
international programmes in Information Technology, including the Esprit programme.
These are popularly considered as being in response to the Japanese initiative.
However, the Esprit and the UK Alvey programmes had been preceded by some years of
discussion between industrial and government representatives. They, therefore,
overlap rather than follow the Japanese Programme and tend to cover a much wider
range of subjects. The Esprit Software Technology Programme 1985 is described,
followed by a report on the Japanese Fifth Generation Conference. A comparison
between the approaches of the two programmes is then made.

20 ISTRIBU'TION/AVAILABILITY ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

ILLUNCLASSIFIED/ULMIE % SAME AS RPIT. O TIM USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(kxh#* Aea Code) 22c. OFFICE SYMBOL

Dr. James W. Gault 01-409 4423 AMXSN-UK-RI
D0 FORM 1473, 4 MAR S3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other edtiommre obsolet. Unclassified

SECURITY CLASSIFICATION OP THIS PA6I

SECURITY CLASSIFICATION OF THIS PAGE

INDUSTRIAL SOFTWARE TECHNOLOGY '85

CONTENTS

DCG Morgan L11.)~'~
Contrasting approaches to research into information technology: Europe and Japan

/H ,eber

JAn object-oriented database system: Object Base D

\IaPICygbJ
SPopescu-Zeletin L L ,) / b

Structuring mechanisms in distributed systems-.
-- NTT r-

NTIS GRAkI
DTIC TAB

C Le Lann 4Unannounced
Industrial local area networks . title t

M R Moulding ;Distribution/

Fault tolerant systems in military applications Availability Codes

Aval and/or

J Favaro " - /11; , .. Dist Special

Unix* - A viable standard for software engineering?

J HallLi l

The ASPECT project i oA

H Balzert !'l)-

Three Experimental Mutimedia Workstations A Realistic Utopia for the Office

of Tomorrow

) M I Jackson
Formal methods: Present and future / ')

P Dencker and H S Jansohn .1 , J c "

A Retargetable Debugger for the Karlsruhe Ada System , ,

G Goos

The Relationship of Software Engineering and Artificial Intelligence i/ ' '
}

E J Neuhold Ll .

Objects and abstract data types in information systems D T IC
H Halling (,, , ' /A (,ELECTE f
Management of software for large technical systems S NOV 0 4 086D

(*Unix is a trademark of AT&T Bell Laboratories) E

bo Phu W siam

-) AD-P005 554

THE ESPRIT SOFTWARE TECHNOLOGY PROGRAMME 1985

and THE JAPANESE FIFTH GENERATION CONFERENCE 1984

CONTRASTING APPROACHES TO RESEARCH INTO INFORMATION TECHNOLOGY

D.G. MORGAN Research Director (Software)
Plessey Electronic Systems Research Ltd., Roke Manor.

The views set out in this paper are my personal opinions and should not
be taken as representing an official view held either by the Plessey
Company p.l.c., or by the C.E.C.

,It is now common knowledge that the announcement of the Japanese Fifth
Generation Computing Programme in 1982 led to the announcement of a
number of national and international programmes in Information
Technology, including the Esprit programme. These are popularly
-onsidered as being in response to the Japanese initiative. However, the
-sprit and the UK Alvey programmes had been preceded by some years of
discussion between industrial and government representatives. They,
therfore, overlap rather than follow the Japanese Programme and tend to
cover a much wider range of subjects. Other differences in motivation,
funding and industry participation mean that comparisions between the
programmes are similar, to improve the national competitiveness in
Information Technology, such comparisions must be made.

-"This paper started out as two separate papers but, as the planners of the
EWICS Conference placed them one after the other in the programme, it
seemed sensible to merge the two papers. Having brought them together,
an obvious next step was to compare the two approaches. The form of the
paper reflects this history. The Esprit Software Technology Programme
1985 is described, followed by a report on the Japanese Fifth Generation
Conference. A comparision between the approaches of the two programmes
is then made.

I

-9-

ESPRIT SOFTWARE TECHNOLOGY PROGRAMME 1985

What follows describes the work which was undertaken by the Software
Technology Advisory Panel in changing the shape of the Esprit
Software Technology Programme in preparation for bids to be received
during 1985.

Why should there be a need to restructure the Software Technology
Programme for 1985? The Esprit Software Technology Programme had
been in place for two years and a considerable reponse had been
received both to pilot projects and to the first call for proposals.
However, despite substantial numbers of applications, the overall
response to the first call for proposals was seen as disappointing
both by the Technical Panel and by the Commission. Disappointing
both in quality and quantity.

When the Esprit project was originally conceived, Software
Technology was seen as being one of the major enabling technologies
required by the Information Technology business. On all sides
people complain about the lack of productivity in software
development and the lack of availability of skilled staff.
Consequently when the programme was formulated it was allocated
funds similar to those allocated to the other major areas in the
overall Esprit Programme. When the call for proposals went out it
was made clear that the Commission expected an enthusiastic
response.

In formulating the shape of the Esprit programme the Commission had
taken the advice of an advisory panel which contained
representatives of many of Europe's leading electronics companies
that 75% of the projects should be large scale projects; that is of
greater than ten million ECUs. It was pointed out strongly by the
Software Technology Panel of the day that this was inappropriate to
the state-of-the-art of Software Technology and the sort of projects
that were judged to be required in order to advance this field.
However the Commission's reply was that the proportion of large
scale projects applied to the Esprit Programme overall and was not
expected necessarily to apply to each sub-programme. In principal
therefore, this would leave scope for a number of smaller projects
in Software Technology. In the event the evaluation team the
Commission established rejected more than 50% of the proposals
received in the field of Software Technology. Sixteen projects were
placed, four projects were, after reconsideration, reassessed as
being suitable for support providing that their scope was reduced
and these projects were asked to re-submit during the last year. In
consequence the budget allocated to Software Technology was not
utilised.

-10-

It is worth examining why there was this rejection of such a large
number of projects when the Esprit programme had received such major
publicity and why Software Technology in particular has such a poor
response. There are many explanations and the following list is a
personal selection of what I think are the main problems:

A. It was felt that the Assessment Panel had applied rather
too academic a standard to the evaluation of the
proposals. This was a view I had held myself at the
time. However, the Commission did conduct an enquiry
subsequently into the performance of the Assessment
Panel and satisfied itself that it had in fact exercised
its remit fairly.

B. It has become clear that many smaller companies did not
feel that they were able to put in the investment needed
in order to enter a successful Esprit bid, and were
discouraged by the thought of mounting a ten million ECU
project of which they and their partners had to find 50%
funding. There were smaller companies prepared to join
consortia who were unable to find partners.

C. Many proposals that were submitted were badly written.
They failed to meet the most elementary requirements of
a proposal in not having clearly identified objectives,
timetables or evaluation criteria.

D. The programme had been structured into a number of
different areas and bidders were expected to indicate
the area into which their proposal fitted. It was a
comment of the evaluation team that many proposals did
not seem to fit clearly into one area or another and
they attributed this to the non-specific nature of the
published Software Technology programme in the call for
proposals in 1984. It is worth commenting here that
this lack of specificity had been a deliberate policy of
the Software Technology Panel. It had been felt that,
in such a rapidly growing field, to impose too rigid a
view as to what research programmes should be undertaken
was to curtail the inventivness of proposals. In the
event this was probably a mistake, although at the time
seemed to be a very sensible approach. In drawing up
the new 1985 Programme this was particularly
addressed.

E. Industry was not prepared to invest large sums of money
in collaborative, pre-competitive research into Software
Technology, either because they were not investing in
Software Technology at all, or because it was felt. to be
too competitive a subject.

-If-

As a consequence of this poor response, in contrast to some very
enthusiastic reponses in other areas such as computer integrated
manufacture, the Commission came under pressure from industrial
representatives to consider the reallocation of money within the
programme. The argument being that clearly there was not the
interest in developing the field of software technology. It is to
the Commission's credit that they resisted such movements in the
last year and in fact encouraged the technical advisory panel to
create a new programme which gave the opportunity to bidders to
citch up with the lack of support they had given in the first
year.

When the Technical Panel met again to start the consideration of
the programme for 1985, the facts given above were presented to
them and they were asked to reconsider what shape the programme
should have in order to achieve a more satisfactory response in
1985. In discussions which followed at Esprit Technical Week and
other occasions, it became very clear that there were two main
criticisms of the exisiting Software Technology Programme.

1. The published programme was thought to be too
vague and was too sub-divided and therefoe
appeared more complex than was intended. It was
difficult for proposers to focus on one aspects of
the programme.

2. Rather than needing to push the frontiers of
Software Technology forward, the real problems
facing Software Technology were that there was
insufficient practice and use of existing methods
and tools let alone the need to develop more
advanced tools. This had not been identified in
the published programme.

It is clear that on the surface this is not a particularly
glamorous message to put into what is thought to be a very forward
looking research programme. However, it is a commonly voiced
slogan that Software Technology is about creating a new discipline
of software engineering and engineering is about practical skills.
Examination of the world literature in the applications of
software engineering find relatively few papers on the comparative
evaluation of one technique against another in terms of the
practical development of large programmeE. Much of the reason for
this is, of course, the great difficulty in carrying out effective
evaluations. In redrafting the Software Technology Programme
therefore these criticisms needed to be countered. A very large
software project contains all the problems of any project which
requires the co-ordination of the efforts of some hundreds of
human beings with widely different talents and personality; all of
whom are attempting to carry out an extremely difficult and
complex task to what are usually very tight time scales. Very few

.11/

-12-

projects are sufficiently alike to allow for close comparision of
different methods between different projects. Much of the current
drive of Software Technology is mainly an act of faith that the
techniques that are being introduced will lead to very much more
efficient software production. Certain trends, such as that
towards formality, appears self evidently beneficial as leading to
greater rigour and hence to higher quality and reduced testing
time on software.

Much of the published work over the last decade has indicated that
any large software projects have the majority of its money spent
during the period following the implimentation of the first
version of the software. However, it is perhaps not commonly
appreciated how government and commercial policy can affect the
shape of that curve. I am told by an emminent U.S. Government
official that many of the projects on which the early work of
evaluating life cycle costs were based, were in fact projects
created in an environment which allowed contractors to develop
complex unique software using their own standards, and in many
cases their own tools. The customer (in most cases the US
Government) would then be required to turn to that organisation in
order to have the maintenance and post design services carried
out. Commercial pressures and the need to keep a maintenance team
on software that was rapidly going out of date because of the very
rapid developments of hardware technology, meant that in many
cases the costs of such maintenance rose very rapidly. It is
thought that this could well have dictated the shape of some those
early urves.

It is interesting to compare the current attitudes in many
countries towards computer-aided circuit design with that towards
software tools. There seems to be little question as to the
desirability of software tools to aid complex design, but little
evidence that software tools are considered as useful. The
ability to measure, quantitatively, the product in the former
case must be a major factor. Until more effective metrics are
available, the introduction of software technology will be
hampered by the inability to be justified in commercial terms.

To turn once again to the 1985 programme, after recognising these
omissions of the previous programmes it was decided that a new
strategy should be adopted in formulating the programme for 1985. This
strategy can be summarised as follows:

1. Software Technology was agreed to be still a major enabling
technology of systems design. Its main purpose will be to assist
in the more rapid introduction of new products and in the
reduction in total lifecycle costs.

5

-13-

2. Taken as a whole, Europe had an expertise in software technology
that was the equal, if not superior to that in Japan and the
United States. However, its problem was that the expertise was
spread widely throughout Europe and the aim of the Esprit
programme should be to co-ordinate this expertise and to ensure
that it was adopted by industry.

3. The reasons for the lack of adoption by industry of existing
techniques were examined and it was felt that there were two major
factors, one was the cost of implementation of many of the modern
techniques and secondly, the lack of information as to the
benefits to accrue from these techniques available to middle
management. That is, the Project Managers within organisations
who, faced with the need to set up a project team for a new
project will, in general, use those techniques with which they are
familiar and whose benefits have already been proven. The lack of
such information at that level would obviously be a major barrier
to the adoption of new techniques.

4. Consequently, it was decided that a new class of projects should
be brought in to introduce software technology and to evaluate and
disemminate the effectiveness of the technology.

A programme was therefore re-cast:

1. To provide a more precise statement of the desired projects.

2. To fit in with projects already placed including pilot projects

3. To alter the balance of projects towards supporting the adoption

of software engineering by industry.

This gave rise to a programme of the following shape:

he old matrix structure was thought to be too complex and was
simplified so that three areas were retained and a fourth introduced:

1. Theories, methods, tools.

2. Management and industrial aspects.

3. Common environment.

4. The concept of demonstrator projects which would allow for
the benefits of this technology to be demonstrated.

-14-

In reviewing this programme it was felt that the basic development of
Support Environments and Tools were well covered by the SPMMS Project
and the PCTE Project. However, it was felt that new work was required
in:

1. Integration of hardware and software design.

2. Alternative and complementary methods of software development
(in particular the co-ordination of the artificial
intelligence work which was tending to use functional and
logical languages).

3. Software engineering for small highly critical software (it
was felt that although most of the attention was being
devoted towards large scale software production there were
equally critical areas where a piece of software, not in
itself very large, would however form a very critical part of
a piece of equipment - for example an ignition system for a
motor car).

4. Metrics for software and for methodologies (this was intended
to be part of the greater exalmination of the evaluation of
software problems).

5. The man-machine interface problem for tools and environment
(this was seen as being an attack on the major problems of
the cost of the introduction of many of these techniques).

6. Projects covering a wider application area.

7. The evaluation projects referred to above.

The shape of this programme was welcomed by the Commission as being a
more hard headed approach to the problems of software engineering and
the programme was given initial acceptance. However, a number of
embers of the Commission and representatives of major electronics

companies then visited the Japanese Fifth Conference in November and
what they saw there, reinforced the Commission's need to re-examine the
alms of the overall Esprit Programme when they returned to identify
more demonstration projects.

7

They were very impressed with the clear cut goals of the Japanese Fifth
Generation Programme which had been set at the outset and which was
clear, bad been adhered to. This contrasted with the very wide ranging
aspirations of the Esprit Programme which covered a very much wider
range of activities than that of the Japanese. It was felt that the
Esprit Software Engineering and the AlP Programmes would benefit from
an even more focused approach in the future and so efforts were made in
the first few months of this year to draw up a further refinement of
the aims of the Software Technology Programme and, in particular
encourage industry to get together in larger groupings to form large

scale demonstrator projects. In the preliminarly discussions however,
it became clear that many of the large companies who had been
enthusiasic supporters of the programme in its early years were now
seeing themselves as being faced with a resource shortage when faced
with the need to provide more support for new, very large co-operative
Software Technology Programmes, in particular in the absence of the
"enefits referred to above. On the other hand, nobody seemed to have
.ound the secret of encouraging smaller comapnies to join, although
various ideas had been suggested - for example - that a large
industrial organisation should act as the focal point for a number of
smaller proposals which would be gathered together under the managment
of the larger organisation.

At the same time attempts were madde to identify quantitative goals
for the Software Technology Programme. The Japanese had announced at
the Fifth Generation Conference that they were considering starting a
software technology programme with the declared aim of changing the
degree of automation in the process of software development from 8% to
80%. Attempts were made, in a series of special meetings of technical
representatives of major electronics and telecommunications companies,
to draw up a similar set of goals for the Esprit Programme. Some
reluctance was shown by representatives based upon:

a. The lack of true measurements of current techniques against which
to compare improvements.

b. The usefullness of such simplified criteria in the current state
of software development.

c. the difficulty of adding such criteria to a programme now
well advanced, which had not been started with these criteria in
mind.

However, some targets were suggested although these have not yet been
officially.published.

Further, it was considered that, in the major projects PCTE, SPMMS,
GRASPIN, together .with a new project to build tools backed upon PCTE,
the Esprit project had a major initiative in the mainstream of modern
thinking on the future of software technology.

-16-

While there is much to be said for this line now being taken by the
Commission, it must be said that it was really rather too late to alter
the overall direction of the Software Technology Programme for 1985.
Only, when the results of this year's bids are revealed will we be able
to see whether in fact this initiative to encourage industrial grouping
to form major strategic projects has been sucessful.

...........
David G. Morgan
30/04/85

-2-

THE JAPANESE FIFTH GENERATION CONFERENCE IN 1984

What follows is a personal impression of the Japanese Fifth Generation
Conference amplified by impressions of a number of visits made to
Electronic Industry Research Labs during the previous week.

History will show, I suspect, that the Japanese Fifth Generation
initiative has had a very major effect upon the Interest in Information
Technology in the western world and possibly, in the world at large.
This interest was shown by the hundred per cent oversubscription to the
Conference which was held in November of last year in Tokyo. The
Japanese openness in publicising the aims of their project led to great
eagerness amongst delegates to see just how far the Japanese have
progressed along their chosen path. However, in the two years that the
programme has been running, the world's press have, it would appear,
managed to embellish the aspirations of the Japanese project with the
",pression that the Japanese were making a determined attempt upon the
.rtificial Intelligence problem. I was not present at the first
conference on the Fifth Generation project but I am assured by those who
were, that the impression was given at that time that the Japanese
certainly intended to produce "Thinking Computers". It was very
noticeable however in the opening speeches of the Conference both by Dr.
Fuchi and Prof. Moko-oka that they were eager to dispell any ideas that
the Japanese had attempted in the last two years to make any attack in
this direction. In fact Dr. Fuchi went so far as to say that they were
not tackling the Artificial Intelligence problem but they were preparing
themselves to generate hardware and software which would be the next
generation of the way in which Information Technology was implemented.

As the conference progressed many official speakers stood up and repeated
that theme and stressed that the attack on the Artificial Intelligence

4 problem would come as a result of international co-operation and that
there remained many years work investigating the application areas of the
Fifth Generation Technology that the Japanese were developing before
anything approaching Artificial Intelligence would be seen.

What then have the Japanese achieved in the two full years that the
project has been underway? First of all one has the general impression
that they have apparently achieved all their hardware targets for the
first stage and I will be talking about those a little later on. They
appear to be particularly strong in hardware design and in the operating
systems software and they have developed a number of products which are
of a commercial standard and of wide applicability in their own right.

IiO

-3-

It was very noticable that they have a new generation of engineers widely
read in the current literature. Comments were made by more than one US
researcher that, the US AI community would be hard-pushed to match the
number of young post-graduates who were presenting papers during the
Conference. It Is now probably well understood that the Fifth Generation
Programme is run by a central organisation known as ICOT to which
companies and state research labs have contributed staff who work
together under a director Dr. Fuchi, towards achieving the goals of the
Fifth Generation Programme. What is perhaps not quite so widely
understood is that nearly every company that contributes staff to the
central project, has also got in-house research programmes which parallel
,Fifth Generation Projects. Each company's programme may not be of such
wide ranging applicability as the Fifth Generation Project, but in
general will be a sub-set of those activities which that particular
company feels is relevant to its commercial future. Since the major
Japanese companies are intensely competitive, it is quite likely that
there are three or four identical developments going on within Japanese
4ndustry. These are not just replications of the ICOT programme, but
.epresents an extension and exploitation of the ICOT programme and builds
upon the experience being obtained by the engineers contributed to that
central team. So, for example, while the personal sequential inference
machine being produced by Mitsubishi for ICOT has a performance of 100K
Lips Mitsubishi are producing a similar machine with voice response,
image understanding and possibly faster performance. At the same time,
independently of ICOT, a further programme is being undertaken by the
Nippon Telegraph and Telephone Company, the state owned PTT which has a
programme underway which is probably larger than the Fifth Generation
itself.

The total picture therefore is of a well focused project which is
achieving its goals but because of the infrastructure of industry and
research within Japan is also creating a very wide and deep understanding
of the problems of developing these sort of systems and is providing a
very large industrial base on which any future developments can be
placed. It is not at all clear that similar strength and depth is being
created either in Europe or in the United States. Overall therefore one
.n say that the conference was an impressive statement of the efficiency

of the Japanese industrial machine.

What are the specific achievements? Figure 1 - an oft quoted diagram,
shows the way in which they intend to develop their system. They are
building a hardware base consisting of a relational database mechanism,
an inference mechanism, sophisticated interface hardware, all of which
linked together in an inference machine, of which there are going to be
two types, firstly a sequential inference machine and eventually a
parallel inference machine. Much has been said in the press about use of
Prolog, but it was very carefully stressed that Prolog has been adopted
as the operating system language for their hardware and that they have
not committed themselves to using Prolog alone for the implementation of
knowledge based systems, In fact many of the technical papers given at
the Conference were concerned with extending the concepts of Prolog to
include other paradigms such those embedded in "Small Talk" or in "Lisp"

-4-

and one delightful experimental system called "Tau" was demonstrated at
NTT which allows for the switching of the three paradigms at will by the
operator. It was a considerable tour de force by the designer but it
wasn't at all clear whether the average user would be able to keep track
of the complexities that would be generated in having such a wide range
of flexible approaches.

All the basic equipment promised for the first phase has been produced. I
will not go into details of such machines here because they have been
widely publicised elsewhere. However, In summary, these are; The
Personal Sequential Inference Machine operating system, SIMPOS which
relies upon a kernel called KLO. A number of demonstrations, using these
machines, of a somewhat trivial nature were shown at the Conference.
The development of the next generation of operating systems-KLl and the
design of a parallel inference machine are well advanced. A relational
database machine based upon a binary relational mechanism has been
produced and this also was demonstrated. The application languages that
hey are developing are two, there is ESP (a logic programming language
with object oriented features), and MANDALA (A knowledge programming
language being used to allow for the creation of knowledge representation
languages). These represent very powerful flexible tools for the
development of expert systems and research into knowledge based systems.
However, it was made very clear in discussion that there has been a
realisation by the research team that the problems they are faced with
are a good deal more substantial than perhaps were perceived at the
beginning of the programme. There was a considerable reservation
expressed about the way in which applications would be developed and it
was widely acknowledged that there is no body of expert knowledge
codified waiting for use and a great deal of work will have to be done in
order to achieve that.

One notable omission from the initial phase of the 5G programme was work
on speech recognition which early press commcnt had hailed as being one
of the major activities of the 5G project. However, it was made clear in
the introductory speeches that speech recogpition and image processing
-as considered to be close to commercial exploitation by industry and so
.he government sponsored programme had decided to leave speech
recognition to industry for the moment. The ICOT programme would take up
research in the intermediate phase. In visiting various companies, all
of whom were eager to demonstrate their speech recognition, those shown
were of relatively limited capability. The impression given was that most
firms intended to put into the commercial market place these machines of
modest ability with a view to opening up a range of applications. Further
research would then be done to enhance the capabilities of these
machines. However, having said that, there was a very considerable body
of work evident on simultaneous translation both between Japanese and
European languages and between European languages and Japanese mainly
aimed at technical literature or systems manuals. Demonstrations were
given which produced very passable translations at the first attempt
although inevitably some nonsense statements were made by the machine. A
particularly interesting application of simultaneous translation was
being undertaken at NTT where they were attempting to translate dramatic

-5-
newspaper statements of violent crimes. The subject matter was chosen in
order to provide simple language with very clear cut scenarios and strong
dramatic and contextual changes so enabling the inference mechanisms and
semantic analysis to be undertaken more easily. From the evidence seen
these seem to be working remarkably well.

These machines have been developed, the software exists, the first
applications are being sought, but what are the immediate future plans?
The programme is said to be on course and so the general direction is
already given. However, the impression was formed that the detail of the
prograune was not being expressed as clearly as for the first phase of
the programme but nevertheless there are some very impressive proposals
being put forward for this next phase. These will be summarised under
separate headings:

INFERENCE SUB-SYSTEMS

The parallel inference machine architecture has been designed
and a hundred processor prototype for hardware simulation has
already been built. The processing element and the multiple
element module of the real system has also been built. A
software simulation for the 1000 element processor has also
been undertaken and some work has been done on interfacing it
with the knowledge based machine. However, a major problem
area that has still to be investigated is to what degree
parallelism is required in many of the problems to be faced
by the artifical intelligence community. Many papers refer to
calculations of the degree of parallelism required for specific
problems but such results as were shown seem to indicate that
parallelism of a much more modest level may well be adequate -
parallelism of about up to 16 parallel channels. This is
clearly a major research area for the future.

KNOWLEDGE BASED SUB-SYSTEM

The target here is to have 100 to 1000 giga-byte capacity with
a few second retrieval.' They are looking at a number of
knowledge based machine architectures including distributed
knowledged based control mechanisms and large scale knowledge
based architectures, but there are many problem areas to be
studied. It was the opinion of a group of European experts who
met together under the auspices of the EEC Commission to
consider the outcome of the Conference that the knowledge based
mechanism being attempted at the moment, while very flexible,
may in fact incur very substantial overheads in carrying out
practical problems and future generations of knowledge based
machines may see higher levels of relational mechanisms
implemented in hardware.

- " =.= mm~mm i im •ilmmmm m1mm

-6-

BASIC SOFTWARE

The kernel language for the parallel processor of the next
generation will be KL and so the plan is to build a processor
for KL together with its support environment and to plan a
further generation of kernel language based upon the experience
gained with KL1 and KLO. This would be called KL2. On the
problem solving and inference mechanism front they intend to
work on system methodology to achieve a problem parallelism of
100. This refers to the problems indicated above. They see
that an increased emphasis would be placed on co-operative
problem solving via multiple expert systems, a technique very
similar to the blackboard type of approach to large scale
information sifting and analysis problems. They have also
expressed an interest in moving to high level artificial
intelligence but from the comments made it would appear not to
have any special insight into how this should be done, yet
exists. However, there is a clear wish to exploit the concepts
of knowledge based management and they have a programme to
develop knowledge based management software which will have
knowledge representation languages for specific domains and
knowledge acquisition tools. Time and time again the vast
amount of work still to be undertaken knowledge acquisition and
codification in order to implement problems on these machines
was emphasised.

INTELLIGENT INTERFACE SOFTWARE

There was a feeling that there is still a lot of work to be
done on the structure of language and they are planning to
develop or continue development of a semantic dictionary and
semantic analysis systems, sentence analysis and composition
systems, and produce pilot models of speech, graphics and image
processing interactive system. Some evidence was put forward
that they also .intend to tackle the intelligent programming
software problem. Although with the the advent of the new
software engineering programme, it is not clear how much
overlap there would be. But under intelligent programming
software they intend to continue with the specification,
description and verification system, software knowledge
management systems, programme transformation, proof mechanisms,
a pilot model for software design, production and maintenance
systems. This last item sounded to be very similar to the SPMUS
type of project already under way under the Esprit
Programme. Attempts will be made to build demonstration systems
to show off the the power of these new techniques.

-7-

These are a very impressive list of goals and of achievments. They are
not however, unique. There was a general impression that the hardware
currently available is not dissimilar to that which is coming onto the
market at the moment from both European and US sources. However, there
is no doubt that the very wide base of technology and trained staff and
the ready availability of commercial systems and existing parallel
research programmes already under way in industry, represent a very
powerful momentum. It is clear that If the technology alone is going to
provide the breakthrough in the field of Expert Systems and Artificial
Intelligence, then the Japanese will achieve that breakthough. However,
they were very eager to ask for collaboration with other national
programmes and to suggest that the real problem facing us in the future
is the application of these techniques to real industrial problems. In
the open discussion at the end of the Conference there was some
scepticism voiced by representatives who felt that there was perhaps not
a need for this full range of technology for the present state of
understanding of Artifical Intelligence and Expert Systems problems.
"owever, one or two speakers - in particular Ed Fiegenbaum - demonstrated
that thinking was underway in the US into very deep knowledge based
systems which would require processing powers some two orders of
magnitude greater than anything being contemplated either in Japan or in
the rest of the world at the present time. It is clear that there are
problems already formulated in front of us which will require this
technology and this represents, possibly, a way in which countries which
do not yet have this level of technology and feel that they can not
necessarily repeat the research, can in fact become very active partners
in this programme. That is by becoming involved in the codification of
the expertise which will then be implemented using the machines.

A COMPARISION OF THE ESPRIT AND FIFTH GENERATION PROGRAMMES

In conclusion, therefore, what can one say about the comparison between
the Esprit and the Japanese programmes? The Esprit programme was stated
to be a reaction by the European Community to the Japanese Fifth
r-eneration initiative. However, the Esprit programme is a very much
ider ranging programme, is dealing with a very different industrial

Infrastructure, is covering a much wider geographical disparity both of
national interests and national boundaries and, because of the 50%
funding concept builti into the programme, cannot expect to achieve the
cohesion that the Japanese programme is achieving. I have indicated that
it is my understanding that the EEC are keen that the Esprit programme
should become more focused but because the focal point is not being 100%
funded, it Is difficult to see whether enough industrial goodwill can be
generated to achieve this same degree of cohesion as in Japan. If a 50%
approach had been adopted in Japan I think it would have failed. The
Japanese industrial experience seems to indicate that they have
relatively little direct government funding for internal R & D and are
much more prepared to invest their own money in "The Way Ahead". They
are intensely competitive but this very competition leads to a form of
cohesion which, linked to their national characteristics, makes them very
competitive. One cannot help thinking that their selective approach to

/5

-8-

targets is a much more effective way of proceding than the way in which
Esprit is attempting to proceed on a very wide front at the present time.
They have already completed a VLSI technology programme, they have the
Fifth Generation Programme which corresponds roughly to the Esprit AlP
activity, they are planning a software technology programme which sounds
remarkably similar to the Esprit Software Technology Programme and of
course the Sixth Generation project, announced as being planned to cover
research into the structure and function of the brain, If it gets off
the ground, will represent something much more advanced than is in the
present Esprit Programme but overlaps somewhat with some of the other
activities of research In the EEC, but in a more focused manner. Much
has been said about the way in which the Japanese are stealing the ideas
developed within Europe and the United States but many of these ideas are
generated in an atmosphere of academic freedom and the real problem is
that the Japanese are not stealing the ideas but exploiting them very
much more quickly than is European Industry.

However, on the positive side, there is no doubt that the Esprit project
.is brought the European I.T. community closer together and industrial
links are being formed, as are those between universities and industry,
which will strengthen the community in future years. It would be
interesting to consider whether an ICOT-like team, or linked teams, would
add greater momentum to these areas of the Esprit programme which have
not received adequate industrial support. It will be interesting to see
what the outcome of the 1985 call for papers will be.

D.G. Morgan
3.5.85

. ... --. b--... . .m m • • l q

Fi:i spfirl S'opTRw be 1lwoLoc

poeocOR0aMM /9qg

COA?SqeC A,#70 d9PPFO/e141CM6S'

~Pre~eSOFTOP/RtE e/Oy7'C/M-

RF ?SP0g.CE -ro /IT CALL FOR, pjqWE*'

GR&FP7FE' T/r#A 4 ~or OFPeoposeqzs

~'ci~c A

*D~ TNIE AESSM~EIWT ?PAIEL RPPLY
To'o RC!PbEftiC- P STMRrU J?

OP~F14/ kJRITr'EN -P~~p~l

* R1GR1I1E 7rOO 3b(FFLgE

*SMJRI-LI.Ci FIRIIS J~~o~qcD

(NbVSTRY NOT PRERJ TrO (dVF5;7??

* FL.. FUKE rik

kJ&Et4 -WOCoRR1IlE gEV(EWfFlt
i*CNt~C,t~L p;'946-- 1-r kloqs FEI-T 7e0 S'E

0 1200, Y'F1OE, ibao SueJIVJDE1

OFeNFr OFum,,J /SE OF

N1q* O,'J MCRSc'eEM51.17 OF

E'gJKE tvikMl

t~

kWePRC4?,RJfM1e OCeA!T RFFORTg

W~?E~FIE TO :

* N/4FT /?ILALCE OF 12 /?OJEC7r

bi~Je? iA O A otA OF Sl,4i Fa.41d'aIk

.3. C~~W 'a~%7

'- UaS.r~ -

S/h6 7bF L R'ea 5d~e,9I-fAGN

IV45/C la'oU4g1 7 vr 4 ,6wt-a

g atFJpoLgq !F~ /~I~//

- a:ltero euJI)Coe

' - FsYcZ C- u'oVe -r 4.'?gFrs

CFFOR'rS 1I/?M -ro FoCcus opacen'1dE,

4j!Ke-6 FO'o' Q Ue9^rT7R7,V F-

Poe -s/d&C/fA6d'/IOJH

~uoar, e ~e.6 z Vsc, VREZ /

47 P6~/4ES E 6 1'~ Op 6g ONFM V

~P~~4ETHAS~ FO&SF

* 4'A 6cFd or~eSo4. 67 koezA
peFS (:1#pqV5E &)

*OFFculqt SPOKE.SA47^ E1744e ' T

C. P:eoX'kCr7 09&'Y7 tLEY1

44TIjeP 14A. j:sqr

All -rA 7F-r- role /ST Ph9,SE

ME T.

14OAKECY A~9 lbF Cieeo,-ri ec-

W~u £'91PeF.S.6,eef6'es

O6Oht-e4Ioszj'oe o~ ,coU-r11 S

* '/'ri ?,eoeov1 f4 -, UP 9,e5

cA5

FIFTHI Gs~fdEReA'iOr4 EeT

~i-

'PLf SSEY - P.-OKE MANOR

PL E SEYNEOKE
"ANO

SOFrKI$~eE i~je m'rc,E eL

X LOf A04e;:ce--

cs /fe pa

KII'C~~~ILrirvb6, -44/A 4 r iAfU

't~~~~at 0A~L C.oT~s

PFWES5EY RO-.,.KE MANOR

,we, e6 SUea - s 9rn~

/000 EZ-6J-IrA-r P.-9RQ4&6lE -P~eC.EC-TOtR
- 6'okf MUe.,#~b~b

09/il /S /e /c ~,AY7gs

SAZZe 4 SokrA1,bgtqjS6e

'7~~Desezp-r ow~rwi "k Vp VvR

"Eft F S. (-f olWO Arii

SP~cv~a.PraoJ SILtCI. Er~tA~i, v

OV~ALL1EC4T~~

Cor4 Phel S0d OF ESoel /P4-

*FSP~tir do- -reu.~e eEo~c-ic/\ -ro
JAP4ESLC ?IOeo~MmE.

* P%49 OF -TheoG~jmMEC REFLECT

*Ecp~i-r t/ies ilsci2Fb 7ro
eObl#4'NITV CLos=eR Pit 7#00OV -0-1ST

OF 01#9.7w? ~~g 9~ o

FA~etF, * CO-faz

'~c Foe -£oqeo # ?F'7SI9TE9C,

AD-P005 555

An Object-0rteM Databse Sstm: Object-fase

Herbert Veber

University of Dortmund

Sijke Seehusen

University of Bremen

An object-oriented database system is a database systeM In

which the concept of abstract data types is used strictly for

describing and using the database. In consequence the data are

described in conjunction with the appropriate operations, the

only operations allowed on that data. The object-oriented data-

base system Object-Dse, presented here, allows a hierarchy of

data types. That kind of database description enables the

system to be adjustable to very different application characte-

ristics. Different levels of user interfaces, from the unex-

perienced casual user to the aophisticated system programmer, are

provided.

3'

TASLE OF CONTIETS

1. Jatradiotiom..00....... 0....... ... 1

2. W loet nother Vmtabaue .yxt? 2

3. ObJeet-Bae:& Dtabaae and ApplIltion-Generator 3ystm 7
3.1 End-User Interface 10

3.2 Application Programing 12

3.3 Basic Interface: Relational Query Interface. 18

4. General Archiltecture of Object-Base. 19
4.1 Schema Definition and Application Program Generation 22

5. Status of the Systm .. .* * * 0 * . .* * 0 * . 27

6. 3L y. 27

1. * atro~aotton

There are many database management systems (DBMS) available now,

and many of them are really good ones. Each of these DBMS is

supporting one of the different standard data models (hierar-

chical, network, relational). Many additional tools, e.g. data

dictionary, are provided for managing the databases.

Most DBMS are designed for an administrative or commercial

environment. For that application area they are universal. The

same DBMS may be used for a university's library and for an

inventory of an automobile producer. But the universality has the

disadvantage that the DBMS cannot be taylored to each application

environment. Such adjustifiability is Important with respect to

e. g. minimize the effort for application programming on the one

hand and with respect to tuning the whole system on the other.

We want to cope with these problems when designing an object-

oriented DBMS. Object-orientation has become an important concept

in software development techniques.

The concept can be considered only in coherence with data ab-

straction (/Liskov 75/) and modularization. Thus it enhances

comprehensibility, correctness and maintainability of system

design and implementation. It has influenced newer programming

languages (e. g. ADA; Modula-2, see /Wirth 82/) and operating

systems. We want to make use of this concept in database systems

as well.

... .. ? 1;

2. Uw Yet Another Database lston?

Some deficiencies of oontemporary data base systems and the

following new requirements motivate the newly developed database
Systm.

i n-situ at*AhRAI s3E zsJ w n fwrksaion

Many existing commercial applications and many new applications

of data base systems seem to need in-situ data base services

provided at workstation computers. These computers provide

limited memory and processing capacity that may not suffice to
support generalized data base management systems of the kind

described above.

f= a tlation MiukI Aata h= aa agCu t

More Importantly, however, the existing and the new data base
applications on these workstations differ consderabely and are

thus Inadequately supported by only one standardized or genera-
lized type of database system. They are, however, not that diffe-

rent to Justify a completely new database system concept for each
new application. It, therefore, seems to be attractive to have a

database system that can be easily adjusted to many applications

with the adjustment much less expensive than a complete redeve-

lopment.

The new type of database system that is going to be described in

here is meant to be that kind of an adjustable database system

serving for a variety of applications on multifunctional worksta-

tion cmputere.

Emr d1Liffre AaMa xd*1 AMU

In-situ database management facilities on workstation computers

are different from the more generalized database management faci-

3.i

3

lities in a number of other ways. First of all, they serve as a
tool in a narrow application environment with rather specific

requirements for data representation and manipulation. In those
enviromnents data representation in a form most suitable to the

specific application is not only a wish but a very strong demand

in order to fulfill the in-stu service requirements. This addi-

tional requirement does not only ask for the support of different

data representations e. S. of different data models for different

application environments Very frequently the support of diffe-

rent data models (i. e. different views of data) in the same

application environment is a must. As a consequence the database

system for workstation computers should be adjustable to support

different data models In different installations of the system

but also in one installation simultaneously.

for smantle data mde1 suprt

Since the data models supported by the database system are

supposed to meet the requirements of particular applications they

are usually expected to be semantically richer than, say, the

relational model of data. For the support of specific applica-

tions semantic data models that enable the representation of

static (i. e. declarative) facts and of dynamic (I. e. behavio-

ral) facts are needed to be supported by the system. The system

described In here is built to support in that respect.

Fr C Q c Reresnation nW .r aninlatio

Since the system supports a powerful abstraction mechanism arbi-

trary complex objects for specific applications may be defined

and represented in the data base. In addition, the management of

the workspace In main memory for complex objects may be simpli-

fied with taylored query facilites that do not fetch entire

complex object from secondary memory but allow a selective re-

trieval of components that are needed at the time. This is not to

claim that all complex object representation and manipulation

problems for all types of applications are automatically solved

with the system. But the claim Is made that Object-Base provides

all the facilities to adjust the system to different kinds of
complex object problems in a flexible manner.

EnrTransaction 1anaggmot

Some more uncommon database applications require the execution of

transactions of very long duration (maybe hours or days). The

conventional transaction management schema is not adequate to

handle very long transactions. Object-Base treats every transac-

tion as a nested transaction if the data base objects it accesses

are composed in a hierarchic fashion. Therefore, the complex

object management along with the nested transaction management

schema are the prerequisites for the management of long transac-

tions. In addition, transactions only serve as a unit of consi-

stency. Recovery from conflicts and failures in the execution of

concurrent transactions are handled with a different schema that

does not "undo" partially completed transactions but computes

"compensational transactions" on data base objects affected by

not fully completed transactions.

For Trel awa U=erRr

In addition a new class of users comes into existence with the

advent of workstation computers In new application areas. They

are primarily interested in the use of prefabricated application

programs for a number of reasons:

- They do not have the knowledge and skills to develop their own

application programs, or

- they cannot find qualified personel for the development of

application programs, or

- they cannot afford to employ the rather expensive program de-

velopment personel, or

- they cannot spend the time and effort to get themselves edu-

-5..

cated In the program development profession, and finally

- they are not Interested to get themselves Involved In the

program development but think of It as a bought In service.

The users of the new In-situ data base systems are also to an

ever Increasing extent of that nature. They want to run their

application programs but cannot Involve themselves for the many

reasons mentioned above Into the development of their own appli-
cation programs. It Was assumed for \a while that modern high

level - nonprocedural - query languages like SOL would allow so-

called casual users to use a data base system. The group of

users, however, as it was characterized above, cannot or will not

be able to handle a high level programming language that hosts a

particular query language and/or the query language itself to

write its application programs.

Instead a program generation facility seems to support these

users in a much better way than general query facilities. The

program generation shall be accomplished through the synthesis of

application programs from prefabricated primitive building blocks

in much the same way as program generators built programs from

prefabricated macros. The group of users mentioned above is meant

to be supported by the Object-Base and its associated application

program generator as described later on in that paper.

Fr lad &Zm Orbead

Last, but not least, many of the conventional applications of

databases are very static in nature. They are primarily used for

the same, kind of standard applications over and over again.

Additions to the established applications are to occure seldomly,

existing applications almost never disappear.

The use of a database systems that supports precompilation and

Interpretation of queries is not justifyable for this kind of

application pattern. The existence of both Increases the com-

plexity of the database management system considerably, increase

the general overhead and leads consequently to a reduced overall

performance. Ssteas that ony provide a pre-eampiltIon facility

are expected to suffice In malu cases. The Object-Base is aimed
at being used for the stable Idnd of applications mentioned above
giving Its user a system of lover complexity and lower system
overhead. Because of Its adjustable nature the system may, bow-
ever, be eranced by an Interpreter facility later on easily when
needed.

teneraltsr1 s Databas Imnagant

Although Object-Base has been developed especially to serve as an
in-situ data base tool it may of course also be used as a general

purpose data base system that serves as a central data repository

for a large community of different types of users. It can serve

in that respect if a flexible interpretative query facility is
not needed and the application environment only requires infre-

quent changes of application programs, Integrity assertions,
access constraints etc. or if an interpreter facility is added on
later.

-7-

3. Objectae:& Dtabmae and A0plemton-Cenerator Vistm
for alt VOrtatim

Powerful workstation computers supporting multi-user operating

systems like UNIX are increasingly used In many applications

areas like office automation, CAD/CAM, software development etc.

All these applications need to be supported by adequate data

management capabilities. Since the applications are rather diffe-

rent In nature different data base support function are needed

for them. The Object-Base Is aimed at being an adjustable data-

base system for multifunctional workstations that can be taylored

efficiently towards different applications.

Workstation computers are also increasingly used by non-sophisti-

cated programmers but rather by end-users. They are primarily

interested in running pre-fabricated standard application pro-

grams. Database accesses are made possible for this type of users

through the execution of predefined standard queries.

Object-Base provides means to flexibly combine pre-defined simple

queries into omplex constructed queries thus enabling the gene-

ration of application programs from pre-formulated *query

macros". This feature of Object-Base is called Application Pro-

gram Generator.

Like any other relational database system Object-Base may provide

relational standard operations (eg. SELECT, INSERT) on standard

data types (e.g. RELATION). These may be used by the application

programs and by sophisticated users.

Each user Interface is provided by one or more modules, the

object descriptions. An overview of a very simple database is

given in figure 1.

Every end-user has his/her own view of the database, his/her

external interface s/he is interested In. The external interface

provides the end-user with operations s/he may execute with

ela~b-'mmmmmSma

appropriate prameters.

The external Interfaces are thus different to external sahematas
C/ANSI 75/) of a conventional DBS. An external schena is a view
of data. And only standard operations (e. g. SELECT, INSERT) are

allowed on the data. An external interface is not meant as an
interface for an application program. It is designated to the

end-user who rarely calls the operations of his/her external
interface within a program.

The description of the data and operations of the database is

performed in a modular fashion. The hierarchy of application
modules plays the role of a conceptual schema of the database

although the operations, normally specified within application
programs, are integrated. In figure 1 a simple module hierarchy

is depicted consisting of four modules only.

The application modules are based on the so called standard
modules provided by the underlying database management system.

They include basic operations and data types useful for speci-
fying the application modules.

The different user interfaces are discussed in detail in the

folwing sections.

!C

External External Interfaces for

Interface, Interface, EnM Users

Application Developed and

Module, Used by
Application

Developer

Applicatio Application

Standjard Standard Standard Used by,
Mule Moule2 Md Application

Developer and

Sophisticated

Users

Figure 1: Module Hierarchy of a Simple Data Base

- 10-

3.1 ISh-Uaw ImRta

ObJect-Base Is meant to support the truely caslu user who does

not have an Interest In programming data base accesses In a

bigher level query language (e. g. SQL) but whose Interest Is

truely in the execution of existing application programs. He uses

the data base system In a Opush-button fashion". For that purpose

the\ user will be provided with a structured menu that allows him

to select the application program he Is interested In. He starts

its execution by prompting the identified application program.

This can be nicely supported with a mouse and a screen editor if

available. For this characteristic the system is also called a

"push-button-systen".

Each end-user gets his/her own external schema that identifies

all his/her private interface entities he/she may want to make

use of in his/her access to the data base. The entities Identi-

fied in the external schema are operation names that identify

operations on types of data objects visible for that user. The

operation names are associated with placeholders for parameters

the user is asked to supply prior to the execution of the opera-

tions. After all parameters are supplied properly the user may

prompt the execution of an operation.

Each operation name identifies a whole predeveloped application

program. An application program may describe a simple query to

seek access to one individual data base object or may describe a

query that Involves access to many different data base objects

and computations on those objects. The user, however, never sees

the internal structure of the program that Is identified by the

operation name. He/she also never sees the structure of that part

of the data base his/her application program is concerned with.

m m m m amimmm ~ mm -

- 11 -

A forwarding agency for mixed consignment accepts orders from

customers who want to send a normally mall mount of wares from

one city (sender-city) to another city (receiver-eity). The &gen-

cy disposes different wares onto one truck and sends the truck

with a disposition list of the different orders on its va.

The user interface of the order acception is a combination of the

menue-technique and mask-handling.

The user first chooses the operation wished

Order Acception

Accept

Modify

Cancel

List

Info

choose operation:

The user fills in the form with the appropriate Parameters

Order Acception: Accept

Order No.: (No. or N for new number)

Customer (Sender): (Name and Address)

Receiver: (U U)

Weight: ... kg (kg)

Special Issues: (Text)

fill in forms

mamm md• • m~ m Lt31

- 12 -

The wstem provides automatic Integrity Inforoament. 1he esom
tion of an application program will only be completed if all
integrity contraints that have been declared for date in the
database will not be violated dring execution of the application

programL The system will recognize integrity constraint viola-

tions and notify the user of the abortion of the execution of

this application program or prompt ia/her to either change wrong
parameters he/she has supplied to the program or to sufply add -

tonal parameters etc. The system, thus, guides the user in the

work with the system.

The system also allows only accesses to the data base that are

legal for the respective user. The system automatically checks on
the access privileges each user has been granted.

3.2 Application Provrizig

Object-Base supports the construction of the database for a

specific application and the associated application programs that

embed accesses to the data base. This task can only be accompli-

shed by professionals with a higher degree of knowledge on pro-

gramming and data base management. They still do not need to be

sophisticated programming and data base experts. Object-Base will

support the definition of tha data base and of application

programs to the extent that users of the system in that mode may

concentrate on the analysis of the application and neglect de-

tails of programming and data base design. This will be made

possible through a generator facility that enables the simple

construction of data base schemata and application programs. For

that purpose the user will be provided with a system supported

very high level description and structuring discipline for ele-
mentary building blocks of data bases and application programs.

For this characteristic the system is also called an application

generatorw.

- 13-

In this mode the dstem provIdes support for the construction of
the data base and of application programs from building blocks

through the deflnlton of new building blocks and the re-use of

prefabricated building blocks, the standard modules and the al-

ready defined application modules. It also supports the formula-

tIoon of intq rit onstraints and access constraints in an wuam-

bigouos fashion. A syntax-directed editing facility that is not

an integral part of the ObJect-Base may be employed to partially

automate the development and validation of the building blocks

and their proper Interconnection.

The user gets access to an extended conceptual schema that iden-

tifies all entities he/she may want to make use of in the synthe-

sis of application programs. The entities Identified In the

extended conceptual schema are module descriptions (/Weber 83/).

module description consists of

(I) the description of one type of data object,

(II) the description of all operations that may be applied to the

kind of data object described in the module (I. e. prefabri-

cated simple queries).

The orders of the forwarding agency introduced in example 1 are

specified. This is a simple version of the module morders" des-

cribed In pseudo-code. The module "orders" uses the module

order" managing one order.

n m mm ~ mm M m 4- -

! m

nLm Interfacs
g :: munaIng orders

urnom i AM: OnDES
MJalM: accept (Un snderumae, frv.1ty, reoeivrnme,

teLcty: NAM, weight: N, charge: IK,

ad Not: AT, charge: OM, nessage:MEShGE),

cancel (Un No#: KAT,

"L message: MESSAGE)

aernolt iui ORDERS = set af ORDER

nMration accept (1n sender-name, froLcity, receivername,
to-city: NAME, weight: XG) charge: DM

(uL No#: NAT, message: MESSAGE)
.Uaorder-numbers, newdnumber (au No#);

£a3 order.create (tin No#, sendername, fromocity,
receiverjmme, to-city, weight,

charge,

wtX message)

gW accept

.ratl~ n cancel (in N9:NAT, Mt message: MESSAGE) 1s

sL order.delete (In No#, =ut message)
=a cancel

nd odule orders

Application programs will be synthesized from pre-fabricated

simple queries on data objects that have been described in the

respective module description.

All the modules the simple queries are taken from to formulate an

application program are said to be the constituent modules of

that application program.

A newly formulated application program will be made a constituent

part of a new (1. e. higher level) module with the composition of
the data objects of all constituent modules as Its new data

-- I l a I E •l/2

- 15 -

object. This features enables the hierarchic composition of

application progrms from pre-fabricated building blocks. Ve call
the newly formulated module that bosts an application program an

application program module (in short: application modles see

figure 1). After its formulation it becomes a pre-fabricated

module for later use in other even higher level application
program Constructions.

Assume the forwarding agency of the proceeding examples is al-

ready managing a database for orders and one for freight charging

including the different tables for freight rates. The end-user

uses these two databases seperately. When accepting an order s/he

first calls the freight charging program to charge the freight

and then fills In the amount in the mask of the order acceptio.

There are the modules:

orders charging

freight

order

tables for freight rates

If now the freight has to be charged automatically when inserting

an order the interface of the modules Norders" and "charging

freight" are used as part of the abstract level language provided

-- .-- mm mm m sn mmmm m mmdm •b mmmmm - m 7

- 16 -

by the already existing module blerare]t:

The operation of dispatching an order would look like:

operatio accept (1n: sender-name, from-city, receivername,
to-city: NAME, weight: DM

= Nol: NAT, charge: DM, message: MESSAGE)

Sall chargingfreight.chargefreight

(1n froicity, tocity, weight,

ut charge, message)
m essage z ok 1hen
call orders.accept (In sender-name, frcuL_city,

receiver-name, tccity,
weight, charge,

mt Not, message)
L'i

mid accept

Since a new service is provided the end-user interface may be

enriched now.

Changes in pre-fabricated application programs require the re-
compilation of the constituent modules of the application program
module that are effected by the changes only. Modules that remain

untouched by those changes do not need to be recompiled.

I L m lnlll B (49m

- 17 -

Laml a-.

If no new service has to be created but e. 9. the freight char-

sing itself has to be changed because of a new table of freight
rates, may , has to be added. Then a new module, TS, encapsula-
ting the new table has to be Inserted In the module hierarchy and

the module charging freight' has to be changed accordingly.

Because the Interface of "Charging freithtw remains unchanged no

other module has to be changed. An end-user would not notice this

kind of maintainance.

orders charging freight to be

changedII

tobe

added

Application programs may also be constructed through different

additional combinations of operations defined in pre-fabricated

modules. To enable application program synthesis through addito-

nal combinations of operations all modules that participate in
the new combination are needed to be re-compiled. All unchanged

modules do not need to be re-compiled.

a t i cn

~-18 -

New application progrms may also be built through the addition
of a module to the data base and through the replacement of a

module already existing In the database yste. New modules can
be added by only compiling the new module and linking It appro-
priately to the set of existing modules. The replacement of

modules also requires the compilation of the new module and the

proper decoupling of the ancient module as well as the proper

linking of the new module.

3.3 Basic Iit&rface: Relational Query Interface

In addition to the two interfaces mentioned above a third one is

provided that offers a truely relational query language for the

retrieval and change of data. The interface is somewhat subordi-

nate to the other interfaces in the sense that it is meant to

provide access to the basic data base objects. All user-oriented

types of data visible in the external schemas or In the concep-

tul schema are ultimately represented by unnormalized relations.

Anomalies in change operations will be avoided by tayloring

operations to each individual relation rather than by decomposi-

tion programs by using appropriate primitives of the relational

query language. Integrity constraints and access constraints,

however, may only be defined for individual base relations.

Object-Bae used in this mode infores only these kinds of con-

straints and not interrelational constraints. It therefore pro-

vides only in part what Is now frequently termed *Integrity sub-

systeM".

Using this interface Object-Base acts like a conventional rela-

tional data base system. The data base appears as a collection of

base relations and querys may be formulated In a relational

algebra type query language. The use of the system in this mode

is reserved for sophisticated data base and programming pro-

fessionals.

19 -

The system allows the definition of Integrity constraints and

access constraints for the data base and of application Into

Normal-Form Relations and the application of universal query
operations. The user of the relational query interface will,

however, not be aware of the existence of taylored operations.
S/he uses the relational query language in its conventional way.

The Object-Base is capable of selecting the appropriately tay-

lored operation on the basis of scope information supplied with

the relational query.

The third user-interface is not necessarily restricted to offer

relational query processing. Other data models may be supported

instead or simultaneously with the relational data model. This is

made possible by the earlier described module replacement capabi-

lity of the system and by the encapsulation capability of each

type of data base object mentioned before.

4. General Architecture of Object-Base

Object-Base is a multi-user system that allows a number of users

to concurrently use the system in different usage modes (see

chapter 3). The system is entirely strucured of separately corn-

pilable modules. The modules exhibit a data encapsulation proper-

ty that enables a rather flexible reconfiguration of the system

through additions, removals and replacements of the modules in

the system structure.

An overview of the Object-Base is depicted in figure 3. The main

components are described in detail later on In this chapter.

m dlm n mmmmmmmmm~m e~l 1 I

-20 -

Support I

Schema and Appli- High~ Level prtI
cation Program Query Execution Function

Definition

Incremental
Compilation

and Binding

Prefabricated Multi-user

Executable Database
Queries Functions

Figure 3: Gross Object-Base System Architecture

The only access to Object-Base is via the Interface Support. It
provides the different user interfaces described above. Additio-
nally but nevertheless neccessary is the interface for the opera-

tor. The Interface Support checks the identity of a user and

gives her/him access to only those operations s/he is allowed to.

- 21 -

The Operator Functions Include the operations for starting,

stopping and Initiating maintaInance operations, . g. recovery

operations. All these operations are neccessary for running the

database system.

1he Schema and Application Program Definition supports the tasks

of database administration and application programming. Facili-
ties for defining, adding, deleting and changing modules are

provided. New and changed modules are compiled \and connected to

the other modules by the Incremental Compilation and Binding. The

executable code of the modules is managed by the component called

Prefabricated Executable Queries encompassing all programs of

executable queries of the database.

When a user initiates via the Interface Support the execution of

a query this query is executed by the High Level Query Execution.

Only this component has access to the database via the Multi-User

Database Functions. The database functions encompass all func-

tions accessing the database, which are neccessary in a conven-

tional database system as well.

As outlined before the facilities provided by the system differ

from conventional system concepts. The differences will be des-

cribed below.

The general notation used here to describe and depict the system

functions is as follows: A system function is defined as a pro-

cessing element with its associated Input and output and in

addition with the state data that are subject to changes during

the execution of the processing element. This may be depicted as

follows:

/53

-22 -

We may look at the data base system Itself as an example for the

application of this notation.

The processing element PDBMS' takes a query as an input and

produces a result and may change during its execution the state

data called "data base".

This description schema will be used to describe the main firac-

tions of Object-Base.

4.1 Sc~ Defintan and £ppllticn Pftgrm Gwwatloa

SCheaaas serve In Object-Base as In other systems as data descrip-

tions. In addition to data descriptions schemas also encompass

- 23 -

descriptioP.s of all operations applicable to each type of data
described In the dhma. A schema, thus, contains not only struc-
ture descriptions but descriptions of modules each Consisting of

a data type description and the description of all operations
associated with this type of data. This feature supports later on

In the formulation of queries and application programs across
data units by combining associated operations of different mo-

dules into higher level operation and ultimately into application

programs.

The data definition language enforces the definition of elementa-

ry building blocks of application programs along with the data

they are referring to in module descriptions. The composition

mechanism that is provided with the data definition language

enables the construction of modules in a hierarchic fashion. This

allows the definition of arbitrary data compositions In each

schema and the construction of application programs out of ele-

mentary queries associated with these data within a module.

The schema definition and application program generation function

may be depicted as follows:

moueSchema Definition acn ement

5 i;

(textf ilea

containing

module
;; desciptions

J24

After the definition of a data base schema In terms of modules

and after the hierarchical constructions of modules the resulting
module hierarchy may be compiled with the compilation funotion

provided In Object-Base. After Its compilation the schema con-
sists of executable modules, 1. a. the compiled schema contains

now object versions of the data descriptions and object versions
of the application programs. The execution of the compiled appli-

cation programs may be Initiated through the query processing
function provided by the system (see section on query processing

function).

The compilation function consists in fact of two subfunctions:

one that compiles individual module descriptions and a second one
- the binding function - that links a newly compiled module into

the already existing module hierarchy at its proper place.

-25u

N / S

: Incrmental

Cmpilation
description Facilty

object tileBs

containingining
modulel
descriptions

The system provides high level query facilities to support a

variety of different users with their own external schema and
their on collection of application programs associated with

their external schsc

Queries are not formulated by the end-user but rather by a data

base expert at schema definition time (see section on schema

definition). They may be formulated at a level of abstraction

most suitable for a specific application. Each external schema

represents, therefore, an application taylored query interface.

,57

m26

The user only Initiates the execution of a precompiled query at
his/her external schema by supplying the names of the applica-
tions programs and Its associated parameters.

aplicaion Dabajai £-Bli~

progra namesQuery Execution reul

l a base

Object-Base enables the concurrent execution of compiled applica-

tion programs. The consistency of the data base in the concurrent
execution of application programs over common data will be

guaranteed since each simple query program and composed applica-

tion program (see section on the Application Programming Inter-
face) is designed to guarantee the consistency of the associated
modules' data type.

This in fact results in a new transaction concept and requires

synchronization to be orginized in a modular fashion. Provisions
for the modular synchronization of conctrrent access to the data

base are built into Object-Base. This function is a sub-function

to the previously defined Hgl-level-Query-Function whose ser-

vices will be used whenever multiple application programs are

needed to be executed concurrently.

Since workstation computers are frequently interconnected in

local area networks to amble dlstributed computing, data manage-
went services are needed to be distributed as well. Provisions
are made In Object-Base to extend the systen Into a distributed

database system.

5. Status of Un SYst

A first version of Object-Bae has been developed at the Univer-
sity \of Bremen (/Weber 84/). The development team consisted

mainly of students working on the project in partial fulfillment
of the curriculum requirements for a Diploma degree.

The project lasted for two years and lead to the specification of
the entire system and to the implementation of a rudimentary
version of it (running on the VMS operating system on a VAX

11/750). The completion of the system is planned. The purpose of
the first version is to act as prototype and so to verify the
statements that, hopefully, have been made plausible In this
paper.

6. Smry

Starting with the concept of abstract data types a new kind of
database system, Object-Base, is developed. The concept turns out
to be very fruitful as it leads to many advantageous features of
Object-Base.

- The system is adjustable to very different application charac-
teristics. Thus it also supports ln-<u database facilities on

workstation computers.

- Complex objects are composed hierarchically out of simplex
objects. High levels of semantic data models can be provided.

- For truely casual users a push-button interface can be

integrated into the application module hierarcy constituting

9J (

-28-

the conceptual achema With the operations allowed on the data.

-The schema description can be modified easily by addition,
deletion and replactmnt of amponents (modules).

BeCaU3e Of the object-orientation of Object-base we think the
system to'be relevant for the development of future database
SY stuR3.

....

Ul m . n .! . . .

-29,-

IANSI 75/ Interim Report ANSI/X3/SAIC
Groups in Data Base IMnagment Syatms,
FDT-A£(M SGIOD Bulletin H.2.

/Liskov 75/ Liskov, B., Zilles, S.
Specification Techniques for Data Abstractions
in: SIGPLAN Notices 10,6, June 1975, pp 75 - 83

/Weber 83/ Weber, H.

Object-Oriented DDBS-Design

in: ICOD 1983, Canbridge

/Weber 84/ Weber, H., Seehusen S.
Entwicklung eines modularen Datenbankverwaltungs-

systems (N/DBVS/),. AbschluBberlcht, Projektgruppe

DBVS, Technical Report 8/84, University of Bremen,

Informatik (in German)

/Wirth 82/ Wirth, N.
Prograing in 1odula-2

Springer Verlag, Berlin, 1982

6,/

AD-P005 556

Structuring mechanisms in distributed systems

Radu Popescu-Zeletin

Rahn-Meitner-Institut for Nuclear Research

Glienicker Str. 100

1000 Berlin 39

Germany

Abstract

The paper reviews some of the basic structuring mechanisms in dis-

tributed systems from the perspective of an wide-accepted reference

model (ISO/OSI). The acceptance of the model and its related stand-

ards by international bodies (ISO, IEEE, CCITT, IEC etc.) and the

computer manufacturers will have an important role in the develop-

ment of distributed systems based on available products. The paper

outlines the general framework and the requirements of distributed

systems and focus on the practical and conceptual problems in using

the ISO/OSI in the design of distributed systems.

-2

1. Introduction

Not very long ago, the interface between the user's device and the

modem was generally regarded as the line dividing data communica-

tion and data processing. The past decade the network has crept

through that connector and has infiltrated in terminals, main

frames and frontends.

The user needs and a growing market of data communication have pre-

cipitated this invasion by calling for increased connectivity, high-

er reliability, lower costs in networking, support for interconnect-

ing heterogeneous devices and development of systems and applica-

tions dealing with communication /1/.

The result of this invasion is a large variety of products, archi-

tectures and systems for distributed applications. Recognizing that

the user and the manufacturer cosmnunity have a difficult task to

get unscathed through the jungle of concepts and products, differ-

ent standardization bodies have developed reference models for co-

herent development and integration of concepts and products in the

field of data communication.

The paper outlines the major structuring techniques and analyses

the present output with respect to distributed systems require-

ments.

Chapter 2 gives a short overview on the rationales of the ISO-OSI

model and the used tools for hierarchical structuring.

Chapter 3 outlines the main structuring mechanisms and their ratio-

nales.

Chapter 4 describes from a personal point of view the state of the

art and what is needed and missing with respect to distributed sys-

tems.

2. The Reference model for distributed systems

One of the major problem of distributed systems is their inherent

complexity. This complexity is motivated by the combination of the

-3-

traditional fields in informatics: data processing and data trans-

mission.

The close assembling of the two fields to form distributed systems

despite advantages like: increased availability, parallelism, in-

creased reliability and performance, requires the reconsideration

of the problems and solutions in both fields. The aim is a distri-

buted system architecture where data-transmission and data proces-

sing are melting in one.

The complexity of distributed systems is motivated by:

- If the traditional data processing systems are designed for a

certain configuration, the use of DP-systems combined with data

networks permits a large variety of configurations to cover a

large variety of applications.

- If the traditional tele-communications networks offer highly

specialized services (teletex, videotex, terminal access etc.),

the distributed processing systems are required to perform a

variety of functions modelling a growing field of applications

and requirements.

- If the traditional data-processing is based mainly on sequen-

tiality, the natural starting point for distributed systems is

parallelism. Parallelism introduces a new way of thinking in

problem formulation and solving.

- Expected advantages of distributed systems like: higher availi-

bility, reliability and performance are paid internally by com-

plex algorithms which are characteristic for distributed control

of resources /2/.

The well-known technique for solving complex problems is the de-

composition of the initial problem in a model of less complex prob-

lems also known as the architecture of the system.

At international level different standardization bodies have tried

to develop systems architectures with reference character for com-

plex systems. One example is the ANSI/S''RC model for database sys-

tems.

-4-

For distributed processing systems the international efforts have

merged in the well-accepted ISO-Open System Interconnection Refer-

ence Model (ISO/OSI).

It is probably interesting to analyse the term: Open System Inter-

connection Reference Model, because it hides the aim of the model.

The scope is to interconnect systems which are open in their archi-

tecture to co-exist and co-operate with other similar systems. The

key issue is a common architecture which is flexible enough to al-

low changes without throwing away the whole system.

The method consists in describing a model of a network of Open Sys-

tems (necessary for OSI standard designers) as a network of models

of Open Systems (necessary for implementing an individual Open Sys-

tem).

The second characteristics is the reference character of the de-

veloped architecture, which allows to develop components and pro-

ducts with reference to an accepted reference model.

That means that the reference architecture must provide a precise

frame-work in which the internal functionality of Distributed Sys-

tems is clearly decomposed in independent components which encapsu-

late functions without influencing each other.

The precise formulation of the model address the external visibi-

lity of each component (layer) and the relationship between the

components of the model.

This technique allows products development for the different com-

ponents in a disciplined way.

The modelling technique of encapsulating related functions in mo-

dules and providing autonomous external visibility is closed to

the well-known concepts of abstract data types. The resulting archi-

tecture is a layered one which allows as well the discrete evolu-

tion of hardware and software in the different layers as the intro-

duction of new systems without making previous implementations obso-

lete.

-5-

The reference character of the OSI model has already and will have

a dominant role in future distributed systems since it imposes a

rigorous discipline by providing a logical frame-work for a complex

domain and for the development of products and systems to achieve

compatibility.

The adapted layering technique is characterized by two major con-

cepts (fig. 1).

The layer service: which is the set of capabilities offered at

the boundary of a layer to a user in the next higher layer. Note

that the service is an abstraction by which the capabilities

offered by a layer (in using all lower layers) are specified

and that the service definition is independent of any particu-

lar implementation.

- The protocol which defines the rules of interactions between

the entities which are situated in the same layer but pertain

to different systems.

It is obvious that by the definition of the service offered by

a layer and the definition of the service offered by the lower

layer the functionality of a layer is completely specified. Note

that different protocols may carry out this functionality.

The result of the conceptual analysis of distributed systems furc-

tionality is a seven-layer architecture. One of the key issue of

the model is the separation between data-transmission and data-

processing domains at the boundary of layer 4.

The first four layers provide an uniform communication kernel and

deal with functions necessary to provide and support a diversity

of topologies, error recognition and recovery mechanisms, efficient

transmission and costs optimizations.

A firm end-to-end basis for inter-process communication in which

all the above problems of data transmission are hidden for the us-

er is an essential feature for the development of distributed sys-

tems.

-6-

Note that in this chapter we do not address the different products

and standards in the different layers of the ISO-OSI their advan-

tages and their weak points but the rationales for developing a

reference model and the model itself.

The upper three layers are probably the most interesting since they

address a domain which was influenced mainly by the traditional op-

erating systems and basic constructs of high-level languages.

05I brings new influences in these functions focussing on comunni-

cation and dialogue aspects which have been poorly treated in the

past.

Fig. 2 focus on an informal comparision among functions offered by

operating systems and programming languages on one hand and func-

tions offered by the Session and Presentation layer as described

now in the standards /2/.

3. Structurin criteria in distributed systems

Basically there are some general criteria for structuring distri-

buted systems. These criteria are:

- Space Structuring

- Time Structuring

- Data structuring.

The structuring process in the distributed system design is depic-

ted in fig. 3.

3.1 Structuring in space

One of the important structuring criteria of a distributed system

is its structuring in space. By structuring in space we do not mean

a mapping of the system in a certain topology but rather a logical

structuring in autonomous components. It is important to underline

the independence of the structure from the topology since this is

necessary for the open characteristics of the system.

.7

It is also important to perform first a horizontal structuring in

space in components at the same level encapsulating functions from

a top-down design approach. The vertical space structuring will

then define the necessary functions in the layered architecture.

Note that OSI provide till now only vertical structuring and only

very few provisions for the horizontal one (MHS,JT).

It is clear that the actual developed standards in OSI and the re-

lated products model co-operation between autonomous systems and

provide a framework to bridge mainly distances and heterogenity.

The horizontal space structuring is necessary for a distributed

application where components are tighly communicating to provide

one single application. In this class of distributed systems are

the fault-tolerant systems, resource sharing systems, real-time

applications and systems designed for high-reliability and per-

formance. The space structuring must provide horizontally in each

layer explicit address-spaces, which are governed by explicit pro-

tocols.

3.2 Time structuring

In order to be able to cope with the parallelism in distributed

systems an important aspect is the structuring in time of different

activities. This allows not only to exploit the distribution by

allowing independent, parallel processing but also to define the

best software and hardware topology.

Tightly coupled with time structuring are aspects like synchroni-

zation of parallel processing, operation, atomicity and data con-

sistency.

Again, the related ISO-OSI standards provide at this time only me-

chanisms for co-operation of point-to-point autonomous applications

and the user of the model has to deal with more sophisticated com-

munication aspects outside the model.

A very important point is the requirement of tools for validation

and verification of the correctness of the protocols and possible

sequences of events in a complex environment. The availability of

tools has to accompany the development of the distributed systems.

-8-

3.3 Data structuring

From the experience gained in the last years, one can classify the

different structuring approaches of a distributed system in two

gross classes:

- Program-oriented

- Data-oriented.

Comparing the two approaches it seems that the data-oriented one

has a lot of advantages. By a precise definition of the data struc-

tures in each level of abstraction we gain clarity in the distribu-

tion.

The OSI-model provides a clear separation of the protocol elements

pertaining to a certain level and transparent data from/for the

level above. This supports the independence of the layers in the

model. The use of abstract data types concept to model the diffe-

rent levels and components in a distributed system is appealing in

this context.

Tightly coupled with data structuring principles are error-detec-

tion and recovery mechanisms. Walker made already 1977 the observa-

tion:

For a large majority of applications, it is much more cost ef-

fective to expect failure to occur and to recover from them than

to aim for a totally fault-free system."

The encapsulation of errors in structural components allow the de-

velopment of error recovery mechanisms and though provides a high-

er reliability in the systems. The developed products and standards

in ISO/OSI follow already these principals.

A good illustration is the design of the transport protocol clas-

ses I and 3 where the life time of a transport connection may span

more than one network connection using recovery mechanisms from

network failures.

-9-

4. State of the art

The development of standards and the products within the OS model

have been influenced by the imediate market. They mirror a certain

class of applications in the field of office automation and telema-

tic services.

The field of applications which is now covered by the standards

have the following characteristics:

- The systems involved are autonomous (horizontal space structu-

ring - same functionality in each system).

- The applications in autonomous systems co-operate in point-to-

point communication regime.

- The different standards for each level have been developed to

bridge distances and heterogeneity.

Fig. 4 depicts the standards for each level

4.1 Open systems

The term open-systems hides the wish that each system will conform

to the reference model and will be able to communicate with all

other systems. Since nobody can forsee all the future applications

to be supported by these systems the wish is quite utopic. It is

interesting to observe which are the mechanisms to support this

wish.

The most important one is the provision of negotiating at service,

and consequently at protocol level the required quality of service.

Note that all standards at the different levels provide this capa-

bility.

The quality of service negotiation is specific for each level since

each level is designed to perform a certain functionality and is

represented by entities in a certain address space.

-7C
- 10 -

Note also that the negotiation takes place between at least three

partners: the two users of a service and the layer belov and in

that negotiation all three partners may intervene. The result is

an agreed communication quality during the data transfer phase.

The quality of service is not the only subject for negotiation.

Since powerful systems may communicate with weak systems the ne-

gotiation includes the set of primitives, subsets and functional

units supported by the two open systems in order to establish the

common denominator in communication.

That means that a system in order to be an open system has to ful-

fill at least some minimal requirements and that all systems have

to be designed in such a way that they can degrade their functiona-

lity if necessary down to a well-defined minimum.

A flexible negotiation and the ability to degrade to a level of

functionality imposed by the peer system is a new quality in soft-

ware and hardware product design. The negotiation rules of upgra-

ding/degrading a system are stated as general conformance rules

for each level.

4.2 Protocol Engineering

The above described techniques have been successfully applied in

the design of standards and their associated products in the ISO-

OSI environment.

A new discipline has evolved which from literature /4,2/ is known

as "protocol engineering".

The term new is as always relative but it is important to note that

it is the only field in which:

- a. general model was developed and finalized before specific

standards and related products have been produced

the development of the model and its related standards and pro-

ducts have been accompanied by the development of formal de-

scription technique, certification and validation tools.

- 11

The domain of ')protocol engineering" is depicted in fig. 5.

The development of standards for the distributed system follow in

their implementation some very precise steps, which mirror on one

hand the modularisation and hierarchical structuring and on the

other hand the involvement of different protocol engineering tech-

niques and tools.

The wide acceptance of the ISO-OSI model and concepts by interna-

tional organizations like CCITT, IEEE, ECKA, IEC and of the diffe-

rent product suppliers is an important hint for the relevance of

the model in the future.

4.4 Some conceptual and practical problems

There are a number of general issues which are not supported or

not clear in the ISO-OSI reference model specification and its re-

lated standards. These issues appear when the network designer in-

tends to develop implementation specifications which are required

to conform with the standards and at the same time to offer prac-

tical solutions for the network design /5/.

1. Layer independence

As already mentioned the adopted layering technique is charac-

terized by two major concepts:

- the service definition describing the external visibility

of a certain layer and

- the protocol definition describing the internal functioning

of the layer.

Although these architectural concepts aim to layer independence

the services defined in the related standards for each layer do

not provide completely this goal. This is mainly due to the fact

that the services are defined as a three party communication.

The three communicating entities are the two users of the ser-

vice and the layer below as service provider.

- 12 -

The implication of this fact is that the specifications of the

services provided by each layer define the capabilities offered

by the layer and the behaviour of the two users of the service

in the layer above.

A neutral service definition without the involvement of the

behaviour of the entities in the layer above is probably the

only way to achieve the aimed layer independence.

2. Multicast communication

The ISO-OSI model provides provisions for point-to-point commu-

nication only. A large class of applications requires multi-

cast communication regimes (distributed data-bases, mailing and

tele-conferencing systems etc.). At the present time the user

of the model has to solve the communication aspects for multi-

cast applications outside the model. 11ulticast communication

introduces not only new addressing capabilities but also syn-

chronisation mechanisms to preserve the consistency of data, and

the atomicity of operations which are poorly treated or comple-

tely missing in the actual proposals. These aspects are essen-

tial for a large variety of applications.

Since one of the aims of the model is to relieve the users of

the model of communication-oriented aspects, for this class

of applications the model failed its aim.

3. Layer entities

Another practical and architectural problem is the fact that

in the OSI Reference Model the existence of entities in the

next higher layer is assumed at connection set-up time (e.g.

Session Entities for the Transport Layer in the establishment

phase). This assumption is not true for most implementations,

if the implementator cares for implementation efficiency and

so does not implement a multitude of dummy processes which have

to wait to be activated. That means that before a CONNECT indi-

cation may occur the creation of an entity in the Session Layer

has to be performed.

-13-

It is not clear from the service specification which entity in

which layer has to enter the termination phase if the entity

cannot be created or when a deadlock situation occurs.

4. Dynamic change of the quality of service

The present documents specify the negotiation of the service

quality only at connection set-up time. There are many cases

where a dynamic change of the quality of service is required.

In the existing documents a quality of service may be changed

only by involving the termination of the conaection and then

by re-establishing a new connection with the new service qua-

lity. This schema is too rigid to too costly.

A practical problem in the network design is also the criteria

choice on how different quality of services at different layers

can be mapped.

5. Quality of service parameters

Some of the quality of service specified in the ISO draft pro-

posals as parameters of the service primitives are difficult

to interpret if not impossible to support. For example, the

meaning of the negotiation of the connection establishment fail-

ure probability at the connection set-up time or of the DIS-

CONNECT failure probability is not clear for the user of the

service. Other parameters can be supported only in conjunction

with a powerful network management procotol specific to the lay-

er offering the service.

The requirement to guarantee a certain quality of service is

mandatory for a large class of applications (e.g. real-time).

The present standards and products cannot ensure a quality of

service during the life-time of a connetion. The layer provid-

ing the required quality can only "do its best" without guaran-

tee.

-L4

-14 -

6. Performance

Very often the network designer is faced with the question "Does

the implementation of the seven layers affect the network per-

formance and if yes how uch?"

The answer of the question is not easy, because the pilot imple-

mentations build a network operating system on top of the exist-

iug operating systems in each host. The scope of the standards

in the OSI-envirorment is that the computer manufacturer has

to integrate these features in their operating systems for commu-

nication purposes.

The integration process has already begun and many manufacturers

provide already computers and workstations with OS architectures

based on the OSI-standards.

Conc lusions :

The ISO-OSI model is an efficient tool for the development of the

distributed systems even if does not cover all aspects required

by distributed systems. It is a good begin since by adopting the

same reference terminology and design concepts minimizes the under-

standing overhead.

On the other hand since the manufacturers have adopted the model

for their product developments a large compatible product variety

is expected in the near future relieving the user of own solutins.

Wide-accepted structuring mechanisms of distributed systems and

the necessary tools to specify, validate and verify the design are

mandatory in distributed system development.

-15-

References:

/1/ Mier, Edwin (1982): High-level protocols and the OSI

reference model, Data Comunications.

/2/ Zimmermann, H.: On protocol engineering

to be published

/3/ Piatkowski (1982): Protocol engineering, Proc ICC Boston.

/4/ Popescu-Zeletin, R. (1983): Some critical considerations

on the ISO/OSI tM from a network implementation point of

view IEEE Proc. Eights Data Communications Symposium, Cape

Cod.

- 16-

Figure Cap tions

Fig. 1: Services and protocols in ISO/OSI

Fig. 2: Analogy OS/Prog. languages and ISO/OSI

(from H. Zimunermann "On Procotol Engineering")

Fig. 3: Structuring mechanisms in distributed systems

Fig. 4: Standards supported by different organizations

(from DATACOM 2/84)

Fig. 5: The protocol-engineering domain

Fig. 6: Hierarchical development of a distributed system.

- 17-

CORRESPONDENT

SERVICE PROIDED/ LYR
INTERFACV

n-1 LAYER

Fig. 1

TRADITIONAL DATA-PROCESSING 0. S. I.

Operating Systems Prog. Languages Session Layer Pres. Layer

functions functions functions functions

RUN Estab. Sess.

Enqueue/Dequeue Send/Receive

Post / Wait S/R Expedited

Semaphore Token

Co-routines TWA dialogue

Procedure Call (Part of TWA)

Data Types Syntax

Declarations Syntax

Negotiat.

End Release Seas.

Check Points Sync.

a tar Resync.

z.2

Forizontal op. structurimg

Ve rtical op. structuring

TiE structuring Dt tutrn

TOPOLOGY R11~VCE & PRTCLSE

Fig. 3

ISO-=S ECUA SNA Transdals Xerox Teletex FaxrGm 41~

EOA5 C.
lmi~li~lr~ r7i~

FCMA-757s

VALIDATION

AND

RTIFJCATION

140DELLING

SIKULATION DESIGN SPECIFICAT

Hlloosopffy TCOLS
ERFMM.ANCE

ANALYSIS

2ROGR. LANG.

AND

DATA STRUCT.

Fig. 5

N-Service
pecificat

N.Protoco pVerificatior

specificat. - Syntactic
- Semantic

Performance J'/
analysis

ile

C

pi

le

Test seq.
generator Co00'upMlo dule

Prod uct
tester_-c

-C3 11

[I

Product

N-I Service

ispecificat.

.0 t3
N-I
Product

Fig. 6

AD-P005 557

INDUSTRIAL LOCAL AREA NETWORKS

G. LE LANN
INRIA

PROJECT SCORE
BP 105

78153 LE CHESNAY CEDEX
FRANCE

ABSTRACT

Such real-time applications as command-and-control or process control have
been using computing systems for some time. Recently, with the advent of
distributed computing systems, more attention has been paid to the real-time
communications issue. Industrial local area networks are those sub-systems in
charge of handling real-time communications. Requirements to be met by such
sub-systems are presented. Recommendations for standards as currently
proposed by the IEEE 802 Committee are discussed (the reader is supposed to be
familiar with these recommendations). Finally, future trends and possible
evolutions of industrial LANs are identified.

2

1. INTRODUCTION

In 1964, when Rand Corporation completed its D.O.D. report entitled "On
Distributed Communications" I BAR 64 1, only a few people had an idea of how
digital communication was to impact our world by the end of this century.

A few years after the DOD-Arpanet was started (1969) and became a tool used
by thousands of people, public packet-switching data networks were installed in
a number of countries.

These data networks are built out of existing analog telephone networks and are
intended to offer reliable communication services across medium to large
distances. More recently, the need for offering identical services over short
distances has been widely recognized. The major driving force in this area has
been Xerox which developed a local area network, called the Ethernet. In 1976,
several versions of it were installed and used in a number of Xerox locations for
the purpose of experimenting local area networking technology and assess its
usefulness in the perspective of office automation.

Since then, and because of the importance of the office automation market,
local area networks (LANs) have mushroomed.

Faced with anarchy, users and manufacturers felt it necessary to establish
common rules and standards for this new market. In Europe, in the U.S.A.,
committees were put to work (ECMA, IEC, IEEE). In 1985, the IEEE 802
Committee has become the focus point for LAN standardization activities.
Proposals approved within this Committee are forwarded to the International
Standard Organization (ISO) before they can be adopted as international
standards.

Bearing in mind that the IEEE 802 Committee concentrates on office-oriented
LANs, one could consider that the 802 proposals are of no concern for real-time
application oriented LANs, such as LANs installed in factories, plants,
workshops, etc., which we will refer to as industrial LANs.

The main purpose of this paper is to discuss the most prevalent characteristics
of 802 "standards" in the light of the communication requirements usually found
in industrial environments as well as to identify some possible and/or desirable
evolutions in this area.

2. COMMUNICATION REQUIREMENTS IN INDUSTRIAL APPUCATIONS

Industrial applications come under a large variety of different flavours.
Automation in the industrial world is a continuous process, more functions
becoming gradually automated and new functions being devised only because
automation technology is there.

It is therefore a bit risky to state communication requirements without being
very specific about both the type of application considered and the time at
which such requirements are identified. Furthemore, it is not possible, in one
paper, to describe in great detail all the various combinations of communication
requirements. We will then take a simple approach and present those
requirements most often encountered. We will leave to the reader the task of
choosing which of these requirements apply to his/her particular application in
the near-term future.

3

2.1. Robustness requirements

Robustness is to be taken as a combination of reliability and availability
requirements. Both of these terms have received widely accepted definitions
I RAN 78 I. Robustness can be achieved by the use of fault avoidance
techniques (which result in the production of highly available modules) and by
the use of fault tolerance techniques. It is admitted that it is only through the
use of fault tolerance techniques that one can design and build a system (a
communication system in our case) that achieves any arbitrary high degree of
robustness.

We would like to stress the importance of robustness requirements and warn the
reader to guard himself/herself against such false soothsayings as "the hardware
will get more and more reliable", "errors are not all catastrophic", "exceptional
situations can always be handled by human operators", etc... It is well known
that what can happen does eventually happen. Situations thought to be "almost"
impossible to occur as well as - and this is the worst aspect - situations that
were not even predicted have the unpleasant property to show up one day or
another. The more complex a system is, the more likely it is that "improbable"
and faulty situations will appear.

Also, the "intrinsic" reliability properties of some hardware element do not
mean too much, for the actual reliability depends greatly on the physical
environment and on the level and type of noise.

In industrial applications, wrong computations (in the algorithmic sense) and
wrong timing (in the chronological sense) are the enemy. Note that a valid
computation, if performed too late, might result into a faulty behaviour of the
system. This applies also to industrial LANs. It is then better for an industrial
LAN not to deliver a message from time to time (because correct delivery was
not possible) rather than to deliver incorrect messages. It is in general difficult

or impossible to "compensate" the effects of a wrong output in a real-time
environment. The consequence of this observation is that robustness issues and
timing issues (see section below) cannot be addressed separately I MEY 80 I,
although the requirements can be expressed independently.

Robustness requirements for industrial LANs can be derived from quantified
objectives of many continuous/discrete process control systems, e.g. less than
one fatal failure in five years or probability of a fatal failure less than 10- 9 for
ten consecutive hours. Clearly, LANs must be designed in such a way that they
will assist in the repair process, by automatically providing outputs of internal
tests they perform regularly. Repair interventions should not be needed for a
LAN to continue to operate correctly. Fault detection and recovery or fault
masking are definitely needed. They are the two facets of fault tolerance
techniques which, as indicated above, are the only viable approach to the
construction of robust LANs.

Fault tolerance is based on redundant hardware (e.g., physical links, physical
communicating equipments), redundant software, (e.g., communication
protocols, processes), redundant data (e.g., messages, system states). A small
number of prototype or commercial LANs use some form of redundancy. Their
robustness capacity is limited in the sense that it cannot be increased at will, so
as to meet specific user requirements. What will be needed in the medium-term
future are LAN architectures that are designed in such a way that they do not
impose any artificial limitation with respect the degree of redundancy
necessary to achieve a given degree of robustness.

4

The market for fault-tolerant systems in general is enormous and the fraction
of it that will be captured by vendors by the mid-80's is estimated to be only in
the order of 34 % I YAS 82 1. Robust industrial LANs have a bright future.

2.2. Timing requirements

An industrial LAN is the backbone of a distributed computing system that has
to perform a number of tasks in "real-time", i.e. under specific timing
constraints. For critical tasks, deadlines cannot be missed for this would
constitute a system failure.

The tasks that must be performed by an industrial LAN are message passing
tasks. Messages may be obtained from/sent by sensors, or sent to actuators, or
communicated among processors and programmable automated devices. It is
possible to identify different types of timing requirements. We will simply
present three types of timing requirements, in increasing order of complexity.

In this presentation, occurence of faults and errors is not taken into
consideration and a physical time reference, common to a LAN and its
environment, is supposed to exist.

Among the various time variables of interest, let us concentrate on access
delay, i.e. the time elapsed between submission of a message and its actual
transmission on a LAN physical medium.

2.2.1. Probabilistic-timing requirements

Such requirements are expressed as probability distribution functions, with no
upper bound. Access delays are charaterized by an expected value, a variance
and/or a confidence interval (e.g. 95% of access delays less than or equal to 600
ms). The environment is assumed to be able to tolerate (possibly largely)
varying and theoretically unbounded transmission delays. Probabilistic
requirements correspond to curve P in figure 1.

2.2.2. Deterministic timing requirements

Timing requirements are deterministic when the existence of an upper bound is
guaranteed. In other words, there is always a predictable finite number of state
transitions between message arrival and message departure, for any given
message.

(i) Promptness requirements

Acces delays are characterized by an expected value, a variance and an upper
bound. Such requirements correspond to curve DP in figure 1.

(ii) Timeliness requirements

In addition to promptness requirements, it might also be necessary to require
that tasks are not run before physical time has reached some value. Thus the
need for knowing a lower bound for access delays. Such requirements
correspond to curve DT in figure 1.

5

PROBABILITY

0 DELAY

Figure I Timing requirements

2.2.3. Comments

Timing issues are very controversi,1l. Being at the root of problems difficult to
tackle correctly, these issues tend to be ignored or treated very superficially.
There are a number of myths used to convince users that timing issues are not a
problem per se.

Some of the claims used by advocates of a probabilistic approach are as
follows :

- measurements demonstrate that LANs are under-utilized (e.g. 15 % of
available bandwidth) ; consequently, all messages are transmitted as
desired

- all systems can fail and/or can become overloaded ; therefore,
deterministic message handling cannot be guaranteed under all
circumstances.

These claims are defeated by advocates of a deterministic approach as follows:

- measurements are only valid for the systems on which they are
conducted, and they reflect some instantaneous utilization mode ; what
about future evolution ? Who predicted traffic jams in 1925 ?

- reasoning in terms of average values, measured on time intervals which
are orders of magnitude bigger than the sampling period of some external
phenomenon to be controlled, is totally mizleading and has no relevance
at all in a real-time context. It is indeed the case that traffic peaks exist
on small time slots and it is the case that such peaks must be absorbed in
predictable time by a LAN.

- it is precisely when faults or overloads occur that the behaviour of a
LAN must be predictable. Considering the occurence of faults as an
excuse to overlook the timing issue would be equivalent to argue that
because drunk drivers are the main cause of car accidents, it is then not
necessary to equip cars with safe brakes.

2.3. Flexibility requirements

The notion of flexibility results from the recognition that physical systems in
the large sense (mechanics, living beings, etc...) are affected by the passing of
time. Human needs evolve, physical equipments break, new technologies are put
to work and so on. All this above, when applied to LANs, leads to the notion of
LANs that one should be able to modify at unpredictable times for the purpose
of making them meet their existing specifications better or meet more
sophisticated specifications.

The most important types of flexibility requirements are related to
functionality (evolution of the services provided), implementation (integration
of technological advances) and topology (evolution of the physical dimensions).
Of course, it must be possible to perform these modifications without disrupting
the functioning of an industrial LAN.

7

66

Intuitively, designing and structuring an industrial LAN with the aim of
achieving all kinds of flexibility properties bears some similarities with
designing and structuring with the aim of achieving fault-tolerance. Differences
stem from the fact that "modifying voluntarily" a system allows for the
execution of an explicit "separation" procedure before the actual modification
takes place, which cannot be assumed to hold when faults occur.

Therefore, there are similarities for the structuring principles only. The types
of algorithms needed in both cases are different.

We are currently witnessing the emergence of different industrial LANs, each
of which being geared at various market niches, which correspond to different
cost-effectiveness tradeoffs. We are also witnessing decreases in costs. The
main factor behind this long awaited trend is the standardization work, which
has made it possible for manufacturers (the VLSI circuits industry in particular)
to embark upon the design and the fabrication of cheap sophisticated hardware
that implements the low-level protocols agreed upon within the 802 Committee.

3. INDUSTRIAL LOCAL AREA NETWORKS IN PERSPECTIVE

As for every manufacturing activity, market trends are divided between
standard compatible and non standard compatible products.

3.l.Proprietary industrial LANs

Either because they anticipated the need for industrial LANs before standards
were developed or because they felt they could go along their own way or
because they felt the standardization bodies would move too slowly, some
manufacturers have promoted industrial LANs which do not meet 802
Committee recommendations. Examples are Allen Bradley's Data Highway,
Gould Modicon's Modbus, Texas' TI Way I and Intel's Bitbus.

Some LANs are selling well while some others have failed to penetrate the
market (e.g. Modicon's Modway). Whether a proprietary approach is likely to
succeed depends on many parameters, among which one finds financial health of
the parent company and good engineering of the products. Selection of a
proprietary industrial LAN entails specific medium-to-long term commitments
that may not be obvious at first glance. For instance, SDLC, the link protocol
used in Bitbus, is incompatible with 802.2 (link) specifications. The fact that
IBM owns some 20% of Intel shares could suggest that such a choice is not a
mere accident.

3.2."Standard-compatible" industrial LANs

Imagine a poll is conducted about the following question : "Costs not being
accounted for, which is the IEEE 802 recommendation which looks most
applicable to industrial LANs ?". Likely, the results would be 802.4 (token bus)
ranked first, 802.3 (contention bus) second and 802.5 (token ring) third. Why ?

8

LANs which provide "deterministic" services (802.4 and 802.5) are favored
against those providing "probabilistic" services only (802.3). However, token
rings have some drawbacks in industrial environments. A token ring relies on an
active topology (active ring access units). It is inherently less robust than a
passive bus. A large number of industrial LANs span short distances (e.g. less
than 1 kilometer). The complexity of a token ring does not seem necessary for
such LANs. A passive bus (802.3 in particular) is simpler to manage . Stars,
rooted/unrooted trees and meshed topologies are most familiar in an industrial
environment. These topologies are bus oriented, not ring oriented. Control of
time intervals spent in transmitting messages is more accurate with token
busses than with token rings . In particular, starvation is less likely to occur
when using the four timers available with 802.4 busses than when using the
unique timer and the static priorities available with 802.5 rings.

Finally, busses (mainly contention busses) have been put into operation in
thousands of locations. This is not the case yet with token rings, whose IEEE
802 approval comes after official approval of 802.3 proposal (1983) and 802.4
proposal (1984).

Imagine now that costs are taken into consideration (which is usually the case in
the real world). Depending on how the various requirements (see section 2) are
weighted, one could have either 802.3 busses or 802.4 busses ranked first. The
main reason why contention busses could win against token busses is the
availability of several silicon versions of 802.3 protocols, which can currently
be fully implemented with no more than two VLSI circuits. The production of
802.4 and 802.5 VLSI circuits lags behind. This is due to early IEEE 802 approval
of a contention bus proposal and also to the relative simplicity of 802.3
protocols compared to 802.4 and 802.5 protocols. As costs always are an
important practical issue, a large number of users might be prepared to
sacrifice costly "determinism" and to adopt cheap "probabilism". This will
certainly be the case when the timing requirements are not too stringent and/or
when the devices to be connected are cheap. Of course, cheap determinism
would be ideal ! But, after all, is it only a dream or could it be real ?

3.3. "Deterministic" versus "probabilistic" services

It is somewhat puzzling to observe that false statements, or at least overly
simplified statements, keep being propagated and trusted. This is exactly the
case with the controversy concerning token-passing LANs (802.4 and 802.5),
which are labelled as "deterministic" LANs, and contention LANs (802.3), which
are labelled as "probabilistic" LANs. To begin with, it might be useful to
remember the exact meaning or determinism, which is existence of a finite
number of system state transitions for switching from one state (e.g. message
submission) to another state (e.g. successful message transmission).
Determinism is a logical concept. In other words, it is not because an algorithm
is deterministic that a LAN making use of such an algorithm can always meet
given timing constraints. Many parameters have to be taken into account in
order to compute the exact physical values of expected upper bounds. If these
values are too high, determinism does not help at all.

9

L ci-

3.3.1. Token passing LANs are "deterministic"

Why is it so that 802.4 and 802.5 LANs are considered as being
"deterministic" ? Let us concentrate on those messages which are first in the
waiting queues of the various access units. Let us consider token rings first.
Can a token-ring guarantee that each of these messages will be transmitted in
bounded finite time ? The answer is yes if static priorities are not used (but
what about those units which handle very critical and urgent messages ?). The
answer is definitively no if static priorities are used. It is well known (see
queuing theory) that when static priorities are used, only the clients with the
highest priority enjoy guaranteed service. For all other clients, starvation can
occur. In other words, some messages might be denied access to a ring for ever.
Is this a deterministic service ?

Let us consider token busses now. Access units make use of four timers, one of
them (class 6) corresponding to a guaranteed time interval used to transmit
most urgent messages. A burning question is how to compute the "good" values
of these timers so as to keep token rotation time to a "reasonable" value. These
computations must integrate some straightforward variables (e.g. maximum
number of access units, maximum physical length of the bus, etc.) but also
more subtle variables. For example, one must know how often every unit will
decide to "leave" the logical ring, how often a unit must "sollicit" missing units
which are not on the logical ring but which would like to join in, how long is the
"insertion" procedure execution when many units collide in response to a
"sollicit" frame, etc. These variables depend on assumptions made on the nature
of the input traffic. Bad news ! Except in very specific cases (which do not
represent the vast majority of potential 802.4 bus users), input traffic
assumptions are of a probabilistic nature and so is the percentage of time spent
in executing the leave/insert logical ring protocols. Therefore, one has to admit
that 802.4 busses upper bounds are probabilistic.

Let us look now at the fault handling issue. With token passing LANs, it is more
difficult to predict what impact faults might have on access delays than with
contention LANs. Such faults as unit crashes or electromagnetic noise do not
impact 802.3 LANs very much because no global variable must be protected
against these faults, to the exeption of physical signals. Conversely, not oniv
such physical signals must be guarded against faults with 802.4 or 802.5 L &%,.
but also the token variable (MAC level), which in the case of token rings caf -,
also the vital priority indicators. The recognition of the need to recover !,,"-
token losses led to the conclusion that a single unit should be designated a *,e

control (central) unit. Should this unit fail, another one is elected as tte -w
control unit. Now the questions : "how does one know how of-ter a *
is lost ? ", "how often does a control unit go down -'". Will th ar i ,e-,
deterministic information or will we be playing with probablj?,ei

There is another more subtle point which is that 5C ' anc a "
which have been designed from the start to ehn, ,'ce
eliminate collisions at all when election of a -%e, ror- . , -
when 802.4 "sollicit" frames are tTansm.,tedt. t rf -o &j*-,
how such collisions can be resolved Oeter'inist, a. --
time. We leave it to the reader the tasg of i-sa -t
discussion above.

4'4

rn1.0 Q,L,2

L1,

U.0

~1!-25 - 1 IA'1Ml1

MICROCOP' RESOLUTION TEST CHART

_ _ _ •

3.3.2. Contention :ANs are "probabilistic"

3.3.2.1. CSMA-CD compatibl~e LAs

It might be the case that because CSMA-CD protocols belong to the family of
random acces protocols, CSMA-CD protocols are regarded as behaving

t probabilistically ! One might also be tempted to believe that there is only one

way to resolve collisions, that is the Ethernet way. Although it is irrefutable
that the Binary Exponential Backoff algorithm is of a probabilistic nature, it is
wrong to state that contention LANs must be probabilistic in general. Space of
choices is given in figure 2. As can be seen, it is not because initial accesses
can lead to collisions that the situation is hopeless. A large number of
algorithms which provide contention LANs with deterministic behaviour have
been published in the literature.

See, for example, I CHL 79 1, I CHL 801, I FRA 80 I, I KUR 83 I, I MAS 81,
I MOL 8l I,I POW 8l I, I ROM 8l I, I TOB8 ,1TOB 2 1, ITOW 92 I.

Among these numerous proposals, it suffices to choose those which are 802.3
compatible to obtain a "standard" CSMA-CD LAN which is at least as
"deterministic" as token passing LANs. The interest in "deterministic"
contention LANs is so high that prototypes have been or are being built in
Europe (France, Germany and Netherlands at least), in Israel, in the U.S.A. and
in Japan. The potential commercial success of this approach lies in the low
prices reached by CSMA-CD access units. If the physical "intervention" needed
to implement a deterministic collision resolution scheme is limited, in
complexity and in cost, then deterministic 802.3-like LANs could fly soon.
Being deterministic , such LANs could guarantee that all messages involved in a
collision are transmitted in some bounded finite time. Therefore, such LANs
could be used to carry all kinds of traffic mixes such as aperiodic data packets
and periodic voice packets.

3.3.2.2. ah-peed LANs

Deterministic CSMA-CD can only be used when CSMA-CD achieves efficient
channel utilization, i.e. when the ratio of the propagation delay over message
duration is small compared to I (less than 0.2 is good practice). When not the
case, i.e. for large LANs (metropolitan area networks) or for high-speed LANs,
neither CSMA-CD nor explicit token-passing protocols are appropriate. The
overhead incurred for every token passing operation (token handling protocol
execution), for token transmission on the medium and for lost token recovery, is
fixed and largely independent of the bandwidth available. Largely independent
of the bandwidth as well is the time wasted in reconfigurating physical/logical
rings. Acceptable at "low" bandwidth (lower than a few dozens of Mbits/s as an
indication), this overhead becomes unbearable at higher speeds, such as those
attained with optical transmissions.

Being forced to throw away CSMA-CD and explicit token passing protocols for
high-speed LANs , it looks like the only choice left is the well known family of
synchronous time division multiplexing protocols. Not quite so. A fair amount of

I1

m .. . m~~mmmmmmmmm N m~ll~llllml~ m-'

I14 I iAL
ACCESS

DETERMINISTIC PROBABILISTIC

(TOKEN PASSING) (CONTENTION)

COLLISION

RESOLUTION

i#1

DETERMINISTIC PROBABILISTIC

=4

COLLISION

RESOLUTI ON

,* N

DETERMINISTIC PROBABILISTIC

Figure 2: decision tree for collision handlin

12

i(73

work has been invested in the identification of contention protocols that would
achieve a very good utilization ratio of high bandwidth channels. In an exellent
survey paper, most of these protocols are presented and evaluated against each
other I FIN 84 1.

3.4. Higher-level protocols

,Apart from the question of which is the best 802 MAC protocol, it is necessary
to examine which types of higher-level protocols come with current industrial
LANs. There is a trend toward the integration of all protocol layers ranging
from 1 (physical) to 5 (session) on a single board, used as an attachment unit to
a LAN. But only a few manufacturers actually deliver such boards presently.

A global observation can be made. Transport and session protocols (when
available) which are implemented on industrial LANs provide more services
than specified in the ISO/Open System Interconnection Reference Model. In
particular, it is often the case that broadcast and multicast datagram services
are made available at layers 4 or 5.

Conversely, there is no more "real-time" ingredient coming along with
industrial LANs protocols than with conventional LANs or WANs protocols.
Designers and users of industrial LANs might realize soon that they have to
depart from traditional ISO-like high-level protocols if they want their
networks to retain the benefits of deterministic multi-access schemes.

For instance, such services as guaranteed delivery of datagrams and dynamic
priority-based scheduling may be needed in industrial environments. More
general types of interprocess conversations than just connectionless and
connection-oriented point-to-point communications may also be desirable. Such
issues as maintaining "real-time" services across bridges and gateways for
interconnected industrial LANs must be addressed thoroughly.

4. CONCLUSION

Is there a conclusion ? With respect to principles, to the algorithmic nature and
the properties of the various protocols examined, conclusions can be
established. This has been done throughout the paper.

With respect to current and future trends of the industrial LAN market, it is
difficult to conclude and to make predictions. Initiatives undertaken by large
manufacturers are, by definition, unforseeable. We have witnessed such an
initiative in 184 with the announcement of M.A.P. by General Motors. The
impact this announcement has had is very much comparable to the impact
produced by IBM announcements in other areas. In 1982, IBM said very dearly
that the distribution of documents within the 802.5 project should not be
interpreted as a pre-announcement of a new product. The result has been that
all users have been expecting such an announcement since then. Again, in 19l84,
IBM re-stated its intention to deliver its first token rings no sooner than 1986.
However, in 1984, a few manufacturers have proudly mounced LANa which are
IBM token ring compatible !

13

COST
LARGE OR
HIGH-SPEED LANs

/

802.4 LANs /

802.3 LANs -

V
SMALL OR , -

LO-SPEED L As

VS

VJ

PERFORMANCE

Filure 3: a simpiUfied s mentation vf the

Industrial LANs market

A similar psychodrama is developing with MAP. At this time of writing, not all
MAP layers are specified. The target date for a complete specification is 1988.
Nevertheless, some manufacturers are currently preparing themselves to
announce LAN oriented products which are fully MAP compatible!

If we step back a little, we can see that there is room for everybody. Four
major segments of the Industrial LANs market can be identified, as indicated in
figure 3. They correspond to different cost-effectiveness ratios. As can be
inferred, one important market niche corresponds to gateways and bridges,
which are needed to allow the various LANs to be found in real-time

;environments, whether "IEEE 302 - compatible" or not, to talk to each other.
The potentially brilliant future of 102.4 busses as industrial LANs, thanks to
General Motors support, could be challenged in two different ways. A "low-end"
challenge could develop with the possible advent of deterministic
baseband/broadband CSMA-CD LANs. A "high-end" challenge could develop
with the future advent of affordable optical transmission technology. Only time
will tell.

REFERENCE5

I BAR64 I P. Baran, "On distributed communications", Rand Corporation Series
Reports, Santa Monica, August 1%4, 433 p.

I CHL791 1. Chlamtac, W.R. Franta, K.D. Levin, "BRAM : the broadcast
recognizing access method", IEEE Transactions on Communications,
Com-27, n*8, August 1979, 1183-1190.

1 CHLaO I I. Chlamtac, W.R. Franta, "Message based priority access to local
networks", Computer Communication, Vol. 3, 2, April 1930, 77-84.

I FINS4 I M. Fine, F.A. Tobagi, "Demand assignment multiple access schemes
in broadcast bus local area networks", IEEE Transactions on
Computers, vol. C-33, n612, December 1984, 1130-I 159.

1 FRASO I W.R. Franta, M. Bilodeau, "Analysis of a prioritized CSMA protocol
based on staggered delays", Act& Informatica, VoL 13, Fasc. 4, 1980,
299-324.

I KURS31 3.F. Kuroee et al., "ControUing window protocols for time-
constrained communication in a multiple access environment", ACM
Sigcomm, Vol. 13, 4, October 1983, 7544.

I MASS I 3.L. Massey, "Collision-resolution algorithms and random-access
communications", in Multi-User Communication Systems (Ed. G.
Long.), Springer-Verlag CISM n" 263, 19 81, 73-137.

I MEY80I s.F. Meyer, "On evaluating the performability of degradable
computing systems", IEEE Transactions on Computers, voL C-22,
August 1930, 720-731.

I MOL$I I M.L. MoJle, "Unifications and extensions of the multiple access
communications problem", UCLA report n' CSD-910730, 3uly 1911,
131 p.

I POW$I I D.R. Powell, "Riseaux locaux de commande-contrble s~rs de
fonctionnement", These d'Etat, INPT, October 1911, 206 p.

I RAN7$1 B. Randell, P.A. Lee, P.C. Treleaven, "Reliability issues in
computing system design", ACM Computing Surveys, vol. 10, 2, 3une
1971, 123-165.

'I ROMI1 I R. Rom, F.A. Tobagi, "Message-based priority functions in local
multi-access communication systems", Computer Networks, 1981,
273-216.

I TOBSO I F.A. Tobagi, R. Rom, "Efficient round-robin and priority schemes
for unidirectionnal broadcast systems", in Local Networks for
Computer Communications (Eds. A. West, P. Janson), North-
Holland/lIFIP, 1980, 125-138.

I TOS521 F.A. Tobagi, "Carrier-sense multiple access with message-based
priority functions", IEEE Transactions on Communications, Com-30,
January 1912, 115-200.

I TOW121 D. Towsley, G. Venkatesh, "Window random access protocols for
local area networks", IEEE Transactions on Computers, C-31, 1,
August 1912, 71-722.

I YAS$21 E.K. Yasaki, "Fail-safe vendors emerge", Datamation, November
1912, 51-31.

16

AD-P005 558
JOHN FAVARO

Unix0 - A VIABLE STANDARD FOR SOFTWARE ENGINEERING?

Introduction

The Catchword "stanrcdi'd h.bs been LSeO in conjLirection with

the tor.i operating system with increasing frequency in

rec.ent t.mec. Thi stitation reflects a growing need among

soitware oevelopers 4or stancards not merely at the

P.,- gr aJr.,r.-g I arIQ' ge] ,P , but Ft the level o4 the

orOn-P4r & ma, rn r! h 4E ,tir "oi iv .rr t,

E -) dcr, i . , Oro . h,4. befr, pErce, veo as the current Oest

hc Fe c. r .ipv, nq that g.),. Ye there are signiiicant

,nr-,AactI ez to th, ct c.-dard)?t . on ov Lrin, i this paper we

r f C , r.c-nt e; tortS t owar the

sctAnrclr C;:.t cor. ov UnI': eno e"cmlne some o the probIeff,

areiS -~ ct auIl.

Versions o4 Unix

Ewetore ciscUis)ng the standardization cf Unr,,, we Shouij

+,rst consider the motivation that led tc the

standardizatior, e+#ort: namely, the mAny versions o Unix.

I°I jiE & tradem.Ar. n4 '41.f Pell Labcrator~ep.

Ji l llm i8

Currently, Unix systems fall into three basic categories:

- those systems being marketed by AT&T itself.

- those systems that are Unix-based, but marketed by other

companies with a license from AT&T.

- "Look-alikes": those systems that are marketed without a

licernse from AT&T.

.4'._T -!,rDe- mariets F nLmber r-4 vers' ons o4 Lini-. , inclidi ng

Versior 6, F'WE, VerSion 7, 32V. System I1 and System V.

*hi buj, c0-- the ether Lsr-i': versions fall into the second

_ The, tend to be based uoOn Version 7 or System

Ill. Svtem. in this category include XENIX, UNIPLUS,

VEND. iS/', U'S.

It is into this second category that Eerleley Unix falls.

ber teiev jr.- , was originai1v based upon --2-.V. and is now

being CdistrIbuted as "EBerleley Software Distribution 4.2".

,r'e eomples o+ s-stems in the th:--d category Inc]LUde

iOHEIRENi, IDRIS and UNUS.

1h]s .-ddS UP $.o staggering number of versions of Uni-

indeed' Yet this picture is somewhat deceiving; for, only

1n, o these versions have really been talen into serious

consideration in the standardizAtion efforts:

q9

Version 7

Version 7 marks the beginning of "modern times" for the

Unix system. Up to that point, the system had been mainly

used in research circles, and had not yet acquired the

facilities now considered to be basic to the Unix

prograiing er, vironment; Sucr, as the standard IO library.

Although Version 7 was officially released in 1979, it

already e-isted as early as 1977 when Unix 32V was derived

from it. It was the first port of Uni% to the VAX, and

lad the 4oundatior +or berkeley Urix.

In Fact. Version 7 owes much of its significance to the

fact that .t was the first version to be ported in earnest

to the micros. In 1980, ONYX made the first micro port of

Version ', to the Z80. Others followed suit quickly. In

part1cL1!ar, Microso+t ported XENIX to a number of micros.

Version 7 was the last version of Unix that was actually

produizee by ths research group that originally developed

Ur,)-x. For that reason, the name.was changed in later

commercial releases.

System III

A"IF7 rele~ksed Systr. III in 19E41. Itris was 4TP -T's 4 r =t

attempt to support Unix officially. A new pricing policy

Lf)

was introduced with System III, which finally provided for

binary sublicenses in place of the exhorbitantly expensive

source licenses that had previously been required.

Technically, System III consolidated the best of Version

6, PWB and Version 7.

But the real significance of System I1 was the commitment

of AT&I. This provided the necessary confidence needed by

comme-2a} vendors to base their derivatives on System

lii, ano as a result there are quite a few commercial

systems now based on System Ill.

System V

Witn the introouctorn of Sy/stem V ir January I ?87E, ATRT

consolidated its Uni-t marketing effort. Lip Lintil this

poi nt, System V had actuall, been in use irterrially at

Vei; L-bs, bit System Ill was being mrart.:eted exterroaily.

Now this discrepancy no longer e-Asted.

Commercial support was strengthened even further, with the

i r-troduct I on periccoi c vpdat es and hot Iines to support

centers.

Fecently System V has been upgraded with virtual memory

and file locking facilities.

lot

Berkeley 4.2 BSD

In 1976, Ken Thompson spent a year at the University of

California at Berkeley, bringing Unix with him. At this

time, a period set in of enhancements so important that is

no longer possible to leave Berkeley out of a thorough

dISCussion of Uni::;.

These enhancementF include:

- The C-Shell. The most important alternative to the

cLr"ne Shel , the C-Shell is preferred by many for

. r tet-act i ve use because of -acilities for aliasing

(renaeir-g commands> and command history jiitE for recali

e -ecut i or.

- Improved terminal handling. The curses and termcap

packages, as well as the screeri editor vi.

Ir, ; '79, with the 3.0 Perkeley Software Distribution

(E1SI), ir tui memory came to Unix'. The large address

!psre paveo the way for new applications - for e" ample

VAXIMA, the EerkLeley implementation of the MACSYMA

Eymbcl1c and aIq#brai c maripulatior system originally

developed at MIT.

With the release of 4.2 BSD in October 1983, networking

came tc Bert-eley Unix. Communication facilities based upon

the U.S. Department of Defense standard Internet protocols

TCF'/IF' were integrated into the system. Furthermore, the

file system was redesigned for higher throughput by taking

advantage of larger block sizes and physical disk

characteristics. These two additions alone were sufficient

to insure Berkeley Unix an important position in the Unix

world today.

It is these four Ur.ix variants upon which we wail 0CLUS

our attention in the following discUssIon; for, taken

together, they raise aiJ oi the major issues of the

current standardization effort.

The Formation of /usr/group

The standardi zation problem actualIy began as early as

1979, when the first ports of Version 7 were undertaken.

In seemingly no time at all, many variants sprang up in

the commercial world. ir. recognition of this development,

the /usrigroup organization was founded soon afterwards in

1980. The organization took its membership from the

commercial world, yet was vendor-independent.

It did not tale long for the members of the organization

to come to a decision about how they wished to spend their

time: only a year later, in 1981, the .'usr/group Standards

Committee wa_. formed.

/L -

The Standards Committee included participants from a broad

range of vendors. Conspicuously, one of the most

enthusiastic and active participants was AT&T. The

committee set as its goal a vendor-independent standard

for commercial applications.

The 1984 /usr/group Proposed Standard

The result was presented in 1984 in the form of a proposed

standard'. The long term goal set for this proposeo

standard is ANSI and ISO Standardization, and indeed, an

IEEE "Working Group on Uni, Operating System Stanoards"

has S3nce been formed to pu-ra-e this goal, using the

proposed starard as a be=a docCUment.

What is contained in the proposed standard? Actually, this

question is best approached by asking its complement: What

i--as beer !i ,ut o the proposed stanoard 7

The proposed standard does not specify:

- The user interface (shelis, menus, etc.)

- user accounting

- terminal 3/0 control

- in fact, most of the over 200 commands and utilities of

the Unix system'

Then, we might asV, what is in the proposed standard?

The standards committee decideo that the best way to

/C

achieve portability would be to concentrate on only two

areas:

1. System Calls

The Unix kernel interfaces with applications programs

through a set of system calls. These shield the programs

rom such internal matters as details of memory

management, schedulIng, I'0 dri-ers, etc. These calls are

describeo ir Chapter 2 o the Lini; Proqr amer Is Referernc=e

Marual. The proposed standard defines a set of 39 system

calls that are to be used by all applications programs.

Tre C. Larguage Lit.rarjeF

Chapter o 4 the Lnix Prorammer 's Referernce Marual

Oes_,ribes_ the set of library routInes normally available

to programs written in the C language. The proposed

standard defines a version of this library that is to be

used by applications programs.

File Locking

In the entire set of system calls specified in the pro-

posed standard, only one eter szorn to the set of system

calls available on most Unix systems (in 1984, at least)

appeareo: file and record locking.

This fact testifies to the enormous importance of file and

record locking in commercial and data base applications.

The new system call iE lockf(2.). It may be used for record

locking and for semaphores. Using lockf, a program may

define "regions" of a file which are locked individually.

L :(-f may be used in either an "advisory" or 'enforced"

form. The advisory form may be circumvented by using

normal read or write system calls. Thus, the advisory form

a_= mes that the processes are explicitly cooperating with

each other in a "friendly" way.

The enforced form protects a regiorn even irom those who

have no knowledge of the facility. The lockf definition

specifies that deadlocA must be guaranteed between proces-

ses related by locked resources.

As defined, lockf represents a compromise: on the one

hand, processes not using locks don't need to know about

them; but because of this, deadloc[s may occur.

The System V Interface Definition

We noted earlier that AT&T has been an active participant

i, the /!tsr/group standardization esfort. Thus it is not

surprising that the proposed standera basicaily reflects

the AT1,T world.

- .,._, m i i .i ml utI P

r

It would be quite a feather in AT&T s cap to have an

official Unix system standard whose contents correspond to

the flavor of Unix marketed by AT&T. The /usr/grotip

proposed standard represents the first step in that

direct I on.

The stec:,d step in tnit direction was t. ' n in January of

V;85 with the arnouncement of the System V Interface

De4init .onz. This document defines a minimum set of

system cagIs 6r~d i~brar" routines that shouid be common to

al I cperEtirg s ysteris bised on System V. If tnat Sounds

fe miiiar, it is r.c. coinc-ioence: the document is virtually

ider, tical to, the /-isr/group proposed standard in content.

A =Fparate chacter of the document carefully desrribes

thcse areas in Which 0)fterences remain, and includes

1,an=_ io evental ic,-at on towat ds tota compatIbIlItv .

ATI- fYE attempting to bacl Up this document with promiEes

of adherence c' ,t_ture releases of S',.stem V to the

Interface Deiinition. These promises have taifen the form

c4 wc so-raile' "Levels of Commitment Each component in

the interface has a commitment level associated with it. R

component with Le.,ei I will rea-ain in the definition and

be Paigrated ir, an upwardly compatible way. A component

kth Lev'el 2 wll remain In the definition for at las t

tr.ree year =- (aJttl,1cgh It CL-:ld be drcpped later).

/0--7

Theo /LISr/qroup proposed standard defines, as discussed

before, only a minimum set of functions and ignores the

many coimmands and utilities of Unix. But AIIT was

interested in capturing the full functionality of System V

it* 'r t clesnitlon. The SOcILtI-n adopted was to LintvroJE

rr-rrec-roroic , t", -s r 'q roLr .t f I-Icd rO.

Ti- .- ,omponer, t e r-) 4 the rase t ; into the fciov4,nG

~~CtegC.rle-:

C1 c on r t - ---

- - * % iv t, . *" , i t e
-

- .1.i..ea

- r..-onental variables

$,.,c*-r. 4i e-

[lfiectorv tree structtJre

Special device files

F,.,r within these categori l, the components are more

4irI p1 r t t tI rfe.Ce Fov instance, within the ?4Aic

LUperatinQ System Services categrv, the low-level process

rCPAtlon prIm)t I ve f ,rs and eve,- are segregateo into A

grotip thabt sIou ld be avCided whenever possitle i avor C%4

#-he more general !y;tee primitive. Similarly, the kse of

-- -'-'- . -m-mJ~~m~mmmm mmmmm mbmm m/ 0m

low-level read and Pirzte operations is discouraged

whenever routines from the Standard J/0 Library will

suffice.

A System V lernel Extension has also been defined. The

4unctions provided in this set have mostly to do with the

sen-aphores ard shareo memory of Systen, V. Why wasn't this

d Irectl included in the base- We wil) have more to say

antsit the problems of compatibility at this level later.

Tr-.p other cl.nr-ed e tersiTions fall ,ntco fr,ee cate cries:

- C:r L !I.) t I e P

j.c4tware [lede'opfefoert

- Networt Soervices

L ,#rge Mahine

(-- ar h' I L- C

- asic Te'.t Frocessing

User- Interiace Services

- Data Ease MAnaqer

Verification Test Software

Tc, tie all of this together, A(&i has reacned art agreefert

with Untsoft Syftems for the developmer.t of a verification

test software paclaqe. This test softare will determine

whether a deri vat ive of System V -ctually meets the

(09

definition. Clearly, AT7T hopes that this validation suite

will attain de facto the same kind o+ status in the Unix

world that, say, the Ada Validation Suite has in the Ada

world for conferring the official stamp of approval on a

system.

Fundamental Obstacles to Standardization

WhE--. W E ccns ider the tw a reas on wrox cr, the pt-c.poeo

standard concerntrate5, we 4ind tret one of theff Is

reiative] y Unprob)E.ET-t3c: the L LangkLuge Libraries. The

libraries contain a sf-t C.4 t atIr, W ll -ader s t od

r C-Lt ir,es , 1-41 1 Ln C e r t-~ p c, r -ec- t c . ,4 r ent Oir.i - ?r I& t S

Wtr, IIttIr t'- OubAe. F er, the C ianqLIage Itself is ?bout

tc, achieve .-t-Ancl d d).tion -- the ANSI I7Jll gcroup is or,

-F " , e .-)" o #' r, : :. . tar,_iM rd for C. based upor S-,sem

1 11. Thk,. it w! ; r-ct be a radical departUre frof thp

,-,, r .rt 14 ,.AtIor,, t-.,, r ather a cod11l Ic_ t Ior. 04 t I-.

I. r, guage is it is tode.

)s &*he"r - i- ~ tr-e Prpr .F#eo t a-rediar d

that presents the maior obstacles to a succe-sSul

=tn~r l' t¢n attemlt: nanfle I , tre system calls . F r ,

the system c-l Is ref e,+ to a morth greater e .tent that, the

1 1ibraries the bas)c strtctore c-4 a Unix warI Pnt s-

I ernei.

/ / C

Currently, several distinct groups rely on the defferent

set of system calls available on the major versions:

- Such de facto industry standards as XENIX have

heretofore been based on the Version 7 kernel. In

recognition 04 this 1 the proposed standard "strives for

compatihilitv with Versonr, 7 whenever possible".

- The protr-en standaro hq =s based its set of system calls

or, £-y_ ten, 1 I.

I he recently oe 4 i ned Pr tabt e Cossm.r, T0oo

Er,vjr,wfp ,r' owes much of the nature of its system

calis to vsteem V. In aodition, the proposeo standard will

PventLeatly migrate toward Systeff, V.

- Finaiiy; "he majority of the participants in the world

o 4 hig. h-per-crmance networking wor.stations relies heavily

or, the ler-r.el +ac lities provided bv [berleiey Unix.

WI-,ere clo the incompatibilities lie that give rise to these

di+4erent groups- kithough incompatibilities exist in many

p;are-. . !-ct _ a- c di+4erir, file 11 Sv tef ifmrjementAtions, the

problem can best be characterized by the differences in

C-r-P r.4 t)-Lt IAr Ate : Irterprpc'C , ,r .- at i ors.

let ts taie a closer loo now at the facilities provideo

hy wc s C n t hP 4or ma CW versionS f or i nterpr ocess

rr..w 'nt cat P on.

Intorprocsss Comunication - Version 7

The following basic set 0f system calls related to

interprocess communication was defined 3n Version 7s

51-7t~a): 1hiE defines the response to pre-defzietod ex-ternal

F, -r.t =icr asi rt.r r ipt s, alarms hangLIPS and hardware

prrcr s.

A ill: IhisI cai t i= L e to send signals- to processes.

P~suf: process su'pencis its et'ect-ition pending receipt

r - .oc es s wa t~ stor tt-he t era iron at or of 4R chilAd

.,p : Hr,. I p w*e--, -i nc..Jr- rotc-rprCocess tbyte strep(io.

N-Dw. the-e 4A~ci otio- are aaequate for m'ost time-sharing

aPPP Ic at 1 ons', bb~t root +Or S.UCr) applications as networking

-on ovtA b.-ses. w,rr are the die~icier'cies- Basically, the

prCo I ei. here IS one c,4 f ls-,ibity. A~mong others, the

c(, I w i-t casses o,4 i r,4 I,-i b i i t c a- be 2ident if ied:

oz~irnly a~ icj,.* pre-ae4ifled sigroal types. Ilneref or e,

no e-'tra informiatior, can be ronveyed.

;~ I -art r. s pero C to singie processes or to all

p ipow c an on; y ov used by r r'I ted pt oces ses.

Ir Systeffi)II, +*(r:I]ties wer P i r +t duc ed to address

a oc t I st.c I pr co. i efft o+ i n4 I P jb i I i t '

Interprocess Coemunicatlon - Syste III

Three new facilities were added in System Ill to handle

the problems discussed above:

First. tne so-raileo 'FIF0" iile was introouced. The FIFO

fIle is a special file, just 11ie a pipe. But FIFO files

have Onl' System, file names, not just file descriptors

thuLs they are also called "named pipes"). Furthermore,

ard more Importantly. they can be used by urelate,

t, ,:-e triereby increasing tneir fle:ibilit y

Secr.d' twco new, az-er-defivoed signals were introduceo

intc the set o allowable signai-. This allowed e.trE

,Pr.c---=pecic i nf ,-mion to bp conveyed witn

Thitrdiv, proce.. qroup5 were introduced. Thus a common

basis was established fot sending signals. i,4ow tne jl!

system, call could send signals to all members of a process

group.

Yet even these improvements had their problems. Two

sp_*ci +cr ,r,s ma , tF :dent1i 4 e *

'I cr.A I e E not a sotind nasi s ior int erpr oces s

communication and synchronization. They are not queued, so

signals could be lost. The /usr/group proposed standard

explicitly discourages the use of signals for

synchronization.

- Pipes, even named ones, are inadequate in crucial ways.

For instance, the byte stream o4 the pipe is simply too

1ow-*evel. Message boundaries are not preserved, which in

many applications can be a problem.

Additionall),, pipes are very slow. To see why, consider

the flow of data in a pipe: Date starts in the senders

address space. It is then copied into a i:ernel buffer.

Finally, it is copied againI, from the kernel buffer into

tne receiver's address space.

in short, the System III facilities cannot be considered

to be a sound basis for process synchronization. With

System V, such a basis appeared for the first time.

Interprocss Communication - System V

Three maJor new 4 eatures were introduced in System V.

The first was $tared memory. Shared memory is much faster

thwq p.IPes, becatse there is no cop-.i ng of data.

cac c'i +is P;!,st to control access to shared memory, as

weli a= synrhronized updat)ng by multilp'e processes.

'/9t
, , nnu • wlnnm muumnnn1- H n

However, there is one deficiency of shared memory in

System V: processes using it must be related by a common

ancestor.

This restriction does not exist for the second major new

feature, message queues. Message queues provide a way +or

unrelated processes to share data. Messages may have types

-- for el.lampi e, a process may request all melsages of a

certain type *rom a queuLe.

The 41~nej adoition in System V was semaphoresz. This welI-

known facility provided th*e much-needed, solid founoation

-or process synchronizatLon.

'-r ieast two of these +acilities, however (semaphores and

shareo memory) are heavily biased towards applications

running on a single processor with all processes sharing

the same memory space. In order to pursue its own

research goals in the area of distributed computing

sy=tems, Berkeley introdLuced an entirely different set of

facilities.

Interprocess Communication - 4.2 BSD

The facilities for interprocess commurication rnave beer,

enhanced at Berkeley to an eitent unmatched in any otier

Unix verslon. They represent an entirely different

approach to interprocess communication.

The Computer Systems Research Group concluded that, in

order to achieve its goal of truly distributed systems,

the interprocess communication facilities should be

jayered oter netorkng faci lities within the kernel

It:;e If. in addition, the facility has been decoupled from

the LOni. 4ile system and implemented as a completely

independent sLubsysteml.

r i 4.2 BSD the 5,.,-ket i= the building block for

communication. SocA:ets are named endpoints of

commUriicaticn within a domain. Currently, the Unix and

DARPA Internet communication domains are supported.

There are basically three types o+ socl:ets:

- stream sockets, which provide a reliable bidirectional

flow of data to unrelated processes. In the Unix domain,

pipes are available as a special case of sockets.

- da.agrawi sockets, which provided facilities similar to

those found in Ethernet.

- raw socl:ets' generally intended -or use in the

development of new communication protocols.

The Lowest Common Denominator

What do these four versions of interprocess communication

have in common? Unfortunately, little more than pipes' And

the simple byte stream as the lowest common denominator is

very low indeed. Defining a set of system calls to handle

ord.', sLch restricted cases is simply not realistic.

We car, not expect devel opers programming advanced

applications to give up the advanced facilities for

interprocess communrication discussed above and to accept

c, a standard based upon a more restricted set. The

nnternrocess communication facilities o4 the VarioLis Unix

versi ons must converge much more before a trLul y

representative set of system calls can be defined.

Future Convergence?

The convergence o the AT&T Unix world towards System V

will continue. Microsoft has reached an agreement with

AT&T whereby the next release of XENIX will conform to the

System V Interface Definition.

A Berkeley 4.3 distribut-on will reportedly be available

soon -- officially "sometime before 1995" (this statement

constitutes a reaction to the delayE and disappointments

surrounding the date of release of 4.2 BSD). The 4.3

rejease wi ll, however, ccnsi st essentially of features and

enhancements that are necessary to stabilize problems that

were identified in the current release.

In a major step towards reconciliation of the two major

standards, Sun Microsystems and AT&T have agreed to work

together to facilitate convergence of System V with Sun's

4.2BSD-based operating system.

They wili attempt to merge the two standards into a single

version. Technical representatives are meeting

periodicaily to define a common applications interface.

StIrn intends to add complete compatibility with the System

V Interface [efinitior,, while maintaining the added

functionality of 4.2PSD that was discussed above.

The Hopes for a Standard Unix Environment

Although the problems of standardization arising from the

kernel incompatibilities discussed above are very real,

there is a very large and important class of programs that

are not affected by them. These are the software

engineering tools used in the production of software, such

as editors, report generators, filters, testing tools,

document production facilities and compilers. Such

programs are well served by the proposed standard in its

current form. Thus we should expect that a large part o4

the Unix1, so4tware engineering environment can indeed be

s+ andar di zed.

However, in advanced areas such as networking, distributed

systems, and real-time systems, Berkeley Unix clearly

offers superior facilities. Given the current

nonconformity of Berkeley Unix to the standards pursued by

most of the rest of the Unix world, a standard Unix

software engineering environment will depend heavily on

the success of eTforts to merge these two worlds into a

single one.

1

I,

REFERENCES

[I] Proposed Standard, /usr/group Standards Committee,

January 17, 1984. Obtainable from /usr/group, 4655 Old

Ironsides Drive, Suite 200, Santa Clara, California 95050,

Lt. S. A.

F23 AT&T System V Interface Definition, January 1985.

Obtainable from AT&T Customer Information Center, Select

C:ode 30^7- 127, 2B33 North Franklin Road, Indi anapol i cm,

Indiana 46129, U.S.A.

E3] FCTE: A Basis for a Portable Common Tool Environment,

Functional Specifications, First Edition, August 1984,

Bull, GEC, ICL, Ni:xdorf, Olivetti, Siemens.

[4) S.J. Leffler, R.S. Fabry and W.N. Joy, A 4.2 BSD

.Interproce;$s Communication Primer, Computer Systems

Research Group, Dept. of EE&CS, Univ. of Calif. Berkeley,

1983.

_

AD-P005 559 -

FAULT TOLRANT SYSTiS IN MILITARY APPLICATIONS

M. R. Moulding

Royal Military College of Science, Shrivenham, U.K.

Abstract.' This paper introduces some basic principles and
terminology associated with the design of highly reliable
computer systems, and describes two experimental, fault tolerant
computer systems which have been recently developed for military
applications. The first system, called ADNET, demonstrates how
a dynamically reconfigurable, local area network can be
constructed so that various forms of hardware failure can be
tolerated. The second system illustrates how software fault
tolerance techniques can be used in a real-time application in
order to cope with software design faults and, thereby, improve
the software reliability of the system.

1. Introduction

Computer systems are often used to perform critical functions where their
assured reliability is of paramount importance. Such applications have
traditionally been associated with military and aerospace agencies which
have funded much of the research into the development of highly reliable
computer systems. The notion of incorporating protective redundancy into
a system as a means of tolerating operational faults has emerged from this
work to become a well-established technique for achieving high
reliability. Such redundancy normally involves the inclusion of extra
hardware units, additional software and spare processing time, and
represents the price paid for increased reliability.

During the last decade, the reducing cost of hardware has led to the
widespread use of computers in general industrial and commercial systems,
and a growing number of these applications have stringent reliability
requirements which demand the adoption of fault tolerance techniques.
Consequently, there is an increasing need for industrial and commercial
system designers to appreciate the architectural features of modern fault
tolerant computers and it is the purpose of this paper to provide an
introduction to this technology. In order to eliminate a possible source
of misunderstanding, we shall first start with a brief discussion of some
basic reliability concepts and terms.

2. TerfinoloRy

The field of computer systems reliability brings together a number of
disparate professional groups (e.g. hardware designers, control engineers,
software engineers) which each have their own set of terms to describe
essentially the same reliability concepts. This can lead to a great deal
of confusion and fruitless debate which prevents a meaningful discussion

of the underlying concepts. The reconciliation of this problem is beyond
the scope of this paper but, in order to discuss some basic reliability
issues, a consistent set of terms is required. We shall base our
terminology on that provided by reference 1 in the knowledge that not all
aspects of it are universally accepted.

Generally, the "reliability" of a system is characterised by a
mathematical function R(t) which expresses the probability that a system
will not fail during a specified Lime interval. For operational systems,
this funct1n3 cannot be known but by using reliability modelling
techniques its form may be predicted and the values of its
parameters estimated. If such a modelling exercise can be carried out
successfully, then it is possible to estimate the probability of a system
failing during a defined operational period. This, however, is not a
commonly used reliability metric since it can only be accessed via an
appropriate model. :nstead, mean time between failure (MTBF) is often
used since it can be measured directly for an operational system by
recording system failures, or obtained from a suitable model which itself
may often require recorded failure data to ref:ne its prediction.

Clearly, any attempt to assess objectively the reliabiltv of a system
requires a precise definition of what constitutes system "failure". For
this we require a specification detailing the precise functionality of the
system. A "failure" can then be said to occur when the behaviour of a
system tirst deviaties from that defined by its specification. Such an
innocuous definition belies the immense difficulty of producing a
specification adequate for this purpose. The specification must be
internally consistent; it must be complete in the sense that all possible
operating conditions and responses are catered for. it must be
authoratative so that judgements derived from it are unquestionable; and
it must be expressed in a way which allows it to be used always as a test
for system failure. A specification possessing these properties is termed
an "exact specification" and since such specifications rarely exist we
must accept that the definition of failure, and hence the assessment of
reliability, will usually contain a degree of subjectivity.

Possibly two of the most frequently used reliability terms are "error" and
"fault" and in order to allocate precise definitions for them, it is
necessary first to construct a simple model of a computer system.
Generally, we can consider a computer system to contain a hardware system
and a software system which combine to perform the external functions of
the total system. Each of these logically separate systems will contain a
number of "components" which interact under the control of a "design".
Components may themselves be considered as systems in their own right and
contain sub-components interacting under a design to perform the overall
functions of the component. This hierarchical decomposition will continue
until "atomic" components, which are considered to have no internal
design, are identified. In the case of a hardware system, decomposition
will result in a series of designs and a set of physical (atomic)
components; a software system will decompose purely into a set of designs,
since software has no physical properties. During operation, a system
will adopt a number of distinct internal states; for example, the values
of program variables in a software system, or the bus voltage levels in a
hardware system. When a computer system fails this will result from one
or more defective values in the state of the hardware or software systems.
These defective values are termed "errors" in the state of the system.

Such an error will itself be caused by either the failure of a physical
component, a hardware design failure or a software design failure.
Physical component failures are normally considered to arise from an
ageing process which introduces defective values into the internal state
of a component and eventually causes it to operate outside its
specification. Hardware and software design failures result from
defective values in the state of a design; for example, a missing
connection on a circuit diagram or an incorrect statement in the source
text of a program. A defective value, either in the internal state of a
component or in the state of a design, which causes an error in the system
.state, will be viewed as a "fault" in the system.

From the discussion above we can derive a relatively simple model for
computer system failure. During normal operation, the activity of the
system may be such that a physical component fault, or a residual hard%are
or software design fault, is encountered and damages the system state by
generating one or more errors. Again, depending on the precise activity
of the system, an error may cause the external behaviour of the system to
deviate from its specification and so cause a system failure. There are
two complementary techniques which can be used to reduce the possibility
of system failure and so provide high reliability:

(1) Fault Prevention. The aim of this technique is to try to prevent
faults from existing in an operational system. There are two
separate approaches:

(a) Fault Avoidance. The objective here is to try to avoid the
introduction of faults into the system. For example, design
faults can be reduced by the adoption of a good design method;
physical component faults can be reduced by the use of top
quality components.

kb) Fauit Removal. This method assumes that faults will have been
introduced during the development of a system and strives to
remove as many as possible, by exhaustive validation and
testing, before the system is launched into service.

(1;) Fault Tolerance. If prevention schemes cannot provide the required
reliability for a computer system, then it will be necessary to
construct the hardware and software systems in such a way that they
can prevent a fault from causing system failure. Such an approach
requires a combination of the followi.g activities to be carried out
by the system:

(a) Error Detection. The presence of the fault cannot be detected
directly; it is the detection of an error in the system state
which identifies the presence of a fault and can be used to
instigate corrective action.

(b) Damage Assessment. Following the detection of an error, the
extent of the damage to the system state may be estimated. Such
estimates are normally based upon static damage confinement
structures which exist within the system.

(c) Error Recovery. Before a system can be allowed to operate

3

normally following the detection of an error, the system must be
returned to an error-free state.

(d) Fault Treatment. If a system is allowed to continue normal
service following error recovery, it is possible that the fault
will recur and lead to eventual system failure. To avoid this
problem it is necessary to locate the fault and remove it from
the system, by some form of reconfiguration, before allowing
normal service to continue.

In the following sections we shall investigate how the fault tolerance
principles outlined above can be applied to hardware and software systems.

3. Hardawre Fault Tolerance

Hardware fault tolerance schemes are invariably based on the assumption
that hardware design faults will not exist and that physical component
faults will be the sole cause of potential failures. The rationale for
this lies in the lower complexity of hardware designs when compared with
software, and the widespread use of standard, operationally proven designs
for integrated circuit devices and printed circuit boards.

The ageing process of physical components can be well characterised via
accelerated life testing and, consequently, the effects of a component
fault are "predictable". This is of significant advantage when attempting
to devise a fault tolerance strategy. For example, if a certain component
is known to fail in a particular manner, then the resulting damage to the
system state can be predicted thus facilitating error detection and
recovery. Furthermore, redundant components which must be added to the
system to protect against physical faults can be of the same type and
design.

Redundancz in hardware systems can be categorised as either "dynamic" or
"static" . In a dynamic scheme, a faulty component will usually
provide some level of assistance with error detection but will rely on its
surrounding environment to carry out the other phases necessary for fault
tolerant operation. The standby sparing scheme illustrated in slide 4 is
an example of such an approach. Here a main system component (M),
periodically reports to a "watchdog timer" (W). Should the main component
fail to report within a specified time interval then this will be
recognised as an error by the timer which will be responsible for
assessing the damage caused by the component fault, recovering the system
to an error-free state and treating the fault by switching in a redundant
"standby" (S) component. The damage assessment and error recovery phases
can vary in sophistication. A simple approach is to assume that the
entire state is damaged and to recover it by means of a hardware reset.
More elaborate strategies can lead to resets for only parts of the system,
based on some a priori characterisation of the fault and/or damage
confinement structures which exist in the system.

In contrast to the dynamic redundancy approach where the surrounding
environment of a component plays an important role in the overall fault
tolerant behaviour, the objective of static redundancy is to mask the
effects of a component fault from the surrounding environment. The
canonical example of static redundancy is the triple modular redundancy

Ii4

(TR) unit illustrated in slide 4. Here, three identical components are
subjected to the same inputs and the overall output is obtained by a
two-out-of-three vote on the outputs of the individual components.
Consequently, the TMR unit will mask the effects of any single component
fault. Error decoction is provided by the voting check which also locates
the faulty component. Damage assessment is based on the assumption that
the faulty component operates in complete isolation (termed an atomic
action) and, consequently, cannot damage the system state. Error recovery
simply involves ignoring the output values identified by the voting check
as being erroneous; fault treatment my involve ignoring future outputs
Irom that component, depending on whether the fault is considered
transient or not. Where future output from a faulty component is ignored
then the TMR unit will lose its fault masking properties unless a new
component is swutched in to replace the faulty one.

:n pr.nccple, redundancy can be applied at any level within a system.
However, the higher the level at which it is applied, the larger the range
of faults it protects against. The reducing costs of hardware and the
increasing functionalitv of integrated circuits mitigates against the
traditional cost penalties of this approach and a number of fault tolerant
multi-processor systems have been developed (e.g. references 5,6,7,8)
where redundancy is applied at the intra-computer bus level (e.g.
processor and memory modules). The emergence of local area network
technology also invites the application of redundancy at the
inter-computer bus level (i.e. a local area network with redundant
computer systems. I here redundancy is applied at the processor or
computer level the fault tolerance behaviour is usually controlled by
software.

In the military domain, the notion of fault tolerant local area networks
is of particular interest since the overall effect of such an approach is
to distribute geographically the redundancy. This results in a system
which is tolerant to both operational fauits and action damage (faults
generated by local environmental changes'). In the following section, we
shall9 examine an experimental, fault tolerant local area network, called
ADNET , which has been developed by the U.K. Ministry of Defence for
application to shipborne command and control systems of the Royal Navy.

4. The ADT Eperimewt

The fighting capability of present day warships is controlled by a
substantial and closely integrated team of officers and their supporting
staff. The team must derive a continuous and rapid assessment of the
situation in the vessels area of concern fror a confusion of data
available to them from own ship's sensors, data links and many other
sources. Based on this assessment, decisions must be made regarding the
deployment of weapons. Once deployed, these resources must be controlled
in order to achieve the desired effect. The size. complexity and time
constraints of these tasks demand substantLal computer assistance and this
is provided by the command and control system.

The command and control systems of current HM warships are based on a
centralised computer architecture, as illustrated in slide 5. The central
computer supports not only the command and cor.trol functions required by

I ll/ l~
im

5

the officers and their staff but also the data processing and control
requirements of the ship's sensors and weapons. Such an architecture
lacks enhancement capability, and is vulnerable to action damage.
Consequently, a futuristic command and control system architecture has
been proposed in which each weapon and sensor has computer power for local
data processing, and the command and control functions are horizontally
distributed across a number of computers, each with their own operator
display. The proposed configuration, illustrated in slide 6, uses a
serial data highway to provide the necessary inter-computer
communications.

In order to investigate the feasibility of a horizontally distributed
command and control system, the ADNET experimental model was developed
at the Admiralty Surface Weapons Establishment (ASWE). A simplified
schematic representation of the system is illustrated in f zde 7. At the
heart of the system is the ASWE Serial Highway uhich is a
multi-drop bus to which access is by poll and response under the control
of a highway controller. Some principal features are as follows:

3 Mbit/sec signalling rate, giving a maximum useful data rate of
1.8 Mbitlsec.

An upper limit of 63 nodes over a total highway length of 300
metres.

Intelligent communication processors which interface directly into
the host computer's memory and handle all the highway level data
transfer protocols. The host software simply views the highway as a
high integrity memory-to-memory data transfer medium.

Broadcast and point-to-point messages of variable length up to 64

bytes.

Block data transfer up to 16k bytes.

Multiple levels of error detection with subsequent recovery of lost
or corrupted messages (performed autamatically by the comunication
processor without host involvement).

The use of a passive multi-drop connection to the highway means that
cOmmunications in the network will not be affected by the powering down of
any computer node. The use of a highway contoller does, however,
represent a potential source of network failure and, to overcome this. the
highway is equipped with two controllers. At any particular time, one
controller will act .s "master" and control the ordering of messages onto
the highway in the normal manner; the other "slave" controller will
monitor the activity of the highway and so be able to detect the failure
of the master. If the master does fail, then the slave recovers the
network to a consistent state and assumes the master function. This is a
dynamic redundancy, standby sparing scheme where the standby unit performs
a watchdog function. The physical cabling of the highway is also
vulnerable to action damage and, in order to protect against this source
of potential failure, redundant cabling is used. Each communications
processor is connected to a number of cables (typically three). It
transmits on all cables and selects one of that number as its input. If
the reception on one particular cable has an unacceptably high error rate,

l l lIll• ll lll l I I

then the communications processor will automatically select another cable
for input. Again, this is a dynamic redundancy scheme where the
communication processor is responsible for implementing all phases of
fault tolerance.

Connected to the highway in ADNET are a number of Ferranti Argus computers
which collectively provide the command and control functions of the system
via appropriate operator diplays (not illustrated). A sensor simulator
computer is also connected to the network (not illustrated) in order to
provide data fow1the command and control functions. All ADNET software is
based on MASCOT and programmed in CORAL.

Although the highway itself is capable of fault tolerant operation, fault
tolerance at the s\stem level will be identified by the preservation of
the command and control functions in the presence of the failure of a
particular computer node. This can be achieved by adding redundant
computing power to the network and providing the software with the ability
to reconfigure itself dynamically in the event of the failure of a
particular node.

The ADNET approach to the dynamic reconfigurability problem is based on
the concept that each computer should operate largely autonomously, rather
than forming a partition of an integrated system which is managed by a
global executive. The autonomous appfQach is reflected in the
inter-process communications philosophy - which does not rely on
fixed connectivity tables but instead allows a distributed command and
control function to establish dynamically its own communications links
across the network. Cne important aspect of remote process communication
is based on a "user-service" model in which "ussr" processes require to
access resources provided by remote "service" processes. Initially, when
a user first requires to access a resource, it will broadcast an enquiry
message onto the highway which will be received by all services of the
specified type. These services will respond directly to the user by means
of a point-to-point message, the destination of which was contained within
the user's original request. If more than one reply is received, then the
user will select the most appropriate service, possibly from status
information contained within the reply. Thereafter, whenever the user
wishes to access the service, it will do so via a point-to-point message,
the destination of which was embedded within the service's reply to the
original broadcast enquiry. The reply from the service will be a
point-to-point message in the same way as before. If a computer
containing a service falls, then all users of that service will time-out
the point-to-point replies from it and, by the broadcast enquiry technique
described above. establ:sh a connection to a similar service held
esewhere.

In fact, the protocol described above is one of a related set supported by
a communications package resident in each computer. The communications
packages present an integrated view of the network such that processes in
the same machine communicate in the same way as if they were remote.
Consequently, processes can migrate around the network and automatically
re-establish their required connectivity, regardless of the particular
computer they, or their communicating partners, may be resident in. This
characteristic means that, providing the services that a computer supports
are replicated elsewhere in the network, a particular machine may be
powered down, taken out of service, powered up, reloaded with new software

7

and then introduced back into the network, without disrupting the
operation of the other machines. Such behaviour provides great
flexibility in the run-time re-allocation of computer functions and
significantly aids on-line maintenance.

The simple user-service model described above reveals the basic ADNET
fault tolerance approach. Protective, dynamic redundancy is introduced by
replicating services, which of course implies the provision of spare
computing power in the network. Error detection is performed by user
processes timing-out service replies. Damage assessment is based upon the
'hysical structuring of the system since it is implicitly assumed that
damage will be contained within the failed computer. Error recovery is
limited to a user process disregarding any partial results obtained from
the service before it failed. Fault treatment is performed by the user
when it dynamically links itself to another version of the service held
elsewhere.

If a service process is memoryless in the sense that its function does not
depend on data retained between invocations (e.g. a mathematical
function), then replicating it presents little difficulty since all
service replicas will provide exactly the same function. However, if the
service does retain data, then the replicas must be synchronised in some
way in order that they offer the same service at all times. In ADNET such
services are integjated into a specially developed, distributed database
management system which controls the replication, synchronisation
and distribution of database partitions.

5. Softwre Fault Tolerance

In contrast to hardware fault tolerance where only physical component
faults are usually considered, software fault tolerance schemes are
concerned solely with design faults. This has two important
ramifications:

(i) The faults and their effects will be "unpredictable". This
increases the difficulty associated with error detection and
recovery phases of fault tolerance. Backward recovery to a prior,
error-free state is the most effective way of recovering from
unpredictable faults.

(ii) Protective redundancy must be based on modules of independent
design so as to minimise the possibility of common design faults.

The twp5 main techniques for softwar 1% fault tolerance are recovery
blocks and N-version programming The general syntax of a
recovery block is illustrated in slide 8. A number of alternate modules
of independent design are produced from the same specification. There
will exist a primary alternate which represents the preferred design and a
number of other alternates. These may be older versions of the primary
(uncorrupted by enhancements), modules offering degraded functionality, or
simply alternates providing the same functionality as the primary but
based on different algorithms and/or produced by separate programming
teams. On entry to a recovery block, a recovery point is established
which allows the program to restore to this state, if required. The

-. -- . .=m,=,,u=. • i mllmm m II l I 8

primary alternate is executed and an acceptance test checks for successful
operation. If the acceptance test fails, then the program is recovered to
the recovery point taken on entry to the recovery block, the secondary
alternate is executed and the acceptance test applied again. This
sequence continues until either an acceptance test is passed or all
alternates have failed the acceptance test. If the acceptance test is
passed, then the recovery point taken on entry is discarded and the
recovery block is exited. If all alternates fail the acceptance test,
then a failure exception will be raised. Since recovery blocks can be
;nested, then the raising of such an exception from an inner recovery block
would invoke recovery in the enclosing block. Generally, an exception
raised from within an alternate can be used to indicate premature failure
and thus invoke the same action as for an acceptance test failure.

The recovery block approach is essentially a software analogue of the
hardware standby sparing scheme described in section 3. Redundancy is
achieved by alternates of independent design; error detection is provided
by the acceptance test or by an exception being raised from within an
alternate. Ostensibly, damage assessment is not required because backward
error recovery will eliminate all damage to the program. However, in a
multi-processing environment, backward recovery will only be applied to a
single process (or at most a defined set of interacting processes - see
next section) and thus practical schemes will require protection
mechanisms within the machine to confine the damage to that part of the
system which will be backward recovered. This constitutes implicit damage
assessment. Fault treatment within a recovery block is achieved by the
execution of another alternate following recovery.

In contrast to recovery blocks, the N-version programming scheme,
illustrated in slide 8, is a software analogue of hardware triple modular
redundancy. Three or more (N) independently designed versions of a module
are activated by a "driver" module (D) which supplies them with the
appropriate input data. The driver then collects the individual outputs
from the versions and performs a majority vote in order to determine the
output from the N-version unit. Consequently, a design fault in any one
module will be masked. Error detection is provided by the voting check
which also locates the faulty version. Damage assessment is based on the
premise that each version executes atomically (in isolation); this can be
achieved physically by running each version on dedicated hardware or,
logically, by running the versions on the same computer and using
appropriate protection mechanisms. With atomic execution, error recovery
is achieved by the driver ignoring the output values identified by the
voting check as erroneous. Fault treatment can be considered as simply
ignoring the results of the version identified as being faulty.

In a recovery block scheme, all alternates are always available on entry
to the block, regardless of previous faults. The rationale for this is
that a design fault will only be uncovered by a rare combination of
processing conditions which are unlikely to recur when the recovery block
is next executed. For an N-version scheme the situation is a little more
complicated. Unlike the alternates of a recovery block, all versions of
an N-version unit are usually executed each time the unit is invoked.
Consequently, they can retain data locally between invocations. This has
the advantages of increasing the design independence of the versions
(alternates of a recovery block must all access the same global data
structures which limits their algorithmic independence) and reduces the

data which must be passed to a version upon invocation. However, if the
versions do retain data, then a driver will not be able to re-use a
version which has produced an erroneous output since its internal state
might have become inconsistent with the others of the unit. If the fault
tolerance properties of the N-version unit are not to be degraded under
these circumstances, it will be necessary to provide some form of recovery
of the internal state of a faulty version.

Each of the two software fault tolerance schemes described above has its
own virtues. Generally, the N-version programming scheme is most
appropriate to those systems which have replicated hardware for concurrent
execution of versions, and for which voting checks can be easily
constructed (this can be a non-trivial exercise since the versions must be
of independent design and their "correct" outputs can vary). Recovery
blocks are most appropriate for systems where hardware resources are
limited and voting checks are inappropriate. A full discussion of the
relative merits of the two approaches can be found elsewhere . The
remainder of this paper will concentrate on the practical problems of
using recovery blocks in real-time applications, and describe a
demonstrator system, recently constructed at the University of Newcastle-
upon-Tyne, to investigate the use of recovery blocks in a naval
application.

6. Application of Recovery Blocks to Real-time Systems

Although recovery blocks have been available in principle since the mid-
1970's, they have not been widely used in practical real-time
applications. Some anticipated problems associated with their use are as
follows:

(i) Run-time overhead. Acceptance tests, backward error recovery and
additional alternate executions all provide a run-time overhead.
Although acceptance test and alternate execution overheads are
fundamental to the scheme, special hardware can be used to minimise
backward error recovery times. The feasibility of this approach
has been demonstrated at lNewcastle University where a prototype
"recovery cache" device has been developed which backward
recovers the memory of a DEC PDP 11/45. The overall configuration
of the device is illustrated in slide 10. The recovery cache is
based around a DEC LSI/l1 microcomputer which communicates with the
PDP 11/45 host processor via a cache-host interface unit (CHIU), and
can access the memory of the PDP 11/45 via a cache-memory interface
unit (CMIU). The host Unibus is physically intercepted by a bus
monitor unit (BMU) which is controlled from the LSI/1l, and which
can write data directly to the recovery cache memory via a non
processor request mr'dule (NPR). Under the conditions when the host
processor does not require a recovery point, the BMU allows all host
memory accesses to proceed unhindered. When the host instructs the
cache to establish a recovery point, the LSI/11 configures the BMU
to intercept all writes to memory locations which are being updated
for the first time since the recovery point was established. Before
these writes are allowed to proceed, the BMU reads the original
value of the location and stores the location address and original
value in the cache memory. It then applies the write to the host's

10

memory. If the host instructs the cache to recover, then the LSI/11
will read the address/value pairs from its memory and restore the
appropriate locations of the host's memory to their original values.
In this way, the memory is returned to its state when the recovery
point was established.
The operation of the cache is determined by software which runs on
the LSI/l1 and, in its original form, this supports four levels of
nested recovery points for a single process running on the host.
Initial experiments with the cache indicated that, for a typical
process, the run-time overhead of monitoring the Unibus was of the
order of 10%.

(ii) Concurrent processing. When a regime of communicating processes
establishes recovery p~ints independently, then it is possible that
the "domino effect" will occur. This is illustrated in the
first diagram of slide 10 where the horizontal lines describe the
progress in time of two processes P1 and P2, the vertical lines
indicate communication between processes and the open square
brackets correspond to the establishment of recovery points. If, at
the most advanced stage of its progress, PI wishes to recover to its
last recovery point, then this can be achieved without affecting P2.
However, if process P2 wishes to recover to its last recovery point,
then this will cause recovery beyond a communication with Pl. In
general, this communication must now be considered invalid (e.g. P2
may have passed P1 erroneous data) and so P1 must recover to its
penultimate recovery point. In so doing, this invalidates further
communication and causes P2 to recover to its penultimate recovery
point. This sequence will continue until either a consistent pair
of (possibly ancient) recovery points are found, in which case the
system may proceed, or the processes will be left in an inconsistent
state when all recovery points of one or both processes have been
used up.
The general solution to the domino effect is to establish "recovery
lines" in the system, as illustrated by the broken lines on the
second diagram of slide 10. A recovery line connects a mutually
consistent set of recovery points and can be a ieved by groups of
processes cooperating to form "conversations" . On entry to a
conversation, a process establishes a recovery point and,
thereafter, may only communicate with others that have also entered
the conversation. If a process wishes to recover whilst in a
conversation, then all other processes of that conversation are
forced to recover also. When a process wishes to leave the
conversation, it must wait until all other processes are ready to
leave. This, of course, introduces a synchronisation overhead but
is the price paid for controlled recovery. Conversations, like
recovery blocks, can be nested, as illustrated in slide 10. Here
processes Pl-P4 initially enter an outer conversation. Some time
later, P1 and P2 form an inner conversation which, after two
communications, completes and returns P1 and P2 to the outer
conversation. At some future point in their processing, PI-P4 will
synchronise to complete the outer conversation.
Although conversations provide a solution to the domino effect, the
ease with which they can be implemented and used in practical
systems is largely unknown, and the synchronisation overheads
associated with their use is likely to be application dependent.

(iii) Acceptance tests. The acceptance test provides the basic method of
error detection and, as such, plays a vital role in determining the
overall effectiveness of the scheme. If the acceptance test is too
complex, then it will generate a large run-time overhead and is
liable to contain residual design faults. In contrast, a simple
acceptance test may not provide an adequate method of checking the
acceptability of an alternate's operation. Importantly, there is no
wealth of documented practical experience upon which a designer of
acceptance tests can draw.

(iv) Location of recovery blocks. For the effective utilisation of
redundancy, recovery blocks should be used in those sections of the
software most likely to contain faults which would cause system
failure. The unpredictable nature of software faults makes this
task extremely difficult.

(v) Development cost overhead. Software development overheads resulting
from the use of recovery blocks can be divided into a fixed part and
a proportional part. The fixed part will arise from the need to
provide additional run-time environment software to support the
operation of recovery blocks and conversations. The absence of a
standard environment to provide this facility adds significant cost
risk for any project contemplating the use of recovery blocks. The
proportional part of the cost will be derived from the design and
implementation of acceptance tests and redundant alternates, but
will also include effort associated with selecting the locations of
the recovery blocks and in defining suitable conversation
structures. Again, there is little empirical evidence upon which to
base estimates for these.

(vi) Memory overhead. Extra memory will be required for additional
run-time support software, acceptance tests and redundant
alternates. Such overheads are difficult to predict in the absence
of practical experience.

(vii) Reliability improvement. If a system designer is prepared to argue
for the inclusion of recovery blocks, what sort of reliability
improvement, if any, can he expect to get? The risks and costs are
evident; the benefits are unproven.

The circularity of the case against recovery blocks is manifest: recovery
blocks have not been chosen for use in practical systems because there is
insufficient evidence of their utility; there is insufficient evidence of
the utility of recovery blocks because of their lack of use in practical
systems. In an attempt to break free from this loop, a project, sited at
Newcastle University, has recently been completed which has investigated
the cons and benefits of using recovery blocks in a realistic, real-time
system . The work was funded jointly by the Ministry of Defence and
the Science and Engineering Research Council of the U.K., and was directed
at the construction of a demonstration system which modelled a subset of
the functions of a centralised naval command and control system, as
illustrated in slide 5.

The demonstration system consisted of three interconnected DEC computers,
as shown in slide 12. The command and control software, in which recovery

12

blocks were included, was written in CORAL and based on MASCOT
This ran on a DEC PDP 11/45, to which was connected the recovery cache
described above, and a command console via which an operator could invoke
command and control functions. The command and control machine was
connected, by a parallel link, to a Unix-based PDP 11/45. This acted as a
file-server on which monitoring output from the command and control
machine was logged. The actions of own ship's sensors and weapons were
simulated by MASCOT/CORAL software running on an LSI/11. Simulation
scenarios were stored on the file server and read via a serial link. A
graphics console was provided to allow an operator to control the
;operation of the simulator and to display the current state of the
simulation. Communication between the command and control software and
the simulated weapons and sensors was achieved via messages passed across
a serial link.

The functionality of the command and control software was based upon
anti-submarine warfare scenarios in which an operator would guide a
torpedo-carrying helicopter to engage a hostile submarine. The command
and control software was constructed in such a way that the software fault
tolerance embedded within it could be either enabled or disabled. by
running the command and control software in these two modes for various
scenarios, comparative overall MTBFs could be obtained. Moreover, by
using the monitor output from the command and control software, the fault
coverage provided by the software fault tolerance could be estimated by
determining the number of potential failures which were averted.

An important aspect of the work was the development of a scheme to apply
the conversation principle to MASCOT software: a set of concurrent
processes, termed activities, which interact through Inter-activity
communication Data Areas (IDAs). The approach adopted was to define, at
system con§1ruction time, static conversation structures called
"dialogues" . Each dialogue was created with a unique name, nest
level (since dialogues, like conversations, may be nested), activity list
(to define those activities which are permitted to use the dialogue) and
IDA list (those IDAs via which dialogue activity members are allowed to
communicate). Each activity is created with a set of dialogues which it
may use; dialogues may be entered or exited and this is essentially the
way an activity establishes and discards a recovery point explicitly. A
recovery block called by an activity will be passed the dialogue name to
be used when establishing the recovery point of the block.

The principle of static, named, dialogue structures is important since it
provides good design visibility of the intended recovery structure. One
major problem with the use of backward error recovery is associated with
non-recoverable interfaces. Consider the situation where an activity
fires a missile from within a recovery block. If the activity recovers
for some reason (e.g. the acceptance test fails), then the internal state
of the activity will be inconsistent with the state of its environment,
since we cannot reverse time in the real world. One approach would be to
insist that an activity never accesses a non-recoverable interface when it
has an active recovery point. In conversation-type schemes, this can lead
to excessive synchronisation overheads associated with the completion of
conversations. In the dialogue scheme, this problem is avoided by
distinguishing between forward and backward recoverable IDAs. Forward
recoverable IDAs represent non-recoverable interfaces; backward
recoverable IDAs are interfaces between activities within the recoverable

) 13

system. When a dialogue recovers, all associated backward recoverable
IDAs are recovered in the normal manner; forward recoverable IDAs are not.
Instead, a forward recovery procedure, which is specifically defined for
that IDA, is executed. This will attempt to place the non-recoverable
environment in a state consistent with that of the recovered activities.
For example, in the case of a missile firing, the forward recovery
procedure might self-destruct the missile and then decrement the (backward
recovered) missile count by one.

The implementation of the dialogue scheme involved adding recovery
software to the MASCOT run-time kernel to support recovery blocks and
dialogues, and enhancing the recovery cache software to accommodate
concurrent MASCOT activities. Some 3000 man-hours of effort was expended
in this work and the MASCOT run-time kernel size was increased by
approximately 25%.

17
The results of reliability measurements on the demonstrator system

indicated that approximately 70% of software failures were averted by the
use of software fault tolerance and the MTBF increased by about 135%. In
fact, around 90% of all command and control software faults were
successfully detected but hardware faults in the prototype recovery cache,
and residual bugs in the recovery software of the MASCOT kernel, prevented
successful recovery. In the absence of such deficiences (which one would
expect for standard, re-usable hardware and software), an increase in MTBF
of 900% was predicted.

The price paid for this increase in reliability was as follows
1 7

(i) 60% increase in the cost of developing the command and control
applications software;

(ii) 33% extra applications code was produced;

(iii) 35% extra applications data memory was required;

(iv) 40% additional run-time was required (30% dialogue synchronisation,
8% cache bus monitoring).

6. Conclusions

Since the 1950's, fault tolerance has been used to improve the reliability
of hardware systems. The reducing cost of hardware and the increasing
functionality of integrated circuit devices has led to the development of
fault tolerant multi-processor and local area network systems where
protective redundancy is applied at the processor and computer level,
respectively. The inclusion of redundant computers in a local area
network is particulary attractive in military applications since the
geographical separation of the redundancy can lead to a system which is
tolerant to both operational faults and action damage. This paper has
described the essential features of a dynamically reconfigurable, local
area network, called ADNET, which has been specifically designed to
exploit these potential benefits for a distributed naval command and
control application.

L(14

Traditionally, fault tolerance schemes have only considered the physical
failure of hardware components, although it is often the case that
computer system failures are the result of residual software design
faults. Various software fault tolerance techniques have been proposed
during the last decade but there has been little evidence of their
widespread use in practical systems. However, an experimental system,
recently constructed at Newcastle University, has demonstrated that
software fault tolerance can significantly increase the reliability of
real-time software, and an account of this work has been included in
.this paper.

The increasing complexity of hardware systems, and in particular the
advent of VLSI devices of customised design, suggests that conventional
assumptions regarding the absence of hardware design faults in systems can
no longer be considered as generally valid. Consequently, it is likely
that fault tolerant systems of the future will require redundant
components of independent design to be added to hardware systems, in a
similar manner to that currently proposed for software systems.
Inevitably, the increasing ease with which we can implement computer
systems exposes our inability to specify and design them correctly and, in
the presence of such imperfection, we must become more tolerant!

References

1. T. Anderson and P. A. Lee, "Fault Tolerance: Principles and Practice,"
Prentice Hall, 1981.

2. W. G. Bouricius et al., "Reliability Modelling Techniques for Fault
Tolerant Computers," IEEE Transactions on Computers, C-20(11), pp.
1306-1311, 1971.

3. P. A. Keiller, B. Littlewood, D. R. Miller and A. Sofer, "On the
Quality of Software Reliability Prediction," Proc. NATO Advanced
Study Institute on Electronic Systems Effectiveness and Life-Cycle
Costing, Norwich, UK., 1982.

4. R. A. Short, "The Attainment of Reliable Digital Systems Through the
Use of Redundancy - A Survey," IEEE Computer Group News 2(2), pp.
2-17, 1968.

5. J. H. Wensley et al., "SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control," Proc. IEEE 66(10), pp. 1240-1255,
1978.

6. A. L. Hopkins, T. B. Smith and J. H. Lala, "FTMP - A Highly Reliable
Fault-Tolerant Multiprocessor for Aircraft," Proc. IEEE 66(10), pp.
1221-1240, 1978.

7. C. S. Repton, "Reliability Assurance for System 250, A Reliable,
Real-Time Control System," First International Conference on Computer
Communications, Washington (DC), pp. 297-305, 1972.

8. D. Katsuki et al., "Pluribus - An Operational Fault-Tolerant
Multiprocessor," Proc. IEEE 66(10), pp. li"6-1159, 1978.

)s3'515

9. J. A. Gasden, "ADNET: An Experiment in Computer Networks for the Royal
Navy," Proc. 3rd. International Conference on Distributed Computing
Systems, 1982.

10. J. S. Hill and M. G. Stainsby, "A Highway for Intercomputer
Communication," Journal of Naval Science, 6, 216, 1980.

11. MASCOT Suppliers Association, "The Official Handbook of MASCOT," RSRE,
Malvern, U.K., 1980.

12. W. L. Lakin and M. R. Moulding, 'The ADNET Communications System:
Inter-Process Communication in a Fault Tolerant Local Network," Proc.
Third IFAC/IFIP Workshop on Achieving Safe Real-Time Computer
Systems, pp. 233-238, Cambridge, U.K., 1983.

13. P. R. Tillman, "ADDAM: ASVE Distributed Database Management System,"
Proc. 2nd. International Symposium on Distributed Database Management
Systems, North Holland Publishing Company, 1982.

14. P. A. Lee, N. Ghani and K. Heron, "A Recovery Cache for the PDP-11,"
IEEE Transactions on Computers, C-29(6), pp. 546-549, 1980.

15. B. Randell, "System Structuring for Software fault Tolerance," IEEE
Transactions on Software Engineering, SE-l(2), pp. 220-232, 1975.

16. L. Chen and A. Avizienis, "N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation," Digest of FTCS-8,
Toulouse, pp. 3-9, 1978.

17. T. Anderson, P. A. Barrett, D. N. Halliwell and M. R. Moulding, "An
Evaluation of Software Fault Tolerance in a Practical System," to
appear in Digest of FTCS-15, Ann Arbor, 1985.

18. T. Anderson and M. R. Moulding, "Dialogues for Recovery Coordination
in Concurrent Systems," In Preparation.

16

K" RM CS-,,
'974

FELIIY IS CHARACTERIS D BY A FUNCTION R(k) HICH EXPIMSSES THE
PROBABILITY THAT A SYSTEM WILL NOT FAIL THRJU(H)UT A PERIOD
OF DURATION t

MBE MAN TI BEFEN FAILURES

FAILU OF A SYSTEM OCCURS *N THE BEhAVIOUR OF THE SYSTEM FIRST
DEVIATES FROM THAT REQUIRED BY ITS SPECIFICATION

EXACT SECIFICATION IS REQUIRED WHICH M1JST BE:
CONSISTENT
CwLET.
ANIO.ITATIVE
USABLE AS A TEST FOR FAILURE

ER A DEFECTIVE VALLE IN THE STATE OF A SYSTE

EAULT A DEFECTIVE VALUE IN lE INTERNAL STATE OF A D CR

IN THE STATE OF A DESII.

13-7

1i

R MCS-
M C TE IINO (2)

FAILURE

ERROR

PHYS I C A L H A R WA E WS W R E

DESIGN DESIG

FAJLT FAULT FAULT

A M Cs -SUiFi iir~jn

K FAULT A\V)IDNE

FAULT P9E'1E9TION

FAULT FM AL

RELIABILITY

ERROR DETECTION

MY& ASSESS 2ff
FAULT TOLEPACE ERROR RECOVEIRY

FAULT TATTY

1,3

R M CS- ,
HARMW FAULT TOLERME T

I j STAR SPARING
(DYNAMIC Rfl].NCY)

map

. , (MASKING OR STATIC ROM

M3C

NM i

SENSORS WEAPONS

CENTcID
COMPUTE

M CS HRIZONTALLY DISTRIB1ED

MTN AND OM SYSTEM

LOCAL LOCAL

come

Come~

LOCALLOA

Come Sel Come rd
LOCAL LOCAL LOCAL LOCAL
Come Come come come

GD -

N M CS -Cul II m
ACTION DATA NEWORK (ADO)ju t

3 Mbit/sec serial highway with
duplicated highway controllers (HC)

HC Fand redundant cabling.

.A.MOM

HC

AtffN U

RMCS -m
SOMMAAE EN JLT TOLERNE

ESURE < Acceptance Test >

BY < Primary Alternate >

ELSE BY < Secondary Alternate > E E

* BLOCK

ELK BY < nth Alternate >

ELSE ERRR

P.RAMING

V, V2 V

"QL

N M C$- m
USE OF RECO'E BLOCKS

PROBLlS ANTI CJIPATD:

1 RUN-TIDE GV'EHEAD

2 CONCUR1ENT PRCESSING

3 ACCEPTANCE TESTS

4LOCATION OF RECO\RY BLOCKS

5 DEVLORNT COST VEA

6 MXRYl MFKfAD

7 ItPPRVOUT IN REJIABILIlf?

r RM CS-K' l1gLoAl

ff-CM CAG

I--

ci
11/5 UIB 1yI

R ~ ~ ~ R MXS-SL J L AND COORPNCY

P2

L I L,

fECMVRY LINES AND COVRSATIONS

-M CS
- SOFnAIN FAULT TOLERANCE IU TOR

UNIX!

Paral I.1
Link

Serial
Links

MASCOTMACT

11/03 11/45 R

Sol ,.,Y

HXPERIMAL OBSERVATIONS AND RESULTS

1 STATIC FORI OF CONVERSATION, TEAU A LE DEVISED FOR MASCOT

2 UTILITY OF DIALOGUES AND RECOVERY BLOCKS D NTRATED

3 RELIABILI1Y IMPROVEMENTS

7C7 OF POTENTIAL FAILURES AVERTED

135% INCREASE IN MTBF

4 COSTS AND OVEGEADS

607 ADDITIONAL DESIG & CODING EFFORT

33%, EXTRA CODE

35% ERA DATA MERY
4C% ADDITIONAL JN-TlME

(30% SYNCHRONISATION OVEREAD)

--=- ' .liIiai~imilm cizrol

AD-P005 560

THE ASPECT PROJECT

J.A. Hall
Systems Designers plc

(INTRODUCTION

ASPECT was the first Alvey-supported software engineering
project and is a collaborative venture aimed at prototyping a
multi-language, distributed-host, distributed-target
Integrated Project Support Environment. The ASPECT team is
led by Systems Designers plc (SD) and the other partners are
the Universities of Newcastle upon Tyne and of York, GEC
Computers Limited, ICL and MARI. Following the Alvey
strategy, ASPECT has started by integrating existing tools,
notably Perspective from SD, on UNIX ; this environment is
being developed by distributing it using the Newcastle
Connection and then building in the more advanced results of
collaoorative rebearch and development. <
REQUIREMENTS

To understand the objectives and strategy of ASPECT, it is
necessary to consider the requirements for an IPSE : what we
expect it to do, beyond what our current tools provide, to
improve the software development process. We can identify
four areas where an IPSE can advance the state of the art:

a) It must support the whole software lifecycle.

Whatever one's view of the software lifecycle, it
certainly encompasses a number of phases through
wnich the software progresses and, at every phase, a
number of different types of activity z planning,
managing, carrying out and recordinq tne phase, for
example. An IPSE, therefore, must support all tnese
activities for every phase s inore importantly, it
must integrate the various supporting tools so they
form a coherent whole.

1S

/5(

b) It must support development methods.

Software development methods can be characterised by:
their data model of software development ; the
(frequently graphical) notation for expressing this
model ; the rules which govern the application of the
model and the procedures for manipulating it. An
IPSE must be capable of supporting all these aspects
of a method. Because there is no universal method
and new methods are continually being introduced, an
IPSE must be configuraole, to support many methods,
and capable of integrating different methods.

c) It must deliver power to the user.

We need to harness the raw hardware power now
available so that both processing power and io
bandwidth are more than enougn for the user not to be
constrained by the system. This implies that an IPSE
must be workstation based and have an effective,
responsive man-machine interface.

d) It must support development in the large.

An IPSE must support teams of people working on
common projects. At the physical level this implies
networking of machines ; at the logical level,
version and configuration control, concurrency
control, access control and task management must be
built in to the IPSE.

KEY OBJECTIVES

ASPECT, in addressing these requirements, is concentrating on
four key objectives.

a) Integration and openness.

ASPECT is emphasising the development of an
infrastructure for tools, because it is by provision
of a powerful set of common services to all tools
that integration of tools can be achieved. Tools
written for single users can immediately be used on
large projects when incorporated into ASPECT, for
example, because the infrastructure manages all the
problems of controlled sharing between users. It
is crucial that ASPECT provide these facilities in an
open way so that new tools and methods can be
incorporated by the user.

2

b) Host distribution.

ASPECT s addressed at developers Who may be

goegraphically distributed and who work on large
projects using a range of machines including persondl
workstations.

c) Good man-machine interface.

A major part of the ASPECT research is aimed at
providing an architecture in which software engineers
can use the power of, for example, bit - mapped
graphics and pointing devices effectively.

d) Target distribution.

ASPECT is oriented towards the development of
embedded systems. In particular we are addressing
the specification, development and testing of
software for distributed target machines.

ASPECT ARCHITECTURE

The ASPECT architecture addresses, in a simple and general
way, the key objectives. it is based on a clear separation
between tools and Kernel, and the provision by the kernel of
a powerful set of cormaon services for structuring and storing
information, for communicating with users and other tools,
and for manipulating remote targets. These functions are
made available to tools through the public tool interface
(PTI).

To achieve the required openness the PTI is extensible, to
support new methods and tools, and configurable, so a project
can impose particular methods of working, if required.
Furthermore, since the PTI is the only means by which tools
use ASPECT services, it necessarily includes within itself
the facilities for its own extension and configuration.

One of the most important requirements on ASPECT is that
existing tools, written for the host operating system, should
be usable within ASPECT. This is made possible by the open
tool interface (OTI). The OTI can be thought of as a subset
of the PTI which appears to the tool just liKe the host
operating system. ASPECT is hosted on UNIX*, so the OTI
makes available to ASPECT a large collection of existin,
software development tools.

The PTI services fall into four groups:

- information storage
- man-machine interface
- process invocation and communication
- target services.

3

in

LUJ
F-j

C-)j

C3 V

C)) -- H c

4ach of these services is provided by a layer of software -

in the effect a subroutine library - between the tool and the
UNIX Kernel. The PTI offers services at a much high level
than those of UNIX. To provide the open tool interface, the
PTI includes calls appearing to be UNIX system calls, but
even these are processed by ASPECT rather than by UNIX so
that all tools, including UNIX tools, are fully under the
control of ASPECT. Indeed, different open tool interfaces
will be provided for different UNIX tools to capture the
semantics of the tools' data correctly in the ASPECT
information base.

MEETING THE OBJECTIVES

The central component in ASPECT is the information base, and
it is the information base which achieves the integration
between tools by providing a central, structured repository
for all the information they manipulate. The information
base is a database but contains in addition:

a) Its own definition. The structural information can
be accessed via the PTI in the same way as any other
information.

b) Rules. These support not only the integrity
constraints of the basic data model, but also
user-defined rules which may, for example, be the
rules governing the use of a particular development
method.

c) Built in structures to support software engineering.
In keepin4 with the aim of integration, many of the
structures (for example version identification)
supporting development in the large are provided at
the information base level.

The database itself uses a standard architecture, the
ANSI/SPARC three level model. This has a conceptual level,
with below it an internal level and above it a set of
external views, each view presenting the dataoase to a tool
in the way required by that tool. The conceptual level uses
a standard data model, Codd's extended relational model
called RM/T. This is a very powerful combination for
providing the required extensibility and openness. The view
mechanism not only shields tools from' extension to the
conceptual model, but it is powerful enouVh to transform the
data to suit almost any tool. In particular the Open Tool
Interface is achieved by defining UNIX-like views of the
data.

4

} 4; L

The architecture of ASPECT is implemented on UNIX. In order

to run ASPECT on a distributed host we are taking advantage

of the Newcastle Connection, a powerful method of linking
UNIX systems so that they behave as a single UNIX. ASPECT is
building local and wide area networks of distributed UNIX
systems. At a level above this, we are developing metnods of
distributing the information base and, in particular,
supporting the logical distribution of the database between
separate but interdependent users.

The mmi of ASPECT is, like the information base, aimed at
providing a high level of functionality to tools and removing
from individual tools concern with the details of user
interaction. The mmi architecture has to achieve this across
a wide range of users, of devices, of tools, and of
interaction styles. At the same time the quality of
interaction on powerful workstations is paramount. ASPECT
handles this by defining levels of abstraction within the mmi
and providing components, with well defined interfaces, to
handle these abstractions. This is a major research topic in
the project.

in approaching the programming of distributed targets, ASPtCT
is again looking for general, powerful solutions. We are
studying methods for describing target architectures,
extending languages to support interprocess communication on
such targets, describing the placement of processes oni
processors and monitoring the operation of the target.

ASPECT STRATEGY AND THE ALVEY PROGRAMmE

ASPECT is an Alvey second generation IPSE, in tnat it is
clearly based on a database and is designed for a distributed
host. It is not, however, being designed from scratch but is
evolving from existing products and ideas. The main starting
points were Perspective (a SD environment product), UNIX, and
the Newcastle Connection. The initial release of ASPECT is
indeed an integration of these components plus an Add
compiler. Meanwhile research has been going on to explore
how to move forward from that base.

This research is now being brought together, with our
experience from the first release, to define ASPECT - in
particular its Public Tool Interface - in some detail. On
the basis of this definition, prototypes of ASPECT will be
produced and used as vehicles for research and furth~er
development. These prototypes will of course reuse as much
as possible both of the partners' existing products and of a
commercially available DBMS. The results of this work are,
in turn, being incorporated into partners' products on UNIX
and VAX VMS.

6ince much of the ASPECT project is concentrated on the
infrastructure, we look to other sources for many of the
tools which will run on ASPECT. Some of those tools will be
produced by the industrial partners, but ASPECT is also a
potential base for tools developed in other Alvey projects
and perhaps also other projects like ESPRIT's SPMMS. These
tools will use ASPECT most effectively if they exploit the
Public Tool Interface, and to aid this ASPECT will produce a
formal definition of its PTI using the notation Z, developed
at Oxford. Far more tools, of course, have been and will be
wr.itten simply for UNIX, and ASPECT will integrate these
tools through its Open Tool Interface.

SUMMlRY

Although ASPECT cannot, of course, address all the problems
of software development, it does address the major IPSE
requirements and is a prototype of the next generation of
IPSEs. In particular it supports the whole lifecycle by
providing a sound framework for tool integration; it can De
tailored to any method or collection of methods; it provides
computing power and a highly functional interface at the
disposal of the user and, by its physical distribution and
support for controlled sharing it is a powerful environment
for development in the large.

* UNIX is a trade mark of AT & T Bell Laboratories.

6

AD-pOo5 561

Three experimental multimedia workstations
-a realistic utopia for the office of tomorrow-

Helmut Balzert
Research Department

TRIUMPH-ADLER AG

Nuremberg, West Germany

Abstract

The office of the future needs different multimedia workstations
for different user groups. The architecture and the highlights of

our multimedia office environment are sketched. The manager
workstation has a completely new human-computer-interface: a
horizontal flat panel built into an office desk. On the flat
panel a touch-sensitive foil is used for input. Virtual keyboards
can be displayed on the flat panel if needed by the application.
A pencil with a built-in ultrasonic-transmitter is used as a
pointing and handwriting device. Our model of multimedia
interaction and communication is presented. A detailed
explanation of how the processing of office procedures is
implemented on our experimental workstations is given.

1. Introduction

In the past, only specialists were able to operate a computer.
Generally, a long training phase was necessary: the human had to
adapt to the computer. Now software and hardware technology is
ready to change the situation completely: The computer is able to
adapt to the human.

This ability is a necessary prerequisite for the office of the
future. The acceptance of new office systems depends on the
following conditions:
" Very short training phases
" Only little change in the current working style or

evolutionary change
" Consistent and uniform interface design
" Direct manipulation via alternative multimedia communication

channels
" Additional comfort

In the next chapter we will explain our
human-computer-communication concept. Some facts about office
activities are summarized in chapter 3. The architecture of our
multimedia office environment and the hardware highlights are

described in the subsequent chapter. Some important office
scenarios including our software highlights are sketched in
chapter 5. The last chapter contains a resumee and perspectives
on the future.

2

2. Human-computer-communication

In human-computer-communication two forms of communication can be
distinguished: explicit and implicit communication /Fisc 82/.

explicit communication channel

(NN"-

implicit communication channel

knowledge base with:
* knowledge of model of the partner
e knowledge of problem solving
* knowledge of special problem areas
e knowledge of communication processes

Fig. 1: Human-computer-communication model

In order to obtain optimal human-computer-communication the
explicit and the implicit communication-channel must be very
broad.

This article concentrates on the explicit communication channel.
Today the explicit communication channel is narrow:

narrow

Fig. 2: Narrow explicit communication channel

Normally the communication is reduced to input via a keyboard and
to output via a display. Modern systems like Xerox Star, Apple
Lisa & Macintosh improve the communication using full graphic
displays with icons and a mouse as a pointing device.

One way to improve the acceptance of new office systems is the
use of a broad multimedia explicit communication channel:

3

0 broad

Fig.3: Broad explicit communication channel

Todays software & hardware-technology is ready to realize such a
broad communication channel. This basically means that the user
has different communication techniques availabe for the input of
commands and information.

3. Office activities

Workstations in offices will, in addition to common applications,
support various office activities that are not specific to
particular types of workplaces. Examples of such activities are
computerized dialing, filtering information from incoming mail,
scheduling meetings etc. (see, e.g. /ElNu 80,').

The differences between different workplaces in offices should
not be neglected, however. A careful inspection . of present-day
office work reveals typical differences. Searching, e.g., is more
important for knowledge workers than it is for managers. On the
other hand, managers will spend more time dictating than clerks
or knowledge workers do. Writing will remain a typical activity
for secretaries.

Modern information technology certainly will change the office,
not only as far as the technology installed is concerned. There
will also definitely be a high impact on work structure and work
distribution. It would be going to far to address these questions
here. It shall be noted, however, that a trend to more flexible
structures, to an integration of different functions at a single
workplace seems to emerge.

This does not mean that, some day in the future, all office
workplaces will look alike. Differences in tasks and attitudes
will remain. The three different prototype workplaces that have
been developed at TRIUMPH-ADLER's basic research reflect this and
have been tailored to three different types of office workplaces:

- a manager's workplace
- a secretary's workplace
- a knowledge worker/clerk's workplace

Developing such workplaces and testing them in real office
environments will help to determine user needs and drawbacks that
can not be foreseen from a technological viewpoint. It enables

4

detelopers to arrive at solutions to office problems and not just
present sophisticated plecet of technology.

4. Architecture of a multimedia office environment

Fig. 4 presents the architectural concept of our environment.

Architecture of a
multimedia office environment

xxnsi srow curren meaming

sclan

Lrrie

keybaTO e lei o lunisoLkey

zi a~ ~ cl aLt 4

micvcpIpmn.9
,mage

Fig. 4:Multimdia ofice enironmt aciet

Do~~ni~ng oee s-ir pa

rig. 5, 6 and 7 give a visual impression of our existing
workstations.

Working stations for tomorrow:
secretary workstation

tuo miawed dismtay

eyord o cons
integraic microphnen

scannena~n ofit~e>~n toucn sdi eys

fotrCommuiin norato o ipc
procssin Copter.

sensitiveComuncaio

malb03 ma. ~ ~ keybad foreso bkdoroesu con

eeComne inato, Inoaia on Heuettmaewrd n -

eparoi eetsn omnllW koledg Couficat ion

statistics database Vondo s nte
pelssdocartion

mai' Otstrout-on
priniter arW Processing

Fig. 5: The experimental secretary workstation

Working stations for tomorrow:
manager workstation

ufira Sonic

flat grapnic 101 SitivO kai atl o pencil
characle's anld

Communication Information Human-

do~jWO kowW" Communication

rhailbox andai re'en PragOC*114n witeractoq,

&W M. eolc anva ihrq keyboarrd on

WI~imle WCation OWto kevwords eus

ba04Mgound ogrtlmon of

Fig. 6: The experimental manager workstation

.7

Working stations for tomorrow:
knowledge worker/clerk's workstation

Communication Inforination Human-
processing Computer-

docvfwm k-*"e Communication
646IT~UC 46Cf~fdr afting and ba~ed

rnal boa "%tall poess-i V41,00poessin9 O M

intaqvIlc retneva withi Muh1mgda
4640ni" wm ucton Cho vott tmtefamion

lorms cr~afts domnain speciic m"Unipie taSk
lehes dtabase windOw ssemy

Fig. 7: The experimental knowledge worker / clerk workstation

The hardware highlights of the three workstations:

The secretary workstation:

An ergonomic keyboard with two separated blocks of keys is used

8

for text input. A LCD-display was placed above the free
programmable function keys. It displays the current meaning of
the function keys, using icons.

A touch-sensitive foil is fixed to the left and to the right of
the keyboard. Each touch-sensitive foil is used as a pointing
device like a "static mouse". We want ascertain if it is useful
to have a pointing device both on the left and on the right side.
It is possible to use the foils with different scales: a movement
across the foil implies a movement of the cursor across the whole
screen with one of the foils. Using the other foil. only a
smaller part of the screen is passed with the same movement.
Thus, "global" movements of the cursor over longer distances are
carried out easily as well as "local" movements, i.e. very fine
and precise pointing operations. To some extent, this may be
regarded as a zooming effect. Sustantial results are not
available yet as our experiments have just started.

Another advantage of such a foil, in comparison with a mouse, is
that it can be used much better as an input medium for graphics
and handwriting.

Also integrated in the keyboard is the telephone.

The manaoer workstation:

Because a manager normally does not type a lot of text or
information he does not need a traditional keyboard. In addition
a lot of managers are not willing to use a keyboard.

We have therefore developed a completely new
human-computer-interface: a horizontal flat panel (in our case a
plasma display) is built into an office desk. Above the flat
panel lies a tranparent, touch-sensitive foil, which can be used
as an input device for the virtual keyboards that can be
displayed on the flat panel, according to the application. The
second input medium is a pencil with a built-in ultrasonic
transmitter. In one mode it can be used as a pointing device.
Each time the pencil is pressed on the screen, an ultrasonic
impuls is transmitted. Two small microphones receive the impuls.
A processor computes the position of the pencil with a tolerance
of 1/10 mm.

In a stream mode, the transmitter sends more than 100 impulses
per second. In this mode, it is possible to do handwriting with
the pencil on the flat panel. The handwritten text or graphics
will be echoed on the flat panel in real-time.

A graphic tablet in the manager desk allows the recognition of
handwritten block letters. It also can be used as an input medium
for graphics.

The knowledge worker-/ clerk workstation:

9

Analog to the other workstations, this workstation is equipped
with an integrated telephone, a microphone and a loudspeaker. The
keyboard is connected with a touch-sensitive foil as a pointing
and graphics input device.

5. Scenarios of office procedures

Scenario 1: Processing of incomming paper mail

Even in the office of tomorrow not all communication partners
will have an electronic mailbox. Therefore a part of the incoming
mail will be paper mail.

In our office architecture, incoming paper mail wiMl not go
further than the secretariate and / or the mail department.

A scanner transforms paper mail into electronic mail. Today we
use a text scanner which recognizes type-written characters and
can differentiate between different type sets. In future, we
expect scanners which can process mixed modes: graphics will be
transfered bit by bit, type-written text and printed text will be
recognized.
This transformed paper mail will be processed by an expert
system. It tries to locate the sender, the addressee. the date,
the subject and the type-written signature, if it exists.

If the sender and the addressee can be recognized in the letter,
the expert system then searches automatically in the archives,
belonging either to workplace, the department or to the whole
company, to verify whether the addressee and the sender are
known.

If yes, the expert system sends the letter via electronic mail in
the addressees mailbox. The secretary will not even notice this
process, let alone play a part in it.

In the other case, the secretary gets the letters and documents
in her mailbox to do a manual preprocessing.

Incoming electronic mail which is not transfered directly to the
mail box of the target receiver, is treated in the same way.

Scenario 2: Preclassification, filtering and presentation of
incoming mail

Before incoming mail reaches the mailbox of the office worker it
will be preclassified by an expert system. If the mail did not
come via the secretary's workstation to the mailbox, then a
preprocessing analog scenario I takes place first.

The expert system searches in the personal archives of the office

worker to look up all key words which the receiver uses to

/ (.

10

classify his letters and documents. Then these key words will be
looked for in the incoming mail and will be marked (through
inverse video .

Each office worker may give prioritys to keywords and may also
restrict these priorities to a certain duration or specific time
intervals. In case the incoming documents contain one or more of

these priority keywords and, if they exist, obeys the
corresponding time restriction, this document will be displayed
in a special representation form like inverse video, e.g., or is
aunounced by a loudspeaker, etc.

The opposite is also possible: to determine senders or
organizational units whose mail will be rejected. This mail will
be sent back to the sender automatically or will be deleted.

This feature is one means of coping with the increasing flood of
incoming information that is likely to be a result of widespread
electronic information exchange. It will become very easy to send
out more and more mail or electronic copies to more and more
people. Our aproach represents a step towards a flexible and
individual solution.

The implementation of our developed expert system is described in
iWoehl 84..

Scenario 3: Processing of mail

If an office worker looks into his mail box, the, mail will
normally be displayed in form of so-called miniatures. Miniatures

are document icons and show the document considerably reduced in
size. Its line and paragraph structure are visible, but not
legible, the user gets a small visual image of his mail (fig. 8).

m,,,m~,---h - _ -

m_ ,- -mm,

Fig. B: Document miniatures

This approach helps in choosing documents, since it takes
advantage of the excellent visual recogni'on capabilities of
humans. Of course, the user is free to change the presentation of
the mail to his needs and personal wishes.

The user chooses a document from his mail that .)e wants to read

by pointing to it. The complete document is then displayed on the

II

screen. The first thing he might do is change the keywords chosen
by the pre-classification system. He can then file it, send it to
somebody else or start with appropriate tasks. He might, e.g.,
put some remarks on the letter using hand-writing or speech and
design an answer, send the letter and the concept of the answer
to a colleague or a senior executive.

Scenario 4: Remote access to mail

One of the problems which business people who travel frequently
fNce is the access to their mail. It is not too difficult to
develop systems that allow one to listen to speech mail that has
come in during the day in the evening via the telephone. In
addition to this, the technology of full-synthesis speech will

provide the same opportunities for typed mail. The system will
read these messages aloud. Of course, the user will be able to
give comments on the various messages for his staff.

Scenario 5: Writing and sendina letters

Designing a letter traditionally is done on paper or using a
dictation machine. New technology allows for new possibilities.
Handwriting still is possible. It is not done on paper, however,
it takes place directly on the screen, using techniques as
described above. This manuscript is then transferred to the
secretary electronically. It can be seen in one window of the
screen, while the secretary prepares the typed version in a
second window. The tvped letter is then sent back and signed by
the corresponding person, who, of course, again uses handwriting.
The letter then is ready for mailing. If the receiver can be
reached electronically, this means is used. Otherwise, the text

is printed out on a non-impact printer and mailed.

Letters for inhouse-use that do not have to be typed can be sent
even more conveniently. The writer of the letter specifies the
intended receiver and, if necessary, his address in block
letters. Thus both the text of the message and the intended
adresss are handwritten. The underlying system is able to
recognize the information on the adressee. A mere push on a
"mail" key then is enough to transmit the mail to the intended

receiver.

Scenario 6: Using the telephone

When using a telephone, people are interested in talking to
people, not in dialing numbers. In modern office systems, the
system will keep the list of telephone numbers and hill also do
the dialing. The user only has to specify to whom he wants to
talk and let the system do the rest. According to the principle
of multimedia communication he can do this in various ways: type
the name of the person, point to the name in the telephone list
or just tell it to the system via the microphone. The user will
not have to pick up the receiver during the dialing process. When
the person called picks up the receiver, his voice is heard

~I1

through a loudspeaker, and this is when the person calling picks
up his eceiver.

6. Conclusions and outlook

- Tomorrows office will be multimedia: both multimedia documents
and multimedia human-computer-communication

Systems will be more flexible and adapt to specific user needs
and habits

The user will be freed from the burden of knowing locations,
numbers. etc. he says what he wants - and lets the system take

care of hIow to do the job

Knowledge-based systems will extend the use of mooern
technology from supporting routine-tasks to supporting more
complex and sophisticated tasks

- With the integration of features like handwriting in
electronic systems, office systems of tomorrow will be able to
cope much better with office tasks, procedures and habits -

thuE leading from partial to complete solutions

Modern desks will on the outside look more and more like those
of the pre-electronic age. Horizontal displays will make
traditional terminals disappear. The modern office desk will
look similar to the desk of the 19th century clerk. The
electronlc inside, however, provides help and services the
latter could not even have dreamt of.

Acknowledgements

I would like to express my appreciation the members of the
research department of TRIUMPH-ADLER for their participation
in the work described in this paper. I am particularly
indebted to my colleagues A.Fauser and R.Lutze for their
contributions and discussions.

Literature

/EGLT 78/ Engel/'Grappusz.'Lowenstein,'Traub
An Office Communication System
IBM Systems Journal 18 (1979), pp.402-431

/EiNu 80/ Ellis, C./Nutt, G.
ACM Computing Surveys 12 (1980,, p.27-60

/Fisc 82/ Fischer, G.
Mensch-Maschine-Kommunikation (MMK): Theorien und

Systeme
Habilitationsschrift Universitaet Stuttgart, 1983

/MSIS 83/ Mokawa/Sakamura/Ishikava/Shimizu
Multimedia Machine

13

IAP 83, pp.71-77
'OtPe 83/ Otway, H./Peltu, M. (eds.)

New Office Technology. Human and Organizational
Aspects
Frances Pinter Publ., London

.!UFB 79/ Uhlig/Farber/Bair
The Office of the Future
North-Holland

/Woehl 84/ Automatic classification of Office Documents By
Couplinq Relational Data Bases and PROLOG Expert
Systems
Proc. 2nd Conference on VLDB, Singapore, 1984

Adress:

Dr. Helmut Balzert
RIUMPH-ADL[R AC

%uernberger Str. 1,9

D-8',10 Fuerth
West-German-

I'

17 Working stations for tomorrow:
knowledge worker/clerk's workstation

bit mapped display

integrated elepone nsitiv 1

Communication Information Human-
processing Computer-

w kCommunication
eectronc eloctroni drafting and based
mail box Mail p r s

integrated interoffice r efre wA mufimediaiomiw dii in
forms. cha. domain P nsar ntletask
letters database "idw eU... i

__ _ ,..,,dl.._.2 I2 I II

Working stations for tomorrow:
secretary workstation

bt mapped display

integratedl icophone

scanner with telephone touch-sensitive
font recogrution , foil non impact

printer

sensitive
foil ergonomic LCD-display

keyboard for icons
(to show current
meaning of function keys)

Communication Information Human-
processing Computer-

elctronic electroic document input knowledge Communication
mailbox mail and processing based preprocessing iconsMEW.
integrated interoffice retrieval with multimedia
telephone communication diary respect to keywords interactn

Eu Iii,.
personel office multiple task
statistics database window system

preclassification
input

E

pnnter and pr~sngu.p-

Working stations for tomorrow:
manager workstation

ultra sonicS.receiver microphone tablt

(for(for recogniion
flat graphic touch-sensitive calization) pencil of handwritten
screenl soipeaker characters and__ -- '~ graphic input)

Communication Information Human-
processing Computer-
document knowledge Communication

electronic electronic drafting based mufti media
mailbox mail and revision preprocessing interaction

ieg interoffice retneval with respect keyboard on
telephone owrnmunication diary I ke

background recognition of
statistics Wiformation handwritten charactersU,,.i

E..--. ...,mmmmm ea d l m lII ii

AD-P005 562

FORMAL METHODS: PRESENT AND FUTURE

*m I Jackson

Praxis Systems plc
20 Manvers Street

Bath BAI IPX

United Kingdom

1 Introduction

It is widely accepted that industrial software production has a number
of associated difficulties and problems. These include the following:

The proportion of system costs due to software has increased
dramatically over the last 20 years and is continuing to do so.
This poses major problems for technical management who are
frequently qualified and experienced in more traditional
engineering disciplines.

A major skill shortage exists in software and is expected to
continue to increase, (for example, it has been estimated by the
US DoD that the USA is currently short of 200,000 programmers and
will be short of I million by 1990).

The quality of delivered software is frequently inadequate in
performance and reliability. For example, a US army study showed
that for a 2 million dollar budget, less than 2% 6f the software
was used as delivered.

Software projects are subject to frequent cost and timescale
over-runs. The causes are usually inadequate engineering methods
to handle the complexity of systems and inadequate project
management techniques.

The discipline of software engineering is in its infancy. There is
at present relatively little underlying theory or generally
accepted good practice on which to base an/ engineering approach.
As a consequence, software systems tend to be 'crafted' rather than
engineered.

These (and related) problems have by now received world-wide recogni-
tion. A number of major initiatives have consequently been instituted
to address these issues, for example, the Alvey Software Engineering
programme and the ESPRIT Software Technology programme.

*previously with: Standard Telecommunication Laboratories Limited

London Road, Harlow, Essex CMI7 9NA, United Kingdom

SXEAAX

From an industrial point of view, it is clear that the following global

objectives should be addressed:

Increased productivity in software production (to address skill
shortages)

Higher quality in software products, eg improved reliability,
performance and adaptability.

More effective use of human and machine resources, eg by automating
routine tasks as far as possible thus allowing highly skilled and

scarce staff to concentrate on intellectual tasks.

These objectives need to be addressed by developments in a number of

areas. The remainder of this paper will concentrate on one area in

particular - formal methods.

2 Formal Methods

The introduction of formal methods of system development is seen as a
major step towards improving the software engineering process. Formal

methods are rigorous engineering practices based on mathematically
formal foundations. Unlike most of the present day approaches in
widespread use, formal methods provide the means of expressing system
designs concisely and unambiguously and in such a way that the
behavioural aspects of systems can be explored through formal logical

manipulation.

The Alvey Software Engineering Directorate has established a major

programme in the formal methods area (ALV84). This programme emphasises
three areas of activity: the rapid exploitation of mature 4,)rmal
methods, the industrialisation of promising methods so that they can be
exploited in the near future, and fundamental research to provide more

powerful methods in the longer term.

The Alvey formal methods programme foresees a significant number of
benefits arising from the introdtiction of formal methods. Most
significantly, they are seen as providing the scientific basis
underlying software constL-uction. They will allow at least the level of

confidence in software designs as in other more established branches of
engineering, and will be the key to the certification of software in
safety-critical applications. Formal specifications are seen as
particularly important for providing a firm contractual basis for the
interaction between the supplier of, and the client for, a piece of
software. They also provide a natural basis for rigorous interface
descriptions thus simplifying the problem of reusing software
components. Finally, the use of formal methods early in the life cycle

should uncover many specification and design errors which otherwise
might not have been detected until system test and operation when their

repair would be very (if not prohibitively) expensive.

SXEAAX

L- c

The Alvey programme characterises a mature method as having the
following attributes:

Books, technical reports and journal articles are widely available
and accessible to all sections of the community.

Training programmes have been developed and given field trials in
industrial contexts.

Industrial case studies have been conducted and the results

published. Evaluations of these case studies have also been
conducted and published.

The method has had some, perhaps small scale, production experience
in industry.

Some useful tool support, possibly of an experimental nature,
should exist.

The major strengths and weaknesses of the method are reasonably
understood.

These characteristics are rather demanding, but they are the essential
minimum that must be achieved before a method can be successfully
introduced into an industrial environment. They indicate the
significant level of effort that must be devoted to 'industrialising'
promising ideas from the research community before they can be
assimilated by industry. Currently very little effort is applied to
this task, which is one of the major reasons for the gulf between theory
and practice. Even if a method is deemed mature according to the
criteria given above, much more experience will be required before it
achieves widespread adoption in industry.

3 STC Experience of VDM

Standard Telecommunication Laboratories, the central research laboratory

of STC, has been conducting research into formal approaches to system
development since 1979. In 1982, a major new project in the office
systems area requested advice on formal specification methods. Of the
methods under consideration at the time, one in particular, the Vienna
Development Method (VDM) was recommended for consideration.

VDM originated in the Vienna Research Laboratories of IBM and is most
closely associated with D Bjorner and C B Jones. The reasons for
its recommendation were largely pragmatic, for example:

Considerable user experience of the method already existed within
organisations such as IBM and the Danish Datamatik Center. A
number of case studies have been published, for example in the book
by Bjorner and Jones [BJ082]. The strengths and weaknesses of the
method are well understood.

SXE AAX

.... ,.,.hm~m.I__> 3 -

Training and consultancy in the method were available. Professor C
B Jones, now of Manchester University, was willing to present an
established 2 week course to the project team and to provide
continual support through consultancy.

A well-written and accessible text book produced by Professor Jones
was available to support the course material.

In the summer of 1982 an evaluation exercise was conducted in order to
assess the suitability of VDM as a specification vehicle for the
proposed project. This exercise was organised as follows:

A subsystem of the project was chosen as the case stuoy to be used.

A small group of analysts, having no previous familiarity with
formal methods, were selected and introduced to VDM.

Two STL staff members were asked to support the analysts as
consultants (alongside Professor Jones).

An observer, independent of the analysts and consultants, was
appointed to identify assessment criteria before commencement of
the evaluation, to observe the conduct of the exercise, to write
the evaluation report and to produce recommendations to management.

The chief system designer was involved from time to time to answer
questions regarding the requirements and to play the role of
$customer'.

The evaluation exercise took as its input an English language statement
of requirements. Its outputs were the corresponding VDM specification,
the evaluation report and recommendations for VDM.

In the light of this exercise, STC decided to adopt VDM for the project,
and set in hand work in the areas of training, standards and support
tools. The method was subsequently adopted for other internal
projects.

The experience of VDM can be summarised as follows:

!he identification of abstract data structures in the formal
specification aids conceptualisation of the eventual product and
supports the optimal choice of operations and functions for the

eventual users of the system. The iterative evaluation of the
specification against user requirements assists dialogue with the
customer and continues until a version accept&ble to the customer
is produced.

The VDM specification language provides a number of useful thinking
tools which allow the analysts to distinguish more easily between
WHAT the system would do and HOW it should do it. The analyst is

also forced to consider many more aspects of the requirements than
with previous (non-formal) analysis techniques.

SXE AAX

The precision of the specification language reveals many previously
unrealised anomalies and inadequacies in the informal statement of
requirements. Rigorous reasoning about the specification improves
confidence in its adequacy. An improved natural language
requirements specification can be produced based upon the formal
specification.

As a result of growing interest in VDIH within the company, a programme
.of training courses was developed. These comprise:

A Perspective on VDM. This is a 3 day course aimed at project
managers, team leaders, consultants and support staff from areas
such as quality assurance, technical documentation or marketing and
who require a sound understanding of VDM. It provides a broad view
of formal methods, the ability to read and review VDM specifica-
tions, and advice on the introduction of VDM into a project.

VDM Foundation Course. This is a 10-day intensive course for
technical staff wishing to produce system specifications written in
VDM and for those needing to design systems to satisfy VDM
specifications. Students completing the course should be able to
read and write VDM specifications, demonstrate that a specification
meets a requirement and demonstrate that a design meets a specifica-
tion.

These courses are now offered to the public by STC which operates a
commercial software and training service.

Various language development activities for VDM have also been conducted
in STC. In the short term, it was recognised that there was an
immediate need for facilities to allow the specification process to be
carried out 'in the large' and for designs to be documented alongside
the specifications that they implement. STC consequently undertook the
design of an extended design language which included a module construct
and a design pseudocode besides the essential components of the VDM
specification language. (This work is heavily influenced by work
undertaken at IBM's Boblingen laboratory on the SLAN-4 language [BEI83].
This language is supported by a UNIX-based syntax checker.

In the longer term, it was recognised that in order to extend the VDM
specification language in a coherent way, and in order to build more
powerful automated support tools, it would be necessary to improve the
standard of definition of the existing specification language.
Consequently, a joint activity was started by STL and Manchester
University to define for STC a VDM Reference Language to be used as the
STC standard. To date, documents describing the concrete syntax,
abstract syntax, type model and context conditions of the Reference
language have been issed and further work on semantics is underway. In
addition, it is intended to develop a more extensive support toolset
around the Reference language, and a UK Alvey project has recently
commenced for this purpose. Recently, work has begun to develop a UK
Standard Definition of the Reference Language based on the work carried
out in STC.

SXEAAX

In conclusion then, the STC experience indicates that, as a method for
formal specification, VIDH can be successfully introduced, if appropriate
levels of investment are made in the areas of:

Evaluation, by case studies, of the suitability of the method for
the application area of interest. The evaluation criteria should
be properly defined, monitored and assessed.

Training for staff, of a professional quality.

Consultancy, as appropriate to particular needs, by skilled and
experienced personnel.

General support, for example, by developing and implementing
corporate standards.

In the longer term, support tools, such as a specification-oriented
database and a syntax-directed structure editor.

For more information on VDM, readers are referred to the book by C B
Jones [JON80]. Readers requiring further details of STC's experiences
with VDM are referred to a recent paper [JAC85].

4 Formal Methods in the Life Cycle

There are many ways of viewing the software life cycle, the best-known
being the standard 'Waterfall' method. In the alternative 'Contractual'
view of the life cycle, each phase is regarded as involving two parties,
one fulfilling a 'customer' role, the other fulfilling a 'supplier'
role. So, for example, at the requirements specification phase, the
customer role will be filled by the real customer for the system, while
the supplier will be the analyst whose function is to supply the formal
specification. The customer will provide an initial informally worded
requirements statement and the analyst will produce a first attempt at a
formal specification which he first verifies for internal consistency
and completeness. (In effect he asks (Is this a specification of some
system even if it is not quite what the customer wants?').

Having produced this first attempt, he must then demonstrate the effects
of the specification to the customer. It is obviously unreasonable to
expect the average client to be able to read the formal notation
directly, though there are classes of (more sophisticated) customer
where this does not apply. In general the analyst will use a process
known as 'animation' to demonstrate the effects and consequences of the
specification. This might involve a symbolic execution technique, for
example, by moving tokens around a Petri net, or might involve the
interpretation of behaviour derivable by theorems from the formal
specification in the client's domain of knowledge. Inevitably, the
first specification will not match the customer's precise requirement so
further iterations of this process will be necessary. Eventually, a
specification will be produced to which the customer agrees and this can
be forwarded to the design stage (of course, problems may be discovered
later which cause the requirements to be reconsidered).

SXEAAX

In the design phase, the analyst becomes the 'customer' and the designer
'supplier' with the responsibility for producing a design which is
consistent with the specification. Once again, the processes of
verification and validation are iterated until an acceptable design is
produced.

These contractual relationships can continue through however many design
and implementation phases as are necessary.

The contractual model presents a somewhat idealised view of software
development, but is useful as a basis for examining how formal methods
might be used. There is general agreement that formal methods should be
used initially at the specification phase since the greatest cost
savings will be made by locating specification errors early. At the
design and implementation phases, the degree of formality used would
probably be less, since, except in the case of very critical projects,
the costs would probably outweigh the benefits. In most cases, a
rigorous approach to design would be more acceptable, with the
verification and validation techniques being more informal and
traditional in flavour. Testing strategy could, perhaps, be based upon
the formal specification. Post-developmental phases, such as
maintenance or enhancement, would be considerably assisted if formal
specification were kept in the project database since the implications
of proposed changes could be more easily assessed.

Training and education are areas which require attention. It must be
emphasised that the introduction of more formal methodologies does not
reduce the skills needed to develop software. On the contrary, the
newer methods require a different set of skills to traditional
programming activities. Higher standards of education and professiona-
lism are required. Courses must be developed (some already exist for
the established methods) to provide analysts and designers with the
necessary skills in particular methods. Managers, too, need training to
manage reviews and monitor progress of projects using formal
methodologies. Educational courses must be provided to give the
necessary background in discrete mathematics which many experienced
practitioners lack (though the relevant material is gradually being
included in many undergraduate computer science courses).

5 Automated Support for Formal Methods

The most basic type of support tool is one that supports syntax and type
checking. For any well-defined specification language a syntax and type
checker can often be provided using standard parser generators. Coupled
with a reasonable file or database system, such a'tool would provide an
invaluable aid to the system specifier and should be relatively cheap to
provide. Other syntax-oriented tools include syntax-directed editors,
pretty printers etc.

A more sohpisticated type of tool would support symbolic execution of
specifications and designs. The difficulty of building such tools
depends to some extent on the formal method being supported, but clearly
such an aid would be most useful as a validation and animation tool.

SXEAAX

Validation would also be supported by theorem proving aids which support
formal verification of specifications and transformations during the
various phases of design. Recently, there has been a trend away from
large theorem provers which consume large amounts of computing resources
to interactive systems which assist the human in carrying out a proof.
Related is the work on automated program transformation which promises
to assist the designer in producing correct implementations with regards
to the specification.

The underlying support environment cannot be ignored. Developments such
as the Ada APSE or the European PCTE promise such as the central
database will be provided. if a proper database were provided, it
should be possible to build libraries of reusable software components
each having a formal specification. By composing specifications of
existing parts, and by integrating them with the specifications of new
parts, it should be possible to demonstrate that a larger system
specification could be met. Thus, system development might become a
more bottom-up activity with greater reuse of previous work than is
possible at present.

Prototype versions of most of the tools mentioned above are already
available, at least in research environments. It is reasonable to
expect that production quality versions will appear over the next few
years.

6 Conclusions

The next few years will witness an increasing use of formal development
methodologies as users become more sophisticated and attempt to detect
errors in the specification and design phases of the life cycle. Formal
methods are already worthy of serious consideration as a specification
aid and a rigorous design framework has also been shown to be highly
practicable. The results of major research projects established under
programmes such as Alvey and ESPRIT, will lead to more extensive and
adaptable methods for future use, with a greater level of automated
support.

Readers wishing to obtain a more detailed view of the current state of
various approaches to formal methods are referred to the comprehensive
survey by Cohen et al [COH 86).

SXEAAX

I \C

7 References

!ALV841 Alvey Programme Software Engineering
Programme for Formal Methods in System Development
Alvey Directorate, April 1984

[BE183] Beichter, F, Herzog, 0, Petzsch, H
SLAN-4: A Language for the Specification and Design of
Large Software Systems
IBM Journal of Research and Development, Vol 27, No 6,
November 1983

[BJ082] Bjorner, D, Jones, C B
Formal Specification and Software Development
Prentice Hall, 1982

[COH 861 Cohen B, Harwood, W T, Jackson, M I
The Specification of Complex Systems
Addison Wesley, 1986

[JAC85] Jackson, M 1, Denvir, B T, Shaw, R C
Experience of Introducing the Vienna Development Method
into an Industrial Organisation
Procs. Int. Conf. on Theory and Practice of Software
Development (TAPSOFT), Berlin, March 1985. Published as
Springer Verlaag LNCS 196

[JON80] Jones, C B
Software Development - a Rigorous Approach
Prentice Hall, 1980

SXEAAX

w'I L

AD-P005 563

A Retargetable Debugger

for the Karlsruhe Ada System

Author s;: .eter Denc~er
hans-Stephan W'ans c L

-7=v- a o.n: _.C

Date: 0 4 Ma -E5
source: d bS :doc :redebuq, max
r. e;.":

Z Ada i r eg ee ta E!

* Ada is a regzistered trademark of the U.S. Government (AJPC)

Table of Contents

1.0 :ntroduction . 2

i. Post Mortem Dump Analyzer 3

Online Debugger 3

2.0 Requirements on the Debugging System 4

2A. Aalyzer -apabilities. 5

.n:era_:::r. Capabili:ies 5

3. : ispectinc :he ?rogram State 6

"e:rieivlng Source Statemer.: :nformation -.....

3.2 Determinina the Dynamic Calling Hierarchy 9

3 A:cessinc C-jects i1

.ocatina Obects 1

2R3.2 Representation of 'bjects

33.3 Constralnt information 14

4.0 Debugger interactions 14

5.0 Conclusion and Prospects 15

5.1 Outlook 16

: -- - . ~ kJm m-

A Retargetable Debugger Page 2

1.0 Introduction

During the development phase of a program and - as well -
during the maintenance phase it is very important that
programming errors can be quickly located and removed from the
program. Therefore a programming environment should very well
support the analysis and location of errors. An appropriate
means is an interactive debugging tool. The purpose of the
debugging system described in this paper is to support the
analysis of programs translated by the Karlsruhe Ada Compiler.

however, the Karisruhe Ada Compiler is easy to retarget and
easy to rehost. Several versions are already available
(VAX,,VMS, SIMMEN"BS2000, and S:- _NS/BS2000-MC68000 Cross
compiler), several others are planned kNixdorf 8890/VM/ESX,
Ferk£n Elmer 3203/0S32, and VAX/VM S-LRi432 Cross compiler .
Therefore it is very important that the debugging system is
equally well retargetable and rehostable.

'he scpe of a certain version of the debuager are a!.
programs {including tasking and real-time applications;
translated by the corresponding version of the Karlsruhe Ada
Compiler. This implies tha: for each version of the Karlsruhe
Ada Compiler a corresponding version of the debugger .s
available.

The compiled Ada programs under test may either run in the
environment of the host system, which contains the compiler,
the grogram library, and the debugger or they may run on some
target system (including embedded system) with more or less
restricted communication channels to the host system.

The debugging system will be developed in two major stages:

(1) post mortem dump analyzer

(2) online debugger

The first stage, the post mortem dump &nalyzer, is partially
implemented. The other will be implemented within the next
year.

This paper is organized as follows. The concept of post
mortem dump analyzing and online debugging are explained in the

A Retargetable Debugger Page 3

next two Sections. In Chapter 2 the general requirements and
capabilities of the debugger are listed to set up the debuggers
functional range. In Chapter 3 and 4 we show a debugger design
which suits the requirements and capabilities established in
Chapter 2.

1.1 Post Mortem Dumn Analyzer

The basic idea of a post mortem dump analyzer is that when the
program stops with an error, in Ada e.g. when the program =
abandoned because of an unhandled exception, the contents of
memory is saved on file, the dump file. Then the post mortem
dump analyzer examines this dump file and extracts information
valuable for the programmer in order to locate the programming
error. In this way, for instance, the values of variables and
parameters can be inquired. To this end the post mortem dump
analyzer needs information about the runtime organization and
information from the compiler and the linker/loader which is
stored in the program library.

1.2 Online Debuger

An online debugger has all capabilities of a post mortem dump
analyzer. The difference is that the debugger communicates
online with the program under test. If the program under test
is interrupted control is transferred to the debugger. It then
may examine the contents of the memory of the interrupted
program in the same way as the post mortem analyzer examines
the dump file. Afterwards execution of the program can be
resumed.

Additionally the online debugger allows the programmer to
change the state of the interrupted program (e.g. change the
values of variables) and to control the execution of the
program (e.g. by means of breakpoints).

A Retargetable Debugger Page 4

2.0 Requirements on the Debugging System

Besides the global requirement of retargetability we impose
several other general requirements on our debugging system.

(1) No recompilation must be necessary in order to run a
program under control of the debugging system. This
is important for transient errors in real-time
programs.

(2) The ability to debug a program shall not impose
overhead on the generated code. This means that the
program must not be specially instrumented for
debugging. This allows full debugging support even in
a production environment.

(3; The executable code and data shall lie at the same
memory locations regardless of whether the program is
debugged or not. This is necessary to avoid errors
which are due to placing the code at certain locations
in memory.

(4) The debugger must provide a source level user
interface. This means that all user interactions with
the debugger are in terms of the Ada program. In this
way, the programmer should have the impression that
his program is run on an Ada machine.

(5 Access to low level information shall also be possible
because Ada allows to interface the non Ada world
through the pragma INTRFACE, through machine code
insertions, and other low level features.
Nevertheless for most users and in most situations
this information is not needed to understand the state
and execution of an Ada program.

(6) The debugger must be applicable in a host-target
environment. It may e.g. run remote on the host
system as a post mortem dump analyzer, or as an online
debugger if an online communication channel exists
between host and target, or directly on the target if
the program library and sufficient resources are
available on the target.

These general requirements are supplemented by the capabilities
to analyze and interact with the program under test given in
the next two Sections.

A Retargetable Debugger Page 5

2.1 Analyzer CapabIlitles

(1) Inspection of the source code

(2) Inspection of the values of objects (variables,
constants, parameters). The values are displayed in a
form consistent with their representation in the
source. For instance a record is displayed as a named
aggregate. Access objects get a special format.

(3; inspection of the status of currently existing tasks.
- name and type of task
- state (executing, suspended, completed,...)
- point of execution (in the source,
- tasks with outstanding calls on all entries of each

task
- set of all open alternatives of select statements

per task

(4) Inspection of the stack of subprogram activations for
each task

(5) Navigation through the dynamic program structure (e.g.
walk back, task inspection). In parallel the visible
environment is changed.

2.2 Interaction Capabilities

(1) Placement of breakpoints at Ada statement and
declaration boundaries

(2) Assignment of actions to breakpoints whicn shall be

taken upon reaching a breakpoint

(3 Modification of data

(4) Interruptability of the program in execution by th-
user in order to inspect it at arbitrary moments

(5) Stepping through thte program in granularity :f
declarations, statements, calls, or task interact::nz

(6) Tracing of executed declarations, statements, :a .
or raised exceptions

(7) Assignment of breakpoints to certain :r a

-- 434 PROCEE::N,!: :F TH EUROPEAN :EM:NA. *iP4 IND:TR:A. 3 3
:)'FTWARIE EN-;INEEP.Im, 2 - s HTFIELD POLYTICHN:.:
tNGz.;r :: : :,L :F INFORMTION CE:

ED H BA --EFT ET AL la MAY 35-P, 12,1 ML

7- E

Lm
','

L3.

IJ.25
L 13 6

MICROCOPY RESOLUTION TEST CHART

.- i--
-- l i I 1 I I I I i II

I II I I I

i1

A Retargetable Debugger Page 6

exceptions

(8) Assignment of breakpoints to blocks under the
condition that they are left by an exception.

(9) Hold (all) task(s), release task

In the following Chapters we show the design of a debugger
for the Karlsruhe Ada System that satisfies these requirements.

3.0 Inspecting the Program State

Within this Chapter we assume that a program has been
interrupted in some program state. We show how the debugging
system can interpret this program state in order to answer the
inquiries of the programmer.

Since we do not want to impose overhead on the execution of
the program we do not collect information during its execution.
Hence, the current program state is the only information the
debugging system can access concerning the execution of the
program.

The debugging system can, however, consider further
information

(1) gathered by the compiler when compiling the individual
compilation units of the program in the program
library,

(2) from linking the program and

(3) about the runtime organization.

The runtime organization may very strongly depend on the
target machine. However, these implementation details can be
hidden behind a machine independent interface as long as we
consider the same compiler.

The debugging system must access this information and derive
from it a lot of data valuable for the programmer during the
analysis of a particular error situation. The debugging system
should work interactively to allow the inquiries of the

A Retargetable Debugger Page 7

programmer to depend on the results of earlier ones.

In the following we discuss in detail how the debugging
system can answer several characteristic questions concerning

(1) the currently executed source statement,

(2) the calling hierarchy and

(3) the values of objects.

3.1 Retrieving Source Statement Information

During debugging there is often a need to determine the
position in the source that corresponds to a given code address
or vice versa. For instance, the programmer may want to know
which source statement raised an unexpected exception or he may
want to interrupt the program when a certain position in the
source is reached.

Since we consider a language with separate compilation, a
position in the source is not uniquely defined by a source line
number. Instead, we need a pair where one component indicates
the compilation unit of the position. On the cther side, since
single statements may be distributed over several lines and
since several statements can be written on one line, source
line numbers are not appropriate for identifying the positions
of single statements.

In the Karlsruhe Ada System the individual compilation units
are stored in their Diana representations in the program
library. The Ada source can be retained from the Diana
representation of a compilation unit. Hence, it is suitable to
use references into the Diana representations for identifying
positions in the source.

For the following it not of interest how the positions in
the source are identified. He assume only that they can be
uniquoly identified. We call such an identifier a source
position.

A common technique for determining the source position of

IV)

A Retargetable Debugger Page 8

the currently executed statement is to use a variable (in the
runtime system) which always holds it. It is updated when the
current statement changes.

This method has three great disadvantages:

(1) The code size as well as the execution time of the
program are increased significantly (25-50%). This
fact causes most programmers to switch off the
generation of source statement information. So
debugging of the programs is not further possible
without recompilation.

(2) This method allows only to determine the position of
the current executed statement. By this way, the name
of the statement which e.g. called the subprogram
containing the current statement cannot be obtained
without storing it in the invocation frame. Further
it is not possible to determine the code address(es)
corresponding to a given position In the source (e.g.
for implanting breakpoints).

(3) For rather complex statements more detailed
information is needed for selecting the erroneous part
of the statement. This would, however, result in much
more overhead.

We propose another method which does not possess these,
disadvantages: The compiler builds tables which contain the
mapping of code addresses to source positions and stores them
in the program library. The debugging system interprets these
tables for determining the position in the source which
corresponds to a given code address. Since the relevant
addresses are (normally) available during the execution of the
program no additional code must be generated. For instance,
the program counter contains an address corresponding to the
currently executed statement, the return address is already
stored in the invocation frame for subprogram calls. Hence
there is no runtime overhead and the code size as well as the
execution time is not increased.

Now we discuss how the tables containing the mapping of the
code adresses to statement names are constructed. Since we
consider a language with separate compilation facilities the
compiler does only know the mapping of module relative code
addresses to source positions. Therefore for each compilation
unit one table is built containing the module relative

A Retargetable Debugger Page 9

information.

When linking the program, the linker computes the absolute
addresses of the code modules resulting from the individual
compilation units. These adresses together with the module
names are usually written on some file. Me call it the linker
listing.

Given a particular code address the debugging system looks
into the linker listing and determines to which code module it
belongs. In presence of code overlay additional information is
required from the program state in order to resolve the
resulting ambiguities. Then it computes the module relative
code address and obtains the corresponding source position by
inspecting the table built by the compiler for this module.

If a source position is given the code address(es)
corresponding to this source position can obviously be computed
in a similar manner.

We have implemented this method in the Karlsruhe Ada System.
By a simple compactification method we could reduce the size of
the compiler generated tables to about 20% of the size of the
generated code. So the size of these tables does not cause any
problems. It is even lcss than the increase in code size which
would result from the other approach.

3.2 Determining the Dynamic Calling Hierarchy

In order to analyze an error situation the programmer has to
inspect the source. The debugging system can support him by
selecting those parts of the source which are associated in
some way with the error situation. In the following we call a
position in the source together with the context of the current
program state a location. Starting from a location the
programmer can inspect the static environment directly in the
source.

However, this does not suffice. Additionally the programmer
is interested in how the program came to a certain location.
Especially, he wants to know the subprogram or entry calls
which led to this location.

'9'

A Retargetable Debugger Page 10

For Ada programs we therefore distinguish the following
locations indicating the dynamic context of the interrupted
program:

(1) Each currently existing task or the main program is
interrupted at some location. This location is called
the current location of the task or the main program.

(2) A location may lie within a subprogram. The location
where this subprogram was called, is referred to as
the calling location of it.

(3) A location may lie inside an accept statement. The
location of the corresponding entry call is the
current location of the task issuing the entry call.
Hence, it suffices to know this task. We call it the
calling task of it.

In order to be able to inspect each existing task the
debugging system must know them all. Since in Ada each task
depends on some master, all existing tasks can be enumerated if
for each master all tasks which depend on it are known.

This leads to the following definitions:

(1) The set of tasks which depend on library packages are
called library tasks.

(2) The set of tasks which depend on the main program or
on a task t or on a block or subprogram currently
executed by the main program or the task t are called
the dependent task of the main program or the task t.

The debugging system provides means for accessing these
tasks, their current locations, the current location of the
main program and the corresponding calling locations and
calling tasks.

By this way, the programmer can get a complete overview of
the current program state. Since the program structure can be
very complex we introduce for convenience the notion of the
actual location, i.e. the location actually inspected by the
programmer. The debugginq system provides operations for
inspecting the actual location and for moving to another
location thus making this location to the actual one. The
static context of the actual location can be inspected

A Retargetable Debugger Page 11

directly. This applies to the inspection of objects discussed
in the next Section as well.

For implementing these operations the debugging system needs
detailed knowledge of the runtime organization, especially of
the tasking implementation. Therefore the implementation of

* these operations does strongly depend on the target machine.
However, since we consider always the same compiler, these
machine dependent parts can be hidden behind machine
independent interfaces. By this way, the debugging system
remains portable.

3.3 Accessina Oblects

The possibility to inspect values of objects means great
support for analyzing error situations. When, for instance,
the program was abandoned with CONSTRAINT_ERROR because of a
subranqe violation the question concerning the relationship
between a value and the subrange bounds arises. This example
shows that accessing an object must also include the
possibility to inquire certain attributes of the object or of
its type, e.g. its constraints, if any.

The debugging system must solve three totally different
problems when it allows the programmer to access the value of
objects:

(1) The programmer will, of course, enter the name of an
object in terms of the source language. The debugging
system must then identify the object denoted by the
name and find out where this object is currently
stored. We refer to this place as the address of the
object.

(2) The value of an object is represented by some bit
string stored at its address. The debugging system
must be able to interpret this bit string as a value
of the type of the object.

(3) If the object is constraine4, the debugging system
must be able to access the values of these
constraints. For instance, for an array, the lower
and upper bounds of all dimensions must be accessible.
This also applies to other attributes of the object or
its type.

.../, -LV3 mnmm m•m

A Retargetable Debugger Page 12

These three items are discussed in detail in the subsequent
paragraphs.

3.3.1 Locating Oblects

In order to ease the navigation through the current program
state we introduced in Section 3.2 the notion of the actual
location. We define here in terms of the source language which
objects are accessible to the programmer in the actual
location. So, by moving through the program (as described in
Section 3.2) all objects existing in the program can be made
accessible.

An object or package which is visible at a location or which
could be made visible there by qualification is accessible at
this location. Additionally, all library packages and all
objects or packages which are declared in packages accessible
at this location and their bodies are accessible at this
location as well.

By this way the programmer may access (beside the objects
visible at the actual location) objects which are hidden by an
inner declaration and objects declared within the bodies of
visible packages.

It seems necessary to allow the programmer to inspect the
implementation details of packages during debugging although
this violates the information hiding principle of the language.
Perhaps it would be more appropriate to establish a protection
mechanism which allows only the implementor or maintainer of a
package itself to inspect its body. This could be achieved
e.g. by the debugging system asking the programmer to enter
the appropriate password when he wants to access hidden
information or by hiding the information from the program
library in general.

The locating of objects works in several steps:

(1) The name entered by the programmer is analyzed whether
it denotes an accessible object. Ambiguities in
naming caused by the source language, e.g. by
overloading or hiding, must be resolved during this
step.

A Retargetable Debugger Page 13

(2) The definition of the object in the Diana
representation of the program is searched.

(3) The program library is accessed in order to obtain
addressing information for this object. This results
in a pair consisting of the name of a frame and the
offset of the object within this frame.

(4) To compute the address of the frame further
information must be retrieved:

- If the frame is allocated statically, its address
can be obtained from the linker listing.

- If the frame corresponds to the invocation frame of
a subprogram or a block, its address can be obtained
from memory of the interrupted program: the display
vector or the static links must be inspected.

- Otherwise, the frame address is stored in a pointer
object. The address of this object is computed in
the same manner.

(5) Finally, the address of the frame and the offset of
the object are added. So, the address of the object
is obtained.

3.3.2 Representation of Obiects

After an object has been located the debugging system must be
able to interpret the bit string stored at its address as a
value of the type of the object. For this purpose the
debugging system must know the representation the compiler has
chosen for this object.

Since the representation of objects is fixed by the type
mapping module of each compiler individually fitting to its own
runtime organization, we have here again the situation that the
debugging system depends strongly on the compiler, but not so
strongly on the particular target machine.

Some characteristic data about the representation of objects
are stored in Diana, but this information does not completely
describe the representation. For instance, for integer objects
the debugging system must additionally know whether the numbers
are stored as binary numbers or as binary coded decimals,
whether a sign bit is present, whether negative numbers are
stored as one's or two's complement, etc.

A Retargetable Debugger Page 14

This shows again that the debugging system must access the
program library to get complete information. Additionally some
target machine dependent issues must be considered which may be
hidden behind a machine independent interface.

3.3.3 Constraint Information

Constraints may but need not be static in Ada. Hence, for some
constraints additional objects must be introduced which hold
their values. The information which object holds which
constraint is stored in the program library and must be
inspected by the debugging system. Once the objects holding
the constraints are known, Paragraphs 3.3.1 and 3.3.2 apply.

For the values of other attributes of the object or its type
similar remarks apply.

4.0 Debugger Interactions

In this Chapter we discuss the implications of the interaction
capabilities for the debugger-compiler interface.

The debugger is conceptually a (monitor) task with its own
stack. If it runs as a post mortem dump analyzer no
interaction between debugger and program under test is
necessary except for the generation of a dump (file) on the
programs side and the identification of that dump on the
debuggers side. If the debugger is on line with the program
under test different possibilities for its implementation are
seen.

(1) The debugger is loaded together with the program under
test getting its own memory in the address space of
the program under test.

(2) The debugger runs in a different address space
(parallel task with message passing).

The latter possibility has been chosen because it allows to
handle host-target debugging in the same manner as host-host
debugging. In the former case the debugger runs as a task on
the host and the program under test on the target. In the
latter case both run as different operating system tasks on the
host computer.

A Retargetable Debugger Page 15

For the location of breakpoints corresponding to source
positions it is necessary to have the compiler build tables
which contain the mapping of source positions to code
addresses. The code to source mapping proposed in Section 3.1
is not sufficient because it does not allow to retrieve from a
source position the code address which is executed first. The
tables containing the source to code mapping are constructed in
a similar manner to those containing the code to source
mapping.

In order to set breakpoints on exception or tasking events
the debugging system must have detailed knowledge of the
runtime organization and tasking implementation.

For the modification of data the same information as for
accessing objects is required. Additionally the debugging
system must be able to interpret a string given by the user as
a value of some type and transform it into a bit string to be
stored at some objects address.

5.0 Conclusion and Prospects

In this paper we described the design and partially the
implementation of a retargetable debugging system for the
Karlsruhe Ada compiler. The most essential implication is that
there is no need to have two versions of the program: one for
debugging and one for real usage. Otherwise it would be very
difficult, perhaps impossible, to guarantee that the
instrumented version will produce the same error situations.
On the other hand, debugging code must not be incorporated into
the program to avoid overhead for the normal execution.

Hence, the debugging system has to work for programs which
are not specially instrumented for debugging. All knowledge
about the execution of a program must be retrieved from its
memory when interrupted. Additionally, the debugging system
may access information collected by the compiler, the linker
and information about the runtime organization of the programs.

As has been discussed in Chapter 3 the target dependent
features of the debugger can be concentrated in a few machine
dependent packages making it easy to retarget the debugging
system. The rehostability is given because the debugging
system is written in Ada, as is the compiler.

A Retargetable Debugger Page 16

We have shown that on this basis a reasonably working
debugging system can be built: it provides all operations
needed by the programmer in order to analyze an error
situation.

A further advantage of this approach lies in its
applicability to cross developed programs: The program is
developed and tested on a-host computer, but is used on some
other machine, the target computer. If an error situation
occurs during real usage, the program state (i.e. the contents
of memory) can be written on tape and transported back to the
host machine. There the environment is present for applying
the debugging system (in the version for this particular target
machine). By this way, error situations can be analyzed even
for real time applications where errors usually cannot be
reproduced.

On the other hand this approach allows to "field test" the
program on the target with the debugger located on the host if
an online communication channel exists between host and target.

5.1 Outlook

A shortcoming of most available debuggers (including the one
presented) is that the program under test has to be stopped in
order to analyze it. For some real-time applications this may
be a serious problem. Therefor we are planning to develop
debuggers which analyze the program behaviour in source level
terms without disturbing or interrupting the running program on
a target system. This is a most challenging effort with
respect to real-time application programs.

19?

AD-P005 564

The Relationship of
Software Engineering and Artificial Intelligence

Gerhard Goos
GMD Institut fur Systemtechnik

.Abstract: In -this paper we discuss existing and potential applications to the
'field of software engineering of methods and tools developed in the area of ar-
tificial intelligence. We also indicate problem areas in the field of artificial intel-
ligence which might be resolved by software engineers. The topics include pro-
grarnning by searching as a basic programming paradigm, the use of rule based
systems and Al-languages, applications to rapid prototyping and program
transformations Furthermore the potential use of expert systems in software
engineering is investigated.

1. Introduction

Software engineering as a branch of computer science is concerned with the
theory and practical methods for efficient production of reliable and correct
software in time. These issues comprise on the one side managerial questions of
how to organize the software production process. On the other side software en-
gineering is concerned with methods and tools for supporting the software life
cycle, starting from requirements analysis up to the final acceptance test and
maintenance phase. It is well known that presently the costs for modifications
and improvements of software during the maintenance phase are much too high
and amount to more than 50% of the total costs. The main issues in current
research in software engineering are therefore on the one side questions of how
to improve the productivity of programmers and the overall quality of the
resulting product; on the other side we have the question of how to reduce the
maintenance costs. It has been recognized that many of the problems stem
from the fact that the design process very often starts from specifications
which do not adequately reflect the intentions of the customer. Hence a specifi-
cation method is required which helps to improve the results of requirements
analysis. It would be even more useful when such a specification could be made
executable so that the specification can be debugged by means of rapid proto-
typing before the design process starts.

Starting from this question interest has been created in methods of artificial
intelligence amongst software engineers. Indeed, it turns out that Al-methods
might help in this situation but might also have other applications in software
engineering. In this paper we discuss such applications. At the same time it
turns out that some methods of software engineering might be applicable in the
area of artificial intelligence.

My co-workers Reinhard Budde, Peter Kursawe, Karl-Heinz Sylla, Franz Weber
and Heinz ZUllighoven have contributed to the ideas expressed in this paper.

--. I ,/99

2. Programming by searching as a program paradigm

One of the key issues in the design phase on all levels is the adequate break
down of the problem in hand into sub-problems and the corresponding con-
struction of the solution from solutions of the sub-problems. Any method for
solving this question leads to a model of software construction called a pro-
gramming paradigm. Many such methodologies have been invented and suc-
cessfully applied like top-down design (abstract machine modelling),stepwise re-
finement, the use of models from automata theory, etc.

One methodology, programming by searching, has been rarely used in
software engineering up to now although it has been proven very successful in
artificial intelligence. Although this methodology does not necessarily lead to
efficient programs it has a number of advantages:
- The programs developed according to this methodolgy comprise a part

which might also be read as specifications of the problem.
- These specifications might be expressed in a way which is understandable

also to the non-specialist.
- Initially the specifications might even be incomplete or contradictory. Such

problems might be be interactively resolved by user intervention or by
dynamically modifying the specifications.

The basic idea of programming by searching starts from the assumption that
all possible solutions are known a priori (a potentially infinite set). These possi-
ble solutions form a state space. The solution(s) corresponding to the actual in-
put data is found by successively generating the elements of the state space
and by testing the generated state wether it is an appropriate solution. This
generate and test methodology is also known as the British Museum method. It
obviously works in practice only if the state space is sufficiently small. The
method, however, shows already the basic ingredients of programming by
searching: An algorithm for implementing this method consists of the following:

- an initial state,
- a set of rules for generating new states from a given one,
- a control algorithm for determining the rule to be applied next,
- a target condition characterizing the desired solution.

The method may be generalized by hierachically structuring the state space:
Possible solution are no longer generated in one step but chains of states are
generated which might be intuitively thought of as constituting successive ap-
proximations to the solution. The algorithm described above basically remains
unchanged. Some specializations of this method, e.g the greedy method, are
well known to the software engineer. They are characterized by the fact that
the control algorithm and the rules generating new states are integrated in a
specific way.

The method. also called unidirectional search, however, is of limited scope
only. It requires that in each state the algorithm is able to determine which rule
will definitely lead to the solution (if it exists at all). To remove this restriction
we may consider a generalization of the notion of state: If each new state also
comprises the information about all states generated so far we may restart the
search at any former state if the last generated state appears to be a dead end
(or "less promising"). We could even generate new generalized states by simul-
taneously applying several rules. An abstract implementation of this generaliza-
tion uses a search tree instead of a chain of states as indicated in fig. 1. The
generalized state consists of that part of the search tree generated so far. The
control algorithm must now pick a node in the search tree together with a rule
which is applicable to that node.

m dnmmml~mwmun$00mum u uunml

4 5 6 9 10:

Pig. I A Search Tree

Figure 2 shows the complete search tree for the 4 queens problem. Except for
the two solutions of this problem all other leafs are dead ends. Starting from
the initially empty board (on level 0) there is one rule in this game indexed by
integers ik, 1-ik - 4:

From a node on level i-i generate a node on level i by placing a queen in
row ix, column k subject to the condition that this position is admissible
(cannot be reached by any previously placed queen.)

Fig. 3 The Search Tree for the 4 Queens Problem.

The notion of search tree leads to the fact that the final generalized state
also includes the path from the initial state which leads to the solution. This in-
formation is often equally useful as the solution itself: In many problems the
"solution" is known a priori but the way how to achieve it is the desired infor-
mation. For example, in a diagnosis system the fault symptom is initially known
but the possible sources of the fault are indicated by chains of malfunctionings
leading to this fault symptom.

In a practical implementation of the control algorithm and the building of the
search tree we are faced with a number of fundamental engineering problems:
- The indeterminism: which node to consider next
- The indeterminism: which rule to apply next
- The potentially large number of rules to be tested for applicability
- The combinatorial growth of the search tree and the associated storage

problems
- The fact that the search tree may contain potentially infinite subtrees

which do not lead to a solution. (Hence the search might never terminate
although a solution exists.)

- The question how to identify dead ends as early as possible.

A number of control algorithms have been developed for dealing with indeter-
minism: Depth-first search, breadth-first search, the use of heuristics for deter-
mining the next node and rule, etc. The book [Nilsson 1982) contains an exten-
sive treatment of such search methods. Most of those methods can be combined
with recognizing cycles which are (partially) responsible for infinite search
trees. Heuristics can be applied in two different ways: Either we introduce prior-
ities indicating the order in which branches should be added to the tree; this
idea may improve the speed for finding solutions to the extent that problems
become practically tractable which are beyond the accessible computing power
otherwise. Or we may definitely decide that a certain branch does not lead to a
solution based on heuristic arguments. Whereas the former way does never ex-
clude solutions - at least in theory -, the latter way may restrict the number of
solutions being found since the heuristics might be wrong. Hence altogether
programming by searching may lead to the following results:
- Success: A solution (or several/all solutions) is found together with the se-

quence of states leading to the solution
- Definite failure: A solution does provably not exist
- Failure: A solution has not been found because either the algorithm did not

terminate in a given number of steps or because an unsuitable heuristics
was used or because no further applications of rules are possible for other
reasons.

Despite the problems mentioned programming by searching has a number of
advantages compared to other programming methods:
- The strict separation of rules and control algorithm allows for considering

the rules as an algorithmic specification of the solution process. This specif-
ication may be expressed in readable terms but is hiding all of the imple-
mentation decisions connected with the representation of the search tree
and the control algorithm.

- The user may get interactively involved either for supporting the control al-
gorithm in its decision making or for introducing state changes manually in
case the system does not find an applicable rule.

Unfortunately the other side of the coin is that the algorithmic specification
may be used in a restricted manner only due to shortcomrnings of the control
algorithm.

On the other hand the interactive involvement of the user might be explored
for dealing with incomplete or contradictory specifications or for extending the
specifications on the fly, a direction which could never been followed In ordi-
nary program design.

3. Rule Based System

Formally speaking the rules forming our specifications, often also called pro-
ductions form a derivation system. D=<Q.RJ.S> where

- Qis a decidable set of states.
- p:Q-.2Q with p(q) for all q FQ being a finite (potentially empty) subset of Q

We map Q into its powerset because q EQ represents a generalized state;
there may be several components to which rule p may be applied with dis-
tinct results. We write q -.q' iff q'cp(q).

- I and S are decidable subsets of Q representing the initial and solution
states.

Derivation systems can be analyzed for certain properties. The most impor-
tant properties in practice are the following ones:

- A derivation system A is noetheriarn if each derivation

starting at an intial state qo0 E terminates after a finite number of rule ap-
plications.

- A derivation system D is confluent ifl for each initial state q0 which has a
solution and for arbitrary successor states u.v of q0 there are derivations

U-.• -z and v-• -'z. z a solution (EL).

A noetherian derivation system has the interesting property that any control
algorithm no matter how it proceeds will terminate after a finite number of
steps because all search trees consists of a finite number of nodes only. A con-
fluent derivation system has the property that the solution is unique if it exists
at all and there are no dead ends: from each reachable state we may also reach
the solution. Both properties are much desired but do not occur in practice as
often one might wish.

A control algorithm for using a derivation system D=<QRI,S> is an algo-
rithm as follows:

Initial State: q :=qoEI
loop select a rule q with p(q)io; exit if no such rule exists;

select q',Ep(q);
q:=q'; exit if q CS

end loop
Output: q if q ES. no success otherwise

As discussed before it might happen that the algorithm does not terminate. The
algorithm is indeterministic due to the two select operations. The combination
of a derivation system and a control algorithm is called a rnte based system.

Rule based systems appear in many forms in A]. Historically they have been
termed production systems. r,-ame systems and other variations subdivide the
set of rules and partially allow dynamic changes of the rule set depending on
the current state.

4. A Llanguages

From its beginning the people in Artificial Intelligence have used languages like

LISP instead of the more common imperative languages FORTRAN. ALGOL, PAS-
CAL. ... It is yet difficult to analyze why these differences in language approach
have occurred, notably since, by various extensions. USP has taken over most
of the features of standard languages although with different syntax. Signifi-
cant features of most of the languages in A] compared to imperative languages

;,are the following:
- Basically there are no program variables in the usual sense (although they

have been mostly added through the backdoor). Computations produce new
values by combining existing ones rather than by modifying them.

- Hence values like numbers from which new values cannot easily derived by
combination play a subordinate role. The basic data structures are lists of
dynamic lenght with dynamic typing of the elements. Internally these lists
correspond to binary trees. Very often lists are used for representing what
is known in logic as a term elebr-. This use occurs in its purest form in
PROLOG.

- All Al languages are based on an interpretive model which allows for dynam-
ic reinterpretation of data structures as pieces of program. Although this is
a very dangerous feature, it is very helpful, e.g., in manipulating the set of

rules in a rule based system.

Current programming languages can be classified as

- imperative. Operations are expressed by statements which manipulate state
variables.

- applicative: Operations are applied to expressions forming a larger expres-
sion. The notion of a variable does basically not occur. Some form of the
theory of recursive functions is the underlying theoretic model.

- functional: A program is a set of functional equations. These equations ex-
press relationships between values and unknowns (mathematical variables);
the execution of the program has to resolve equations. Most mathematical
theories can be most easily transformed into this model; but the knowledge
by the program interpreter for resolving the equations is sometimes special-
ized.

- logic: A program consists of a number of formulas in predicate logic togeth-

er with a model how new formulas may be derived from the given ones.

In practice none of these language types occurs in pure form. e.g., ALGOL 68
was a mixture of an applicative and an imperative language. Certain develop-

ments in the area of logic programming languages starting from PROLOG are
especially interesting because they allow for subsuming many aspects of the ap-
plicative and functional programming style.

Of course, since all of the non-imperative languages rely on an interpreter
which is currently written in software it is very difficult to achieve highly effi-

cient programs and to judge the efficieny from the program text without

knowledge of the interpreter. Hence all these language styles are interesting for

the software engineer mainly for two reasons: First, some of these languages

are suitable for writing specificationa and programs written in such a language

can be run as prototypes beiore the actual efficient implementation is

developed. Second. programs in such languages are sometimes very concise and

easy to read and write. hence it is possible to develop programs in much shorter

time. problems may become solvable which otherwise could not have been at-
tacked due to the shortage of programmers' time. We demonstrate some of

these considerations using PROLOG as an example language.

see aal i liei menu a i -4

PROLOG [Clocksin 1981] is a logic programming language based on the cal-

culus of Horn-clauses. A Horn-clause is an implication&:

written in PROLOG as

Po :-Pj-P JPL

Here we have naO0; if n-0 we call the clause a fact. The predicates (or literals)
pt may have terms as paramaters as shown in the following examples. Logic
variables, denoted by identifiers starting with upper case letters. may only oc-
cur as terms. Hence PROLOG essentially remains in the realm of first order
predicate calculus. Certain built in predicates (assertcaLL retract) allow for
reinterpreting a term as as Horn-clause and cause second order effects useful
for manipulating programs.

Simple examples of PROLOG programs are

human (sokrates).
morta (X) :u- huan (X).

This program allows for estabilisting the result
mortal (sakrates)

in the obvious way whereas all questions mortal (:zyz)? would be answered with
no as long as it or human& (zyz) is not established as a fact.

The use for prototyping and the short way of expressing problems may be
seen from the following programs for algebraic differentitation. (dif (E.X,DE)
means: DE is the dervative of expression Ewith respect to X)

dif (U+ V.X,DLU+DV) :- dif (U.X.DU).dif f (V.X.DV).
dif (UV.X,(DU-V)+(U.DV)) :- dii (U.X.DU).dif (V.X.DV).
dif (X.X. 1).-
dif (YX,O) :- YOX

The query &.._. N1
dif (a "x+b.zL)

will be answered with
L.=((o-z)+(a'l))+o

which is the desired answer but yet not simplified.

It is obvious that this program for computing derivatives is much shorter than
anything which we could write in ordinary programning languages. At the same
time it is much more readable. It therefore can serve as a specification which at
the same time is executable. i.e. as a prototype for a real implementation.

Horn-clauses can also be considered as the rules of a rule based system.
Viewed in this way we may ask what is the control algorithm underlying the exe-
cution of these rules. In PROLOG this control algorithm is depth-first search
with backtracking: For estabilishing the validity of a predicate the definitions
(Horn-clauses) of this predicate are searched in top-down; for each definition
the predicates on the RHS are considered in order from left to right and their
validity is established.

The use of depth-first search is unsatisfactory in both ways (but so would be
any other control algorithm): On the one side it introduces a difference between
the abstract understanding of Horn-clauses as specifications and their in-
terpretation during execution; we have to distinguish between the declarative
and the algorithmic interpretation. On the other side depth-first search is just
one of the possible search strategies. If we want to use another one we have to
simulate it on top of depth-first search. Fortunately also in these cases the
rules may be written in a way which is easy to understand and hence the pro-

perties of Horn-clauses as specifications are mostly retained.

5. Software Fngineering Problems

As mentioned earlier programming by searching poses some technical problems,
* e.g.. dealing with a large number of rules and with a large set of state variables,

which are typical engineering problems. In many cases normal methods of
software engineering may be applied to solve these and similar problems.

A standard method is. e.g.. to factor the state space and the set of rules in a
hierarchical fashion. The result is a rule based system containing rules which
themselves are rule based system. Also changing the abstract representation is
very often helpful in reducing the size of states.

Another class of problems arises from the fact that in practice certain pro-
perties might be expressed as parts of rules and as part of the control algo-
rithm as well. For example, in many cases it is posible to predict subsequent
rule applications (at least with a certain probability) once a certain rule has
been used. Sometimes it is possible to use the rules "backwards";i.e.. if the
solution is known but the sequence of steps leading to the solution is searched
for we may start the search at the solution and work backwards to the initial
state. Of course, this backward analysis. well known from other areas of
mathematics and informatics. requires an adaption of the rules and it is not at
all clear under which circumstances it bears advantages. Also combinations of
forward and backward analysis have been successfully used in practice, espe-
cially in the form of "rnddle oout reasoning" where it is assumed that we know
some intermediate state of the solution path in advance

Yet another form of interaction between control algorithm and rules occurs if
the applicability of a rule is known only with a certain probability. This situation
occurs very often in expert systems for purposes of diagnosis. There are several
strategies for distributing the handling of probabilities between rules and con-
trol algorithem.

The foregoing problem may also be considered as a special case of dealing
with uncertainty- Uncertainty may occur on the rule side as discussed or on the
date side: The required input data can only be observed up to a certain degree
of reliability or very our time. In this case we may again use probebilistic rules
or we may apply concepts of fuzzy set theory. etc

All these questions are basically engineering problems in applying rule based
systems. There exist a lot of proposais how to attack these problems - the in-
terested reader is referred to the book [Hayes-Roth 1983] - which have been
used in practice. But there does not exist a well developed and theoretically
well founded basis for dealing with all these questions Hence the practiceoner
will find methods by looking into existing solutions: but at the same time the
scientifically interested software engineer sees a waste area of research topics

- s t, mamumra .. 2(&

S. AppUcations to Software Engineering

Rule based systems may be used in many areas of software engineering basical-
ly as parts of a softwers prodctiont envrrowmen. In most cases these applica-
tions will take the form of an expert sastem, i.e.. a rule based system with addi-
tional components facilitating the acquisition of rules (the bmoudedge etgineer-
ftg cowponet) and the explanation of what is going on. Basically the value of
such expert systems may have three different sources which mostly appear in
some combination:

During requirements analysis (but also during later phases of software
development) it might be very helpful to view system analysis as the process
of acquiring rules describing the intended computational model yet without
the necessary control algorithm. This idea implicitly leads to a specification
language, namely any language suitable for expressing rules. Psychological-
ly the customer is much more inclined to support the system analyst when
he declares himself as a knowledge engineer, and when he does not pretend
to acquire all the fuzzy details which might change in a computational
model anyway, but asks for the rules governig the present situation (it goes
without saying that this method is only a trick which might nevertheless un-
cover all the necessary details).

- Expert systems may be used for performing tasks which are more easily ex-
pressed by rule based systems than by ordinary algorithms. Typical exam-
ples for this approach are applications to prototyping or for performing
program transformations on all levels, including the transformation of exe-
cutable or non-executable specifications into more efficient program
descriptions. For example most of the existing catalogues of standard pro-
gram transformations can be quite easily put in the form of derivation sys-
tems.

- Lastly it is often easier to resolve interactive tasks within the frame work of
an expert system. Typical applications might include the tasks of configura-
tion control based on large program libraries with modules in several ver-
sions and variants, support of tessting from the planning stage up to actual
testing phase. or tasks occuring as part of project management. In many of
these applications the extensibility of the set of rules may be used for start-
ing with a relatively "unintelligent" system which then is gradually improved
by adding new rules

As an example for such extension techniques we might reconsider the dif-
ferentiation program in section 4: This program can be immediately extended
for dealing with arbitrary expressions by adding the interactive rule.

dif (E,X,L) : - uite ('pleause input the derivative of).uwre (E).
write ('uith respect to').uxite (X).read (L).

at the very end When it turns out that certain types of expressions occur more
frequently we may then add the appropriate rules for automatically handling
these cases.

It is obvious that these techniques applied either singly or contined bear a
large potential of fruitful applications to software engineering tasks. These pos-
sibilities have been yet only superficially explored. e.g. by developing program
transformation systems. But many more immediately useful applications remain
to be written

,dl dl =, n~mmimu . 7en

7. Literatur

(Clocksin 1981]
W.F.Clocksin. C.S.Mellish Noagramming in Prolog. Springer 1981.

[Hayes-Roth 19833
F.Hayes-Roth. D.AWaterman. D.B.Lenat 5aildivig Ekpart S~jstems. Addison-
Wesley 1983.

(Nilsson 1982]
N.J.Nilsson Pri~nciples of Artifici&I Intelligence. Springer 1982.

in: Proc. of the IFIP TC2 Working Conference on DATABASE SEVNTICS;
R. Meersnan, T. B. Steel (Eds.), Hasselt, Belgium, Jaq. 1985,
North Holland

OBJECTS AND ABSTRACT DATA TYPES IN INFORMATION SYSTEMS

Erich 3. Neuhold

Institut fuer Angewandte Informatik und Systemanalyse
Technische Universitaet Wien
Paniglgasse 16, A-1040 Wien

A D-P005 565 Austria/Europe

-- ,' Future generations of database systems will have to support
a much wider variety of data objects than today's systems.
Texts, voice, drawings, and pictures will have to be
handled in an integrated fashion together with today's
record oriented data in hierarchies, networks and
relations.

I
To achieve this goal, a knowledge based, object and
abstract data type oriented approach is proposed and conse-
quences for the database management system, the information
system design tools, and the system dictionary are dis-
cussed.

INTRODUCTION

Data base systems have had a tremendous impact in commercial data
processing. The very valuable resource "data" of an enterprise has
become accessible in an unified way to different company sectors, be
it personnel, finance, manufacturing, marketing or sales.
Centralized data bases and centralized processing of these data by
the different enterprise components was a rational way of handling
the necessary tasks.

With the availability of powerful miniprocessors this picture began
to change. Computers started to appear in the different sectors of a
company. Local processing and even interactive use of the computing
resources became widespread. As a consequence local data storage
increased and local data bases containing supposedly only data of
local interest were established. However, data and the information
represented by them are valuable assets of the whole enterprise and
usually also needed elsewhere in the enterprise. As a consequence of
distribution either redundancy of data storage with all ensuing
problems of data consistency results or remote access to these data
becomes necessary, i.e. multiple remote data base use in a single
program becomes the rule, and problems of recovery and consistency
will appear again. In addition dependencies on the location and the
specific content of these data bases in a single program will
practically inhibit to move data bases or individual parts of data
bases from one location to the next. A solution to these problems is
offered by distributed data base management systems, e.g. POREL [1]..
SIRIUS/DELTA [2], UDD-1 [3) or R* (4), that have been developed over
the past few years. They handle consistency, location dependencies,
reliability and recoverability in a user transparent fashion and
provide in this way ease of access and resiliency toward
comuanication or execution failures.

Recently, however, workstations and personal computers have become
widespread and more and more people do their processing at least
partially on their own office or home desk. Local data storage again
is of importance tor many of those applications as otherwise remote
access or remote processing with all ensuing remote location problems
has to be chosen for every task. Extending distributed data bases to
include workstations and personal computers provides again a solution
to the remote data manipulation problem and automatically solves the
serious problem of limited storage resources in workstations and
personal computers.

The widespread use of workstations, intelligent terminals and
personal computers, however, has dramatically changed the kind of
work a user expects his system to perform for him. Mail systems,
multiple windows, graphics, even voice and video are expected to be
offered in an easy to use manner. Icon oriented representations and
flexible control facilities, e.g. mouse, pen, finger or even eye, are
becoming available, soon to be enhanced by a multitude of knowledge-
base oriented expert systems. Distributed and centralized data bases
up to now are only able to handle effectively what has become to be
known as formated data, i.e. data more or less directly derived from
the record/field oriented interfaces offered in conventional file
systems. The new kinds of data - which frequently are referred to as
object oriented data - will require new concepts to be incorporated
into data base management systems which will enable the users to
access, manipulate and store those types of data effectively with at
least the level of control embedded in today's DBMS's.

Interestingly enough two fields of computer science have dealt with
this new type of data already for a considerable amount of time. In
artificial intelligence the manipulation of 'objects' has been one of
the basic features, but in practically all systems these objects are
only manipulated in main memory. Sometimes primitive file systems are
used to enhance the permanence and size of the data the system is
capable of handling. Only recently with the coming of age of
artificial intelligence the need has become paramount to manipulate
large amounts of data that have to be shared and should be consistent
and recoverable in the event of system failure. These requirements
directly lead to data base systems where the Al community has found
out that the type of objects handled there was insufficient to solve
their
problems in practice. As a consequence of these requirements data
base research and development have oriented themselves to
'object' data bases and considerable resources are spent to produce
solutions in as short a time span as possible. Recently a well
attended conference on Expert Data Bases [5] was organized and its
proceedings contain numerous papers which illustrate some of the
problems and solutions in this relatively'new field.

The other area of computer science that dealt with 'objects' for a
considerable amount of time tries to add 'meaning' to the data kept
in data base systems in the sense, that the semantic of the data to
be stored in the system is used to both: design the necessary data
types (object types) and storage and access structures for a specific.
data base, and to develop and sometimes build right into the system
operations for the manipulation of these semantically defined
objects. [6, 7]. originally the assumption in these systems was that
the objects and operations would describe the universe of discourse
of an enterprise in such a fashion that an actual data base could be
derived either manually or semiautomatically. This data base later
would be used in the conventional fashion either via interactive data

m mI 9

manipulation languages like SQL or navigational as for example in IMS
or CODASYL. This idea, however, has to be changed if the users
themselves are to be allowed to work with objects directly. It
becomes necessary to build a data base management system that offers
a semantic interface not only to the designer but also to all the
users - humans and/or application programs - of the data base.

In this paper we shall now investigate the architecture of a future
data base system that may be used to store and manipulate
semantically meaningful objects, be they employee descriptions,
product descriptions, letters, telephone messages, blue prints of
buildings or machines, or videos for educational or promotional
purposes. The most important consideration here has to be that all
these data together represent the information source of an enterprise
and therefore should be handled homogeneously, consistently and
reliably by the system for its multitude of users.

THE SYSTEM ARCHITECTURE

In Figure 1 an information system is illustrated that has been
designed to handle the requirements developed in the introductory
chapter of this paper.

User Interface

Application System

Knowledge Handling Systems

Kel

Information E rt
Tasye Syte

C
FORTRAN
COBOL System
Lisp

Pascal DictonarProlog

Data communication specialBase Systems

Distributed eOperating System]

Figure I
An Information System Architecture

The operating system kernel represents the lowest layer of the
software architecture. it provides for data storageI process
management and comunication in the distributed (local or wide area)
environment of our system. A more detailed explanation of the system
can be found in [8] but a brief explanation here is in order.

The data storage must provide storage for a wide variety of data
types but it must also provide sharing of data with flexible locking
and recovery functions. Currently there still exists a separation
between real/virtual main storage and file storage. The artificial
intelligence community for example primarily relies on little shared
mass storage as a depository for its complex data structures whereas
the data base community concentrates on efficient access pates and
storage concepts on disks but restricts itself to rather simple data
object structures. In the future main storage and file storage will
have to grow together not only on a single machine but also on local
and wide area nets. Effective use of such structures will require
knowledge on the type of object to be stored to be embedded directly
into the storage system.

Data communications will play a central role in the network oriented
architecture of all future systems. Different systems will have
different requirements on the locality, speed, security, reliability
and cost of communication. Local area, long-haul, broadcasting,
point-to-point networks come to mind and frequently will have to work
together in a single environment that undoubtably will contain compu-
ters of quite different size and architectural makeup, both with
respect to hardware and to software.

Process management in the distributed environment of future systems
will have to work intimately with both the data store and the
communication facilities. Multiple processes will be involved in even
relatively simple user tasks. They will have to cooperate across the
network for retrieving, manipulating and storing the data of the
system. Failure recovery from process, network, or storage break down
will be essential for an acceptable reliability of our system and has
to be built right into the operating system kernel in order to be
available to all the other higher software layers in a coherent and
consistent manner.

On top of the operating system kernel special data handling
subsystems can be found. Data base and communication systems will be
supplemented with special systems as for example special hardware for
high level language systems such as Lisp, Prolog or Pascal. Other
systems may be provided for CAD/CAM tools or for automatic control
systems. In all these systems the emphasis will be set on handling
data not on interpreting them as is done in the knowledge handling
subsystems of the higher architectural layers.

Data base systems will have to manage distributed and shared data of
quite complex structures. Different users - humans or programs - may
have different views on these data, their access must be coordinated
and controlled. Reliability and consistency of the data has to be
embedded to such a degree that human controlled error recovery will
practically never be necessary as the envisioned complexity of these
systems would make such a task extremely complicated if not outright
impossible.

Communication systems will provide a variety of services to the
different system components. Telephone communication, mail, videotex,
and video signals will be added to todays widely used communication.
types like file transfer/access, message delivery and
sensing/control.

The subsystems of this layer will, however, still emphasise the
handling of data not the handling of information/knowledge. Data will
have known structures but it will not be known whether an individual

- -mmmmm •ma a• •m mcmm• •m

structure will be an employee description or the route map of a
delivery truck. Generalized behaviouristic knowledge of course will
be required as for example that same part of a structure
(representing an employee) will be needed twice a month - for salary
calculation - at a specific central location. This would allow a data
base system to decide for example to maintain a backup copy of the
structure at precisely that location instead of some
other randomly chosen one.

The knowledge handling subsystems will actually understand the type
of information even the individual information items that have to be
mhnipulated. An information base system, for example, will - of
course in an abstracted manner - know that a specific data structure
represents an employee, what part of the structure is to be used when
talking about the emplo,'ee (its name, identifier, key?) and what
other information about that employee is in the system. It will for
example understand that an employee always has to be associated with
a department, that he has to have some specific salary, or may be
married. In addition such an information base will have to know about
the kind of operations allowed by the using programs or humans
against the individual date item. Only in this way will consistency,
security and recoverability be ensured at an acceptabel level. For
example a get-married operation for employees will provide the
mechanisms to change the marriage status of exactly two employees,
adjust their tax deductions and may even initiate reassignment
procedures if both persons work for example in a direct-line
management relationship and company policy does not allow for such
situations.

To achieve its task an information base system has to be able to
manipulate both structured data and programs working on these data.
For this purpose it will access the data base on one side but use
programming language subsystems on the other as the operations
obviously will have to be implemented in one or the other of our
programming languages. In Figure 1 we have also identified the system
dictionary as a facility to provide the necessary meta-data which
describe objects types and object structures, interrelationships
between objects, and programs to manipulate specific object types or
even individual objects. In conventional data base terminology the
System Dictionary contains the schema description of the data base
but this description of course has to be expanded considerably as in
our system it also has to contain semantic information on data and
operations in order to support the mechanisms of the information
base.

The expert system component in Figure 1 actually is meant to describe
all the mechanisms needed to support specific expert systems - e.g. a
geological assistent or a network-configuration expert - which
themselves are part of the application layer. Inferencing engines,
interpreters but also strong links to the information base, the
system dictionary, and programming environment will be required to
provide the flexibility and large knowlege base to make the expert
system truly successful in the demanding markets of the future.

The application system layer finally ties all the facilities offered
by our distributed system architecture together. Using the
information base, the expert system, programming language
environments as well as the system dictionary the individual
application will be able to concentrate on solving problems instead
of dealing with the many complex issues of ensuring that data are
handled in meaningful ways only, as these tasks - i.e. adding

semantics to the data - will already be achieved at the lower levels
of our system.

The user interface will directly reflect the multi-media facilities
of work stations and personal computers. Voice and graphic input and
output will be available besides textual representations. A user will
be able to interface with one or more applications concurrently in a
personalized manner. For this purpose an expert system based on
stored user characteristica will be available to the application
packages. It will model learning, practice even forgetting behaviour
of humans and select between a number of possible representation
schemas on the basis of personal preferences.

To achieve this system goal the representation of the meaning of data
and data operations is of central importance. Both the AI world and
the data base world have developed concepts in this direction to
ultimately allow the handling of information instead of the handling
of data. Currently many investigations try to combine and unify these
schemas to provide for the combined benefit of large information
stores and expert system technology.

In the remainder of this paper we shall outline an approach based on
abstract data types that was originally developed at the University
of Stuttgart. Detailed descriptions can be found in [9, 10, 11, 12
and 13] but other proposals also exist as can be seen for example in
the conference proceedings of [13] and [5).

OBJECT ORIENTED DATA BASE SPECIFICATION

When specifying an object oriented data base either for data base
design or - if the system provides an object oriented interface - for
user interface definiton, four important aspects of the data base
system can be identified and have to be modelled:

1. Objects, type classifications and object structures
2. Interrelationship between objects
3. Operations, operation classes and operation structures
4. Dynamic interrelationships between operations.

In the following we shall use a small example to illustrate the use
of these concepts for representing the information contained in an
object oriented data base.

Object Classification SchemaEvery material or immaterial entity of the real world that is to be

represented in the data base is considered to be an object. This
(large) set, however, has to be structured in order that objects with
similar properties can easily be identified and manipulated in a
homogeneous fashion. In Figure 2 an Object Classification Schema
illustrates that the class OBJECT can be subdivided into object
classes PERSON, COMPANY and THEATER CLUB. The PERSON class is further
subdivided into EMPLOYEE, SUPPLIER and ACTOR. THEATER CLUBs may
concentrate on modern or classic theater, COMPANYs may be trading
companies or manufacturing companies etc. Notice that the subclasses
of a class may be overlapping, e.g. an employee may also be a
supplier and/or actor.

In the specification each of the object classes will have a verbal
description attached , explaining its purpose and at least some of
its most important properties.

&iIq

PERSON THEATER CLUBPLY

Figure 2
An Object Classification Schema (partial)

In any real system with hundreds or thousands of object classes it
vill be of utmost importance to present to the user and even the data
base designer only a menigful subset of these classes at any point
of time. For example if a user currently is concerned with theater
the object classes ACTOR, THEATER CLUB and FLAYS and their subclasses

would be of a prior interest and therefore should be displayed,
suppressing all the other schema components.

But how does the system decide which part of the schema it should
display? Here the other descriptive information supplied with the
data base has to be used. For example such information will identify
that actors are members of a theater club, that plays are performed
by theater clubs, etc.* A knowledge based system using expert system
technology will be able to make such a selection and present to the
user at least initially an easy to understand subset of the total
schema.

Ob ect Structure and Relationship Schema

In ~~~~ ~~Figure 2 neapeo nOjc tutr n eainhpShm

is partially given. Whereas an obect classficaton schema only
identifies classes and subclasses of objects we now are able to
describe the structure of complex objects end their relationship to

other objects.
A MANUFACTURING COMPAY is a complex object containing other objects
like TEAM, DIVSION, MACINE but also EMPLOYEE NAME or WORK UNIT that
are related again to each other. A more detailed discussion of this

suppressing alm l them other sema comonets

MANUFACTURING COMPANY
STEAM ID 1- TEAM O E TEAM 4 GR (MGR)

EMP.NUMER |

TI
SPEEDWO K U I

DIVWORKED

Figure 3
Object Structure and Relationship Schema for a MANUFACTURING COMPANY

schema type can be found in Furtado/Neuhold (12] but again any
realistic application will lead to very large structures and a
knowledge based system will have to select for presentation these
parts that are of interest to a user/designer at some specific point
of time. For example, if we want to talk only about employes in
general without discussion of the properties of its subclasses, then
the displayed schema could well be the one shown in Fig. 4. Notice
that because of the subsetting/abstraction involved the description

becomes identical for manufacturing and trading companies and
consequently is displayed for the super-type COMPANY directly. We
have to remember here that the object classification graph also
exists and informs the user or designer about facts like subclasses
of COMPANY or EMPLOYEE so this information does not have to be
displayed here.

COMPANY

TEAM 11D TEAM EPPLOVEE TA G MR

SEMP.NUMBER

MIV
ENKOYS

DIVISION

DIV. NAME .

Figure 4
Object Structure and Relationship Subschema for EMPLOYEE IN COMPANY

Operation Classification and Structure Schema
So far we have only described the data oriented aspects of our
system. However, in order to specifiy a complete information handling
system we also have to identify the operations available, their
interrelationship and their properties. For this purpose the
Operation Classification and Structure Schema was developed. In
Figure 4 we illustrate a (partial) schema that describes the
properties and structure of an operation HIRE MANAGER that vill work
with the object and object classes identified in Figure 2 and 3.

An operation is given a name, e.g. HIRE MANAGER, and a parameter of
some type, here e.g. PERSON, is specified. The operation description

then allows to identify preconditions and postconditions together
with the operation body - the activity description. The operation may
use other operations supplied with the system, here e.g. HIRE
EMPLOYEE, ENTER MGR SAL etc.

HIRE MRNAGR (X:PERSOW)

nsot ACTOR (X)

STOCK OPTION (X) < 1000

activity description

SHIRE EMP(X) N T IER SWILO(ALC MR VAC(X SET STOCK OPT(

Figure S
Operation Classification and Structure Schema

Using dependency structures as for example introduced in STUDER (14]
we are also able to represent conditional execution, parallel
execution, choice, etc. graphically such providing the user with a
more explicit description of the interdependencies of operations.
Note that the graph displayed is oriented toward the operation HIRE
MANAGELR. The operation HIRE EPL0YZE which also will be used to hire
secretaries and engineers for example will not use the suboperations
ENTER SALARY and CAIULATE VACATION as these properties of a manager
aEre handled by separate manager oriented operations ENTER NGR SAL,
ENTER MGR VAC, which in turn utilize those suboperations. Operations
can be very general. They are not restricted to handle only
information kept in the data bases. For example the operation CREATE
ID will not only select an employee number but also produce a badge
in a truly integrated system it could even use other suboperations to
take a picture of the new employee and produce his id-card.

sehaviour Schema
In our specifications we so far have described objects, object
classes, object structures and object interrelationships as vell as
operations, operation structures and operation interrelationships.
Thee pictures, however, represent only the static characteristics of
the system. Of course new components say be added, old ones may be
deleted but what is not represented is *the run-tine" behaviour of
our model.

m - ar a | | ~s m remmBE • l| J J |J J I J J J J

In Figure 6 (some of) the activities surrounding the hiring of a
manager are displayed. Of course for each of the operations an
Operation Classification and Structure Specification and for each of
the object classes on Object Structure and Relationship Specification
would exist and could be displayed interactively to the
user/designer. Notice that the operation PROCESS STOCK OPTION viii be
triggered by the HIRE HRG operation in the sense of a data flow
diagram. It performs the necessary company actions to actually grant
the option. if this has happened and the complete description of the
person has been entered in the system then a congratulatory letter is
sent to the now manager.

Like for the other diagrams a knowledge based system is required to
present only those parts of the system behaviour that is of relevance
for the current activity of the user/designer. For example the
operation PROCESS STOCK OPTION will also be executed whenever a new
stock option is granted to an employee but this is not shown in the
displayed diagram.

PEROM INMEWIoR INTtW rrt

tin

Figure 6

Dehaviour Schema

SUIOTARY

In this paper we have attempted to argue that future data base
systems have to store and handle interpreted data - i.e. information
- and that consequently current systems have to be extended with
object and abstract data type oriented concepts. We have then
proposed an architecture of such a systam and discussed how the
designer respectively user may be informed about the object and
operations represented in the data base. We have only given an
overview of the respective features but more details can be found in
the references [6] through [12]. It is important to realize, hover,that the syst or which actually provides the i nformation to the
destgner respectively user will have to be very flexible and will
have to employ knowledge based and expert syste techniques t
present only the actually needed environmet t the user and select
for presentation format adjusted to the preferences aend knoledge an
the individual user. These concepts, however, are currently still
subject of research and it will probably take snoe trme until they
will become available in orae than smal experimental systems.prsntolyte cual needeviomettot- sr/n slc

REFERENCES

1 Weuhold 3. J., Walter B.: POREL: A Distributed Data Base
Management System, in: M. 3. Schneider (ad.) Distributed
Databases, North Holland, Amsterdam, 1982.

[23 Litwin W. (et al.): SIRIUS Systems for Distributed Data
management, in:
K. J. Schneider (.d.) Distributed Databases, North Holland,
Amsterdam, 1982.

[33 Rothnie 3. S. (at al.): Introduction to a System for
Distributed Databases (SDD-), ACl TODS 5, 1, 1960.

[43 Daniel S. D. (at al.): An Introduction to Distributed Query
Compilation in R*, in: H. J. Schneider (ed.) Distributed
Databases, North Holland, Amsterdam, 1952.

[5) Kerschborg L. (ad.): Expert Database Systems, Proc. First
International Workshop on Expert Database Systems, Inst. of
Information Management, University of South Carolina, 1984.

[63 Tsichritzis D. C., Lachovski F. H.: Data Models, Prentice-
Hall, Englevood Cliffs, (1982).

[7] Ollo T. W., Sol H. G., Verrijn-Stuart A. A. (ads.):
Information Systems Design: A Computative Review, Proc. of
IFIP TC8 CRIS I Conf., Worth Holland, Amsterdam (1982).

[63 Derrett N., Neuhold Z. 3.: Information Systems - The Next Ten
Years, in: Proc. of JCIT 1984, IEEE Computer Society, Silver
Spring, 1964.

[93 Schiel U.: A Semantic Data Model of Conceptual Schemas and
their Rapping to Internal Relational Schemas (in German),
Doctoral Thesis, Univ. of Stuttgart, 1984.

[10] Studer R., Horndasch A., Yasdi R.: An Approach to (Office)
Information Systems Design based on Generalized Net Theory,
in: TFAIS 1985, North Holland, Amsterdam, 1985.

(11] Studer R., Horndasch A.: Modelling Static and Dynamic Aspects
of Information Systems. in this volume, 1985.

[12] Furtado A., Neuhold E. J.: Formal Techniques for Data Base
Design, Springer Verlag, Berlin, 1985.

(13) Sernadas A., Dubenko J., Olive A. (eds.): Theoretical and
Formal Aspects of Information Systems, Proc. of TFAIS 85,
North Holland, Amsterdam, 1982.

(14] Studer, R.: Functional Specification of a Decision Support
System, in: Proc. of VLD9 79, Rio de Janeiro, 1979.

MANAGEWENT OF SOFTWARE FOR LARGE TEI-I AL SYSTEMS

H. Hailing

AD-P005 566

For the design, construction and operation of large technical systems, software
plays an important role. In this presentation some aspects of managing software for
such systems are discussed. The different classes of software during the project
phases and within the different hierarchical levels of a control system are outlined
and their relations to proper manage,nent are shown. In addition, the problems of
purchasing software and estionating the required time, budget and manpower for a
project are discussed. Emphasis is placed on practical aspects and examples are
presentd.

Introduction:

During the last few years I have heard of many projects, where the top project
managelnent had developed an uncomfortable feeling about computer based activi-
ties and in particular about software. This was especially true for all projects
where I was personally involved.

I think that this feeling has two main sources. Firstly, most of the project leaders
never wrote software themselves, so that an understanding of the kind and amount
of activities which lead to a useful product is missing. Secondly, it is a fact, that
the control of the progress of software development, even on a high level with only
a few milestones, is difficult. As a consequence, software and software producers
cannot expect to find enough credibility and trust.

In my opinion, only the attempt to demonstrate that software products play an

important role within a project and that software can be planned and kept under
control in order to fulfill its tasks within the project, will lead to better
understanding and trust. The following is an attempt to provide an overview
concerning software and its management for large technical projects, keeping in
mind that nowadays there is nearly no project activity where software is not
involved.

Management of software includes planning, control and correction of all kinds of
software activities through all project phases and levels of the control system.
Activities are requirement analysis, evaluation of products, purchasing, organisa-
tion of training, hardware layout, installation and maintenance of packages, system
tuning, preparation of user-friendly interfaces, structuring of databases, definition
of internal standards and finally producing software products where necessary.

Clearly nobody can expect all these activities to be treated in detail in this
presentation, but so, e of the interesting items are picked out, especially those
which have changed recently, or which are in a phase of rapid development.

• .. . l-- = m mmmim a lqll mi i a N H a m C

-2-

Project phases and their relaion to software,

Fig. I shows the important project phases and the software related to them.
Software which is relevant for all phases is project management software, control-
ling deadlines and budget in correlation with the achievements of single activities
and organisational support of the project.

The figure also shows that the software which is actually produced during the
project and the tools and utilities needed for these activities are only a part of all
the packages involved. For other fields of engineering like mechanics, electrical
engineering, thermodynamics etc. packages exist for the different project phases.
The results of such activities may be a valuable input for the process of producing
software for the control system.

Some of the packages like the control of cost flow or deadline control must be
accessible by everybody responsible for a part of the project during all of the
project phases. This implies a common database and communication system. At this
point, the question arises as to whether it is preferable to connect the relevant
teamr members 1. via dedicated terininals to a dedicated management support
system, or 2. to link the individual and most probably different data processing
systems into a network running distributed manage,nent software and database
systems. Solution I as simple and relatively cheap, but may later result in a variety
of independent dedicated communication stars. Solution 2 may cause an incredible
amount of work, may degrade the performance of smaller sytems drastically and
ma) end up with a different project where the programmers have to learn harsh
lessons about standards and compatibility without achieving anything for the
original project. Up to now such software is mainly running on mainframes, most of
which support distributed ter ninal services. Another package used throughout the
phases deals with organisational matters, including configuration control, docu-
nentation libraries, organisational comnunication etc.

Most of the software packages used in the earlier stages of a project are tools.
From the very beginning it is extremely efficient to involve people familiar with
the process to be controlled (lake physicists, chemists, process engineers, technic-
ians etc.). This implies the need to provide tools offering a proper man machine
interface.

During the design phase, many large packages are available which can only be used
by people familiar with the technical background concerning radio frequency,
layout of a reactor core, temperature control, mechanics etc. Some of these
packages apply finite element techniques, Monte Carlo simulations etc. and may
run for hours on a 32 bit minicomputer system, because mainframes often do not
guarantee short response times for interactive use. For these packages careful
time scheduling and night shifts have to be organized and often terminals "near to
the bed" are desirable.

Regarding fields like mechanics, electrical engineering, electronics etc.
CAE/CAD/CAM techniques are being applied. These packages are expensive and in
addition require special hardware and training. Harmonisation within a project is
delicate (see solutions 1 and 2 above). At this point let me give an example how
dedicated packages for a special engineering field might yield inputs to the
programner team working on the control system. Nowadays, if one is working on
the design of an accelerator, a set of packages exists in order to evaluate design
variants or the impact of misalignment etc. Such a package can be used by the
control people to calculate the accuracy of set points and the impact of deviations
(Fig. 2). Thus the transfer of information between t;ie two parties took place by
handing over a simulation package used by both to find out about different aspects.
I an not going to discuss further details concerning the software production phases
and their tools, because this is a topic this audience is familiar with.

S3-

Structure of control systems and its relation to software

Due to a variety of reasons, the programmable elements at the levej.) various of a
large control system are quite different (Fig. 3). On the lowest level programmable
logic controllers (PLCs) are number one for interlocks and sequencing. Due to the
specific problems and the kind of personnel involved, problem oriented pro-
gramning dominates. Positive results are predictable programming time and timing
sequences which can be calculated. Furthermore the robustness and interactive
testing as well as extended features concerning graphical programming and
improved functionality are advantageous. The weak point in the past was the lack
of proper communication between PLCs and higher loves. Meanwhile the situation
is changing.

Other elements of the lowest level are microcomputer based data acquisition
systems or systems controlling complex peripheral units. Nowadays such systems
are often based on micros and personal computers and programming is usually
similar to minicomputer programming concerning the types of languages and the
language environment including operating systems and communications.

The connection of low level elements between each other or to group control units
is done by serial field buses well suited to the harsh environment. As fas as
software is concerned, there is no standard communication at this level up to now.

The so called backbone communication system is on the way to be standardized at
least to layer 4 (transport layer). This requires up to 100 kbytes of interface
software but is the way to standard communication between low level elements and
minicomputer systems which are the basis for the elements of higher levels
(F ig. 4).

Functionally the higher levels can be divided into three groups. Process control
computer systems are responsible for higher level control and contain realtime
software either stand-alone or with a proper operating system and realtime
databases.

The second group is workstations or console systems mainly responsible for the high
level man machine interface. This is the place for interactive graphics, menu
libraries and in the future maybe even expert systems.

The third group is large minicomputer systems where the functional packages of
the higher levels can be run. These include large application program packages,
database management, all kinds of utilities and the communication software for
intersysten communication and communication with higher level computers like
mainframes or number crunchers. This minicomputer system runs the typical
software for development, configuration control, longterm database management
etc. (Fig. 5).

Evaluation of mftwue prodw

The amount of manpower and the experience of the programmers required in order
to produce software practically forces implementors to purchase software pro-
ducts. This is evident in case one needs operating systems, database systems,
compilers, utilities or tools. But meanwhile even application software or at least
parts of it can be purchased and tuned to meet the special requirements of a
certain application. The only problem is that unlike hardware, a datasheet for
software does not help too much. In general the products are so complex, that with
present technology only a careful evaluation of the product leads to useful
decisions.

-4-

Such an evaluation must be carefully prepared and result in evaluation specificat-
ions which contain what should be measured, how this should be done and in which
order and how the results are to be documented etc. This ensures that different
products are treated the same way. Fig. 6-10 show some examples concerning the
evaluation of a relational database and a distributed operating system.

Tools are very difficult to evaluate. The ideal evaluation would be to run a small
project applying the tools to be evaluated. The main advantage is that several
programmers take part thereby reducing individual human preferences and also
testing the cooperation between the group members. Definitly the introduction of
Ada should follow this line.

Programming languages do not have the importance in practise as one might think
when reading publications or listening to discussions at conferences. Actually most
people working in big projects are familiar with several languages and except for
very tricky programming, which is to be avoided anyway, they produce acceptable
software. But this is mainly true for programming "in the small". For global design
and construction, the language environment and the experience of programmers is
much more important than the programming language. Meanwhile the first
packages supporting programming "in the large" are reaching the market.

As a matter of fact, years ago in the scientific community many application
packages had been written in PASCAL. In the meantime most of the more
successful have been rewritten in FORTRAN, in order to exploit better language
environment and execution speed as well as portability.

Databases

There are different requirements concerning databases and their management
systems at the different levels of a control system. Therefore it seems quite
natural to apply different database structures and access methods at each level. At
the lowest level the databases consist of tables which are downline loaded by
higher level elements and which are updated in realtime. Part of the table contents
are continuously updated or read via the communication system.

At the process control computer level, realtime database systems are required.
Fast access and proper data interfaces to lower and higher level databases are
required. The structures are relatively stable, which means that read and write
accesses by far exceed insertions, deletions or additions; therefore access algo-
rithms are of high priority and can be adapted to the table structures. The table
structure generation can be a kind of compilation. The amount of data often does
allow memory resident solutions.

For the high level database, three features are required: Firstly, the volume of
data is increasing (to more than gigabytes). Secondly, the structures must be very
flexible. It must be possible to add attributes or change dependencies whilst the
database is in operation. Thirdly, the database must be accessible by many users or
programs at the same time. Such requirements are fullfilled by relational data-
bases. Their only disadvantage is low speed. For this reason a careful evaluation is
needed.

A proper cooperation between the databases mentioned may lead to a satisfying
solution where structures are defined and changed at the highest level which also
hold static data and where elements of the lower levels can be compiled and down
line loaded. Saving of low level element tables into the relational database can be
done triggered by events or time marks where slow responses are not important
(Fig. 11).

-5-

Inteqration of software

One of the most challenging tasks for the future of large systems is integration.
There are several reasons why integration is required and why it is taking place
now or will be necessary in the near future. The fast progress of control technology
is forcing companies to think about stable interface ports in hardware and software
and secondly large systems very often enforce vendor mixing where standards with
wide acceptance are a must.

As an example of standardisation efforts the MAP project initiated by General
Motors must be mentioned. Nowadays this company owns about 50,000 factory
floor programmable systems and this number will grow to more than 200,000 by end
of this decade. There are about 15 large vendors in creating and testing a
communication standard between all factory floor systems and minicomputer
systems of the higher level.

Besides communications, languages, database systems and tools are being standard-
ised on a world wide scale.

Standards and their misuse

Having the huge task of integration in mind, everybody is in favour of standards
which actually have been successful at all levels and worldwide. But there is also
some danger that standards are misused. Let me explain this by an example. A
graphics package is announced to be GKS compatible - what does this mean? Which
level of QKS? Eventually we find out that calls of the package are transformed
into GKS calls therefore being able to drive GKS compatible peripherals - but no
program issuing OKS calls could use this package.

The complexity of software standards requires additional information like precise
specification of test and validation programs especially addressing performance
measures like hardware requirements and execution times.

Education and training of software producers

The desired kind of education and the training necessary highly depends on the
project phase and the level within the control hierarchy. In our environment we
find two types of team members.

Firstly, young people coming from schools. Here the main problem is that
universities or engineering schools in general do nof teach system design or
programming "in the large" nor how to evaluate products or cooperate with
vendors.

Secondly experienced old fighters. They have difficulties with new technologies and
like their personal style of work which may be different from a common working
style based on a toolset.

My personal opinion is that conventional courses are not the right way of education
and training; instead I think that small projects or well defined subprojects at an
early stage of a project are the right way. Practical work has priority over
theoretical courses.

-6-

Manpower and ccots

Instead of a detailed analysis of these items which is not feasible in the time
available let me give you some figures gathered by experience and some hints
which we regard as useful.

For the low level control systems, the close cooperation of programmers and
system engineers is essential. It is efficient to put these programmers into the
groups working on the subsystems and let them support all testing of the
components to be controlled.

For the higher levels, teamwork is a must, using the same tools and referring to the
same definitions and formats. Complex software for microcomputer systems should
be written as cross software.

For the highest levels of the control software, the cooperation of application
experts in the software team is desirable. These people are also well suited to be
later the supervisors for an operator team.

Evaluation of software products takes at least 6 man months and may go up to one
or two man years if it is done properly. Probably the results of such evaluations
will find a wider dib.ribution in the future. An interesting form of early evaluations
are field tests, because for such tests the software is free of charge.

The cost of system software products like compilers, utilities, database systems
etc. is still relatively low compared to tools and application packages. The former
are in the order of 20-50 KOM while the latter go up to several hundred KDM.

I am not addressing the problem of hiring or leasing programmers, but although this
is expensive and it is difficult to integrate these team members, there is no other
solution provided that the market situation does not change. It is extremely
difficult to get experienced programmers.

The production of software is going to be very expensive so that the emphasis must
be laid on purchasing whatever fits the requirements and concentrating on inter-
facing and integration.

CONCLUSION

Software has become a very important part of a project and the resulting technical
system. Its managment is a complex undertaking from the very beginning of the
project far into the maintenance and development phase. Project leaders are well
advised to have close contacts with software technology in order to benefit from
its services and avoid t:i chaos caused by inefficient organisation and integration.

m cu

0' z
0 c

o: CC' -

-- C, C

c C IC
m m

C z ;
C V

-- Z

CL

W CC

C- -E 2 L- ,
2 Z

CI leCC C

te C -
c CLC

o~ I j C

~~ C. 'i -

c cC C.

ZCC Z

~ 0 T

Cc W C

~MANAGEMENT, SCHEDULE-, BUDGET- CONTROL

ORGANISATIONAL CONTROL & SUPPORT

MCAISSOFTWARE MANAGEMENT &CONTROL

ELECTRICAL E.E

MEHAIC

MECHANICS SOFTWARE

ENVIRONMENT

SOFTWARE SOFTWARE SOFTWARE TEST RUNTIME

REO.UIREMENTS D E SIGN CONSTRUCTION SOFTWARE SOFTWARE
t

REQUIREMENT DESIGN CONSTRUCTION TEST OPERATION

AC aUISITION MAINTENANCE

FIG 1 PROJECT PHASES AND SOFTWARE

- 21 .0

t24.
-22 .6

.014 --\-" - .

.02 "\-- 2.
/ " / /

.00.3
27 .0

S 60 c4 3 2 406 400

s 200 SP I &$.Z*11t -0 t8"% .Khc,,et

FIG. 2 SIMULATION

INJECTOR COMPUTER CLUSTER CENTRAL

CONTROL MAIN CONTROL ROOM FAST COMPUTER INTERCONNECT
CONSOLE { W0KSATO

FC FC FC FC FC

IDATA ACUSOPERATIONS NETWAORK DEVELOPMENT DATABASE
& ALARM I IMANAGEMENTI I &BACKUP I MANAGEMENT;_..- , ,, , 7

-S LAW - .r .

PROWAY

G C fLC LC G C LC LC LC ___ GCCL

FIELDBUS FIELDBUS FIELDBUS FEL BUS

LC LC LC LC LC LC iC LCLC LC LC L

- TIMING - -4----

CI I I
FC - FUNClON COMPUTER I ICI
SC - SECTION COMPUTER 'IEC-BUS I FIELDBUS

LC - LOCAL CONTROL . .
-m INSTRUMENTC

Fig.3 STRUCTURE OF THE COMPUTER CONTROL SYSTEM

Level

TeD-etam.odul. InI I Application
6.7 '1w L~uEqiVEL

________S____ _ jCOMMUNICATION

NET Session

MANAE

i L IMET IEC PROWAYI

{U Controller
I ~ k oTro/E C 0. 1 om m Unicaio

Ethernet
"ii Ff ToenBu

IEEE 8W.3 EEE 2.4 Unit

FIG.4 STANDARDS FOR COMMUNICATION

HEALTH PHYSICS CONSOLE ISYSTEM MANAGEMENT

TERMINALS PRINT ERS/PLOT TERS

DATABASE CNOEI MACHINE DEVELOIPMENT
"ANA ~CNSL R - - - - - -

mANAGER PHYSICS SYSTEM MANA. IFI SERVER I

FC L

HELHFAST COMPUTER INTERCONNECT :Q 10 IDATABASE,'
PHYSICS U ;EOY

ITA E OISCS

I J C OBE MTARGET -

LAN
-7

PROWAY TERMINALS

FIG. 5 CENTRAL COMPUTER COMPOUND

VARYING OF ROWS FUNCTIONS

_________DIFFERENT ACCESS

JOINED TABLE ACCESS
(only select function)

FIG. 6 STRUCTURE OF TESTABLES

z

7-J
0, u

1.2

I-1

uu

- I2

-1. 0 w I.z C
V) c-Z

o 0 0 0 0 0 0

(33S) 3Li.ll 3SNOdS3d

2/2r
k.tr

Lj CO CL

0 1- u L
0: Ln-cr1

W 0

VAx-750 mictOVAx

ETHERNdET

Datatransfet--

T MCECSS A PR9 S L A

IN IOUT I OUT

~Time -~

A-A

------ ----Time-------------- >

A-8

7 output-Signal "A' Output-Signal 'B

FIG 9 TEST SETUP

FIG~ ~61 10TS EE1 TO

DOCUMENT OPERATIONS MACIN ACQUIRED
DATA DATA PARAMETERS DATA

RELAIONA DATBASECONFIGURATION
REATNALEN DATE CONTROL. SPECIFICATION

MANAGMTSYSE IN FORMATION

CENTRAL LIBRARY -RETRIEVAL

LARGE SLOW DATABASE

CENTRAL~CONTROL
WORKSTATIONS

REDUNDANT CENTRAL
.... REALTIME DATABASE

MANAGEMENT SYSTEM

INTERFACE TO

T , OTHER SYSTEMS
i I I (SECUR(TY ETCJ

DISTRIBUTED I DISTRIBUTED
REALTIME REALTIME
DBMS DBMS

(SECT CONTR.) (FUNC. CONTR.)

LOCAL
CONTROL
(AREA OF

DATA DATA DATA DATAMODULE)
TABLES TABLES TBE

1/0 I/0 1/0

ACCELERATOR COMPONENTS

Figo11 DATA ORGANISATION

~IuI

6
S.

