

» - . e . .
"m 1.0 e l& k&
CMill= = 1
= : 22
£ e 20

'"ul 25 fia mie

M=== ===

i!—!

MICROCOPY RESOLUTION TEST CHARY

v

OTIC FILE Copy

AD-A183 434

PROCEEDINGS OF THE

SECOND EUROPEAN SEMINAR ON INDUSTRIAL SOFTWARE ENGINEERING

Freiburg, West Germany

9 - 10 May 1985

J
o

1i
E(’ ?
,‘ JAN 2 0 1567 3 %’)

87 1 29 082

COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART oF THE FOLLOWING COMPILATION REPORT:

TITLE: Proceedings of the European Seminar on Industrial Software Engineering

(2nd) Held in Freiburg (Germany, F.R.) on 9-10 May 1985.

To ORDER THE COMPLETE COMPILATION REPORT. USE _ AD-A183 434

THE COMPONENT PART IS PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY
AUTHORED SECTIONS OF PROCEEDING, ANNALS, SYMPOSIA, ETC. HOWEVER, THE COMPONENT
SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION REPORT AND
NOT AS A STAND-ALONE TECHNICAL REPORT,

THE FOLLOWING COMPONENT PART NUMBERS COMPRISE THE COMPILATION REPORT:

AD#: PO05 554 Thru AD#: PO05 566
AD#: AD#:
AD#: AD#:
FILLECTE Y
p—— AUG 2 6 1987 &
.jYs - E
S A
1/}’, S 5
N]
FORM j.'l..'\-:; ‘d;) I:u‘T"‘nf {\?f: been npproved . _
DTICMAR 85“63 ("‘ot':‘:t‘l; ?‘:?ﬁgsolo, s (.PI . DTIC TID

LA m e . e e e ——— o

m

Unc]assifieg
ECURITY CLA] H

REPORT DOCUMENTATION PAGE

| ——————————————————————
1a. REPORT SECURITY CLASSIFICATION

Unclassified

0. RMMARK'NGW D— ﬂ / X f? /367’

———————————————————————————————————
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION 7 AVAILABILITY OF REPORT
Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

unlimited

B T S ——————— e
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

R&D 5031-CC-02

6b. OFFICE SYMBOL
(If applicable)

6a. NAME OF PERFORMING ORGANIZATION
The Hatfield School of

7a. NAME OF MONITORING ORGANIZATION

Herts AL10 9AB

Information Science USARDSG(UK)
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
PO Box 109
Hatfield Box 65

FPO NY 09510-1500

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (f applicable)
USARDSG{UK) ARO-E AMXSN-UK-ZA DAJA45-85-M-0219
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Box 65 ELEMENT NO. |NO. NO. ACCESSION NO.
FPO NY 09510-1500 61102A 1L1611028HL7 03

11. TITLE (Include Security Classification)

(U) Proceedings of the Second European Seminar on Industrial Software Engineering

12. PERSONAL AUTHOR()H. Balzert, M. I. Jackson, P.
D. G. Morgan, H. Weber, R. Popescu-Zeletin,

dencker, H.S, Jansohn, G. Goos, E. J. Neuhold
G. Le Lann, M. R, Mouiding, J. Favaro, J. Hall

13a. TYPE OF REPORT 13b. TIME COVERED
Proceedings

fROM 9 Maz 8510 10 May 5

14. DATE OF REPORT (Year, Month, Day) NS5. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17. COSAT! CODES
FIELD GROUP SUB-GROUP
09 0?2 (V)

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Software Engineering

international programmes

range of subjects.

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

J It is now common knowledge that the announcement of the Japanese Fifth Generation
Computing Programme in 1982 led to the announcement of a number of national and
in Information Technology, including the Esprit programme.
These are popularly considered as being in response to the Japanese initiative.
However, the Esprit and the UK Alvey programmes had been preceded by some years of
discussion between industrial and government representatives.
overlap rather than follow the Japanese Programme and tend to cover a much wider
The Esprit Software Technology Programme 1985 is described,
followed by a report on the Japanese Fifth Generation Conference.
between the approaches of the two programmes is then made.

They, therefore,

A comparison

—

20_ DISTRIBUTION / AVARABILITY QF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
tg UNCLASSIFIEDAUNLIMITED same as ReT. Pomic usems | Unclassified
223._NAME_OF RESPONSIBLE INDIVIDUAL 225, TELEPHONE Area Code) | 22¢. OFFICE SYMBOL
Dr. James W. Gault 01-409 4423 AMXSN-UK-RI

SECURITY CLARSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

12

3/Veber
‘) /((An object-oriented database system: Object Base -

D G Morgaa

R Popescu-Zeletin L/é'. L/ '>/ (/) Aocession Po:i‘""

(*Unix is a trademark of AT&T Bell Laboratories)

IRDUSTRIAL SOFTWARE TECHNOLOGY '85

CORTENTS

TRRRY

Contrasting approaches to research into information technology: Europe and Japaa

DTIi®

copy
INSPECTED

“

Structuring mechanisms in distributed systems™ * — ,
> NTIS GRARI
- DTIC TAB

Le Lann \/ Unanneunced

Industrial local area networks i’%f;f‘f‘
- 14
R Moulding ; Distribution/
Fault tolerant systems in military applications , Availability Codes
K ' Avall and/or
- . . . v fet e
Favaro a3yt /it o0 o b Dist Special

Unix* - A viable standard for software engineering?

J A-/

Hall H[f) }'Iol

The ASPECT project

Y)) A
Balzert {)) 1)
Three Experimental Multimedia Workstations - A Realistic Utopia for the Office
of Tomorrow

I Jackson y 1) N Y

Formal methods: Present and future

: . e 7 el T
Dencker and H S Jansohn .«& My, .. u/atzZC{ fy/cj(< [fre ’
A Retargetable Debugger for the Karlsruhe Ada System t.“'/gh - C A
M b
Goos

. 4 ’
The Relationship of Software Engineering and Artificial Intelligence t/l))73

f% 3
J Neuhold
Objects and abstract data types in information systems

Hallxng ,)Y)(lln Cee e [6 /)C(:
Management of software for large technical systems

.—_-———'——‘_'—__—
Tois Gecament has beea approved
-”“dﬂﬂb

‘ L e ase e b
rom b ene e
Yy)

R AD-P005 554

THE ESPRIT SOPTVARE TECHNOLOGY PROGRAMME 1985

and THE JAPANESE FIFTH GENERATION CONFERENCE 1984

CONTRASTING APPROACHES TO RESEARCH INTO INFORMATION TECENOLOGY

D.G. MORGAN Research Director (Software)
Plessey Electronic Systems Research Ltd., Roke Manor.

The views set out in this paper are my personal opinions and should not
be taken as representing an official view held either by the Plessey
Company p.l.c., or by the C.E.C.

~~/ 1t is now common knowledge that the announcement of the Japanese Fifth
Generation Computing Programme in 1982 led to the announcement of a
number of national and international programmes in Information
Technology, including the Esprit programme. These are popularly
~onsidered as being in response to the Japanese initiative. However, the
.sprit and the UK Alvey programmes had been preceded by some years of
discussion between industrial and government representatives. They,
therfore, overlap rather than follow the Japanese Programme and tend to
cover a much wider range of subjects. Other differences in motivation,
funding and industry participation mean that comparisions between the
programmes are similar, to improve the national competitiveness in
Information Technology, such comparisions must be made.

—This paper started out as two separate papers but, as the planners of the
EWICS Conference placed them one after the other in the programme, it
seemed sensible to merge the two papers. Having brought them together,
an obvious next step was to compare the two approaches. The form of the
paper reflects this history. The Esprit Software Technology Programme
1985 is described, followed by a report on the Japanese Fifth Generation
Conference. A comparision between the approaches of the two programmes
is then made.

ESPRIT SOFTWARE TECHNOLOGY PROGRAMME 1985

What follows describes the work which was undertaken by the Software
Technology Advisory Panel in changing the shape of the Esprit
Software Technology Programme in preparation for bids to be received
during 1985.

Why should there be a need to restructure the Software Technology
Programme for 19857 The Esprit Software Technology Programme had
been in place for two years and a considerable reponse had been
received both to pilot projects and to the first call for proposals.
However, despite substantial numbers of applications, the overall
response to the first call for proposals was seen as disappointing
both by the Technical Panel and by the Commission. Disappointing
both in quality and quantity.

When the Esprit project was originally cobceived, Software
Technology was seen as being one of the major enabling technologies
required by the Information Technology business. On all sides
people complain- about the 1lack of productivity in software
development and the lack of availability of skilled staff.
Consequently when the programme was formulated it was allocated
funds similar to those allocated to the other major areas in the
overall Esprit Programme. When the call for proposals went out it
was made clear that the Commission expected an enthusiastic
respoase.

In formulating the shape of the Esprit programme the Commission had
taken the advice of an advisory panel which contained
representatives of many of Europe's leading electronics companies
that 75% of the projects should be large scale projects; that is of
greater than tean million £CUs. It was pointed out strongly by the
Software Technology Panel of the day that this was inappropriate to
the state-of-the-art of Software Technology and the sort of projects
that were Jjudged to be required in order to advance this field.
However the Commission's reply was that the proportion of large
scale projects applied to the Esprit Programme overall and was not
expected necessarily to apply to each sub-programme. In principal
therefore, this would leave scope for a number of smaller projects
in Software Technology. In the event the evaluation team the
Commission established rejected more than 50% of the proposals
received in the field of Software Technology. Sixteen projects were
placed, four projects were, after reconsideration, reassessed as
being suitable for support providing that their scope was reduced
and these projects were asked to re-submit during the last year. In
consequence the budget allocated to Software Technology was not
utilised. '

It is worth examining why there was this rejection of such a large
number of projects when the Esprit programme had received such major
publicity and why Software Techbnology in particular has such a poor

response.

There are many explanations and the following list is a

personal selection of what I think are the main problems:

A.

i,

It was felt that the Assessment Panel had applied rather
too academic a standard to the evaluation of the
proposals. This was a view I had held myself at the
time. However, the Commission did conduct an enquiry
subsequently into the performance of the Assessment
Panel and satisfied itself that it had in fact exercised
its remit fairly.

It has become clear that many smaller companies did not
feel that they were able to put in the investment needed
in order to enter a successful Esprit bid, and were
disccuraged by the thought of mounting a ten million ECU
project of which they and their partners had to find 50%
funding. There were smaller companies prepared to join
consortia who were unable to find partners.

Many proposals that were submitted were badly written.
They failed to meet the most elementary requirements of
a proposal in not having clearly identified objectives,
timetables or evaluation criteria.

The programme had been structured into a pumber of
different areas and bidders were expected to indicate
the area into which their proposal fitted. It was a
comment of the evaluation team that many proposals did
not seem to fit clearly into one area or another and
they attributed this to the non-specific nature of the
published Software Technology programme in the call for
proposals in 1984. It is worth commenting here that
this lack of specificity had been a deliberate policy of
the Software Technology Panel. It had been felt that,
in such a rapidly growing field, to impose too rigid a
view as to what research programmes should be undertaken
was to curtail the inventivness of proposals. In the
event this was probably a mistake, although at the time
seemed to be a very sensible approach. In drawing up
the new 1985 Programme this was particularly
addressed.

Industry was not prepared to invest large sums of money
in collaborative, pre-competitive research into Software
Technology, either because they were not investing in
Software Technology at all, or because it was felt, to be
too competitive a subject.

-11-

As a consequence of this poor response, in contrast to some very
enthusiastic reponses in other areas such as computer integrated
manufacture, the Commission came under pressure from ipndustrial
representatives to consider the reallocation of money within the
programme. The argument being that clearly there was not the
interest in developing the field of software technology. It is to
the Commission's credit that they resisted such movements in the
last year and in fact encouraged the technical advisory panel to
create a new programme which gave the opportunity to bidders to
catch up with the lack of support they had given in the first
year.

When the Techpnical Panel met again to start the consideration of
the programme for 1985, the facts given above were presented to
them and they were asked to reconsider what shape the programme
should have in order to achieve a more satisfactory response in
1985. In discussions which followed at Esprit Technical Week and
other occasions, it became very clear that there were two main
criticisms of the exisiting Software Technology Programme.

1. The published programme was thought to Dbe too
vague and was too sub-divided and therefore
appeared more complex than was intended. It was
difficult for proposers to focus on one aspects of
the programme.

2. Rather than needing to push the frontiers of
Software Technology forward, the real problems
facing Software Technology were that there was
insufficient practice and use of existing methods
and tools let alone the need to develop more
advanced tools. This had not been identified in
the published programme.

It is clear that on the surface this is not a particularly
glamorous message to put into what is thought to be a very forward
looking research programme. However, it is a commonly voiced
slogan that Software Technology is about creating a new discipline
of software engineering and engineering is about practical skills.
Examination of the world 1literature in the applications of
software engineering find relatively few papers on the comparative
evaluation of one technique against another in terms of the
practical development of large programmes. Much of the reason for
this is, of course, the great difficulty in carrying out effective
evaluations. In redrafting the Software Technology Programme
therefore these criticisms needed to be countered. A very large
software project contains all the problems of any project which
requires the co-ordination of the efforts of some hundreds of
human beings with widely different talents and personality; all of
whom are attempting to carry out an extremely difficult and
complex task to what are usually very tight time scales. Very few

-12-

projects are sufficiently alike to allow for close comparision of
different methods between different projects. Much of the current
drive of Software Technology is mainly an act of faith that the
techniques that are being introduced will lead to very much more
efficient software production. Certain trends, such as that
towards formality, appears self evidently beneficial as leading to
greater rigour and hence to bhigher quality and reduced testing
time on software.

Much of the published work over the last decade has indicated that
any large software projects have the majority of its money spent
during the period following the implimentation of the first
version of the software. However, it is perhaps not commonly
appreciated how government and commercial policy can affect the
shape of that curve. I am told by an emminent U.S. Government
official that many of the projects on which the early work of
evaluating life cycle costs were based, were in fact projects
created in an environment which allowed contractors to develop
complex unique software using their own standards, and in many
cases their own tools. The customer (in most cases the US
Government) would then be required to turn to that organisation in
order to have the maintenance and post design services carried
out. Commercial pressures and the need to keep a maintenance team
on software that was rapidly going out of date because of the very
rapid developments of hardware technology, meant that in many
cases the costs of such maintenance rose very rapidly. It is
thought that this could well have dictated the shape of some those
early urves.

It is interesting to compare the current attitudes in many
countries towards computer-aided circuit desigp with that towards
software tools. There seems to be little question as to the
desirability of software tools to aid complex design, but little
evidence that software tools are considered as useful. The
ability to measure, quantitatively, the product in the former
case must be a major factor. Until more effective metrics are
available, the introduction of software technology will be
hampered by the inability to be justified in commercial terms.

To turn once again to the 1985 programme, after recognising these
omissions of the previous programmes it was decided that a new
strategy should be adopted in formulating the programme for 1985. This
strategy can be summarised as follows:

1.

Software Technology was agreed to be still a major enabling
technology of systems design. Its main purpose will be to assist
in the more rapid introduction of new products and in the
reduction in total lifecycle costs.

13

Taken as a whole, Europe had an expertise in software technology
that was the equal, if bot superior to that in Japan and the
United States. However, its problem was that the expertise was
spread widely throughout Europe and the aim of the Esprit
programme should be to co-ordinate this expertise and to ensure
that it was adopted by industry.

The reasons for the lack of adoption by industry of existing
techniques were examined and it was felt that there were two major
factors, one was the cost of implementation of many of the modern
techniques and secondly, the lack of information as to the
benefits to accrue from these techniques available to middle
management. That is, the Project Managers within organisations
who, faced with the need to set up a project team for a new
project will, in general, use those techniques with which they are
familiar and whose benefits have already been proven. The lack of
such information at that level would obviously be a major barrier
to the adoption of new techniques.

Consequently, it was decided that a new class of projects should
be brought in to introduce software technology and to evaluate and
disemminate the effectiveness of the technology.

A programme was therefore re-cast:

1.
2.

3.

To provide a more precise statement of the desired projects.

To fit in with projects already placed including pilot projects

To alter the balance of projects towards supporting the adoption
of software engineering by industry.

This gave rise to a programme of the following shape:

‘be old matrix structure was thought to be too complex and was
simplified so that three areas were retained and a fourth introduced:

1. Theories, methods, tools.
2. Management and industrial aspects.
3. Common environment.

4. The concept of demonstrator projects which would allow for
the benetits of this technology to be demonstrated.

=14~

In reviewing this programme it was felt that the basic development of
Support Eanvironments and Tools were well covered by the SPMMS Project
and the PCTE Project. However, it was felt that new work was required
in:

1. Integration of hardware and software design.

2. Alternative and complementary metbhods of software development

° (in particular the co-ordination of the artificial

intelligence work which was tending to use functional and
logical languages).

3. Software engineering for small highly critical software (it
was felt that although most of the attention was being
devoted towards large scale software production there were
equally critical areas where a piece of software, pbot in
itself very large, would however form a very critical part of
a piece of equipment - for example an ignition system for a
motor car).

4. Metrics for software and for methodologies (this was intended
to be part of the greater examipation of the evaluation of
software problems).

5. The man-machine interface problem for tools and environment
(this was seen as being an attack on the major problems of
the cost of the introduction of many of these techniques).

6. Projects covering a wider application area.
7. The evaluation projects referred to above.

The shape of this programme was welcomed by the Commission as being a
more hard headed approach to the problems of software engineering and
the programme was given initial acceptance. However, a pnumber of

:mbers of the Commission and representatives of major electronics
companies then visited the Japanese Fifth Conference in November and
what they saw there, reinforced the Commission's need to re-examine the
aims of the overall Esprit Programme when they returned to identify
more demonstration projects.

-15~

They were very impressed with the clear cut goals of the Japanese Fifth
Generation Programme which had been set at the outset apnd which was
clear, had been adhered to. This contrasted with the very wide ranging
aspirations of the Esprit Programme which covered a very much wider
range of activities than that of the Japanese. It was felt that the
Esprit Software Epgineering and the AIP Programmes would benefit from
an even more focused approach in the future apd so efforts were made in
the first few months of this year to draw up a further refinement of
the aims of the Software Technology Programme and, in particular
encourage industry to get together in larger groupings to form large

scale demonstrator projects. In the preliminarly discussions however,
it became clear that many of the large companies who had been
enthusiasic supporters of the programme in its early years were now
seeing themselves as being faced with a resource shortage when faced
with the need to provide more support for new, very large co-operative
Software Technology Programmes, in particular in the absence of the
~enefits referred to above. On the other hand, nobody seemed to have
.ound the secret of encouraging smaller comapnies to Jjoin, although
various ideas had been suggested - for example - that a large
industrial organisation should act as the focal point for a number of
smaller proposals which would be gathered together under the managment
of the larger organisation. :

At the same time attempts were madde to identify quantitative goals
for the Software Technology Programme. The Japanese had announced at
the Fifth Generation Conference that they were considering starting a
software technology programme with the declared aim of changing the
degree of automation in the process of software development from 8% to
80%. Attempts were made, in a series of special meetings of technical
representatives of major electronics and telecommunications companies,
to draw up a similar set of goals for the Esprit Programme. Some
reluctance was shown by representatives based upon:

a. The lack of true measurements of current techniques against which
t0 compare improvements.

b. The usefullness of such simplified criteria in the current state
of software development.

C. the difficulty of adding such criteria to a programme now
well advanced, which had not been started with these criteria in
mind.

However, some targets were suggested although these have not yet been
officially published.

Further, it was considered that, in the major projects PCTE, SPMMS,
GRASPIN, together .with a new project to build tools backed upon PCTE,
the Esprit project had a major initiative in the mainstream of modern
thinking on the future of software technology.

s, o

-16~

¥hile there is much to be said for this line now being taken by the
Commission, it must be said that it was really rather too late to alter
the overall direction of the Software Technology Programme for 1985.
Only, when the results of this year's bids are revealed will we be able
to see whether in fact this initiative to encourage industrial grouping
to form major strategic projects has been sucessful.

David G. Morgan
30/04/85

-2-
THE JAPANESE FIFTR GENERATION CONFERENCE IN 1984

What follows is a personal impression of the Japanese Fifth Generation
Conference amplified by impressions of a number of visits made to
Electronic Industry Research Labs during the previous week.

History will show, I suspect, that the Japanese Fifth Generation
initiative has had a very major effect upon the interest in Information
Technology in the western world and possibly, in the world at large.
This interest was shown by the bundred per cent oversubscription to the
Conference which was held in November of last year in Tokyo. The
Japanese openness ip publicising the aims of their project led to great
eagerness amongst delegates to see just how far the Japanese have
progressed along their chosen path. However, in the two years that the
programme has been running, the world's press have, it would appear,
managed to embellish the aspirations of the Japanese project with the
‘=mpression that the Japanese were making a determined attempt upon the
artificial Intelligence problem. I was not present at the first
conference on the Fifth Generation project but I am assured by those who
were, that the impression was given at that time that the Japanese
certainly intended to produce "Thinking Computers". It was very
noticeable however in the opening speeches of the Conference both by Dr.
Fuchi and Prof. Moko-oka that they were eager to dispell any ideas that
the Japanese had attempted in the last two years to make any attack in
this direction. 1In fact Dr. Fuchi went so far as to say that they were
not tackling the Artificial Intelligence problem but they were preparing
themselves to generate hardware and software which would be the next
generation of the way in which Information Technology was implemented.

As the conference progressed many official speakers stood up and repeated
that theme and stressed that the attack on the Artificial Intelligence
problem would come as a result of international co-operation and that
there remained many years work investigating the application areas of the
Fifth Generation Technology that the Japanese were developing before
anything approaching Artificial Intelligence would be seen.

What then have the Japanese achieved in the two full years that the
project has been underway? First of all one has the general impression
that they have apparently achieved all their hardware targets for the
first stage and I will be talking about those a little later on. They
appear to be particularly strong in bhardware design and in the operating
systems software and they have developed a number of products which are
of a commercial standard and of wide applicability in their own right.

10

-3~

It was very noticable that they have a new generation of engineers widely
read in the current literature. Comments were made by more than one US
researcher that, the US AI community would be bhard-pushed to match the
number of young post-graduates who were presenting papers during the
Conterence. It is now probably well understood that the Fifth Generation
Programme is run by a central organisation known as ICOT to whbich
companies and state research labs have coatributed staff who work
together under a director Dr. Fuchi, towards achieving the goals of the
Fifth Generation Programme. What 1is perhaps not quite so widely
understood is that nearly every company that contributes staff to the
central project, has also got im~house research programmes which parallel
_Fifth Generation Projects. Each company's programme may not be of such
wide ranging applicability as the Fifth Generation Project, but in
general will be a sub-set of those activities which that particular
company feels is relevant to its commercial future. Since the major
Japanese companies are intensely competitive, it is quite likely that
there are three or four identical developments going on within Japanese
‘ndustry. These are not just replications of the ICOT programme, but
_epresents an extension and exploitation of the ICOT programme and builds
upon the experience being obtained by the engineers contributed to that
central team. So, for example, while the personal sequential inference
machine being produced by Mitsubishi for ICOT has a performance of 100K
Lips Mitsubishi are producing a similar machine with voice response,
image understanding and possibly faster performance. At the same time,
independently of ICOT, a further programme is being undertaken by the
Nippon Telegraph and Telephone Company, the state owned PTT which has a
programme underway which is probably larger than the Fifth Generation
itself.

The total picture therefore is of a well focused project which is
achieving its goals but because of the infrastructure of industry and
research within Japan is also creating a very wide and deep understanding
of the problems of developing tbese sort of systems and is providing a
very large industrial base on which any future developments can be
placed. It is not at all clear that similar strength and depth is being
created either in Europe or in the United States. Overall therefore omne

.0 say that the conference was an impressive statement of the efficiency
of the Japanese industrial machine.

What are the specific achievements? Figure 1 - an oft quoted diagram,
shows the way in which they intend to develop their system. They are
building a hardware base consisting of a relational database mechanism,
an inference mechanism, sophisticated interface bardware, all of which
linked together in an inference machine, of which there are going to be
two types, firstly a sequential inference machine and eventually a
parallel inference machine. Much has been said in the press about use of
Prolog, but it was very carefully stressed that Prolog has been adopted
as the operating system language for their hardware and that they have
not committed themselves to using Prolog alone for the implementation of
knowledge based systems, in fact many of the technical papers givenm at
the Conference were concerned with extending the concepts of Prolog to
include other paradigms such those embedded in "Small Talk" or in "Lisp"

B

-4-

and one delightful experimental system called "Tau" was demonstrated at
NTT which allows for tkhe switching of the three paradigms at will by the
operator. It was a considerable tour de force by the designer but it
wasn't at all clear whether the average user would be able to keep track
of the complexities that would be generated in baving such a wide range
of flexible approaches.

All the basic equipment promised for the first phase has been produced. I
will not go into details of such machines here because they have been
widely publicised elsewhere. However, in summary, these are; The
Personal Sequential Inference Machine operating system, SIMPOS which
relies upon 2 kernel called KLO. A number of demonstrations, using these
machines, of a somewhat trivial nature were shown at the Conference.
The development of the next generation of operating systems~KL1 and the
design of a parallel inference machine are well advanced. A relational
database machine based upon a binary relational] mechanism has been
produced and this also was demonstrated. The application languages that
hey are developing are two, there is ESP (a logic programming language
with object oriented features), and MANDALA (A knowledge programming
language being used to allow for the creation of knowledge representation
languages). These represent very powerful flexible tools for the
development of expert systems and research into knowledge based systems.
However, it was made very clear in discussion that there has been a
realisation by the research team that the problems they are faced with
are a good deal more substantial than perhaps were perceived at the
beginning of the programme. There was a considerable reservation
expressed about the way in which applications would be developed and it
was widely acknowledged that there is no body of expert knowledge
codified waiting for use and a great deal of work will have to be done in
order to achieve that.

One notable omission from the initial phase of the 5G programme was work
on speech recognition which early press commcnt had hailed as being one
of the major activities of the 5G project. However, it was made clear in
the introductory speeches that speech recognition and image processing
~as considered to be close to commercial exploitation by industry and so
.he government sponsored programme bad decided to leave speech
recognition to industry for the moment. The ICOT programme would take up
research in the intermediate phase. In visiting various companies, all
of whom were eager to demonstrate their speech recognition, those shown
were of relatively limited capability. The impression given was that most
firms intended to put into the commercial market place these machines of
modest ability with a view to opening up a range of applications. Further
research would then be done to enhance the capabilities of these
machines. However, having said that, there was a very considerable body
of work evident on simultaneous tranmslation both between Japanese and
European languages and between European languages and Japanese mainly
aimed at tecbnical literature or systems manuals. Demonstrations were
given which produced very passable translations at the first attempt
although inevitably some nonsense statements were made by the machine. A
particularly interesting application of simultaneous translation was
being undertaken at NTT where they were attempting to translate dramatic

) &

s -

] -5-

newvspaper statements of violent crimes. The subject matter was chosen in
order to provide simple language with very clear cut scenarios and strong
dramatic and contextual chabnges so epnabling the inference mechanisms and
semantic analysis to be undertaken more easily. From the evidence seen
these seem to be working remarkably well.

These machines have been developed, the software exists, the first
applications are being sought, but what are the immediate future plans?
The programme is said to be on course and so the general direction is
already given. However, the impression was formed that the detail of the
programie was not being expressed as clearly as for the first phase of
the programme but nevertheless there are some very impressive proposals
being put forward for this pext phase. These will be summarised under
p separate headings:

INFERENCE SUB-SYSTEMS

The parallel inference machine architecture has been designed
and a hundred processor prototype for hardware simulation has
already been built. The processing element and the multiple
element module of the real system has also been built. A
software simulation for the 1000 element processor has also
been undertaken and some work has been dome on interfacing it
with the knowledge based machine. However, a major problem
area that has still to be investigated is to what degree
parallelism is required in many of the problems to be faced
by the artifical intelligence community. Many papers refer to
calculations of the degree of parallelism required for specific
problems but such results as were shown seem to indicate that
parallelism of a much more modest level may well be adequate -
parallelism of about up to 16 parallel channels. This is
clearly a major research area for the future.

KNOWLEDGE BASED SUB-SYSTEM

The target here is to have 100 to 1000 giga-byte capacity with
a few second retrieval.’ They are 1looking at a number of
knowledge based machine architectures including distributed
knowledged based control mechanisms and large scale knowledge
based architectures, but there are many problem areas to be
studied. It was the opinion of a group of European experts who
met together under the auspices of the EEC Commission to
consider the outcome of the Conference that the knowledge based
mechanism being attempted at the moment, while very flexible,
may in fact incur very substantial overheads in carrying out
practical problems and future generations of knowledge based
machines may see higher levels of relational mechanisms
implemented in hardware.

)3

BASIC SOFTWARE

The kernel language for the parallel processor of the next
generation will be KL1 and so the plan is to build a processor
for KL1 together with its support environment and to plan a
further generation of kernel language based upon the experience
gained with KL1 and KLO. This would be called KL2. On the
problem solving and inference mechanism front they intend to
work on system methodology to achieve a problem parallelism of
100. This refers to the problems indicated above. They see
that an increased emphasis would be placed on co-operative
problem solving via multiple expert systems, a technique very
similar to the blackboard type of approach to large scale
information sifting and analysis problems. They have also
expressed an interest in moving to high level artificial
intelligence but from the comments made it would appear not to
bave any special insight into how this should be done, yet
exists. However, there is a clear wish to exploit the concepts
of knowledge based management and they have a programme to
develop knowledge based management software which will have
knowledge representation 1languages for specific domains and
knowledge acquisition tools. Time and time again the vast
amount of work still to be undertaken knowledge acquisition and
codification in order to implement problems on these machines
was emphasised.

INTELLIGENT INTERFACE SOFTWARE

There was a feeling that there is still a lot of work to be
done on the structure of language and they are planning to
develop or continue development of a semantic dictionary and
semantic analysis systems, sentence analysis and composition
systems, and produce pilot models of speech, graphics and image
processing interactive system. Some evidence was put forward
that they also .intend to tackle the intelligent programming
software problem. Although with the the advent of the new
software engineering programme, it is not clear how much
overlap there would be. But under intelligent programming
software they intend to continue with the specification,
description and verification system, software knowledge
management systems, programme transformation, proof mechanisms,
a pilot model for software design, production and maintenance
systems. This last item sounded to be very similar to the SPMMS
type of project already under way under the Esprit
Programme. Attempts will be made to build demonstration systems
to show off the the power of these new techniques.

| 4

-7~

These are a very impressive l1ist of goals and of achievments. They are
not however, unique. There was a general impression that the bardware
currently available is not dissimilar to that which is coming onto the
market at the moment from both European and US sources. However, there
is no doubt that the very wide base of techpmology and trained staff and
the ready availability of commercial systems and existing parallel
research programmes already under way in industry, represent a very
powerful momentum. It is clear that if the technology alone is going to
provide the breakthrough in the field of Expert Systems and Artificial
Intelligence, then the Japanese will achieve that breakthough. However,
they were very eager to ask for collaboration with other pational
programmes and to suggest that the real problem facing us in the future
is the application of tbhese techniques to real industrial problems. 1In
the open discussion at the end of the Conference there was some
scepticism voiced by representatives who felt that there was perhaps not
a need for this full range of technology for the present state of
understanding of Artifical 1Intelligence and Expert Systems problems.
Towever, one or two speakers - in particular Ed Fiegenbaum - demonstrated
that thinking was underway in the US into very deep koowledge based
systems which would require processing powers some two orders of
magnitude greater than anything being contemplated either in Japan or in
the rest of the world at the present time. It is clear that there are
problems already formulated in front of us which will require this
technology and this represents, possibly, a way in which countries which
do not yet bhave this level of techmnology and feel that they can not
pecessarily repeat the research, can in fact become very active partners
in this programme. That is by becoming involved in the codification of
the expertise which will then be implemented using the machines.

A COMPARISION OF THE ESPRIT AND FIFTH GENERATION PROGRAMMES

In conclusion, therefore, what can one say about the comparison between
the Esprit and the Japanese programmes? The Esprit programme was stated
to be a reaction by the European Community to the Japanese Fifth
feneration initiative. However, the Esprit programme is a very much

ider ranging programme, 1is dealing with a very different industrial
infrastructure, is covering a much wider geographical disparity both of
national interests and national boundaries and, because of the 50%
funding concept builti into the programme, cannot expect to achieve the
cohesion that the Japanese programme is achieving. 1 bave indicated that
it is my understanding that the EEC are keen that the Esprit programme
should become more focused but because the focal point is not being 100%
funded, it is difficult to see whether enough industrial goodwill can be
generated to achieve this same degree of cohesion as in Japan. 1If a 50%
approach had been adopted in Japan I think it would bhave failed. The
Japanese industrial experience seems to indicate that they bhave
relatively little direct government funding for intermal R & D and are
much more prepared to invest their own money iz "The Way Ahead'". They
are intensely competitive but this very competition leads to a form of
cohesion which, linked to their national characteristics, makes them very
competitive. One cannot help thinking that their selective approach to

/5

-8~

targets is a much more effective way of proceding than the way in which
Esprit is attempting to proceed on a very wide front at the present time.
They bave already completed a VLSI technology programme, they have the
Fifth Generation Programme which corresponds roughly to the Esprit AlP
activity, they are planning a software technology programme which sounds
remarkably similar to the Esprit Software Technology Programme and of
course the Sixth Generation project, announced as being planned to cover
research into the structure and function of the brain, if it gets off
the ground, will represent something much more advanced than is in the
present Esprit Programme but overlaps somewhat with some of the other
activities of research in the EEC, but in a more focused manner. Much
has been said about the way in which the Japanese are stealing the ideas
developed within Europe and the United States but many of these ideas are
generated in an atmosphere of academic freedom and the real problem is
that the Japanese are not stealing the ideas but exploiting them very
much more quickly than is European Industry.

However, on the positive side, there is no doubt that the Esprit project
is brought the European I.T. community closer together and industrial
lipks are being formed, as are those between universities and industry,
which will strengthen the community in future years. It would be
interesting to consider whether an ICOT-like team, or linked teams, would
add greater momentum to these areas of the Esprit programme which have
not received adequate industrial support. It will be interesting to see
what the outcome of the 1985 call for papers will be.

b:G:.io;gan.) U)
3.5.85

e

-THE ESPELIT SOFTWARE TECHNOLOC Y
FPRoCRAMME (9865

THE TOPANESE S * CENECATION
CONFERENCE 198Y.

CONTRASTING RAFPFRorCHES

7o RESEARCH NTo INFORMATION
JECHNOLOLY .

D.C MoREAAN

P ESSEY ELECTRONICS SYSTEHIS
ESEARCH U

Eowe MANOR

- o ey

CLERSEY —— - BUKE MANDR

17

—‘_”

ESPRIT SOFTWARE TECHNOLOCY TROCRAMME
(988

¢ RESPONSE TO |57 CALL FOR PAPERS
DISAPPOINTINC IN GUALITY AN QUANTITY

¢ GPEATER THAN SOJ, OF PPOPOSALS
REITECTED

* RoLE oF A 7yPe pRoJECTS.

CLESSEY ——— BOKE MAKD:

o o=

WHY THE REJECTION RATE ?

o DI THE RSSESSMENT PANEL APPLY
Too RCADEMIC R STANDARD ?

BADLY WRITTEN PROPOSALS

PROGRAMME TooO DIFFUSE

¢ SMALLER FIRMS DISCOURAGED.
e INDUSTRY NOT PREPRRED To INVEST ?

. WHEN PROGRAMME REVIENED BY
TECHNICAL PANEL IT NAS FELT 70 BE -

¢ Too YALLVE, Too SUBDIVIDED
APPERFED Too CoOHIPLEX,

e JONOPINLG
KEAL PROBLEMS

HHeH NERE SEEN AS !
= INSUFFICIENT USEFE OF
EXISTING METHODS

— LACK OoF ANpRENESS RY
MDPLE MPANACEMENT

OF BENEFI7TS OF S/ TECHNOLIE)

& WFAK ON MEASURE MENT aF
ngev—’/ 7s.

PLESSEY FOKE MAKDR

K0

i, - s

- — — e ——

WHEN PROCRAMME RECAST EFFORTS
KNERE MADE ToO :-

¢ PROVIDE A ~orPe PRecuSE
STATEMENT OF THE DESIEED PRoTeCTS

« |NCORPOPATE PLOIECTS STAETED

e SHIFT BALANCE OF PROJECTS
TONARDS ADOPTION OF S/N ENEINEERING

&Y INdusTRY

¢ OL) MATRIX STRUCTURE DISCARDED
THREE HRERS RETAINED

I. THEORIES, METHSDS AN To0LS

2. MANAGE MENT AND INDUSTEIAL
HSPEFCTS

3. COMHMON ENVIRCONMENT
4. DEMONSTRATO® FoTECTS.

FLESBEY: FOKE MAKDR

(ol

oy

L

SHAPE OF ‘85 PROCLAMME.

* (BRSIC Teoc8 AND ENVICONMENTS
NERE THOUERT 70 LE NELU -COVEFED

o NEN PROPOSALS WERE REQUIFED W

~ INTECRATION OF H#AED) NALE
AND SOFTNARE DESIENS.

~ ALTERNATWE METHoIS oF
SOFTMNARE DEVELOPMEN T

—~ SOF TNARE ENCINEEEINE F o
SMAL ~-SCrce , CRITICAL SOFT7RRE

- METICS
— MAN fMMACHINE INTERFACES.

— AC ACOVE &uvT Fokf A NIDEXR
RANCE OF TRREsT RPFLICA 7oA/

PLESBEY - ROKE MANKER

A A

P—— _—

COMMISSION CEpCTON To TAPANESE
5€ CcenerArio CONFERENCE.

¢ PEINFORCED CONCELN THAT ALF

AND S/ TECHNOLOZLY LACKED
CLEAR CUT THARGETS.

¢« LErropTsS MRIE 70 FOCUS THoEEAHTE
BY LAREER MNIUSTRIAL &ROUVPINGS

‘ ASKED FOR QUANTITR7IVE ECALS
(JAPANESE HAVE ANNOONCED TLANS
FoR s/ EACINEERING TROELAMME

To CHONCE PECEEE OF AULTErMATION
FKOM 2% 70 IOZ)

¢ TNDUCTEY RELUCTANT 7o IrdPOSE
GoALS RETRoSPECTIVELY

¢ WHAT WiLL B OUTCoME >

n-v-—/

PLESSEY POKE MAKRDK

23

JAPANESE S* CENERATION CONFEEENCE
NOYEMEER (FEH.

¢ CONFERENEE (00] OVERSO(D
(USSR RPPLIED 700 LATE)

¢ TPPANESE 6% cenNeerTion
TRoTJECT HAS FOCUSSE)D
NOELDE AT7enT1oN ON INFORMATION

TecyNoLocy

* Has BeEN OVERSO() BY WorRLPS
PRESS ((TRPANESE VIEK)

* OFFICIAL SPokeSMEN ERLER 70

PENY RTTACK ON ARTIFICIAL
INTELLIGENCE TROBLEM

o Al NILL REQRUIRE NorL) NiDE
COLLABORATIONS.

s sfe. pPepdEcT ACRovT NEXT ,
CENERRTION OF COMPUITEELS ONLY,

PLEESEY FillE MAKROR

<4

WHAT HAS 5% ¢ PRocrRAMME
‘AeyEVED To DATE?

s ALL TRRCETS for (°T PYAasE
MET .

¢ TRODUCTS ARE To CoMMERCIAL

STANDARDS AND HAVE INDEPENDENT
COMMERC/HAL POTENTIAL

e HAVE A NEN CENEEATIcn OF
RBLE SCIENTISTS AND ENEWEELS
VERY WELL FERP IN THE LITERATURE

¢ 1COT CENTEAL OFREANISRTION
WELL LIkED BY LESERECHYEES

Al CONTEIBUTORS To (COoT HRVE
ONN IN-HovsE PrRoE LHMMES

AME) AT IMPROVING UPON 1coT
FRobvcTs.

® NTT FOCRAMME INTs SAME RREA

T#cBARLY LiceErR, o
— RAYE MAKDL

FLEESEY:

A5

PRS- e SO

l FIFTH GENERRTION PRoIECT,

KNONLEDC E
INFoRMATIoN
PrRocCcESSING

- MAIN TRECET

ESPP
L0G10 .
TRoCRAIMING | ==— BRDEE
ﬂ KL ¢ :

HieHty TRRALEL

COMPUTE, f <4
BRCHITELTINE

< MaN TRRcer SIM

< Viss rzaswoz.osy \

PL EBSEY FOKE MARDOR

26

e ——- s -

‘ K APpLiCrTioNS . /

[
r INTELLIGENT INTELLIGENT
INTECFACE PROGCRAMMING
SOFTWARE SOFTWARE
! MopULE, MoDVLE

PLOCLEM SoLVIN ANONLEMCE BARCE
AnND MANACEMENT

INFERENLE SIN M S/N :
Moy, ODULE "

MANDARLA ‘ i
KERNAL LANGURGE KL1I

S VN

PACALLEL INFERENCE MRCHNE
~~ KNONLEDCE EASE MACI E

LKNéwLE.DGE FROCRAMMING LANG. '

| BASIC SoFTWARE SYSTEM i

PLESSEY ROKE MANOR

]

- gpEeIfic ACHIEVEMENTS

SE@UENTIF}L INFERENCE MPBeHINE
Gt Sim- P oe PSI

SOFTNARE Fof MAcCINE GuiLT
KL & LOGte P06 ot LasED.
3irPos

ESP = EXTENDEP SELF CONTRINED
PloLoc

KNoNLEDEE Foclrrmming LANCUACE

| MANDALR ;
i ‘N EARLY PRo7ToTYP=

f TRHEALLEL FoQESSINE HERNRL LONCVACE |

!
|
Ke ! | |
BeENe DESIENED |
!
l

PELRTIONAL DATARASE F1ACH INE

DELTA |
Bui T ‘

? SPEECY TROCESSING LEFT To INDVSTEY i

PLESSEY KOKE MANWOR -

et . —

— -

NaY AHERD.
LIFE CETTING MORE DierFicoer ?

INFERENCE SUB- SYSTEMS

(000 ELEMENT FRRALLEL Fi€oceSoR
SiMUeaTed — Hop MUCH NEEDED?
KNowLEDCE BASE) SYUR - SYSTEM
At 1S (oo — looo G1EA BYTES
NiITH FEN SECONDS RETRIEVAL,
— PRESENT STEVCTULE TaollrtrrinNg 7
885:¢c SoFTWALE.
SYKTEM METHODoroCY To ACKusyes
TRRALL BECISEF
LACK OF Copisied ANORLEDC .
INTELLICENT INTERFACE SoFTNARE
MAdor RETVITY oN STreueTURE
OF LANGUVAGE.
SPSanocn‘r'coN) DESceIPriont Y ViV,

OVE€ALL TEcHNolLocy NoT VASTLY
Aeapr oF US. EUT MoViné FAsTswe

PLEESEY FOKE MAKRDK

-

=Y

CoMPARISON OF ESFPIT AN
S8 CENERATION PROERAMMES

e SCPRIT MUCH WIDER SCoPFE AT FESENT
ESPRIT NoT TRVE FPeACTION TO
JAPANESE “PRO&RAMME

* Foem OF PRocrRAMMES KREFLECT
NATIONAL CHARARECTERISTICS

¢ JAPANESF " ToP DownN
ESPRiT " GoTrom P 7

e ECPRIT HAS HELPED To EB€iNC
COMMUNITY ClosERe FALTHouér +20ST

OF +7AJoR ERovPINGS HA) SOME
EFRRLIER CONTPCT.

8 FOCUSSED APPRomcH AFAPPEALS RTTRACTIVE
BT o) Wi Wie PeepvcE APPLICATIONS?

$) NHo ExPLoiTS WIS, |

!

o WOULh ICOT STYVE WORK 1~ .
Evkore ?
FLESSEY EOKE MAKDR
3 \.._‘\-

AD-P005 555

An Object-Oriented Database System: Object-Base

Herbert VWeber

University of Dortaund

Silke Seehusen

University of Bremen

Abstract

An object-oriented database system is a database system in
which the concept of abstract data types is used strictly for
descridbing and using the database. In consequence the data are
described in conjunction with the appropriate operations, the
only operations allowed on that data. The object-oriented data-
bese system Object-Base, presented here, allows a hierarchy of
data types. That kind of datadbase description enadbles the
system to be adjustable to very different application characte-
ristics. Different levels of user interfaces, from the unex-
perienced casual user to the sophisticated system programmer, are
provided. e

/

31

1.
2.
3.
3.1
3.2
3.3

4.1

5.

TABLE OF COBNTESRTS

nmnw.‘........,..........

iy Yet Another Dutabase System? . « ¢ ¢ ¢ ¢ ¢ ¢ o o «

Object-Base:A Database and Application-Generator System 7

End-User INterface . « v o« v ¢ v o o o o o o o o o o
Application Programming. . « ¢ ¢ ¢ ¢ « ¢ ¢ o o o o &«
Basic Interface: Relational Query Interface.

General Architecture of Object-Base. . ¢ = ¢ ¢ ¢ o » »
Schema Definition and Application Program Generation

sum«m&m'................

M. e & o & o © S S © & » S > S S o & 6 o o & o o

\‘l,v
&

10
12
18

19
22

1. Introduction

There are many database management systems (DBMS) available now,
and many of them are really good ones. Each of these DBMS is
supporting one of the different standard data models (hierar-
chical, network, relational). Many additional tools, e.g. data
dictionary, are provided for managing the databases. '

Most DBMS are designed for an administrative or commercial
environmeAt. For that application area they are universal. The
same DBMS may be used for a university's library and for an
inventory of an automobile producer. But the universality has the
disadvantage that the DBMS cannot be taylored to each application
environment. Such adjustifiability is important with respect to
e. g. minimize the effort for application programming on the one
hand and with respect to tuning the whole system on the other.

We want to cope with these problems when designing an object-
oriented DBMS. Object-orientation has become an important concept
in software development techniques.

The concept can be considered only in coherence with data ab-
straction (/Liskov 75/) and modularization. Thus it enhances
comprehensibility, correctness and maintainability of system
design and implementation. It has influenced newer programming
languages (e. g. ADA; Modula-2, see /Wirth 82/) and operating
systems. We want to make use of this concept in database systems
as well.

2. Wy Yet Another Database System?

Some deficiencies of contemporary data base systems and the
following new requirements motivate the newly developed database
system.

Eor in-situ database system asupport opn morkstation
somputers

Many existing commercial applications and many hew applic"ations
of data base systems seem to need in-situ data base services
provided at workstation computers. These computers provide
limited memory and processing capacity that may not suffice to
support generalized data base management systems of the kind
described above.

For application adjustable data base management

More importantly, however, the existing and the new data base
applications on these workstations differ considerabely and are
thus inadequately supported by only one standardized or genera-
lized type of database system. They are, hovever, not that diffe-
rent to justify a completely new database system concept for each
new spplication. It, therefore, seems to be attractive to have a
database system that can be easily adjusted to many applications
with the adjustment much less expensive than a complete redeve-
Jopment.

The new type of database system that is going to be described in
here is meant to be that kind of an adjustable database system
serving for a variety of applications on multifunctional worksta-
tion computere.

Eor different data model support

In-situ database management facilities on workstation computers
are different from the more generalized database management faci-

3¢

1ities in a number of other ways. First of all, they serve as a
tool in s narrow application environment with rather specific
requirements for data representation and manipulation. In those
environments data representation in a form most suitable to the
specific application is not only a wish but a very strong demand
in order to fulfill the in-situ service requirements. This addi-
tional requirement does not only ask for the support of different
data representations e. g. of different data models for different
application environments. Very frequently the supm(t of diffe-
rent data models (i. e. different views of data) in the same
application environment is a must. As a consequence the database
system for workstation computers should be adjustable to support
different data models in different installations of the system
but also in one installation simultaneously.

For semantic data model support

Since the data models supported by the database system are
supposed to meet the requirements of particular applications they
are usually expected to be semantically richer than, say, the
relational model of data. For the support of specific applica-
tions semantic data models that enable the representation of
static (1. e. declarative) facts and of dynamic ({. e. behavio-
ral) facts are needed to be supported by the system. The system
described in here is built to support in that respect.

For Complex Object Representation and Manipulation

Since the system supports a powerful abstraction mechanism arbi-
trary complex objects for specific applications may be defined
and represented in the data base. In addition, the management of
the workspace in main memory for complex objects may be simpli-
fied with taylored query facilites that do not fetch entire
complex object from secondary lémory but allow a selective re-
trieval of components that are needed at the time. This is not to
claim that all complex object representation and manipulatipn

35

problems for all types of applications are automatically solved
with the system. But the claim is made that Object-Base provides
all the facilities to adjust the system to different kinds of
complex object problems in a flexible manner.

For Long Iransaction Management '

Some more uncommon database applications require the execution of
transactions of very long duration (maybe hours or days). The
conventional transaction management schema is not adequate to
handle very long transactions. Object-Base treats every transac~
tion as a nested transaction if the data base objects it accesses
are composed in a hierarchic fashion. Therefore, the complex
object management along with the nested transaction management
schema are the prerequisites for the management of long transac-
tions. In addition, transactions only serve as a unit of consi-~
stency. Recovery from conflicts and failures in the execution of
concurrent transactions are handled with a different schema that
does not “undo® partially completed transactions but computes
"compensational transactions™ on data base objects affected by
not fully completed transactions.

For Iruely Casual User Support

In addition a new class of users comes into existence with the
advent of workstation computers in new application areas. They
are primarily interested in the use of prefabricated application
programs for a number of reasons:

-~ They do not have the knowledge and skills to develop their own
application programs, or

- they cannot find qualified personel for the development of
application programs, or

- they cannot afford to employ the rather expensive program de-
velopment personel, or

- they cannot spend the time and effort to get themselves edu-

36

r

-s-

cated in the program development profession, and finally
« they are not interested to get themselves involved in the
program development but think of it as a bought in service.

The users of the new in-situ data base systems are also to an
ever increasing extent of that nature. They want to run their
application programs but cannot involve themselves for the many
reasons mentioned above into the development of their own appli-
cation programs. It was assumed for\a while that modern high
level - nonprocedural - query languages like SQL would allow so-
called casual users to use a data base system. The group of
users, however, as it was characterized above, cannot or will not
be able to handle a high level programming language that hosts a
particular query language and/or the query language itself to
write its application programs.

Instead a program generation facility seems to support these
users in a much better way than general query facilities. The
program generation shall be accomplished through the synthesis of
application programs from prefabricated primitive building blocks
in much the same way as program generators built programs from
prefabricated macros. The group of users mentioned above is meant
to be supported by the Object-Base and its associated application
program generator as described later on in that paper.

For Low System Overhead

Last, but not least, many of the conventional applications of
databases are very static in nature. They are primarily used for
the same kind of standard applications over and over again.
Additions to the established applications are to occure seldomly,
existing applications almost never disappear.

The use of a database systems that supports precompilation and
interpretation of queries is not justifyable for this kind of
application pattefn. The existence of both increases the com-
plexity of the database management system considerably, increase
the general overhead and leads consequently to a reduced overall

37

£

performance. Systems that only provide a pre-compilation facility
are expected to suffice in many cases. The Object-Base i3 aimed
at being used for the stadle kind of applications mentioned above
giving its user a system of lower complexity and lower system
overhead. Because of its sdjustadble nature the system may, how-

ever, be enhanced by an interpreter facility later on easily when
needed. '

mmemmmnmnmm\mmn&

Although Object-Base has been developed especially to serve as an
in-situ data base tool it may of course also be used as a general
purpose data base system that serves as a central data repository
for a large community of different types of users. It can serve
in that respect if a flexible interpretative query facility is
not needed and the application environment only requires infre-
quent changes of application programs, integrity assertions,
access constraints etc. or if an interpreter facility is added on
later.

3. Object-Base:A Datadase and Applicetion-Generator Yystem
for Multifunctiomal Voristations

Powerful workstation computers supporting multi-user operating
systems like UNIX are increasingly used in many applicstions
areas like office automation, CAD/CAM, software development etc.

Al)l these spplications need to be supported by adequate data
management capabilities. Since the applications are rather diffe-
rent in nature different data base support function are needed
for them. The Object-Base is aimed at being an adjustable data-
base system for multifunctional workstations that can be taylored
efficiently towards different applications.

Workstation computers are also increasingly used by non-sophisti-
cated programmers but rather by end-users. They are primarily
interested in running pre-fabricated standard application pro-
grams. Database accesses are made possible for this type of users
through the execution of predefined standard queries.

Object-Base provides means to flexibly combine pre-defined simple
queries into complex constructed queries thus enabling the gene-
ration of application programs from pre-formulated %query
macros”. This feature of Object-Base is called Application Pro-
gram Generator.

Like any other relational database system Object-Base may provide
relational standard operations (e.g. SELECT, INSERT) on standard
data types (e.g. RELATION). These may be used by the application
programs and by sophisticated users.

Each user interface is provided by one or more modules, the
object descriptions. An overview of a very simple database is
given in figure 1.

Every end-user has his/her own view of the database, his/her

external interface s/he is interested in. The external interface
provides the end-user with operfltions s/he may execute with

34

appropriate parsmeters.

The external interfaces are thus different to extermal schesatas
(/ANSI 75/) of a conventional DBS. An external schema is a view
of data. And only standard operations (e. g. SELECT, INSERT) are
allowed on the data. An externsl interface is not meant as an
interface for an application program. It i{s designated to the
end-user who rarely calls the operations of his/her external
interface within \a program.

The description of the data and operations of the database is
performed in a modular fashion. The hierarchy of application
modules plays the role of a conceptual schema of the database
although the operations, normally specified within application
programs, are integrated. In figure 1 a simple module hierarchy
is depicted cc;nsisting of four modules only.

The application modules are based on the so called standard
modules provided by the underlying database management system.
They include basic operations and data types useful for speci-
fying the application modules.

The different user interfaces are discussed in detail in the
following sections.

External External Interfaces for
Interface, Interface, End Users

' \ Application Developed and
’ Hodule, Used by
Application
/ Developer
Application Application
Module, Hodulg
Application
Hoduleu
Standard Standard| | Standard Used by
Module, Modul ey Modul e Application
Developer and
Sophisticated
Users
Figure 1: Wodule Hierarchy of a Simple Data Base

rm g

e 10 =

3.1 End-User Interface

Object-Base is meant to support the truely casusl user who does
not have sn interest in programming data base accesses in a
higher level query language (e. g. SQL), but whose interest is
truely in the execution of existing application programs. He uses
the data base system in a "push-button fashion®. For that purpose
the user will de provided with s structured menu that allows him
to Select the application program he is interested in. He starts
its execution by prompting the identified application program.
This can be nicely supported with a mouse and a screen editor if
available. For this characteristic the system {s also called a
*push-button-system®.

Each end-user gets his/her own external schema that identifies
all his/her private interface entities he/she may want to make
use of in his/her access to the data base. The entities identi-
fied in the external schema are operation names that identify
operations on types of data objects visible for that user. The
operation names are associated with placeholders for parameters
the user is asked to supply prior to the execution of the opera-
tions. After all parameters are supplied properly the user may
prompt the execution of an operation.

Each operation name identifies s whole predeveloped application
program. An application program may describe a simple query to
seek access to one individual data base object or may descridbe a
query that involves access to many different data base objects
and computations on those objects. The user, however, never sees
the internal structure of the program that is identified by the
operation name. He/she also never sees the structure of that part
of the data base his/her application program is concerned with.

o4 X

e 11

Exmple 12

A forvarding agency for mixed consignaent accepts orders froa
customers who want to send a normally saall amount of wares froms
one city (sender-city) to snother city (receiver-city). The agen-
cy disposes different wvares onto one truck and sends the truck
with a disposition 1ist of the different orders on its way.

The user interface of the order acception is a combination of the
menue-technique and mask-handling.

The user first chooses the operation wished

Order Acception

Accept
Modify
Cancel
List
Info

choose operation:

The user fills in the form with the appropriate Parameters

Order Acception: Accept

Order Ht.).: (No. or N for new number)
Custamer (Sender): {Name and Address)
Receiver: (= ")
Weight: P (kg)

Special Issues: ’ (Text)

£111 in forms

43

12 -

The system provides sutomatic integrity inforcement. The execu-
tion of an application program will only be completed if all
integrity contraints that have been declared for dats in the
database will not be vioclated during execution of the application
progran. The system will recognize integrity constraint viole-
tions and notify the user of the asbortion of the execution of
this application program or prompt him/her to either change wrong
parameters he/she has supplied to the program or to aueply addi-
tonal psrameters etc. The system, thus, guides the user in the
work with the system.

The system also allows only accesses to the data base that are
legal for the respective user. The systen automatically checks on
the access privileges each user has been granted.

3.2 Application Programming

Object-Base supports the construction of the database for a
specific application and the associated application programs that
embed accesses to the data base. This task can only be accompli-
shed by professionals with a higher degree of knowledge on pro-
granming and data base management. They still do not need to be
sophisticated programming and data base experts. Object-Base will
support the definition of tha data base and of application
programs to the extent that users of the system in that mode may
concentrate on the analysis of the application and neglect de-
tails of programming and data base design. This will be made
possible through a generator facility that enables the simple
construction of data base schemata and spplication programs. For
that purpose the user will be provided with a system supported
very high level description and structuring discipline for ele-
mentary building blocks of data bases and application programs.
For this characteristic the system is also called an "application
generator®,)

44

————

-13-

In this mode the system provides support for the construction of
the data dase and of application programs from dbuilding blocks
through the definition of new building blocks and the re-use of
prefabricated building blocks, the standard modules and the al-
ready defined application modules. It also supports the formule-
tion of integrity constraints and acocess constraints in an unam-
bigouos fashion. A syntax-directed editing facility that is not
sn integral part of the Object-Base may de employed to pertially
sutomate the development and validation of the duilding dlocks
and their proper interconnection. \

The user gets access to an extended conceptual schema that iden-
tifies all entities he/she may want to make use of in the synthe-
sis of application programs. The entities identified in the
extended conceptual schema are module descriptions (/Weber 83/).

4 module description consists of
(I) the description of one type of data object,

(11) the description of all operations that may be applied to the
kind of data object described in the module (i. e. prefabri-
cated simple queries).

Example 22

The orders of the forwarding agency introduced in example 1 are
specified. This is a simple version of the module "orders" des-
cribed in pseudo-code. The module ®orders™ uses the module
Sorder"” managing one order. '

-‘.-

mxule orders
module interface
surpose: managing orders
oermanent data: ORDERS
operations: accept (Un sender_rame, from_city, receiver_mase,
to_city: NAME, weight: KG, charge: DM,
out Nof: NAT, charge: DM, message:MESSAGE),
cancel (in Nof: NAT,
Qut message: MESSAGE)
module body \
permanent data ORDERS = set of ORDER
operation accept (in sender_name, from city, receiver_name,
to_city: NAME, weight: KG) charge: DM
(qut No#: NAT, message: MESSAGE)
£all order_numbers.new_number (gut Nof);
call order.create (in Nof, sender_name, from_city,
receiver_name, to_city, weight,
charge,
out message)
end sccept

operation cancel (in No#:NAT, out message: MESSAGE) is
£all order.delete (in No#, gut message)
£nd cancel

end module orders

Application programs will be synthesized from pre-fadbricated
simple queries on data objects that have been described in the
respective module description.

Al]l the modules the simple queries are taken from to formulate an
application program are said to be the constituent modules of
that application program.

A nevly formulated application program will be made a constituent
part of a new (1. e. higher level) module with the composition of
the data objects of all constituent modules as its new data

Y (-

S S———-—

-‘S-

object. This features enadles the hierarchic composition of
spplication programs fros pre-fabricated building blocks. We call
the newly formulated module that hosts an application progras an
spplication program module (in short: application modles see
figure 1). After its formulation it becomes a pre-fadbricated
module for later use in other even higher level application
program constructions.

Example 3: .

Assume the forwarding agency of the proceeding examples is al-
ready managing a database for orders and one for freight charging
including the different tables for freight rates. The end-user
uses these two databases seperately. When accepting an order s/he
first calls the freight charging program to charge the freight
and then fills in the amount in the mask of the order acception.

There are the modules:

orders charging

L freight

order
!
|T<|| |T2| |T3| ITgI

tables for freight rates

If now the freight has to be charged automatically when inserting
an order the interface of the modules "orders" and “charging
freight® are used as part of the abstract level language provided

47

-‘6-

by the already existing sodule hierarchy:

dispatch
orders
orders charging
freight
\

The operation of dispatching an order would look like:

operation accept (in: sender_name, from_city, receiver_name,
to_city: NAME, weight: DM
out: Nof: NAT, charge: DM, message: MESSAGE)
_ is
£all charging freight.charge_freight
(4o from city, to_city, weight,
out charge, message)
Af message = ok then
call orders.accept (Un sender_name, from_city,
receiver_name, to_city,
weight, charge,
out Nof#, message)
a
end accept

Since a new service is provided the end-user interface may be
enriched now.

Changes in pre-fabricated application programs require the re-
compilation of the constituent modules of the application program
module that are effected by the changes only. Modules that remain
untouched by those changes do not need to be recompiled.

4E

-17-

Example A2

If no nev service has to be created dut e. g. the freight char-
ging itself has to be changed because of a new table of freight
rates, say T, has to be added. Then a new module, Tg, encapsula-
ting the new table has to be inserted in the module hierarchy and
the module "charging freight" has to be changed accordingly.
Because the interface of “charging freight” remains unchanged no
other module has to be changed. An end-user would not notice this
kind of naintainanec\.-.

dispatching
orders

r
]]
orders : charging freight to be :
: changed :
1" " T "N
1)
order Ty} | T2f | T3} | Tu|t| Ts[to be ;
f I added

Application programs may also be constructed through different
additional combinations of operations defined in pre-fabricated
modules. To enable application program synthesis through addito-
nal comdbinations of operations all modules that participate in
the new combination are needed to be re-compiled. All unchanged
modules do not need to be re-compiled.

4g

-

-‘8-

New application programs may also be built through the addition
of a module to the data base and through the replacement of a
module already existing in the database system. New modules can
be added by only compiling the new module and linking it appro-
priately to the set of existing modules. The replacement of
modules also requires the compilation of the new module and the
proper decoupling of the ancient module as well as the proper
linking of the new module.

3.3 Basic Interface: Relational Query Interface

In addition to the two interfaces mentioned above a third one is
provided that offers a truely relational query language for the
retrieval and change of data. The interface is somewhat subordi-
nate to the other interfaces in the sense that it is meant to
provide access to the basic data base objects. All user-oriented
types of data visible in the external schemas or in the concep-
tuwal schema are ultimately represented by unnormalized relations.
Anomalies in change operations will be avoided by tayloring
operations to each individual relation rather than by decomposi-
tion programs by using appropriate primitives of the relational
query language. Integrity constraints and access constraints,
however, may only be defined for individual base relations.
Object-Base used in this mode inforces only these kinds of con-
straints and not interrelational constraints. It therefore pro-
vides only in part what is now frequently termed "integrity sub-
system®.

Using this interface Object-Base acts like a conventional rela-
tional data base system. The data base appears as a collection of
base relations and querys may be formulated in a relational
algebra type query language. The use of the system in this mode
is reserved for sophisticated data base and programming pro-
fessionals.)

-,9-

The system allows the definition of integrity constraints and
access constraints for the dats bdase and of application into
Normal-Form Relations and the application of universsl query
operations. The user of the relational query interface will,
however, not be aware of the existence of taylored operations.
S/he uses the relational query language in its conventional way.
The Object-Base is capable of selecting the appropfiately tay-
lored operation on the basis of scope information supplied with
the re%ational query. \
The third user-interface is not necessarily restricted to offer
relational query processing. Other data models may be supported
instead or simultaneously with the relational data model. This is
made possible by the earlier described module replacement capabi-
lity of the system and by the encapsulation capability of each
type of data base object mentioned before.

4. General Architecture of Object-~Base

Object-Base is a multi-user system that allows a number of users
to concurrently use the system in different usage modes (see
chapter 3). The system is entirely strucured of separately com-
pilable modules. The modules exhibit a data encapsulation proper-
ty that enables a rather flexible reconfiguration of the system
through additions, removals and replacements of the modules in
the system structure.

An overview of the Object-Base is depicted in figure 3. The main
components are described in detail later on in this chapter.

5l

AR,

Interface
Support
Schema and Appli- High Level Operator
cation Program Query Execution Function
Definition
v
Incremental
Campilation
and Binding
Prefabricated Mul ti-user
Executable Database
Queries Functions

Figure 3: Gross Object-Base System Architecture

The only access to Object-Base is via the Interface Support. It
provides the different user interfaces described above. Additio~
nally but nevertheless neccessary is the interface for the opera-
tor. The Interface Support checks the identity of a user and
gives her/him access to only those operations s/he is allowed to.

_—

52

2 -

The Operator Functions include the operations for starting,
stopping and initisting maintainance operations, e. g recovery
operations. All these operations are neccessary for running the
database system.

The Schema and Application Program Definition supports the tasks
of database administration and application programming. Facili-
ties for defining, adding, deleting and changing modules are
provided. New and changed modules are compiled\and connected to
the other modules by the Incremental Compilation and Binding. The
executable code of the modules is managed by the component called
Prefabricated Executable Queries encompassing all programs of
executable queries of the database.

When a user initiates via the Interface Support the execution of
a query this query is executed by the High Level Query Execution
Only this component has access to the database via the Multi-User
Database Functions. The database functions encompass all func-
tions accessing the database, which are neccessary in a conven-
tional database system as well.

As outlined before the facilities provided by the system differ
from conventional system concepts. The differences will be des-
cribed below.

The general notation used here to describe and depict the system
functions is as follows: A system function is defined as a pro-
cessing element with its associated input and output and in
addition with the state data that are subject to changes during
the execution of the processing element. This may be depicted as
follows:

input elament

state
data

\

We may look at the data base system itself as an example for the
application of this notation.

query —3 DBMS

data

The processing element "DBMS" takes a query as an input and
produces a result and may change during its execution the state
data called "“data base".

This description schema will be used to describe the main func-
tions of Object-Base.

5.1 Schesa Definition and Application Program Generation

Schemas serve in Object-Base as in other systems as data descrip-
tions. In addition to data descriptions schemas also encompass

5Y

.23 -

descriptions of all operations applicadble to each type of data
described in the schema. A achema, thus, contains not only struc-
ture descriptions but descriptions of modules each oconsisting of
a data type description and the description of all operations
associated with this type of data. This feature supports later on
in the formulation of queries and application programs across

data units by combining associated operations of different mo- o

dules into higher level operation and ultimately into application
programs.

The data definition language enforces the definition of elementa-
ry building blocks of application programs along with the data
they are referring to in module descriptions. The composition
mechanism that is provided with the data definition language
enables the construction of modules in a hierarchic fashion. This
allows the definition of arbitrary data compositions in each
schema and the construction of application programs out of ele-
mentary queries associated with these data within a module.

The schema definition and application program generation function
may be depicted as follows:

Object-Base
Schema Definition acknowl edgement
Functions

textfiles

28 -

Incremental Compilation

After the definition of a data base schema in terms of modules
and after the hierarchical constructions of modules the resulting
module hierarchy may be compiled with the compilation function
provided in Object-Base. After its coapilation the schema con-
sists of executable modules, i. e. the compiled schema contains
now object versions of the data descriptions and object versions
of the application programs. The execution of the compiled appli-
cation programs may be initiated through the query processing
function provided by the system (see section on query processing
function).

The compilation function consists in fact of two subfunctions:
one that compiles individual module descriptions and a second one
- the binding function - that links a newly compiled module into
the already existing module hierarchy at its proper place.

56

P R —— ——————

-5 e
text files N/ DBS
oontaining Incremental
module Campilation
description Facility

objectfiles
containing

module
description

object files M / DBS
containing Binding
module Facility

descriptions

object version
of schema
descriptions

High Level Query Execution

acknowledgment

The system provides high level query facilities to support a
variety of different users with their own external schema and
their own collection of application programs associated with

their external schema.

-

Queries are not formulated by the end-user but rather by a data
base expert at schema definition time (see section on schema
definition). They may be formulated at a level of abstraction
most suitable for a specific application. Each external schema
represents, therefore, an application taylored query interface.

57

— - e —

The user only initiates the execution of a precompiled query at
his/her external schema by supplying the names of the applica-
tions programs and its associated parameters.

application
program names
and parameters

Object-Base
Query Execution

data

Multi-User Data-Base Functions

Object-Base enables the concurrent execution of compiled applica-
tion programs. The consistency of the data base in the concurrent
execution of application programs over common data will be
guaranteed since each simple query program and composed applica-
tion program (see section on the Application Programming Inter-
face) 1is designed to guarantee the consistency of the associated
modules' data type.

This in fact results in a new transaction concept and requires
synchronization to be orginized in a modular fashion. Provisions
for the modular synchronization of concurrent access to the data
base are dbuilt into Object-Base. This function is a sub-function
to the previously defined Higl-level-Query~Function whose ser-
vices will be used wheriever multiple spplication programs are
needed to be executed concurrently.

Since workstation computers are frequently interconnected in

local sres networks to ensble distributed computing, data manage-
ment services are needed to be distributed as well. Proviaions
are made in Object-Base to extend the system into a distributed
database systenm.

5. Status of the System

A first version of Object~-Base has been developed at the Univer-
sity\of Bremen (/Weber 84/). The development team consisted
mainly of students working on the project in partial fulfillment
of the curriculum requirements for a Diploma degree.

The project lasted for two years and lead to the specification of
the entire system and to the implementation of a rudimentary
version of it (running on the VMS operating system on a VAX
11/750). The completion of the system is planned. The purpose of
the first version is to act as prototype and so to verify the
statements that, hopefully, have been made plausible in this

paper.
6. Summary

Starting with the concept of abstract data types a new kind of
database system, Object-Base, is developed. The concept turns out
to be very fruitful as it leads to many advantageous features of
Object-Base.

- The system is adjustadble to very different application charac-
teristics. Thus it also supports in-situ database facilities on
workstation computers.

- Complex objects are composed hierarchically out of simplex
objects. High levels of semantic data models can be provided.

- For truely casual users 8 push-button interface can be
integrated into the aspplication module hierarchy constituting

H?

ool e, S —

the conceptual schema with the operations sllowed on the data.

= The schema description can be modified easily by addition,
deletion and replacement of components (modules).

Because of the object-orientation of Object-Base we think the

system to be relevant for the development of future database
Systems.

e

/JANSI TS/

/Liskov 75/

/veber 83/

/Veber 84/

/vWirth 82/

Interim Report ANSI/X3/SPARC
Groups in Data Base Management Systems,
FDT-ACM SIGMOD Bulletin H.2.

Liskov, B., Zilles, S.
Specification Techniques for Data Abstractions
in: SIGPLAN Notices 10,6, June 1975, pp 15 -\ 83

Weber, H.
Object-Oriented DDBS-Design
in: ICOD 1983, Cambridge

Weber, H., Seehusen S.
Entwicklung eines modularen Datenbankverwal tungs-
systems (M/DBVS/), AbschluBbericht, Projektgruppe
DBVS, Technical Report 8/84, University of Bremen,
Informatik (in German)

Wirth, N.

Programming in Modula-2
Springer Verlag, Berlin, 1982

.

AD-P005 556

Structuring mechanisms in distributed systems

Radu Popescu-Zeletin
Hahn-Meitner-Institut for NMuclear Research
Glienicker Str. 100
1000 Berlin 39
Germany

Abstract

The paper reviews some of the basic structuring mechanisms in dis-
tributed systems from the perspective of an wide-accepted reference
model (1S0/0SI). The acceptance of the model and its related stand-
ards by international bodies (IS0, IEEE, CCITT, IEC etc.) and the
computer manufacturers will have an important role in the develop-
ment of distributed systems based on available products. The paper
outlines the general framework and the requirements of distributed
systems and focus on the practical and conceptual problems in using
the ISO/0SI in the design of distributed systems.

JR—

1. Introduction

Not very long ago, the interface between the user's device and the
modem was generally regarded as the line dividing data communica-
tion and data processing. The past decade the network has crept
through that connector and has infiltrated in terminals, main

frames and frontends.

The user needs and a growing market of data communication have pre-
cipitated this invasion by calling for increased connectivity, high-
er reliability, lower costs in networking, support for interconnect-
ing heterogeneous devices and development of systems and applica-

tions dealing with communication /1/.

The result of this invasion is a large variety of products, archi-
tectures and systems for distributed applications. Recognizing that
the user and the manufacturer community have a difficult task to
get unscathed through the jungle of concepts and products, differ-
ent standardization bodies have developed reference models for co-
herent development and integration of concepts and products in the

field of data communication.

The paper outlines the major structuring techniques and analyses
the present output with respect to distributed systems require-

ments.

Chapter 2 gives a short overview on the rationales of the IS0-0SI

model and the used tools for hierarchical structuring.

Chapter 3 outlines the main structuring mechanisms and their ratio-

nales.

Chapter 4 describes from a personal point of view the state of the
art and what is needed and missing with respect to distributed sys-

tems.

2. The Reference model for distributed systems

One of the major problem of distributed systems is their inherent

complexity. This complexity is motivated by the combination of the

kl T p——

traditional fields in informatics: data processing and data trans-

mission.

The close assembling of the two fields to form distributed systems
despite advantages 1like: increased availability, parallelism, in-
creased reliability and performance, requires the reconsideration
of the problems and solutions in both fields. The aim is a distri-

buted system architecture where data-transmission and data proces-
sing are melting in one.

The complexity of distributed systems is motivated by:

- If the traditional data processing systems are designed for a
certain configuration, the use of DP-systems combined with data
networks permits a large variety of configurations to cuver a

large variety of applicatious.

~ If the traditional tele-communications networks offer highly
specialized services (teletex, videotex, terminal access etc.),
the distributed processing systems are required to perform a
variety of functions modelling a growing field of applications

and requirements.

- 1f the traditional data-processing is based mainly on sequen~
tiality, the natural starting point for distributed systems is
parallelism. Parallelism introduces a new way of thinking in

problem formulation and solving.

- Expected advantages of distributed systems like: higher availi-
bility, reliability and performance are paid internally by com-
plex algorithms which are characteristic for distributed control

of resources /[2/.

The well-known technique for solving complex problems is the de-
composition of the initial problem in a model of less complex prob-

lems also known as the architecture of the system.

At international level different standardization bodies have tried
to develop systems architectures with reference character for com-
plex systems. One example is the ANSI/tPARC model for database sys-

tems.

-4

For distributed processing systems the international efforts have

merged in the well-accepted 1S0-Open System Interconnection Refer~
ence Model (IS0/0SI).

It is probably interesting to analyse the term: Open System Inter-~
connection Reference Model, because it hides the aim of the model.

The scope is to interconnect systems which are open in their archi-
tecture to co-exist and co-operate with other similar systems. The
key issue is a common architecture which is flexible enough to al-

low changes without throwing away the whole system.

The method consists in describing a model of a network of Open Sys-

tems (necessary for OSI standard designers) as a network of models

of Open Systems (necessary for implementing an individual Open Sys-
tem).

The second characteristics is the reference character of the de-
veloped architecture, which allows to develop components and pro-

ducts with reference to an accepted reference model.

That means that the reference architecture must provide a precise
frame-work in which the internal functionality of Distributed Sys-
tems is clearly decomposed in independent components which encapsu-

late functions without influencing each other.

The precise formulation of the model address the external visibi-
lity of each component (layer) and the relationship between the

components of the model.

This technique allows products development for the different com-

ponents in a disciplined way.

The modelling technique of encapsulating related functions in mo-
dules and providing autonomous external visibility is closed to
the well-known concepts of abstract data types. The resulting archi-
tecture is a layered one which allows as well the discrete evolu-
tion of hardware and software in the different layers as the intro-

duction of new systems without making previous implementations obso-

lete.

b~

The reference character of the 0SI model has already and will have
a dominant role in future distributed systems since it imposes a
rigorous discipline by providing a logical frame-work for a complex

domain and for the development of products and systems to achieve
compatibility,

The adapted layering technique is characterized by two major con-
cepts (fig. 1).

The layer service: which is the set of capabilities offered at

the boundary of a layer to a user in the next higher layer. Note
that the service is an abstraction by which the capabilities
offered by a layer (in using all lower layers) are specified

and that the service definition is independent of any particu-
lar implementation.

- The protocol which defines the rules of interactions between
the entities which are situated in the same layer but pertain
to different systems.

It is obvious that by the definition of the service offered by
a layer and the definition of the service offered by the lower
layer the functionality of a layer is completely specified. Note

that different protocols may carry out this functionality.

The result of the conceptual analysis of distributed systems furc-
tionality is a seven-layer architecture. One of the key issue of
the model is the separation between data-transmission and data-

processing domains at the boundary of layer 4.

The first four layers provide an uniform communication kernel and
deal with functions necessary to provide and support a diversity

of topologies, error recognition and recovery mechanisms, efficient

transmission and costs optimizations.

A firm end-to-end basis for inter-process communication in which
all the above problems of data transmission are hidden for the us-
er is an essential feature for the developwent of distributed sys-

tems.

— e o -

Note that in this chapter we do not address the different products
and standards in the different layers of the ISO-OSI their advan-
tages and their weak points but the rationales for developing a
reference model and the model itself.

The upper three layers are probably the most interesting since they
address a domain which was influenced mainly by the traditional op-

{ erating systems and basic constructs of high-level languages.

. OS1 brings new influences in these functions focussing on communi-
cation and dislogue aspects which have been poorly treated in the
past.

Fig. 2 focus on an informal comparision among functions offered by
operating systems and programming languages on one hand and func-

tions offered by the Session and Presentation layer as described
now in the standards /2/.

3. Structuring criteria in distributed systems

Basically there are some general criteria for structuring distri-

buted systems. These criteria are:

-~ Space Structuring
~ Time Structuring

- Data structuring.

The structuring process in the distributed system design is depic~

ted in fig. 3.

3.1 Structuring in space

One of the important structuring criteria of a distributed system
-~ is its structuring in space. By structuring in space we do not mean
a mapping of the system in a certain topology but rather a logical
structuring in autonomous components. It is important to underline
the independence of the structure from the topology since this is

necessary for the open characteristics of the system.

&7

- . N et

It is also important to perform first a horizontal structuring in
space in components at the same level encapsulating functions from
a top-down design approach. The vertical space structuring will
then define the necessary functions in the layered architecture.
Note that OSI provide till now only vertical structuring and only
very few provisions for the horizontal one (MHS,JTM).

It is clear that the actual developed standards in OSI and the re-
lated products model co-operation between autonomous systems and
provide a framework to bridge mainly distances and heterogenity.

The horizontal space structuring is necessary for a distributed
application where components are tighly communicating to provide
one single application. In this class of distributed systems are
the fault-tolerant systems, resource sharing systems, real-time
applications and systems designed for high-reliability and per-
formance. The space structuring must provide horizontally in each
layer explicit address-spaces, which are governed by explicit pro-

tocols.

3.2 Time structuring

In order to be able to cope with the parallelism in distributed
systems an important aspect is the structuring in time of different
activities. This allows not only to exploit the distribution by

allowing independent, parallel processing but also to define the

best software and hardware topology.

Tightly coupled with time structuring are aspects like synchroni-

zation of parallel processing, operation, atomicity and data con-
sistency.

Again, the related ISO-OSI standards provide at this time only me-
chanisms for co-operation of point-to-point autonomous applications
and the user of the model has to deal with more sophisticated com-

munication aspects outside the model.

A very important point is the requirement of tools for validation
and verification of the correctness of the protocols and possible
sequences of events in a complex environment. The availability of

tools has to accompany the development of the distributed systems.

¢3
-8 -

3.3 Data ltructurigg

From the experience gained in the last years, one can classify the

different setructuring approaches of a distributed system in two
gross classes:

- Program-oriented

- Data-oriented.

Comparing the two approaches it seems that the data-oriented one
has a lot of advantages. By a precise definition of the data struc-

tures in each level of abstraction we gain clarity in the distribu-
tion.

The OSI-model provides a clear separation of the protocol elements
pertaining to a certain level and transparent data from/for the
level above. This supports the independence of the layers im the
model. The use of abstract data types concept to model the diffe-
rent levels and components in a distributed system is appealing in

this context.

Tightly coupled with data structuring principles are error-detec-
tion and recovery mechanisms. Walker made already 1977 the observa-
tion:

" For a large majority of applications, it is much more cost ef-
fective to expect failure to occur and to recover from them than

to aim for a totally fault-free system."

The encapsulation of errors in structural components allow the de-
velopment of error recovery mechanisms and though provides a high-
er reliability in the systems. The developed products and standards

in IS0/0S1 follow already these principals.

A good illustration is the design of the transport protocol clas-
ses 1 and 3 where the life time of a transport connection may span
more than one network connection uging recovery mechanisms from

network failures.

4, State of the art

The development of standards and the products within the 0SI model
have been influenced by the immediate market. They mirror a certain

class of applications in the field of office automation and telema-

tic services.

The field of applications which is now covered by the standards
‘ have the following characteristics:

The systems involved are autonomous (horizontal epace structu-

1 ring - same functionality in each system).

The applications in autonomous systems co-operate in point-to-
point communication regime.

= The different standards for each level have been developed to

bridge distances and heterogeneity.

Fig. 4 depicts the standards for each level

4.1 Open systems

The term open-systems hides the wish that each system will conform
to the reference model and will be able to comsunicate with all
other systems. Since nobody can forsee all the future applications
to be supported by these systems the wish is quite utopic. It is
interesting to observe which are the mechanisms to support this

wish.

The most important one is the provision of negotiating at service,
and consequently at protocol level the required quality of service.
Note that all standards at the different levels provide this capa-
bility.

The quality of service negotiation is specific for each level since
each level is designed to perform a certain functionality and is

represented by entities in a certain address space.

1C

- 10 -

R R R EEEEE—————

Note also that the negotiation takes place between at least three
partners: the two users of a service and the layer below and in
that negotiation all three partners way intervene. The result is
an agreed communication quality during the data transfer phase.
The quality of service is not the only subject for negotiation.
Since powerful esystems may communicate with weak systems the ne-
gotiation includes the set of primitives, subsets and functional

units supported by the two open systems in order to establish the
common denominator in communicationm.

That means that a system in order to be an open system has to ful-
fill at least some minimal requirements and that all systems have
to be designed in such a way that they can degrade their functiona-

lity if necessary down to a well-defined minimum.

A flexible negotiation and the ability to degrade to a 1level of
functionality imposed by the peer system is a new quality in soft-
ware and hardware product design. The negotiation rules of upgra-

ding/degrading s system are stated as general conformance rules

for each level.

4.2 Protocol Engineering

Thae agbove described techniques have been successfully applied in

the design of standards and their associated products in the ISO-
0OSI environment.

A new discipline has evolved which from literature /4,2/ is known

as "protocol engineering".

The term new is as always relative but it is important to note that
it is the only field in which:

- a. general model was developed and finalized before specific

standards and related products have been produced

- the development of the model and its related standards and pro-
ducts have been accompanied by the development of formal de-

scription technique, certification and validation tools.

7|
- 11 -

e e ————————

e

The domain of "protocol engineering” is depicted in fig. 5.

The development of standards for the distributed system follow in
their implementation some very precise steps, which mirror on one
hand the modularisation and hierarchical structuring and on the

other hand the involvement of different protocol engineering tech-
niques and tools. '

The wide acceptance of the ISO~OSI model and concepts by interna-
tional organizations like CCITT, IEEE, ECMA, IEC and of the diffe-

rent product suppliers is an important hint for the relevance of
the model in the future.

4.4 Some conceptual and practical problems

There are a number of general issues which are not supported or
not clear in the IS0-0SI reference model specification and its re-
lated standards. These issues appear when the network designer in-
tends to develop implementation specifications which are required
to conform with the standards and at the same time to offer prac-

tical solutions for the network design /5/.

1. Layer independence

As already mentioned the adopted layering technique is charac-

terized by two major concepts:

- the service definition describing the external visibility

H of a certain layer and

- the protocol definition describing the internal functioning

of the layer.

Although these architectural concepts aim to layer independence
the services defined in the related standards for each layer do

- not provide completely this goal. This is mainly due to the fact

that the services are defined as a three party communication.
The three communicating entities are the two users of the ser-

vice and the layer below as service provider.

7

-12 -

e e

The implication of this fact is that the specifications of the

services provided by each layer define the capabilities offered
by the layer and the behaviour of the two users of the service

in the layer above.

A neutral service definition without the involvement of the
behaviour of the entities in the layer above is probably the

only way to achieve the aimed layer independence.

Multicast communication

The IS0-0SI model provides provisions for point-to-point commu-
nication only. A large class of applications requires multi-
cast communication regimes (distributed data-bases, mailing and
tele-conferencing systems etc.). At the present time the user
of the model has to solve the communication aspects for multi-
cast applications outside the model. Multicast communication
introduces not only new addressing capabilities but also syn-
chronisation mechanisms to preserve the consistency of data, and
the atomicity of operations which are poorly treated or comple-

tely missing in the actual proposals. These aspects are essen-

tial for a large variety of applications.
Since one of the aims of the model is to relieve the users of

the wmodel of communication-oriented aspects, for this class

of applications the model failed its ain.

Layer entities

Another practical and architectural problem is the fact that
in the OSI Reference Model the existence of entities in the
next higher layer is assumed at connection set-up time (e.g.
Sesgsion Entities for the Transport Layer in the establishment
phase). This assumption is not true for wost implementations,
if the implementator cares for implementation efficiency and
so does not implement a multitude of dummy processes which have
to wait to be activated. That means that before a CONNECT indi-
cation may occur the creation of an entity in the Session Layer

has to be performed.

3

-13 -

B R R I E————.

It is not clear from the service specification which entity in
vhich layer has to enter the termination phase if the entity

cannot be created or when a deadlock situation occurs.

Dynamic change of the quality of service

The present documents specify the negotiation of the service
quality only at connection set-up time. There are many cases
vhere a dynamic change of the quality of service is required.
In the existing documents & quality of service may be changed
only by involving the termination of the conaection and then
by re-establishing a new connection with the new service qua-

lity. This schema is too rigid to too costly.

A practical problem in the network design is also the criteria
choice on how different quality of services at different layers

can be mapped.

Quality of service parameters

Some of the quality of service specified in the 1SO draft pro-
posals as parameters of the service primitives are difficult
to interpret if not impossible to support. For example, the
meaning of the negotiation of the connection establishment fail-
ure probability at the connection set-up time or of the DIS-
CONNECT failure probability is not clear for the user of the
service. Other parameters can be supported only in conjunction

with a powerful network management procotol specific to the lay-

er offering the service.

The requirement to guarantee a certain quality of service is
mandatory for a large class of applications (e.g. real-time).
The present standards and products cannot ensure a quality of
service during the life-time of a connection. The layer provid-
ing the required quality can only "do its best" without guaran-

tee.

)Y

- 14 -

6. Performance

Very often the network designer is faced with the question "Does
the implementation of the seven layers affect the network per-

formance and if yes how much?"

The answer of the question is not easy, because the pilot imple-
mentations build a network operating system on top of the exist-
ing operating systems in each host. The scope of the standards

in the OSI-environment is that the computer manufacturer has

to integrate these features in their operating systems for commu-
nication purposes.

The integration process has already begun and many manufacturers

provide already computers and workstations with 0S architectures

based on the 0SI-standards.

Conclusions:

The ISO-0SI model is an efficient tool for the development of the
distributed systems even if does not cover all aspects required
by distributed systems. It is a good begin since by adopting the
same reference terminology and design concepts minimizes the under-

standing overhead.

On the other hand since the manufacturers have adopted the model
for their product developments a large compatible product variety
is expected in the near future relieving the user of own solutions.

Wide-accepted structuring mechanisms of distributed systems and
the necessary tools to specify, validate and verify the design are

mandatory in distributed system development.

5

- 15 -

References:

1/

12/

/3/

14/

Mier, Edwin (1982): High-level protocols and the OSI
reference model, Data Communications.

Zimmermann, H.: On protocol engineering
to be published

Piatkowski (1982): Protocol engineering, Proc 1CC Boston.

Popescu-Zeletin, R. (1983): Some critical considerations
on the ISO/0SI RM from a network implementation point of

view IEEE Proc. Eights Data Compunications Symposium, Cape
Cod.

- 16 -

Figure Captions

Fig. 1l:

Fig. 2:

Fig. 3:

Fig. &:

Fig. 5:

Fig. 6:

Services and protocols in 1S0/0SI1

Analogy OS/Prog. languages and 1S0/0SI

(from H. Zimmermann "On Procotol Engineering")
Structuring mechanisms in distributed systems

Standards supported by different organizations
(from DATACOM 2/84)

The protocol-engineering domain

Hierarchical development of a distributed system.

07

- 17 -

CORRESPONDENT

nUSER a-USER
\ SERVICE PROVIDED LAYER
~)/ INTERFACE
PROTOCOL

ENUITY

\ SERVICE REQUIRED

T sLAYER

LAYER

INTERFACE

P

C

o1 LAYER

Fig. 1

TRADITIONAL DATA-PROCESSING 0. S5, 1.
Operating Systems{ Prog. Languagesi] Session Layer Pres. Layer
functions functions functions functions
RUN Estab. Sess.
Enqueue/Dequeue Send/Receive
Post / Wait S/R Expedited
Semaphore Token
Co-routines TWA dialogue
Procedure Call (Part of TWA)
Data Types Syntax
Declarations Syntax
Negotiat.
End Release Seass.
Check Points Sync.
Restart Resync,
)

Time structuring

Rorizontal sp. structuring

i

Verticsl sp. atructuring

YSTEM

ARCBITECTURES

Data atructuring

TOPOLOGY RVICE & PROTOCOL SPEC
Fig. 3
1SO-0S! ECMA SNA Transdata Xerox Teletex FaX Gragoe 4
Arwencung ECMA-85 I End User Enctentzer Soumghone I ™ ' Scanrer .
Dateda-sien Presentanon Talf
;.soﬂ:lun " ' E”D::: Nmks :‘:’::"‘“ se S:('::C-\oov
Couner
Promcol
Kommurms- Vermnoung l
wrsnesenng ECMA.TS Dats Flow Benuzedens! se
Sesmon
Trantmesuon , .
Cortrol
*rarapont ’ L gling)
o o e — o '
Cores
g Vertmdurgs-
:.'_ﬂ ECMA-2 g s
Schenn ECMA TY ({0 APS
Dets Lyw Ew& SOLC [+ X aPx
M.teragung ECMA-S7 X7 ve
Prymcsy ' E%ﬁ ° V-Sene Woterr
Fig. 4

79

VALIDATION
AND
RTIFICATION

MODELLING
SIMULATION

‘ DESIGN "

’PH TLOSOPHY,

Y

DATA STRUCT.

SPECIFICAT

Fig. §

¥ O

Performance
analysis

Test seq.

generator

Product
tester

N.Protocol
specificat. Syntactic

Semantic

Compiler

N-1 Service
specificat.

Fig. 6

AD-P005 557

INDUSTRIAL LOCAL AREA NETWORKS

G.LE LANN
INRIA
PROJECT SCORE
B.P 105
78153 LE CHESNAY CEDEX
FRANCE

TR

ABSTRACT

Such real-time applications as command-and-control or process control have
been using computing systems for some time. Recently, with the advent of
distributed computing systems, more attention has been paid to the real-time
communications issue, Industrial local area networks are those sub-systems in
charge of handling real-time communications. Requirements to be met by such
sub-systems are presented. Recommendations for standards as currently
proposed by the IEEE 802 Committee are discussed (the reader is supposed to be
familiar with these recommendations). Finally, future trends and possible
. evolutions of industrial LANs are identified.

| ——

1. INTRODUCTION

In 1964, when Rand Corporation completed its D.O.D. report entitled "On
Distributed Communications" | BAR 64 [, only a few people had an idea of how
digital communication was to impact our world by the end of this century.

A few years after the DOD-Arpanet was started (1969) and became a tcol used
by thousands of people, public packet-switching data networks were installed in
a number of countries.

These data networks are built out of existing analog telephone networks and are
intended to offer reliable communication services across medium to large
distances. More recently, the need for offering identical services over short
distances has been widely recognized. The major driving force in this area has
been Xerox which developed a local area network, called the Ethernet. In 1976,
several versions of it were installed and used in a number of Xerox locations for
the purpose of experimenting local area networking technology and assess its
usefulness in the perspective of office automation.

Since then, and because of the importance of the office automation market,
local area networks (LANs) have mushroomed.

Faced with anarchy, users and manufacturers feit it necessary to establish
common rules and standards for this new market. In Europe, in the U.S.A.,
committees were put to work (ECMA, IEC, IEEE). In 1985, the IEEE 802
Committee has become the focus point for LAN standardization activities.
Proposals approved within this Committee are forwarded to the International
Standard Organization (ISO) before they can be adopted as international
standards.

Bearing in mind that the IEEE 802 Committee concentrates on office-oriented
LANs, one could consider that the 802 proposals are of no concern for real-time
application oriented LANs, such as LANs installed in factories, plants,
workshops, etc., which we will refer to as industrial LANs.

The main purpose of this paper is to discuss the most prevalent characteristics
of 802 "standards” in the light of the communication requirements usually found
in industrial environments as well as to identify some possible and/or desirable
evolutions in this area.

2. COMMUNICATION REQUIREMENTS IN INDUSTRIAL APPLICATIONS

Industrial applications come under a large variety of different flavours.
Automation in the industrial world is a continuous process, more functions
becoming gradually automated and new functions being devised only because
automation technology is there.

It is therefore a bit risky to state communication requirements without being
very specific about both the type of application considered and the time at
which such requirements are identified. Furthemore, it is not possibie, in one
paper, to describe in great detail all the various combinations of communication
requirements, We will then take a simple approach and present those
requirements most often encountered. We will leave to the reader the task of
choosing which of these requirements apply to his/her particular application in
the near-term future. ‘

2

2.1. Robustness requirements

Robustness is to be taken as a combination of reliability and availability
requirements. Both of these terms have received widely accepted definitions
| RAN 78). Robustness can be achieved by the use of fault avoidance
techniques (which result in the production of highly available modules) and by
the use of fault tolerance techniques. It is admitted that it is only through the
use of fault tolerance techniques that one can design and build a system (a
communication system in our case) that achieves any arbitrary high degree of
robustness.

* We would like to stress the importance of robustness requirements and warn the

reader to guard himself/herself against such false soothsayings as "the hardware
will get more and more reliable", "errors are not all catastrophic", "exceptional
situations can always be handled by human operators", etc... It is well known
that what can happen does eventually happen. Situations thought to be "almost"
impossible to occur as well as - and this is the worst aspect - situations that
were not even predicted have the unpleasant property to show up one day or
another. The more complex a system is, the more likely it is that "improbable”
and faulty situations will appear.

Also, the “intrinsic" reliability properties of some hardware element do not
mean too much, for the actual reliability depends greatly on the physical
environment and on the level and type of noise.

In industrial applications, wrong computations (in the algorithmic sense) and
wrong timing (in the chronological sense) are the enemy. Note that a valid
computation, if performed too late, might result into a faulty behaviour of the
system, This applies also to industrial LANs. It is then better for an industrial
LAN not to deliver a message from time to time (because correct delivery was
not possible) rather than to deliver incorrect messages. It is in general difficult
or impossible to "compensate" the effects of a wrong output in a real-time
environment. The consequence of this observation is that robustness issues and
timing issues (see section below) cannot be addressed separately | MEY 80|,
although the requirements can be expressed independently.

Robustness requirements for industrial LANs can be derived from quantified
objectives of many continuous/discrete process control systems, e.g. less than
one fatal failure in five years or probability of a fatal failure less than 10-9 for
ten consecutive hours, Clearly, LANs must be designed in such a way that they
will assist in the repair process, by automatically providing outputs of internal
tests they perform regularly. Repair interventions should not be needed for a
LAN to continue to operate correctly. Fault detection and recovery or fault
masking are definitely needed. They are the two facets of fault tolerance
techniques which, as indicated above, are the only viable approach to the
construction of robust LANSs, ’

Fault tolerance is based on redundant hardware (e.g., physical links, physical
communicating equipments), redundant software, (e.g., communication
protocols, processes), redundant data (e.g., messages, system states). A small
number of prototype or commercial LANs use some form of redundancy. Their
robustness capacity is limited in the sense that it cannot be increased at will, so
as to meet specific user requirements, What will be needed in the medium-term
future are LAN architectures that are designed in such a way that they do not
impose any artificial limitation with respect the degree of redundancy
necessary to achieve a given degree of robustness.

4

153
i

The market for fauft-tolerant systems in general is enormous and the fraction
of it that will be captured by vendors by the mid-80's is estimated to be only in
the order of 34 % | YAS 82 |. Robust industrial LANs have a bright future.

2.2. Timing requirements

An industrial LAN is the backbone of a distributed computing system that has
to perform a number of tasks in "real-time", i.e. under specific timing
constraints. For critical tasks, deadlines cannot be missed for this would
constitute a system failure,

The tasks that must be performed by an industrial LAN are message passing
tasks. Messages may be obtained from/sent by sensors, or sent to actuators, or
communicated among processors and programmable automated devices. It is
possible to identify different types of timing requirements. We will simply
present three types of timing requirements, in increasing order of complexity.

In this presentation, occurence of faults and errors is not taken into
consideration and a physical time reference, common to a LAN and its
environment, is supposed to exist,

Among the various time variables of interest, let us concentrate on access

delay, i.e. the time elapsed between submission of a message and its actual
transmission on a LAN physical medium,

2.2.1. Probabilistic-timing requirements

Such requirements are expressed as probability distribution functions, with no
upper bound. Access delays are charaterized by an expected value, a variance
and/or a confidence interval (e.g. 95% of access delays less than or equal to 600
ms). The environment is assumed to be able to tolerate (possibly largely)
varying and theoretically unbounded transmission delays. Probabilistic
requirements correspond to curve P in figure 1.

2.2.2. Deterministic timing requirements

Timing requirements are deterministic when the existence of an upper bound is
guaranteed. In other words, there is always a predictable finite number of state
transitions between message arrival and message departure, for any given
message.

(i) Promptness requirements

Acces delays are characterized by an expected value, a variance and an upper
bound. Such requirements correspond to curve DP in figure 1.

(ii) Timeliness requirements

In addition to promptness requirements, it might also be necessary to require
that tasks are not run before physical time has reached some value. Thus the
need for knowing a lower bound for access delays. Such requirements
correspond to curve DT in figure 1.

PROBABILITY

DELAY
>

Figure | : Timing requirements

2.2.3. Comments

Timing issues are very controversial. Being at the root of problems difficult to
tackle correctly, these issues tend to be ignored or treated very superficially,
There are a number of myths used to convince users that timing issues are not a
problem per se.

Some of the claims used by advocates of a probabilistic approach are as
follows :

- measurements demonstrate that LANs are under-utilized (e.g. 15 % of
available bandwidth) ; consequently, all messages are transmitted as
desired

- all systems can fail and/or can become overloaded ; therefore,
deterministic message handling cannot be guaranteed under all
circumstances.

These claims are defeated by advocates of a deterministic approach as follows :

- measurements are only valid for the systems on which they are
conducted, and they reflect some instantaneous utilization mode ; what
about future evolution ? Who predicted traffic jams in 1925 ?

- reasoning in terms of average values, measured on time intervals which
are orders of magnitude bigger than the sampling period of some external
phenomenon to be controlled, is totally mi.leading and has no relevance
at all in a real-time context. It is indeed the case that traffic peaks exist
on small time slots and it is the case that such peaks must be absorbed in
predictable time by a LAN.

- it is precisely when faults or overloads occur that the behaviour of a
LAN must be predictable. Considering the occurence of faults as an
excuse to overiook the timing issue would be equivalent to argue that
because drunk drivers are the main cause of car accidents, it is then not
necessary to equip cars with safe brakes.

2.3. Flexibility requirements

The notion of flexibility results from the recognition that physical systems in
the large sense (mechanics, living beings, etc...) are affected by the passing of
time. Human needs evolve, physical equipments break, new technologies are put
to work and so on. All this above, when applied to LANs, leads to the notion of
LANs that one should be able to modify at unpredictable times for the purpose
of making them meet their existing specifications better or meet more
sophisticated specifications. ’

The most important types of flexibility requirements are related to
functionality (evolution of the services provided), implementation (integration
of technological advances) and topology (evolution of the physical dimensions).
Of course, it must be possible to perform these modifications without disrupting
the functioning of an industrial LAN.

Intuitively, designing and structuring an industrial LAN with the aim of
achieving all kinds of flexibility properties bears some similarities with
designing and structuring with the aim of achieving fault-tolerance. Differences
stem from the fact that "modifying voluntarily" a system allows for the
execution of an explicit "separation" procedure before the actual modification
takes place, which cannot be assumed to hold when faults occur.

Therefore, there are similarities for the structuring principles only. The types
of algorithms needed in both cases are different,

. We are currently witnessing the emergence of different industrial LANs, each
“ of which being geared at various market niches, which correspond to different
cost-effectiveness tradeoffs. We are also witnessing decreases in costs. The
main factor behind this long awaited trend is the standardization work, which
has made it possible for manufacturers (the VLSI circuits industry in particular)
to embark upon the design and the fabrication of cheap sophisticated hardware
that implements the low-level protocols agreed upon within the 802 Committee.

3. INDUSTRIAL LOCAL AREA NETWORKS IN PERSPECTIVE

As for every manufacturing activity, market trends are divided between
standard compatible and non standard compatible products.

3.1.Proprietary industrial LANs

Either because they anticipated the need for industrial LANs before standards
were developed or because they felt they could go along their own way or
because they felt the standardization bodies would move too slowly, some
manufacturers have promoted industrial LANs which do not meet 802
Committee recommendations. Examples are Allen Bradley's Data Highway,
Gould Modicon's Modbus, Texas' TI Way 1 and Intel's Bitbus.

Some LANs are selling well while some others have failed to penetrate the
market (e.g. Modicon's Modway). Whether a proprietary approach is likely to
succeed depends on many parameters, among which one finds financial health of
the parent company and good engineering of the products. Selection of a
proprietary industrial LAN entails specific medium-to-long term commitments
that may not be obvious at first glance. For instance, SDLC, the link protocol
used in Bitbus, is incompatible with 802.2 (link) specifications. The fact that
IBM owns some 20% of Intel shares could suggest that such a choice is not a
mere accident,

3.2."Standard-compatible® industrial LANs

Imagine a poll is conducted about the following question : "Costs not being
accounted for, which is the IEEE 802 recommendation which looks most
applicable to industrial LANs 7", Likely, the results would be 802.4 (token bus)
ranked first, 802.3 (contention bus) second and 802.5 (token ring) third. Why ?

LANs which provide "deterministic" services (802.4 and 802.5) are favored
against those providing “"probabilistic”" services only (802.3). However, token
rings have some drawbacks in industrial environments. A token ring relies on an
active topology (active ring access units). It is inherently less robust than a
passive bus. A large number of industrial LANs span short distances (e.g. less
than 1 kilometer). The complexity of a token ring does not seem necessary for
such LANs. A passive bus (802.3 in particular) is simpler to manage . Stars,
rooted/unrooted trees and meshed topologies are most familiar in an industrial
environment, These topologies are bus oriented, not ring oriented. Control of
time intervals spent in transmitting messages is more accurate with token
. busses than with token rings . In particular, starvation is less likely to occur
when using the four timers available with 802.¢ busses than when using the
unique timer and the static priorities available with 802.5 rings.

Finally, busses (mainly contention busses) have been put into operation in
thousands of locations. This is not the case yet with token rings, whose IEEE
802 approval comes after official approval of 802.3 proposal (1983) and 802.4
proposal (1984).

Imagine now that costs are taken into consideration (which is usually the case in
the real world). Depending on how the various requirements (see section 2) are
weighted, one could have either 802.3 busses or 802.4 busses ranked first. The
main reason why contention busses could win against token busses is the
availability of several silicon versions of 802.3 protocols, which can currently
be fully implemented with no more than two VLSI circuits. The production of
802.4 and 802.5 VLSI circuits lags behind. This is due to early IEEE 802 approval
of a contention bus proposal and also to the relative simplicity of 802.3
protocols compared to 802.4 and 802.5 protocols. As costs always are an
important practical issue, a large number of users might be prepared to
sacrifice costly "determinism" and to adopt cheap "probabilism". This will
certainly be the case when the timing requirements are not too stringent and/or
when the devices to be connected are cheap. Of course, cheap determinism
would be ideal ! But, after all, is it only a dream or could it be real ?

3.3. "Deterministic” versus "probabilistic™ services

It is somewhat puzzling to observe that false statements, or at least overly
simplified statements, keep being propagated and trusted. This is exactly the
case with the controversy concerning token-passing LANs (802.4 and 802.5),
which are Jabelled as "deterministic" LANSs, and contention LANs (802.3), which
are labelled as "probabilistic” LANs. To begin with, it might be useful to
remember the exact meaning or determinism, which is existence of a finite
number of system state transitions for switching from one state (e.g. message
submission) to another state (e.g. successful message transmission).
Determinism is a logical concept. In other words, it is not because an algorithm
is deterministic that a LAN making use of such an algorithm can always meet
given timing constraints. Many parameters have to be taken into account in
order to compute the exact physical values of expected upper bounds. If these
values are too high, determinism does not help at all.

3.3.1. Token passing L ANs are "deterministic"

Why is it so that 802.4 and 802.5 LANs are considered as being
"deterministic" ? Let us concentrate on those messages which are first in the
waiting queues of the various access units, Let us consider token rings first,
Can a token-ring guarantee that each of these messages will be transmitted in
bounded finite time ? The answer is yes if static priorities are not used (but
what about those units which handle very critical and urgent messages ?). The
answer is definitively no if static priorities are used. It is well known (see
queuing theory) that when static priorities are used, only the clients with the
highest priority enjoy guaranteed service. For all other clients, starvation can
occur. In other words, some messages might be denied access to a ring for ever,
Is this a deterministic service ?

Let us consider token busses now. Access units make use of four timers, one of
them (class 6) corresponding to a guaranteed time interval used to transmit
most urgent messages. A burning question is how to compute the "good" values
of these timers so as to keep token rotation time to a "reasonable" value, These
computations must integrate some straightforward variables (e.g. maximum
number of access units, maximum physical length of the bus, etc.) but also
more subtle variables, For example, one must know how often every unit will
decide to "leave" the logical ring, how often a unit must "sollicit" missing units
which are not on the logical ring but which would like to join in, how long is the
"insertion" procedure execution when many units collide in response to a
"sollicit" frame, etc. These variables depend on assumptions made on the nature
of the input traffic. Bad news ! Except in very specific cases (which do not
represent the vast majority of potential 802.4 bus users), input traffic
assumptions are of a probabilistic nature and so is the percentage of time spent
in executing «he leave/insert logical ring protocols. Therefore, one has to admit
that 802.4 busses upper bounds are probabilistic.

Let us look now at the fault handling issue. With token passing LANs, it is more
difficuit to predict what impact faults might have on access delays than with
contention LANs. Such faults as unit crashes or electromagnetic noise do not
impact 802.3 LANs very much because no global variable must be protected
against these faults, to the exeption of physical signals. Conversely, not oniv
such physical signals must be guarded against faults with 802.4 or 802.5 LAN«,
but also the token variable (MAC level), which in rhe case of token rings car-.es
also the vital priority indicators. The recognition of the need to recover !ro~
token losses led to the conclusion that a single unit should be designated as **e
control {central) unit. Should this unit fail, another one is elected as the -es
control unit. Now the questions : "how does one know how ofter a *.esr
is lost 2 ", "how often does a control unit go down ?. Will the anveers ~ -,
deterministic information or will we be piaying with probab.ities

There is another more subtle point which is that 8C2 4« anc 8 '
which have been designed from the start tc elim.nate - « wo o
eliminate collisions at all when election of a "ew ronvrs =« w» . a
when 802.4 "sollicit" frames are transm.’ted:. Lriore jmnave . .

how such collisions can be resolved geterministiia.iv + « - - -
time. We leave it to the reader the tasx o! rae -y

discussion above.

%
2

o
EE

o
I

ﬂml.25 "'" Mie

== ===

3
EEéEf

iEEM,:

FEFE i

Fre
r
fe

MICROCOPY RESOLUTION TEST CHART

e ———— - ———

)

3.3.2. Contention LANs are "probabilistic"”

3.3.2.1. CSMA-CD compatible LANs

It might be the case that because CSMA-CD protocols belong to the family of
random acces protocols, CSMA-CD protocols are regarded as behaving
probabilistically ! One might also be tempted to believe that there is only one
way to resolve collisions, that is the Ethernet way. Although it is irrefutable
that the Binary Exponential Backoff algorithm is of a probabilistic nature, it is
wrong to state that contention LANs must be probabilistic in general. Space of
choices is given in figure 2. As can be seen, it is not because initial accesses
can lead to collisions that the situation is hopeless. A large number of
algorithms which provide contention LANs with deterministic behaviour have
been published in the literature.

See, for example, | CHL 79|, | CHL 801, | FRA 801, | KUR 831, | MAS 81 |,
| MOL 811,/ POW 81|, |ROM 81, | TOB 801, | TOB 82|, | TOW 821.

Among these numerous proposals, it suffices to choose those which are 802.3
compatible to obtain a "standard" CSMA-CD LAN which is at least as
"deterministic” as token passing LANs. The interest in "deterministic"
contention LANs is so high that prototypes have been or are being built in
Europe (France, Germany and Netherlands at least), in Israel, in the U.S.A. and
in Japan. The potential commercial success of this approach lies in the low
prices reached by CSMA-CD access units. If the physical "intervention” needed
to implement a deterministic collision resolution scheme is limited, in
complexity and in cost, then deterministic 802.3-like LANs could fly soon.
Being deterministic , such LANs could guarantee that all messages involved in a
collision are transmitted in some bounded finite time. Therefore, such LANs
could be used to carry all kinds of tratfic mixes such as aperiodic data packets
and periodic voice packets.

3.3.2.2. High - speed LANs

Deterministic CSMA-CD can only be used when CSMA-CD achieves efficient
channel utilization, i.e. when the ratio of the propagation delay over message
duration is small compared to 1 (less than 0.2 is good practice). When not the
case, i.e. for large LANs (metropolitan area networks) or for high-speed LANSs,
neither CSMA-CD nor explicit token-passing protocols are appropriate. The
overhead incurred for every token passing operation (token handling protocol
execution), for token transmission on the medium and for lost token recovery, is
fixed and largely independent of the bandwidth available. Largely independent
of the bandwidth as well is the time wasted in reconfigurating physical/logical
rings. Acceptable at "low" bandwidth (lower than a few dozens of Mbits/s as an
indication), this overhead becomes unbearable at higher speeds, such as those
attained with optical transmissions.

Being forced to throw away CSMA-CD and explicit token passing protocols for
high-speed LANs , it looks like the only choice left is the well known family of
synchronous time division multiplexing protocols. Not quite so. A fair amount of

1l

7R .

DETERMINISTIC
(TOKEN PASSING)

DETERMINISTIC

PROBABILISTIC
(CONTENTION)

Y

COLLISION
RESOLUTION

1

PROBABILISTIC

COLLISION
RESOLUTION
% N

DETERMINISTIC PROBABILISTIC

Figure 2 : decision tree for collision handling

12

73

R ..

¢ e . ——— - ———

— — —— - - -

-

work has been invested in the identification of contention protocols that would
achieve a very good utilization ratio of high bandwidth channels. In an exellent
survey paper, most of these protocols are presented and evaluated against each
other | FIN 84 |.

3.4. Higher-leve! protocols

.Apart from the question of which is the best 802 MAC protocol, it is necessary
to examine which types of higher-level protocols come with current industrial
LANs. There is a trend toward the integration of all protocol layers ranging
from 1 (physical) to 5 (session) on a single board, used as an attachment unit to
a LAN. But only a few manufacturers actually deliver such boards presently.

A global observation can be made. Transport and session protocols (when
available) which are implemented on industrial LANs provide more services
than specified in the 1SO/Open System Interconnection Reference Model. In
particular, it is often the case that broadcast and multicast datagram services
are made available at layers § or 5.

Conversely, there is no more "real-time" ingredient coming along with
industrial LANs protocols than with conventional LANs or WANs protocols.
Designers and users of industrial LANs might realize soon that they have to
depart from traditional ISO-like high-level protocols if they want their
networks to retain the benefits of deterministic multi-access schemes.

For instance, such services as guaranteed delivery of datagrams and dynamic
priority-based scheduling may be needed in industrial environments. More
general types of interprocess conversations than just connectioniess and
connection-oriented point-to-point communications may also be desirable. Such
issues as maintaining "real-time" services across bridges and gateways for
interconnected industrial LANs must be addressed thoroughly.

8. CONCLUSION

Is there a conclusion ? With respect to principles, to the algorithmic nature and
the properties of the various protocols examined, conclusions can be
established. This has been done throughout the paper.

With respect to current and future trends of the industrial LAN market, it is
difficult to conclude and to make predictions. Initiatives undertaken by large
manufacturers are, by definition, unforseeable. We have witnessed such an
initiative in 1984 with the announcement of M.A.P. by General Motors. The
impact this announcement has had is very much comparable to the impact
produced by IBM announcements in other areas. In 1982, IBM said very clearly
that the distribution of documents within the 802.5 project should not be
interpreted as a pre-announcement of a new product. The result has been that
all users have been expecting such an announcement since then. Again, in 1988,
IBM re-stated its intention to deliver its first token rings no sooner than 1986.
However, in 1984, a few manufacturers have proudly announced LANs which are
IBM token ring compatibie !

13

G4

v

COST

SHMALL Ok

LOW-SPEED LANs
’
P d
Pl

802.3 LANs

[
V.

/

LARGE OR

HIGH-SPEED LANs

802.4 LANs ,

/

/
L

'

’

&

”

Figure 3 : a simplified segmentation uf the

industrial LANs market

PERFORMANCE

>

A similar psychodrama is developing with MAP. At this time of writing, not all
MAP layers are specified. The target date for a complete specification is 1938.
Nevertheless, some manufacturers are currently preparing themselves to
announce LAN oriented products which are fully MAP compatible !

I{ we step back a little, we can see that there is room for everybody. Four
major segments of the industrial LANs market can be identified, as indicated in
ﬁiure 3. They correspond to different cost-effectiveness ratios. As can be
inferred, one important market niche corresponds to gateways and bridges,
which are needed to allow the various LANs to be found in real-time
.environments, whether "IEEE 802 - compatible” or not, to talk to each other.
The potentially brilliant future of 302.&4 busses as industrial LANs, thanks to
General Motors support, could be challenged in two ditferent ways. A "low-end"
challenge could develop with the possible advent of deterministic
baseband/broadband CSMA-CD LANs. A "high-end” challenge could develop
with the future advent of affordable optical transmission technology. Only time
will reil.

REFERENCES

| BAR64 | P. Baran, "On distributed communications”, Rand Corporation Series
Reports, Santa Monica, August 1964, 453 p.

JCHL?9 | I. Chlamtac, W.R. Franta, K.D. Levin, "BRAM : the broadcast
recognizing access method", IEEE Transactions on Communications,
Com-27, n*8, August 1979, 1183-1190.

] CHL80| 1. Chiamtac, W.R. Franta, "Message based priority access to local
networks", Computer Communication, Vol. 3, 2, April 1980, 77-84.

| FIN841 M. Fine, F.A. Tobagi, "Demand assignment multiple access schemes
in broadcast bus local area networks”, IEEE Transactions on
Computers, vol. C-33, n®*12, December 1984, 1130-1159.

| FRAS0! W.R. Franta, M. Bilodeau, "Analysis of & prioritized CSMA protocol
based on staggered delays", Acta Informatica, Vol. 13, Fasc. &, 1980,
299-324.

| KURSI | J.F. Kurocse et al., "Controlling window protocols for time-
constrained communication in 8 multiple access environment”, ACM
Sigcomm, Vol. 13, §, October 1983, 75-84.

| MASS1{ J.L. Massey, "Collision-resolution algorithms and random-asccess
communications”, in Multi-User Communication Systems (Ed. G.
Longo), Springer-Verlag CISM n® 265, 1981, 73-137.

IMEYS0| J-F. Meyer, “On evaluating the performability of degradable
computing systems”, IEEE Transactions on Computers, vol. C-22,
August 1980, 720-731.

e

13

| MOLS! |

| POWSI |

| RAN78 |

s ROM8] |

| TOBSO |

| TORS2 |

| TOWS2 |

| YASS82 |

M.L. Molle, "Unifications and extensions of the multiple access
communications problem”, UCLA report n®* CSD-810730, July 1981,
131 p.

D.R. Powell, "Réseaux locaux de commande-contr8le sirs de
fonctionnement”, These d'Etat, INPT, October 1981, 206 p.

B. Randell, P.A. Lee, P.C. Treleaven, "Reliability issues in
computing system design", ACM Computing Surveys, vol. 10, 2, June
1978, 123-165.

R. Rom, F.A. Tobagi, "Message-based priority functions in local
multi-access communication systems”, Computer Networks, 1981,
273-286.

F.A. Tobagi, R. Rom, "Efficient round-robin and priority schemes
for unidirectionnal broadcast systems”, in Local Networks for
Computer Communications (Eds. A. West, P. Janson), North-
Holland/IFIP, 1980, 125-138.

F.A. Tobagi, "Carrier-sense multiple access with message-based
priority functions”, IEEE Transactions on Communications, Com-30,
January 1982, 185-200.

D. Towsley, G. Venkatesh, "Window random access protocols for
local area networks”, IEEE Transactions on Computers, C-31, 8,
August 1982, 715-722.

E.K. Yasaki, "Fail-safe vendors emerge”, Datamation, November
1982, 51-58.

16

pd
AD-P005 558

JOHN FAVARO

Unix® - A VIABLE STANDARD FOR SOFTWARE ENGINEERING?

Introduction

-~ -
N

The catchword "standard" hazs been usec 1N conjunctiorn with
the Lir - cperating svstem with 1ncreacsing ¢fregquercy 1n
recent timegce, Thas sstuaticon reflects @ growing need among
software oceveioperse +for stanacards not merely at the
programm:ny3 language Jleve’, but at the level of the

programminn €negronment,

E.rdernc v ., iy, has heen perce: veo as the current bpest
hore ¢ artievirng that gral., vet there are ei1gnifircant
onstacles to the standardizatyon o+ Unav. Im this Paper we
v il TREET) A coat &t reacrRnt efrorte towara the
ctancerciTatior Oy Unix anc e-amine some ot the problem

areace 1 0etanl,

Versions of Unix

Fetore cr1scussing the standardization cf Unix, we shouid
fi1re=t cons)der the motivation that led tc the

standardization etfort: namely, the many versione of Unisx.

® Iy e & trademar- o+ &18%17 Kell Laboratories

Y

)

e

Currently, Unix systems fall into three basic categories:

- those systems being marketed by ATAT itself.

— those systems that are Unix-based, but marketed by other
companies with a license from AT4T.

- "Look—-alikes": those systems that are marketed without a

license from ATLET,

“TET alpme marvets a number of versions of LUniux, 1ncluding

Versior &, FUBE, Version 7, 32V, System II1 and System V.

The buss o+ the cther Uniy versions $+511 1nto the second

c

LY

teEoor ., The ternd to be based upon Versiaon 7 or Systenm
i13. Syztemse 1n thie category 1nclude XENIX, UNIFLUS,

VENIr., IS/, UTS.

I 15 into thrs second category that Ferkeley Linix falls.
Herielev 'riv wase ori1gQinallv bssed upon T2V, and 1 now

being cistritted as "Rerlheley Software Distrabution 4.2,

Zome erampies o+ s eteme 1n the thrrd cateqory 1nciude

LCOHERENT y IDRIS and UNOS.

Thye =dde up to = etaggering number cof versions ©f Unpix
1indeed' Yet this picture 18 somewhet deceiving: for, only
rour ot these versions have really been taken into sericus

coneideration 1 the standardication effort=:

99

Version 7

Version 7 marks the beginning of "modern times" for the
Unix system. Up to that point, the system had been mainly
used in research circles, and had not yet acquired the
facilities now considered to be basic to the Unix

programming environment, such as the standard I/0 library.

Although Version 7 was officially released in 1979, it
already e-:sted as early as 1277 when Unix IV was derived

4rem at. It was the Ffiret port of Unix to the VaAX, and

leid ths foundeation +or EHerkeley Unix.

In fact. WYercicorn 7 cwee much of 1ts significance to the
fact that 1% was the first version to be ported 1n earnest
toc the micros. 1n 1°8@, ONYX made the tirst micro port of

Version 7, to the 78000, Others 4pllowed swit quickly. In

D1

particuiar, Microsoft ported XENIX to & number of micros.

Version 7 was the last version of Unix that was actually
produzec by the resesrch group thet criginaliy developed
Urax. For that reason, the name.was changed 1n later

commercial releasecs.
System III

A£75T released Syster 1711 10 19801, Trie wee ATET'e fir=t

K

attempt to support Lnix officially. @& rew pricing poiircy

{00

et

was 1ntroduced with System 111, which finally provided for
binary sublicenses 1n place of the exhorbitantly expensive
source licenses that had previously been required.
Technically, System IIl1 consolidated the best of Version

&, PWE and Version 7.

Eut the real signiticance of System 111 was the commitment
of ATET. Thi1e provided the necessary confidence needed by
vendors to base their derivat:ves on System
111, anc @ac a resuit there are quite a few commerclal

systems now based on System 111.

System V

Witn the 1ntrocuction of Svstem V 1in January 1783, ATLT

consal 1idated 1ts Uni1: marketing effort. g unti] thie
pc:nt, System Y bhad actually been 1n use interrnally at
Seil’ Labe, but Svstem Il1 was being marieted externalily.

Now this discrepancy no longer existed.
Commercial support was strengthened even further, with the
irtroduction periocacic updales 2nd hotlaines to support

centercs.

Recently System V has been upgraded with virtual memory

and f1le locking faci1lities.

101

PR WS |

Berkeley 4.2 BSD

In 1976, ken Thompson spent a year at the University of
California at Berkeley, bringing Unix with him. At this
time, a period set in of enhancements so important that is
no longer possible to ieave Berkeley out of a thorough

discussion of Uni:.

These erhancements 1nclude:s

- The (C-5Shell. The most important alternative to the
Bouorne Shell, the C-5rkell is preferred by many $for
rateractive vee because of +acilities for aliasing

treasmirg commandse) and command history jiste for recall
evecution.
- !mproved termainal handiing. The curses and termcap

pact ages, ac well as the screen editar vi.

irn 1579, with the 3.8 PFBerkeley Scoftware Distribution
(BSL», ~i1rtuai memory came to Uni::. The large address
space paveo the way for new applications - for erxample
VAXIMA, the FHBerteley i1mpiementation of the MACSYMA
symbolic and algebraic marnipulation system originally

devel oped at MI1T.

With the rejease of 4.2 ESD in October 1983, networking
came tc EBerkeley Unix. Communication facilities based upon

the U.S. Departmert of Defense standard Internet protoceols

|0

o

i R

TCF/1F were integrated into the system. Furthermore, the
file system was redesigned for higher throughput by taking
advantage of larger block sizes and physical disk
characteristics. These two additions alone were sufficient
to insure Berkeley Unix an important position in the Unix

world todavy.

It ie these four Urax varirants upon which we wiil toCus
our attention 1n the following discussiony for, taken
topether, they raise ail of the majior issues of the

current standardization effort.

The Formation of /usr/group

The standardization problem actually began as early as
1?79, when the $irst ports of Yersiorn 7 were undertaken.
In seemingly no time at ali,; many variants sprang up 1n
the commercial worid. In recognition of this development,
the /usr/group organization wes founded soon afterwards in
198@. The organizetion tock 1ts membership from the

commercial world, vet was vendor-i:ndependent.

1t did not take long for the memberse of the organization
to come to 2 decision about how they wished to spend their
t:me: onliy & year later, in 1981, the ‘usr/group Standards

Committee wae formed.

/O3

R R R R R R R R EEEEEEEEEEEEEm———————.

The Standards Committee i1ncluded participants from a broad
range of vendors. Conspicuously, one of the most
enthusirastic and active participants was AT&T. The
committee set as its goal a vendor-independent standard

for commercial applications.

The 1984 /usr/group FProposed Standard

Th

)

m

recuit was presented in 1984 in the form of a proposed
standard®. The 1long term goal set for this proposeo
standard 1= ANSI and IS0 Standardization, and indeed, an
IEEE "Working OGOroup on Unix QOperating System Stangards”
hase <cince been formsd tc pursue this goal, using the
proposed standard as & bkase document.

What 15 contained 1n the proposed standerd? RActually, this
question 1= bhest epproached by asking its complement: What

rhas beer letr aut of the proposed starncard?

The proposed standard does not specity:

- The uczer 1nterface (shelic, menus, etc.)

- user accounting

- terminal 1/0 control

- in ftact, most of the over 200 commands and utilities of

the Unix system!

Then, we might ask, what Is 1n the proposed standard”?

The standards committee decideo that the becst way to

/C)q

achieve portability would be to concentrate on only two

areas:

1. Systewm Calls

The Unix kernel interfaces with applications programs
through & set of svstem calls. These shield the programs
from such internal matters as detailes of memory
managemsnt scheduling, I/0 drivers, etc. These calls are

~

descrabec in Chapter T ot the Limix Programmer = Reference

Marual. The proposed standard defines a set of 39 system

calle that are to be uvused by =211 applications programs.

Z. Trhe C tanguage Likraries

Chapter 2 o+ the Unix Programmer s Reference Hanual
decscribes the set of libkrary routines normally available
te programe writterm an the € language. The proposed
standard defines & versiocn of this library that is to be

used bv applications programs.
File Locking

In the entire set of system calls specified in the pro-
posed standard, orly one extension to the set of system
calls available on most Unix systems (in 1984, at least)

appeared: file and record locking.

JOA

This fact testities to the enormous importance of file and

record locking in commercial and data base applications.

The new system call is lockf(2)., 1t may be used for record
locking and for semaphores. Using lockf, a program may

define "regions"” of & file which are lockted indivadually.

Lzttt may be uvused 1n erther an "advisory" or “enforced”
form. The advisory form may be circumvented by using
normal read or write system calls. Thus, the advisory form
assumes that the preocesses are explicitly cooperating with

each other 1n & "friendly" way.

The enforced form protecte a regior even +rom those who
have rno knowledge of the facility. 7The lock?¥ definition
specaties theat deadlock must be guaranteed between proces-

sec reiated by locked resources.

fPe defined, lockY represents a compromise: on the one
hand, processes not using locke don’'t need to know about

them; tut becauvse of thais, deadlocks may occur.

The System V Interface Definition

We noted earlier that AT&T has beern an active participant
in the /us-/group standardization e+fort. Thus 1t is not
surpriesing that the proposed stardera btasicaily reflecte

the ATLT world.

16 (o

It would be quite a feather 1n ATLT = cap to have an
offici1al Unix system standard whose contents correspond to
the flavor of Unix marketed by ATAT. The /usr/group
proposed standard represents the first step 1n that

direction.

The second step 1n tnat direction was txlen 1n January of
1985 with the arnnouncement of the Svetem V Interface
De+tinit:on®, This document defines a minimum set of

eyetem Calls erd irbrary routines that shouid be common tco

all operating evetems baszed on Sy=tem V. I+ tnat =ounds
famiirar, 1t 1€ o coinciaence: the gocument 1 virtually
identi1cal to the /usr/group proposed standard 1n content.

A eeparate chacter of the document carefully describes
thoese areacs in which oy frerences remain, and 1ncludes

nlars 40r eventual migrati;on towaros total compatibility,

ATEL] 1= attempting to bachk up this document with promices
of adherence cf tutre relesces of Svetem V toc the
Interface Desinition. These prom ses have taren the form
cf twoc Ep-catler “Levels cof Commitmert . Each component 1n
the interface has a commitment level assccrated wrth 1t. »
component with Leve: 1 will remain 1n the detinitiorn and
be wmigrated 1r an upwardly compatible wav. A component
-

with (evel 2 will remain 1rn the definmition for at leacst

trree yearz (altthiough 1t couvlo be dropped later).

/O 7

The /usr/group proposed standard defines, as discussed
before, only a minieum set of functions and i1gnores the
many commands and utilities of Unix. But ATAT was
interested 1n capturing the full functionality of System V

1. vte detinition. The sclution adopted was to unbuncle

< ztem Y o 1rto & "btesce” A0 'e tersyone’ e "hase are
cerre-pande to the -aer 'grour «tangard.
Tre componerts o the rase te&,; 1into the folilowing

categQorie-:

TfiEr 4t D 2 ETEM St L) 2E
crect €conoirtyor s

- Sz;.r.,'.'.;

- Temey It ar . catines

- Heaoer §))es

~ er. ~onmental variables
At fyies
[M-ectory tree structure

Cpecral device ¢1les

Ever withan these cateqorise, the components are more

f1rejy partirticaeo. For 1nstance, within the Easa:

&

Uper ating System Servicee category, the low-level process
creatron primit)ves frs and exe: are segregeteo 1nto a
group thet should be avcided whenever possable i1n ‘avor of

the more general sy:ites primitive. Similarly, the use ¢

/C®

low-level read and write operations a1s discour aged
whenever routines +¢rom the Standard 1/0 Library will

suffice.

A System V kernel Extensiorn has also been defined. The
functions provided 1n thie set have mostly to do with the
semaphores and shared memory of System V. Why wesn’'t thas
directl) v included 1n the base”™ We wil! have more to say

anout the problems o+ compatibility at thais level later.

The cther rlznrned & tencsionse $2a]ll 'nto trhece categoriec:
- Ras:c Mtrlrrares
Rovarcea Lty i ties

- software Deveiopment

- Networt 5Services

- Large Machine

- rarhyce

- Basic Te:.t Fropcessing

- User Interface Services

- Data Ease Manager

Verification Test Software

To tie all of this together, ATY1 has reacned an agreement
with Unisoft Systems for the developmert of a verification
test softtware paclage. Thie test spétnare wirl) determine

whether a derivative of Svstem V actually meete the

(09

o

definition. Clearly, ATAT hopes that this vaelidation suite
wil)l attain de tacto the same kind ot status 1n the Unyx
world that, say, the Ada Validation Suite has 1n the Ada
world for conferring the official stamp of approval on a

: system.

Fundamental Obstacles to Standardization

when we conelder the two areas o whacrhh the proposeo
standard concentrates, we {i1nd thet one of them V&
relatavely unproblemartic: the ([Language Libraries, The
li1braries contain a et of ctarle, well ~unaercstond
A roatines, whicn cer be ported to didserent Um variante
with lattlie troubie. E er. the O janguage 1tselt 1s about
t¢ echieve standardicetaion -- the ANS] ¥ J11 group 18 on
tre werge oy At s etanderd for (. baseg upor S-stem
Iti. Thue it w!li rct be & radical departure 4$rom the

coeorent evt vatror, Cur* rather a codirfrcatiorn Of tre

1 anguage &5 1t 15 todayv.

J ve The ther ares anirecepd b, tte proposeoc standard
that presentes the ma)or obstacles to a successéul
standar Sy ati1on attempt: namel vy, tre system calics. For,

the cystem cclle retlect to a mch greater e-tent than the

(iltbrares the bas)c structure cf a Unix variant =

lerne).

xe

Currently, several distinct groups rely on the defferent

set of system calls avarlable on the maj)or versions:

- Such de fYacto 1ndustry standards as XENIX have
heretofore been based on the Version 7 kernel. In
recognition of thie, the proposed standard "strives for

compat bilrty with Version 7 whenever possible”.

— The prorusen standaro hacs based 1ts set of system ceails
or Syesetem 714,

- The recently oet1rned FPortable Common Tooid
Envirorment™ powes much ot the nature o+ 1ts system
cal:is to Hystem Vv. In acdition, the proposeo stanodard will

everntuatly migrate toward System V.

- Finsiiy, the msjorit, of the participants 1n the worlo
o+ high-pertcrmance networ:ti1ng workstations relies heavily

orr the lerre! fac:li1ti1ee provided by Berteiey Unix.

Where do the 1ncompatibiriaties lre that give rise to these
drtéerent groupe” Although 1ncompatibilitries exi1st 1n many
prAaces, sact as ditdéering $1le evetem 1mn)ementations, the
protlem can best be characterized Sy the differences 1n

CRE partiir 1 ar area: anterprocess comp nijcation.,

| et ve taie a closer Jaook now #t the faci1li1tr1es provided
by each ¢ the 4pivr maior ver s10ns $or 1nterprocess

cOonmany ca&tyon.

/1]

Interprocess Communication - Version 7

The following basic set of system calls related to

1nterprocess communication was defined 1n Version 7:

s13nal: Thie det)nec the responcse to pre-defined external

i
<

b
D
~
"m

soch as 1nterrupte, alarms, hangupse and hardware
errcre,
k1li: Tre cail 1= used to send signals to processes.
FAUSE: A procecs suspenas 1ts evecution pending recelpt

oY & s1qgnal.

NEd td s procece waite for the termination of & chaid
procecses,

rope: The we -1 nown Interprocess bete stream,
Now, thece facyr i1ti1ese are aaequate for most time—-csharing

applications, but not +or such applicatione as networking
ann cat> baeses. wrnere are the geficiercies” kRasically, the
probiem here s one o4 fleabaty. Among others, the

tGiiowing caces of Intfieibridty can be i1dent) fied:

sigwai only a jowse pre-cetined signal types. Therefore,

*

no e tra 1nformation can be ronveyed.
+11} can only esenc to =ingie processes or to all

[r or ecs@E,

pipes tan oOnjy oe used by related pr ocesses,

1rv System yil, taci1liIti1es were 1rntroduced to address
o actl. such protriems ot Infleabailaity.

1A

— - N S —

Interprocess Communication - System 11l

Three new facilities were added 1n System II1 to handle

the problems discussed above:

Fyrst., tne so-calleo 'FIFO” fi1le wAas 1mtroouced. The FIFOD
f1le 1= @ speci1al file, jJust like a pipe. But FIFO f1lecs
have uwn1. eystem f1le names, not Just file descraptors
«thus they are alsn called "named pipes”). Furthermore,
and more a1mportantly, they cam be used by unrelates
C¥ Vi T€73€ 5, thereby 1Ncreasi1ng tneir flexibi1laty

enormcusl,

Secondi v, two new, yuser-detired si1gnals were 1ntrogucec

intc the c=set ot allowable =si1grnatcs. Thaie allowed e:trsz

apprirzet “on-epecayfac information to be conveyed with
s1gnai s,
Thardlyv, proces: groups were 1ntroduced. Thus a common

[

baei1s was estabiished for senging signals. Now the 41/
system call could send signals to all members of a process

group.

Yet even these 1mprovements had their problems, Two

speCcléic nnee ma, bte 1dent) fred:

- Sagnale are not a esound bDasi1s tor interprocess

L R T R ..,

communication and synchronization. They are not queued, so
signals could be lost. The /usr/group proposed standard
explicitly discour ages the use of signals for
synchronization.

- Fipes, even named ones, are inadeqguate 1n crucial wavs.
For 1nstance, the byte stream of the pipe is simply too
low—ievel. Message boundaries are not preserved, which 1n

many applicetions can be & problem.

Additaonall y, pi1pes are very slow. To see why, conzider
the flow of data 1in a pipe: Data startse In the sender <
address speace. It 1 themn copied 1ntc &2 Lernel buffer.
Finally, 1t 1= copied again, +rom the kernel buffer into

tne receirver ‘s addrescs space.

in short, the System I1I facilities carnot be considered
to be a sound basis for procese synchronization. With

System V, such & basis appeared for the first time.

Interprocess Communication - System V

Three maior new features were introduced i1n Svstem V.

The tirst was shared memory. Shared memory 1€ much faster
than pipes, because there i no copving of data.
Facil*+1ee ei1st to contro)l access to shared memory, as

well acs synchronized updating by multaiple processes.

114

andib., - -]

However, there is one deficiency of shared memory 1in
System V: processes using it must be related by a common

ancestor.

This restriction does not exi1st for the second maior new
feature, wmessage qQueuces. Messane queues provide a way +for
onrelated procecsses to share data. Messages may have types

-~ +tor e:xampie,

Ly

praoca2ss may requecst all messages of a

certain type from a gqueue.

A

The fi1nzl adoition in System V wls sewaphaores. This weil-
tnown faci1laity provided the much—-needed, solild foundation

+or process synchronization.

ar jeact two of these +zcarlities; however (semaphores and
shareo memory) are heavily tiased towards applications
running on a =ingle processor with all processes sharing
the same memory space. In order to pursue itse own
recearch goals in the area of distributed computing
evstems, Ekerkeley introduced an entirely different set of

facilities,

Interprocess Communication - 4.2 BSD

The +facilities for i1nterprocess communication have bees

ertharnced at Berkeley to an e:xtent unmatched in any other

/1S

e -

R I T

Unix version. They represent an entirely different

appreoach to interprocess communication.

The Computer Systems Research Group concluded that, in

order to achieve its goal of truly distributed systems,

the interprocesse communication facilities should be
Yavered over networking “Yacilities within the kerrnel
1t=elv. in addition, the facility h2s been decoupled from
the LUlmi1x +1le system and 1mplemented as & completely

independent subsystem<.

in 4.2 BRSDh the =ncket 15 the building block for
communication, Sockets are named endpoints of
communication withan a domarn. Currently, the Upax and

DARFA Interrnet communication domalne are supported.
There are basically three tvpes of sochkets:

— stream sockets; which provide a reliable bidirectional
flow of data to unrelated procecsses. In the Unix domain,

pipes are available as a special case of sockets.

- datagram sockets, which provided facilities similar to

those found in Ethernet.

- raw sockets, generally intended +or use in the

development of new communication protocclis.

1! (-

The Lowest Common Denominator

What do these four versions of interprocess caommunication
have in common? Unfortunately, little more than pipes' And
the simple byte stream as the lowest common denominator is
very low i1ndeed. Defining a set of syvstem calle to handle

only such restricted cacses 1s simpivy not reasalistic.

We cannct expect devel opers proaramming advanced
applications to give up the advanced facilities For
interprocess communication discussed above and to accept
cf a standard baseo upon a more rectricted sat. The
rpterprocess communication facilities ot the various uUnax
versions must converqge much more before a truly

reprecentative set of system calle can be defined.

Future Convergence?

The convergence o+ the AT%T Unix world towards Svstem V
will continue. Microsoft has reached an agreement with
AT%T whereby the next releace of XENIX will conform to the

System V Interface Definition.

A Ferkeley 4.7 distribution will reportedly be available
soon —- officially "sometime before 19?25" (this statement
constitutes & reaction to the delays and disappointments
surrounding the date of release of 4.7 BSD). The 4.3

retease will, however, ceonsist essenti1ally of features and

177

enhancements that are necessary to stabilize problems that

were 1dentified i1n the current release.

In a major step towards reconciliation of the two major
standards, Sun Microsystems and AT%T have agreed to work
together to facilitate convergence of System V with Sun’'s

4.2BSD~-bacsed operating system.

They will attempt to merge the two standards 1nto a single
versi1on. Technical representatives are meeting
periodically to define 2 common applications interface.
Sun 1ntends to add complete compatibility with the System
interface Definiticn, while mzintaining the =a2dded

functionality of 4.27BSD that was discussed above.

The Hopes for a Standard Unix Environment

Although the problems of standardization arising from the
kernel incompatibilities discussed above are very real,
there is a very large and important class of programs that
are not affected by them. These are the software
engineering tools used in the production of software, such
as editors, report generatores, filters, testing tools,
document production facilities and compilers. Such
programs are well served by the proposed standard in ites
current form. Thus we should expect that a large part o¢
the Urix software engineering environment can indeed be

])R

el e, pra—

—— . e ——— e e,

However ; 1in advanced areas such as networking, distributed
systems, and real-time systems, Ferkeley Unix clearly
offers superior facilities. Given the current
nonconformity of Rerkeley Unix to the standards pursued by
most of the rest of the Unix world, a <standard Uni»
software engineering environment will depend heavily on
the success of efforts to merge these two worlds into a

single one.

REFERENCES

[11 Froposed Standard, /usr/group Standards Committee,
JdJapuary 17, 1984, Obtainable from /usr/group, 4655 Dld
Ironsi1des Drive, Suite 200, Santa Clara, California 95@5@,

U.s.A.

T2 ATET System V Interface Definition, January 198G,
Obtainable from AT&T Customer Information Center, 5Select
Coade 3I@7-127, 2837 North Franklin Road, Indi anapolis,

Indiana 46129, U.S.A.

[3] FCTE: A FRasis for a Fortable Common Tocl Environment,
Functional Specifications, First Edition, August 1984,

Eull, BEC, ICL, Naixdorf, Olavetti, Siemens.

4] S.J. Leffler, R.S. Fabry and W.N. Joy, A 4.2 BSD
Interprocess Communication Primer, Computer Systems
Research Group, Dept. of EEXCS, Univ. of Calif. Berkeley,

19873,

} 2O

m—————————ﬁ
f | AD-P005 559

} FAULT TOLERANKT SYSTEMS IN MILITARY APPLICATIONS

M. R. Moulding

Royal Military College of Science, Shrivenham, U.K.

Abstract.~ This paper introduces some basic principles and
terminology associated with the design of highly reliable
computer svstems, and describes two experimental, fault tolerant
i computer systems which have been recentlv developed for military
applications. The first svstem, called ADNET, demonstrates how
a dvnamically reconfigurable, local area network can be
constructed so that various forms of hardware failure can be
tolerated. The second system illustrates how software fault
tolerance techniques can be used in a real-time application in
order to cope with software design faults and, thereby, improve

the software reliability of the system. -
—_—

1. Introduction

Computer systems are often used to perform critical functions where their
assured reliability is of paramount importance. Such applications have
traditionally been associated with military and aerospace agencies which
have funded much of the research into the development of highly reliable
computer systems. The notion of incorporating protective redundancy into
a system as a means of tolerating operational faults has emerged from this
work to become a well-established technique for achieving high
reliability. Such redundancy normally involves the inclusion of extra
hardware units, additional software and spare processing time, and
represents the price paid for increased reliability.

During the last decade, the reducing cost of hardware has led to the
widespread use of computers in general industrial and commercial systems,
and a growing number of these applications have stringent reliability
requirements which demand the adoption of fault tolerance techniques.
Consequently, there is an increasing need for industrial and commercial
system designers to appreciate the architectural features of modern fault
tolerant computers and it is the purpose of this paper to provide an
introduction to this technology. In order to eliminate a possible source
of misunderstanding, we shall first start with a brief discussion of some
basic reliability concepts and terms.

2. Terminology

The field of computer systems reliability brings together a number of
disparate professional groups (e.g. hardware designers, control engineers,
software engineers) which each have their own set of terms to describe
essentially the same reliability concepts. This can lead to a great deal
of confusion and fruitless debate which prevents a meaningful discussion

) |]

of the underlying concepts. The reconciliation of this problem 1s bevond
the scope of this paper but, in order to discuss some basic reliability
1ssues, a consistent set of terms 1s required. Wwe shall base our
terminology on that provided by reference 1 in the knowledge that not all
aspects of it are universally accepted.

Generally, the '"reliability" of a system is characterised by a
mathematical function R(t) which expresses the probability that a system
will not fail during a specified time interval. For operational systems,
this functifn3 cannot be known but by using reliability modelling
techniques”’ its fors may be predicted and the values of its
parameters estimated. If such a modelling exercise can be carried out
successfully, then it is possible to estimate the probability of a system
fa:ling during a def:ined operational period. This, however, 1s not a
commonlv used reliability metric since 1t can onlv be accessed via an
appropriate model. .nstead, mean time between failure (MTBF) 1s often
used since 1t can be measured directlv for an operational svstem bv
recording svstem failures, or obtained from a suitable model which 1tself
may often require recorded failure data to refine 1ts prediction.

Ciearlv, any attempt to assess objectively the reliabiltv of a svstem
requires a precise definition of what constitutes svstem “failure". For
this we require a specification detailing the precise functionality of the
svstem. A "failure" can then be said to occur when the behaviour of a
system first deviaties from that defined by its specification. Such an
innocuous definition belies the 1mmense difficulty of producing a
specification adequate for this purpose. The specification muyst be
internally consistent; 1t must be complete in the sense that alil possible
operating conditions and responses are catered for; 1t must be
aythoratative so that judgements derived from it are unquestionable; and
1t must be expressed i1n a way which allows 1t to be used always as a test
for system failure. A specification possessing these properties 1s termed
an "exact specification”™ and since such specifications rarelv exist we
must accept that the definition of failure, and hence the assessment of
reliability, will usually contain a degree of subjectivity.

Possibly two of the most frequently used reliability terms are "error" and
"fault" and in order to allocate precise definitions for them, 1t 1s
necessary first to construct a simple model of a computer svstem.
Generally, we can consider a computer system to contain a hardware system
and a software system which combine to perform the external functions of
the total system. Each of these logically separate svstems wi1ll contain a
number of "components” which interact under the control of a "design".
Components may themselves be considered as svstems :n their own right and
contain sub-components interacting under a design to perform the overall
functions of the component. This hierarchical decomposition will continue
until "atomic" components, which are considered to have no internal
design, are identified. In the case of a hardware system, decomposition
will result 1n a series of designs and a set of physical (atomic)
components; a software system will decompose purely into a set of designs,
since software has no phvsical properties. During operation, & system
will adopt a number of distinct 1internal states: for example, the values
of program variables in a software system, or the bus voltage levels in a
hardware system. When a computer system fails this will result from one
or more defective values in the state of the hardware or software svstems.
These defective values are termed "errors” in the state of the system.

)) :

Such an error will 1tself be caused by either the failure of a physical
component, a hardware design failure or & softvare design failure.
Physical component failures are normally considered to arise from an
ageing process which introduces defective values into the internal state
of a component and eventually causes it to operate outside its
specification. Hardvare and software design fsilures result from
defective values in the state of s design; for example, 8 missing
connection on a circuit disgram or an incorrect statement in the source
text of a program. A defective value, either in the internsl state of a
component or in the state of a design, which causes an error in the system
“state, vill be viewed as & "fault” in the system.

From the discussion above we can derive a relativelv simple model for
, computer system failure. During normal operation, the activity of the
svstem mav be such that a phvsical component fault, or a residual hardeare

or software design fault, 1s encountered and damages the system state bv

generating one or more errors. Again, depending on the precise activity

of the svstem, an error mav cause the external behaviour of the system to
deviate from its specification and so cause a system failure. There are
two complementary techniques which can be used to reduce the possibilaty
of system failure and so provide high reliabilaty:

(1) Fault Prevention. The aim of this technique is to try to prevent
faults from existing 1in an operational system. There are two
separate approaches:

(a) Fault Avoidance. The objective here i1s to try to avoid the
introduction of faults into the svstem. For example, design
faults can be reduced by the adoption of a good design method;
physical component faults can be reduced by the use of top
quality components.

(b) Fauit Removal. This method assumes that faults will have been
introduced during the development of a system and strives to
remove as many as possible, by exhaustive validation and
testing, before the system 1s launched into service.

(1:) Fault Tolerance. 1f prevention schemes cannot provide the required
reliability for a computer system, then it will be necessary to
construct the hardware and software systems in such a way that they
can prevent a3 fault from causing system failure. Such an approach
requires a combination of the followiag activities to be carried out
by the system:

(a) Error Detection. The presence of the fault cannot be detected
directly; it is the detection of an error in the system state
which 1dentifies the presence of a fault and can be used to
instigate corrective action.

(b) Damage Assessment. Following the detection of an error, the
extent of the damage to the system state may be estimated. Such

estimates are normally based upon static damage confinement
structures which exist within the system.

(c) Error Recovery. Before a system can be allowed to operate

). 3 3

- R T TR e]

normally following the detection of an error, the system must be
returned to an error-free state.

(d) Fault Treatment. If » system 15 allowed to continue normal
service following error recovery, it is possible that the fault
will recur and lead to eventual system failure. To avoid thas
problem 1t is necessary to locate the fault and remove it from
the system, by some form of reconfiguration, before allowing
normal service to continue.

In the following sections we shall investigate how the fault tolerance
principles outlined above can be applied to hardware and software systems.

3. Bardware Fault Tolerance

Hardware fault tolerance schemes are invariablv based on the assumption
that hardware design faults wil!l not exist and that physical component
faults will be the sole cause of potential failures. The rationale for
this lies 1n the lcwer complexitvy of hardware designs when compared with
software, and the widespread use of standard, operationally proven designs
for integrated circuit devices and printed circuit boards.

The ageing process of physical components can be well characterised via
accelerateq life testing and, consequently, the effects of a component
fault are "predictable”. This is of significant advantage when attempting
to devise a fault tolerance strategy. For example, 1f a certain component
1s known to fail in a particular manner, then the resulting damage to the
system state can be predicted thus facilitating error detection and
recoverv. Furthermore, redundant components which must be added to the
system to protect against physical faults can be of the same type and
design.

Redundancx in hardware systems can be categorised as either "dvnamic" or
"static" . In a dvnamic scheme, & faulty component will usually
provide some level of assistance with error detection but will rely on its
surrounding environment to carry out the other phases necessary for fault
tolerant operation. The standby sparing scheme illustrated in slide 4 1s
an example of such an approach. Here a main svstem component (M),
periodically reports to a "watchdog timer" (W). Should the main component
fail to report within a specified time interval then this will be
recognised as an error by the timer which will be responsible for
assessing the damage caused by the component fault, recovering the system
to an error-free state and treating the fault by switching in a redundant
"standby" (S) component. The damage assessment and error recovery phases
can vary in sophistication. A simple approach is to assume that the
entire state is damaged and to recover it by weans of a hardware reset.
More elaborate strategies can lead to resets for only parts of the system,
based on some a priori characterisation of the fault and/or damage
confinement structures which exist in the system.

In contrast to the dynamic redundancy approach where the surrounding
environment of a component plays an important role in the overall fault
tolerant behaviour, the objective of static redundancy is to mask the
effects of a component fault from the surrounding environment, The
canonical example of static redundancy 1s the tripie modular redundancy

By 4

e

(TMR) umit 1llustrated in slide 4. Here, three 1dentical components are
subjected to the same 1inputs and the overall output 1s obtained bdy a
two-out-of -three vote on the outputs of the individual components.
t Consequently, the TMR unit will mask the effects of any single component
fault. Error detection 1s provided by the voting check which also locates
the faulty component. Damage assessment is based on the assumption that
the faulty component operates in complete isolation (termed an atomic
action) and, consequently, cannot damage the system state. Error recovery
samply anvolves ignoring the output values identified by the voting check
as being erroneocus; fault trestment may involve ignoring future outputs
Yrom that component, depending on vhether the fault is considered
transient or not. Where future output from a faulty component is i1gnored
then the TMR unit will lose 1i1ts fault masking properties unless a new
component 1s switched 1n to replace the faultv one.

.n princ:ple, redundancy can be applied at any level within a system.
However, the higher the level at which it 1s applied, the larger the range
of fauits 1t protects aga:nst. The reducing costs of hardware and the
increasing functionality of integrated circults mitigates against the
traditional cost penalties of this approach and a number of fault tolerant
multi-processor syvstems have been developed (e.g. references 5,6,7,8)
wvhere redundancy 1s applied at the intra-computer bus level (e.g.
processor and memory modules). The emergence of local ares network
technologvy also 1invites the application of redundancy at the
1nter~computer bus level (1.e. a local area network with redundant

computer systems'. Wwhere redundancy 1s applied at the processor or
computer level the fault tolerance behaviour 1s usually controlled by
software.

In the militarv domain, the notion of fault tolerant local srea networks
1s of particular interest since the overall effect of such an approach 1s
! to distribute geographically the redundancy. This results in a system
{ which 1s tolerant to both operational fauits and action damage (fasults
generated by local environmental changes'). In the following section, we
\ shalljexamine an experimental, fault tolerant local ares network, called
ADNET”, which has been developed by the U.K. Ministry of Defence for
application to shipborne command and control systems of the Royal Navy.

4. The ADNET Ezperisent

The fighting capability of present day warships is controlled by a
substantial and closeiy integrated team of officers and their supporting
staff. The team must derive a continuous and rapid assessment of the
situation 1n the vessels area of concern fror a confusion of data
available to them from own ship's sensors, data links and many other
sources. Based on this assessment, decisions must be made regarding the
deployment of weapons. Once deployed, these resources must be controlled
in order to achieve the desired effect. The size, complexity and time
constraints of these tasks demand substantial computer assistance and this
is provided by the command and control system.

The commsnd and control systems of current HM warships are based on a
centralised computer architecture, as illustrated in slide 5. The central
computer supports not only the command and cortrol functions required by

ol

e

the officers and their staff but alsc the data processing and control
| requirements of the ship's sensors and weapons. Such an archaitecture
lacks enhancement capability, and 1s vulnerable to action damage.
Consequently, a futuristic command and control system architecture has
been proposed in which each weapon and sensor has computer power for local
data processing, and the command and control functions are horizontally
distributed across 8 number of computers, each with their own operator
display. The proposed configuration, illustrated in slide 6, uses &
serial data highway to provide the necessary inter-computer
communications.
In order to investigate the feasibility of a horizontally distributed
command and control system, the ADNET experimental model was developed

at the Admiral:y Surface Wweapons Establishment (ASWE). A simplified
schematic representation of the system 1s 1llustrated 1in ide 7, At the
heart of the svstem 1s the ASWE Seri1al Highway which 1s a

multi-drop bus to which access 1s by poll and response under the control
of a highuay controller. Some principal features are as follows:

3 Mbit/sec signalling rate, giving a maximum useful data rate of
1.8 Mbit/sec.

An upper limit of 63 nodes over a total highway length of 300
metres.

Intelligent communication processors which interface directly into
the host computer's memory and handle all the highway level data
transfer protocols. The host software simply views the highway as a
high integrity memorv-to-memory data transfer medium.

Broadcast and point-to-point messages of variable length up to 64
bvtes.

Block data transfer up to 16k bvtes.

Multiple levels of error detection with subsequent recovery of lost
or corrupted messages (performed automatically bv the communication
processor without host involvement).

The use of a passive multi-drop connection to the highway aeans that
communications in the network will not be affected by the powering down of
any computer node. The use of a highway contoller does, hcwever,
represent a potential source of network faixlure and, to overcome this, the
highway is equipped with two controllers. At anv particular time, one
controller will act .s "master" and control the ordering of messages onto
the highway in the normal manner; the other "slave” controller wiil
sonitor the activity of the highway and so be able to detect the failure
of the master, If the master does fail, then the slave recovers the
network to a consistent state and assumes the master function. This 1s a
dynamic redundancy, standby sparing scheme where the standby unit performs
a watchdog function. The physical cabling of the highwav 1s also
vulnerable to action damage and, i1n order to protect against this source
of potential failure, redundant cabling is used. Each communications
processor 1s connected to a number of cables (typically three). It
transmits on all cables and selects one of that number as its input. [f
the reception on one particular cable has an unacceptably high error rate,

)~ (- 6

-~ 0o

then the communications processor will automatically select another cable
for input. Again, this is a dynamic redundancy scheme where the
communication processor 1is responsible for implementing all phases of
fault tolerance.

Connected to the highway in ADNET are s number of Ferranti Argus computers
which collectively provide the command and control functions of the system
via appropriate operator diplays (not illustrated). A sensor simulator
computer is also connected to the network (not illustrated) in order to
provide data foilthe command and control functions. All ADNET software is
based on MASCOT ~ and programmed in CORAL.

Although the highway itself 1s capable of fault tolerant operation, fault
tolerance at the svstem level will be identified by the preservation of
the command and control functions in the presence of the failure of a
particular computer ncde. This can be achieved by adding redundant
computing power to the network and providing the software with the abilaity
to reconfigure 1tself dynamically in the event of the failure of a
particular node.

The ADNET approach to the dynamic reconfigurability problem is based on
the concept that each computer should operate largely autonomously, rather
than forming a partaition of an integrated system which is managed by a
global executive. The autonomous apprqach is reflected in the
inter-process communications philoscphy ° which does not rely on
fixed connectivity tables but 1nstead allows a distributed command and
control function to establish dynamically its own communications links
across the network. Cne 1important aspect of remote process communication
is based on a "user-service" model 1in which "usér" processes require to
access resources provided bv remote "service” processes. Initially, when
a user first requires to access a resource, it will broadcast an enquiry
message onto the highwav which will be received by all services of the
spec1fied type. These services will respond directly to the user by means
of a point-to-point message, the destination of which was contained within
the user's original request. If more than one reply is received, then the
user will seiect the most appropriate service, possibly from status
information contained within the reply. Thereafter, whenever the user
wishes to access the service, 1t will do so via a point-to-point message,
the destination of which was embedded within the service's reply to the
original broadcast enquiry. The reply from the service will be a
point-to-point message 1in the same way as before. I1f a computer
containing a service fails, then all users of that service will time-out
the point-to-point replies from 1t and, by the broadcast enquiry technique
described above, establ:sh a connection to a similar service held
eisevhere.

In fact, the protocol described above is one of a related set supported by
a communications package resident in each computer. The communications
packages present an integrated view of the network such that processes in
the ssme machine communicate in the same way as if they were remote,
Consequently, processes can migrate around the network and automatically
re-establish their required connectivity, regardless of the particular
computer they, or their communicating partners, may be resident in. This
characteristic means that, providing the services that a computer supports
are replicated elsewhere in the network, a particular machine may be
powered down, taken out of service, powered up, reloaded with new software

)70 7

and then introduced back into the network, without disrupting the
operation of the other machines. Such behaviour provides great
flexibility in the run-time re-allocation of computer functions and
significantly aids on-line maintenance.

The simple user-service model described above reveals the basic ADNET
fault tolerance approach. Protective, dynamic redundancy is introduced by
replicating services, which of course implies the provision of spare
computing power in the network. Error detection is performed by user
processes timing-out service replies. Damage assessment is based upon the
physical structuring of the system since it is implicitly assumed that
damage will be contained within the failed computer. Error recovery is
limited to a user process disregarding any partial results obtained from
the service before 1t failed. Fault treatment is performed by the user
when 1t dvnamically links itself to another version of the service held
elsewhere.

If a service process is memoryless in the sense that its function does not
depend on data retained between invocations (e.g. a mathematical
function), then replicating it presents little difficulty since all
service replicas will provide exactly the same function. However, if the
service does retain data, then the replicas must be synchronised in some
way in order that they offer the same service at all times. In ADNET such
services are integﬁifed into a specially developed, distributed database
management sSystem which controls the replication, synchronisation
and distribution of database partitions.

S. Software Fault Tolerance

In contrast to hardware fault tolerance where only physical component
faults are usually considered, software fault tolerance schemes are
concerned solely with design faults. This has two important
ramifications:

(i) The faults and their effects will be "unpredictable”. This
increases the difficulty associated with error detection and
recovery phases of fault tolerance. Backward recovery to a prior,
error-free state is the most effective way of recovering from
unpredictable faults.

(ii) Protective redundancy must be based on modules of independent
design so as to minimise the possibility of common design faults.

The twfsmain techniques for softwarg fault tolerance are recovery
blocks and N-version programming . Thg general syntax of a
recovery block is illustrated in slide 8. A number of alternate modules
of independent design are produced from the same specification. There
will exist a primary alternate which represents the preferred design and a
number of other alternates. These may be older versions of the primary
(uncorrupted by enhancements), modules offering degraded functionality, or
simply alternates providing the same functionality as the primary but
based on different algorithms and/or produced by separate programming
teams. On entry to a recovery block, a recovery point is established
which allows the program to restore to this state, if required. The

) & 8

u

primary alternate is executed and an acceptance test checks for successful
operation., If the acceptance test fails, then the program 1s recovered to
the recovery point taken on entry to the recovery block, the secondary
alternate is executed and the acceptance test applied again. This
sequence continues until either an acceptance test is passed or all
alternates have failed the acceptance test. If the acceptance test is
passed, then the recovery point taken on entry is discarded and the
recovery block is exited. If all alternates fail the acceptance test,
then a failure exception will be raised. Since recovery blocks can be
nested, then the raising of such an exception from an inner recovery block
would invoke recovery in the enclosing block. Generally, an exception
raised from within an alternate can be used to indicate premature failure
and thus invoke the same action as for an acceptance test failure.

The recovery block approach is essentially a software analogue of the
hardware standby sparing scheme described in section 3. Redundancy is
achieved by alternates of independent design; error detection is provided
by the acceptance test or by an exception being raised from within an
alternate. Ostensibly, damage assessment is not required because backward
error recovery will eliminate all damage to the program. However, in a
multi-processing environment, backward recovery will only be applied to a
single process (or at most a defined set of interacting processes - see
next section) and thus practical schemes will require protection
mechanisms within the machine to confine the damage to that part of the
system which will be backward recovered. This constitutes implicit damage
assessment. Fault treatment within a recovery block is achieved by the
execution of another alternate following recovery.

In contrast to recovery blocks, the N-version programming scheme,
illustrated in slide 8, is a software analogue of hardware triple modular
redundancy. Three or more (N) independently designed versions of a module
are activated by a "driver" module (D) which supplies them with the
appropriate input data. The driver then collects the individual outputs
from the versions and performs a majority vote in order to determine the
output from the N-version unit. Consequently, a design fault in any one
module will be masked. Error detection is provided by the voting check
which also locates the faulty version. Damage assessment is based on the
premise that each version executes atomically (in isolation); this can be
achieved physically by running each version on dedicated hardware or,
logically, by running the versions on the same computer and using
appropriate protection mechanisms. With atomic execution, error recovery
is achieved by the driver ignoring the output values identified by the
voting check as erroneous. Fault treatment can be considered as simply
ignoring the results of the version identified as being faulty.

In a recovery block scheme, all alternates are always available on entry
to the block, regardless of previous faults. The rationale for this is
that a design fault will only be uncovered by a rare combination of
processing conditions which are unlikely to recur when the recovery block
is next executed. For an N-version scheme the situation is a little more
complicated. Unlike the alternates of a recovery block, all versions of
an N-version unit are usually executed each time the unit is invoked.
Consequently, they can retain data locally between invocations. This has
the advantages of increasing the design independence of the versions
(alternates of a recovery block must all access the same global data
structures which limits their algorithmic independence) and reduces the

) R9

data which must be passed to a version upon invocation. However, if the
versions do retain data, then a driver will not be able to re-use a
version which has produced an erroneous output since its internal state
might have become inconsistent with the others of the unit. If the fault
tolerance properties of the N-version unit are not to be degraded under
these circumstances, it will be necessary to provide some form of recovery
of the internal state of a faulty version.

Each of the two software fault tolerance schemes described above has its
own virtues. Generally, the N-version programming scheme is most
“appropriate to those systems which have replicated hardware for concurrent
execution of versions, and for which voting checks can be easily
constructed (this can be a non-trivial exercise since the versions must be
of independent design and their "correct" outputs can vary). Recovery
blocks are most appropriate for systems where hardware resources are
limited and voting checks are inappropriate. A full discussion,of the
relative merits of the two approaches can be found elsewhere’. The
remainder of this paper will concentrate on the practical problems of
using recovery blocks in real-time applications, and describe a
demonstrator system, recently constructed at the University of Newcastle-
upon-Tyne, to 1investigate the use of recovery blocks in a naval
application.

6. Application of Recovery Blocks to Real-time Systems

Although recovery blocks have been available in principle since the mid-
1970's, they have not been widely used in practical real-time
applications. Some anticipated problems associated with their use are as
follows:

(i) Run-time overhead. Acceptance tests, backward error recovery and
additional alternate executions all provide a run-time overhead.
Although acceptance test and alternate execution overheads are
fundamental to the scheme, special hardware can be used to minimise
backward error recovery times. The feasibility of this approach
has been demonstrated at, K Newcastle University where a prototype
"recovery cache" device has been developed which backward
recovers the memory of a DEC PDP 11/45. The overall configuration
of the device is illustrated in slide 10. The recovery cache is
based around a DEC LSI/1l1 microcomputer which communicates with the
PDP 11/45 host processor via a cache-host interface unit (CHIU), and
can access the memory of the PDP 11/45 via a cache-memory interface
unit (CMIU). The host Unibus is physically intercepted by a bus
monitor unit (BMU) which is controlled from the LSI/11, and which
can write data directly to the recovery cache memory via a non
processor request mrdule (NPR). Under the conditions when the host
processor does not require a recovery point, the BMU allows all host
memory accesses to proceed unhindered. When the host instructs the
cache to establish a recovery point, the LSI/1l configures the BMU
to intercept all writes to memory locations which are being updated
for the first time since the recovery point was established. Before
these writes are allowed to proceed, the BMU reads the original
value of the location and stores the location address and original
value in the cache memory. It then applies the write to the host's

10

(ii)

memory. If the host instructs the cache to recover, then the LSI/11
will read the address/value pairs from its memory and restore the
appropriate locations of the host's memory to their original values.
In this way, the memory is returned to its state when the recovery
point was established.

The operation of the cache is determined by software which runs on
the LSI/11 and, in its original form, this supports four levels of
nested recovery points for a single process running on the host.
Initial experiments with the cache indicated that, for a typical
process, the run-time overhead of monitoring the Unibus was of the
order of 10Z.

Concurrent processing. When a regime of communicating processes
establishes recovery Pgints independently, then it is possible that
the "domino effect” will occur. This is illustrated in the
first diagram of slide 10 where the horizontal lines describe the
progress in time of two processes Pl and P2, the vertical lines
indicate communication between processes and the open square
brackets correspond to the establishment of recovery points. 1If, at
the most advanced stage of its progress, Pl wishes to recover to its
last recovery point, then this can be achieved without affecting P2.
However, if process P2 wishes to recover to its last recovery point,
then this will cause recovery beyond a communication with Pl. 1In
general, this communication must now be considered invalid (e.g. P2
may have passed Pl erroneous data) and so Pl must recover to its
penultimate recovery point. In so doing, this invalidates further
communication and causes P2 to recover to its penultimate recovery
point. This sequence will continue until either a consistent pair
of (possibly ancient) recovery points are found, in which case the
system may proceed, or the processes will be left in an inconsistent
state when all recovery points of one or both processes have been
used up.

The general solution to the domino effect is to establish "recovery
lines" in the system, as illustrated by the broken lines on the
second diagram of slide 10. A recovery line connects a mutually
consistent set of recovery points and can be afgieved by groups of
processes cooperating to form 'conversations”"'”. On entry to a
conversation, a process establishes a recovery point and,
thereafter, may only communicate with others that have also entered
the conversation. If a process wishes to recover whilst in a
conversation, then all other processes of that conversation are
forced to recover also. When a process wishes to leave the
conversation, it must wait until all other processes are ready to
leave. This, of course, introduces a synchronisation overhead but
is the price paid for controlled recovery. Conversations, like
recovery blocks, can be nested, as illustrated in slide 10. Here
processes Pl1-P4 initially enter an outer conversation. Some time
later, Pl and P2 form an inner conversation which, after two
communications, completes and returns Pl and P2 to the outer
conversation. At some future point in their processing, P1-P4 will
synchronise to complete the outer conversation.

Although conversations provide a solution to the domino effect, the
ease with which they can be implemented and used in practical
systems is largely unknown, and the synchronisation overheads
associated with their use is likely to be application dependent.

] 3

11

AR

(iii) Acceptance tests. The acceptance test provides the basic method of
error detection and, as such, plays a vital role in determining the
overall effectiveness of the scheme. If the acceptance test is too
complex, then it will generate a large run-time overhead and is
liable to contain residual design faults, In contrast, a simple
acceptance test may not provide an adequate method of checking the
acceptability of an alternate's operation. Importantly, there is no
wealth of documented practical experience upon which a designer of
acceptance tests can draw.

{iv) Location of recovery blocks. For the effective utilisation of
redundancy, recovery blocks should be used in those sections of the
software most likely to contain faults which would cause system
failure. The unpredictable nature of software faults makes this
task extremely difficulte.

(v) Development cost overhead. Software development overheads resulting
from the use of recovery blocks can be divided into a fixed part and
a proportional part. The fixed part will arise from the need to
provide additional run-time environment software to support the
operation of recovery blocks and conversations. The absence of a
standard environment to provide this facility adds significant cost
risk for any project contemplating the use of recovery blocks. The
proportional part of the cost will be derived from the design and
implementation of acceptance tests and redundant alternates, but
will also include effort associated with selecting the locations of
the recovery blocks and in defining suitable conversation
structures. Again, there is little empirical evidence upon which to
base estimates for these.

(vi) Memory overhead. Extra memory will be required for additional
run-time support software, acceptance tests and redundant
alternates. Such overheads are difficult to predict in the absence
of practical experience,

(vii) Reliability improvement. If a system designer is prepared to argue
for the inclusion of recovery blocks, what sort of reliability
improvement, if any, can he expect to get? The risks and costs are
evident; the benefits are unproven.

The circularity of the case against recovery blocks is manifest: recovery
blocks have not been chosen for use in practical systems because there is
insufficient evidence of their utility; there is insufficient evidence of
the utility of recovery blocks because of their lack of use in practical
systems. In an attempt to break free from this lecop, a project, sited at
Newcastle University, has recently been completed which has investigated
the costs and benefits of using recovery blocks in a realistic, real-time
system” ', The work was funded jointly by the Ministry of Defence and
the Science and Engineering Research Council of the U.K., and was directed
at the construction of a demonstration system which modelled a subset of
the functions of a centralised naval command and control system, as
illustrated in slide 5.

The demonstration system consisted of three interconnected DEC computers,
as shown in slide 12. The command and control software, in which recovery

)] 3R 12

blocks were included, was written in CORAL and based on MASCOT11
This ran on a DEC PDP 11/45, to which was connected the recovery cache
described above, and a command console via which an operator could invoke
command and control functions. The command and control machine was
connected, by a parallel link, to a Unix-based PDP 11/45. This acted as a
file-server on which monitoring output from the command and control
machine was logged. The actions of own ship's sensors and weapons were
simulated by MASCOT/CORAL software running on an LSI/1l. Simulation
scenarios were stored on the file server and read via a serial link. A
graphics console was provided to allow an operator to control the
operation of the simulator and to display the current state of the
simulation. Communication between the command and control software and
the simulated weapons and sensors was achieved via messages passed across
a serial link.

The functionality of the command and control software was based upon
anti-submarine warfare scenarios in which an operator would guide a
torpedo-carrying helicopter to engage a hostile submarine. The command
and control software was constructed in such a way that the software fault
tolerance embedded within it could be either enabled or disabled. By
running the command and control software in these two modes for various
scenarios, comparative overall MTBFs could be obtained. Moreover, by
using the monitor output from the command and control software, the fault
coverage provided by the software fault tolerance could be estimated by
determining the number of potential failures which were averted.

An important aspect of the work was the development of a scheme to apply
the conversation principle to MASCOT software: a set of concurrent
processes, termed activities, which interact through Inter-activity
communication Data Areas (IDAs). The approach adopted was to define, at
system conigructlon time, static conversation structures called
"dialogues" ~. Each dialogue was created with a unique name, nest
level (since dialogues, like conversations, may be nested), activity list
(to define those activities which are permitted to use the dialogue) and
IDA list (those IDAs via which dialogue activity members are allowed to
communicate). Each activity is created with a set of dialogues which it
may use; dialogues may be entered or exited and this is essentially the
way an activity establishes and discards a recovery point explicitly. A
recovery block called by an activity will be passed the dialogue name to
be used when establishing the recovery point of the block.

The principle of static, named, dialogue structures is important since it
provides good design visibility of the intended recovery structure. One
major problem with the use of backward error recovery is associated with
non-recoverable interfaces. Consider the situation where an activity
fires a missile from within a recovery block. If the activity recovers
for some reason (e.g. the acceptance test fails), then the internal state
of the activity will be inconsistent with the state of its environment,
since we cannot reverse time in the real world. One approach would be to
insist that an activity never accesses a non-recoverable interface when it
has an active recovery point. In conversation-type schemes, this can lead
to excessive synchronisation overheads associated with the completion of
conversations. In the dialogue scheme, this problem is avoided by
distinguishing between forward and backward recoverable IDAs. Forward
recoverable IDAs represent non-recoverable interfaces; backward
recoverable IDAs are interfaces between activities within the recoverable

/] 33 13

system. When a dialogue recovers, all associated backward recoverable
IDAs are recovered in the normal manner; forward recoverable IDAs are not.
Instead, a forward recovery procedure, which is specifically defined for
that IDA, is executed. This will attempt to place the non-recoverable
environment in & state consistent with that of the recovered activities.
For example, in the case of a missile firing, the forward recovery
procedure might self-destruct the missile and then decrement the (backward
recovered) missile count by one.

The implementation of the dialogue scheme involved adding recovery
"software to the MASCOT run-time kernel to support recovery blocks and
dialogues, and enhancing the recovery cache software to accommodate
concurrent MASCOT activities. Some 3000 man-hours of effort was expended
in this work and the MASCOT run-time kernel size was increased by
approximately 25%.

The results of reliability measurements on the demonstrator system17
indicated that approximately 707 of software failures were averted by the
use of software fault tolerance and the MTBF increased by about 135%. In
fact, around 90%7 of all command and control software faults were
successfully detected but hardware faults in the prototype recovery cache,
and residual bugs in the recovery software of the MASCOT kernel, prevented
successful recovery. In the absence of such deficiences (which one would
expect for standard, re-usable hardware and software), an increase in MIBF
of 9007 was predicted.

The price paid for this increase in reliability was as followsl7-

(i) 607 increase in the cost of developing the command and control
applications software;

(ii) 33% extra applications code was produced;
(iii) 35% extra applications data memory was required;

(iv) 40Z% additional run-time was required (307 dialogue synchronisation,
87 cache bus monitoring).

6. Conclusions

Since the 1950's, fault tolerance has been used to improve the reliability
of hardware systems. The reducing cost of hardware and the increasing
functionality of integrated circuit devices has led to the development of
fault tolerant multi-processor and local area network systems where
protective redundancy is applied at the processor and computer level,
respectively. The inclusion of redundant computers in a local area
network is particulary attractive in military applications since the
geographical separation of the redundancy can lead to a system which is
tolerant to both operational faults and action damage. This paper has
described the essential features of a dynamically reconfigurable, local
area network, called ADNET, which has been specifically designed to
exploit these potential benefits for a distributed naval command and
control application.

)3 4

— e, et

14

#uil

Traditionally, fault tolerance schemes have only considered the physical
failure of hardware components, although it is often the case that
computer system failures are the result of residual software design
faults. Various software fault tolerance techniques have been proposed
during the last decade but there has been little evidence of their
widespread use in practical systems. However, an experimental system,
recently constructed at Newcastle University, has demonstrated that
software fault tolerance can significantly increase the reliability of
real-time software, and an account of this work has been included in
.this paper.

The increasing complexity of hardware systems, and in particular the
advent of VLSI devices of customised design, suggests that conventional
assumptions regarding the absence of hardware design faults in systems can
no longer be considered as generally valid. Consequently, it is likely
that fault tolerant systems of the future will require redundant
components of independent design to be added to hardware systems, in a
similar manner to that currently proposed for software systems,
Inevitably, the increasing ease with which we can implement computer
systems exposes our inability to specify and design them correctly and, in
the presence of such imperfection, we must become more tolerant!

References

1. T. Anderson and P. A. Lee, "Fault Tolerance: Principles and Practice,"
Prentice Hall, 1981.

2. W. G. Bouricius et al., "Reliability Modelling Techniques for Fault
Tolerant Computers,” IEEE Transactions on Computers, C-20(11), pp.
1306-1311, 1971.

3. P. A. Keiller, B. Littlewood, D. R. Miller and A. Sofer, "On the
Quality of Software Reliability Prediction,"” Proc. NATO Advanced
Study Institute on Electronic Systems Effectiveness and Life-Cycle
Costing, Norwich, UK., 1982.

4. R. A. Short, "The Attainment of Reliable Digital Systems Through the
Use of Redundancy - A Survey,” IEEE Computer Group News 2(2), pp.
2-17, 1968.

5. J. H. VWensley et al., "SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control," Proc. IEEE 66(10), pp. 1240-12553,
1978.

6. A. L. Hopkins, T. B. Smith and J. H. Lala, "FIMP - A Highly Reliable
Fault-Tolerant Multiprocessor for Aircraft," Proc. IEEE 66(10), pp.
1221-1240, 1978.

7. C. S. Repton, "Reliability Assurance for System 250, A Reliable,
Real-Time Control System," First International Conference on Computer
Communications, Washington (DC), pp. 297-305, 1972.

8. D. Katsuki et al., "Pluribus - An Operational Fault-Tolerant
Multiprocessor," Proc. IEEE 66(10), pp. 1146-1159, 1978.

)35 15

:‘“M

9.

10.

11.

12.

13.

14,

15.

16.

17.

18.

J. A. Gasden, "ADNET: An Experiment in Computer Networks for the Roval
Navy," Proc. 3rd. International Conference on Distributed Computing
Systems, 1982.

J. S. Hill and M. G. Stainsby, "A Highway for Intercomputer
Communication,"”" Journal of Naval Science, 6, 216, 1980.

MASCOT Suppliers Association, "The Official Handbook of MASCOT," RSRE,
Malvern, U.K., 1980.

W. L. lLakin and M. R. Moulding, "The ADNET Communications System:
Inter-Process Communication in a Fault Tolerant Local Network," Proc.
Third IFAC/IFIP Wworkshop on Achieving Safe Real-Time Computer
Svstems, pp. 233-238, Cambridge, U.K., 1983,

P. R. Tillman, "ADDAM: ASWE Distributed Database Mznagement System,"
Proc. 2nd. International Symposium on Distributed Database Management
Svstems, North Holland Publishing Company, 1982.

P. A. Lee, N. Ghani and K. Heron, "'A Recovery Cache for the PDP-11,"
IEEE Transactions on Computers, C-29(6), pp. 546-549, 1980.

B. Randell, "System Structuring for Software fault Tolerance," IEEE
Transactions on Software Engineering, SE-1(2), pp. 220-232, 1975.

L. Chen and A. Avizienis, "N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation," Digest of FTCS-8,
Toulouse, pp. 3-9, 1978,

T. Anderson, P. A. Barrett, D. N. Halliwell and M. R. Moulding, "An
Evaluation of Software Fault Tolerance in a Practical System,” to
appear in Digest of FTCS-15, Ann Arbor, 1985.

T. Anderson and M. R. Moulding, "Dialogues for Recovery Coordination
in Concurrent Systems," In Preparation.

13 16

B
_/

-

§

TERMINOLOGY)

RELIABILITY IS CHARACTERISED BY A FUNCTION R(t) WHICH EXPRESSES THE
> PROBABILITY THAT A SYSTEM WILL NOT FAIL THROUGHOUT A PERICD
1‘ OF DURATION ¢

MIBE MEAN TIME BETWEEN FAILURES

FAILURE OF A SYSTEM OCCURS WHEN THE BEHAVIOUR OF THE SYSTEM FIRST
DEVIATES FROM THAT REQUIRED BY ITS SPECIFICATION

EXACT SPECIFICATION IS REQUIRED WHICH MUST BE:
CONSISTENT

(MPLETE
ATHORITATIVE
USABLE AS A TEST FOR FAILURE

ERROR A DEFECTIVE VALLE IN THE STATE OF A SYSTEM

i FALT A DEFECTIVE VALLE IN THE INTERNAL STATE OF A COMPONENT, (R
IN THE STATE OF A DESIGM.

137

RMES —ecmima .
s =
_ = |
. TERMINOLOGY (@) ﬁj/:
bl
FAILURE
4
ERROR
PHYSICAL HARTHARE SFTHARE
COMPONENT DESIGN DESIGN
FAULT FAULT FAILT

a
GAN

(RMES —czamin

r

TERMINDLOGY (D)

)

i

RELIABILITY ——

— FAULT PREVENTION —

—— FAULT AVDIDANCE

—— FAULT REMOVAL

ERROR DETECTION
DAMAGE ASSESSMENT

— FAULT TOLERANCE —— % ERROR FE

e

CONTINUED SERVICE

\-

1
STATRY SPARING
_______ N (OYNAMIC REDUNDANCY)
e M1 \
] M2 b TRIPLE MOTVLAR REDUMDAMCY

|4 O

o

(‘ HM ns—uwmunutﬂ

:[é@ﬂ)

SENSORS

WEAPONS

DO/{>

CENTRAL
COMPUTER

7

_—/
5 B

DISPLAYS

\

Q O

_

14

~ RMGS —eacanms
' HORIZONTALLY DISTRIBUTED

A" ———
) n—— |
_ -
|

£ Y

LOCAL
come [P

LOCAL
9 comp

L LOCAL
COMP

LOCAL
COMP B¢
Serial
/Highwuy
LOCAL LOCAL LOCAL LOCAL
comp CompP comp COMP
1 1 | |

GA\

(HMBS"@TJ

NHERD

Action Data NETwork (ADNET)

3 Mbit/sec serial highway with

HC ,‘ and redundant cabling.
\
—©
> AJTONOMOUS
COPUTERS

HC

duplicated highway controllers (HC)

143

)L

~R MES —caammn

| -
SOFTWARE FAILT TOLERANCE
BVSURE < Acceptance Test >
BY < Primary Altermate >
ELSE BY < Secondary Alternate > REC Y
BLOCK
BL.SE BY <« nth Alternate >
ELSE ERROR
‘:
° |
i
NVERSION |
\ \) v, |
|
i
- J

] 44

~ RMES —cocmms

USE OF RECOVERY BLOCKS

i
id 118
_J

]
[
3

S

PROBLEMS ANTICIPATED:

1 RUN-TIME OVERHEAD

2 CONCURRENT PROCESSING

3 ACCEPTANCE TESTS

4 LOCATION OF RECOVERY BLOCKS
5 DEVELOPVENT COST OVERHEAD
6 MEIVORY OVERHEAD

7 IMPROVEMENT IN RELIABILITY?

_

RECOVERY CACHE ‘v
E:::_z:__é
M
cFTTT s A
! |
I I
| B : AN
11/45 UNIBUS] M | >
i U] 7
| |
| !
e — — —] | [F -
! !
' |
: CHIU NPR CMIU l
I
[I
f !
I !
I \ i
! LS/ Q BUS DN
! —7 |
l !
! |
! l
I M]
! |
!]
e o e e e e e _

A
&)L

10

=
=)
55
£3
=
=3
@5

_
3
[]
—~ —

a a
ﬁ v
L
L
(W
Ly
Ly

i N ittt i

Pe

a a Py

.ﬂ-_ll_ q.l_.d_
| |
| |
| |
| |
| > !
1 |
LU !
Lo

r—-LH- -4

- _ |

| |

-x_lelu_ “ |

| |

N I !

_

_....s_lﬁ_

b e e, e e e e =

)

47

~RMES -z

FIELD

SOFTWARE FAULT TOIERANCE DEMONSTRATOR

-8

e

11/45

MASCOT

11/03

umxr—-—a

|e

CACHE

&)L

~ RM GS —eaaarmo

EXPERIMENTAL OBSFRVATIONS AND RESIITS

1 STATIC FORM OF CONVERSATION, TERVED A DIALOGUE, DEVISED FOR MASCOT
2 UTILITY OF DIALOGUES AND RECOVERY BLOCKS DEMONSTRATED

3 RELIABILITY IMPROVEMENTS
/0% OF POTENTIAL FAILURES AVERTED
135% INCREASE IN MIBF

4 COSTS AND OVERHEADS
60% ADDITIONAL DESIGN & CODING EFFORT
33% EXTRA CODE
35% EXTRA DATA MEMORY
407 ADDITIONAL RUN-TIME
(30% SYNCHRONISATION OVERHEAD)

&L

N

AD-P005 560 /

THE ASPECT PROJECT

J.A. Hall ’
: Systems Designers plc

INTRODUCTION

", ASPECT was the first Alvey-supported software engineering

project and is a collaborative venture aimed at prototyping a
multi-language, distributed-host, distributed-taryet
Integrated Project Support Environment. The ASPECT team is
led by Systems Desiyners plc (SD) and the other partners are
the Universities of Newcastle upon Tyne and of York, GEC
Computers Limited, ICL and MARI. Following the Alvey
strategy, ASPECT has started by inteyrating existinyg tools,
notably Perspective from SD, on UNIX ; this environment is
being developed by distributing it wusing the Newcastle
Connection and then building in the more advanced results of
collaporative research and development. o
REQUIREMENTS

To understand the obiectives and strategy of ASPECT, it is
necessary to consider the requirements for an IPSE : what we
expect it to 4o, beyond what our current tools provide, to
improve the software development process. We can identify
four areas where an IPSE can advance the state of the art:

a) It must support the whole software lifecycle.

whatever one's view of the software lifecycle, it
certainly encompasses a number of phases throuyn
wnich the software proyresses and, at every pnase, a
number of different types of activity : planninyg,
managing, carrying out and recording tne phase, for
example. An IPSE, therefore, must support all tnese
activities for every phase : more importantly, it
must integrate the various supporting tools so they
form a conerent whole.

|5 ¢

b)

c)

a)

It must support development methods.

Software development methods can be characterised by:
their data model of software development ; the
(frequently graphical) notation for expressing this
model ; the rules which govern the application of the
model and the procedures for manipulating it. An
IPSE must be capable of supporting all these aspects
of a method. Because there is no universal method
and new methods are continually being introduced, an
IPSE must be configuraple, to support many methods,
and capable of integrating different methods.

It must deliver power to the user.

We need to harness the raw hardware power now
available 80 that botn processing power and 1io
bandwidth are more than enougn for the user not to be
constrained by the system. This implies that an IPSE
must be workstation based and have an effective,
responsive man-machine interface.

It must support development in the large.

An IPSE must support teams of people working on
common projects. At tne physical level this implies
networking of machines ; at the 1logical level,
version and configuration control, concurrency
control, access control and task management must Dpe
built in to the IPSE.

KEY OBJECTIVES

ASPECT, in addressing these reyuirements, is concentrating on
four key objectives.

a)

Integration and openness.

ASPECT is emphasising the development of an
infrastructure for tools, because it is by provision
of a powerful set of common services to all tools
that integration of tools can be achieved. Tools
written for single users can immediately be used on
large projects when incorporated into ASPECT, for
example, because the infrastructure manages all the
problems of controlled sharing between users. It
is crucial that ASPECT provide these facilities in an
open way so that new tools and methods can be
incorporated by the user.

/51

b) Host distribution.

ASPECT 13 addressed at developers who may be
goegraphically distributed and who work on large

projects using a range of machines including personal
workstations.

c) Good man-machxne 1nterface.

A major part of the ASPECT reseatch is aimed at

: providing an arcnitecture in which software engineers
can use the power of, for example, bit - mapped
graphics and pointing devices effectively.

d) Target distribution.
ASPECT is oriented towards the development of
embedded systems. In particular we are addressing

tne specification, development and testing of
software for distributed target machines.

ASPECT ARCHITECTURE

The ASPECT architecture addresses, in a simple and general
way, the key objectives. It is based on a clear separation
between tools and kernel, and the provision by the kernel of
a powerful set of comaon services for structuring and storing
information, for communicating with users and other tools,
and for manipulating remote targets. These functions are
made available to tools through the public tool interface
(pT1).

To achieve the reguired openness the PTI is extensible, to
support new methods and tools, and configurable, so a project
can impose particular methods of working, if reguired.
Furtnermore, since the PTI is the only means by which tools
use ASPECT services, it necessarily includes within itself
the facilities for its own extension and configuration.

One of the most important rejuirements on ASPECT is that
existing tools, written for the host operating system, should
be usadble within ASPECT. This is made possible by the open
tool interface (OT1). The OTI can be thought of as a subset
of the PTI which appears to the tool just 1lixke the host
operating system. ASPECT is hosted on UNIX*, s0 the 0TI
makes available to ASPECT a large collection of existiny
software development tools.

The PTI services fall into four groups:

information storage

man-machine interface

process invocation and communication
target services.

/|5 2

139uvl
aiilnariisia

r

2

gzx

L |

cos XVA €0S [0] XVA

XINN XINQ XIND XINN

3SVE NOLLVIRIQSNI
103dSV

MIOVNVIY . UIOVNVI
ovnanall Fovaaini 0oL onang [ROV
139uvL uasn

S1001
XiNN

S1001
103dSV
+
J3dsu3d

J4N1LO4LIHOHY 103dSY

o)e
bu3ad

Lach of these services is provided by a layer of software =~
in the effect a subroutine library - between tne tool and tne
UNIX Kernel. The PTI offers services at a much high level
than those 0f UNIX. To provide the open tool interface, the
PTI includes calls appearing to be UNIX system calls, but
even these are processed by ASPECT ratner than by UNIX so
that all tools, including UNIX ¢tools, are fully under the
control of ASPECT. 1Indeed, different open tool interfaces
will be provided for different UNIX tools to capture the
sémantics of the tools' data correctly in the ASPECT
information base.

MEETING THE OBJECTIVES

The central component in ASPECT is the information base, and
it is the information base which achieves tne integration
between tools by providing a central, structured repository
for all the information they manipulate. The information
base is a database but contains in addition:

a) Its own definition. The structural information can
be accessed via the PTI in the same way as any other
information.

b) Rules. These support not only the integrity

constraints of the basic data model, but also
user-defined rules which may, for example, be the
rules governing the use of a particular development
metnod.

c) Built in structures to support software engineering.
In keepiny with the aim of integration, many of the
structures (for example version identification)
supporting development in the large are provided at
the information base level.

The database itself wuses a standard architecture, the
ANSI/SPARC three level model. This has a conceptual level,
with below it an internal level and above it a set of
external views, each view presenting the database to a tool
in the way reguired by that tool. The conceptual level uses
a standard data model, Codd's extended relational model
called RM/T. This is a very powerful combination for
providing the required extensibility and openness. The view
mechanism not only shields tools from extension to the
conceptual model, but it is powerful enouyh to transform the
data to suit almost any tool. In particular the Open Tool
Interface is achieved by defining UNIX-like views of the
data.

IR

The architecture Of ASPECT is implemented on UNIX. In order
t0 run ASPECT on a distributed host we are taking advantage
of the Newcastle Connection, a powerful metnod of linking
UNIX systems soO that they behave as a single UNIX. ASPECT is
building local and wide area networks of distributed UNIX
systems. At a level above this, we are dcvcloping metnods of
distributing the information Dbase and, in particular,
supporting the logical distribution of the database between
separate but interdependent users. _ _

The mmi of ASPECT is, 1like the information base, aimed at
providing a high level of functionality to tools and removiny
from individual tools concern waith the details of user
interaction. The mmi architecture has to achieve this across
a wide range of users, of devices, of tools, and of
interaction styles. At the same time the gquality of
interaction on powerful workstations is paramount. ASPECT
handles this by defining levels of abstraction witnin the mmi
and providing components, with well defined interfaces, to
handle these abstractions. This is a major researcn topic in
the project.

In approaching the proyramming of distributed targets, ASPECT
is again looking for general, powerful solutions. We are
studying methods for describing target architectures,
extending languages to support interprocess communication on
such targets, describing the placement of processes on
processors and monitoring the operation of the target.

ASPECT STRATEGY AND THE ALVEY PROGRAMME

ASPECT is an Alvey second generation IPSE, in tnat it is
clearly based on a database and is designed for a distributed
host. It is not, however, being designed from scratcn but is
evolving from existing products and ideas. The main starting
points were Perspective (a SD environment product), UNIX, and
the Newcastle Connection. The initial release of ASPECT is
indeed an integration of these components plus an Ada
compiler. Meanwhile research has been going on to explore
how to move forward from that base.

This research is now being brought toyether, with our
experience from the first release, to define ASPECT - in
particular its Public Tool Interface - in some detail. On
the basis of this definition, prototypes of ASPECT will De
produced and used as vehicles for research and further
development. These prototypes will of course reuse as much
as possible both of the partners’' existing products and of a
commercially -available DBMS. The results of this work are,
in turn, beiny incorporated into partners' products on UNIX
and VAX VMS.

Slince much of the ASPECT project is concentrated on the
infrastructure, wve 100k toO other sources f£or many of the
tools which will run on ASPECT. Some of these tools will pe
produced by the industrial partners, but ASPECT is also a
potential base for tools developed in other Alvey projects
and perhaps also other projects like ESPRIT's SPMMS. These
tools will use ASPECT most effectively if they exploit the
Public Tool Interface, and to aid this ASPECT will produce a
formal definition of its PTI using the notation Z, developed
at Oxford. Far more tools, of course, have been and will be
written simply £for UNIX, and ASPECT will integrate these
tools through its Open Tool Interface.

SUMMARY

Although ASPECT cannot, of course, address all the problems
of software development, it does address the major 1IPSE
requirements and is a prototype of the next generation of
1PSEs. In particular it supports tne whole 1lifecycle by
providing a sound framework for tool integration; it can pe
tailored to any method or collection of methods; it provides
computing power and a highly functional interface at the
disposal of the user and, by its physical distribution and
support for controlled sharing it is a powerful environment
for development in the large.

* UNIX is a trade mark of AT & T Bell Laboratories.

SR -
AD-P005 561

Three experimental multimedia workstations
-a realistic utopia for the office of tomorrow-

Helmut Balzert
Research Department
TRIUMPH-ADLER AG
Nuremberg, West Germany

Abstract

" The office of the future needs different multimedia workstations
for different user qroups. The architecture and the highlights of
our multimedia office environment are sketched. The manager
workstation has a completely new human-computer-interface: a
horizontal flat panel built imto an office desk. 0On the flat
panel a touch-sensitive foil is used for inmput. Virtual keyboards
can be displayed on the flat panel if needed by the application.
A pencil with a built-in ultrasonic-transmitter 1is used as a
pointing and handwriting device. Our model of multimedia
interaction and communication is presented. A detailed
explanation of how the processing of office procedures is
implemented on our experimental workstations is given.

~——

1. Introduction

In the past, only specialists were able to operate a computer.
Generally, a long training phase was necessary: the human had to
adapt to the computer. Now software and hardware technology 1is
ready to change the situation completely: The computer is able to
adapt to the human.

This ability is a necessary prerequisite for the office of the

future. The acceptance of new office systems depends on the

following conditions:

e Very short training phases

e Only 1little change in the current working style or
evolutionary change

e Consistent and uniform interface design

e Direct manipulation via alternative multimedia communication
channels

e Additional comfort ,

In the next chapter we will explain our

human-computer-communication concept. Some facts about office

activities are summarized in chapter 3. The architecture of our

multimedia office environment and the hardware highlights are

described in the subsequent chapter. Some important office

scenarios including our software highlights are sketched in

chapter 5. The last chapter contains a resumee and perspectives

on the future.

2. Human-computer-communication

In human-computer-communication two forms of communication can be
distinguished: explicit and implicit communication /Fisc B2/.

I l explicit communication channel
i \%
ot

implicit communication channel

knowledge base with:

e knowledge of model of the partner

s knowledge of praoblem solving

a={e knowledge of special problem areas
e knowledge of communication processes

Fig. 1: Human-computer-communication model

In order to obtain optimal thuman-computer-communication the
explicit and the implicit communication-channel must be very
broad.

This article concentrates on the explicit communication channel.
Today the explicit communication channel is narrow:

o
narrow
0 | a
LILTTI077777770777077700077177
-

Fig. 2: Narrow explicit communication channel

Normally the communication is reduced to input via a keyboard and
to output via a display. Modern systems like Xerox Star, Apple
Lisa & Macintosh improve the communication wusing full graphic
displays with icons and a8 mouse as a pointing device.

One way to improve the acceptance of new office systems is the
use of a broad multimedia explicit communication channel:

s 8

e

II11711711471177777171177717
i
[17777711777177717117177777

) broad /T""">
| ' -‘\
-

Fig.3: Broad explicit communication channel

Todays software & hardware-technology is ready to realize such a
broad communication channel. This basically means that the user
has different communication techniques availabe for the input of
commands and information.

3. Office activities

Workstations in offices will, in addition to common applications,
support various office activities that are not specific to
particular types of workplaces. Examples of such activities are
computerized dialing, filtering information from incoming mail,
scheduling meetings etc. (see, e.g. /EINu 80/).

The differences between different workplaces in offices should
not be neglected, however. A careful inspection of present-day
office work reveals typical differences. Searching, e.g., is more
important for knowledge workers than it is for managers. On the
other hand, managers will spend more time dictating than clerks
or knowledge workers do. Writing will remain a typical activity
for secretaries.,

Modern information technology certainly will change the office,
not only as far as the technology installed is concerned. There
will also definitely be a high impact on work structure and work
distribution. It would be going to far to address these questions
here. It shall be noted, however, that a trend to more flexible
structures, to an integration of different functions at a single
workplace seems to emerge.

This does not mean that, some day in the future, all office
workplaces will look alike. Differences in tasks and attitudes
will remain. The three different prototype workplaces that have
been developed at TRIUMPH-ADLER s basic research reflect this and
have been tailored to three different types of office workplaces:

- a manager’s workplace
- a secretary’s workplace
- a knowledge worker/clerk’s workplace

Developing such workplaces and testing them in real office

environments will help to determine user needs and drawbacks that
can not be foreseen from a technological viewpoint. It enables

}s

developers to arrive at solutions to office problems and not just
present sophisticated pieces of technology.

4, Architecture of a multimedia office environment

Fig. 4 presents the architectural concept of our environment.

‘ “Architecture of a
multimedia office environment

)

arsplay Lco
1CONS 10 ShOw CUTTen) meaning
heyooard text text of tunction heys
312 cata
9"aphics
wmage
T VS S Autho
ponting cevice secretary speaker
graohcs womsiauon |
1ouCh- sensitive et
gateway | Dubix

M,V/ S
ocal nNelwornks
audio archives
microphane
audio e
-

non-mpact
teiepnane scannef panter
touch-sensive LAN
fol
pointing ~ § atpanel (piasma display)
hanownting
device managet
G""_"‘" workstaton
mcrophone
jgraprics ang local
N recogtuzed archives
hangwrmien
Q”‘ one characiers . gateway OS5I

Speaker apiet

file
server

mcrophone

speaxer

fouch-sensrive
for /
telephone

Fig. 4: Multimedia office environment architectuic

/O

e, —

Fig. 5, 6 and 7 give a visual impression of our existing
workstations.

Working stations for tomorrow:
secretary workstation

niegratec
scanner witn te:ephone
font recognmon
)

non Mmpact
printer

touch-
sensiive
toul

|

ergonomc LCD-aisplay
keyboard for icons

{10 show cunent

meaning of function keys)

Communication information Human-

processing - Computer-
evectromc electronic document mput knowledge Communication
maudox ma and processing based preprocessmg 1cons

200
188

ntegrated mteroffice retneval with
leiephone CoMMumMCahon respect 1o keywords

muttimeia
interaction

mulipse 1ask
WINGOw Sysiem

,m

r E

man GISInoyion
#nd processing

prnter
ot .
/f 4 ¥

Fig. 5: The experimental secretdry workstation

Working stations for tomorrow:
manager workstation

characters and
graphic input)

pownting device
(wath Uitr asofc
fransmier)

Communication Information Human-
processing Computer-
knowleage Communication
based MUl mechs

Preprocess: meracton

racters

Fig. 6: The experimental manager workstation

~1

Working stations for tomorrow:
knowledge worker/clerk’s workstation

Communication information Human-
processing Computer-
socument Communication

ons

retneval with
respect 1o ke

doman specric
database

fig. 7: The experimental knowledge worker / clerk workstation

The hardware highlights of the three workstations:

The secretary workstation:

An ergonomic keyboard with two separated blocks of keys is used

for text 1nput. A LCD-display was placed above the free
programmable function keys. It displays the current meaning of
the function keys, using icons.

A touch-sensitive foil is fixed to the left and to the right of
the keyboard. Each touch-sensitive foil is used as a pointing
device like a "static mouse'. We want ascertain if it is useful
to have a pointing device both on the left and on the right side.
It is possible to use the foils with different scales: a movement
across the foil implies a movement of the cursor across the whole
séreen with one of the foils. Using the other foil. only a
smaller part of the screen is passed with the same movement,
Thus, "global" movements of the cursor over longer distances are
carried out easily as well as "local" movements, i.e. very fine
and precise pointing operations. To some extent, this may be
reqarded as a zooming effect. Sustantial results are not
avallable yet as our experiments have just started.

Another advantage of such a foil, in comparison with a mouse, is
that i1t can be used much better as an input medium for graphics
and handwriting.

Also integrated in the keyboard 1s the telephone.

The manager workstation:

Because a manager normally does not type a lot of text or
information he does not need a traditional keyboard. In addition
a lot of managers are not willing to use a keyboard.

We have therefore developed a completely new
human-computer-interface: a horizontal flat panel (in our case a
plasma display) is built into an office desk. Above the flat
panel lies a tranparent, touch-sensitive foil, which can be used
as an input device for the wvirtual keyboards that can be
displayed on the flat pamel, according to the application. The
second input medium 1s a pencil with a built-in uyltrasonic
transmitter. In one mode it can be used as a pointing device.
fach time the pencil is pressed on the screen, an ultrasonic
impuls is transmitted. Two small microphones receive the 1impuls.
A processor computes the position of the pencil with a tolerance
of 1/10 mm.

In a stream mode, the transmitter sends more than 100 impulses
per second. In this mode, it is possible to do handwriting with
the pencil on the flat panel. The handwritten text or graphics
will be echoed on the flat panel in real-time.

A graphic tablet in the manager desk allows the recognition of
handwritten block letters. It also can be used as an input medium
for graphics.

The knowledge worker'/ clerk workstation:

oy

g ——

Analog to the other workstations, this workstation 1is equipped
with an integrated telephone, a microphone and a loudspeaker. The
keyboard is connected with a touch-sensitive foil as a pointing
and graphics 1nput device.

5. Scenarios of office procedures

Scenario 1l: Processing of incomming paper mail

Even in the office of tomorrow not all communication partners
will have an electronic mailbox. Therefore a part of the incoming
mail will be paper mail.

In our office architecture, incoming paper mail will not go
further than the secretariate and / or the mai]l department.

A scanner transforms paper mail into electromnic mail. Today we
use a text scanner which recognizes type-written characters and
can differentiate between different type sets. In future, we
expect scanners which can process mixed modes: graphics will be
transfered bit by bit, type-written text and printed text will be
recognized.

This transformed paper mail will be processed by an expert
system. It tries to locate the sender, the addressee. the date,
the subject and the type-written signature, i1f it exists.

If the sender and the addressee can be recognized i1n the letter,
the expert system then searches automatically in the archives,
belonging either to workplace, the department or to the whole
company, to verify whether the addressee and the sender are
known.

If yes, the expert system sends the letter via electronic mail in
the addressees mailbox. The secretary will not even notice this
process, let alone play a part in it.

In the other case, the secretary gets the letters and documents
in her mailbox to do a manual preprocessing.

Incoming electronic mail which is not transfered directlv to the
mail box of the target receiver, is treated in the same way.

Scenario 2: Preclassification, filtering and presentation of
incoming mail

Before incoming mail reaches the mailbox of the office worker 1t
will be preclassified by an expert system. If the mail did not
come via the secretary’'s workstation to the mailbox, then a
preprocessing analog scenario] takes place first.

The expert system searches in the personal archives of the office
worker to look up all key words which the receiver uses to

10

classify his letters and documents. Then these key words will be
looked for in the incoming mail and will be marked (through
1nverse video:.

tach office worker may give prioritys to keywords and may also
restrict these priorities to a certain duration or specific time
intervals. In case the incoming documents contain one or more of
these priority keywords and, 1if they exist, obeys the
corresponding time restriction, this document will be displayed
in a special representation form like inverse video, e.g., or is
afnounced by a loudspeaker, etc.

The opposite is also possible: to determine senders or
organizational units whose mail will be rejected. This mail will
be sent back to the sender automatically or will be deleted.

This feature 1s one means of coping with the 1increasing flood of
incoming information that 1s likely to be a result of widespread
electronic 1nformation exchange. It will become very easy to send
out more and more mail or electronic copies to more and more
people. Our aproach represents a step towards a flexible and
individual solution.

The implementation of our developed expert system i1s described in
/Woehl B4,

Scenario 3: Processing of mail

If an office worker looks 1ntoc his mail box, the mail will
normally be displaved 1n form of so-called mimiatures. Miniatures
are document i1cons and show the document considerably reduced 1n
size. Its line and paragraph structure are visible, but not
legible, the user gets a small visual 1mage of his mail (fig. 8).

lﬂlilw I

i
l”l“‘]l I

3
[}
!
|
|
|

Fig. B: Document miniatures

This approach helps in choosing documents, since it takes
advantage of the excellent visual recogni*ion capabilities of
humans. Of course, the user is free to change the presentation of
the mail to his needs and personal wishes.

The user chooses a document from his mai]l that e wants to read
by pointing to it. The complete document is then displayed on the

/¢ (-

1]

screen. The first thing he might do 1s change the keywords chosen
by the pre-classification system. He can then file it, send 1t to
somebody else or start with appropriate tasks. He might, e.g.,
put some remarks on the letter using hand-writing or speech and
design an answer, send the letter and the concept of the answer
to @ colleague or a senior executive.

Scenario 4: Remote access to mail

One of the problems which business people who travel frequently
face is the access to their mail. It is not too difficult to
develop systems that allow one to listen to speech mail that has
come 1n during the day in the evening via the telephone. In
addition to this, the technology of full-synthesis speech w1ll
provide the same opportunities for typed mail. The system will
read these messages aloud. Of course, the user will be able to
give comments on the various messages for his staff.

Scenario 5: Writing and sending letters

Designing a letter traditionally is done on paper or wusing a
dictation machine. New technology allows for new possibilities.
Handwriting still is possible. It 1s not done on paper, however,
1t takes place directly on the screen, using techniques as
described above. This manuscript 1s then transferred to the
secretary electronically. It can be seen in one window of the
screen, while the secretary prepares the typed version 1n a
second window. The typed letter 1s then sent back and signed by
the corresponding person, who, of course, again uses handwriting.
The letter then is ready for mailing. If the receiver can be
reached electronicallyv, this means 1s used. Otherwise, the text
1s printed out on a non-impact printer and mailed.

Letters for inhouse-use that do not have to be typed can be sent
even more convenmently., The writer of the letter specifies the
intended receiver and, 1if necessary, his address in block
letters. Thus both the text of the message and the intended
adresss are handwritten. The underlying system 1is able to
recognize the information on the adressee. A mere push on a
"mai1l" key then is enough to transmit the mail to the intended
recejver.

Scenario 6: Using the telephone

When using a telephone, people are interested in talking to
people, not in dialing numbers. In modern office systems, the
system will keep the list of telephone numbers and will also do
the dialing. The user only has to specify to whom he wants to
talk and let the system do the rest. According to the principle
of multimedia communication he can do this in various ways: type
the name of the person, point to the name in the telephone 1list
or Just tell it to the system via the microphone. The user will
not have to pick up the receiver during the dialing process. When
the person called picks up the receiver, his voice is heard

V]

12

through a loudspeaker, and this 1s when the person calling picks
up his recelver,

6.

Conclusions and outlook

Tomorrows office will be multimedia: both multimedia documents
and multimedia human-computer-commynication

Systems wi1ll be more flexible and adapt to specific user needs
and habits

The user will be freed from the burden of knowing locations,
numbers, etc. he savs what he wants - and lets the system take
care of how to do the job

Knowledge-based svstems wi1l]l extend the use of modern
technology from supporting routine-tasks to supporting more
complex and sophisticated tasks

With the integration of features like handwriting 1n
electronic systems, office systems of tomorrow will be able to
cope much better with office tasks, procedures and habits -
thue leading from partial to complete solutions

Modern desks will on the outside look more and more like those
of the pre-electronic age. Horizontal displays will make
traditional terminals disappear. The modern office desk will
look similar to the desk of the 19th century clerk. The
electron:i¢ inside, however, provides help and services the
latter could not even have dreamt of.

Acknow]edgement s

I would like to express my appreciation the members of the
research department of TRIUMPH-ADLER for their participation
in the work described 1n this paper. [am particularly
indebted to my colleagues A.fauser angd R.Lutze for their
contributions and discussions.

Literature

/EGLT 78/ Engel/Grappusz.'Lowenstein.’Traub
An Office Communication System
IBM Systems Journal 18 (1979), pp.4D2-43]
/EING B0, Ellas, C./Nutt, G.
ACM Computing Surveys 12 (1980, p.27-60
/Fisc 82/ Fischer, G.
Mensch-Maschine-Kommunikation (MMK): Theorien und
Systeme
Habilitationsschrift Universitaet Stuttgart, 1983
/MSIS B3/ Mokawa/Sakamura/Ishikava/Shimizu
Multimedia Machine

[(-¢

‘OtPe B3/

JUFB 79/

/Woehl 84/

Adress:

1AP 83, pp.71-77

Otway, H./Peltu, M. (eds.)

New Office Technology. Human and Organizational
Aspects

frances Pinter Publ., London

uhlig/Farber/Bair

The Office of the future

North-Hol land

Automatic classification of Office Documents By
Coupling Relational Dsta Bases and PROLOC Expert
Systems

Proc. 2nd Conference on VLDB, Singapore, 1984

Dr. Helmut Balzert

TRIUMPH-ADLE
‘uernberger

D-8510 fuert
west -Germany

R aG
Str. 1%9

h

13

Working stations for tomorrow:

knowledge worker/clerk’s workstation

Human-
Computer-
Communication

Communication

malbo

BAEC
LD

nmogmed interoffice
COMMUNICaNoN

b— ™

icons

———T

Working stations for tomorrow:
* secretary workstation

microphone
touch-sensitive

£ toi N

sensitive
foil ergonomic LCD-aisplay
keyboard for icons

(to show current
meaning of function keys)

Communication Information Human-

processing Computer-
eiectromc electronic document input knowledge Communication
mailbox mail based preprocessing icons

HBE
ROHE

multimedia
interac:on

retnieval with
respect o keywords

interoffice
communication

Working stations for tomorrow:
manager workstation

receiver microphone tablet

(for recognition
of handwritten
characters and
graphic input)

fiat graphic touch-sensitive
screen foil

displayed pencil and

temporary pointing device

keyboard (with ultrasonic
transmitter)

Communication Information Human-
processing Computer-
document Communication

electronic electronic drafting multi media

mailbox mail

and revision interaction

Bkl
alala

interoffice

retnevail with respect keyboard on
commumication

to ke ds pQuest

recognition of

statistics handwritten characters

m
AD- -
D-P005 562>

FORMAL METHODS: PRESENT AND FUTURE

*M I Jackson

Praxis Systems plc
20 Manvers Street
Bath BAl lPX
: United Kingdom

1 Introduction

It is widely accepted that industrial software production has a number
of associated difficulties and problems. These include the following:

The proportion of system costs due to software has increased
dramatically over the last 20 years and is continuing to do so.
This poses major problems for technical management who are
frequently qualified and experienced in more traditional
engineering disciplines.

A major skill shortage exists in software and is expected to
coatinue to increase, (for example, it has been estimated by the
US DoD that the USA is currently short of 200,000 programmers and
will be short of 1 million by 1990).

The quality of delivered software is frequently inadequate in
performance and reliability. For example, a US army study showed
that for a 2 million dollar budget, less than 2% of the software
was used as delivered.

Software projects are subject to frequent cost and timescale
over-runs. The causes are usually inadequate engineering methods
to handle the complexity of systems and inadequate project
management techniques,

The discipline of software engineering is in its infancy. There is
at preseat relatively little underlying theory or generally
accepted good practice on which to base én/éhgineering approach.

As a consequence, software systems tend to be 'crafted' rather than
engineered.

These (and related) problems have by now received world-wide recogni-
tion. A number of major initiatives have consequently been instituted
to address these issues, for example, the Alvey Software Engineering
programme and the ESPRIT Software Technology programme.

*previously with: Standard Telecommunication Laboratories Limited
London Road, Harlow, Essex CM17 9NA, United Kingdom

SXEAAX

| 73

e - - R R R R R R R R E——————————S

From an industrial point of view, it is clear that the following global
objectives should be addressed:

Increased productivity in software production (to address skill
shortages) /
Higher quality in software products, eg improved reliability,
per formance and adaptability.

More effective use of human and machine resources, eg by automating
routine tasks as far as possible thus allowing highly skilled and
scarce staff to concentrate on intellectual tasks.

These objectives need to be addressed by developments in a number of
areas. The remainder of this paper will concentrate on one area in
particular - formal methods.

2 Formal Methods

The introduction of formal methods of system development is seen as a
major step towards improving the software engineering process. Formal
methods are rigorous engineering practices based on mathematically
formal foundations. Unlike most of the present day approaches in
widespread use, formal methods provide the means of expressing system
designs concisely and unambiguously and in such a way that the
behavioural aspects of systems can be explored through formal logical
manipulation.

The Alvey Software Engineering Directorate has established a major
programme in the formal methods area (ALV84). This programme emphasises
three areas of activity: the rapid exploitation of nature :crmal
methods, the industrialisation of promising methods so that they can be
exploited in the near future, and fundamental research to provide more
power ful methods in the longer term.

The Alvey formal methods programme foresees a significant number of
benefits arising from the introduction of formal methods. Most
significantly, they are seen as providing the scientific basis
underlying software construction, They will allow at least the level of
confidence in software designs as in other more established branches of
engireering, and will be the key to the certification of software in
safety-critical applications. Formal specifications are seen as
particularly important for providing a firm contractual basis for the
interaction between the supplier of, and the client for, a piece of
software. They also provide a natural basis for rigorous interface
descriptions thus simplifying the problem of reusing software
components. Finally, the use of formal methods early in the life cycle
should uncover many specification and design errors which otherwise
might not have been detected until system test and operation when their
repair would be very (if not prohibitively) expensive,

SXE AAX

The Alvey programme characterises a mature method as having the
following attributes:

Books, technical reports and journal articles are widely available
and accessible to all sections of the community.

Training programmes have been developed and given field trials in
industrial contexts,

Industrial case studies have been conducted and the results
published. Evaluations of these case studies have also been
conducted and published.

The method has had some, perhaps small scale, production experience
in industry.

Some useful tool support, possibly of an experimental nature,
should exist.

The major strengths and weaknesses of the method are reasonably
understood.

These characteristics are rather demanding, but they are the essential
minimum that must be achieved before a method can be successfully
introduced into an industrial environment. They indicate the
significant level of effort that must be devoted to 'industrialising'
promising ideas from the research community before they can be
assimilated by industry. Currently very little effort is applied to
this task, which is one of the major reasons for the gulf between theory
and practice, Even if a method is deemed mature according to the
criteria given above, much more experience will be required before it
achieves widespread adoption in industry.

3 STC Experience of VDM

Standard Telecommunication Laboratories, the central research laboratory
of STC, has been conducting research into formal approaches to system
development since 1979, 1In 1982, a major new project in the office
systems area requested advice on formal specification methods. Of the
methods under consideration at the time, one in particular, the Vienna
Development Method (VDM) was recommended for consideration.

VDM originated in the Vienna Research Laboratories of IBM and is most
closely associated with D Bjorner and C B Jones. The reasons for
its recommendation were largely pragmatic, for example:

Considerable user experience of the method already existed within
organisations such as IBM and the Danish Datamatik Center. A
number of case studies have been published, for example in the book
by Bjorner and Jones [BJ082]. The strengths and weaknesses of the
method are well understood.

SXEAAX

|74

-

Training and consultancy in the method were available. Professor C
B Jones, now of Manchester University, was willing to present an
established 2 week course to the project team and to provide
continual support through consultancy.

A well-written and accessible text book produced by Professor Jones
was available to support the course material.

In the summer of 1982 an evaluation exercise was conducted in order to
assess the suitability of VDM as a specification vehicle for the
proposed project. This exercise was organised as follows:

A subsystem of the project was chosen as the case study to be used.

A small group of analysts, having no previous familiarity with
formal methods, were selected and introduced to VDM,

Two STL staff members were asked to support the analysts as
consultants (alongside Professor Jones).

An observer, independent of the analysts and consultants, was
appointed to identify assessment criteria before commencement of
the evaluation, to observe the conduct of the exercise, to write
the evaluation report and to produce recommendations to management.

The chief system designer was involved from time to time to answer
questions regarding the requirements and to play the role of
‘customer’.

The evaluation exercise took as its input an English language statement
of requirements. Its outputs were the corresponding VDM specification,
the evaluation report and recommendations for VDM.

In the light of this exercise, STC decided to adopt VDM for the project,
and set in hand work in the areas of training, standards and support
tools. The method was subsequently adopted for other internal

projects.

The experience of VDM can be summarised as follows:

“he identification of abstract data structures in the formal
specification aids conceptualisation of the eventual product and
supports the optimal choice of operations and functions for the
eventual users of the system. The iterative evaluation of the
specification against user requirements assists dialogue with the
customer and continues until a version acceptable to the customer
is produced.

The VDM specification language provides a number of useful thinking
tools which allow the analysts to distinguish more easily between
WHAT the system would do and HOW it should do it. The analyst is
also forced to consider many more aspects of the requirements than
with previous (non~formal) analysis techniques.

SXE AAX

The precision of the specification language reveals many previously
unrealised anowmalies and inadequacies in the informal statement of
requirements. Rigorous reasoning about the specification improves
confidence in its adequacy. An improved natural language

requirements specification can be produced based upon the formal
specification.

As a result of growing interest in VDM within the company, a programme
.of training courses was developed. These comprise:

A Perspective on VDM. This is a 3 day course aimed at project
managers, team leaders, consultants and support staff from areas
such as quality assurance, technical documentation or marketing and
who require a sound understanding of VDM. It provides a broad view
of formal methods, the ability to read and review VDM specifica-
tions, and advice on the introduction of VDM into a project.

VDM Foundation Course. This is a 10-day intensive course for
technical staff wishing to produce system specifications written in
VDM and for those needing to design systems to satisfy VDM
specifications. Students completing the course should be able to
read and write VDM specifications, demonstrate that a specification

meets a requirement and demonstrate that a design meets a specifica
tion.

These courses are now offered to the public by STC which operates a
commercial software and training service.

Various language development activities for VDM have also been conducted
in STC. In the short term, it was recognised that there was an
immediate need for facilities to allow the specification process to be
carried out 'in the large' and for designs to be documented alongside
the specifications that they implement. STIC consequently undertook the
design of an extended design language which included a module construct
and a design pseudocode besides the essential components of the VDM
specification language. (This work is heavily influenced by work
undertaken at IBM's Bobliangen laboratory on the SLAN-4 language [BEI83],
This language is supported by a UNIX-based syntax checker.

In the longer term, it was recognised that in order to extend the VDM
specification language in a coherent way, and in order to build more
powerful automated support tools, it would be necessary to improve the
standard of definition of the existing specification language.
Consequently, a joint activity was started by STL and Manchester
University to define for STC a VDM Reference Language to be used as the
STC standard. To date, documents describing the concrete syntax,
abstract syntax, type model and context conditions of the Reference
language have been issed and further work on semantics is underway. In
addition, it is intended to develop a more extensive support toolset
around the Reference language, and a UK Alvey project has recently
commenced for this purpose. Recently, work has begun to develop a UK

Standard Definition of the Reference Language based on the work carried
out in STC.

SXEAAX

1))

In conclusion then, the STC experience indicates that, as a method for
formal specification, VDM can be successfully introduced, if appropriate
levels of investment are made in the areas of:

Evaluation, by case studies, of the suitability of the method for
the application grea of interest. The evaluation criteria should
be properly defined, monitored and assessed.

Training for staff, of a professional quality.

Consultancy, as appropriate to particular needs, by skilled and
experienced personnel.

General support, for example, by developing and implementing
corporate standards,

In the longer term, support tools, such as a specification-oriented
database and a syntax-directed structure editor.

For more information on VDM, readers are referred to the book by C B
Jones [JON80]. Readers requiring further details of STC's experiences
with VDM are referred to a recent paper [JAC8S5].

4 Formal Methods in the Life Cycle

There are many ways of viewing the software life cycle, the best-known
being the standard 'Waterfall' method. In the alternative 'Contractual’
view of the life cycle, each phase is regarded as involving two parties,
one fulfilling a 'customer' role, the other fulfilling a 'supplier'
role. So, for example, at the requirements specification phase, the
customer role will be filled by the real customer for the system, while
the supplier will be the analyst whose function is to supply the formal
specification. The customer will provide an initial informally worded
requirements statement and the analyst will produce a first attempt at a
formal specification which he first verifies for internal consistency
and completeness. (In effect he asks (Is this a specification of some
system even if it is not quite what the customer wants?').

Having produced this first attempt, he must then demonstrate the effects
of the specification to the customer. It is obviously unreasonable to
expect the average client to be able to read the formal notation
directly, though there are classes of (more sophisticated) customer
where this does not apply. 1In general the analyst will use a process
known as 'animation' to demonstrate the effects and consequences of the
specification. This might involve a symbolic execution technique, for
example, by moving tokens around a Petri net, or might involve the
interpretation of behaviour derivable by theorems from the formal
specification in the client's domain of knowledge. Inevitably, the
first specification will not match the customer's precise requirement so
further iterations of this process will be necessary. Eventually, a
specification will be produced to which the customer agrees and this can
be forwarded to the design stage (of course, problems may be discovered
later which cause the requirements to be reconsidered).

SXEAAX

P

In the design phase, the analyst becomes the 'customer' and the designer
'supplier' with the responsibility for producing a design which is
consistent with the specification. Once again, the processes of

verification and validation are iterated until an acceptable design is
produced.

These contractual relationships can continue through however many design
and implementation phases as are necessary.

The contractual model presents a somewhat idealised view of software
development, but is useful as a basis for examining how formal methods
might be used. There is general agreement that formal methods should be
{ used initially at the specification phase since the greatest cost
savings will be made by locating specification errors early. At the
design and implementation phases, the degree of formality used would
probably be less, since, except in the case of very critical projects,
the costs would probably outweigh the benefits. In most cases, a
rigorous approach to design would be more acceptable, with the
verification and validation techniques being more informal and
traditional in flavour. Testing strategy could, perhaps, be based upon
the formal specification. Post-~developmental phases, such as
maintenance or enhancement, would be considerably assisted if formal
specification were kept in the project database since the implications
of proposed changes could be more easily assessed.

Training and education are areas which require attention. It must be
emphasised that the introduction of more formal methodologies does not
reduce the skills needed to develop software. On the contrary, the
newer methods require a different set of skills to traditional
programming activities. Higher staadards of education and professiona-
lism are required. Courses must be developed (some already exist for
the established methods) to provide analysts and designers with the
necessary skills in particular methods. Managers, too, need training to
manage reviews and mounitor progress of projects using formal
methodologies. Educational courses must be provided to give the
necessary background in discrete mathematics which many experienced
practitioners lack (though the relevant material is gradually being
included in many undergraduate cowmputer science courses).

5 Automated Support for Formal Methods

The most basic type of support tool is one that supports syntax and type
checking. For any well-defined specification language a syntax and type
checker can often be provided using standard parser gemerators. Coupled
with a reasonable file or database system, such a’'tool would provide an
invaluable aid to the system specifier and should be relatively cheap to
provide. Other syntax-oriented tools include syntax-directed editors,
pretty printers etc.

A more sohpisticated type of tool would support symbolic execution of
specifications and designs. The difficulty of building such tools
depends to some extent on the formal method being supported, but clearly
such an aid would be most useful as a validation and animation tool.

SXEAAX

|]«

) - ') o

Validation would also be supported by theorem proving aids which support
formal verification of specifications and transformations during the
various phases of design., Recently, there has been a trend avay from
large theorem provers which consume large amounts of computing resources
to interactive systems which assist the human in carrying out a proof.
Related is the work on automated program transformation which promises

to assist the designer in producing correct implementations vith regards
to the specification.

‘The underlying support environment cannot be ignored. Developmeats such
as the Ada APSE or the European PCTE promise wmuch as the ceantral
database will be provided. If a proper database were provided, it
should be possible to build libraries of reusable software components
each having a formal specification. By composing specificatioans of
existing parts, and by integrating them with the specifications of new
parts, it should be possible to demonstrate that a larger system
specification could be met. Thus, system development might become a

more bottom-up activity with greater reuse of previous work than is
possible at present.

Prototype versions of most of the tools mentioned above are already
available, at least in research environments. It is reasonable to

expect that production quality versions will appear over the next few
years.

6 Conclusions

The next few years will witness an increasing use of formal development
methodologies as users become more sophisticated and attempt to detect
errors in the specification and design phases of the life cycle. Formal
methods are already worthy of serious consideration as a specification
aid and a rigorous design framework has also been shown to be highly
practicable. The results of major research projects established under
programmes such as Alvey and ESPRIT, will lead to more extensive and

adaptable methods for future use, with a greater level of automated
support.

Readers wishing to obtain a more detailed view of the current state of
various approaches to formal methods are referred to the comprehensive
survey by Cohen et al [COH 86].

SXEAAX

e A e ———— . —my. e,

-

7 References

[ALV84)

{BE183)

{BJO82]

[COn 86]

[JACB5]

[JON8O)

SXEAAX

Alvey Programme Software Engineering
Alvey Directorate, April 1984

Beichter, F, Herzog, O, Petzsch, H

SLAN-4: A Language for the Specification and Design of
Large Software Systems

IBM Journal of Research and Development, Vol 27, No 6,
November 1983

Bjorner, D, Jones, C B
Formal Specification and Software Development
Prentice Hall, 1982

Cohen B, Harwood, W T, Jackson, M I
The Specification of Complex Systems
Addison Wesley, 1986

Jacksoa, M I, Denvir, B T, Shaw, R C

Experience of Introducing the Vienna Development Method
into an Industrial Organisation

Procs. Int. Conf. on Theory and Practice of Software
Development (TAPSOFT), Berlin, March 1985. Published as
Springer Verlaag LNCS 196

Jones, C B
Software Development - a Rigorous Approach
Prentice Hall, 1980

AD-P005 563

A Retargetable Debugger

for the Karlsruhe Ada System

Author s:: Fecer Dencxer
Hans~Ztepharn Janschn

Version: -.C

Date: 94 May E3

Source: dbgs:doc:redebug.max

tev:

Jseyvrizn: Sveteanr K3 198t

Distrizuzicn Urlimized

=. Ada is a registered trademark of the U.S. Government (AJSE(

-
(o]

(X o [aad
.
[

tJ
o

- .
P
- -
2.C
- -
e 4
2.
D e
2%
-
- -
- -
-

ta
)

W
w

~

Tab.e of Cortents

Introduction

Post Mortem Dump Analyzer

Online Debugger .

. .

Requirements on the Debugging System .

Ara.vc-er Capabiliti

Irmzeracticr. Capabil

Retrieving Source Statement

Jetermining the Dynamic Calling Hierarchy

A-cessing Chjects

Locating Obijects .

e

<
-

.

7]

o

ies

.

Kepresentation cf Chjecs

(&)

ons

)

Debugger Interactions

raint Information

-

Conclusion and Prospects

OQutloock . . .

nspecting the Program State

nformazion

w wN

‘0

11

-2
)

(o)
)

14
15

-

A KRetargetable Debugger Page 2

1.¢ Introduction

During the development phase of a program and - as well -
during the maintenance phase it is very important that
programming errors can be quickly located and removed from the
program. Therefore a programming environment should very well
support the analysis and location of errors. An appropriate
means is an interactive debugging tocl. The purpose of the
debugging system described in this paper 1s to support the
analysis of programs translated by the Karlsruhe Ada Compiler.

However, the Karlsruhe Ada Compiler is sasy te retarget and
easy tc rehost. Several versions are already availarle
(VAX/VMS, SIEMENS/BS2000, and SIEMENS,/BS2000-MC68000 Cross
compiler), several others are planned (Nixcdorf BE90/VM/ESX,
Perkin Elmer 3200/0832, ancé VAX/VMS-LR143Z C(Cross compiler..
Therefore it 1is very important that the debugging system Iis
equally we.l retargetable and rehostabie.

The sccpe of a certairn version of the debugger are all
programs {including tasking and real-time applications!
translated by the corresponding versiorn of. the Karlsruhe Ada
Compiler. This implies that for each version of the Karlsruhe
Acda Compiler a corresponding version of <the debuager Is
availab.e.

The compiled Ada programs under test may either run in the
environment of the host system, which contains the compiler,
the program library, and the debugger or they may run on some
target system (including embedded system) with more or less
restricted communication channels to the host system.

The debugging system will be developed in two major stages:
{1) post mortem dump analyzer
(2) online debugger

The first stage, the post mortem dump dnalyzer, is partially

implemented. The other will Dbe implemented within the next
year.

This paper is organized as follows. The concept of post
mortem dump analyzing and online debugging are explained in the

A Retargetable Debugger Page 3

next two Sections. In Chapter 2 the general requirements and
capabilities of the debugger are listed to set up the debuggers
functional range. In Chapter 3 and 4 we show a debugger design

which suits the requirements and capabilities established in
Chapter 2.

1.1 Post Mortem p Analvzer

The basic idea of a post mortem dump analyzer is that when the
program stops with an error, in Ada e.g. when the program is
abandoned because of an unhandled exception, the contents of
memory 1is saved on file, the dump file. Then the post mortem
dump anaiyzer examines this dump file and extracts information
valuable for the programmer in order to locate the programming
error. In this way, for instance, the values of variables and
parameters can be inquired. To this end the post mortem dump
analyzer needs information about the runtime organization and
information from the compiler and the linker/loader which is
stored in the program library.

T,

1.2 0Orline Debugger

An online debugger has all capabilities of a post mortem dump
analyzer. The difference 41is that the debugger communicates
online with the program under test. If the program under test
is interrupted control is transferred to the debugger. It then
may examine the contents of the memcry of the interrupted
program ir the same way as the post mortem analyzer examines
the dump file. Afterwards execution of the program can be
resumed.

Additionally the online debugger allows the programmer to
change the state of the interrupted program (e.g. change the
values of variables) and to control the execution of the
program (e.g. by means of breakpoints).

19S

A Retargetable Debugger Page ¢

2.0 Requirements on the Debugging Systenm

Besides the global requirement of retargetability we impose
several other general requirements on our debugging system.

(1)

(&)

(5)

No recompilation must be necessary in order to run a
program under control of the debugging system. This
is 1important for transient errors in real-time
programs.

The ability to debug a program shall not impose
overhead on the generated code. This means that the
program must not be specially instrumented for
debugging. This allows full debugging support even in
a production environment.

The executable code and data shall 1lie at the same
memory locations regardless of whether the program is
debugged or not. This is necessary to avoid errors
which are due to placing the code at certain locations
in memory.

The debugger must provide a source level user
interface. This means that all user interactions with
the debugger are in terms of the Ada program. In this
way, the programmer should have the impression that
his program is run on an Ada machine.

Access to low level information shall alsoc be possible
because Ada allows to interface the non Ada world
througk the pragma INTERFACE, through machine code
insertions, and other low level features.
Nevertheless for most users and in mest situations
this information is not needed to understand the state
and execution of an Ada program.

The debugger must be applicable in a host-target
environment. It may e.g. run remote on the host
system as a post mortem dump analyzer, or as an online
debuagger if an online communication channel exists
between host and target, or directly on the target if
the program library and sufficient resources are
available on the target.

These general requirements are supplemented by the capabilities

to analyze and interact with the program under test given in
the next two Sections.

)70

Ot

A Retargetable Debugger Page 5

2.

2.

1

Analyzer Capabjljties

(1)
(2)

(5)

Inspection of the source code

Inspection of the values of objects (variables,
constants, parameters). The values are displayed in a
form consistent with their representation in the
source. For instance a record is displayed as a named
aggregate. Access objects get a special format.

Inspection of the status of currently existing tasks.

- name and type of task

- state (executing, suspended, completed,...)

- point of execution (in the source.

- tasks with outstanding calls on all entries of each
task

- set of all open alternatives of select statements
per task

Inspection of the stack of subprogram activations for
each task

Navigation through the dynamic program structure (e.g.
walk back, task inspection). 1In parallel the visible
environment is changed.

Interaction Capabilities

(1)

(2)

(3)

(&)

(5)

(6)

Placement of breakpoints at Ada statement andé
declaration boundaries

Assignment of actions to breakpcints which shall be
taken upon reaching a breakpoint

Modification of data

Interruptability of the program in execution by the
user in order to inspect it at arbitrary moments

Stepping through the program in granularity b
declarations, statements, calls, or task interact::crs

Tracing of executed declarations, statements, ca..:
or raised exceptions

Assignment ¢f Dbreakpoints to certain ir a

NL

g £ ™
i © =
== 153

dm' 2 il me

MICROCOPY RESOLUTION TEST CHART

A Retargetable Debugger Page 6

exceptions

(8) Assignment of breakpoints to blocks under the
condition that they are left by an exception.

{9) Hold (all) task(s), release task

In the following Chapters we show the design of a debugger
for the Karlsruhe Ada System that satisfies these requirements.

3.0 Inspecting the Program State

Within this Chapter we assume that a program has been
interrupted in some program state. WWe show how the debugging
system can interpret this program state in order to answer the
inquiries of the programmer.

Since we do not want to impose overhead on the execution of
the program we do not collect information during its execution.
Hence, the current program state is the only information the
debugging system can access concerning the execution of the
program.

The debugging system can, however, consider further
information .

(1) gathered by the compiler when compiling the individual
compilation wunits of the program in the program
library,

(2) from linking the program and

(3) about the runtime organization.

The runtime organization may very strongly depend on the
target machine. However, these implementation details can be
hidden behind a machine independent interface as 1long as we
consider the same compiler.

The debugging system must access this information and derive
from it a 1lot of data valuable for the programmer during the
analysis of a particular error situation. The debugging system
should work interactively to allow the inquiries of the

- ,—-h-ﬁ.,,

"A Retargetable Debugger Page 7
programmer to depend on the results of earlier ones.

In the following we discuss in detail how the debugging
system can answer several characteristic questions concerning

(1) the currently executed source statement,
(2) the calling hierarchy and

{2) the values of objects.

3.1 Retrieving Source Statement Information

During debugging there 1is often a need to determine the
position in the source that corresponds to a given code address
or vice versa. For instance, the programmer may want to know
which source statement raised an unexpected exception or he may
want to interrupt the program when a certain position in the
source is reached.

Since we consider a language with separate compilation, a
position in the source is not uniquely defined by a source line
number. Instead, we need a pair where one component indicates
the compilation unit of the position. On the cther side, since
single statements may be distributed over several 1lines and
since several statements can Dbe written on one line, source
line numbers are not appropriate for identifying the positions
of single statements.

In the Karlsruhe Ada System the individual compilation units
are stored 1in their Diana representations in the program
library. The Ada source can be retained from the Diana
representation of a compilation unit. Hence, it 1is suitable to
use references into the Diana representations for identifying
positions in the source.

For the following it not of interest how the positions in
the source are identified. We assume only that they can be
uniquely identified. We call such an identifier a source
position.

A common technique for determining the source position of

%9

M

A Retargetable Debugger Page 8

the currently executed statement is to use a variable (in the
runtime system) which always holds it. It is updated when the
current statement changes.

This method has three great disadvantages:

(1) The code size as well as the execution time of the
program are increased significantly (25-50%). This
fact causes most programmers to switech off the
generation of source statement information. So
debugging of the programs is not further possible
without recompilation.

(2) This method allows only to determine the position of
the current executed statement. By this way, the name
of the statement which e.gq. called the subprogram
containing the current statement cannot be cbtained
without storing it in the invocation franme. Further
it is not possible to determine the code address(es)
corresponding to a given position in the source (e.qg.
for implanting breakpoints).

(3) Tor rather complex statenments more detailed
information is needed for selecting tha erroneous part
of the statement. This would, however, result in much
more overhead.

We propose another method which does not possess these
disadvantages: The compiler builds tadbles which contain the
mapping of code addresses to source positions and stores thenm
in the program library. The debugging system interprets these
tables for determining the position in the source which
corresponds tc a given code address. Since the relevant
addresses are (normally) available during the execution of the
program no additional code must be generated. For instance,
the program counter contains an address corresponding to the
currently executed statement, the return address is already
stored in the invocation frame for subprogram calls. Hence
there 1is no runtime overhead and the code size as well as the
execution time is not increased.

.

Now we discuss how the tables containing the mapping of the
code adresses to statement names are constructed. Since we
consider a language with separate compilation facilities the
compiler does only know the mapping of module relative code
addresses to source positions. Therefore for each compilation
unit one table 1s built containing the =module relative

A Retargetadble Debugger Page 9
information.

When linking the program, the linker computes the absolute
addresses of the code modules resulting from the individual
compilation units. These adresses together with the module
names are usually written on some file. We call it the linker
listing.

Given a particular code address the debugging system looks
into the linker listing and determines to which code module it
belongs. In presence of code overlay additional information is
required from the program state in order to resolvs the
resulting ambiguities. Then it computes the module relative
code address and obtains the corresponding source position by
inspecting the table built by the compiler for this module.

If a source position is given the code address(es)
corresponding to this source position can obviously be computed
in a similar manner.

We have implemented this method in the Karlsruhe Ada System.
By a simple compactification method we could reduce the size of
the compiler generated tables to about 20% of the size of the
generated code. So the size of these tables does not cause any
problems. It is even less than the increase in code size which
would result from the other approach.

3.2 Determining the Dynamic Calling Hierarchy

In order to analyze an error situation the programmer has to
inspect the source. The debugging system can support him by
selecting those parts of the source which are associated 1in
some way with the error situation. In the following we call a
position in the source together with the context of the current
program state a location. Starting from a location the
programmer can inspect the static environment directly in the
source.

However, this does not suffice. Additionally the programmer
is interested in how the program came to a certain location.
Especially, he wants to know the subprogram or entry calls
which led to this location.

15

A Retargetable Debugger Page 10

For Ada programs we therefore distinguish the following
locations indicating the dynamic context of the interrupted
program:

(1) Each currently existing task or the main program is
interrupted at some location. This location is called
the current location of the task or the main progranm.

(2) A location may lie within a subprogram. The location

wvhere this subprogram was called, is referred to as
the calling location of it.

(3) A location may lie inside an accept statement. The
location of the corresponding entry call 1is the
current location of the task issuing the entry call.
Hence, it suffices to know this task. We call it the
calling task of it.

In order to be adble to inspect each existing task the
debugging system nmust know them all. Since in Ada each task
depends on some master, all existing tasks can be enumerated if
for each master all tasks which depend on it are known.

This leads to the following definitions:

(1) The set of tasks which depend on library packages are
called library tasks.

(2) The set of tasks which depend on the main program or
on a task t or on a block or subprogram currently
executed by the main program or the task t are called
the dependent task of the main program or the task t.

The debugging system provides means for accessing these
tasks, their current Jlocations, the current location of the

main program and the corresponding calling locations and
calling tasks.

By this way, the programmer can get a complete overview of
the current program state. Since the program structure can be
very complex we introduce for convenience the notion of the
actual location, 1.e. the location actually inspected by the
Programmer. The debugging system provides operations for
inspecting the actual location and for moving to another
location thus making this location to the actual one. The
static context of the actual 1location can be {inspected

A Retargetable Debugger Page 11

directly. This applies to the inspection of objects discussed
in the next Section as well.

For implementing these operations the debugging system needs
detailed knowledge of the runtime organization, especially of
the tasking implementation. Therefore the implementation of
these operations does strongly depend on the target machine.
However, since we consider always the same compiler, these
machine dependent parts can be hidden behind machine
independent interfaces. By this way, the debugging systenm
remains portable,

3.3 Accessing Objects

The possibility to inspect values of objects means great
support for analyzing error situations. Hhen, for instance,
the program was abandoned with CONSTRAINT_ERROR because of a
subrange violation the gquestion concerning the relationship
between a value and the subrange bounds arises. This example
shows that accessing an object must also include the
possibility to inquire certain attributes of the cbject or of
its type, e.g. 1its constraints, if any.

The debugging system must solve three totally different
problems when it allows the programmer to access the value of
objects:

(1) The programmer will, of course, enter the name of an
object in terms of the source language. The debugging
system must then identify the object denoted Dby the
name and find out where this object is currently
stored. We refer to this place as the address of the
object.

(2) The value of an object is represented Dby some Dbit
string stored at its address. The debugging system
Bust be able to interpret this bit string as a value
of the type of the object.

(3) 1f the odbject is constrained, the dedbugging systenm
aust be able to access the values of these
constraints. For instance, for an array, the lower
and upper bounds of all dimensions must be accessidle.
This also applies to other attributes of the object or
its type.

A Retargetable Debugger Page 12

These three items are discussed in detail in the subsequent
paragraphs.

3.3.1 Leocating Objects

In order to ease the navigation through the current program
state we introduced in Section 3.2 the notion of the actual
location. HWe define here in terms of the source language which
objects are accessible to the programmer in the actual
location. So, by moving through the program (as described in
Section 3.2) all objects existing in the program can be made
accessible.

An object or package which is visible at a location or which
could Dbe made visible there by qualification is accessible at
this location. Additionally, all 1library packages and all
objects or packages which are declared in packages accessible
at this location and their bodies are accessible at this
location as well.

By this way the programmer may access (beside the objects
visible at the actual location) objects which are hidden by an
inner declaration and objects declared within the bodies of
visible packages.

It seems necessary to allow the programmer to inspect the
implementation details of packages during debugging although
this violates the information hiding principle of the language.
Perhaps it would be more appropriate to establish a protection
mechanism which allows only the implementor or maintainer of a
package 1{tself to inspect its body. This could be achieved
e.g. by the debugging system asking the programmer to enter
the appropriate password when he wants to access hidden
information or by hiding the information from the program
library in general.

The locating of objects works in several steps:

(1) The name entered by the programmer is analyzed whether
it denotes an accessible object. Ambiguities in

naming caused by the source language, e.g. by
overloading or hiding, must be resolved during this
step.

194

A Retargetable Debugger Page 13

(2) The definition of the object in the Diana
representation of the program is searched.

(3) The program library is accessed in order to obtain
addressing information for this object. This results
in a pair consisting of the name of a frame and the
offset of the object within this frame.

{4) To compute the address of the frame further
information must be retrieved:

- If the frame is allocated statically, its address
can be obtained from the linker listing.

- If the frame corresponds to the invocation frame of
a subprogram or a block, its address can be obtained
from memory of the interrupted program: the display
vector or the static links must be inspected.

- Otherwise, the frame address is stored in a pointer
object. The address of this object is computed in
the same manner.

{S} Finally, the address of the frame and the offset of

the object are added. So, the address of the object
is obtained.

3.3.2 Representatjon of Obfects

After an object has been located the debugging system must be
able to interpret the bDit string stored at its address as a
value of the type of the object. For this purpose the
debugging system must know the representation the compiler has
chosen for this object.

Since the representation of objects is fixed by the type
mapping module of each compiler individually fitting to its own
runtime organization, we have here again the situation that the
debugging system depends strongly on the compiler, but not so
strongly on the particular target machine.

Some characteristic data about the representation of objects
are stored in Diana, but this information does not completely
describe the representation. For instance, for integer objects
the debugging system must additionally know whether the numbers
are stored as binary numbers or as binary coded decimals,
whether a sign Dit 1is present, whether negative numbers are
stored as one’'s Or two’'s complement, etc.

A Retargetable Debugger Page 14

This shows again that the debugging system must access the
program library to get complete information. Additionally some
target machine dependent issues must be considered which may be
hidden behind a machine independent interface.

3.3.3 (Constraint Informatjion

Constraints may but need not be static in Ada. Hence, for some
constraints additional objects must be introduced which hold
their values. The information which object holds which
constraint is stored in the program library and must be
inspected by the debugging system. Once the objects holding
the constraints are known, Paragraphs 3.3.1 and 3.3.2 apply.

For the values of other attributes of the object or its type
similar remarks apply.

4.0 Debugger Interactions

In this Chapter we discuss the implications of the interaction
capabilities for the debugger-compiler interface.

The debugger is conceptually a (monitor) task with its own
stack. Jf it runs as a post mortem dump analyzer no
interaction between debugger and program under test is
necessary except for the generation of a dump (file) on the
programs side and the identification of that dump on the
debuggers side. If the debugger is on line with the program
under test different possibilities for its implementation are
seen.

{l1) The debugger is loaded together with the program under

test getting its own memory in the address space of
the program under test.

(2) The debugger runs in a different address space
(parallel task with message passing).

The latter possibility has been chosen because it allows ¢to
handle host-target debugging in the same manner as host-host
dedbugging. In the former case the debugger runs as a task on
the host and the program under test on the target. In the

latter case both run as different operating system tasks on the
host computer.

A Retargetable Debugger ' Page 15

For the location of breakpoints corresponding to source
positions it is necessary to have the compiler build tables
which contain the mapping of source positions to code
addresses. The code to source mapping proposed in Section 3.1
is not sufficient because it dces not allow to retrieve from a
source position the code address which is executed first., The
tables containing the source to code mapping are constructed in
a similar manner to those containing the code to source
mapping.

In order to set breakpoints on exception or tasking events
the debugging system must have detailed knowledge of the
runtime organization and tasking implementation.

For the modification of data the same information as for
accessing objects is required. Additionally the debugging
system must be able to interpret a string given by the user as
a value of some type and transform it into a bit string to be
stored at some objects address.

5.0 Conclusion and Prospects

In this paper we described the design and partially the
implementation of a retargetable debugging system for the
Karlsruhe Ada compiler. The most essential implication is that
there 1is no need to have two versions of the program: one for
debugging and one for real usage. Otherwise it would be very
difficult, perhaps impossible, to guarantee that the
instrumented version will produce the same error situations.
On the other hand, debugging code must not be incorporated into
the program to avoid overhead for the normal execution.

Hence, the debugging system has to work for programs which
are not specially instrumented for debugging. All knowledge
about the execution of a program must be retrieved from its
memory when interrupted. Additionally, the debugging system
may access information collected by the compiler, the 1linker
and information about the runtime organization of the programs.

As has been discussed in Chapter 3 the target dependent
features of the debugger can be concentrated in a few machine
dependent packages making it easy to retarget the debugging
system. The rehostability is given because the debugging
system is written in Ada, as is the compiler.

A Retargetable Debugger Page 16

We have shown that on this basis a reasonadbly working
debugging system can be Dbuilt: it provides all operations
needed by the programmer in order to analyze an error
situation.

A further advantage of this approach lies in its
applicability to cross developed programs: The program is
developed and tested on a -host computer, but is used on some
other machine, the target computer. If an error situation
occurs during real usage, the program state (i.e. the contents
of memory) can be written on tape and transported back to the
host machine. There the environment is present for applying
the debugging system (in the version for this particular target
machine). By this way, error situations can be analyzed even
for real time applications where errors usually cannot be
reproduced.

On the other hand this approach allows to “field test" the
program on the target with the debugger located on the host if
an online communication channel exists between host and target.

5.1 Qutlook

A shortcoming of most available debuggers (including the one
presented) is that the program under test has to be stopped in
order to analyze it. For some real-time applications this may
be a serious problem. Therefor we are planning to develop
debuggers which analyze the program behaviour in source level
terms without disturbing or interrupting the running program on
a target system. This is a most challenging effort with
respect to real-time application programs.

AD-P005 564

The Relationship of
Software Engineering and Artificial Intelligence

Gerhard Goos
GMD Institut fir Systemtechnik

-
7

. Abstract: In this paper we discussjexisting and potential applications to the

“field of software engeneering of methods and tools developed in the area of ar-
tificial intelligence. We also indicate problem areas in the field of artificial intel-
ligence which might be resolved by software engineers. The topics include pro-
gramming by searching as a basic programming paradigm, the use of rule based
systerns and Al-languages, applications to rapid prototyping and program
transformations. Furthermore the potential use of expert systems in software
engineering is investigated.

1. Introduction

Software engineering as a branch of computer science is concerned with the
theory and practical methods for efficient production of reliable and correct
software in time. These issues comprise on the one side managerial questions of
how to organize the software production process. On the other side software en-
gineering is concerned with methods and tools for supporting the software life
cycle, starting from requirements analysis up to the final acceptance test and
maintenance phase. It is well known that presently the costs for modifications
and improvements of software during the maintenance phase are much too high
and amount to more than 50% of the total costs. The main issues in current
research in software engineering are therefore on the cne side questions of how
to improve the productivity of programmers and the overall quality of the
resulting product; on the other side we have the question of how to reduce the
maintenance costs. It has been recognized that many of the problems stem
from the fact that the design process very often starts from specifications
which do not adequately reflect the intentions of the customer. Hence a specifi-
cation method is required which helps to improve the results of requirements
analysis. It would be even more useful when such a specification could be made
executable so that the specification can be debugged by means of rapid proto-
typing before the design process starts.

Starting from this question interest has been created in methods of artificial
intelligence amongst software engineers. Indeed, it turns out that Al-methods
might help in this situation but might also have other applications in software
engineering. In this paper we discuss such applications. At the same time it
turns out that some methods of software engineering might be applicable in the
area of artificial intelligence.

My co-workers Reinhard Budde, Peter Kursawe, Karl-Heinz Sylla, Franz Weber
and Heinz Zillighoven have contributed to the ideas expressed in this paper.

2. Programming by searching as a program paradigm

One of the key issues in the design phase on all levels is the adequate break
down of the problem in hand into sub-problems and the corresponding con-
struction of the solution from solutions of the sub-problems. Any method for
solving this question leads to a model of software construction called a pro-
gramming paradigm. Many such methodologies have been invented and suc-
cessfully applied like top-down design (abstract machine modelling),stepwise re-
finement, the use of models from automata theory, etc.

One methodology, programming by searching, has been rarely used in
software engineering up to now although it has been proven very successful in
artificial intelligence. Although this methodology does not necessarily lead to
efficient programs it has a number of advantages:

- The programs developed according to this methodolgy comprise a part
which might also be read as specifications of the problem.

- These specifications might be expressed in a way which is understandable
also to the non-specialist.

- Initially the specifications might even be incomplete or contradictory. Such
problems might be be interactively resolved by user intervention or by
dynamically modifying the specifications.

The basic idea of programming by searching starts from the assumption that
all possible solutions are known a priori (a potentially infinite set). These possi-
ble solutions form a state space. The solution(s) corresponding to the actua!l in-
put data is found by successively generating the elements of the state space
and by testing the generated state wether it is an appropriate solution. This
generate and test methodology is also known as the British Museum method. It
obviously works in practice only if the state space is sufficiently small. The
method, however, shows already the basic ingredients of programming by
searching: An algorithm for implementing this method consists of the following:

- an initial state,

- aset of rules for generating new states from a given one,

- acontro] algorithm for determining the rule to be applied next,
- atarget condition characterizing the desired solution.

The method may be generalized by hierachically structuring the state space:
Possible solution are no longer generated in one step but chains of states are
generated which might be intuitively thought of as constituting successive ap-
proximations to the solution. The algorithm described above basically remains
unchanged. Some specializations of this method, e.g the greedy method, are
well known to the software engineer. They are characterized by the fact that
the control algerithm and the rules generating new states are integrated in a
specific way.

The method. also called unidirectional search, however, is of limited scope
only. It requires that in each state the algorithm is able to determine which rule
will definitely lead to the solution (if it exists at all). To remove this restriction
we may consider a generalization of the notion of state: If each new state also
comprises the information about all states generated so far we may restart the
search at any former state if the last generated state appears to be a dead end
{or "less promising”). We could even generate new generalized states by simul-
taneously applying several rules. An abstract implementation of this generaliza-
tion uses a search tree instead of a chain of states as indicated in fig. 1. The
generalized state consists of that part of the search tree generated so far. The
control algorithm must now pick a node in the search tree together with a rule
which is applicable to that node.

¢ C

o b g e

- ———

B T S R

Fig. 1 A Search Tree

Figure 2 shows the complete search tree for the 4 queens problem. Except for
the two solutions of this problem all other leafs are dead ends. Starting from
the initially empty board (on level 0) there is one rule in this game indexed by
integers i.k,1<1 ks4:

From a node on level i—-1 generate a node on level i by placing a queen in
row ix, column k subject to the condition that this position is admissible
(cannot be reached by any previously placed queen.)

T
Pig. 3 The Search Tree for the 4 Queens Problem.

O/

veendih .

"The notion of search tree leads to the fact that the final generalized state
also includes the path from the initial state which leads to the solution. This in-
formation is often equally useful as the solution itself: In many problems the
"solution” is known a priori but the way how to achieve it is the desired infor-
mation. For example, in a diagnosis system the fault symptom is initially known
but the possible sources of the fault are indicated by chains of malfunctionings
leading to this fault symptom.

In a practical implementation of the control algorithm and the building of the
search tree we are faced with a number of fundamental engineering problems:

- The indeterminism: which node to consider next

- The indeterminism: which rule to apply next

- The potentially large number of rules to be tested for applicability

- The combinatorial growth of the search tree and the associated storage
problems

- The fact that the search tree may contain potentially infinite subtrees
which do not lead to a solution. (Hence the search might never terminate
although a solution exists.)

- The question how to identify dead ends as early as possible.

A number of control algorithms have been developed for dealing with indeter-
minism: Depth-first search, breadth-first search, the use of heuristics for deter-
mining the next node and rule, etc. The book [Nilsson 1982] contains an exten-
sive treatment of such search methods. Most of those methods can be combined
with recognizing cycles which are (partially) responsible for infinite search
trees. Heuristics can be applied in two different ways: Either we introduce prior-
ities indicating the order in which branches should be added to the tree: this
idea may improve the speed for finding solutions to the extent that problems
become practically tractable which are beyond the accessible computing power
otherwise. Or we may definitely decide that a certain branch does not lead to a
solution based on heuristic arguments. Whereas the former way does never ex-
clude solutions - at least in theory -, the latter way may restrict the number of
solutions being found since the heuristics might be wrong. Hence altogether
programming by searching may lead to the following results:

- Success: A solution (or several/all solutions) is found together with the se-
quence of states leading to the solution

- Definite failure: A solution does provably not exist

- Failure: A solution has not been found because either the algorithm did not
terminate in a given number of steps or because an unsuitable heuristics
was used or because no further applications of rules are possible for other
reasons.

Despite the problems mentioned programming by searching has a number of
advantages compared to other programming methods:

- The strict separation of rules and control algorithm allows for considering
the rules as an algorithmic specification of the solution process. This specif-
ication may be expressed in readable terms but is hiding all of the imple-
mentation decisions connected with the representation of the search tree
and the control algorithm.

- The user may get interactively involved either for supporting the control al-
gorithm in its decision making or for introducing state changes manually in
case the systemn does not find an applicable rule.

Unfortunately the other side of the coin is that the algorithmic specification
may be used in a restricted manner only due to shortcommings of the control
algorithm.

> O

*

On the other hand the interactive involvemnent of the user might be explored
for dealing with incomplete or contradictory specifications or for extending the
specifications on the fly, a direction which could never been followed in ordi-
nary program design.

3. Rule Based Systems

Formally speaking the rules forming our specifications, often also called pro-
ductions form a derivation system, D=<@Q.R.1.S> where

- Qis a decidable set of states.

- p:@~29 with p(g) for all g€Q being a finite (potentially empty) subset of Q
We map @ into its powerset because g€@ represents a generalized state;
there may be several components to which rule p may be applied with dis-
tinct results. We write g «q' iff g'€p(q).

~ J and S are decidable subsets of @ representing the initial and solution
states.

Derivation systems can be analyzed for certain properties. The most impor-
tant properties in practice are the {following ones:

- A derivation system 4 is noetherian if each derivation
qo‘ql" L ..qﬂ.. . e
starting at an intial state gy€/ terminates after a finite number of rule ap-
plications.
- A derivation system D is confluent iff for each initial state g4 which has a
solution and for arbitrary successor states u,v of gg there are derivations
u----=zandv---- -2z, 2z asolution (€l).

A noetherian derivation system has the interesting property that any control
algorithm no matter how it proceeds will terminate after a finite number of
steps because all search trees consists of a finite number of nodes only. A con-
fluent derivation system has the property that the solution is unique if it exists
at all and there are no dead ends: from each reachable state we may also reach
the solution. Both properties are much desired but do not occur in practice as
often one might wish.

A control algorithm for using a derivation system D=<@.R./.5> is an algo-
rithm as follows:

Initial State: g:=qq€/
loop select a rule q with p(g)»¢; exit if no such rule exists;
select ¢ €p(q).
g:=q':.exitif g€S
end loop
Output: q if §€S, no success otherwise

As discussed before it might happen that the algorithm does not terminate. The
algorithm is indeterministic due to the two select operations. The combination
of a derivation systemn and a control algorithm is called a rule based system.

Rule based systems appear in many forms in Al. Historically they have been
termed production systems. Frame systems and other variations subdivide the
set of rules and partially allow dynamic changes of the rule set depending on
the current state.

20 3

4. Al Languages

From its beginning the people in Artificial Intelligence have used languages like
LISP instead of the more common imnperative languages FORTRAN, ALGOL, PAS-
CAL. ... It is yet difficult to analyze why these dilferences in language approach
have occurred, notably since, by various extensions. LISP has taken over most
of the features of standard languages although with different syntax. Signifi-
cant features of most of the languages in Al compared to imperative languages

. are the following:

- Basically there are no program variables in the usual sense (although they
have been mostly added through the backdoor). Computations produce new
values by combining existing ones rather than by modifying them.

- Hence values like numbers from which new values cannot easily derived by
combination play a subordinate role. The basic data structures are lists of
dynamic lenght with dynamic typing of the elements. Internally these lists
correspond to binary trees. Very often lists are used for representing what
is known in logic as a term algedra. This use occurs in its purest form in
PROLOG.

- All Al languages are based on an interpretive model which allows for dynam-
jc reinterpretation of data structures as pieces of program. Although this is
a very dangerous feature, it is very helpful, e.g.. in manipulating the set of
rules in a rule based system.

Current programming languages can be classified as

- imperative: Operations are expressed by statements which manipulate state
variables.

- applicative: Operations are applied to expressions forming a larger expres-
sion. The notion of a variable does basically not occur. Some form of the
theory of recursive functions is the underlying theoretic model.

- functional: A program is a set of functional equations. These equations ex-
press relationships between values and unknowns (mathematical variables);
the execution of the program has to resolve equations. Most mathematical
theories can be most easily transformed into this mode!l; but the knowledge
by the program interpreter for resolving the equations is sometimes special-
ized.

- logic: A program consists of a number of formulas in predicate logic togeth-
er with a model how new formulas may be derived from the given ones.

In practice none of these language types occurs in pure form: e.g.. ALGOL 68
was a mixture of an applicative and an imperative language. Certain develop-
ments in the area of logic programming languages starting from PROLOG are
especially interesting because they allow for subsuming many aspects of the ap-
plicative and functional programming style.

Of course. since all of the non-imperative languages rely on an interpreter
which is currently written in software it is very difficult to achieve highly effi-
cient programs and to judge the efficieny from the program text without
knowledge of the interpreter. Hence all these language styles are interesting for
the software engineer mainly for two reasons: First, some of these languages
are suitable for writing specifications and programs written in such a language
can be run as protolypes beiore the actual efficient implementaticn is
developed. Second, programs in such languages are sometimes very concise and
easy to read and write, hence it is possible to develop programs in much shorter
time; problems may become solvable which otherwise could not have been at-
tacked due to the shortage of programmers’ time. We demonstrate some of
these considerations using PROLOG as an example language.

S

T e s o e e e -

PROLOG [Clocksin 1981] is a logic programming language based on the cal-
culus of Horn-clauses. A Horn-clause is an implication:
. PaAP2A - APx=Po
written in PROLOG as
=P P2 Pn-
Here we have n20; if n =0 we call the clause a fact. The predicates (or literals)
P may have terms as paramaters as shown in the following examples. Logic

variables, denoted by identifiers starting with upper case letters, may only oc-

_cur as terms. Hence PROLOG essentially remains in the realm of first order

predicate calculus. Certain built in predicates (assert call retract) allow for
reinlerpreting a term as as Horn-clause and cause second order effects useful

for manipulating programs.
Simple examples of PROLOG programs are

human (sokrates).
mortal (X) :- Auman(X).

This program allows for estabilisting the resuit

mortal (sokrates)
in the obvious way whereas all questions mortal (2yz)? would be answered with
no as long as it or Auman (zyz) is not established as a fact.

The use for prototyping and the short way of expressing problems may be
seen from the following programs for algebraic differentitation. (dif (E.X.DE)
means: DE is the dervative of expression E with respect to X))

dif (U+V.X.DU+DV) :— dif (U.X.DU).dif f (V.X.DV).
dif (U*V.X.(DU*V)+(U*DV)) :~ dif (U.X.DU).dif (V.X.DV).
dif (X.X.1).

dif (Y.X.0) = Y¥X

dif (e +b.z.L)

will be answered with
L=((0%)+(a®1))+0
which is the desired answer but yet not simplified.

It is obvious that this program for computing derivatives is much shorter than
anything which we could write in ordinary programming languages. At the same
time it is much more readable. It therefore can serve as a specification which at
the same time is executable, i.e. as a prototype for a real implementation.

Horn-clauses can also be considered as the rules of a rule based system.
Viewed in this way we may ask what is the control algerithm underlying the exe-
cution of these rules. In PROLOG this control algorithm is depth-first search
with backtracking: For estabilishing the validity of a predicate the definitions
(Horn-clauses) of this predicate are searched in top-down: for each definition
the predicates on the RHS are considered in order from left to right and their
validity is established.

The use of depth-first search is unsatisfactory in both ways (but so would be
any other control algorithm): On the one side it introduces a difference between
the abstract understanding of Horn-clauses as specifications and their in-
terpretation during execution; we have to distinguish between the declarative
and the algorithmic interpretation. On the other side depth-first search is just
one of the possible search strategies. If we want to use another one we have to
simulate it on top of depth-first search. Fortunately also in these cases the
rules may be written in a way which is easy to understand and hence the pro-

perties of Horn-clauses as specifications are mostly retained.

8. Software Engineering Problems

As mentioned earlier programming by searching poses some technical problems,
- e.g.. dealing with a large number of rules and with a large set of state variables,
which are typical engineering problems. In many cases normal methods of
software engirieering may be applied to solve these and similar problems.

A standard method is. e g.. to factor the state space and the set of rules in a
hierarchical fashion. The result is a rule based system containing rules which
themselves are rule based system. Also changing the abstract representation is
very often helpful in reducing the size of states.

Another class of problems arises from the fact that in practice certain pro-
perties might be expressed as parts of rules and as part of the control algo-
rithm as well. For example, in many cases it is posible to predict subsequent
rule applications (at least with a certain probability) once a certain rule has
been used. Sometimes it is possible to use the rules "backwards”;i.e. if the
solution is known but the sequence of steps leading to the solution is searched
for we may start the search at the solution and work backwards to the initial
state. Of course, this backward analysis, well known from other areas of
mathematics and informatics, requires an adaption of the rules and it is not at
all clear under which circumstances it bears advantages. Also combinations of
forward and backward analysis have been successfully used in practice, espe-
cially in the form of “middle oout reasoning” where it is assumed that we know
some intermediate state of the solution path in advance.

Yet another form of interaction between control algorithm and rules occurs if
the applicability of a rule is known only with a certain probability. This situation
occurs very often in expert systems for purposes of diagnosis. There are several
strategies for distributing the handling of probabilities between rules and con-
trol algorithem.

The foregoing problem may also be considered as a special case of dealing
with uncertainty Uncertainly may occur on the rule side as discussed or on the
date side: The required input data can only be observed up to a certain degree
of reliability or very our time. In this case we may again use probebilistic rules
or we may apply concepts of {uzzy set theory, etc.

All these questions are basically engineering problems in applying rule based
systems. There exist a lot of proposais how to attack these problems - the in-
terested reader is referred to the book [Hayes-Roth 1983] - which have been
used in practice. But there does not exist a well developed and theoretically
well founded basis for dealing with all these questions Hence the practiceoner
will find methods by looking into existing solutions. but at the same time the
scientifically interested software engineer sees a waste area of research topics.

¢ (-

8. Applications to Software Engineering

Rule based systems may be used in many areas of software engineering basical-
ly as parts of a softwars production environment. In most cases these applica-
tions will take the form of an expert system, i.e.. a rule based system with addi-
tional components facilitating the acquisition of rules (the knouledge engineer
ing component) and the explanation of what is going on. Basically the value of
such expert systems may have three different sources which mostly appear in

. some combination:

- During requirements analysis (but also during later phases of software
development) it might be very helpful to view system analysis as the process
of acquiring rules describing the intended computational mode! yet without
the necessary control algorithm. This idea implicitly leads to a specification
language, namely any language suitable for expressing rules. Psychological-
ly the customer is much more inclined to support the system analyst when
he declares himself as a knowledge engineer, and when he does not pretend
to acquire all the fuzzy details which might change in a computational
model anyway, but asks for the rules governig the present situation (it goes
without saying that this method is only a trick which might nevertheless un-
cover all the necessary details).

- Expert systems may be used for performing tasks which are more easily ex-
pressed by rule based systems than by ordinary algorithms. Typica) exam-
ples for this approach are applications to prototyping or for performing
program transiormations on all levels, including the transformation of exe-
cutable or non-executable specifications into more efficient program
descriptions. For example most of the existing catalogues of standard pro-
gram transformations can be quite easily put in the form of derivation sys-
tems.

- Lastly it is often easier to resolve interactive tasks within the frame work of
an expert system. Typical applications might include the tasks of configura-
tion control based on large program libraries with modules in several ver-
sions and variants, support of tessting from the planning stage up to actual
testing phase, or tasks occuring as part of project management. In many of
these applications the extensibility of the set of rules may be used for start-
ing with a relatively “uninteiligent” system which then is gradually improved
by adding new rules.

As an example for such extension techniques we might reconsider the dif-
ferentiation program in section 4: This program can be immediately extended
for dealing with arbitrary expressions by adding the interactive rule.

dif (E.X.L) :— write ('please input the derivative of') write(E),
write ('uith respect to') write (X).read(L).

at the very end When it turns out that certain types of expressions occur more
frequently we may then add the appropriate rules for automatically handling
these cases.

It is obvious that these techniques applied either singly or contined bear a
large potential of fruitful applications to soflware engineering tasks. These pos-
sibilities have been yel only superficially explored. e.g by developing program
transformation systems. But many more immediately useful applications remain
to be wrilten

7. Literatur

{Clocksin 19881]

W.F.Clocksin, C.S.Mellish Programming in Prolog. Springer 1981.
[Hayes-Roth 1983)

F.Hayes-Roth, D.A.Waterman, D.B.Lenat Building Ezpert Systems. Addison-
Wesley 1963.

[Nilsson 1982)
N.J.Nilsson Principles of Artificial Intelligence. Springer 1982.

— _ — -

. in: Proc. of the IFIP TC2 working Conference on DATABASE SEMANTICS;
R. Meersman, T. B. Steel (Eds.), Hasselt, Belgium, Jan. 1985,

North Holland .

OBJECTS AND ABSTRACT DATA TYPES IN INFORMATION SYSTEMS
Erich J. Neuhola

Institut fuer Angewandte Informatik und Systemanalyse
Technische Universitaet Wien
Paniglgasse 16, A-~1040 Wien
Austria/Europe

AD-P005 565

—— o, Future generations of database systems will have to support
a much wider variety of data objects than today's systems.
Texts, voice, drawings, and pictures will have to be
handled in an integrated fashion together with today's

record oriented data in hierarchies, netwvorks and
relations.

. To achieve this goal, a knowledge based, object and
abstract data type oriented approach is proposed and conse-
quences for the database management system, the information

system design tools, and the system dictionary are dis-
cussed.

INTRODUCTION

Data base systems have had a tremendous impact in commercial data
processing. The very valuable resource "data” of an enterprise has
become accessible in an unified way to different company sectors, be
it personnel, finance, manufacturing, marketing or sales.
Centralized data bases and centralized processing of these data by

the different enterprise components was a rational way of handling
the necessary tasks.

With the availability of powerful miniprocessors this picture began
to change. Computers started to appear in the different sectors of a
company. Local processing and even interactive use of the computing
resources became widespread. As a consequence local data storage
increased and 1local data bases containing supposedly only data of
local interest were established. However, data and the information
represented Dby them are valuable assets of the whole enterprise and
usually also needed elsevhere in the enterprise. As a consequence of
distribution either redundancy of data storage with all ensuing
problems of data consistency results or remote access to these data
becomes necessary, i.e. multiple remote data base use in a single
program becomes the rule, and problems of recovery and consistency
will appear again. 1In addition dependencies on the location and the
specific content of these data bases in a single program will
practically inhibit to move data bases or individual parts of data
bases from one location to the next. A solution to these problems is
offered by distributed data base management systems, e.g. POREL [1]).:
SIRIUS/DELTA [2), 8DD-1 [3] or Rer (4], that have been developed over
the past fev years. They handle consistency, 1location dependencies,
reliability and recoverability in a user transparent fashion and
provide in this way ease of access and resiliency - toward
communication or execution failures.

2 (7

—_— -

Recently, however, workstations and personal computers have become
widespread and more and more people do their processing at 1least
partially on their own office or home desk. Local data storage again
is of importance tor many of those applications as othervise remote
access or remote processing with all ensuing remote location problenms
has to be chosen for every task. Extending distributed data bases to
include workstations and personal computers provides again a solution
to the remote data manipulation problem and automatically solves the

serious problem of limited storage resources in workstations and
personal computers.

The widespread use of workstations, intelligent terminals and
personal computers, however, has dramatically changed the kind of
work a user expects his system to perform for him. Mail systens,
multiple windows, graphics, even voice and video are expected to be
offered in an easy to use manner. Icon oriented representations and
flexible control facilities, e.g. mouse, pen, finger or even eye, are
becoming available, soon to be enhanced by a multitude of knowledge-
base oriented expert systems. Distributed and centralized data bases
up to now are only able to handle effectively what has become to be
kXnown as formated data, i.e. data more or less directly derived from
the record/field oriented interfaces offered in conventional file
systems. The new kinds of data - which frequently are referred to as
object oriented data - will require new concepts to be incorporated
into data base management systems which will enable the users to
access, manipulate and store those types of data effectively with at
least the level of control embedded in today's DBMS's.

Interestingly enough two fields of computer science have dealt with
this new type of data already for a considerable amount of time. 1In
artificial intelligence the manipulation of 'objects' has been one of
the basic features, but in practically all systems these objects are
only manipulated in main memory. Sometimes primitive file systems are
used to enhance the permanence and size of the data the system is
capable of handling. Only recently with the coming of age of
artificial intelligence the need has become paramount to manipulate
large amounts of data that have to be shared and should be consistent
and recoverable in the event of system failure. These requirements
directly lead to data base systems where the AI community has found
out that the type of objects handled there was insufficient to solve
their

problems in practice. As a consequence of these requirements data
base research and developnent have oriented thenselves to
‘object' data bases and considerable resources are spent to produce
solutions in as short a time span as possible. Recently a well
attended conference on Expert Data Bases [5) was organized and its
proceedings contain numerous papers which illustrate some of the
problems and solutions in this relatively new field.

The other area of computer science that dealt with ‘'objects' for a
considerable amount of time tries to add 'meaning' to the data kept
in data base systems in the sense, that the semantic of the data to
be stored in the system is used to both: design the necessary data
types (object types) and storage and access structures for a specific-
data base, and to develop and sometimes build right into the systen
operations for the manipulation of these semantically defined
objects. [6, 7). Originally the assumption in these systems was that
the objects and operations would describe the universe of discourse
of an enterprise in such a fashion that an actual data base could be
derived either manually or semiautomatically. This data base later
would be used in the conventional fashion either via interactive data

Al Co

el i

manipulation languages like SQL or navigational as for example in IMS
or CODASYL. This idea, howvever, has to be changed if the users
thenselves are to be allowed to work with objects directly. It
becomes necessary to build a data base management system that offers
a senantic interface not only to the designer but also to all the
users - humans and/or application programs - of the data base.

In this paper we shall now investigate the architecture of a future
data Dbase system that may be used to store and manipulate
semantically meaningful objects, be they employee descriptions,
product descriptions, letters, telephone messages, blue prints of
buildings or machines, or videos for educational or promotional
purposes. The most important consideration here has to be that all
these data together represent the information source of an enterprise
and therefore should be handled homogeneously, consistently and
reliably by the system for its multitude of users.

THE SYSTEM ARCHITECTURE

In Figure 1 an information system is illustrated that has been
designed to handle the requirements developed in the introductory
chapter of this paper. .

User Interface
B

Application Systenm

i
Knowledge Handling Systems
Information Expert
Base System
C
FORTRAN
COBOL Systen
Lisp
Pascal Dictionary
Prolog
\ /
Data Handling Systems
Data Communication Special
Base Systems
1
Distributed Operating System
Kernel
Figure 1

An Information System Architecture

The operating system Xernel represents the lowest 1layer of the
softvare architecture. It provides for data storage, process
management and communication in the distributed (local or wide area)
environment of our system. A more detailed explanation of the system
can be found in [8) but a brief explanation here is in order.

A

S ol W

The data storage must provide storage for a wide variety of data
types but it must also provide sharing of data with flexible locking 1
and recovery functions. Currently there still exists a separation
between real/virtual main storage and file storage. The artificial r
intelligence community for example primarily relies on little shared
mass storage as a depository for its complex data structures whereas 1
the data base community concentrates on efficient access pates and
storage concepts on disks but restricts itself to rather simple data
object structures. 1In the future main storage and file storage will
have to grow together not only on a single machine but also on local ‘
and wide area nets. Effective use of such structures will require

knowledge on the type of object to be stored to be embedded directly
into the storage systen.

Data communications will play a central role in the network oriented
architecture of all future systems. Different systems will have
different requirements on the locality, speed, security, reliability
and cost of communication. Local area, long-haul, broadcasting,
point-to-point networks come to mind and frequently will have to work
together in a single environment that undoubtably will contain compu-

ters of quite different size and architectural makeup, both with
respect to hardware and to software.

Process management in the distributed environment of future systems
will have to work intimately with both the data store and the
communication facilities. Multiple processes will be involved in even
relatively simple user tasks. They will have to cooperate across the
network for retrieving, manipulating and storing the data of the
system. Failure recovery from process, network, or storage break down
will be essential for an acceptable reliability of our system and has
to be buillt right into the operating system kernel in order to be

available to all the other higher software layers in a coherent and
consistent manner.)

On top of the operating system Xkernel special data handling
subsystens can be found. Data base and communication systems will be
supplemented with special systems as for example special hardware for
high 1level language systems such as Lisp, Prolog or Pascal. Other
systems may be provided for CAD/CAM tools or for automatic control
systems. In all these systems the emphasis will be set on handling
data not on interpreting them as is done in the knowledge handling
subsystems of the higher architectural layers.

Data base systems will have to manage distributed and shared data of
quite complex structures. Different users - humans or programns - may
have different views on these data, their access must be coordinated
and controlled. Reliability and consistency of the data has to be
embedded to such a degree that human controlled error recovery will
practically never be necessary as the envisioned complexity of these

systems would make such a task extremely complicated if not outright
impossible.

Communication systems will provide a variety of services to the

different system components. Telephone communication, mail, videotex,

and video signals will be added to todays widely used communication.
types like file transfer/access, message delivery and

sensing/control.

The subsystems of this layer will, however, still emphasise the

handling of data not the handling of information/knowledge. Data will
have known structures but it will not be known whether an individual

X1

N e

structure will be an employee description or the route map of a
delivery truck. Generalized behaviouristic knowledge of course will
be required as for example that same part of a structure
(representing an employee) will be needed twice a month - for salary
calculation - at a specific central location. This would allow a data
base system to decide for example to maintain a backup copy of the
structure at precisely that location instead of some

other randomly chosen one.

The Xnowledge handling subsystems will actually understand the type
of information even the individual information items that have to be
manipulated. An information base system, for example, will - of
course in an abstracted manner - know that a specific data structure
represents an employee, vhat part of the structure is to be used when
talking about the emploi'ee (its name, identifier, key?) and what
other information about that employee is in the system. It will for
example understand that an employee always has to be associated with
a department, that he has to have some specific salary, or may be
married. In addition such an information base will have to know about
the Xxind of operations allowed by the using programs or humans
against the individual date item. Only in this way will consistency,
security and recoverability be ensured at an acceptabel 1level., For
example a get-married operation for employees will provide the
mechanisms to change the marriage status of exactly two employees,
adjust their tax deductions and may even initiate reassignment
procedures if both persons work for example in a direct-line

management relationship and company policy does not allow for such
situations.

To achieve its task an information base system has to be able to
manipulate both structured data and programs working on these data.
For this purpose it will access the data base on one side but use
programming language subsystems on the other as the operations
obviously will have to be implemented in one or the other of our
programming languages. In Figure 1 we have also identified the system
dictionary as a facility to provide the necessary meta-data which
describe objects ¢types and object structures, interrelationships
between objects, and programs to manipulate specific object types or
even individual objects. 1In conventional data base terminology the
System Dictionary contains the schema description of the data base
but this description of course has to be expanded considerably as
our system it also has to contain semantic information on data

operations in order to support the mechanisms
base.

in
and
of the information

The expert system component in Figure 1 actually is meant to describe
all the mechanisms needed to support specific expert systems - e.g. a
geological assistent or a network-configuration expert - which
themselves are part of the application layer. Inferencing engines,
interpreters but also strong links to the information base, the
system dictionary, and programming environment will be required to
provide the flexibility and large knowlege base to make the expert
system truly successful in the demanding markets of the future.

The application system layer finally ties all the facilities offered
by our distributed system architecture together. Using the
information base, the expert systen, programming language
environments as well as the system dictionary the individual
application will be able to concentrate on solving problems instead
of dealing with the many complex issues of ensuring that data are
handled in wmeaningful ways only, as -these tasks - i.e. adding

UQ iP5

el i

P »1"- .

semantics to the data - will already be achieved at the lower levels
of our system.

The user interface will directly reflect the multi-media facilities
of work stations and personal computers. Voice and graphic input and
output will be available besides textual representations. A user will
be able to interface with one or more applications concurrently in a
personalized manner. For this purpose an expert system based on
stored user characteristica will be available ¢to the application
packages. It will model learning, practice even forgetting behaviour
of humans and select between a number of possible representation

schemas on the basis of personal preferences. '

To achieve this system goal the representation of the meaning of data
and data operations is of central importance. Both the AI world and
the data base world have developed concepts in this direction ¢to
ultimately allow the handling of information instead of the handling
of data. Currently many investigations try to combine and unify these
schemas to provide for the combined benefit of 1large information
stores and expert system technology.

In the remainder of this paper we shall outline an approach based on
abstract data types that was originally developed at the University
of Stuttgart. Detailed descriptions can be found in (9, 10, 11, 212

and 13) but other proposals also exist as can be seen for example in
the conference proceedings of [13] and [5].

OBJECT ORIENTED DATA BASE SPECIFICATION

When specifying an object oriented data base either for data base
design or - if the system provides an object oriented interface - for
user interface definiton, four important aspects of the data base
system can be identified and have to be modelled:

1. Objects, type classifications and object structures

2. Interrelationship between objects

3. Operations, operation classes and operation structures

4. Dynamic interrelationships between operations.

In the following we shall use a small example to illustrate the use

of these concepts for representing the information contained in an
object oriented data base.

Object Classification Schema

Every material or immaterial entity of the real world that is to be
represented in the data base is considered to be an object. This
(large) set, however, has to be structured in order that objects with
similar properties can easily be identified and manipulated in a
homogeneous fashion. In Figure 2 an Object Classification Schema
{llustrates that the class OBJECT can be subdivided into object
classes PERSON, COMPANY and THEATER CLUB. The PERSON class is further
subdivideda into EMPLOYEE, SUPPLIER and ACTOR. THEATER CLUBs may
concentrate on modern or classic theater, COMPANYs may be trading
companies or manufacturing companies etc. Notice that the subclasses

of a class may be overlapping, e.g. an employee may also be a
supplier and/or actor.

In the specification each of the cbject classes will have a verbal

description attached , explaining its purpose and at least sonme of
its most important properties.

214

wonnadi. r UDRRRRRRIRFRGR e~

0BJECT

PERSON PLAYS

THEATER CLUB

e

o

empLOYEE| | supPLIEr] | ACTOR #?E?L‘us %AS(SHI.{:JB
\ —
MGR SEC ENG
COMPANY |
/ .
MANUF. COMP. TRAD. COMP.

Figure 2
An Object Classification Schema (partial)

In any real system with hundreds or thousands of object classes it
will be of utmost importance to present to the user and even the data
base designer only a meanigful subset of these classes at any point
of ¢time. For example if a user currently is concerned with theater
the object classes ACTOR, THEATER CLUB and PLAYS and their subclasses
would be of a prior interest and therefore should be displayed,
suppressing all the other schema components.

But how does the system decide which part of the schema it should
display? Here the other descriptive information supplied with the
data base has to be used. For example such information will identify
that actors are members of a theater club, that plays are performed
by theater clubs, etc. A knowledge based system using expert systen
technology will be able to make such a selection and present to the

user at least initially an easy to understand subset of the total
schena.

Object Structure and Relationship Schema

In Figqure 3 an example of an Object Structure and Relationship Schema
is partially given. Whereas an object classification schema only
identifies classes and subclasses of objects we now are able to

describe the structure of complex objects and their relationship to
other objects.

A MANUFACTURING COMPANY is a complex object containing other objects
like TEAM, DIVISION, MACHINE but also EMPLOYEE NAME or WORK UNIT that
are related again to each other. A more detailed discussion of this

K5

e _—

MANUFACTURING COMPANY
TEAM TEAM MGR (MGR)
TEAM 1D
EMPLOYEE
.| EMP.RAME
P
EMP.NUMBER MGR STOCK OPTIONS
VACATION SEC
A
TYPING / A
SPEED
WORK UNIT
MAX.
SALARY SAL. ENG rqmcu MACH
AVG.SAL.
HOURS
Sy L WORKED
EMPLOYS
EMP
DIVISION
| o1v.NAME

Figure 3
Object Structure and Relationship Schema for a MANUFACTURING COMPANY

schema type can be found in Furtado/Neuhold [12] but again any
realistic application will lead to very large structures and a
knowledge based system will have to select for presentation these
parts that are of interest to a user/designer at some specific point
of time. For example, if we want to talk only about employes in
general without discussion of the properties of its subclasses, then
the displayed schema could well be the one shown in Fig. 4. Notice
that because of the subsetting/abstraction involved the description

[

e

S —— a—th e

becomes identical for manufacturing and trading companies and
consequently is displayed for the super-type COMPANY directly. Wwe
have to remember here that the object classification graph also
exists and informs the user or designer about facts like subclasses

of COMPANY or EMPLOYEE so this information does not have to be
displayed here.

COMPANY
TEAM 1D TEAM TEAM MGR (MGR)
: _ EMPLOYEE
EMP .NAME
EMP.NUMBER
SALARY
AVG. SAL.
DIV
EMPLOYS
Emp
DIVISION
DIV.NAME . e e
Figure 4

Object Structure and Relationship Subschema for EMPLOYEE IN COMPANY

Operation Classification and Structure Schema

So far we have only described the data oriented aspects of our
system. However, in order to specifiy a complete information handling
system we also have to identify the operations available, their
interrelationship and their properties. For this purpose the
Operation Classification and Structure Schema was developed. 1In
FEgurc 4 wve illustrate a (partial) schema that describes the
properties and structure of an operation HIRE MANAGER that will work
with the object and object classes identified in Figure 2 and 3.

An operation is given a name, e.g. HIRE MANAGER, and a parameter of
some type, here e.g. PERSON, is specified. The operation description

N,

e

then allows to identify preconditions and postconditions together
with the operation body - the activity description. The operation may
use other operations supplied with the system, here e.g. HIRE
EMPLOYEE, ENTER MGR SAL etc.

HIRE WANAGER (X:PERSOM)
not ACTOR (X)

STOCK OPTION (X) < 1000

activity description

1

. | 1 |
HIRE EMP(X) NTER MGR SAL fcaLc MR vac(l SET STOCKOPT

] L4 ® °

® ® L °

® L ® ®

1
1 - ep S s> T .r - e A e W > T o - o l

NTERPERSDA CREATE ID ENTER SAL CALC VACATION

[) [[e

°) L ®

] ® L4 °

Figure 5

Operation Classification and Structure Schema

Using dependency structures as for example introduced in STUDER [14)
we are also able to represent conditional execution, parallel
execution, choice, etc. graphically such providing the user with a
more explicit description of the interdependencies of operations.
Note that the graph displayed is oriented toward the operation HIRE
MANAGER. The operation HIRE EMPLOYEE which also will be used to hire
secretaries and engineers for example will not use the suboperations
ENTER SALARY and CALCULATE VACATION as these properties of a manager
are handled by separate manager oriented operations ENTER MGR SAL,
ENTER MGR VAC, which in turn utilize those suboperations. Operations
can be very general. They are not rocstricted to bandle only
information kept in the data bases. For example the operation CREATE
ID will not only select an employee number but also produce a badge
in a truly integrated system it could even use other suboperations to
take a picture of the nev employee and produce his id-card.

Behaviour Schema o
In our specifications we so far have described objects, object
classes, object structures and object interrelationships as well as
operations, operation structures and operation interrelationships.
These pictures, howvever, represent only the static characteristics of
the system. Of course nev components say be added, o0ld ones may be
deleted Dbut what is not represented is "the run-time" beshaviour of
our model.

Rl 7

e e

-

In Figure 6 (some of) the activities surrounding the hiring of a
manager are displayed. Of course for each of the operations an
Operation Classification and Structure Speciftication and for each of
the object classes on Object Structure and Relationship Specification
would exist and could be displayed interactively to the
user/designer. Notice that the operation PROCESS STOCK OPTION will be
triggered by the HIRE MRG operation in the sense of a data flow
diagram. It performs the necessary company actions to actually grant
the option. 1If this has happened and the complete description of the

person has been entered in the system then a congratulatory letter is
sent to the nev manager.

Like for the other diagrams a knowledge based system is required to
present only those parts of the system behaviour that is of relevance
for the current activity of the user/designer. For example the
[operation PROCESS STOCK OPTION will also be executed whenever a new

stock option is granted to an employee but this is not shown in the
displayed diagram.

' sppo intment
s
Y LU JICH 34 ‘ OFFER
o InT.viEw
l ™ | Gy (™™ e
1 I
T e T
- e
o —(om —
Paocess o 1m - comcamy- Letter
STOCK 0PY. sTocx oPio LATINS @
Figure 6

Behaviour Schena
H SUMMARY
{

In this paper we have attempted to argue that future data base
systems have to store and handle interpreted data - i.e. information
- and that consequently current systems have to be extended with
object and abstract data type oriented concepts. V%We have then
proposed an architecture of such a system and discussed how the
designer respectively user may be informed about the objects and
operations represented in the data base. We have only given an
overviev of the respective features but more details can be found in
the references [{8) through (12). It is important to realize, howvever,
that the system which actually provides the information to the
designer respectively user vill have to be very flexible and will
have to employ knowvledge based and expert system technigques tc
present only the actually needed environment to the user and select
for presentation formats adjusted to the preferences and knowledge ot
the individual user. These concepts, however, are currently still
subject of research and it will probably take some time until they
will become available in more than small experimental systems.

1

(1)

(2)

[10)

(11)

(12)

(13)

[14)

o

REFERENCES

Neuhold E. J., Walter B.: POREL: A Distributed Data Base
Management System, in: H. J. Schneider (ed.) Distributed
Databases, Morth Holland, Amsterdam, 1982.

Litwin W. (et al.): BSIRIUS Systems for Distributed Data
Management, in:

H. J. Schneider (ed.) Distributed Databases, North Holland,
Ansterdam, 1982.

Rothnie J. 5. (et al.): 1Introduction to a System for
Distributed Databases (SDD-I), ACM TODS S, 1, 1980.

Daniel 8. D. (et al.): An Introduction to Distributed Query
Compilation in R*, in: H. J. Schneider (ed.) Distributed
Databases, North Holland, Amsterdam, 1982.

Kerschberg L. (ed.): Expert Database Systems, Proc. First
International Workshop on Expert Database Systems, Inst. of
Information Management, University of South Carolina, 1984.

Tsichritzis D. C., Lachovski F. H.: Data Models, Prentice-
Hall, Englewood Cliffs, (1982).
Olle T. W., S0l H. G., Verrijn-Stuart A. A. (eds.):
Information Systems Design: A Computative Review, Proc. of
IFIP TCS CRIS I Conf., North Holland, Amsterdam (1982).

Derrett N., Neuhold E. J.: Information Systems - The Next Ten

Years, in: Proc. of JCIT 1984, IEEE Computer Society, Silver
Spring, 1984.

Schiel U.: A Semantic Data Model of Conceptual Schemas and
their Mapping to Internal Relational Schemas (in German),
Doctoral Thesis, Univ. of Stuttgart, 1984.

Studer R., BHorndasch A., Yasdi R.: An Approach to (Office)
Information Systems Design based on Generalized Net Theory,
in: TFAIS 1985, North Holland, Amsterdam, 1985.

Studer R., Horndasch A.: Modelling Static and Dynamic Aspects
of Information Systeas. in this volume, 1985.

Furtado A., Neuhold E. J.: Formal Technigques for Data Base
Design, Springer Verlag, Berlin, 198S5.

Sernadas A., Bubenko J., Olive A. (eds.): Theoretical and
Formal Aspects of Information Systems, Proc. of TFAIS 85,
North Holland, Amsterdam, 1982.

Sstuder, R.: TFunctional Specification of a Decision Support
System, in: Proc. of VLDB 79, Rio de Janeiro, 1979.

— -

MANAGEMENT OF SOF TWARE FOR LARGE TECHNICAL SYSTEMS

H. Halling

AD-P005 566

Abstract:

For the design, construction and operation of large technical systems, software
plays an important role. In this presentation some aspects of managing software for
such systerns are discussed. The different classes of software during the project
phases and within the different hierarchical levels of a8 control system are outlined
and their relations to proper management are shown. In addition, the problems of
purchasing software and estimating the required time, budget and manpower for a
project are discussed. £ mphasis i1s placed on practical aspects and examples are
presentd.

Int roduction:

During the last few years | have heard of many projects, where the top project
managenent had developed an unconfortable feeling about computer based activi-
ties an