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K ABS7tRACT

The problem of inference about the binomial N parameter is considered.

Applications arise in situations where an unknown population size is to be
estimated. Previous work has focused on point estimation, but many applications
require interval estimation, prediction, and decision-making.

A Bayes empirical Bayes approach is presented. This provides a simple and
flexible way of specifying prior information, and also allows a convenient
representation of vague prior knowledge. It yields solu i.ons to the problems of
interval estimation, prediction, and decision-making, as well as that of point
estimation. The Bayes estimator compares favorably with the best, previously
proposed, point estimators in the literature. The Bayesian estimation interval
which corresponds to a vague prior distribution also performs satisfactorily
when used as a frequentist confidence interval.
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1. INTRODUCTION

Suppose x = (x ,.. ,x.) is a set of success counts from a binomial distribution with

unknown parameters N and 0. Most of the literature about statistical analysis of this model has

focused on point estimation of N, which turns out to be a hard problem. This literature is

reviewed in Section 3.

However, most of the applications of the model seem to require interval estimation,

prediction, or decision-nuking, which have been little considered in the literature. One common

application is animal population size estimation (Carroll and Lombard 1985; Dahiya 1980;

Hunter and Griffiths 1978; Moran 1951). Here, presumably, the ultimate purpose of collecting

data is to make decisions, such as whether to protect a species which appears to be endangered,

or whether to exterminate a pest whose numbers have risen. This may require a full decision-

theoretic solution, but often an interval estimate would be sufficient, while a point estimate

would not.

Draper and Outman (1971) used the foilowing application to motivate their work. The xi

are the numbers of a type of appliance brought in for repair in a service area during week i, and

N is the number of such appliances in the service area. This seems to be a prediction problem

rather than a point estimation one: presumably, the company wants to plan its service facilities,

for which it needs to predict future numbers of repairs.

I adopt a Bayes empirical Bayes approach (Deely and Lindley 1981). This provides a

simple way of specifying prior information, and also allows a convenient representation of vague

prior knowledge using limiting, improper, prior forms. It leads to solutions of the problems of

interval estimation, prediction, and decision-making, as wel as that of point estimation.

One of the difficulties with Bayesian analysis of this problem has been the absence of a

sufficiently flexible and tractable family of prior distributions, mainly due to the fact that N is an

integer. The present, hierarchical, approach gets around this by first assuming that N has a

Poisson distribution. The resulting hyperparmets are then continuous-valued, and one may

use existing results about conjugate and vague priors in better understood settings.
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A Bayes estimator is shown in Section 3 to compare favorably with the best, previously

proposed, point estimators in the literature. The Bayesian estimation interval which corresponds

to a vague prior distribution is shown in Section 4 also to perform satisfactorily when used as a

frequentist confidence interval.

2. A BAYES EMPIRICAL BAYES APPROACH

I assume that N has a Poisson distribution with mean gl This defines an empirical Bayes

model in the sense of Morris (1983). Then each of xl,...,x. is a realisation of a Poisson

random variable with mean . = I9; the xz are not, of course, independent. I carry out a Bayesian

analysis of this model

I specify the prior distribution in terms of (X, B) rather than (g, O). This is because, if the

prior is based on past experience, it would seem easier to formulate prior information about X,

the uncondiional expectation of the obwrvatiou, than about . the mean of the wobserved

quantity N. For instance, the examples in Section 5 involve estimating the numbers of animals in

a National Park based on aerial surveys. Experienced wildlife officials may well have a more

precise idea of the number of animals they would see on a particular day, based on the results of

previous surveys, than of the number in the entire National Park, which had never been directly

observed.

If this is so, the prior information about X would be mor precise than that about g. or 0, so

that it may be mor reasonable to assume X and 0 independent a priori than g. and 0. In this case,

g. and 0 would be negatively associated a priori. Jewell (1985) has proposed a solution to the

different but related problem of population sin estimation from capture-recapture sampling,

which is based on an assumption similar to prior independence of g. and 0 in the present context.

The posterior distribution of N is

p (N I x) - (N !f t {fl(~~)}~0 S -0 )&v - ex ) p (X) dd 0

(N 2x(2.1)
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where S= ix,, and x.,=max{xl, ... ,xj. If . and @ are independent a priori, and X, has a
i=I

gamma prior distribution, so that p(XO) el' -le-)xp(O), then X can be integrated out

analytically, and (2.1) becomes

p (NI x) - (N!)-lr(N+icl'( (dN)i=

8-  (-01 v-s (@-'+ic2)-W+K')p (0) d 8 (N2:xs

I now consider the case where vague prior knowledge about the model parameters is

represented by limiting, improper, prior forms. I use the prior p 0,O)- .- 1, which is the product

of the standard vague prior for X (Jaynes 1968) with a uniform prior for 0. This leads to the

same solution as if a similar vague prior were used for (pO), namely p (40) se - . It is also

equivalent to the prior p (N ,0) - N-1 . The posterior is

p(NIx)- ((nN-S)!I(,N+I)W) {fV(N)} (N -Ix MU) (2.2)

The case where n = I is of interest as well as of practical importance (Draper and Gunman

1971; Hunter and Griffiths 1978). For example, one may count animals as they migrate past a

particular point (Zekh, Ko, Krogman, and Sonntag 1986); inferring the total population from the

count is then, in certain situations, an application of the present problem with n = 1.

When n = 1, (2.2) becomes

p(NIx)=xuI{N(N+1)) (Nx 1 )

Thus the posterior median is 2x 1. The same solution was obtained by Jeffreys (1961, Section

4.8) to the related problem of estimating the number of bus lines in a town, having seen the

number of a single bus. He argued that this was an intuitively reasonable solution, and it seems

to be so in this case also.
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3. POINT ESTIMATION

Most of the literature about the binomial N problem has focused on point estimation. The

problem of estimating N was first considered by Haldane (1942), who proposed the method of

moments estimator, and Fisher (1942), who derived the maximum likelihood estimator. DeRiggi

(1983) showed that the relevant likelihood function is unimodal. However, Olkin, Petkau, and

Zidek (1981) - hereafter OPZ - showed that both these estimators can be unstable in the sense

that a small change in the data can cause a large change in the estimate of N. Smith and Casella

(1986) also report difficulties with maximum likelihood and method of moment estimators of N

for a binomial mixture of normal or gamma random variables, in the context of modeling

neurotramnsmitter release.

OPZ introduced modified estimators and showed that they are stable. On the basis of a

simulation study, they recommended the estimator which they called MME:S. Casella (1986)

suggested a more refined way of deciding whether or not to use a stabilised estimator.

Kappenman (1983) introduced the "sample reuse" estimator, this performed similarly to MME:S

in a simulation study, and is not further considered here. Dahiya (1980) used a closely related

but different model to estimate the population sizes of different types of organism in a plankton

sample by the maximum likelihood method; he did not investigate the stability of his estimators.

Draper and Gunman (1971) adopted a Bayesian approach, and gave a full solution for the

case where N and 0 are independent a priori, the prior distribution of N is uniform with a known

upper bound, and that of 0 is beta. Blumenthal and Dahiya (1981) suggested N* as an estimator

of N, where (N0, e*) is the joint posterior mode of (N, 0) with the Draper-Guttman prior.

However, they did not say how the parmmeter of the beta prior for 0 should be chosen. Carroll

and Lombard (1985) - hereafter CL - recommended the N estimator Mbeta (1,1), the posterior

mode of N with the Draper-Guttman prior after integrating out 9, where the prior of 0 has the

form p(0)-0 (1-0) (0 O 1). The Draper-Gutman prior has been criticized by Kahn (1987);

see Section 6.
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The simpler problem of estimating N when 9 is known has been addressed by Feldman and

Fox (1968), Hunter and Griffiths (1978), and Sadooghi-Alvandi (1986).

Bayes estimators of N may be obtained by combining (2.2) with appropriate loss functions;

examples are the posterior mode of N, MOD, and the posterior median of N, MED. Previous

authors, including OPZ, CL, and Casella (1986) have agreed that the relative mean squared error
of an estimator , equal to E[(N^/N-1) 2], is an appropriate loss function for this problem. The

Bayes estimator corresponding to this loss function is

MRE= i N-lp(Njx)/ N-2p(NIx)
Nzz Nxz

The three Bayes estimators, MOD, MED, and MRE, are reasonably stable, as can be seen

from the results for the eight particularly difficult cases listed in Table 2 of OPZ, which are

shown in Table 1. MED was closer to the true value of N than the other estimators considered in

four of the eight cases, while MOD was best in a further three cases. However, in the cases in

which MOD was best, MED performed poorly; the converse was also true. The other three

estimators always fell between MOD and MED.

The results of a Monte Carlo study are shown in Table 2. 1 used the same design as OPZ

and CL In each replication, N, 0, and n were generated from uniform distributions on

{l..... ,100), [0,1], and (3,... ,22) respectively, using the uniform random number generator

of Managlia, Ananthanarayanan, and Paul (1973). A binomial success count was then generated

using the IMSL routine GGBN. There were 2,000 replications.

Table 2 shows that MRE performed somewhat better than MME:S and Mbeta (1,1) in both

stable and unstable cases, with an overall efficiency gain of about 10% over MME:S, and about

6% over Mbeta (1,1). Here, as in OPZ, a sample is defined to be stable if -/s2 > l+1/l, and

unstable otherwise, where i = FA In, and s 2 = (xii) 2In.

Note that, here, MRE is being assessed on the basis of a simulation study designed by the

developers of MME:S, where N is drawn from a distribution very different from, and much
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more light-tailed than, the prior for N on which MRE is based. Presumably, if N were, instead,

simulated from a distribution more similar to the vague prior which leads to (2.2), MRE would

perform even better.

Table 1. N Estimators for Selected and Perturbed Samples.

Parameters Estimators

Sample N 0 n MME:S Mbeta(1,l) MOD MED MRE

1 75 .32 5 70 49 42 82 57
80 52 46 91 62

2 34 .57 4 77 47 42 84 57
91 52 46 95 62

3 37 .17 20 25 23 21 40 26
27 25 23 46 29

4 48 .06 15 10 8 7 14 10
12 10 10 19 12

5 40 .17 12 26 25 23 42 30
32 29 27 52 35

6 74 .68 12 153 125 114 207 127
162 131 120 217 129

7 55 .48 20 69 63 59 91 75
74 67 63 101 81

8 60 .24 15 49 41 38 68 49
53 45 41 77 53

NOTE: The exact samples are given in Table 2 of OPZ. For each sample number, the first entries

are the N estimates for the original sample, and the second entries are the N estimates for the

perturbed sample obtained by adding one to the largest success count.
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Table 2. Relative Mean Square Errors
of the N Estimators

Estimators

Cases No. MME:S Mbeta (1,1) NM

All cases 2000 .171 .165 .156

Stable cases 1378 .108 .104 .100

Unstable cases 622 .312 .300 .281 Sq
,J.,

4. INTERVAL ESTIMATION

The posterior distribution of N given by (2.1) or (2.2) yields Bayesian estimation intervals

for N, such as highest posterior density (HPD) regions. Such intervals are also exact frequentist

confidence intervals in the sense that if the prior distribution also represents a distribution of

values of the unknown parameters typical of those that occur in practice, then the average

confidence coverage of the Bayesian interval is equal to its posterior probability (Rubin and

Schenker 1986). This will not necessarily be the case, however, if the prior distribution used is

different from that actually encountered in practice.

In order to evaluate how close the avenge confidence coverage of HPD regions based on

(2.2) is to their posterior probability, a Monte Carlo study, designed in the same way as that

reported in Section 3, was carred out. Table 3 shows that the intervals had average confidence

coverage close to their posterior probabilities. They are also reasonably stable, as can be seen

from Table 4, which shows the intervals for OPZ's eight particularly difficult data sets.

Note that the intervals being evaluated here are based on a prior for N which is much more

diffuse than the, artificially short-tailed, distribution from which N was simulated. This, together

with the asymmetry inherent in the problem, explains the fact that, in Table 4, the true value of

N tends to be closer to the lower than the upper limit of the estimation interval.
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To my knowledge, no interval estimators for N, other than the ones considered here, have

been explicitly proposed in the literature. Interval estimators could be constructed based on the

Bayesian approach of Draper and Gunman (1971), but they would probably be very sensitive to

the, assumed known, prior upper bound for N, as pointed out by Kahn (1987). Blumenthal and

Dahiya (1981, Theorem 5.2 (iii)) did give the asymptotic distribution of the maximum likelihood

estimator of N, and that of their own modified maximum likelihood estimator. While this could,

in principle, be used to obtain confidence sets for N, it did not yield sensible results for many of

the real and simulated data sets that I analyzed. Indeed, Blumenthal and Dahiya (1981) did not

propose using their result as the basis for a set estimator of N. A bootstrap interval estimator of

N could be based on any of the proposed point estimators (Efron, 1987), but this possibility has

not, so far, been investigated. It would require much more computation than the present

approach.

Table 3. Empirical coverage
probabilities of HPD regions

Posterior Empirical
probability coverage

.80 .82

.90 .91

.95 .95

NB % °. °% % " % % % "% " ".% %,,' , "% . ' ". . "
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Table 4. 80% HPD Regiot, for
Selected and Perturbed Samples

Lints of 80%
HPD region

Sample N Lower Upper

1 75 28 211
30 240

2 34 27 223
29 258

3 37 13 103
13 119

4 48 6 35
7 51

5 40 16 101
17 131

6 74 72 524 V

74 570

7 55 42 181
43 212

8 60 24 165
26 191

NOTE: The exact samples are given in Table 2 of OPZ. For each sample number, the first entries

are the N estimates for the original sample, and the second entries are the N estimates for the

perturbed sample obtained by adding one to the largest success count. "V

"-
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5. EXAMPLES

CL analyzed two examples, involving counts of impala herds and individual waterbuck.

The point and interval estimators are shown in Table 3. The stability of the Bayes estimators is

again apparent; the stability of M1RE for the waterbuck example is noteworthy given the highly

unstable nature of this data set.

The posterior distributions obtained from (2.2) are shown in Figures 1 and 2. The posterior

distribution for the waterbuck example has a very long tail; this may be related to the extreme

instability of this data set.

Table 5. Point Estimators and 80% HPD regions for the
Impala and Waterbuck Examples: Original and Perturbed Samples

Point Estimators Limits of 80%
HPD region '

Example MM:S Mbeta (1,1) MOD MED MRE Lower Upper

Impala 54 42 37 67 49 26 166
63 46 40 76 54 28 193

Waterbuck 199 140 122 223 131 80 598
215 146 127 232 132 82 636

NOTE: The data are given in Section 4 of CL. For each example, the first entries are the N

estimates for the original sample, and the second entries are the N estimates for the perturbed

sample obtained by adding one to the largest success count.

::'
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6. DISCUSSION

I have developed a Bayes empirical Bayes approach to inference about the binomial N

parameter. This provides a simple way of specifying prior information, as well as allowing a

convenient representation of vague prior information using limiting, improper, prior forms. It

also yields good solutions to the non-Bayesian problems of point and interval estimation. The

Bayes point estimator compares favorably with the best, previously proposed, point estimators.

The Bayes interval estimator, which currently appears to have no competitors, seems to have

about the right average confidence coverage, and to be stable.

The present approach can be used to solve the prediction problem. For example, the

predictive distribution of a future observation, x.+,, is simply

- I

p(x,+Ilx)o jp(x,+,x jN,e)p(N,e)de

When the vague prior which leads to (2.2) is used, this becomes

( ) S'! {(n+l)N-S'}! . N
p(x+Ix) {(n+I)N+I}!N i i)I

where S' = S+x.+x and x'mu = max {Xmax, Xn+.

No other solution to the prediction problem has, to my knowledge, been explicitly proposed

in the literature. A standard, non-Bayesian, approach would be to use the predictive distribution

conditional on point estimators of N and 0. As a general method, prediction conditional on the

estimated values of the unknown parameters is widespread, and underlies, for example, the time

series forecasting methodology of Box and Jenkins (1976). For the present problem, however, it

yields predictive distributions which are unsatisfactory because they attribute zero probability to

possible outcomes. One consequence of this is that the Kullback-Leibler distance between the

true and estimated predictive distributions is often infinite.

My approach also yields a full solution to the decision-making problem, by the usual

method of minimizing posterior expected loss. It may often be easier to specify loss (or utility)
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in terms of future outcomes than of values of N, so that a predictive approach to loss

specification may be helpful here.

Kahn (1987) has pointed out that in any Bayesian analysis of this problem, the asymptotic

tail behaviour of the posterior distribution of N is determined by the prior. This is not, of course,

the same as saying that inferences about N are determined by the prior. Indeed, in Section 5, we

have seen examples where different data lead to very different conclusions about N, in spite of

the priors being the same, and the data sets being small. Kahn (1987) also pointed out that the

posterior resulting from the prior used by Draper and Guttman (1971) depends crucially on the,

assumed known, prior upper bound for N, contrary to a comment of Draper and Guttman (1971).

The vague prior used here does not appear to suffer from such a problem. Kahn (1987)

concluded that the problem should be reparameterized in terms of functions of N O and 0, rather

than N and 9. This is similar in spirit, if not in technical detail, to the present approach, where I

have reparameterized in terms of X and 0, where X.=E[N]9. Such a reparameterization

alleviates the technical difficulties, and may well, also, make it easier to specify prior

information.

.,.
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