

R-3448-DARPA/RC

The New ROSIEO Reference

Manual and User's Guide

James R. Kipps, Bruce Florman, Henry A. Sowizral

June 1987

Prepared for the
Defense Advanced Research Projects Agency

.0

~AUG i W

A
RAND

Approved for public release; distribution unlimited L.

v-v -

SUMMARY

This report is a reference manual and user's guide for the ROSIE
programming language/environment and is intended to serve as the primary
documentation for this system. The main body of this report consists of
an informal, yet detailed, discussion of the syntax and semantics of
ROSIE (Version 3.0), including an explanation of the programming
environment as a whole. A technical audience of readers is assumed; N"
readers interes.ted in a less-involved presentation are directed to the
introduction of this report, which provides a comprehensive overview of
the ROSIE language.

ROSIE (Rule-Oriented System for Implementing Expertise) is a
general-purpose programming language/environment, designed specifically
for developing expert systems. The language has evolved from a
relatively simple initial design (Waterman et al., 1979) to a
sophisticated expert system building tool (Sowizral and Kipps, 1985).
The culminating effort of the ROSIE Language Development Project is
ROSIE 3.0, in which the fundamental design of the language has been
refined and enhanced.

The primary motivation behind ROSIE's design is to aid the
knowledge acquisition process (i.e., the process by which knowledge
engineers formalize the heuristics of an expert into executable code). K
To this end, ROSIE assumes its most characteristic feature, an
expressive and highly readable English-like syntax. A second objective
has been to support the development of significant applications. ROSIE
provides a variety of language and programming environment features
aimed at this goal. The language allows system builders to describe
complex relations simply and to manipulate them symbolically and
deductively.

The ROSIE project was initiated in 1979; the first release of the
language, ROSIE 1.0, was available by 1980. Since then, the language
has evolved through many phases of design and refinement. The current
release, ROSIE 3.0, reflects insights gained from several years of
experience with large ROSIE applications. ROSIE 3.0 is substantially
more powerful and less constrained in both its syntax and semantics than
any previous release.

The work presented here is not merely a concatenation or
recompilation of existing documents, but rather it is a newly written

document providing an informal description of the ROSIE language. In
it, all aspects of the language that concern the ROSIE programmer are
discussed in detail, including several previously undocumented and
unsupported features of the language. Incompatibilities with older
releases are pointed out where applicable.

- vii -

OVERVIEW

This report is a reference manual and user's guide for the ROSIE
programming language and development environment, describing the version
3.0 release of ROSIE. This document supersedes all other manuals and
documents describing ROSIE; notably, Hayes-Roth et al., 1981, Fain et
al., 1981, and Fain et al., 1982, each of which describe the earlier 1.0
release, and Sowizral and Kipps, 1985, which describes the 2.5 release.

WHAT IS ROSIE?

ROSIE (Rule-Oriented System for Implementing Expertise) is a
general-purpose programming language/environment intended for
applications in Artificial Intelligence (Al). In particular, The RAND
Corporation developed ROSIE to provide knowledge engineers with an
environment for building expert systems. ROSIE attempts to provide a
complete working environment for developers of expert systems. System
builders may create and maintain program files, execute and edit code,
and manipulate databases all from within ROSIE's interactive
environment.

The ROSIE language itself supports a number of advanced programming
capabilities, some of which can be found in other high-level Al
programming languages, others of which are unique to ROSIE. These
features include:

J.

" rulesets to modularize and scope rules, localizing the context %

in which they apply

" a demon facility to provide event-driven program control

* high-level data types for manipulating units of procedural,
declarative, and descriptive knowledge as data

" a string pattern matcher to support advanced I/O operations

* extended variations of the data types and control structures
found in most symbolic languages

Features such as rulesets and the pattern matcher blend with the
naturalness of ROSIE's English-like syntax to produce a comfortable and
expressive environment in which to construct expert rules.

'V
ROSIE is designed to be adaptable to a wide variety of tasks and , N

does not embody any particular problem-solving techniques or paradigms.
Because of its "general-purpose" flavor, it is less structured and more ,
flexible than many contemporary Al systems and tools. Nonetheless, the
design of ROSIE exploits and integrates many current ideas in artificial

--- a.

% ~ ' ' ~'' Wy"~ ~~ ~

- viii -

intelligence research and brings substantial modeling capabilities into
the hands of expert system development teams.

READABILITY

The primary design goal for the ROSIE language is that it achieve
exceptional readability. To this end, ROSIE adopts a stylized version
of English as its syntax. This goal derives from a motivation to aid
the knowledge acquisition process (i.e., the process by which knowledge
engineers formalize the heuristics of an expert into an executable
program). ROSIE's English-like syntax is its most characteristic
feature, lending the language a number of desirable qualities. It
enables ROSIE rules to be understood by nonprogrammers and assists the
knowledge engineer in constructing computational models by providing a
framework that is adaptable to a wide variety of problem domains.

With ROSIE, the knowledge engineer can translate expert rules into
an executable program using substantially the same terminology as the

domain expert. As a result, ROSIE's English-like syntax improves the
interaction between those involved in the knowledge acquisition process.
The domain expert can examine the heuristics encoded in ROSIE, suggest
modifications directly, and play a greater role in the implementation of
systems that model his expertise. Also, because programs can be scanned
and modified interactively, heuristic development is made possible (and
even practical) in a conference or demonstration environment, without
the usual delays associated with program modification.

These benefits, however, are not automatic. Although readable code
is not hard to generate for an experienced ROSIE programmer, novices
often find that it is just as easy to write cryptically as clearly--
sometimes even easier. Also, syntax can be a very superficial artifact
of any programming language; when the syntax mimics English, the
possibilities for misinterpretation are only increased. Although ROSIE
gives the illusion of understanding a rich subset of the English
language, ROSIE is not a natural-language understanding system. ROSIE
parses a program by concentrating on the lexical and grammatical role of
words as they relate to one another in legal sentence forms. The
parsing process strictly follows the syntactic rules defined in a
contrived context-free grammar. Thus, the semantic meaning of ROSIE
code can at times be counterintuitive to its natural interpretation. 0,

HISTORY OF DEVELOPMENT

As with most other computer systems reaching a relatively mature
level of documentation, ROSIE has a long history of development. ROSIE
has been an ongoing research effort at RAND since 1979; the language has
grown and evolved in many ways over the years. We have worked at
improving ROSIE's expressive power without sacrificing its readability,
at regularizing its grammar without sacrificing its expressiveness, and
at extending its semantics without introducing new complexities.

ix -

The historic precursor to ROSIE is the RAND Intelligent Terminal
Agent, RITA (Anderson et al., 1977; Anderson and Gillogly, 1976).
Influenced by the success of MYCIN's rule-oriented style of knowledge
representation and the appeal that its English-like explanation facility
had for users, RITA was a positive first attempt at making rule-based
programming languages easier to use and understand. Production rules in
RITA were defined using an English-like syntax with a restricted set of
options. RITA's database consisted of object/attribute/value triples,
and its monitors allowed either pattern-directed or goal-directed
control. Although its syntactic and expressive powers were limited,
RITA showed that a stylized form of English could be used for describing
procedural knowledge in a rule-based language. l,

The preliminary design of ROSIE (Waterman et al., 1979), developed
by Donald Waterman, Fredrick Hayes-Roth, Robert Anderson, Stanley
Rosenschein, Gary Martins, and Philip Klahr, proposed a programming
system that would be the natural successor to RITA. The proposal
outlined the deficiencies in RITA and described how they might be overcome
in ROSIE. One such deficiency noted was the awkward manner in which
context switching was achieved in RITA (i.e., scoping the applicability of
rules); this observation influenced the introduction of rulesets as a
programming construct in ROSIE. ROSIE also adopted several of the best
ideas from RITA, such as RITA's I/O pattern matcher, and improved upon
RITA's expressiveness and semantics. The first implementation of ROSIE
(Version 0) was written by Danny Gorlin using Interlisp on a PDP-1O class
computer and, later, on a DECsystem-20/60. Stanley Rosenschein served as A

project leader for the initial development effort, and introduced some
prolog-like constructs and English-like descriptions into the language.

The second implementation of ROSIE (Version 1) was heavily
influenced by the insights gained from the 1980 Expert Systems Workshop
organized in part by Fredrick Hayes-Roth and Donald Waterman. Stanley
Rosenschein left RAND in 1980, passing leadership of the project to
Fredrick Hayes-Roth. Henry Sowizral joined RAND about this time and took
over ROSIE implementation after Danny Gorlin left. In 1981, the design of
ROSIE had begun to reach a level of stability. A number of in-house 11 o
applications were being explored using ROSIE, and copies of ROSIE 1.0 were
being distributed to sites outside of RAND. Keith Westcourt and Jill Fain
joined the project in 1981. Keith Westcourt implemented the port facility
for communicating with TOPS-20 from inside ROSIE and reimplemented ROSIE's
string pattern matcher. Jill Fain helped test and document the language.

These early implementations of ROSIE included direct support for
many special-purpose operations. Such operations were hardwired into
the language because they did not fit easily into any general linguistic -.

structure. Some operations required special arguments, others performed
actions that were considered expedient in a programming language. As
the number of special action verbs began to multiply, ROSIE's grammar

grew increasingly complex, and the need to simplify became

.1.?

-x-

overwhelmingly apparent. From 1982 to 1986, generalized linguistic
constructs were introduced that could subsume many of the existing
"special" constructs. Two examples include removing distinctions
between system-defined and user-defined operations and introducing new
data elements, such as patterns and filesegments, to describe hitherto
special argument forms.

Henry Sowizral became project leader in 1982 when Fredrick
Hayes-Roth left RAND. This was the beginning of the third
implementation of ROSIE (Version 2), in which the development
environment was moved from Interlisp under TOPS-20 to VAX-Interlisp on
the VAX 11/780 and Interlisp-D on the XEROX-1100 (Dolphin). Keith
Westcourt and Jill Fain left RAND later that year, after which James
Kipps came to RAND and took over ROSIE implementation. Ross Quinlan,
also at RAND that year, implemented an efficient context-free parser
generator in C that replaced ROSIE's LISP-based parser on the VAX
implementation.

In 1983, ROSIE 2.3 was released, and work was begun on a redesign
of the language aimed at expanding its functionality and improving its
performance. Two parallel efforts started at this time were the
reimplementation of ROSIE in PSL (Portable Standard Lisp) and the
development of a ROSIE compiler in C. Jed Marti and Larry Baer joined
the project in 1983; Jed Marti, to automate the porting of ROSIE's
Interlisp sources to PSL, and Larry Baer, to implement C-ROSIE.
Unfortunately, neither effort bore fruit. During this time, James Kipps
implemented two experimental versions of ROSIE: D-ROSIE, a distributed
language, in which ROSIEs running on remote machines (Dolphins)
communicated via shared databases; and XPLROSIE (Waterman et al., 1986),
which provided built-in explanation facilities to support the
explanation research being conducted by Donald Waterman and Jody Paul.
Bruce Florman, who joined RAND in 1984, took over the further
development of XPLROSIE.

The final implementation of ROSIE (Version 3.0) was completed in
1985 by James Kipps and Bruce Florman. ROSIE 3.0, essentially a
redesign and reimplementation of the ROSIE language, is written in
Portable Standard Lisp and is documented by this report. An effort
outside of RAND is currently continuing the development of a C-based
version of ROSIE. .

S.

The ROSIE Language Development Project culminated its efforts in
December of 1985. DARPA funding for the ROSIE project was discontinued
after 1985, but the project was given an additional year of funding by
RAND, with James Kipps as project leader, to support distribution as
well as to continue testing and debugging. Although the ROSIE project
has run to completion, the ROSIE environment is still in use at RAND and
elsewhere, providing a testbed for new research.

-xi-

NOTATIONAL CONVENTIONS

The following notational conventions hold when syntactic constructs
and examples of their use are presented and discussed:

Boldface Examples of ROSIE code appear in boldface. Boldface is
also used to highlight fixed parts of language constructs
when appropriate.

Italics Italicized words either designate fundamental data types,
i.e.,

8 name
8 number
a string
a pattern
" tuple
a filesegment
a class element
a description
" proposition
" procedure ZIP

or a role that such elements can play, i.e.,

a file
a database

When appearing as an argument to a syntactic construct, e.g.,

send a string to a file

they specify that any term can be used as an argument in that

position, but that term must evaluate to an element which
satisfies given type or role.

<standard> Words in standard font and enclosed in matching left/right
angle brackets represent syntactic categories. When appearing
in a linguistic construct, e.g.,

<term> DOES <atom> [<term>] [<pphrase>]

they designate its component syntactic structure.

The following syntactic categories appear throughout the
manual:

<atom> -- any nonreserved atomic token

<number> -- any numeric token (real or integer)

I II. :.:

- xii -

<integer> -- any positive integer

<string> -- any sequence of characters surrounded by
double quotes ("ccc")

<prep> -- any token known to be a preposition (see
Section 2.3)

<a/an> -- one of the tokens a or an

<term> -- any term, i.e., high-level data object,
(see Chapter 8)

<pphrase> -- a sequence of prepositional phrases, i.e.,

<pphrase> ::= [<prep> <term>]*

A complete description of ROSIE's lexical and syntactic
components appears in Section 2.4.

Constructs enclosed by matching square brackets are optional.

* Square brackets followed by a star indicate Kleene closure,

i.e., the enclosed constructs can appear zero or more times.

(I) Parentheses and vertical bars surround alternatives separated
by vertical bars, only one of which can occur in that
position.

Italics are used to highlight new concepts when they are introduced.

When discussing programming operations available in the basic
configuration of the ROSIE system, the following notational conventions
apply. Within this notation, words in angle brackets correspond to
fixed parts of the construct being discussed--these will appear in
boldface in the manual--while words in italics correspond to variable
parts of the construct--these will appear in italics.

<imperative> [a/an argtype] [<prep> a/an argtype]*

Used to define the syntax of system defined procedures, where
<imperative> is the name of the procedure, and the optional
object and <prep> clauses correspond to possible arguments to
the procedure, e.g.,

read a pattern [from a file]

a/an argtype <verb> [a/an argtypel [<prep> a/an argtype]*

Used to define the syntax of system predicates, where <verb>
corresponds to the auxiliary and main verb of the predicate,

* * ~ ~~ tV\(a ~ ~ *~'~ a... ta.,~ a

- xiii -

and the subject, optional object, and <prep> clauses
correspond to possible arguments to the predicate, e.g.,

a string is matched by a pattern

the <class> [<prep> a/an argtype]*
a/an <class> [<prep> a/an argtype]*

Used to define the syntax of system generators, where <class>
corresponds to the root name of the class being generated
over, and the optional <prep> clauses correspond to possible
arguments to the generator.

Note the two forms this can take: One is introduced with the
articles a/an; and the other with the article the.
This notation is used to signify whether the generator
produces a single instance, e.g.,

the absolute value of a number

or a possible stream of instances, e.g.,

an integer from a lower bound to an upper bound

STRUCTURE OF MANUAL

In structuring this manual, we were faced with several competing
goals. First, we wanted this to be the primary source of documentation
for the ROSIE language. Next, we wanted to provide system builders with
sufficient information to allow them to use the language well. Finally,
we wished to provide an informal, yet comprehensive, set of
implementation criteria to sustain those who support and maintain ROSIE
in the future.

Meeting our first objective required that we make the information
within this manual available to a wide audience of readers. Thus, it
had to be complete and concise without being overly detailed.
Obviously, this would be counter to our second two objectives, which
require a detailed and precise description of the language and assume a
technical audience. In order that we might meet both goals, we provide
a comprehensive, but nontechnical, overview of ROSIE in the
introduction, and then assume a technique audience of readers for the
remaining chapters.

Chapter 1, the introduction, gives new ROSIE users a quick look at
the language and some familiarity with concepts appearing later in the
manual. The introduction is also recommended reading for those with
prior ROSIE experience since it may offer some advance warning to the
changes and additions to be found in ROSIE 3.0. Readers who merely wish
to know what ROSIE-is and what it can do are directed to the
introduction and Appendix A, which presents several example programs.

- xiv -

Chapter 2 describes the syntactic structure of the language. In
this chapter, we discuss the lexical decomposition that ROSIE source
code goes through on its way to the parser. We explain how the parser
operates and provide 'a listing of the BNF describing ROSIE's syntax as
well as the reserved words of the language.

Chapter 3 discusses the basics of running ROSIE. This chapter is
intended to provide new users with the information they need to start
interacting with ROSIE as well as building ROSIE programs.

The next six chapters constitute the main body of text and describe
the actual structure of the language. When pertinent, sections within
these chapters begin with an abridged portion of the BNF demonstrating
the syntax of the particular linguistic components being presented.
Also when pertinent, these chapters include a list of operations
provided to work on these components.

At first glance, the organization of these chapters may seem
counterintuitive. First we present the programming structures (rules
and rulesets), then the principle linguistic structures (actions,
sentences and descriptions), and finally the data objects and data
primitives (terms and elements). Readers already familiar with ROSIE or
other high-level programming languages may question this scheme because
it is the reverse order in which such concepts are normally presented.
We feel, however, that this is the correct approach for properly
explaining ROSIE.

ROSIE is unlike other programming languages in that the data types
it provides are not its simplest component. While ROSIE supports
extensions of the data types commonly found in other symbolic languages,
it also supports some advanced data types, such as the intentional
elements, which are used to treat principal linguistic structures as
data. To discuss such data types, we must first introduce actions,
sentences, and descriptions. However, these structures often invoke
rulesets, and understanding their semantics assumes an understanding of
rulesets and ruleset invocation; thus, a discussion of rulesets must
precede them. However, a major component of ruleset invocation is the
execution of rules. This finally led to our ordering our discussion
accordingly as rules, rulesets, actions, sentences, descriptions, terms,
and elements.

Chapter 10 describes the structure of ROSIE's database, which, up
to this point, has only been alluded to. The database is composed of
two spaces: one, the space of stored or affirmed relations; the other,
the space of computed or virtual relations.

Chapters 11 and 12 cover ROSIE's support of input and output (I/O)
and the error handler. In Chapter 11, we discuss the basic sorts of I/0
operations provided in the language. In Chapter 12, we talk about
nonrecoverable and recoverable runtime errors and what mechanism ROSIE
provides for dealing with them.

-xv-

Chapters 13 and 14 discuss two important features of ROSIE's
development environment, the file package and the break package. The
file package is used to build, edit, and otherwise maintain program
files. The break package is used to monitor and debug program behavior.

This manual contains three appendixes. Appendix A presents several
example programs. Appendix B is a listing of possible error messages to
be encountered when parsing or running a ROSIE program. Appendix C
specifies the various system switches available for configuring various
aspects of the ROSIE environment.

- J.

01

'%-01'

~.-, .

",4%

- xvii -

ACKNOWLEDGMENTS

We would like to thank Jean Thomas for her help in preparing this
report for publication, and Robert Weissler and Jody Paul for their
insightful and cogent reviews. We would also like to thank Joyce Grey,
who administers the distribution of ROSIE. But we would especially like
to acknowledge the efforts of the many people who influenced the
evolution of the ROSIE language, including Robert Anderson, Larry Baer,

Jill Fain, Fredrick Hayes-Roth, Daniel Gorlin, Philip Klahr, Jed Marti,

Gary Martins, Jody Paul, Ross Quinlan, Stanley Rosenschein, Donald
Waterman, and Keith Westcourt; a summary of their contributions can be
found in the Overview under "History of Development."

N%,LI

1

, ,

•'

- xix -

CONTENTS

PREFACE..iii

SUMMARY...v

OVERVIEW...vii
What Is ROSIE?...vii
Readability...viii
History of Development.......................................viii
Notational Conventions...xi
Structure of Manual...xiii

ACKNOWLEDGMENTS..xvii "

Section

I. INTRODUCTION...1

1.1 System Organization..1
1.2 Programming Structures.....................................2

1.2.1 Rules..2
1.2.2 Rulesets...3
1.2.3 Demons...4
1.2.4 Ruleset Execution....................................5

1.3 Linguistic Structures......................................6
1.3.1 Actions..6
1.3.2 Sentences..6
1.3.3 Terms..7
1.3.4 Elements...8

1.4 The Database Mechanism.....................................9
1.4.1 The Physical Database................................9
1.4.2 The Virtual Database................................10

1.5 Strengths and Weaknesses...................................10
1.6 Closing Remarks...12

11. SYNTACTIC STRUCTURE..is

2.1 Parsing Basics..1
2.2 Tokenization...17

2.2.1 The Character Set....................................18
2.2.2 Tokens and File Items...............................20
2.2.3 Comments...22
2.2.4 Extended String Syntax..............................23

- xx -

2.3 Reserved Words .. 26
2.4 The ROSIE Grammar 27

2.4.1 The Lexical BNF 27
2.4.2 The Linguistic BNF 28

2.5 Parse Tree Generation 38
2.5.1 Associativity, Precedence, and Disambiguation ... 38
2.5.2 The Disambiguation of Prepositional Phrases 39
2.5.3 Directing Disambiguation with Parentheses 40

III. RUNNING ROSIE 43

3.1 Getting Started 43
3.2 Interactions at the Top Level 44

3.3 Building ROSIE Programs 48
3.4 Debugging Facilities 53
3.5 Errors, Interrupts, and Break Loops 56
3.6 Exiting a ROSIE Session 58
3.7 System Switches 58
3.8 Top-Level Operations 59

IV. PROGRAMMING STRUCTURES 67

4 .1 Ru les ... 67
4 .2 Rulesets .. 68

4.2.1 Defining Rulesets 69
4.2.1.1 Header Statements 70
4.2.1.2 Private Class Declarations 72
4.2.1.3 Execution Monitors 72
4.2.1.4 The Ruleset Body 73
4.2.1.5 End Statements 73
4.2.2 Ruleset Types 73
4.2.2.1 Procedural Rulesets 73
4.2.2.2 Predicate Rulesets 74
4.2.2.3 Generator Rulesets 76

4.2.3 Invoking Rulesets 77,
4.2.3.1 Calling Forms 77
4.2.3.2 Argument Passing 78
4.2.3.3 The Private Database 78
4.2.3.4 Execution Monitors 79
4.2.3.5 Terminating Procedures 79

4 .3 Demons .. 8 1
4.3.1 Types of Demons 82
4.3.2 Demon Invocation 83
4.3.3 The Generator Demons 83
4.3.4 The Error Demon 85

4.4 System Rulesets 85
4.4.1 Defining System Rulesets 86
4.4.2 Calling System Rulesets 86 5"

.1

- xxi -

V. ACTIONS AND CONTROL FLOW 89

5.1 Actions and Action Blocks 89
5.1.1 Types of Actions 89
5.1.2 Associativity of Action Blocks 91
5.1.3 Comma Blocks and Parentheses 91

5.2 Procedures . .. 93
5.3 Database Actions 93

5.3.1 ASSERT... and DENY... 94
5.3.2 LET...94
5.3.3 CREATE ... 95

5.4 Conditional Actions 95
5.4.1 IF... and UNLESS 96
5.4.2 Associativity 96

5.5 Conditional Blocks 96
5.5.1 SELECT 97
5 .5.2 CHOOSE 97
5 .5.3 MATCH 98
5.5.4 Associativity 98

5.6 Iterative Actions 100
5.6.1 FOR EACH 101
5.6.2 WHILE... and UNTIL 101
5.6.3 Associativity 102

VI. CONDITIONS, SENTENCES, AND PROPOSITIONS 105

6.1 Conditions and Boolean Connectors 105
6.1.1 Boolean Connectors 105
6.1.2 Associativity and Precedence 106

6.2 Sentences 106
6.2.1 Propositions 107
6.2.1.1 Verb Phrases 108
6.2.1.2 Properties of Class Relations 109
6.2.1.3 Negation: NOT 110
6.2.2 Special Sentence Forms 110
6.2.2.1 EQUAL TO..., LESS THAN..., and GREATER THAN... 11l
6.2.2.2 THERE IS 112
6.2.2.3 HAS 112

VII. DESCRIPTIONS AND CLASSES 115

7 .1 C lasses 116
7.1.1 Testing for Membership 116
7.1.2 Generating from a Class 118
7.1.3 Potential Pitfall to Class Membership 119 -.

7.2 Relative Clauses 120
7.2.1 Logical Groupings 121
7.2.2 SUCH THAT... and WHERE 122
7.2.3 THAT.. WHICH..., and WHO 123

Ja %

IN -

-xxii-

7.2.4 WHOSE .. 124
7.2.5 WHICH ... and WHOM 124
7.2.6 EXCEPT ... 125

7.3 Description Variables.....................................125
7.3.1 Anaphoric Terms and Rule Variables..................126

7.4 Anaphoric Descriptions: SUCH 127
7.5 Resolving Anaphoric References............................128
7.6 Uses of Descriptions......................................128

7.6.1 Testing for Membership..............................129
7.6.2 Generating Elements.................................129
7.6.3 Asserting and Denying Members.......................130

7.7 Compound Classes versus Adjectives........................131

VIII. TERMS...133

8.1 Types of Terms..133
8.2 Elements..134
8.3 Arithmetic Expressions....................................135

8.3.1 Operators and Operations............................135
8.3.2 Associativity and Precedence........................137

8.4 Descriptive Terms...137
8.4.1 Simple Descriptive Terms............................138
8.4.1.1 THE .. 138
8.4.1.2 A... and AN 140 . l
8.4.1.3 A NEW .. 140
8.4.2 Quantified Descriptive Terms........................141
8.4.2.1 SOME ... 142
8.4.2.2 EVERY .. 143

8.5 Anaphoric Terms and Rule Variables........................144
8.6 Iterative Terms...145

8.6.1 ONE OF ... and EITHER 146
8.6.2 EACH OF ... and BOTH 147

IX. ELEMENTS..149%

9.1 Element Basics..149
9.1.1 Types of Elements...................................149 :
9.1.2 Evaluation Names....................................151
9.1.3 Equivalence versus Equality.........................151
9.1.4 General Operations on Elements......................153

9.2 Names...159
9.3 Numbers...161

9.3.1 Types of Numbers....................................161
9.3.2 Constraints on Numbers..............................163
9.3.3 Operations on Numbers...............................1b3 -

9.4 Tuples..167
9.4.1 Operations on Tuples................................167

9.5 Strings...171
9.5.1 Formatted Strings...................................171

.PN

-xxiii-

9.5.2 Strings and Patterns................................172
9.5.3 Extended String Syntax..............................173
9.5.4 Operations on Strings...............................173

9.6 Patterns..177
9.6.1 Generating Text.....................................177
9.6.2 Matching Text 178
9.6.3 Subpatterns...179
9.6.4 Pattern Variable Binding............................191
9.6.4.1 Pattern Variable Specification....................192
9.6.4.2 Conversion of Bound Substrings....................193
9.6.5 The Pattern Matching Process........................193
9.6.6 Example Application of Patterns.....................195
9.6.7 Operations on Patterns..............................196

9.7 Filesegments..199
9.7.1 Shorthand for Filesegments..........................199

9.8 Class Elements..201
9.8.1 Motivation and Intended Use.........................202
9.8.2 Potential Pitfalls..................................203

9.9 Intentional Descriptions..................................207
9.9.1 INSTANCE OF 207
9.9.2 The "Call-by-Name" Property.........................209
9.9.3 Operations on Intentional Descriptions..............209

9.10 Intentional Propositions.................................211
9.10.1 IS PROVABLYI.......211
9.10.2 Operations on Intentional Propositions.............212

9.11 Intentional Procedures...................................217
9.11.1 Operations on Intentional Procedures...............217

X. THE DATABASE MECHANISM..219

10.1 The Physical Database....................................219
10.1.1 Three-Valued Logic.................................219
10.1.2 Database Actions...................................220
10.1.3 Contradictory Assertions...........................220
10.1.4 Alternate Databases................................221 &%o

10.1.4.1 Naming and Creating Databases....................221 1
10.1.4.2 The Global, Active and Private Databases ... 221
10.1.4.3 Accessing the Physical Database..................223

10.2 The Virtual Database.....................................224
10.2.1 Predicate and Generator Rulesets.............I......225
10.2.2 Virtual Relations..................................226

10.3 Asserting, Testing, and Denying Propositions.............228
10.4 Auto-Query Mode..230
10.5 Database Operations......................................232

XI. INPUT/OUTrPUT...24

11.1 Channels...241

11.1.1 Opening and Clos;ing Channels.......................241

-..

'~e

A - 9 A 9V

- xxiv -

11.1.2 The Standard I/0 and TTY Channels 242
11.1.3 The OS Channel 243

11.2 The Use of Patterns 244
11.2.1 Sending Formatted Text 244
11.2.2 Reading against a Pattern 244

11.3 Creating Transcript Files 245
11.4 Input/Output Operations 246

XII. ERRORS AND ERROR RECOVERY 251

12.1 Nonrecoverable and User Errors 251
12.2 Recoverable Errors 251
12.3 The Error Demon 251

XIII. THE FILE PACKAGE . .. 253

13.1 Program Files . .. 253
13.2 Using the File Package 254
13.3 Defining Rulesets and File Rules 255
13.4 Editing and Modifying Program Files 256
13.5 Using Filesegments 257

13.5.1 Rule Sequence Specifiers 258
13.5.2 Shorthand Notation 259

13.6 File Package Operations 260

XIV. THE BREAK PACKAGE: DEBUGGING PROGRAMS 267 WS

14.1 Breakable Aspects of a Program 267
14.2 The Trace Facility 268 %
14.3 The Break Facility 270

14.3.1 Break Commands 270
14.3.2 Example Session 274

14.4 The Profile Facility 278
14.5 Restoring Broken Rulesets 279 5$

14.6 Break Package Operations 279

APPENDIX A: EXAMPLE PROGRAMS 283
I-

FORTUNE -- The Basics 285
POIROT -- Alternate Databases 295
ANIMAL -- Embedded Control Structures 305

APPENDIX B: ERROR MESSAGES 313

Parsing and Tokenization Errors 313
Runt ime Eriors . .. 317

%

- xxv -

APPENDIX C: SYSTEM SWITCHES 337

Operations on System Switches 342

REFERENCES ... 345

INDEX .. 34 7

.1

"N -

1. Introduction

I. INTRODUCTION

The introduction is organized in a manner similar to the main body
of the manual, though without as much of the laborious detail. This
chapter is recommended reading for all new ROSIE users because it
provides a broad overview of the language and introduces concepts that
will be appearing throughout the manual.

1.1 SYSTEM ORGANIZATION

ROSIE exists as a system of three major components. One component,
the parser, translates ROSIE source code into a machine-executable
representation. The runtime component supplies the functions that
support the execution of this parsed code. The third component
encompasses those features that describe ROSIE's interactive programming
environment.

Before ROSIE code can be executed, it must be parsed (translated)
into a machine-executable representation called fILEV. Parsing consists
of three phases: (1) lexical analysis (or tokenization) of the source
file (i.e., recognizing file items, such as rules and declarations, and
transforming each file item into a list of tokens); (2) generating a
parse tree for each file item; and (3) transforming each parse tree into
its executable HILEV representation.

The functions supporting the execution of HILEV fall into three
categories: (1) functions that work on elements (ROSIE's data
primitives); (2) functions that manipulate the database; and (3)
functions that invoke rulesets and demons. Functions in the first
category define elements and test their equivalence. Elements can be
organized into classes, so another operation of these functions is to
generate instances of a given class and chain through class hierarchies.
The database functions provide for such operations as creating databases
and switching context between alternate databases. The final set of
functions support the invocation of rulesets and demons, which are
programming structures used to proceduralize the applicability of rules.

The interactive programming environment provides a workspace for
developing, debugging, editing, and running programs. Features include:

the top-level monitor, which accepts and executes commands from
the user's terminal

the history mechanism, which allows users to review and
re-execute past commands

Vp-?

I. Introduction 2

" the file package, which permits users to build, load, examine, 10
edit, and otherwise manipulate program files

" the break package, which provides interactive debugging and
error recovery mechanisms

ROSIE's working environment shields the user from the complexity of the

other two components, essentially acting as a front end to the parsing
and runt ime components.

1.2 PROGRAMMING STRUCTURES

The principal programming structures in ROSIE are rules, rulesets,
and demons. Rules correspond to executable programming statements,
while rulesets equate to rule subroutines; demons are a specialized form
of ruleset. ROSIE programs are defined as collections of interacting

rulesets and demons. To run a program, one issues a rule to ROSIE's top-
level monitor, which parses and executes the rule. Supposedly, the rule
will invoke a ruleset, which executes the rules in its body, invoking

other rulesets, and so on.

1.2.1 Rules

Rules consist of an ordered sequence of actions, separated by the
conjunctive and and terminated by a period (.), e.g.,'

Assert the report was received at the current time and
relay that report to every module.

If any red battalion does advance toward any strategic
objective and that objective is undefended,

move some blue battalion to that objective and
report 'that battalion was directed to that objective'.

For each blue battalion (BBTL) in sector #15,
advise BBTL to 'move to Red River Crossing' and
assert BBTL was given a new directive.

While any strategic objective is not defended,
keep some blue battalion on alert.

A rule executes each of its component actions in turn. As one can
observe from these examples, ROSIE "rules" differ significantly from the

'The first example rule contains two actions, an assert action and

a procedure; the second, a conditional action; the last two example
rules illustrate two different types of iterative actions. Note that
the conditional and iterative actions take nested action blocks as

arguments.

iap

3 '2

1. Introduction 3

notion of rule found in production system architectures such as OPS5
(Forgy, 1981) and E.IYCIN (van Melle, 1981). While ROSIE rules can
appear in the if-then form of production rules, they can also appear
using other control abstractions (e.g., as seen above in the for-each
and while forms). The key point to keep in mind is that ROSIE rules are
not treated like production rules. Rules are treated strictly as
executable programming statements.

1.2.2 Rulesets

The applicability and context in which rules are executed can be
controlled by organizing rules into rulesets. Like subroutines in more
conventional programming languages, rulesets provide a convenient way to
modularize rules into coherent procedural units. One of ROSIE's
strengths is that these modules can be invoked in a natural and
transparent way using generalized English-like linguistic structures.
There are three types of rulesets: procedural, predicate, and generator
rulesets. Each ruleset type serves a conceptually different purpose;
each gets invoked in a different way; and each returns a different form

of value.

A procedural ruleset enacts a procedure (a type of action) and does
not return a result to the calling form. As an example, consider the
procedural ruleset,

To move a vessel from a source to a destination:
[1] Deny the vessel is docked at the source.
[2] Assert the vessel is docked at the destination. V
End.

which updates the database when invoked by a procedure such as in

Move USS Nimitz from Le Havre to Auckland.

A predicate ruleset provides a means of computing the truth or
falsity of a proposition (a declarative n-ary relation). When ROSIE
cannot otherwise decide a proposition's truth value from relations in
its database, it automatically invokes the corresponding predicate
ruleset if one exists. For instance, the predicate ruleset

To decide if a vessel is seaworthy:
[1] If the vessel does float, conclude true,

otherwise, if the vessel does leak,
conclude false.

End.

will be invoked by

If USS Nimitz is seaworthy,
move USS Nimitz from Le Havre to Auckland.

N

1. Introduction 4

if the proposition 'USS Nimitz is seaworthy' cannot otherwise be proved
or disproved from assertions in the database. A predicate ruleset can
conclude true or false, returning a boolean value to the calling form,
or it can simply terminate, returning nothing and implying an
indeterminate truth value.

A generator ruleset produces instances of a class. When generating
from a class (say, the class of ship), ROSIE first produces all elements
that satisfy the proposition 'element is a class' in the database, e.g.
assuming the database contains

USS Nimitz is a ship
USS Coral Sea is a ship
USS Enterprise is a ship

then generating every ship successively produces USS Nimitz, USS Coral
Sea, and USS Enterprise. Once all such elements have been exhausted,
ROSIE can invoke a generator ruleset for computing additional members of I

the class. For instance, the generator ruleset

To generate a vessel at a port:
[1] Produce every boat which is docked at the port.
[2] Produce every ship which is docked at the port.
End.

would produce a continuous stream of elements when invoked by

While some vessel at Auckland is not seaworthy,
repair that vessel.

%
until all elements produced satisfied the 'element is seaworthy'
predicate. Like predicates, calls to generator rulesets are made
transparently through interactions with the database and do not affect
the readability of code.

1.2.3 Demons N'

ROSIE also supports a specialized form of ruleset called demons.
Demons selectively capture control of computations just prior to the
occurrences of an event. Once invoked, a demon can interrogate the
system state and either allow the interrupted event to resume or release
control without continuing the event. As an example, consider the
demon,

Before executing to move a ship from a source to a destination: -'

[1] Unless some vessel at the source is equal to the ship,
return, otherwise continue.

End.

1. Introduction 5

which would be awakened by

Move USS Nimitz from Le Havre to Auckland.

Execution of the procedure would continue only if its arguments (i.e.,
USS Nimitz, Le Havre, and Auckland) satisfy the constraints posted by
the demon.

Demons provide a mechanism for event-driven program control. They
can be used for tracing and debugging during program development. They
can monitor changes to the database and check the database for
consistency as it undergoes change.

1.2.4 Ruleset Execution

Although rulesets and demons are invoked in different ways, once
called they follow the same steps. First, a private database is
established; this is used to store information that is local to the
ruleset invocation, such as parameter bindings. For example, when

To move a ship from a source to a destination:

is invoked by

Move USS Nimitz from Le Havre to Auckland.

the propositions,

USS Nimitz is a ship
Le Havre is a source
Auckland is a destination

are asserted into the private database. Next, the rules in the
ruleset's body are executed one-by-one according to an execution
monitor.2 There are three types of monitors that execute rules either
sequentially (first rule to last), cyclically (first rule to last then
repeat), or randomly (any rule at random then repeat). A ruleset
invocation terminates when the last rule has been executed (if the
monitor is sequential) or when control is explicitly returned to the
calling form by a terminating procedure, such as conclude, produce,
continue, or return.

2 The execution monitor should not be confused with the notion of
control monitors found in production systems. Although execution
monitors "control" the execution of rules, the control is very rigid and
does not provide the notion of a conflict set or of conflict resolution
(McDermott and Forgy, 1978).

'A w~

1. Introduction 6

1.3 LINGUISTIC STRUCTURES

ROSIE supports three fundamental linguistic structures for encoding
heuristics: actions, sentences, and terms. Actions advance the flow of
control, sentences state declarative relations, and terms function as
data objects.

1.3.1 Actions

By definition, a rule always contains at least one action. Actions
can invoke procedural rulesets, e.g.,

Deploy a blue battalion to the objective.

conditionally execute an embedded block of actions, e.g., ..

If some red battalion does threaten any strategic
objective and that objective is undefended,

deploy some blue battalion to that objective.

or iterate over an action block, e.g.,

For each blue battalion (BBTL) in sector #15,
advise BBTL to 'move to Red River Crossing' and
assert BBTL was given a new directive.

While any strategic objective is not defended,

keep every blue battalion on alert.

Actions such as

Assert the objective was displayed
Deny battalion #5 is deployed to sector #8
Let the objective be Red River Crossing

.

add and remove relations from the database.

1.3.2 Sentences

Sentences specify declarative relations whose truth or falsity can
be tested. Some sentence forms test the cardinality of a class, e.g.,

if there is more than one unit which is on alert . . .,

while others test the equality of data objects

if the type of aircraft is equal to F-111X . . .

Another type of sentence exists, called a proposition, for which truth %
and falsity can be computed by predicate rulesets.

1. Introduction 7

There are five basic syntactic forms for propositions, each of
which captures a specific class of English usage, i.e.,

class membership term is a description
battalion #5 is a blue infantry battalion

predication term is verb [prep term]*
Red River Crossing will be undefended at 0830 hours

predicate complement term is adjective term [prep term]* % 'e
the battalion was deployed rapidly to Red River Crossing

intransitive verbs term do verb [prep term]*
the battalion will proceed to the objective

transitive verbs term do verb term (prep term] *
battalion #5 did receive the message at 1500 hours

As the reader may observe from the above examples, propositions may be
expressed in either past, present, or future tense and modified by
prepositional phrases. Propositions can be negated by inserting the
word not before the main verb, e.g.,

battalion #5 did not receive the message at 1500 hours

The database actions, assert and deny, take propositions as
arguments, adding or removing them from the database. Actions such as
if, while, and until accept boolean combinations of sentences, which they
test against system state. A

1.3.3 Terms

Terms are ROSIE's data objects. They correspond to expressions
that have one (or possibly more) values as their interpretation. These
values will be one of ten data primitives called elements. Terms serve
as arguments to actions and sentences as well as other terms. :4

There are five forms terms can take. Elements can act as terms,
evaluating to themselves. Arithmetic expressions, e.g.,

the DE * (the exposed aircraft / the number of aircraft) '..P

are terms that evaluate to number elements. Descriptive terms, e.g.,

the distance from home base
every blue battalion which is undeployed

3While ROSIE recognizes a distinction between propositions that
vary in tense, it does not use tense information further. Tense is %I
supported merely to allow a wider range of expression. N-r

'p
.4 - ~ -'~ "4 *,_.

1. Introduction 8

evaluate to one, some, or all instances of a class. 4 There are also %
anaphoric terms, e.g.,

that battalion

which evaluate to an element previously produced from a description, and
iterative terms, e.g.,

one of F-111X, F-4X or F-16X
each of battalion #5 and battalion #8

which evaluate to one or all members of a given sequence.

1.3.4 Elements

Terms evaluate to elements. Elements can be divided between two
categories: simple elements and intentional elements. These include:

Simple Elements Examples

names battalion #5
numbers
simple numbers 3.1412
unit constants 55 miles/hour
labeled constants probability 0.75

strings "The ratio HEP/COG:"
patterns {{"Yes"I"No") (bind to the reply), cr)
tuples <pol soft, <5 waves, FX-4>>
filesegments 'file: "intel", to report a finding'

Intentional Elements

class elements any non-offensive target
intentional descriptions 'an action at the current time'
intentional propositions 'visibility does approximate 3.5 miles'
intentional procedures 'deploy the unit to sector #3'

Several of the simple elements (i.e., names, numbers, strings, and
tuples) exist as slightly more complex variations on the basic data
types found in most symbolic programming languages. The others (i.e.,
patterns and filesegments) provide explicit representation for data
structures used in operations that are unique to ROSIE. For instances,
filesegments identify portions of a program file that can be manipulated
via the file package, and patterns interface to ROSIE's string pattern
matcher and support complex input and output operations. ".

'The major component of a descriptive term is a description, which
is composed of a class reference (e.g. , blue battalion) and optionally
modified by a relative clause (e.g., which is undeployed).

%

1. Introduction 9

The intentional elements provide ROSIE with limited "self-
referential" capabilities, allowing programs to treat units of
descriptive, declarative, and procedural knowledge as data. Class
elements and intentional descriptions permit program control over the
evaluation of class relations, e.g.,

Execute every instance of 'an action at the current time'.

Intentional propositions capture the intent of relations between
objects, which can be passed as arguments to rulesets, e.g., .e

Report 'visibility does approximate 3.5 miles'.

as well as asserted, tested, or denied. Intentional procedures provide
a representation for working with suspended actions, e.g.,

Execute 'deploy the unit to sector #3' at time 100.

which can be queued and later executed on demand. Essentially, the

intentional elements give knowledge engineers a vehicle for developing
meta-level control mechanisms.

1.4 THE DATABASE MECHANISM

The initial, intermediate, and final results of ROSIE programs are A

stored as affirmed propositions in ROSIE's database. Propositions can
be asserted (affirmed in the database) and denied (removed from the
database). It is possible to test the truth or falsity of a proposition
against the contents of the database as well as generate the members of
a class defined by affirmed class relations (i.e., propositions using
the is-a copula). ..

ROSIE's database structure actually consists of two conceptually
separate layers. The first is the physical database, which contains
affirmed propositions. The second is the virtual database, which
consists of those relations that can be computed from other relations
via ruleset invocation or through a limited deductive retrieval
mechanism provided with class elements.

1.4.1 The Physical Database -:

The physical database can be employed to store facts about the
world as well as intermediate computational results. These facts and
results must be propositions, which are affirmed using a three-valued
logic system. Propositions stored in the database may have a truth
value of true or false; propositions that are not in the database have
an indeterminate truth value. This three-valued logic provides ROSIE
with an "open-world" assumption, which implies that ROSIE may not have
complete information about a particular situation; truth or falsity will
not be inferred in the absence of contradictory information.

"."j...","s" 'w . '* ''¢3 '.'" 2 '2'2..2'..%..''-. L-' €.'?.. € , .' . ."k ..
, .. ' " -. ... '.-.'.. .- ' -• •-.-' .

1. Introduction 10

Occasionally in AI applications, a method is needed for storing
different facts in different databases. This may arise because we wish
to model multiple points of view or because we want to restrict
attention momentarily to a subset of those facts that are most relevant.
To support such needs, ROSIE allows users to create alternate databases
and specify when they should be activated and deactivated (i.e., swapped
in and out of context).

1.4.2 The Virtual Database
.%

The virtual database supports relations that either cannot be P
described by affirmed propositions or for which such a representation is
not economical. For instance, relations such as '3 is greater than 2'
are more economical to compute than store. The virtual database
consists of both predicate and generator rulesets, and virtual
relati'ons.

Predicate and generator rulesets allow users to define subroutines
for deciding the truth or falsity of a proposition or producing the
elements of a class, respectively. Virtual relations, which are
affirmed propositions containing a class element argument, e.g.,

any ship is a vessel 6

give users a method for specifying relations that hold over a class of
elements.

The essential trade-off between the physical and virtual database
is space versus time. In general, relations stored explicitly in the <
physical database require more memory for their representation than N
relations stored in the virtual database, while relations stored in the
virtual database require extended computation for their retrieval.

1.5 STRENGTHS AND WEAKNESSES

As we have seen, ROSIE programs are described as collections of
rulesets and demons that affect the flow of control through direct
invocation, initiation of an event, and interactions with the database.
ROSIE differs in several respects from other current "expert system"
languages. ROSIE is not a production system architecture, nor is it an
object-oriented or frame-based language or a language for programming
logic. ROSIE is similar to production system architectures in that N
"factual knowledge" is stored as relations in a common database, and all
work is done through side effects on these relations. Yet, it is unlike
production systems because it does not contain an inference engine, and
its "rules" behave like executable code. ROSIE's innate control N"
structure is actually quite similar to the procedural, top-down control
structure found in languages such as LISP or PASCAL. However, ROSIE
provides a wider array of data abstractions than is available in other
procedural programming languages. These aspects distinguish ROSIE from

V _,e

1. Introduction 13

examining how the knowledge acquisition process might be automated to

the point of allowing knowledge engineers to develop large and robust

ROSIE systems from a relatively small number of interviews with the

domain expert. The ultimate goal of all this work is to overcome some

of ROSIE's weaknesses and to provide knowledge engineers with a flexible

environment in which expert rules can be formulated and later

transformed into a high-performance expert system.

A :*

.1'
'p-

-,r'

V-

.'ft

'--S.

'-V

'-S

S,|
--'

VO"1

*5%S_.

2. Syntactic Structur 15

II. SYNTACTIC STRUCTURE

A fundamental task when learning how to program in ROSIE is
learning the language's syntactic rules and how to apply them
effectively. This is not a trivial task. While ROSIE appears to
"understand" an impressive subset of the English language, it draws the
sum total of its "knowledge" from a context-free grammar and actually
has very little real understanding of English at all. Novices and
experienced programmers alike often forget this point, writing very
English-like code, which is completely incomprehensible to ROSIE.

Before ROSIE code can be executed, it must be translated or parsed
into a machine-executable representation. Parsing consists of three
phases: (1) tokenization, (2) parse tree generation, and (3)
transformation. In this chapter, we will be discussing the first two A
phases of parsing; the third phase does not directly concern the user
and will not be discussed.

Most of the design decisions regarding ROSIE's syntactic structure
follow immediately from the choices made for its linguistic structures.
Familiarity with ROSIE's linguistic structures (presented in succeeding
chapters) may help novice users gain a better grasp of ROSIE's syntax.
First-time readers are recommended to give the following sections only a
cursory glance, returning to them after reviewing the rest of the
manual.

2.1 PARSING BASICS

Parsing is the process by which a ROSIE source program is
transformed into a machine-executable representation called HILEV.
Parsing follows a three-step process: (1) lexical analysis (or
tokenization); (2) parse tree generation; and (3) transformation.
Tokenization is the process of breaking up words and special characters
of the source code into tokens and grouping tokens together into
independent file items. Parse tree generation is the process of -
deriving a unique parse tree for a given file item that represents its
syntactic structure. Transformation is the process of mapping a parse
tree into its HILEV representation.

To illustrate, consider parsing a file containing the ruleset,

.4

'-4

'A.
•

.-.

2. Syntactic Structure 16

To diagnose a situation:
[1] Apply every rule that does conclude some

hypothesis about the situation.
[2] For each rule that does conclude some true

hypothesis about the situation, I,

print "(that rule) does apply, concluding:
\ (that hypothesis)".

End.

Tokenization would decompose this into the four lists of tokens,

(TO DIAGNOSE A SITUATION :)
(APPLY EVERY RULE THAT DOES CONCLUDE SOME
HYPOTHESIS ABOUT THE SITUATION .)
(FOR EACH RULE THAT DOES CONCLUDE SOME TRUE
HYPOTHESIS ABOUT THE SITUATION , PRINT { (7,%
THAT RULE I " does apply, concluding" , CR ,%

' { THAT HYPOTHESIS } } .)
(END .)

representing four separate and syntactically independent file items.
The second file item (starting APPLY EVERY RULE . .) generates the
parse tree,

<rule>

<act ion>

<procedure>

<term>

<desc>

<class> <rel clause>
<verb phrase>

<do aux> <term> <pphrase>

<desc> <term>

<class><desc>

APPLY EVERY RULE WHICH DOES CONCLUDE SOME HYPOTHESIS ABOUT THE SITUATION

'Actually this is only an approximation; the real parse tree for
this file item would be somewhat more complex.

2. Syntactic Structure 17

for which the transformation process would produce the LISP expression,

(<RULE>
(<DO>

(<FOREVERY>
(<DESC> <G0282> (<IDENT> RULE) A

(<IFSOME> (<DESC> <G0283> (<IDENT> HYPOTHESIS) NIL NIL)
(<PROVABLE> 'DOESBIN 'PRESENT T

(<USRVAR> <G0282> RULE)
(<SYSVAR> <G0283>)
(<IDENT> CONCLUDE

(ABOUT (<THE> (<DESC> <G0284>
(<IDENT> SITUATION) NIL NIL))))))

(THAT DOES CONCLUDE SOME HYPOTHESIS ABOUT THE SITUATION))
(<GO> (<IDEN T> APPLY (-OBJECT". (<SYSVAR> <G0282>)))))))

as its HILEV representation.2 w-*

2.2 TOKENIZATION

Lexical analysis of ROSIE source code is a process of recognizing
file items and generating a list of representative tokens for each.
This process is referred to as tokenization, and the lexical analyzer as
the tokenizer. Below is an example of a ROSIE rule (a file item) and
the list of tokens that would be produced for it.

Assert [that] <"item 3,4", 3.4 KG/M-2, Dave's age> is a tuple.

(ASSERT < "item 3,4" , 3.4 KG/M'2 , DAVE ' S AGE > IS A TUPLE .)

One should observe that ROSIE is not case sensitive, except with respect
to strings (e.g., "item 3,4"), and that tokenization returns all atomic
tokens in uppercase. Notice also that comments--any characters

,% .'

surrounded by matching left and right square brackets (f])--are not part
of the resulting list of tokens.

The tokenizer follows a simple algorithm. It is either scanning
for a token, collecting the characters of a token, or processing those
characters into a token. Scanning involves reading characters one at a
time and throwing away those that do not start tokens, such as blanks,
tabs, and new lines. Collecting means gathering characters that make up
a token in a buffer. Finally, processing means converting characters
from the buffer into either an atomic, numeric, or string token. Once a
token has been processed, it is added to a list of tokens that -'
correspond to a file item. This list is eventually returned as the
result of tokenization.

'ROSIE users are never expected to deal with HII,EV directly,
therefore the definition of the various HILEV functions is not pertinent
to this discussion.

%* %.%

.1.0.X'

2. Syntactic Structure 18

2.2.1 The Character Set

In order to distinguish one token from the next, characters are
divided into one of eight character classes. When the tokenizer reads a
character, the character's class tells the tokenizer what to do next.
For instance, it can either add the character to the token being built,
finish the current token and start a new token, or terminate the
tokenization process all together.

The eight character classes and the characters that belong to each
are described below:

separator characters: blanks, tabs, line feeds,
and all other control and
nonprinting characters

These characters delimit (or separate) tokens and are
otherwise ignored. If the tokenizer encounters a separator
character while scanning, it simply ignores the character and
moves on to the next. If the tokenizer is in the collecting
phase, it processes the contents of the token buffer and
starts scanning for the next token.

* break characters: {>'' () < >

These characters are recognized as single character tokens.
When the tokenizer encounters a break character, it processes
the contents of token buffer (if any), after which it adds a
token representing the break character to the token list and
begins scanning for a new token.

NOTE: The arithmetic operators (i.e., + * /) are not break
characters; thus, 3*4 constitutes a single token, while 3 + 4
constitutes three separate tokens.

* string delimiter:

This character introduces and terminates strings. By default,
it is the double quote ("), and all succeeding references to
the double quote should be understood as references to the_%
string delimiter character. *[

Normally, the characters encountered between a pair of matching z
double quotes become the characters of the resulting string.
When the opening double quote is encountered, the contents of
the token buffer (if any) are processed, after which the
tokenizer starts collecting the characters of the string. %

In ROSIE 3.0, the lexical syntax of strings has been
substantially enhanced from previous versions of ROSIE. This
new syntax will be discussed later in Section 2.2.4.

% ,. .

2. Syntactic Structure 19

" comment characters: [I

Square brackets delimit comments, which are otherwise ignored
by the tokenizer with the exception that comments can be
nested. When the open comment character ([) is encountered, the
tokenizer scans past characters to the matching close comment
character (]). The entire comment is treated as though it were
a single separator character.

* escape character:

This character tells the tokenizer to treat the next character
as though it were of the class letter. The escape character is
otherwise ignored and will not appear among the resulting
tokens.

NOTE: The escape character is not recognized within comments
and can take on special properties when found in a string.

" terminator characters: . !?:

These characters can (but do not always) indicate to the
tokenizer that it has reached the end of a file item.

A terminator character is only recognized as such if it is,_
the last nonseparator character on a line of text (where either
an end-of-line character or end-of-file character can indicate
the end of a line of text). An additional restriction maintains
that the colon (:) can function as a terminator only when the
first token of the item is one of to, system, or before, i.e.,
the colon is a terminator character only when it terminates a
ruleset header.

If a character does not satisfy these restrictions, then it is
not treated as a terminator. The characters (. ! ?) are
treated as belonging to the class of letters and the colon
(:) to the class of break characters.

* digits: 0-9

When encountered, a digit is added to the current token or
starts a new one if none yet exists.

* letters: a-z A-Z - + @ # $% &

Most printing characters belong to this class. When
encountered, a letter is added to the current token or starts
a new one if none yet exists.

2. Syntactic Structure 20

In the processing phase, if the contents of a token buffer can be
interpreted as a numeric or string token, then that type of token is
created. Otherwise, the characters are coerced into an atomic token.

2.2.2 Tokens and File Items

When the tokenizer is invoked, it successively reads characters
from an input source, such as a file or the user's terminal, until it
encounters one of the terminating characters (. ! ? :). Reaching such a
character indicates to the tokenizer that it has recognized one file
item. It returns a list of tokens created from intervening characters
as the representation of that item. There are three types of tokens and
five types of file items.

A token can be one of the following types:

* numeric tokens

which include integers of the form,

[+/-]nnn

and real numbers3 of the form,

[+/-][nnn].nnn[E[+/-]nnn]
[+/-]nnn.[nnn][E[+/-]nnn] A.
[+/-]nnnE[+/-]nnn.-

where nnn represents 1 or more digits, e.g.,

-23
3.14
.2
2.
-1 .25E-9

Numeric tokens can optionally be preceded by a unary plus (+)
or minus (-) and followed by an exponent.

* string tokens

which begin and end with a double quote and include all
characters encountered between the double quotes. A double
quote can be included in a string by escaping it, e.g.,

"MacArthur said, \"I shall return.\."

'if the number nnn. (e.g., Let the counter be 1.) appears as the
last token on a line, then it will be recognized as an integer rather
than a real, where the decimal point is treated as a terminator.

00 %.

2. Syntactic Structure 21

OAh

atomic tokens

which covers any token not recognizable as a numeric or
string token. Thus, the following

3.1.2
JK:DK
3+4
4DESIGNS

OIL&GAS

are examples of unusual, but legal, atomic tokens.

A token's type is used when generating the parse tree representation of
the file item. When a rule from ROSIE's BNF requires a particular type
of token, it will be specified as <atom>, <string>, <number>, or
<integer>, where <integer> will only match a numeric token that is a
positive integer. These nonterminals will match any nonreserved token
(see Section 2.3) of the designated type.

There are five types of file items recognized by the tokenizer:

" ruleset headers

which introduce ruleset definitions, A ruleset header can
start with one of to, system or before, e.g.,

To move a ship to a destination:
System ruleset to move a ship to a destination:
Before executing to move a ship to a destination:

and is always terminated by a colon :).

" declarations and rules

which include private class declarations, e.g.,

-,.Private: a counter (initially 0), a reply.

execution monitor declarations, e.g.,

Execute cyclically.

ruleset rules and file rules, e.g.,

Assert battalion #5 was diverted to sector #7.

and end statements, e.g.,

End.

'a

.:

N N N

2. Syntactic Structure 22

These file items appear as a sequence of tokens terminated by
a period (.).

" queries

which are special command forms recognized by the top-level
monitor and within a break loop, e.g.,

Conclusions?

14?

They are characterized as terminating with a question mark (?).

" break commands

which are special command forms recognized only within a break
loop, e.g.,

Eval!
Resume ruleset!

They are characterized as terminating with an exclamation
point (!).

2.2.3 Comments

Comments can appear anywhere in ROSIE source code. Comments are
preceded by a left square bracket ([) and terminated by a right square
bracket (1). Additionally, comments can be nested to any depth.

When a comment appears within the text of a file item, it is
treated like a separator character. This means that if the tokenizer
were in the collecting phase, it would process the token, add it to the
list of tokens, and start scanning for a new token. Comments that
appear outside of a file item are likewise ignored. The text of such
comments will be associated with the text of the file item immediately J-
following them, meaning that when a file item is edited or examined via %

the file package, the comments immediately preceding it will appear with
the text of the file item as well.

There are several restrictions upon comments appearing outside of a
file item:

1) If a comment precedes a file item, but begins on the same line
as that item, e.g.,

[2] Assert .. ,

its text will be discarded by tokenizer.
I

.-- %

2. Syntactic Structure 23

2) If a comment follows a file item, but begins on the same line
as that item, e.g.,

End. [End of report info]

it will be included with the text of that file item, rather
than the text of the next file item.

3) If a comment (or sequence of comments) is not otherwise
followed by a file item, it is discarded.

ROSIE automatically generates comments to attach rule numbers to
file rules and ruleset rules. It supplies the numbers and keeps them
up-to-date whenever a program file is edited or otherwise modified.

It has been our experience that ROSIE programs require far fewer
comments than is typical of other programming languages. Despite the
fact that claims to a "self-documenting" language have been made in the
past, ROSIE code is remarkably expressive and needs little
documentation.

2.2.4 Extended String Syntax

Among the changes to appear in ROSIE 3.0 is an extension to the
lexical syntax of strings. This syntax allows the otherwise verbose and
unwieldy syntax of pattern elements (see Section 9.6) to be captured in
a form that outwardly appears to be a single string token, thus
enhancing both the clearity and readability of patterns. The new syntax
subsumes the older form (i.e., zero or more characters delimited by
double quotes) and in most cases is compatible with strings in existing
code. .

When the tokenizer encounters a double quote ("), it begins reading
a string. If a matching double quote is encountered before the end-
of-line character, the tokenizer creates a string token of the form
"ccc", where ccc are the characters appearing between the opening and
closing quotes. Thus, when reading the characters

"This is a string"

the tokenizer will treat them as constituting a string token.

However, if the end-of-line character is encountered before the
closing double quote, the tokenizer assumes an instance of the extended
string syntax, the result of which will be a list of tokens specifying a
pattern. For example, scanning the characters -

"East is east and west is west,
and never the twain shall meet"

N..

2. Syntactic Structure 24

generates the tokens

("East is east and west is west" , CR ,
"and never the twain shall meet" }

These tokens would be parsed as a pattern; the pattern can be coerced
back into a string element (see Section 9.5). Terms and subpatterns may %
be embedded in strings by delimiting them with matching left and right
curly braces ({ }).

To be precise, the lexical analysis of strings is guided by the
following rules:

" Strings are delimited by a pair of matching double quotes (");

* Characters appearing in a string and surrounded by a pair of
left and right curly braces ({ }) are scanned as though they
existed outside of the string, e.g.,

"is (the hypothesis) correct?

will be scanned as the pattern

{ "Is " , (THE HYPOTHESIS } , " correct? " }

Note also that

"This ("is a trick"} string"

will be scanned as

("This " , { "is a trick" } , " string")

* When the scanner reaches an end-of-line character before a 4

closing double quote, it inserts a carriage return subpattern '4
(CR) into the resulting list of tokens, separating the -F.
characters on one line from the characters on the other, e.g.,

"foo
fum"

will be scanned as

{ "foo" , CR , "fum" }

The string to the left of the carriage return will end with the
last nonseparator character encountered before the end-of-line
character. The string to the right of the carriage return will
start with the first nonseparator character encountered after the'r
end-of-line character; all intervening separator characters (with
the exception of the end-of-line character that always inserts an

2. Syntactic Structure 25

additional carriage return) are ignored.

As an example, consider the string

"Airfield: {the airfield) Target: (the target)
Capabilities are (the capabilities of that target)
Vulnerability is (the vulnerability of that target)"

which will be scanned as

("Airfield: , { THE AIRFIELD , Target: -

THE TARGET ,CR , "Capabilities are ,(THE
CAPABILITIES OF THAT TARGET } , CR , "Vulnerability is "

(THE VULNERABILITY OF THAT TARGET) I

Note that the indentations of the source string are not
preserved.

* If a back slash (\) is the first or last character of a line,
then it (and its use as the escape character) is ignored. All
separator characters that respectively follow or precede the back
slash will appear in the resulting tokens, e.g.,

"Airfield: {the airfield) Target: {the target)
\ Capabilities are (the capabilities of that target)
\ Vulnerability is (the vulnerability of that target}"

will be scanned as 4>

("Airfield: " , THE AIRFIELD } " Target:
{ THE TARGET I , CR , " Capabilities are "
(THE CAPABILITIES OF THAT TARGET I , CR,

Vulnerability is " , (THE VULNERABILITY OF THAT
TARGET))

This provides a simple technique for preserving indentation.

* The special attributes of any character appearing in the string
will be ignored if immediately preceded by the escape character,
e.g., %

"MacArthur said, \"I shall return.\""

will be scanned as the token,

">lwArthur said, "I shall return."",

Note that this use of the back slash is superseded when the back
slash is the first or last character on a line. % N

" No other characters or character strings have any special

% %.%&O
60,,

2. Syntactic Structure 26

significance unless they appear between left and right curly
braces.

If none of the above features (with the exception of the escape
character) are encountered while scanning a string, then the
string will be returned as a single string token. Otherwise, it
will be returned as a list of tokens designating a pattern element.

2.3 RESERVED WORDS

Reserved words are tokens that can only appear as literals in
specific syntactic constructs. All break characters are reserved words,
as are a large set of prepositions, and the auxiliary forms of be and
do. The following is a list of the reserved words used in ROSIE 3.0:

(i) { } I ' ' () , < > ~ = ; : ?

(2) + * / **

(3) ABOUT AT DURING ON THRU WITHIN
ABOVE BECAUSE FOR ONTO TO WITHOUT
ACROSS BEFORE FROM OUT TOWARD
AFTER BEHIND IN OUTSIDE UNDER
AGAINST BELOW INSIDE OVER UNTIL
ALONG BESIDE INTO PER UP
AMONG BETWEEN NEAR SINCE VIA
AROUND BY OF THAN WHILE
AS DOWN OFF THROUGH WITH

(4) AM DID DOES WAS WERE WILL
ARE DO IS

(5) A ANY EITHER SOME THE THAT
AN EACH EVERY SUCH

(6) WHERE WHICH WHO WHOM WHOSE EXCEPT

(7) AND HAS LET THERE UNLESS OTHERWISE
ELSE IF NOT

These are arranged (loosely) according to usage, i.e., (1) break
characters, (2) arithmetic operators, (3) prepositions, (4) auxiliary
forms of be and do, (5) noun phrase specifiers, (6) relative clause
specifiers, and (7) other reserved words.

0*t*

0i

.5.o,

u~we 404 ~ e.~. *.
I1*'i **dll 11

0
i **f* *

0
II0* Hj.ii* l i u5 -. '- 1 -

2. Syntactic Structure 27

2.4 THE ROSIE GRAMMAR

The Backus-Naur form (BNF) (Pagan, 1981) description of ROSIE's

syntax is provided below for users who want a terse but complete
definition of the language. The following conventions apply:

" Uppercase indicates terminal symbols (i.e., tokens that must
appear in a sentential segment in order for that segment to
be recognized as an instance of a grammar rule);

" Angle brackets (< >) surround nonterminal symbols (i.e., symbols

that are found in the left-hand side of a production);

" There are four "special" nonterminal symbols, which match a
single token according to type:

<string> matches any string token;

<number> matches any numeric token;

<integer> matches any positive integer;

<atom> matches any nonreserved atomic token.

A simple lexical BNF for these token types is provided below;

" Square brackets (1 j) surround optional constructs and appear

when the ordering of alternative productions of a nonterminal
is unimportant;

" Vertical bar (f) separates alternate constructs;

" The epsilon symbol (c) denotes null productions.

2.4.1 The Lexical BNF

The lexical BNF describes (in a limited fashion) the syntax of
tokens. In a ROSIE sourue program, tokens are normally delimited by
separator and break characters. In the following rules, nnn stands for

any sequence of one or more digits, and ccc stands for any sequence of
letters or digits.

<token> :: <number>
<string>

= <atom>

<number> : <integer>
<real>

<integer> ::1 +1-]nnn

2. Syntactic Structure 28

<real> ::= j+j-]nnn.jnnnj[E+-lnnnj
: +I-][nnn].nnn[E[+I-]nnn]

[+1-nnnE[+l-)nnn

<string> :
CCC

<atom> ::= ccc

2.4.2 The Linguistic BNF

Once the tokenizer has produced a set of file items representing a
source program, control passes to the driver routines. The driver
attempts to identify each file item as an instance of the nonterminal
symbol -program>, which represents the start symbol of the BNF seen
below. Note that rulesets are not a part of this BNF; rulesets are

organized from their components after parsing.

<=program- <declaration>

<query cmd>
<rule>

<query cmd> ::= ?

<integer>'?
<name element> 2

NOTE: <name element> is a sequence of one or more <atom>. ,

i.
<declaration> : EXECUTE -monitor> .,,

= PRIVATE <class list>
: PRIVATE : <class list>

END.
<header> :

: SYSTEM RULESET <header> :

<class list- :- : <formal> [([INITIALLY] <term>)] , <class list>]

<monitor> :: SEQUENTIALLY
= RANDOMLY

CYCLICALLY

<header> :: TO GENERATE <genr form>
BEFORE GENERATING <genr form>
BEFORE PRODUCING <genr form>

TO DECIDE [IF] <pred form>
BEFORE TESTING [IF] <pred form>

TO <proc form>

BEFORE INVOKING <proc form>

% o

I.::

2. Syntactic Structure 29

BEFORE ASSERTING <pred form>
BEFORE DENYING <pred form>

<genr form> :: [<determiner>] root name> [sprivate pps>]

<proc form> <atom> [<formal>] [<private pps>l

<pred form> :: <formal> <be aux> <a/an> <root name> [-private pps>1
::=<formal> <be aux> <atom> [<formal>] [--private pps>_
::<formal> <be aux> <prep> (<formal>] I-private pps>]
::<formal> <do aux> <atom> [,formal,] I-private pps>J

<determiner> : THE I <a/an>

<a/an> ::= A I AN

<root name> : <atom list>

<private pps> ::= <prep> <formal> [<private pps>J

<formal> ::= [<a/an>] <root name>

<opt pphrase > = <pphrase>

<pphrase> : <pp> <pphrase>
=<pp>

<pp> :: <prep> <term>
(<prep> <term>)

NOTE: It is important to notice the order of productions for
prepositional phrases. This ordering specifies that the longest
chain of prepositions is always preferred. Compare the use of
prepositions in the <procedure> and <proposition> rules to that in
the <description> rules. The fundamental difference is that the
former use the <opt pphrase> production while the latter uses the
<pphrase> production.

<rule> ::= <action block> .

<action block> ::= <action>
<action> AND <action block>

NOTE: The highest level <action block> will take the shortest
chain of <action>.

<action> :: (<action block>)
<data action>
<iter action>
<cond action>

2. Syntactic Structure 30

::= <cond block>
: <exec action>
::= <procedure>

<data action> :: ASSERT <prop block>
= DENY <prop block>

LET <let block>
CREATE <a/an> <description>

<prop block> : <proposition>
::= <proposition> AND <prop block>

<let block> :: <let form>
<let form> AND <let block>

<let form> : THE <description> BE <term> %

<term> ' S <description> BE <term>
<term> BE THE <description>
<term> BE <term> ' S <description>

<cond action> ::= IF <condition> <then part>
: IF <condition> <then part> <else part>

UNLESS <condition> <then part>
UNLESS <condition> <then part> <else part>

NOTE: The <else part> attaches to the deepest <cond action>.
1J

<then part> :: , [THEN] <action block> [,]
THEN <action>
(<action block>)

<else part> :: OTHERWISE , <action block> [,J
OTHERWISE <action>
ELSE , <action block> I,.
ELSE <action>

<cond block> :: <select block>
<choose block>

::= <match block>

<select block> :: SELECT <term> : <select form> [;] <default block>

V.
<select form> :: <tuple element> <action block> .%,

: <tuple element> <action block> ; <select form>

<match block> :: MATCH <term> : <match form> [;j <default block>

<match form> :: <pattern element> <action block>

::=<pattern element> <action block> ; <match form>

<choose block> :: CHOOSE SITUATION : <choose form> <default block>

I

%J

2. Syntactic Structure 31 3

<choose form> : IF <condition> <then part>
IF <condition> <then part> ; <choose form>

<default block> ::

DEFAULT : <action block> [;J

NOTE: The <action block> and <default block> always attach to the 'S

most deeply embedded conditional block.

<iter action> :: <iter block> , <action block> [,]
<iter block> (<action block>)

<iter block> :: <for part> [<while part>] [<until part >]
: <while part> [<until part>]

<until part>

<for part> ::= FOR EACH <description>

<while part> :: WHILE <condition> '

<until part> :: UNTIL <condition>

<procedure> :: DO NOTHING
PRODUCE <term>
DISPLAY <term>

::=<atom> [<term>] <opt pphrase> .

NOTE: The do nothing, produce, and display procedures are all
defined specially; do nothing, because do is a reserved word and
will not match <atom>; produce and display, because their normal
usage does not conform to the default syntax.

<condition> ::= <disjunct>
::<comma or>
::=<comma and>

<comma or> ::= <disjunct> [, OR <comma or>]

<comma and> :: <disjunct> [, AND <comma and>]

NOTE: Sequences of ', OR' and ' AND' may not appear in the same

<condition> unless delimited with parentheses.

<disjunct> :: <conjunct> OR <disjunct>
<conjunct>

<conjunct> :: <primary> AND <conjunct>
<primary>

<primary> : (<condition>

OR V

2. Syntactic Structure 32

<sentence> N

NOTE: AND has precedence over OR; precedence can be
overridden with parentheses.

<sentence> :: <proposition>
:=<special form> %

<proposition> =<term> <verb phrase>

<verb phrase> : <be aux> <a/an> <description>

: <be aux> <atom> [<term>] <opt pphrase>
: <be aux> <prep> [<term>] <opt pphrase>
: <do aux> <atom> [<term>] <opt pphrase>

<be aux> WAS [NOT])
: WERE [NOT]

AM [NOT] F,

ARE [NOT] 4.-

IS [NOT]
: WILL [NOT] BE

<do aux> :: DID [NOT]
: DO [NOT]
: DOES [NOT]
: WILL [NOT]

<special form> ::= THERE IS <how many> <description>

: THERE IS SUCH <a/an> <class noun>
: <term> <special vp> [(<desc var>)]

<how many> :: NO
<a/an>
JUST ONE
MORE THAN ONE

<special vp> :: HAS <how many> <description>
HAS SUCH <a/an> <class noun> [(<desc var>)I

::<rel op> <term>

<rel op> :: IS [NOT] EQUAL TO
: IS [NOT] GREATER THAN [OR EQUAL TO] -.

: IS [NOT] LESS THAN [OR EQUAL TO]

* . = >=

* °>

1:= = .
::= > "

2. Syntactic Structure 33

<term> : <subterm>
<arith expr>

<arith expr> :: <arith expr> + <mult expr>
: <arith expr> - <mult expr>

: <mult expr>

<mult expr> :: <mult expr> <expt expr>

= <mult expr> / <expt expr>
= <expt expr>

<expr expr> <subterm> <expt expr>
= <subterm> <expt expr>
= <subterm>

NOTE: Precedence Associativity
()

• ** right
/ left

+ - left

<subterm> :: (<term>)
: <iter term>
= <desc term>

: <anaphora>

: <element>

<iter term> :: ONE OF <term list> [,] OR <term>

: EITHER <term list> [,] OR <term>
: EACH OF <term list> [,] AND <term>

= BOTH <term> AND <term>

<term list> :: <term> [, <term list>]

<desc term> :: THE TUPLE CONTAINING EACH <description>
:=<term> ' S <description>

:W= THE <description>
A NEW <description>

= <a/an> <description>

: SUCH A NEW <class noun> [(<desc var>)]
: SUCH <a/an> <class noun> (desc var>)]

SOME <description>

= EVERY <description>

NOTE: <term-'S <description> is equivalent to <description> OF <term>

<description> :: SUCH <class noun> [(<desc var>)I

% %

2. Syntactic Structure 34

::=<class>
::<class> <rel clause>

NOTE: A <rel clause> will always attach to the rightmost
<description>.

<class> ::= [<root name>] <class noun> [(<desc var>)]
[<root name>] <class noun> [(<desc var>)] <pphrase>

NOTE: A <class> will try to take no prepositional attachments.
Fa-ling that, the leftmost <class> will attempt to take the
longest chain of prepositions.

<root name> : <atom> [<root name>]

<class noun> ::= <atom>

<desc var> ::= <atom>

<rel clause> :: <disj clause>

<disj clause> : <conj clause> [OR <disj clause>]

<conj clause> :: <clause form> [AND <conj clause>]

NOTE: AND has precedence over OR; precedence can be overridden
with parentheses.

<clause form> :: (<rel clause>)
::<such that/where>
:: <that/which/who> %

::=<whose>
::<which/whom>
::<except>

<such that/where> : (<st/w> <condition>)
<st/w> <primary>

<st/w> :: SUCH THAT
WHERE

<that/which/who> :: <t/w/w> [<term>] <verb phrase>
: <t/w/w> <special vp>
: <t/w/w> <term> <rel op>

<t/w/w> : THAT
: WHICH

WHO

<whose> : WHOSE <description> <be aux> <term>

Ifo

2. Syntactic Structure 35

<which/whom> ::= <prep> <w/w> <term> <verb phrase>

<w/w> : WHICH
WHOM

<except> ::= EXCEPT <term>

<anaphora> THAT <class noun>
<rule var>

<rule var> <desc var>
,%

<element> <name element>
<number element>
<tuple element>
<string element>
<pattern element>
<filesegment>
<class element>
<intentional description>
<intentional proposition>
<intentional procedure>

<name element> ::= <atom list>

<atom list> ::= <atom> [<atom list>] '

<number element> <number>
<number> <atom list>
<atom list> <number>

<tuple element> < [<term list>] >

<string element> <string>

<pattern element> { <pat spec> }

<filesegment> FILE : <string> [, <header>] [, <rule spec>]
<header> [, <rule spec>

<rule spec> BEFORE <term>
AT <term>
FROM <term> TO <term>
AFTER <term>

:< integer>
::<integer> <integer>

<class element> ::= ANY <description>

<intentional description> THE <description>
<term> S <description>

.'.. n: . ,, , ,,,. ,: € y :.,.. X ' : .,, " " " .v.-- -.- .-. -.-.--.-..- -..'

2. Syntactic Structure 36

: ' <a/an> <description>
= SUCH <a/an> <class noun>

<intentional proposition> :: '<proposition>

<intentional procedure> : ' <procedure> %

<pat spec> ::= FIXED FORMAT <pat conj>
: FREE FORMAT <pat conj>

ADJOIN <pat conj>
::= <pat disj>

<pat disj> <pat conj> I <pat disj> %
::= <pat conj>

<pat conj> :: <bind spec> , <pat conj> t ".

::= <bind spec>

NOTE: The conjunctive (,) has precedence over the disjunctive (I); 8,

precedence can be overridden with curly braces.

<bind spec> : <rep spec>
<rep spec> (BIND TO <bind form> AS <bind type>)
<rep spec> (BIND TO <bind form>)
<rep spec> (BIND <bind form> TO <bind type>)
<rep spec> (BIND <bind form>)
<rep spec> (BOUND TO <bind form>)
BIND <rep spec> TO <bind form> AS <bind type>
BIND <rep spec> TO <bind form>

<bind type> :: <a/an> NAME
<a/an> NUMBER M
<a/an> STRING
<a/an> TUPLE
<a/an> PATTERN
<a/an> CLASS
<a/an> DESCRIPTION
<a/an> PROPOSITION !-

<a/an> PROCEDURE
<a/an> FILESEGMENT
<a/an> ELEMENT

<bind form> :: <desc var>
THE <description>
<term> ' S <description>

<rep spec> :: [<rep form> [OF]] <subpat>
ANYTHING
SOMETHING

<rep form> : <integer>

".. b
V'

2. Syntactic Structure 37

<integer> OR MORE
<integer> OR LESS
<integer> OR FEWER

<subpat> { <pat spec> }

BOX <subpat> TO WIDTH <term>
PAD <subpat>

LEFT JUSTIFY <subpat> [<box size>]
LJ [<term> [BY <term>]] : <subpat>

RIGHT JUSTIFY <subpat> [<box size>]
RJ [<term> [BY <term>]] : <subpat>
CENTER JUSTIFY <subpat> [<box size>]
CJ [<term> [BY <term>]] <subpat>
CODES (<int list>)
BELL[S]
TAB[S]
EOL[Sj
BACKSPACE[S]
BS
PAGE[SI
FORMFEED[S]
ESCAPE[S]

EOL[S]
END
BLANK[S]

QUOTE[S]
RETURN[S]
CR[S]
CHARCODE <term>
CONTROL <term>

LINE[S]
<char class> [[NOT] IN <term>]
<term>

<box size> TO LENGTH <term> [AND WIDTH <term>]

TO WIDTH <term>

<coords> AT < <term> , <term> >

<padding> STARTING LEFT
STARTING RIGHT
CENTERING

<int list> <integer> [, <int list>]

<char class> [NON]ALPHANUMERIC[S]
[NON]BLANK[S]
: NONICONTROL[S]

[NONIDIGIT[S)
[NONILETTER[S]
[NON]NUMBER[S]

2. Syntactic Structure 38

[NON]NUMERAL[S]
CHARACTER[S]

2.5 PARSE TREE GENERATION

Once the tokenizer has processed the characters of a file item, the
resulting list of tokens is passed to the parse tree generator (PTG),
which produces a tree representation of some rightmost derivation of the
file item. The PTG is the most complex component of the parser.

The PTG, based upon fast multitrack parsing techniques for general
context-free languages (Irons, 1971; Quinlan, unpublished working
notes), resembles an LALR parser that follows all derivations of a file
item in a breadth-first manner.4 It is responsible for detecting syntax
errors as well as resolving ambiguities.

One feature of the PTG found in ROSIE 3.0 (but not found in earlier
ROSIEs) is a complete and consistent set of disambiguation rules. These
rules have eliminated the occurrence of ambiguity errors, even in the
presence of prepositional phrases (a common source of such parsing
errors in earlier ROSIEs). This feature enhances code readability by
reducing the number of delimiting parentheses otherwise required to
avoid surface-level ambiguities. Unfortunately, this feature is not
without cost, adding an extra burden on the ROSIE programmer to ensure
that his code is interpreted correctly.

2.5.1 Associativity, Precedence, and Disambiguation

The PTG derives its rules of precedence and associativity, and
ultimately its rules for resolving ambiguities, out of the context-
free grammar from which its parse table was compiled. For ROSIE 3.0,
this is the grammar seen in Section 2.4. The rules of precedence and
associativity describe how otherwise ambiguous sentence fragments will
be interpreted.

In ROSIE 3.0, precedence and associativity are immediately
decidable from the order of productions in the grammar. When a
nonterminal can be derived from several alternative productions, the
production appearing earliest in the grammar is preferred to the
productions appearing later. Given two alternate derivations, the
preferred derivation is selected via a depth-first, left-to-right
comparison of the productions used in both. First, the productions at
the roots of each parse tree are compared. If the same production appears
in both positions, then the productions of the leftmost children are
compared and so on. When the two productions being compared are
different, then the parse tree using the preferred production is
returned as the preferred derivation.

'This technique is similar to that found in Tomita (1985).

" " ' -'€ "" •" ' .'JJc¢2¢" ZJ 2. 2 € ¢.'o 2 2. f" "'.";2¢".." ' ..''."." I.

An lan AL M an"WIU MflMD ana, MJ~ anV PER an m6- uj na .. N' a t J J ll.. .o . nJ

2. Syntactic Structure 39

While the grammar in Section 2.4 should be used a, the ultimate
authority on questions of associativity, precedence, and disambiguation,
we will not be so fiendish as to say that is all there is to know.
Succeeding chapters covering linguistic structures with particularly
problematic syntax (e.g., embedded actions and action blocks) will
include discussions on the associativity and precedence of such
structures. In addition, the file package provides a tool forS,
"deparsing" file items--deparsing translates the HILEV representation of
a file item into ROSIE source code, demonstrating the interpretation of
that file item visibly through the use of indentation and parentheses.

2.5.2 The Disambiguation of Prepositional Phrases ,..

The singularly most problematic of all ROSIE's syntactic forms is

the prepositional phrase. Prepositional phrases are modifiers,
attaching additional arguments to certain linguistic structures. They
are allowed to modify the action verb of a procedure, e.g.,

move a ship from Le Havre to Auckland

the relational verb of a proposition, e.g.,

the ship did move from Le Havre to Auckland

and the class noun of a description,

the ship in dry-dock

Descriptions can further be modified by a relative clause, e.g.,

the ship in dry-dock which did move from Auckland

the main verb of which may likewise be modified by a prepositional
phrase. Since descriptive terms, such as

the ship in dry-dock .

are commonly used as arguments to procedures and propositions as well as
other descriptions, there is considerable room for ambiguity.

In places where an ambiguous parse is possible, the following two
rules apply to the interpretation of prepositional phrases:

A prepositional phrase will always modify the closest verb, if
syntactically possible.

If the surrounding context does not support a verb, a
prepositional phrase will modify the class noun of the leftmost
description preceding the preposition.

slf the surrounding context does not support such a description, a
syntax error occurs.

V S.'

iV

2. Syntactic Structure 40

As an aside, a relative clause will attach itself to the
description immediately preceding it; once attached, the class noun of
that description cannot be further modified by a prepositional phrase.

To illustrate these rules, consider the following pairs of examples
selected because their default interpretation is somewhat
counterintuitive.

report the name of the man

report (the name) (of the man)

move the ship which does come from the port to the harbor

move (the ship (which does come (from the port) (to the harbor)))

the ship from the port on the coast did move to the harbor

(the ship (from the port) (on the coast)) did move (to the harbor)

the man did hit the lady from the city who is wearing blue

(the man) did hit (the lady) (from the city who is wearing blue)
0hy%-

Parentheses in the second statement of each example pair (regular font) 4%
delimit the extent of descriptive terms and relative clauses,
demonstrating the default associations of prepositional phrases and
relative clauses.

2.5.3 Directing Disambiguation with Parentheses

Users can direct the attachment of prepositional phrases (as well
as other syntactic forms) with parentheses. Essentially, parentheses
narrow the context of interpretation. With parentheses a user can
indicate precisely the syntactic groupings desired.

M
As an example, consider the earlier unparenthesized examples. The

intuitive interpretation of these statements will be made by ROSIE if we
add parentheses as indicated below:

report (the name of the man)

move (the ship which does come from the port) to the harbor

the ship (from the port on the coast) did move to the harbor

the man did hit the lady (from the city) who is wearing blue

By surrounding the name of the man with parentheses, report is no
longer in the context of interpretation, meaning the phrase introduced
by of can only modify name. Alternatively, the change to the second
example hides the verb come and allows the phrase introduced by to to
correctly modify the verb move. The third example is similar to the

MUMq

2. Syntactic Structure 41 V

first; the fourth, however, is unique. Since the relative clause must
attach to a description immediately preceding it, and it can no longer

attach to city, the phrase introduced by from must attach to lady so
that the relative clause can modify the description lady from the city.

/£

4,m

'-m~

.

. .. ., • -i n~ &:; ,w .,x. m , ,:;_, - ,-.. e

-

3. Running ROSIE 43 NO

a %4

III. RUNNING ROSIE

This chapter describes the general operating procedures for running
ROSIE. While it is intended as a beginner's guide, those readers
already familiar with ROSIE may find this information instructional as
well. In this chapter, we present ROSIE's interactive working
environment and discuss how one normally develops a program in this
environment.

1

3.1 GETTING STARTED

ROSIE is an interactive programming system, and so in one respect
is similar to LISP. To get started, enter a ROSIE session. In UNIX,2

this can be done with the command rosie, which puts you into ROSIE's top-
level monitor, e.g.,

% rosie
(R)

< ROSIE Version 3.0 (PSL) 15-Apr-86]

<1> ,

During initialization of a ROSIE session, the file .rosierc, 3 if
present, will be loaded from the user's home directory. This file may
only contain LISP expressions, which are evaluated at load time.
Typically, these are commands to load specific user modules, set system
switches (discussed in Appendix C), etc.

Upon entering the top level, ROSIE prints a banner line describing
the version and date of your system, and then prompts you for the first
line of input. From this point on, you are talking with ROSIE. All
aspects of system development, testing, refinement, and maintenance can
be done from the top-level monitor.

'This chapter assumes ROSIE 3.0 running in PSL under UNIX 4.2. See
your site consultant for system operating procedures specific to your
installation.

2Assuming your paths are initialized to include the ROSIE/bin
directory.

3This file name may be different for sites not running ROSIE under
UNIX. Check with your site consultant.

..

I.-,

S ~ -' .%VV%' '.~N ~S'~''~VVV ''~' 2~Q '.*. !

3. Running ROSIE 44

3.2 INTERACTIONS AT THE TOP LEVEL

The top-level monitor is an interactive control loop that prompts
the user with the current line number surrounded by angle brackets. The
user commands ROSIE by issuing a monitor rule to the top level. The top
level immediately parses and executes each monitor rule as it is
received and then prompts for another.

ROSIE provides a history facility for interactions at the top
level. This facility keeps track of the last 40 monitor rules issued.
These can be examined by the user, re-executed, and even edited. ROSIE
also provides a small set of monitor commands with an abbreviated syntax
for examining the history list and the database structure.

The following sample session is provided to give the new user a
feeling for working in ROSIE's top-level monitor. This demonstration is
by no means complete, but it should make the reference manual easier to
understand and your first attempt at interacting with ROSIE more
successful.

(R)
ROSIE Version 3.0 (PSL) 30-May-86 ,

<2> Assert John is a man.
<3> Assert each of Mary and Sara is a woman.
<4>? .

GLOBAL Database
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.

Programming in ROSIE consists primarily of actions performed on
relations in the database. The database is built up by asserting
propositions. Lines <2> and <3> above are examples of such assertions.
In line <2>, we assert that the element John is a member of the class
man. In line <3>, we make a similar assertion, which is applied to the
elements Mary and Sara successively. In line <4>, we use the ? monitor
command to examine the contents of the database.

Note: Line <1> is missing because it commanded ROSIE to dribble this
session to a text file.

<5> Assert any man does like any woman.
<6> ?

GLOBAL Database
ANY MAN DOES LIKE ANY WOMAN.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.

3. Running ROSIE 45

The elements seen in lines <2> and <3> (i.e., John, Mary, and
Sara) are called names. Line <5> gives an example of another type of
element called class elements. Here, any man and any woman are both
class elements. A class element implicitly represents any element that
is a member of that class. Thus, any man represents any element, such
as John, that satisfies the 'element is a man' relation.

Another thing to notice is the use of does in line <5>. The main
verb of any ROSIE proposition must be introduced by an auxiliary form of
be or do. Hence, we have does like rather than likes. .

<7> Display every woman that John does like.
SARA
MARY

In line <7> we have an example of a quantified descriptive term,
i.e., every woman that John does like. This is distinguished from a
class element by the use of the function word every rather than any.
Instead of being an implicit placeholder for elements of the class
described, this type of tern explicitly evaluates to a sequence of those
elements, each of which is passed to the display procedure in turn.

To find the elements of woman that John does like, ROSIE goes
through the following process. First, it finds the elements of the -f
class woman, and then it uses the relative clause as a filter on those
elements, i.e., each element generated must satisfy the relation ='

John does like element

To decide if 'John does like Sara', ROSIE examines the database for
instances of the does like relation, comparing the target proposition to
each until it can be confirmed or disproved. Comparison to the
proposition asserted in line <5> confirms the proposition because John
is a member of the class man and Sara is a member of the class woman.
Thus, Sara can be passed to display. Likewise, Mary will go through
the same tests and be passed to display.

<8> ??

<8> ??
<7> DISPLAY EVERY WOMAN THAT JOHN DOES LIKE.
<6> ?.
<5> ASSERT ANY MAN DOES LIKE ANY WOM1AN.
<4> ?
<3> ASSERT EACH OF MARY AND SARA IS A WOMAN.
<2> ASSERT JOHN IS A MAN.
<1- DRIBBLE TO "demo".

<9> Redo 7.
SARA
MARY

%.,...

5, .~.5 5, 5, -
,% ,i

3. Running ROSIE 46 v

Lines <8> and <9> demonstrate the use of the history facility. The
?? monitor command displays up to the last 40 monitor rules issued,
while the redo procedure allows the user to re-execute any of those ,
rules.

<10> Deny any man does like any woman. *".

<11> ?
GLOBAL Database]

SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.

In line <10> we have an example of how to remove an assertion from
the database. Note here that the denial of a proposition that contains
a class element requires that the class element be used in the denial,
i.e., we could not have used 'John does like any woman'.

<12> Assert any man does like a woman.
<13> ?
GLOBAL Database
ANY MAN DOES LIKE SARA.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.

In line <12> we see an important difference between any and a.
The article a introduces simple descriptive terms, and so is like every
in the respect that it is an explicit rather than implicit reference to
a member of a class, evaluating to the first element that can be './

generated from that class (i.e., Sara). This element then appears as
an argument to the asserted proposition.

<14> Forget about every woman.
<15> ?
GLOBAL Database]
JOHN IS A MAN.

Here's another example of how to delete propositions from the
database. The forget about procedure causes every proposition
containing an instance of its argument to be removed from the database. V

As seen before in line <7>, the quantifier every causes this procedure
to be applied to each member of the class woman.

<16> Assert any man does like a woman.
<17> ? --

GLOBAL Database
ANY MAN DOES LIKE WOMAN #1.
WOMAN 1 1 IS A WOMAN.
JOHN IS A MAN.

.v.

3. Running ROSIE 47

In this example, we find another property about the article a.
When there is no element in the database that belongs to the class, the
use of a demands that one be created. After the proposition

WOMAN #1 is a woman

is asserted, the term a woman evaluates to WOMAN #1, which then %

appears as an argument of the proposition being asserted.

<18> Display the woman.
WOMAN #1

Another article, the, is similar to a in that it evaluates to the
first element that can be generated as the instance of a given class,
but the generates an error if no such element exists.

<19> Deny any man does like a woman. p

<20> Assert any man does like any woman.
<21> Assert John does not like Sara.
<22> ?
GLOBAL Database]

JOHN DOES NOT LIKE SARA.
ANY MAN DOES LIKE ANY WOMAN.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.

<23> Redo 7.
MARY

Now, returning to our original definition of does like, lines <20>
and <21> show how we can establish a default relation and an exceptional r
relation, respectively. In line <23>, we use the redo procedure to
re-execute line <7>, we see that only Mary can be generated as a member
of the given class. When attempting to prove 'John does like Sara'
ROSIE hits the proposition asserted in line <21> before the one from
line <20>, thus disproving rather than confirming the target proposition
and filtering Sara out of the class woman that John does like.

<24> Activate beliefs.
<25> Assert John does like Sara.
<26> ?
[BELIEFS Database

JOHN DOES LIKE SARA.

ROSIE allows users to create alternate databases and bring them
into context with the activate procedure seen in line <24>. Here we
create and activate the database beliefs. Unless otherwise directed,
assertions go into the active database, and so the assertion in line
<25> went into beliefs.

..

V

-p"

3. Running ROSIE 48
"'.

<27> Global? yp

[GLOBAL Database]

JOHN DOES NOT LIKE SARA.
ANY MAN DOES LIKE ANY WOMAN.

SARA IS A WOMAN.
MARY IS A WOMAN.

JOHN IS A MAN.

<28> Display every woman.
SARA %

MARY
<29> Redo 7.

SARA

MARY

Line <27> demonstrates another monitor command for examining the

contents of a particular database; note that the information in the

global database was not lost even though this database is no longer

active. Line <28> demonstrates yet another attribute of ROSIE's A

database structure, namely, that information stored in the global

database, even when not active, is still accessible.' Also notice that

when we re-execute line <7>, we now get both Sara and Mary again. This
is because ROSIE can prove 'John does like Sara' in the active database

before finding it could be disproved in the global database.

<30> Clear database.
<31> ?
BELIEFS Database

<32> Redo 7.

MARY

Another way to remove propositions from a database is with the
clear procedure. Now when we re-execute line <7>, Sara is again

filtered from the given class.

",-

3.3 BUILDING ROSIE PROGRAMS

One builds a ROSIE program out of rules, rulesets, and demons.

These constitute the principal programming structures in ROSIE (they are
discussed in more detail in Chapter 4). Basically, a rule is an

executable programming statement (a monitor rule is simply a rule issued

at the top-level monitor), while a ruleset is a rule subroutine; demons

are special types of rulesets. To start a program, one issues a rule to

the top level that invokes a ruleset. The ruleset executes the rules in

its body that will presumably make changes to the database, query the

user for information, and/or invoke other rulesets, etc.

4This is only true of the global database.

%a

3. Running ROSIE 49

Rulesets cannot be defined at the top level, but must be defined in
program files. Program files can also contain rules not contained in a
ruleset; these are called file rules. File rules are normally used to
initialize the database. Although a single program file can contain any
number of rulesets and file rules, it is a good practice to organize
large applications into several files: one for the main body of code,
one for utility rulesets, and one for file rules. Program files are
created and further changed via operations of the file package (see
Chapter 13).

Program files are stored on disk. To incorporate an existing file
into ROSIE, use the load procedure, e.g.,

<2> Load "myprog".

This tells ROSIE to load the program file "myprog" from disk.5 Loading
does two things: first, it notices the contents of the file; and % %
second, it enables those contents. Noticing is the act of recording the
file's contents, while enabling is the process of defining rulesets and .60%

executing file rules. A file can also be enabled without being noticed
via the sysload procedure. Program files that you wish to edit during a
ROSIE session should be loaded--you can only edit nol iced files--while
other program files should be sysloaded to make efficient use of space.

Program files are created with the build procedure, e.g.,

<3> Build "players".

Build creates a noticed (albeit empty) program file of the given name.
To add rulesets and file rules, use the edit procedure, e.g.,

<4> Edit players"

This calls up the user s preferred text editors on the ROSIE edit file
(i.e., a buffer file, which, in UNIX based ROSIE, is called rosie--'V
ed). When the user exits the editor, ROSIE parses and loads the
contents of the edit file, retaining it in place of the original code.

To see how this works, assume we called the editor as in line <4>,
added some code and exited the editor, e.g.,

5Actually, ROSIE loads the file myprog.map or, if compiled, '
myp rog. cmp.

ROSIE determines the users preferred editor from the LISP .

variable $ROSIEEDITOR. In UNIX based ROSIE, this variable is
initially set to the environment variable EDITOR, or just "edit" if
this variable is not set.

%
'h.

-" -" ; -- - ' l ", % '" - "] '/ " " " " ' ' " " " " '" '" " " " " " '" -"." " -- N " "- . '

'L

3. Running ROSIE 50

Scanning...

Done.

Parsing...
TO FIND BASKETBALL PLAYERS
TO DECIDE IF A PERSON IS TALL A
Done.

Loading...
TO FIND BASKETBALL PLAYERS
TO DECIDE IF A PERSON IS TALL
Done.

The list procedure allows us to examine the contents of the file, e.g.,

<5> List "players".

To find basketball players:
[1] Send "(Every man who is tall) is a basketball player.(cr)".
End.

To decide if a person is tall:
[1] If the person's height is greater than 6.7 feet,

conclude true, otherwise conclude false.
End.

(rule 1] Assert each of Jim, Jack, John, and Joe is a man.

[rule 2] Let Jim's height be 6.4 feet and
Jack's height be 6.8 feet and
John's height be 5.7 feet and
Joe's height Oe 7.1 feet.

As you can see this is a very simple program. The two file rules
initialize the database to contain several men of varying heights, e.g.,

<6> ?
GLOBAL Database]

7.1 FEET IS A HEIGHT OF JOE.
5.7 FEET IS A HEIGHT OF JOHN.
6.8 FEET IS A HEIGHT OF JACK.
6.4 FEET IS A HEIGHT OF JIM.
JOE IS A MAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

The procedural ruleset 'to find basketball players' defines the procedure
that starts the program running, and the predicate rulest 'to decide if a
person is tall' is used to decide when a particular candidate meets the
requirement for being a basketball player. We would start this program
by calling the find basketball players procedure, e.g., %

-%

U.
' ,, .¢. , 7¢.r? - #¢ 7:' , Ye, - i :- ", i .- ,.l' ?-..-,..i .3 ..- .- ?.-? --- ' -Z-i : .",AU

. * t... ,n1 't fl15- I nn .. I...A .. ' . ,. -.

3. Running ROSIE 51

<7> Find basketball players.
JOE is a basketball player.
JACK is a basketball player.

which prints a message for each suitable candidate it finds.

To update the program, we simply call the editor on the program
file and make the desired changes. While this is good for a small file,
it seems an awkward approach for making a small change to a large file
containing possibly several dozen rulesets. To combat such situations,
ROSIE provides a special-purpose data primitive called a filesegment.

A filesegment allows the user to specify contiguous portions of a
program file, such as a sequence of file rules or ruleset rules as well
as an entire ruleset or program file. In addition, certain types of
filesegments can be specified using a convenient shorthand notation,
e.g., the filesegment

'file: "players"'

can be specified as simply "players" and

'file: "players", to decide if a person is tall'

as tall. The file package operations and break package operations take
filesegments as arguments. Thus, the file package and break package
operations can be applied to entire files or portions thereof, e.g.,

<8> List 'file: "players"'.

To find basketball players:
[1] Send "(Every man who is tall) is a basketball player,{c.r)".
End.

To decide if a person is tall:
[1] If the person's height is greater than 6.7 feet,

conclude true, otherwise conclude false. .

End. .

[rule 1] Assert each of Jim, Jack, John, and Joe is a man.

[rule 2] Let Jim's height be 6.4 feet and
Jack's height be 6.8 feet and
John's height be 5.7 feet and
Joe's height be 7.1 feet.

<9> List 'file: "players", to decide if a person is tall'.

To decide if a person is tall:
[1] If the person's height is greater than 6.7 feet,

conclude true, otherwise conclude false.
End.

3. Running ROSIE 52

<10> List tall.

To decide if a person is tall:
[1] If the person's height is greater than 6.7 feet,

conclude true, otherwise conclude false.
End.

<11> List 'file: "players", to decide if a person is tall, 1'.

[1] If the person's height is greater than 6.7 feet,
conclude true, otherwise conclude false.

If we wish to change the criterion for deciding tallness in the
demo program, we could simply edit the ruleset defining this property,
e.g., %

<12> Edit tall.

In fact, we could just edit the offending rule of that ruleset, e.g.,

<12> Edit 'to decide if a person is tall, 1'.

Scanning...
Done scanning.

Parsing...
Done parsing.

Loading...
TO DECIDE IF A PERSON IS TALL -- redefined.
Done loading.

<13> List tall.

To decide if a person is tall:
[1] if the person's height is greater than 6.9 feet,

conclude true, otherwise conclude false.
End.

After editing, the ruleset will be redefined and exhibit the desired new
behavior, e.g.,

<14> Find basketball players.
JOE is a basketball player.

% %

_0]

N'%

3. Running ROSIE 53

So far, everything we have done to "players" has been kept in core,
i.e., nothing has been safely written to disk. Edits can be written to
disk with the save procedure. Given a program file, save updates the
program's .txt and map files to reflect changes made during a ROSIE %
session. If, as in the case of "players", the files players.txt and
players.map do not yet exist, they are created. The .txt file is a % ,
copy of the program source code, and the .map files is its HILEV
representation as well as a mapping between source and HILEV.

Once satisfied with a program's behavior, the user can improve
performance of the program file via the compile procedure. Compiling a
program file creates a .cmp file containing the binary machine code
representation of the HILEV in the map file. Rulesets run on the
order of three to five times faster when compiled.

3.4 DEBUGGING FACILITIES

If not satisfied with a program's behavior, ROSIE provides several
facilities for monitoring various aspects of its behavior. These
facilities can be used alternately for finding bugs in the code or
improving performance.

The primary source of debugging aids come from the break package.
The break package (discussed in Chapter 14) allows the user to J,
temporarily redefine rulesets and demons in order to monitor control
flow and/or interrupt execution at key points. There are three basic
facilities in the break package: a trace facility, break facility, and
profile facility. The trace facility redefines rulesets such that a
message is printed before and after invocation. The break facility
temporarily interrupts execution, throwing control into an interactive
break loop from which system state can be examined and the computation
aborted or resumed. The profiler redefines rulesets to collect
performance information on each invocation. When, via the break
package, an errant ruleset has been found, it is then a simple matter to
edit and fix the bug.

Of course, if the bug was introduced by a misinterpretation of
ROSIE's syntax, it may be very hard to find. That is, the errant code
may look correct, but its syntactic interpretation is not what one might -
think. This type of problem occurs most frequently with rules of
associativity, e.g., is

record the name of the ship

really

record (the name of the ship)

e

3. Running ROSIE 54

which is the intuitive interpretation, or

record (the name) of the ship

which is ROSIE's interpretation. Such problems can be detected with the
deparse procedure.

The deparser (part of the file package) is a ROSIE source code
generator. Given the HILEV representation of a filesegment, the
deparser generates its source code equivalent. While this generated
code lacks certain stylistic eloquence--the deparser is not a very good
pretty printer--it does highlight ROSIE's interpretation of code by
delimiting possibly ambiguous code segments with parentheses and
illustrating associations of embedded code blocks with indentation.

For instance, consider the procedural ruleset

To report a finding:
[1] Send "(the finding)(cr)".
[2] Add the proposition from "'(the finding)"' to findings.
End.

adapted from the SPILL demo program. In this ruleset, the finding is a
string such as

"spill is detected at WOC-6"

which reports some observation about a chemical spill as a ROSIE
proposition. Rule [21 of the ruleset is supposed to turn the finding
into an intentional proposition and assert it into the findings
database. When we call this ruleset, e.g.,

<16> Report "spill is detected at WOC-6".
spill is detected at WOC-6

In 'TO REPORT A FINDING, AT 2'
No such element exists:
THE PROPOSITION

Broken at:
'TO REPORT A FINDING, [rule] 2'.

[1] quit.

In 'TO REPORT A FINDING, AT 2'

<17> " "

an error occurs, throwing control into a break loop. Examining this
ruleset with the deparser, e.g.,

•

1E

3. Running ROSIE 55

<17> Deparse report.

TO REPORT A FINDING:
[1 SEND (THE FINDING, CR).
[2] ADD (THE PROPOSITION) FROM {"'" THE FINDING, "'") TO FINDINGS.
END.

we see that from "'(the finding)"' actually modifies add rather than
the proposition. We can fix this problem by delimiting the correct
interpretation with parentheses, e.g.,

<18> Edit report.

Scanning...
Done scanning.

Parsing...,
TO REPORT A FINDING ,,.. '

Done parsing.

Loading...
TO REPORT A FINDING -- redefined.
Done loading.

<19> List report.

To report a finding:
[i] Send "(the finding){crl".
[2] Add (the proposition from "'(the finding)'") to findings.
End.

<20> Deparse report.

TO REPORT A FINDING:
[l) SEND (THE FINDING, CR).
[2] ADD (THE PROPOSITION FROM ("'", THE FINDING, "'") TO FINDINGS.
END.

<21> Report "spill is detected at WOC-6".
spill is detected at WOC-6
<22> Findings?

FINDINGS Database
SPILL IS DETECTED AT WOC-6.

and the ruleset now runs to completion. v.,.

7 Lexical analysis transforms this into tae expression seen in the
example.

4*0 I

3. Running ROSIE 56
41,

3.5 ERRORS, INTERRUPTS, AND BREAK LOOPS ";

ROSIE is very tolerant of errors and other interrupts. Most "ON
runtime erzors are recoverable, allowing computations to resume from the
point of the error. When a recoverable error occurs, control is thrown %
into an interactive monitor, called a break loop, from which the
interrupted computations can be resumed. User interrupts, signaled by *.-',

hitting <ctrl>C, are also treated as recoverable errors.

A break loop is an extension of the top-level monitor. The
extensions primarily reside in a set of break commands that are V..

accessible only within a break loop. Details about all the break
commands can be found in Chapter 14. Briefly, the break commands allow
the user to examine various aspects of system state at the time of the
break and then resume computations from that point.

4..
For instance, consider our previous example using the ruleset ,

To report a finding:
[1] Send "(the finding}{cr)".
[2] Add the proposition from "'{the finding)"' to findings.
End.

When we ran this the first time, e.g.,

<16> Report "spill is detected at WOC-6"..

spill is detected at WOC-6

In 'TO REPORT A FINDING, AT 2'
No such element exists:
THE PROPOSITION

Broken at:
'TO REPORT A FINDING, [rule] 2'.

we encountered a runtime error due to the fact that the proposition was
being evaluated instead of the proposition from "'(the finding)"'.

Since this is a recoverable error, control is thrown into a break
loop.8 If you do not wish to deal with the error, you can return to the
top level via the quit procedure as we did before. This aborts the
computat ion. Otherwise, you can try to fix the error and resume
computations from the break point.

%

-'If this error had not eenl recovorable, such as a stack overflow

error, control would have returned to the top-level monitor.

..- . '

3. Running ROSIE 57

The prompt in a break loop is the line number surrounded by square
brackets ([j). Square brackets are used to remind you that the current
environment resides inside the invocation of a ruleset. Note that each
break loop has its own command history and, thus, each break loop starts
at line [l]. Also note that you can have several layers of break loops,
e.g.,

[l] Report "spill is not detected at WOC-6".
spill is not detected at WOC-6

In 'TO REPORT A FINDING, AT 2'
No such element exists:
THE PROPOSITION "4' *

Broken at:
'TO REPORT A FINDING, [rule] 2'.

You can return to earlier breaks with the quit! break command, e.g.,

[1] Quit!

Broken at: ,
TO REPORT A FINDING, [rule] 2'.

[2]

which is distinguished from the quit procedure by terminating with an
exclamation point (!).

From the break loop, we can examine aspects of system state, such
as the state of the invocation's private database, e.g., %.r%

121 Private?
PRIVATE Database

spill is detected at WOC-6" IS A FINDING.

We can also execute anything we can execute from the top level, e.g.,

[31 Deparse report.

TO REPORT A FINDING:
11) SEND (THE FINDING, CR).

121 ADD (THE PROPOSITION) FROM '", THE FINI)ING, "' TO FINDINGS.

141 Edit report.

allowing us to discover and repair the problem. Once fixed, we can %
resume computations from the broken rule, e.g., r.

151 Re ume!
A

%%" ,*,

3. Running ROSIE 58

or from some other rule, e.g.,

[51 Resume 1!

or simply restart the ruleset invocation, e.g.,

[5] Resume ruleset!

There are also break commands such as list! and edit! for easily
examining and editing the broken ruleset rule and commands such as
trace! and pop! for examining and moving about the stack of ruleset -

invocations. For further details, see Chapter 14.

3.6 EXITING A ROSIE SESSION

Always terminate a ROSIE session with the logout procedure, e.g.,

<25> Logout.

Files edited but not saved:
'FILE: "players"'

Save 'FILE: "players" (Y or N)? y

Saving 'FILE: "players
Done saving.

As the example above demonstrates, logout performs various clean-up
tasks, such as closing open files, ending a dribble session, or
informing the user of edits not written to disk.

When running under UNIX, the user can temporarily suspend a ROSIE
session by hitting <ctrl>Z; this returns the user to the operating -,

system level. The session can be resumed in the same manner as any
other suspended UNIX job (i.e., typically by typing fg).

3.7 SYSTEM SWITCHES

ROSIE supports a small number of system switches to control certain
aspects of system behavior (these switches are implemented as LISP
variables whose values are T when on and NIL when off). Some switches
are supported to make ROSIE 3.0 act like earlier versions of ROSIE and

others simply to suppress noncritical features that the user may not
lik e ." "

The system switches supported by ROSIE 3.0 are further described in
Appendix C.

d'

- •%

3. Running ROSIE 59

NJ

3.8 TOP-LEVEL OPERATIONS

The following are operations found to be useful at the top level. '.4'|
The file package commands are not included here but can be found in
Chapter 13.

Lists the contents of the active database; equivalent to executing
the show procedure, e.g. ,

<2> Assert each of Jim, Jack, and John is a man.
<3> ?
[GLOBAL Database]

JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<name element>?

<name element> [<atom>]* <atom>

Lists the contents of the database named <name element>. Equivalent
to calling show <name element>, e.g., .

<4> Assert 'John does love Mary' in active beliefs.
<5> Active beliefs?
ACTIVE BELIEFS Database

JOHN DOES LOVE MARY.

Lists up to the last 40 monitor rules issued by the user, e.g.,

<6> ??

<5> ACTIVE BELIEFS?
<4> ASSERT 'JOHN DOES LOVE MARY' IN ACTIVE BELIEFS. ,-

<3> ? .
<2> ASSERT EACH OF JIM, JACK AND JOHN IS A MAN.
<1> DRIBBLE TO "log".

<integer>?

Lists the rule designated by <integer> if it was one of the last
40 monitor rules issued by the user, e.g., b

%'9

3. Running ROSIE 60

<7> 2?

<2> ASSERT EACH OF JIM, JACK AND JOHN IS A MAN.

redo a line [thru a line] [for N times]

Re-executes the designated sequences of monitor rules, where each
line must evaluate to a positive integer specifying one of the
last 40 monitor rules, e.g.,

<8> Redo 3. .
GLOBAL Database] ,

JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

If the for N times option is given, re-executes the sequence

N times, where N must be a positive integer.

redo

Re-executes the previous line.

fix (a linel

Allows users to edit and resubmit monitor rules. Calls the user's r
text editor on a dummy file containing the text of the designated rule,

executing the modified rule when the user exits the edit session. The -
new rule is remembered instead of the call to fix that exhumed
it, and thus, the nei rule can be referred to later, e.g.,

<9, Fix 2.

<9> ASSERT EACH OF MARY AND SARA IS A WOMAN.
<10> ?? -

<10> 7e %

<9> ASSERT EACH OF MARY AND SARA IS A WOMIAN. .,
<8> REDO 3.
<7> 2?
<6> ??
5- ACTIVE BELIEFS.

<4- ASSERT 'JOHN DOES LOVE M1ARY' IN AC'FI V BtII, LI'S.
<3> ?
<2- ASSERT EACH OF JIM, JACK AMI) JOHN IS A 'IAN.

I1-' DRIBBLE TO "log'

If no line is given, applies fix to the pr viom- I ie.

.- d

'"V. ' *~%* ~ S. ~"%" ,,, *%q* %~ * . - '~- '..... . . .

3. Running ROSIE 61

describe an element [in a database)

Displays all propositions from database that use element as a
top-level argument, e.g.,

<11> Describe John in active beliefs.

JOHN DOES LOVE MARY

forget about an element [in a database]
-

Removes all propositions from database that use element as a ...P
top-level argument, e.g.,

<12> Forget about John in active beliefs.
<13> Active beliefs?

ACTIVE BELIEFS Database]

display an element

Prints element to standard output (by default, the user's terminal), e.g.,

<14> Display the woman.
SARA

dribble to a file

Opens a special output channel to file, making it the dribble file.
After this, a copy of all terminal I/O will be sent to file. The
dribble file may not be closed except with stop dribbling.

This is a convenient way to save a transcript of all or part of a
ROSIE session for later viewing.

NOTE: You may edit while dribbling, but that part of the session will
not be dribbled.

stop dribbling

Closes the dribble file and stops copying terminal I/0. If no dribble
file is open, an error occurs.

switch on a swvitch
switch off a switch

Respectively, enables or disables switch, which is one of ROSIE's

3. Running ROSIE 62

system switches defined in Appendix C, e.g.,

<15> Switch on $MIXPRINTMODE.
<16> ? "

GLOBAL Database]
SARA is a women.
MARY is a woman.
JOHN is a man.
JACK is a man.
JIM is a man.

NOTE: When the $MIXPRINTMODE is on, ROSIE uses the older form of
printing relations in which keywords are in lowercase and everything
else (sometimes) is in uppercase.

toggle on a switch
toggle off a switch

Like switch on/off except that, if executed in a ruleset, *.

switch is reset to its original value when the ruleset terminates.

toggle a switch

If switch is on, turns it off, otherwise turns it on.

a switch is set

Concludes true if switch is on, cz..,'ludes false otherwise, e.g.,

<17> If $MIXPRINTMODE is set, display yes.
YES

info switches

Lists the setting of all system switches, e.g.,

<18> Info switches.

$AUTOQUERYFLG is off
$COMPRULESETS is off
$EXPDRULESETS is on
$EXTENDSEARCH is on
$MIXPRINTMODE is on ,.'
$PRETTYFORMAT is off (-'PD

$PRINTMSGS is on
$REMOVEDUPLS is off

Le ---

S .-S

S.

3. Running ROSIE 63

info system

Lists the system name, version number, the version of LISP used to
implement ROSIE, and the system creation date, e.g.,

<19> Info system.

(R)
ROSIE Version 3.0 (PSL) 15-Apr-86]

info date

Prints the current date and system name in comment form, e.g.,

<20> Info date.

(R)
[ROSIE Version 3.0 (PSL) 30-May-86

info loaded

Lists pertinent information about loaded and noticed program 5,

files, e.g.,

<21> Info loaded.

Files currently loaded and noticed by filepkg:

'FILE: "report"'
Last changed: Not written to disk
Not compiled

Contains I ruleset, 0 filerules
All rulesets enabled

Edited but not saved

'FILE: "players"'
Last changed: Fri May 30 14:11:31 1986
Not compiled

Contains 2 rulesets, 2 filerules
All rulesets enabled .5

type a file

List the contents of file on the user's terminal.

. A
".5

'p-

3. Running ROSIE 64

delete a file

Deletes file from the user's directory. Does not ask for
confirmation. No error occurs if the file does not actually exist.

dskin a file

Loads file using the implementation LISP's load function
(or its equivalent). Provided for loading LISP files into the system.

NOTE: For further information on the entire set of operations for file
input and output, see Chapter 11.

lisp

Throws control into a LISP break loop. Exiting the break loop (in PSL
this is done by hitting <ctrl>D or q) returns control to the
top-level monitor.

paraphrase

Throws control into a special monitor for verifying the interpretation
of ROSIE code.

The parsemode monitor reads and parses ROSIE rules and other file
items, and then displays its interpretation of the code using
parentheses and indentation to highlight the boundaries of terms,
clauses, and phrases, e.g.,

<22> paraphrase.
> Move the ship from the port. ..

MOVE (THE SHIP) (FROM THE PORT) .

> Move (the ship from the port).
MOVE (THE SHIP (FROM THE PORT)).

>Qu it.
<23>

Exiting this monitor by hitting a <ctrl>C or by entering quit.
throws control back to the top-level monitor.

pa rsemode

Like paraphrase, this operation throws control into a special
monitor for examining the interpretation of ROSIE code. However, the

a4

3. Running ROSIE 65

parsemode monitor displays the HILEV interpretation of the code, e.g.,

<23> parsemode.
> Move the ship from the port.
(<RULE>

(<DO>
(<GO> (<IDENT> MOVE

(*OBJECT* (<THE> (<DESC> <D/56236/G0383>
(<IDENT> SHIP) NIL NIL)))

(FROM (<THE> (<DESC> <D/56253/G0384>
(<IDENT> PORT) NIL NIL)))))))

> Move (the ship from the port).
(<RULE>

(<DO>
(<GO> (<IDENT> MOVE

(*OBJECT,', (<THE>
(<DESC> <D/58293/GO386>

(<IDENT> SHIP
(FROM

(<THE>
(<DESC> <D/58276/G0385>

(<IDENT> PORT) NIL NIL))))
NIL NIL)))))))

> Quit.
<24>

HILEV is the machine executable representation of a parsed file item.

reclaim

Forces a LISP garbage collect (i.e., reclaims previously used dynamic
storage that is no longer needed so that it may be allocated for
another purpose later on).

save as a file

Writes the current ROSIE session core image as an executable file to
file. This essentially "freezes" the state of the program that
calls it. The user can run the executable file and resume the ROSIE
session following the point at which save was called.

NOTE: Save as closes all open channels (including the channel to
the dribble file) before creating the executable file.

3. Running ROSIE 66

.. d.

Iogout

Kills the ROSIE session. THIS IS THE ONLY SAFE WAY TO EXIT ROSIE.

If edited program files have not been written to disk, ROSIE will issue
a warning and allow the user to save his edits using the file package
operation save.

NS.

;.5

4. Programming Structures 67

IV. PROGRAMMING STRUCTURES

ROSIE's principal programming structures are rules, rulesets, and
demons. Rules correspond to executable programming statements, while
rulesets equate to rule subroutines; demons are a specialized form of
ruleset. ROSIE programs are defined as collections of interacting
rulesets and demons. To run a program, one issues a rule to ROSIE's top-
level monitor, which immediately executes the rule. The rule will
invoke a ruleset, which executes the rules in its body, invoking other
rulesets, and so on.

In this chapter, we provide a definition of rules and rulesets,
primarily focusing on how one defines and invokes rulesets.

4.1 RULES

<rule> <aclion block>

<action block> <action>
<action> AND <action block>

Rules consist of a sequence of one or more actions,1 separated by
the conjunctive and and terminated by a period (.), e.g., 2

Assert the report was received at the current time and
relay that report to every module.

If any red battalion does advance toward any strategic
objective and that objective is undefended,

move some blue battalion to that objective and
report 'that battalion was directed to that objective'.

For each blue battalion (BBTL) in sector #15, %
advise BBTL to 'move to Red River Crossing' and
assert BBTL was given a new directive.

While any strategic objective is not defended,
keep some blue battalion on alert.

'The concept of "one or more :iction" appears frequently and is
referred to as an action block.

2 The first example rule contains two actions, an assert action and
a procedure; the second, a conditional action; the last two example -J

rules illustrate two different types of iterative actions. Note that
the conditional and iterative actions take nested action blocks as
arguments.

,... - - ..

4. Programming Structures 68

A rule executes each of its component actions in turn. Execution
halts after the last action. Execution can be terminated earlier by
executing a terminating procedure (i.e., return, produce, conclude, or
continue), or by aborting computations with the quit procedure.

4.2 RULESETS

<ruleset> ::= <header>
[<private decl>]
[<monitor decl>] W
[<rule>]*

<end stmt> ,

SYSTEM RULESET <header> :
<system body>

<end stmt>

<header> TO GENERATE <genr form>
: TO DECIDE [IF] <pred form>
::= TO <proc form>

<genr form> [<spec>] <root name> [<private pps>]

<proc form> <atom> [<formal>] [<private pps>]

<pred form> <formal> <be aux> <a/an> <root name> [<private pps>]
<formal> <be aux> <atom> [<formal>] [<private pps>]
<formal> <be aux> <prep> [<formal>] [<private pps>]
<formal> <do aux> <atom> [<formal>] [<private pps>]

<spec> (I THE I A I AN I)

<root name> ::= <atom> [<atom>]*

<private pps> <prep> <formal> [<private pps>]

<formal> [<a/an>] <root name>

<private decl> ::= PRIVATE [:] <class list> .

<class list> <formal> [([INITIALI,Y] <term>)] [<class list>]

<monitor dccl> EXECUTE SEQUENTIALLY .

EXECUTE CYCLICALLY

3From the programmer's standpoint, rules are not all that
interesting. They are essentially a linguistic convenience used to
string together groups of actions. Actions are what actually control
system behavior and are discussed further in Chapter 5.

.5.

% %o,% A, - ," " " - " - - . - - . "

%

4. Programming Structures 69

= EXECUTE RANDOMLY ,,

<system body> (LAMBDA (-args-) -body-)

<end stmt> ::= END

The applicability and context in which rules are executed can be
controlled by grouping rules into rulesets. Like subroutines in more
conventional programming languages, rulesets provide a convenient way to
modularize rules into coherent procedural units. One of ROSIE's
strengths is that these modules can be invoked in a natural and " ,
transparent way using generalized English-like linguistic structures.

Users can define three different types of rulesets: procedural,
predicate, and generator rulesets. Each type varies along the lines of
how it is invoked and what values (if any) it can return. There also
exists a hybrid class of rulesets called demons. Demons fire upon the
occurrence of some specified event and have the capability of deciding
whether to let the interrupted event proceed. Rulesets and demons can
optionally be designated as system rulesets. The body of a system
ruleset is defined using a LISP lambda form, which provides a convenient
mechanism to interface with software packages developed in or accessible
from LISP.

4.2.1 Defining Rulesets

Rulesets (and demons) are defined in program files; ROSIE does not
allow rulesets to be defined from the top-level monitor.4 A ruleset
definition begins with a header statement, which must be terminated by a ,.'-
colon (:), and ends with an end statement. After the header, the user
may optionally specify a declaration of private classes and an execution
monitor. The body of a ruleset is defined as an ordered sequence of
zero or more rules.5 -

As an example, consider the ruleset,

-.

4For more information on building and loading program files, see ..'
Chapter 13. ,%

sA ruleset consisting of zero rules is a null-op.*%,"_

.-;5*

." ,%

171: " " i " :..a. ,- i * 'I' ' 'I' " fl " ... -.......- o ,. ,.-...,.4,.. .. ,,

;'.,,,,': ' : "..-. --'- ," ." ,."v , ',,". ", v : " -. v.,. ... '."-.' "v ,-, .' '- -" --. .--"-.--"• '.', ,,,. '.• ,..-v -,... ' "'

4. Programming Structures 70

To generate a response to a query: U

Private: a reply.
Execute cyclically.
[1] Send "(cr){the query) " -
[2] Read "(anything (bind the reply)).(cr)".
[3] If the lowercase of the reply = either "yes" or "no",

produce that reply,
otherwise send "Please enter YES or NO.(cr)".

End.

This is a generator ruleset, so designated by the fact that its header
starts with the words

To generate ...

This ruleset produces instances of the class response to query, where
query could be anything (but will probably be a string element posing a
yes/no question). It uses the private class reply and a cyclic
execution monitor. Its body consists of three rules, numbered [I]
through [3]. The behavior of this ruleset is to prompt the user
repeatedly with the value of the query until the user inputs yes or no.

4.2.1.1 Header Statements

A ruleset's header designates its type, names its formal parameters
and identifies its calling form. There are three basic forms a header
can have. These correspond to the three types of rulesets as well as
ROSIE's three principal linguistic structures. A precise description of U'

these three forms will be given in Section 4.2.2. In this section, we 4..

will examine the basics.

A ruleset's type is implicit in the syntax of its header. The
header of a generator ruleset always begins with the keywords

V'."
To generate . . .

while a predicate ruleset header always begins with

To decide . .-

and a procedural ruleset header simply begins with

To ...

While the exact syntactic structure of headers varies between ruleset
types, they all share a few fundamental aspects.

The header always specifies the name of the ruleset. This will be
one (or possibly more) token(s)6 corresponding to the root concept being
defined. For instance, the name of the procedural ruleset

"/4

'Only generator rulesets and predicate rulesets that test class
relations (i.e., relations using the is-a copula) can have multitoken
names.

%

e-_--

4. Programming Structures 71

To move a ship from a source to a destination:

is move, the name of the predicate ruleset v, -_

To decide if a ship was anchored in a port: 6
4'*

is anchored, and the name of a generator ruleset

To generate the absolute value of a number:

is absolute value.

Another common feature of headers is the specification of formal
parameters. These are called private classes because they are specified
as indefinite references to a class and are bound and accessed
accordingly (in the above examples the private classes are italicized).
Private classes fill distinct linguistic roles. For instance, both
procedural and predicate rulesets can optionally take a parameter that
acts as the object of their main verb, and a predicate ruleset always
has a parameter that plays the role of its subject. Additional private
class parameters can be specified in a chain of prepositional phrases7

appearing at the end of the header. Such a chain can contain any number
of preposition/private class pairs as long as the same preposition is
not used twice.

%.%

The calling form of a ruleset is derived from its type, name,
associated prepositions, and additional type-specific features. Note
that the private class parameters of a header have no bearing on the .. f
unique identification of a ruleset. This means that you may not have
two rulesets defined simultaneously if they differ only in their
parameter names. Note also that, internally, prepositions are t

alphabetized. This means that the order of prepositional phrases in the
calling form does not have to correspond to the order found in the
header.

Essentially, a ruleset's header identifies the fixed and variable
components of syntax of the ruleset calling form. The fixed parts
include the ruleset 's name and all prepositions. The variable parts
consist of the private classes. All fixed parts must appear verbatim in
the calling form. The user passes arguments by replacing the variable
parts with specific arguments. .-'.f

7 Since private classes may not be modified by a prepositional
phrase, there is no prepositional attachment ambiguity in ruleset
headers.

2.

[:. .:#-#- =e.'',-# %''ZV.''. _W..' °#" : " "" -w .,- -, "- w.'- . -' -,"-".-' ".-,.",-.' -. .:,. ;. ',.' V "7:'

U-

4. Programming 3tructures 72

4.2.1.2 Private Class Declarations

The usei may optionally specify additional private classes with a
private class declaration. Private classes are normally used like local
variables in other programming languages and are discussed further in
Section 4.2.4.

The syntax of a private class declaration is defined as

<private deci> ::= PRIVATE [:] <class list>
<class list> ::= <formal> [([INITIALLY] <term>)] [<class list>]

Example-- *-.

Private: a counter (initially 0), a reply. -.

If given, this declaration must appear immediately after the ruleset
header.

Note that it is possible to specify a initial binding for a private
class. When the ruleset is invoked, the initial values are evaluated
and bound sequentially, and later bindings may reference earlier.

4.2.1.3 Execution Monitors

The user may also optionally designate the manner in which rules
are to be executed with an execution monitor declaration, the syntax of
which is defined as

<monitor decl> EXECUTE SEQUENTIALLY .

EXECUTE CYCLICALLY
EXECUTE RANDOMLY

This declaration tells ROSIE how to execute the rules in the ruleset's
body, i.e., with either a sequential, cyclic, or random monitor.

The sequential monitor executes rules one at a time, terminating
the ruleset invocation after the last. The cyclic monitor executes
sequentially, but starts over again after executing the last rule. The
random monitor repeatedly executes a rule selected by a pseudo-random
number generator.

A monitor declaration must appear after the private class
declaration (if given) and before the first rule of the ruleset, and
there can be only one monitor in a ruleset. The monitor defaults to
sequential.

* - a

4. Programming Structures 73

4.2.1.4 The Ruleset Body

The body of the ruleset can be any sequence of rules. The file
package automatically inserts line numbers in the form of comments
(e.g., [1j) before the first line of every rule. The file package
maintains these numbers and updates them whenever the ruleset is edited
or otherwise modified.

4.2.1.5 End Statements

The end statement is simply the keyword end followed by a period ,-'s.

(.). All ruiesets must be LermindLed j an UId statement. If th;- filc

package encounters a ruleset that is not terminated by an end statement,
it will warn the user and automatically insert the missing end. %

4.2.2 Ruleset Types

There are three types of rulesets: procedural, predicate, and
generator rulesets. Each ruleset type serves a conceptually different
purpose, each gets invoked in a different way, and each returns a
different form of value.

4.2.2.1 Procedural Rulesets "

<header> :TO <proc form>

<proc form> ::= <atom> [<formal>] [<private pps>]

A procedural ruleset enacts a procedure (a type of action) and does
not return a value to the calling form. As an example, consider the
procedural ruleset,

To move a vessel from a source to a destination:
[1] Deny the vessel is docked at the source.
[2] Assert the vessel is docked at the destination.
End.

which updates the database when invoked by a procedure such as in

Move USS Nimitz from Le Havre to Auckland.

Procedural rulesets allow users to define conceptually modular tasks
that can be parameterized conveniently.

The syntax of the header for procedural rulesets is shown above.
In this syntax, <atom> plays the role of an imperative verb and names
the ruleset (e.g., move in the example). A procedural ruleset can take %
an optional direct object that can be followed by any number of

0.

4. Programming Structures 74 p%-
k

preposition/private class pairs. The calling form for a procedural
ruleset is identified by its name, whether it takes a direct object and
its associated prepositions.

When a procedural ruleset invocation terminates, it returns control
to the calling form. The invocation of a procedural ruleset can be
terminated in one of two ways. If it is executing its rules under a
sequential monitor, then it terminates after the last rule. It can also
be terminated by executing the return procedure.

4.2.2.2 Predicate Rulesets

<header> ::= TO DECIDE [IF] <pred form>

<pred form> <formal> <be aux> <a/an> <root name> [<private pps>]
=<formal> <be aux> <atom> [<frmal>] [<private pps>]-<formal> <be aux> <prep> [<formal>] [<private pps>]

<formal> <do aux> <atom> [<formal>] [<private pps>]

<root name> <atom> [<atom>]*

<be aux> WAS [NOT]
WERE (NOT]
AM [NOT]
ARE [NOT]
IS [NOT]
WILL [NOT] BE

<do aux> DID [NOT] -'

: DO [NOT] -
DOES [NOT]

: WILL [NOT]

A predicate ruleset provides a means of computing the truth or
falsity of a proposition (a declarative n-ary relation). When ROSIE
cannot otherwise decide a proposition's truth value from relations in
its database, it automatically invokes the corresponding predicate
ruleset if one exists. For instance, the predicate ruleset

To decide if a vessel is seaworthy:
[1] If the vessel does float, conclude true,

otherwise, if the vessel does leak,
conclude false.

End.

will be invoked by

If USS Nimitz is seaworthy,
move USS Nimitz from Le Havre to Auckland.

V N%.

7- L
N,~ ~ W qs d 'Jqjiq * 'r~s' -.

t
. C .".°

4. Programming Structures 76

4.2.2.3 Generator Rulesets

<header> ::= TO GENERATE <genr form>

<Ser form> ::- [<spec>] <root name> [<private pps>]

<epeeo ::m (I TU I A I AN I)

A g nerator ruleset procedurally defines a class of elements,
producing instances of the class one-by-one on demand. Like predicate
rulesets, they are invoked indirectly through interactions with the
database.

A generator ruleset may be invoked whenever a request is made for
instances of a class. As described in Chapter 7, this happens when a
description is used as a generator. When generating from a class (say,
the class of ship), ROSIE first produces all elements from assertions in
the database that satisfy the proposition 'element is a class', e.g.,
assuming the database contains

USS Nimitz is a ship
USS Coral Sea is a ship
USS Enterprise is a ship

then generating every ship successively produces USS Nimitz, USS Coral
Sea, and USS Enterprise. Once such elements have been exhausted, ROSIE
can invoke a generator ruleset for computing additional members of the
class. For instance, the generator ruleset

To generate a vessel at a port:
[1] Produce every boat which is docked at the port.
[2] Produce every ship which is docked at the port.
End.

would produce a continuous stream of elements when invoked by

While some vessel at Auckland is not seaworthy,
repair that vessel.

until all elements produced satisfied the 'element is seaworthy'
predicate. Note that an invccation of a generator ruleset does not
necessarily produce a single instance of a class; it can produce zero or
more instances.

Instances are produced from a generator ruleset using the produce
procedure. This procedure takes a single argument that it produces as
an instance of the generator's class. If the element produced does not
satisfy the restrictions posted by the calling form, or if more than one
element is requested, then control is passed back to the ruleset.
Execution continues from the point where the element was produced. A
single invocation of a generator ruleset can execute the produce
procedure many times, generating a stream of elements.

~ .. '.,

4. Programming Structures 77

An invocation of a generator ruleset is terminated when an element
produced satisfies halting conditions of the calling form, or the
return procedure is executed, or (under a sequential monitor) the last
rule is executed.

A generator ruleset is named by the root name of its class; this
can be one or more tokens in length. The calling form for a generator
is its name and associated prepositions. Unlike procedural and
predicate rulesets, generator rulesets may not take an optional direct
object argument.

4.2.3 Invoking Rulesets U
As illustrated in the last section, different types of rulesets are

invoked in different ways. Procedural rulesets are invoked by executing
a procedure, predicate rulesets are invoked when testing a proposition,
and generator rulesets are invoked when generating instances of a class.
Demons, which are discussed in the next section, are invoked just prior
to the occurrence of an event. Regardless of these differences after
being called, the invocation of any type of ruleset always proceeds in
the same fashion.

First, the invocation is given a private database. The ruleset's
formal parameters (i.e., the private classes taken from its header) are ..-

bound in the private database to the values of the actual parameters of
the calling form. Then the rules in the ruleset's body are executed
according to the ruleset's execution monitor. A ruleset invocation can
be terminated in one of three ways. If the execution monitor iF.
sequential, then the invocation can terminate upon executing the last
rule. Executing a terminating procedure is another, somewhat more
standard way to exit a ruleset, and executing the quit procedure, which
aborts computation and throws control back to the top-level monitor, is
a third method.

4.2.3.1 Calling Forms

A calling form identifies the target ruleset by its name and
associated prepositions, e.g., the procedure

Move USS Nimitz from La Havre to Auckland.

is a calling form for the procedural ruleset

To move a ship from a source to a destination:

Note that ROSIE does not use the formal parameters of the ruleset
header to decide which ruleset to invoke, only the ruleset's type,
keyword(s) and associated prepositions. Additionally, the order of
prepositional phrases does not matter. Thus, for instance, the procedure ,.s

Move U.-S Nimitz to Auckland from La Havre.

%

4. Programming Structures 78

will behave identically to the one seen above.

4.2.3.2 Argument Passing

Arguments are passed to a ruleset invocation via the private
classes in the ruleset's header. Before the call, the actual parameters
of the calling form are evaluated. For each value, a proposition of the
form

actual is a formal

is asserted into the private database, where actual is the value of the
actual parameter and formal is the corresponding private class. For
instance, in our previous example, i.e.,

Move USS Nimitz from La Havre to Auckland.

the propositions,

USS Nimitz is a ship
La Havre is a source
Auckland is a destination

would be asserted into the private database of the ruleset invocation.

4.2.3.3 The Private Database

Each ruleset invocation is provided with a private database for
storing the intermediate results of computation. The contents of the
private database can be accessed only from within that invocation (i.e.,
a private database can be thought of as lexically scoped). Once the
invocation terminates, the private database and its contents are
discarded.

As compared to the global database and alternate databases (see
Chapter 10), a private database is a considerably restricted form of
storage. These restrictions include the following: e,

* Only class membership (i.e., is-a) relations may be stored
in a private database;

* There may be at most one instance of a private class at any
givn time, e.g., if counter is a private class, then

Assert 1 is a counter and 2 is a counter.

will replace 1 with 2 as the single instance of the counter; .5'

* If not appearing among the formal parameters of the header,
private classes can be declared only in a private class
declaration, e.g.,

-% 5%.

4. Programming Structures 79

Private: a counter (initially 0), a result.

0 Private classes may not be modified by a prepositional phrase
or relative clause, e.g., the term

the counter which is greater than 10

will not be treated as reference to a private class even if
counter is a private class.

* An instance of a private class may be generated using only
the function word the, e.g., a counter and every counter will
ignore the fact that counter is a private class;

* Manipulations of the private database will not invoke
demons (i.e., demons only monitor manipulations of the global
and active database).

The instance of a private class (i.e., its value) can be accessed with
the function word the and changed with the database actions assert,
deny, and let. While this discursion may make private classes and the
private database appear rather complex, you'll actually find their use
to be quite intuitive and the restrictions negligible.*

4.2.3.4 Execution Monitors

The order of execution of rules in the ruleset's body is determined a

by the ruleset's execution monitor. This can be one of sequential,
cyclic, or random. The sequential monitor executes rules one at a time
from first to last, terminating the invocation after the last rule. The
cyclic monitor repeatedly executes the rules from first to last. The
random monitor repeatedly executes rules drawn at random.

4.2.3.5 Terminating Procedures

If a ruleset s execution monitor is sequential, then the invocation

terminates after the last rule. If it is not, then the invocation must r

be explicitly terminated by executing one of the terminating
procedures.' The following operations can be used to terminate a
ruleset invocation:

'Readers already familiar with ROSIE should note that the
restrictions on private classes are new; existing code may require
editing to reflect these changes.

'Termination can also be achieved by executing the quit procedure,
which aborts computation and throws control back to the top level.

,.5.

q.°%

%. IeN

Na

4. Programming Structures 80

return

Terminates the invocation of a ruleset or demon.

In procedural rulesets, simply ends call. In generator
rulesets, causes the ruleset to stop producing elements. In
predicate rulesets, concludes an indeterminate truth value.
In demons, causes interrupted event to be discarded.

produce an element

This procedure may be executed only within a generator ruleset
or a produce demon.

In a generator ruleset, produces element as an instance
of the class being generated. Returns control to the invocation
if element does not satisfy a halting condition established
by the calling form. Otherwise, terminates the invocatioa.

In a produce demon, continues the produce event, substituting
element for the elemont being produced.

NOTE: Due to frequency in use, the produce procedure has
a special syntax. Normally, a procedure will take all possible
prepositional attachments, e.g., the call

Move the ship from the port. %

is interpreted as

Move (the ship) from the port.

where move takes the longest chain of prepositional phrases
possible. To avoid the over use of parentheses to delimit its ,
single argument, produce will try to take no prepositional
attachment. Thus, the call

Produce the ship from the port.

is interpreted as %7

Produce (the ship from the port).

rather than

Produce (the ship) from the port.

This syntax was provided as a convenience and ran be overridden
by explicitly delimiting arguments with parentheses.

V.

4. Programming Structures 81

conclude trueconclude false

Terminates the invocation of a predicate ruleset, concluding
either true or false for the truth value of the proposition
being tested.

continue

Terminates a demon invocation, informing ROSIE to resume
computations of the interrupted event (i.e., the event that
triggered the demon).

quit [because a string]

Throws control to the top-level monitor. If the because option
is given, string is printed to the standard output channel
(normally the user's terminal) before aborting.

4.3 DEMONS

<header> BEFORE EXECUTING <proc form>

B E F O R E T E S T IN G [IF I < p r e d fo r m > . _ .1

BEFORE GENERATING <genr form> 0
BEFORE PRODUCING <genr form>

BEFORE ASSERTING <pred form>
BEFORE DENYING <pred form>

<genr form> [<determiner>] <root name> [<private pps>J

<proc form> <atom> [<formal>] [<private pps>]

<pred form> <formal> <be aux> <a/an> <root name> [<private pps>] e

::<formal> <be aux> <atom> [<formal>] [<private pps>]
:: <formal> <be aux> <prep [<formal>] [,.private pps>]

<formal> <do aux> <atom> [-formal>] [,private pps>J

Demons are a hybrid class of rulesets that allows users to
selectively capture control of execution just prior to the occurrence of J
an event. As such, demons provide a mechanism for event-driven program
control. They can be used for tracing and debugging during the program
development. They can monitor changes to the database and check for
consistency as the database undergoes change. Once invoked, a demon can
decide whether or not the operation it preempted should resume.

For example, consider the demon

%

% -

4. Programming Structures 82

Before executing to move a ship from a source to a destination:

[1] Unless some vessel at the source is equal to the ship,
return, otherwise continue.

End.

which would be awakened by

Move USS Nimitz from Le Havre to Auckland.

Execution of the procedure would continue only if its arguments (i.e.,
USS Nimitz, Le Havre, and Auckland) satisfy the constraints set by
the demon.

When a demon is defined, it establishes a process that monitors the
initiation of an event. Only certain events can be monitored by demons;
these include:

1) the execution of a procedure

2) the assertion, denial and testing of a proposition

3) a request to generate elements of a class

4) the production of a generated element.

Upon the initiation of its event, a demon is invoked. At this point,
the demon can interrogate the system state and either allow the
interrupted event to continue or release control without continuing the
event.

4.3.1 Types of Demons "rn

There are six types of demons, which may, respectively, monitor six
types of events. These include: 54U

" procedural demons, for monitoring the execution of procedures;
e.g.,

Before invoking to move a ship from a source to a destination:

* assert, deny, and test demons, for monitoring assertions,
denials, and tests of propositions;

Before asserting a ship is docked at a port:
Before denying a ship is docked at a port:
Before testing a ship is docked at a port:

" generate demons, for monitor requests to generate elements from
a class;

Before generating a vessel at a port:

Si

4. Programming Structures 83

produce demons, for monitoring when an element is actually
produced as an instance of a class; e.g.,

Before producing a vessel at a port:

A demon's type and the exact situation it monitors is determined by its
header. As one can observe, the header syntax for demons closely
resembles that for procedural, predicate, and generator rulesets.
Likewise, the naming conventions are also the same.

The database demons (i.e., assert, deny, and test demons) share a
restriction not found in predicate rulesets. That is, the truth value
of the target proposition must match the truth value indicated in a
demon's header, otherwise the demon will not be invoked. Where a
predicate ruleset may be invoked upon testing some relation or its
negation, the database demons strictly monitor operations on the
relation their header specifies. Thus, for example, to trap the
assertion of a proposition and its negation, two assert demons must be
defined.

4.3.2 Demon Invocation

A demon is invoked immediately before the event it monitors is
about to occur. For instance, an assert demon will be invoked
immediately before a proposition that it identifies is to be affirmed in
the physical database.

Once invoked, the demon follows the standard invocation procedure
of any ruleseL. The arguments of the calling form are asserted into a
private database, and the rules in the demon's body are executed under I
either a sequential, cyclic, or random monitor. When the invocation
terminates, the interrupted event is either continued or discarded.

The only way to resume the interrupted event is to terminate the
demon invocation with the continue procedure. Termination by any other .
means (with one exception that we will see in produce demons) causes the
event to be discarded, returning control back to the rule that initiated
the event.

4.3.3 The Generator Demons

The generator demons (i.e., generate and produce demons) may seem
redundant at first. However, they demonstrate the distinct difference V
between requesting that elements be generated from a class dnd actually
producing those elements. For example, the term every man issues a -.

single request to generite the elements of the class man, which will
one-by-one produce every instance of that class. A generate demon for
the class man would be invoked once by every man (i.e., prior to
issuing the generate request), while a produce demon for this class
would be invoked zero or more times (i.e., once for every member of the
class).

4. Programming Structures 84

A generate demon is similar to the other types of demons. It is
invoked immediately before the occurrence of a generate event and upon
termination can either continue the event or not. If it continues the
event, it has no effect on the elements produced.

A produce demon, however, can have great effect on the elements
produced. When a produce demon is invoked, its private database will
contain an extra relation not specified in its header or private class
declaration. This extra relation will be of the form

element is a root name

where element is the element about to be produced and root name is the
name of the demon; e.g., in the demon

Before producing a gauge reading:

this would be gauge reading. This allows the demon to consider the
element when deciding whether to continue the produce event. If the
invocation terminates with continue, then the given element is produced
as an instance of the class. If terminated by return, then the element
is not produced.1 0

Unlike other demons, the invocation of a produce demon can also be
terminated with the produce procedure. When executed in a produce
demon, produce continues the interrupted event, substituting its
argument for the original element being produced.

As an example application of the produce demon, assume that we have
a generator ruleset that produces a stream of real numbers in the range
of -1.0 to 1.0 for the class gauge reading. Now assume that we want
only the absolute value of these numbers. One way to effect this change
is explicitly generate the absolute value of each gauge reading, e.g.,

Display the absolute value of every gauge reading.

but this method is somewhat awkward and verbose. Another way to effect
the change is with a produce demon defined as

Before producing a gauge reading:
[1] Produce the absolute value of the gauge reading.
End. U

which will continue every produce event with the absolute value of the
private class gauge reading, the element originally being produced.

"0This does not abort the generate event, it simply means that

element will not be produced.

i

4. Programming Structures 85

4.3.4 The Error Demon

Automatic error recovery can be controlled through the use of a
special assert demon called the error demon. When processing a
recoverable error (see Chapter 12 and Appendix B), ROSIE simulates an
assertion of the proposition

<string, filesegment> is an error

where <string, filesegment> is a tuple element (see Section 9.4)
containing string, which identifies the error message, and filesegment,
which identifies the ruleset rule causing the error.

This proposition is not actually asserted into the database, but it
will invoke an assert demon of the form

Before asserting a message is an error:

if such a demon exists. Further, if the error demon executes the
continue procedure, then computation will be resumed automatically at
the point of the error call.

4.4 SYSTEM RULESETS

<ruleset> ::= SYSTEM RULESET <header>
<system body>

<end stmt>

<system body> ::= (LAMBDA (-args-) . -body-)

<end stmt> ::= END .

Rulesets and demons can optionally be designated as system
rulesets. The body of a system ruleset is defined as a LISP lambda
form." System rulesets are designated by putting the words

System ruleset . . .

directly before the ruleset header, e.g.,

System ruleset to decide if an element is an integer:
(lambda (elt) (cond ((fixp elt) '<true>)

(t '<false>)))
End.

Note that the only thing that can appear between the header and the end
statement is the lambda form (i.e., no comments, rules, or

"1A working knowledge of LISP is assumed on the part of the reader.

Zl'&'460 :.:.!* V

.
"-""
5.°t

4. Programming Structures 86

declarations). System rulesets provide a convenient way to interface
with software packages developed in or accessible from LISP.

4.4.1 Defining System Rulesets

Any ruleset (including demons) can be designated as a system
ruleset by preceding its header with the words System ruleset. The
body of a system ruleset is described as a LISP lambda form. That is,
an s-expression of the form

(lambda (-args-) -body-)

where -args- is a sequence of zero or more atoms that act as the formal
parameters of the lambda form, and -body- is a sequence of s-expressions
that define the actions of the lambda form.

As a special word of caution, be careful to ensure that each system
ruleset header is free of syntax errors, and, likewise, that its body is
free of parentheses errors. The tokenizer scans for the body of a N.

system ruleset by invoking the LISP reader upon recognizing a system
ruleset header. If the header is syntactically incorrect, then the
tokenizer will not know to invoke a LISP reader, resulting in the body
of the system ruleset being scanned as a normal file item. As well, if
the body has unbalanced parentheses, the LISP reader may read too far or
not far enough. Any of these situations can cause much confusion and
grief.

To avoid these and other difficulties with system rulesets, we
recommend that all system rulesets of any ROSIE program be kept simple
and stored in a separate program file from the program's non-system
rulesets.

4.4.2 Calling System Rulesets 7.V

System rulesets are called in the same way that non-system rulesets
are called. System rulesets can enact procedures, make conclusions
about the truth or falsity of propositions, produce elements of a class,
and interrupt and continue events. System rulesets cannot invoke other * -

rulesets, nor can they access the ROSIE database.

Unlike normal rulesets, a system ruleset invocation does not
receive a private database. Arguments are passed via the formal
parameters of the system ruleset's lambda form. When c ,lled, the lambda
form associated with the system ruleset is applied (i.e., using LISP's
apply function) to arguments of the calling form. The actual
parameters are ordered by their linguistic role. The subject (if a
predicate) comes first, then direct object (if any), and then the
objects of prepositions. The objects of prepositions are ordered A..
alphabetically by their preposition; they are. not arranged in the order
in which they appear in the ruleset header or the calling form. all

.. _*4

4. Programming Structures 87

The following rules apply when trying to emulate standard
terminating procedures from various types of system rulesets:

To emulate the return procedure, simply return the value NIL
from the lambda form.

* To emulate the conclude procedure, return one of <true> or
<false> as the value of the invocation.

* To emulate the produce procedure, the ruleset must return
either an atom, such as an id, number, or string, or a list.
An atom is treated as a single element to be produced, while a
list is treated as a sequence of such elements.

To produce a list of elements as a tuple element, ROSIE
provides the function list-to-tuple (Ost), which coerces 1st, a
list of elements, into a tuple; embedded lists will also be
coerced into tuples.

* To emulate the continue procedure, the demon should return the
atom <continue>.

Additionally, if a produce demon system ruleset returns a non-NIL value,
this value will be produced in lieu of the original value. Note also
that a produce demon system ruleset receives an extra argument (i.e.,
the value to be produced) as the last parameter in its calling form.
Thus, the formal parameters in its body should have one argument more
than the private class specified in its header. 1 2

I. .. %

1
2 Numerous examples of system rulesets can be found in ROSIE's

System Ruleset Library.

• ."pA

pwong
Text Box
preceding page blank - not filmed

5. Actions and Control Flow 89

V. ACTIONS AND CONTROL FLOW

In this section, we describe an important aspect of any programming
language, its control structures. In ROSIE, most control structures are
implemented as actions, which constitute a principal syntactic and
linguistic category. Actions can be used to invoke a procedure, to
conditionally execute or iterate over a block of actions, or to iterate
actions over the instances of a class. Actions are also used to modify
the contents of the database."-.-.

5.1 ACTIONS AND ACTION BLOCKS

<action> <procedure>
<data action>
<cond action>
<cond block>
<iter action>
: <action block>)

<action block> ::= <action> [AND <action>]*

Actions equate to executable operations. They are stand-alone
statements that need not be used as an argument to anything to be
understood or to be executed. Actions are the things that start a ROSIE
program in motion and keep it going.

ROSIE provides a variety of action types. Action syntax was
designed to read like English and to indicate the type of operation an %

action performs. Procedures, which are user-defined actions, can be
equally readable when their names and parameters are selected carefully.

A few action types take blocks of actions as parameters. For
example, the conditional action, i.e.,

if <condition>, <action block>, otherwise <action block>

takes two action blocks (as well as a condition) as arguments. An
action block is a sequence of one or more actions separated by the . .

conjunctive and.

5.1.1 Types of Actions

There are five types of actions' in ROSIE. These five action types 4.

offer substantial power and flexibility for encoding aspects of control

'Earlier releases supported an additional action type, exer,"e
actions, using go and call. Because the functionality of execut. .
actions is subsumed by the procedure action type and the intent,'onal

P %_.

I IIIIIIIII /IraII 5

5. Actions and Control Flow 90

and considerable variation in the manner in which such code can be
written. Briefly, these action types include:

1) Procedures, which are denoted by an imperative verb, optionally
followed by a direct object and a chain of prepositional
phrases, e.g.,

report the finding to the strategic command post

The behavior of a procedure is defined by a corresponding
procedural ruleset; procedures are essentially "user-defined"
actions.

2) Database actions, which enact changes to the database, e.g.,

assert the finding was reported at time 100
deny the finding is not substantiated
let the counter be the counter + 1
create an airfield

3) Conditional actions, which are if-then-else style actions,
e.g., -

if the finding was reported and that finding was verified,
deny the finding is unsubstantiated and
act upon that finding,

otherwise verify the finding

unless the counter is greater than or equal to 0,
produce the negation of the counter

4) Conditional blocks, which correspond to case statements in
other programming languages, e.g.,

select the country:
<Russia, Cuba>

display bad guys;
<USA, England>

display good guys;
<any third world nation>

display cant tell;
default: display need more info

Conditional blocks consist of an ordered sequence of
key/action block pairs. They execute the first action block
whose associated key satisfies some selection criteria.

procedure element type, execute actions have been phased out of ROSIE
3.0.

- , ...

5. Actions and Control Flow 91

5) Iterative actions, which conditionally iterate over an action
block, e.g.,

while the counter is less than the upper bound,

let the counter be the counter * 1 and produce the counter

or which iterate over the instances of a class, e.g.,

for each target at the airfield, J
rate that target for each of capacity and vulnerability

and execute an action block on each iteration.

5.1.2 Associativity of Action Blocks

As demonstrated above, several action types take action blocks as
arguments. Because of this, potential ambiguity arises in regard to "A
nested action blocks. The rule defining the associativity of action V

blocks, as well as the precedence of constructs taking action blocks as
arguments, is quite simple:

Actions associate with the most deeply nested action block
not otherwise delimited (and, thus, closed to association).

In other words, action blocks are right associative, and constructs that

take action blocks as arguments are of equal precedence.

Consider the following dummy rule

Execute action #1 and
execute action #2 and
if condition #1 is true,

execute action #3 and
execute action #4,

otherwise,
execute action #5 and
for each description #1,

execute action #6 and
execute action #7.

In this example, there are four action blocks. Indentation illustrates
the association of otherwise ambiguously embedded blocks.

4

5.1.3 Comma Blocks and Parentheses

If the default associativity is undesirable, action blocks can be
delimited using parentheses and commas. Action blocks delimited by
commas are called comma blocks. The appeal of comma blocks over
parenthesized action blocks is that of readability and naturalness;
commas are a far more English-like delimiter. However, comma blocks can
be used only in certain situations; parentheses are a more obvious and
versatile delimiter.

5. Actions and Control Flow 92

Any action block can be delimited by surrounding it with a matching
set of left and right parentheses. Since this form of delimiting is
actually provided by the gra mar rule

<action> (<action block>)

it might be more appropriate to say that an action can be an action
block surrounded by parentheses. Were we to restate our previous
example as

Execute action #1 and
execute action #2 and
(if condition #1 is true,

execute action #3 and
execute action #4,

otherwise,
execute action #5) and

(for each description #1,
execute action #6) and

execute action #7.

the new association would significantly change the interpretation of the
rule. Unfortunately, parentheses are a somewhat awkward and
un-English-like delimiter; their overuse can give otherwise readable
ROSIE code the sometimes frightening appearance of LISP.

Comma blocks allow programs to avoid the overuse of parentheses.
Essentially, a comma block is an action block introduced by a comma (,)
and terminated by a comma, a period, a closing parenthesis, or (in some
situations) a semicolon. For instance, the above example could be
rewritten as

Execute action #1 and
execute action #2 and
if condition #1 is true,

execute action #3 and
execute action #4,

otherwise,
execute action #5, and

for each description #1,
execute action #6, and

execute action #7.

and it would have exactly the same interpretation.

Comma blocks can appear only in actions that take action blocks as
arguments. This is to say, comma blocks can appear only within 0-0
conditional actions, iterative actions, and conditional blocks;' refer
to Sections 5.4, 5.5, and 5.6 for more details.

2These action forms practically required the use of comma blocks
(or parentheses) to delimit their action block arguments. This has not

%
V . *,*v~:% '.. .. *'*~i*.~~.,*: J*'- .,.,..

5. Actions and Control Flow 99

As an example, consider 4qI.

Execute action #1 and
select selector #1: rI

<key #1>
execute action #2 and
execute action #3;

<key #2>
select selector #2:

<key #3>
execute action #4 and
execute action #5;

default: execute action #6 and
execute action #7.

where indentation demonstrates the default association of embedded
blocks. Terminating the default action block with a semicolon after
action #6 causes the expression to be interpreted as

Execute action #1 and
select selector #1:

<key #1>
execute action #2 and
execute action #3;

<key #2>
select selector #2:

<key #3>
execute action #4 and
execute action #5;

default: execute action #6; and
execute action #7.

If we want action #7 to associate with the highest level action block,
it is necessary to delimit the highest level select block with
parentheses, as in

Execute action #1 and
(select selector #1:

<key #1>
execute action #2 and
execute action #3;

<key #2>
select selector #2:

<key #3>
execute action #4 and
execute action #5;

default: execute action #6) and
execute action #7.

5. Actions and Control Flow 100

Going back to our original example, to get the default action block to
associate with the higher-level select block, it is necessary to delimit
the nested select block with parentheses, as in,

Execute action #1 and
select selector #1:
<key #1>

execute action #2 and
execute action #3;

<key #2>
(select selector #2:

<key #3>
execute action #4 and
execute action #5);

default: execute action #6 and
execute action #7.

As a final example, by terminating the default action block of this form
with a semicolon, as in,

Execute action #1 and
select selector #1:
<key #1>

execute action #2 and
execute action #3;

<key #2>
(select selector #2:

<key #3>
execute action #4 and
execute action #5);

default: execute action #6; and
execute action #7.

we again get action #7 to associate with the highest level action block. ."'. '

5.6 ITERATIVE ACTIONS

<iter action> FOR EACH <description>
[WHILE <condition>]

[UNTIL <condition>]
<action block> [,.

FOR EACH <description> ii
[WHILE <condition>]
[UNTIL <condition>]

(<action block>)

WHILE <condition>
[UN'TIL <condition>]

<action block> [,]

V ~ ~ d:~j. I o " A

5. Actions and Control Flow 101

A
WHILE <condition> o

[UNTIL <condition>]
(<action block>)

UNTIL <condition>
<action block> [,]

UNTIL <condition>

(<action block>)

Iterative actions are used to conditionally loop over an action
block. If the for each option is specified, the action block is
executed for each instance of a description. If the while option is
given, its associated condition is tested before each iteration;
iteration continues until this condition evaluates to false.
Conversely, if the until options is specified, its associated condition
is tested after each iteration, and iteration is terminated when this

condition tests true.

For each, while, and until can be used in unison. In such cases,
the first time any halting condition is realized, the action terminates.

For instance, the action,

for each enemy warship
while there is an unassigned aircraft,

deploy that aircraft to that warship

will repeatedly execute the deploy procedure until either every enemy
warship has been produced or there are no more unassigned aircrafL.

5.6.1 FOR EACH...

For each iterates over all elements that can be generated from a

given description (see Chapter 7). On each iteration, the generated
element is bound to the description variable of that description and can
be referenced anaphorically (see Section 8.5) within the embedded action .*

block. For instance, the action,

for each enemy warship, attack that warship

iterates over all instances of the class enemy warship. That warship %

is an anaphoric reference to each instance produced.

5.6.2 WHILE... and UNTIL...

The while and until options control iteration over an explicitly %
stated condition. The while form tests its associated condition before
each iteration and terminates execution if its condition evaluates to
true. On the other hand, the until form tests its condition after each
iteration and terminates execution when its condition evaluates to true.

.~%

5. Actions and Control Flow 102

The semantics of the until form are somewhat problematic because,
syntactically, it must appear before the loop's action block, rather
than after, as its behavior would imply. Even experienced users often
forget that its condition is not tested until after the action block has
been executed.

5.6.3 Associativity

The only question of associativity with embedded iterative actions
arises from the use of action blocks (actually, comma blocks). Note
that this problem will also occur with conditional actions nested in
iterative actions, iterative actions nested within conditional actions,
and conditional actions nested within other conditionals. Although the
associativity of action blocks was discussed earlier, it will be
reviewed here for completeness.

Action blocks are right associative. Otherwise ambiguous actions
within embedded action blocks will always be associated with the most
deeply nested action block.

For example, the expression

For each description #1,
execute action #1 and
while condition #1 is true,

execute action #2 and
until condition #2 is true,

execute action #3 and
execute action #4.

would be interpreted as indicated by the given indentation. The action
blocks of the conditional and iterative actions can be delimited by
commas. Thus, rewriting the expression as

For each description #1,
execute action #1 and
while condition #1 is true,

execute action #2 and
until condition #2 is true,

execute action #3, and
execute action #4.

%

would associate action #4 with the next highest action block. However,
for action #4 to be associated with the top-most action block, the
embedded actions must be delimited.by parentheses. Either of the
expressions,

I
....

5. Actions and Control Flow 103

For each description #1,
execute action #1 and
(while condition #1 is true, Y-

execute action #2 and
until condition #2 is true,

execute action #3) and
execute action #4.

or

For each description #1,
execute action #1 and
while condition #1 is true,

execute action #2 and
(until condition #2 is true,

execute action #3), and
execute action #4.

will suffice to achieve the desired interpretation.

I,...

* UO

6. Conditions, Sentences, and Propositions 105

VI. CONDITIONS, SENTENCES, AND PROPOSITIONS

After actions, the next largest linguistic units are conditions,
sentences, and propositions. Unlike action and action blocks, which can
stand alone as programming statements, conditions, sentences, and
propositions may only appear as arguments of higher-level expressions,
such as conditional actions or database actions. A condition is a
boolean combination of sentences that occurs within the context of a
test, such as in if, while, or until actions. A sentence describes a
declarative relation whose truth can be decided from the database. A
proposition is a generalized type of sentence describing an n-ary
relation that can be added to or removed from the database and for which
truth or falsity can be computed by a predicate rulese'..

6.1 CONDITIONS AND BOOLEAN CONNECTORS

<condition> <disjunct> [, OR <disjunct>]*
<disjunct> [, AND <disjunct>]*

<disjunct> <conjunct> OR <disjunct>
<conjunct>

<conjunct> <primary> AND <conjunct> ,V'

<primary>

<primary> (<condition>)
= <sentence> %

<sentence> <proposition> e
<special form>

A condition consists of a boolean combination of sentences, each of
which describes a relation on one or more data objects. Sentences are
combined using the boolean connectors and and or to create composite
logical predicates. Component logical groupings of sentences can be
indicated with commas and parentheses.

6.1.1 Boolean Connectors

There are only two boolean connectors, the conjunctive and and the
disjunctive or, but there are two forms that these connectors can take.
In one form, the sentence preceding the connector is terminated with a
comma (,), and in the other, it is not. We shall refer to the -

connectors in the first form as comma-and and comma-or and the second
as simple and and or. There is a subtle but distinct difference in the
rules of associativity and precedence concerning these two forms. '

S.S..

pwong
Text Box
preceding page blank - not filmed

WVWVVWV~WUWrWVWWMW&FU I

6. Conditions, Sentences, and Propositions 106

As an example, consider the action, %

If condition #1 is true or
condition #2 is true and
condition #3 is true,

execute action #1.

which is interpreted as

If condition #1 is true or
(condition #2 is true and condition #3 is true),

execute action #1.

where parentheses indicate the logical grouping of sentences. Compare
this to a similar-looking action,

If condition #1 is true or -

condition #2 is true, and
condition #3 is true,

execute action #1.

in which commas are used; this would be interpreted as,.P

If (condition #1 is true or condition #2 is true) and
condition #3 is true, "

execute action #1.

These opposing forms were developed to offer a more natural and
English-like alternative (as opposed to parentheses) to delimiting
logical groups of sentences. Notice, however, that the grammar does not *1
allow an arbitrary depth of nesting without the aid of parentheses.
Chains of comma-ands and comma-ors cannot appear in the same condition
unless such chains are delimited by parentheses. This is an artificial
constraint introduced in ROSIE 3.0 in order to avoid conditions that
might become overly complex or otherwise confusing to the human reader.

6.1.2 Associativity and Precedence

All boolean connectors are right associative. Of the four forms of
connecLors, and has higher precedence and binds sentences more tightly
than or, which has higher precedence than both comma-and and comma- e..
or. Since comma-and and comma-or cannot be mixed, their relative
precedence is unimportant. %0.

6.2 SENTENCES

<sentence> <proposition> -
<special form>

Ed
I, ,,,,. , .,, ;,,' 9 . .:..., v,. ,. ' . % >- , , . .. -. , ,, - _ ...

6. Conditions, Sentences, and Propositions 107

A sentence describes a declarative relation between data objects,
the truth or falsity of which can be tested. There are two types of
sentences: propositions (called primitive sentences in earlier ROSIE %
documents); and everything else, where the "everything else" category 0%0
subsumes several special-case sentence forms that are hardwired into the
definition of the language.

6.2.1 Propositions

<proposition> <term> <verb phrase>

<verb phrase> :: <be aux> <a/an> <description>
<be aux> <atom> [<term>] [<pphrase>,
<be aux> <prep> [<term>] [<pphrase>]
<do aux> <atom> [<term>] [<pphrase>]

<be aux> :: WAS [NOT] S..

WERE [NOTI .-.55%
AM [NOT]
ARE [NOT]
IS [NOT]
WILL [NOT] BE

<do aux> :: DID [NOT]
DO [NOT]
DOES [NOT]
WILL [NOT]

A proposition describes a general n-ary relation whose truth or
falsity can be asserted into or denied from the database as well as
tested against the database. In addition, the truth or falsity of a
proposition can be computed by a predicate ruleset. Propositions can ,,C
specify a relation between objects, e.g.,

John does sell shoes in Baltimore

an attribute of an object, e.g.,

John is happy

and the class of an object, e.g.,

John is a salesman

Propositions can also be manipulated as data elements called .- entional
propositions (see Section 9.10). The rules for asserting, denying, and
testing propositions are described further in Chapter 10 with a
discussion of ROSIE' s database mechanism. e

p,'

.H

-

7. Descriptions and Classes 115

VII. DESCRIPTIONS AND CLASSES

<description> :: <class> [<rel clause>]
such <atom> [<desc var>]

<class> ::= <root name> [(<desc var>)] [<pphrase>]

<root name> :: [<atom>]* <class noun> %

<class noun> <atom>

<desc var> ::= <atom>

The concept of a description underlies much of ROSIE's data
manipulation capabilities. A description is composed of a class
reference, an optional relative clause, and a description variable. A 5.

description's class names some set of elements satisfying an is-a
relation, while its relative clause acts as a filter on those elements--
thus, a description represents some subset of the elements named by its .-vi

class. The description variable provides a unit of temporary storage
for caching instances of a description.

Descriptions are used by ROSIE in three ways: .

1) testing an element for membership in the set being described

2) generating one, some, or all members of that set

3) adding or removing members from that set.

For instances, given the example description,
%-%"

vessel at Le Havre which is seaworthy

we can write three rules that illustrate the uses of a description:

If USS Nimitz is a vessel at Le Havre which is seaworthy, ,_

then move USS Nimitz from Le Havre to Auckland.

Display every vessel at Le Havre which is seaworthy.

Let USS Nimitz be the vessel at Le Havre which is seaworthy.

The elements named by a description are retrieved from the database
on demand. Because of this, their representation is implicit in the ,
description. Thus, the set of elements described can change as the r

database changes.

. ., "

V %,.

pwong
Text Box
preceding page blank - not filmed

7. Descriptions and Classes 116

7.1 CLASSES

<class> ::= <root name> [(<desc var>)] [<pphrase>]

<root name> [<atom>] * <class noun>

<class noun> <atom>

The major component of a description is its class. A class names a
set of elements that satisfies an affirmed class relation or that can be
generated as instances of the class.'

Syntactically, a class reference is specified as a sequence of one
or more tokens, called its root name, optionally modified by a chain of
prepositional phrases, 2 e.g.,

any target at the airfield
every strategic command center for the red army
the member of <A, B, C> at 1 % %

where the objects of prepositions act as arguments to the class. The
last token of a root name is called its class noun and is used in
anaphoric references to a description, e.g., 3

that target
some such center
that member

A class names a set of elements against which another element can
be tested for membership or from which individual elements can be
generated. Testing and generation may possibly invoke predicate
rulesets or generator rulesets, respectively. 10%

7.1.1 Testing for Membership

To test whether an element belongs to a class (e.g., to test if
John belongs to the class man), ROSIE tests if a proposition of the
form

'Not all elements that satisfy a class relation can be generated as
an instance of the class and visa versa. A ,

2For the time being, ignore the optional <desc var> component, as
it is a part of the surrounding description and not a feature of a--'ll
class.

'The first and last are examples of anaphoric terms (see Section
8.5), and the middle is an example of a quantified descriptive term (see
Section 8.4) using an anaphoric description (see Section 7.4).

S. %I

a

r.

7. Descriptions and Classes 117

element is a class

as in

John is a man

is provably true. This test conducts a search of the physical and the
virtual database (see Chapter 10) as follows:

1) All affirmed propositions of the form

elt is a class
and .

elt is not a class
are examined in order of recency (i.e., the most recently
asserted is examined first);

2a) If the proposition being examined is of the form

elt is a class

and element = elt is true, where
= tests equivalence as,:%

described in Section 9.1.3, then the membership test succeeds.

2b) If the proposition is of the form :4
elt is not a class

and element = elt, then the test fails.

3) If no affirmed proposition can prove or disprove membership,
then ROSIE tests the proposition using a predicate ruleset. If
a predicate ruleset of the form

To decide if elt is a class:

as in

To decide if an element is a man:

or its complement

To decide if elt is not a class: L

is defined, then this ruleset is invoked, and its conclusion
alternately confirms or disproves the membership test.'

4If the predicate is defined and does not conclude true or false,
then the test fails. If instead its complement is defined and returns
an indeterminate value, the test succeeds. Both cannot be defined
simultaneously.

N, % %

7. Descriptions and Classes 118 %

This is the general method applied to testing all propositions and is N
further described in Chapter 10.

7.1.2 Generating from a Class

To generate an instance of a class (e.g., an instance of man),
ROSIE also examines the contents of the physical and virtual database.
Elements are produced in succession until one of these elements
satisfies a halting condition.5 Generation of instances of a class
behaves as follows:

1) As with testing for membership, all affirmed propositions of
the form

elt is a class
and

elt is not a class

are examined in order of recency;

2) When a proposition is of the form

elt is not a class

as in

Mary is not a man
or

any woman is not a man

then elt is added to a list of things known not to be in the N.
class, and control is returned to Step 1. Otherwise, when a
proposition is of the form

elt is a class

as in

John is a man

then we proceed to Step 3;

3a) If eit is not a class element' and if elt is not equivalent to

any member of the list of things known not to be in the class,

5The halting condition is established by the construct that
initiates the generate event and is described further in Section 7.6.2.

6A class element is characterized as a description introduced by "1
the function word any (see Section 9.8).

%

7. Descriptions and Classes 119

element is produced, terminating the generation process if it
satisfies the halting condition;

3b) If elt is a class element, e.g.,

any mortal is a man

then Step 3a is applied to each successive element generated
from its associated description, i.e., in this case, instances
of the class mortal;

4) If, after exhausting all such affirmed propositions, no element
produced satisfies the given halting condition, ROSIE looks up
a generator ruleset of the form

To generate a class:

as in

To generate a man:

If such a ruleset exists, it is invoked, and each element
generated via the produce procedure is applied to Step 3a.

NOTE: When examining all affirmed class relations in Step 1 above,
ROSIE is working with a partially closed database. This means that
ROSIE will examine only those class relations that were affirmed at the
beginning of the generate event. Thus, the action,

For each man, create a man.

will cause ROSIE to create a new man for each instance already in the
database; it will not cause ROSIE to create instances of man

.indefinitely.

7.1.3 Potential Pitfall to Class Membership

One undesirable side effect to the definitions for membership and
generation is a potentially contradictory enumeration of class members.

• ., Namely, the elements represented by a class may be determined by one of

two methods: 1) finding all elements that satisfy a class membership
.4 test; or 2) finding all elements that can be generated as an instance of

the class. Although these statements intuitively sound alike, they
actually can describe two distinct sets of elements.

Proving that an element satisfies a class relation may invoke a
predicate ruleset, while enumerating the elements of a class may invoke
a generator ruleset. Since there is no practical method to ensure
consistency in the definitions of corresponding rulesets, the two
methods are not necessarily equivalent.

1]

7. Descriptions and Classes 120

As an example, one may define the predicate

To decide if a person is a man:
[1] If the person is equal to either Jim, Jack or John,

conclude true,
otherwise, conclude false.

End.

which implicitly defines one set of elements for the class man, and
then a generator ruleset

To generate a man:
[1] Produce each of Bill, Brian and Bob. Z
End.

which defines a distinct set of elements for the same class. It is the
responsibility of the system builder to ensure that such behavior does
not adversely affect the integrity of his code.

7.2 RELATIVE CLAUSES

<rel clause> <disj clause>

<disj clause> <conj clause> [OR <disj clause>]*

<conj clause> <clause form> [AND <conj clause>l*

<clause form> : <rel clause>) .
<such that/where>
<that/which/who>
<whose>
<which/whom>
<except>

<such that/where> (<st/w> <condition>)
= <st/w> <primary>

<st/w> SUCH THAT
WHERE k

<that/which/who> <t/w/w> [<term>] <verb phrase>
: <t/w/w> <special vp>
: <t/w/w> <term> <rel op>

<t/w/w> THAT
: WHICH
: WHO

<whose> WHOSE <description> <be aux> <term>

* ** ,

7. Descriptions and Classes 121

<which/whom> ::= <prep> <w/w> <term> <verb phrase>

<w/w> WHICH
WHOM

<except> ::= EXCEPT <term>

Descriptions can be modified by a relative clause, which acts like
a filter on the elements of the description's class. Each time an
element is generated from or compared to the elements of the %
description's class, the constraints specified by the relative clause %
are tested. If the test succeeds, the generation or comparison is
allowed to continue, otherwise it is aborted.

A relative clause is actually a specialized form of condition (see
Chapter 6), representing a boolean combination of sentences. The
sentences used in a relative clause can be specified with a syntax that
corresponds to English grammar. For example, the sentence,

there is a command center which is situated on hill #3

essentially represent the condition,

there is a command center and that command center is Y
situated on hill #3

There is a variety of forms that the sentences in a relative clause
can take, many of which allow implicit reference to the element being
described. Logical groups of relative clause forms can be built over
conjunction and disjunction.

7.2.1 Logical Groupings

Boolean combinations of relative clause forms can be constructed
with the conjunctive and and the disjunctive or. Fo, instance, the
actions

Display every city which does support music
and whose population is small.

Display every club of which John is a member and
which John does attend regularly or

of which Bill is a member and
which Bill does attend regularly.

demonstrate legal combinations of clauses. U._.'.

Both the conjunctive and and disjunction or are right associative.
Conjunction has a greater precedence than disjunction, and thus binds
relative clause forms more tightly. The second example above would be
interpreted as

% N, %, V V

-_Z%

7. Descriptions and Classes 122

Display every club (of which John is a member and
which John does attend regularly) or

(of which Bill is a member and
which Bill does attend regularly).

where parentheses designate the logical groupings of clauses. As with
conditions, the default precedence of the logical connectors can be
overridden with parentheses.

7.2.2 SUCH THAT... and WHERE...

<such that/where> : (<st/w> <condition>)
<st/w> <primary>

<st/w> SUCH THAT
WHERE %

<primary>: (<condition>)
= <sentence>

The most general relative clause forms are those introduced by the
words such that and where. When delimited with parentheses, they can
be followed by any condition, otherwise by any arbitrary sentence. This
form of relative clause does not implicitly reference the description
being modified; such a reference must appear explicitly.

1..

Examples--

For each integer from 1 to 100 (where that integer is even
and that integer is a multiple of 3),

display that integer.

For each integer from 1 to 100,
if that integer is even and that integer is a multiple of 3,
display that integer.

Display every employee such that that employee does play tennis.

For each employee,
if that employee does play tennis,
display that employee.

Assert John is a man where John is happy.

Assert John is a man and assert John is happy.

In the example pairs seen above (and in similar examples seen throughout
the remainder of this chapter), each action in regular font has
equivalent semantics to the action in boldface preceding it.

r%

7 t~eq Z Z .

7. Descriptions and Classes 125

Examples--

Display the man for whom the bell does toll.

Display the man for whom the bell does toll.

Attack the hill on which the red army did locate .,e
the command center.

Attack the hill where the red army did locate
the command center on that hill. %.%

For each list of which any integer is a member at 1,
display that list.

For each list where any integer is a member of that list at 1,
display that list.

Assert AAAI is a professional organization to
which John does belong.

Assert AAAI is a professional organization where 16

John does belong to that organization.

7.2.6 EXCEPT...

<except> ::= EXCEPT <term>

The final relative clause form provides a terse form of is not:
equal to and filters out any element of the host description that is
equal (see Section 9.1.3) to <term>.

Examples--

Signal every command station except any red unit.

Signal every command station where that command station is
not equal to any red unit.

For each member except either Jim, Jack, or John,
display that member.

For each member where that member is not equal to either V
Jim, Jack, or John, %

display that member.

7.3 DESCRIPTION VARIABLES

A normally invisible yet extremely useful component of a
description is its description variable. A description variable
provides a unit of temporary storage. When an element is produced from
a description, or tested for membership against a description, or

0"o . j *0

7. Descriptions and Classes 126

asserted or denied as an instance of a description, it is cached under
the description variable. Such elements can be accessed later within
the rule in which the description appears.

For instance, in

For each integer from 1 to 10, display that integer.

the description variable of integer from 1 to 10 is successive bound to

an integer in the range of one to ten. In each iteration, that value is %
accessed with the anaphoric term, that integer.

7.3.1 Anaphoric Terms and Rule Variables

A description variable can be referenced (and its value accessed)
both implicitly with an anaphoric term and explicitly with a rule
variable. Note that most of the relative clause forms automatically

reference the description variable of the description they modify.

An anaphoric term is composed of the function word that preceded by
the class noun of the description being referenced (e.g., that integer).
The parser turns this into an explicit reference to the description
variable. When this reference is evaluated, it will return the value
cached under the description variable. If nothing is cached, it will
generate the error

Unbound ANAPHORIC TERM: 1
THAT class noun "

In some cases, an implicit reference is inadequate. In order to
avoid otherwise ambiguous and conflicting references, the user must
supply the name of the desired description variable and then reference -,

that variable by name. This is done with the optional <desc var> syntax
and a rule variable. As an example, consider the expression

For each integer (1) from 1 to 10,
for each integer from 1 to I, display I.

where (I) names the description variable, and every other use of I is a
rule variable that references it. As with anaphoric terms, when a rule
variable is evaluated at runtime, it either returns the element cached

under the description variable, or, if no such element exists, it
generates the error

Unbound RULE VARIABLE: -

variable

,. *..,t

d
,-V.-
-'".

!U

7. Descriptions and Classes 127

7.4 ANAPHORIC DESCRIPTIONS: SUCH...

<description> : =SUCH <class noun > [(<desc var >) ''4

<class noun> <atom>

Additions to existing grammar rules--

<verb phrase> IS SUCH <a/an> <class noun> [(<desc var>)

<special vp> THERE IS SUCH <a/an> <class noun> [(<desc var>)] P

<desc term> SUCH <a/an> <class noun> [(-desc var>)j

Sometimes a complex or verbose description must appear more than
once in a rule. Rather than requiring the repetition of the full
description in the second instance, ROSIE permits the use of an
anaphoric description. "_

An anaphoric description is composed of the function word such
followed by the class noun of the description being referenced. The -.

parser expands this into a copy of an earlier description using the same .
class noun.

For example, the following two actions are semantically equivalent

If there is an exemplary student of mathematics
who will graduate in June,

recruit (every exemplary student of mathematics
who will graduate in June) for summer employment.

If there is an exemplary student of mathematics
who will graduate in June,

recruit every such student for summer employment.

They show how anaphoric descriptions can greatly enhance the readability
of otherwise verbose code.

An anaphoric description functions just like a regular description.
It can be used anywhere a regular description is used as well as
referenced just like a regular description. Note that an anaphoric
description is not an identical copy of the description it references. -.

The copy is identical in all aspects except its description variable.
As with regular descriptions, the user has the option of explicitly
naming the description variable to be used in the copy. If the user
does not specify the description variable, then the system generates a
new "unique" variable name.

-uor

NV -. SL N. -IN L%. ' - .- . ~.

o ,%

7. Descriptions and Classes 128

7.5 RESOLVING ANAPHORIC REFERENCES

There are two methods for anaphorically referencing a description,
i.e., with anaphoric terms and with anaphoric descriptions. Such ,
references are resolved by the parser.

In most cases, when a description is encountered by the parser, it P

is indexed at the front of a list of class noun/description pairs. When
the parser encounters an anaphoric reference, it searches this list from
the front looking for the first description indexed under the class noun
appearing in the reference.

This does not simply result in a right-to-left scan from the
reference to the target description. The precise workings of the parser
can be illustrated with the following example rule:

If there is a position which does have line-of-sight to
the position of the enemy, ,_-,

deploy the unit to that position.

In this rule, that position refers to a position which . . . rather than
the position of This is due to the latter description being
processed before the former--because it is a component of the former--
and thus appearing in the list of class noun/description pairs after it.

.3. 4,.

There are two cases where a description cannot be referenced
anaphor ical ly:

1) When it is used to specify an is-a proposition, e.g.,

<34, 57> is a position of the enemy

2) When it is used to specify an intentional description (see -
Section 9.9), e.g.,

'the position of the enemy'

Note that in each case the user still has the option of explicitly
naming the description variable used and referencing it with a rule .,
variable. Note also that descriptions associated terms, e.g., the
enemy, can still be referenced anaphorically.

7.6 USES OF DESCRIPTIONS

As mentioned earlier, dev-(riptions are used by ROSIE in three ways:

1 testing an element for membership in the set being described

S °-'3%

.3.?.:

* ,' . d - .- d' .3 ~ q* .. ~~ ~ 3. . ."o.

7. Descriptions and Classes 129

2) generating one, some, or all members of that set :

3) adding or removing members from that set

7.6.1 Testing for Membership

Propositions of the form

element is a description . ,

can be used to test element for membership among the set of elements

named by description.

In performing such a test, ROSIE first determines if element is a "-Y
member of description's class, as described in Section 7.1.1. If so,
then element is cached under description's description variable, and the
relative clause of description is evaluated. If there is no relative
clause, or if it evaluates to true, then the test succeeds. Otherwise,
the description variable is unbound and the test fails.

7.6.2 Generating Elements
--- 4..

Many constructs use descriptions to generate elements (initiating
generate events), e.g., ... %

for each description ..
there is a/an description . .

the description
every description

Elements are generated from description in the following manner:

1) The construct establishes a halting condition,7 and then
initiates a generate event on descriptions.

2) For each successive element that can be produced by
description's class (see Section 7.1.2), that element is cached
under description's description variable. Then, description's
relative clause, if any, and the halting condition are
evaluated in turn. If either condition fails, then the

description variable is unbound and the next element is tried.
In the case where the relative clause fails, the halting
condition is not evaluated.

When generate event is concluded, description's description variable
will be bound to the last element produced, but only if that element

7 The halting condition depends upon the construct. For instance, a
construct such as the will halt on the first element produced, while
every won t halt while there is an element that can be produced. %%,*

% .

* ~w,(W~ 4 .'-~v : ,**J I

7. Descriptions and Classes 130

satisfied the relative clause and the halting condition, otherwise the
description variable will be unbound.

7.6.3 Asserting and Denying Members

An element can be added or removed from the set of elements named•V
by a description in several ways. One way is to pass a proposition of -'s
the form

element is a/an description

to assert or deny, while another is to make the element the
distinguished member of the set using let, i.e.,

let element be the description

A system generated element can be added to the set with create, i.e.,

create a/an description X..

For any of these actions, the relative clause of description may only
contain clause forms that expand into propositions. Further, these
forms may only be joined over conjunction. '

While the semantics of the database actions mentioned above are
described in Section 5.3 and again, more fully, in Chapter 10, the A#P
following sample session demonstrates their application.

(R)
ROSIE Version 3.0 (PSL) 26-May-86 I

<1> Create a battalion which is on alert.
<2> ?
GLOBAL Database

BATTALION #1 IS ON ALERT.
BATTALION #1 IS A BLUE BATTALION.

<3> Assert battalion #1 is a blue battalion that was deployed to
sector #12 and for which any red battalion is looking.

<4> ?
GLOBAL Database -

BATTALION #1 IS ON ALERT.
BATTALION #1 WAS DEPLOYED TO SECTOR #12.
ANY RED BATTALION IS LOOKING FOR BATTALION #1. -
BATTALION #1 IS A BLUE BATTALION. .

<5> Deny battalion #5 is a blue battalion which was deployed

to sector #12. -

N7

,:.2

*" °S

" ' % ", ,' "% % " " "=, "* "% ". ". . ". ". ",, "%, ",, - " ". " " "...'. -'j *" - . - . . " .- "% . "
o

" -" . . . ".
•

. ' ' , "" '" *

7. Descriptions and Classes 131

<6> ?
GLOBAL Database]

BATTALION #I IS ON ALERT.
ANY RED BATTALION IS LOOKING FOR BATTALION

#i.

<7> Let the blue battalion whose strength is 25 be battalion #1.
<8> ?
[GLOBAL Database]

BATTALION #1 IS ON ALERT.
BATTALION #1 IS A BLUE BATTALION.
25 IS A STRENGTH OF BATTALION #1.

7.7 COMPOUND CLASSES VERSUS ADJECTIVES

ROSIE 3.0 diverges from earlier ROSIEs by one significant aspect in
its definition of classes and descriptions. While this change will not
create any syntactic incompatibilities with existing code, it may
introduce problems with code behavior. This change surrounds the notion
of compound classes versus descriptions modified by adjectives. For
instance, ." %'-"

football player

is an instance of a compound class, while

big bad burly man

is an instance of a description modified by three adjectives.

If you examine ROSIE's grammar, you will notice that it does not
distinguish between compound nouns and adjectives. In order to make
such a distinction, ROSIE's parsing mechanism requires special knowledge
about lexical word classes such as adjectives. For reasons that will
not be discussed here, providing ROSIE with the words in this class is
somewhat more problematic than providing ROSIE with its knowledge of
prepositions.

Earlier releases of ROSIE traditionally opted for adjectives over
compound classes. This definition was considered to be more functional .-.-

and flexible, the argument being that, were the distinction important, .*

compound nouns could always be formed with hyphenation, e.g.,

football-player

Unfortunately, experience reveals that class compounds appear with great
frequency in ROSIE code, and, when they appear, they must be (1)
hyphenated, which detracts from code readability, or (2) emulated as,.
descriptions modified by adjectives, which degrades system performance.

MI.X-

7. Descriptions and Classes 132

In ROSIE 3.0, the root name of a class may be one or more tokens
long, thus permitting compound classes, and descriptions may only be
modified by a relative clause. This eliminates the problems mentioned
above, but introduces the constraint that adjective restrictions must
now appear in the relative clause, e.g., -

some strategic objective

must be written as

some objective which is strategic

if strategic is meant to function as an adjective.

Adjectives can be emulated with virtual relations (see Chapter 10),
e.g.,

any strategic objective is strategic U

While this is not the perfect solution, it is not as awkward or
inefficient as representing class compounds as descriptions with
adjectives.

.-

%',

."'

.%I

. ~ ~ ~ ~ ~ ~ *% .

. %

A A
.....-..--.... .-s:.

8. Terms 133

VIII. TERMS

I

This chapter introduces a basic component of any high-level
language, namely the data types that the language supports and the
linguistic structures that it provides for data abstraction. ROSIE's
primitive data types are called elements, and the data abstractions used
to represent elements are called terms. When ROSIE encounters a term
during the execution of a program, it evaluates the term and passes the
resulting value to the construct in which the term appeared, In this
chapter, we focus on the available term forms and how these forms are I
evaluated. While we include a short section on elements, Chapter 9
deals with elements in greater detail.

8.1 TYPES OF TERMS

<term> : <element>-Ir'-I
<arith expr>
<desc term>
<anaphor>
<iter term>

A term is a form of data abstraction representing one or possibly
any number of data objects. These data objects are drawn from ROSIE's
ten data primitives called elements. Terms serve as arguments to
actions and sentences as well as other terms.

There are essentially five types of terms:

1) Elements, which evaluate to themselves

Arithmetic expressions, which provide a small set of infix
arithmetic operations

3) Descriptive terms, which apply operators in the form of
articles (e.g., a and the) and quantifiers (e.g., some and
every) to descriptions and evaluate to one, some, or all of
the elements described

4) Anaphoric terms and rule variables, which evaluate to elements
generated from a description or created by the string pattern
matcher

5) fterative terms, which permit the specification of an explicit
set of elements over which a test or action is iterated.

Terms can be nested to an arbitrary depth, and an arbitrary number
of embedded terms can appear at the same level, e.g.,

I- ' , ("- =, " ':'% ,; 2 ','" ', , ''- L"'- - --:, .. ' ,- .-, .,..' .'' -.-. -. .-.. ..-. " ..'.. ." "

8. Terms 134

the man (from the city (by the river (to the east) I-.-
(in the valley))

(in Ohio))
(in the suit (from the store (in Chicago)))
(by the drugstore (on the corner))

Embedded terms are normally evaluated in postorder (i.e., from left to
right and from the inside out). In the above example, the east would be
evaluated first, then the valley, then the river to the east in the
valley, then Ohio, then the city by the river . ., etc.

NOTE: While ROSIE attempts to preserve ordering whenever possible
during the evaluation of terms, the definition of the language does not
guarantee that ordering will always be maintained. Unless the
definition of an operation clearly specifies the treatment of its
arguments, users should avoid writing code that depends upon order of
evaluation for proper performance.

8.2 ELEMENTS
V

<element> : <name element>
<number element>
<tuple element>
<string element>
<pattern element>
<filesegment>
<class element>
<intentional description> ..r%..

<intentional proposition>
<intentional procedure>

Whenever a term is encountered as an argument to an action, or a
sentence, or another term, it is evaluated. It will evaluate to one or
possibly a sequence of elements, which will be passed on to the
construct in which the term appears. Hence, elements are passed as the
arguments of rulesets, and they are produced as the results of a
generator ruleset. They appear as the arguments propositions affirmed
in the database as well as the object of affirmed class relations.

Elements can be divided between two categories: simple elements and
intentional elements. These include:

V.'p.

p, .-:.
",..:...o

-4
8. Terms 135

Simple Elements Examples

names battalion #5
numbers

simple numbers 3.1412
unit constants 55 miles/hour
labeled constants probability 0.75

strings "The ratio HEP/COG:"
patterns {("Yes"I"No") (bind to the reply), cr1
tuples <pol soft, <5 waves, FX-4>>
filesegments 'file: "intel", to report a finding'

Intentional Elements

class elements any non-offensive target
intentional descriptions 'an action at the current time'
intentional propositions 'visibility does approximate 3.5 miles'
intentional procedures 'deploy the unit to sector #3'

.ost of the simple elements correspond to the basic data types found in
other symbolic languages. Elements such as patterns and filesegments
interface to facilities that are unique to ROSIE. The intentional
elements provide ROSIE with limited "self-referential" capabilities,
allowing programs to treat units of descriptive, declarative, and
procedural knowledge as data. Elements are discussed further in
Chapter 9.

8.3 ARITHMETIC EXPRESSIONS

<arith expr> <term> <op> <term>

<op> ::= +

Arithmetic expressions support a predefined set of infix arithmetic
operators. Arithmetic expressions are treated as terms that evaluate
to number elements. Each operator is a function of two arguments, which
must evaluate to number elements whose units or labels are compatible
under the given operation.

8.3.1 Operators and Operations

ROSIE supports five arithmetic operators: (+) for addition; (-) for
subtraction; (*) for multiplication; (/) for division; and (^) and (**
for exponentiation.' Note that in order for these operators to be

'The uparrow () is being introduced for the first time in
~ROSIE 3.0.

Of .rW

8. Terms 136

recognized by the parser they must be surrounded by separator
characters, e.g., 3 * 4 as opposed to 3+4--the former will be treated as
an arithmetic expression, while the latter as a name element.

The label and units of the numbers to which these operators are
applied must be compatible under the following rules:

When numbers are added (+) or subtracted (-), both numbers must
be of the same type and have the same units or label. The
result is a number with the same units or label.

" When numbers are multiplied (*) or divided (/), they must
either both be label ccnstants with the same label or both be
unit constants with comparable units (see Section 9.3), or one
of the two numbers must be a simple number. The result is a
number that has the appropriate label or units.

* Exponentiation (- and **) requires that the exponent (the second P
operand) be a simple number with an integer value. The other
operand can be any number type. If it is a label constant, the
result retains the label. If it is a unit constant, the units
will also reflect exponentiation.

If the above constraints are not met, then the error message

Illegal arguments:
element op element

will be generated.

Note that these operations do not distinguish computations between '-

real numbers and integers. If applied to two integers, an operation
will attempt to return an integer, otherwise a real number is returned,
e.g., 10 / 5 returns 2 while 10 / 4 returns 2.5. When at least one of
the operands is a real number, the result will be a real.

As an example, consider the following expressions and their
resulting values: "

Example Results .

3 + 4 7
5 apples - 2 apples 3 apples .
time 9 + time 1 time 10 r.: ,

3 /4 0.75
55 miles/hour * 3 hour 165 miles P
time 5 * 2 time 10

5 2 25
5 -2 0.04
3 feet 3 27 feetf3

4 ~ ?(- .-

-4
8. Terms 137

Notice that ROSIE does not understand plurality in units; thus the use , eI

of 3 hour as opposed to 3 hours. Also note that while the arithmetic
operators must be delimited by separator characters when used in U
arithmetic expressions, the opposite is true when used in the units of a
number, e.g., 3 feet ^ 3 as opposed to 27 fee"3.

8.3.2 Associativity and Precedence

The rules of associativity and precedence for the arithmetic
operators are fairly standard. The operations of addition (+),
subtraction (-), multiplication (s) and division (/) are all left
associative. Exponentiation (C and **) is right associative. ...

Exponentiation has the highest precedence, then multiplication and
division, then addition and subtraction. Thus, the expression

3 + 4 * 5 6 / 6 5 *43 '.

would be interpreted as

((3 + (((4 * (5 6)) / (6 5)) 4)) + 3)

When used within a prepositional phrase, e.g.,

the absolute value of 5 * -6 .

precedence of the arithmetic operators is less than that of
prepositions. Thus, the above example would be interpreted as

(the absolute value of 5) -6

and not %

the absolute value of (5 -6)

8.4 DESCRIPTIVE TERMS.

<desc terms> THE <description>
<term> ' S <description>
<a/an> <description>
A NEW <description>
SON1E <description>
EVERY <description>

Descriptive terms reference and evaluate to the elements named by a
description see Chapter 7). Descriptive terms fall into two .ik'
categories, the simple descript ive terms and the quant if ied descript i've
terms. Simple descriptive terms evaluate to one and only one of the "
elements named by a description, while quantified descriptive terms
evaluate to a sequence of some or all of these elements.

• ,S.',

'.~ %*% '*'* * . . .

8. Terms 138
.4

A descriptive term consists of two components, a function word and
a description. The function word can either be one of the articles,
the, a or an, e.g.,

the sortie rate of airfield #3
an emergency

the special article form, a new, e.g.,

a new rule which does conclude the hypothesis

or one of the quantifiers, some or every, e.g.,

some ship which is not seaworthy
every strike force in sector #5

The function word serves to introduce the term and specifies how the
term is to be evaluated.

When evaluated, a descriptive term initiates a generate event on
its description after establishing a halting condition based upon the
semantics of its function word. The halting condition is successively
applied to each element named by the description until it evaluates to
true, terminating the generate event. If the halting condition is
successfully met, then the description variable of the term's
description will be bound to the element that satisfied it. This
element is treated as the value of the term and can be accessed by an
anaphoric term or a rule variable (see Section 8.5).

8.4.1 Simple Descriptive Terms

Simple descriptive terms are introduced by the articles, the, a and
an, and by the special article form, a new. This type of descriptive
term will evaluate to one and only one element. ..

8.4.1.1 THE...

If the descriptive term is introduced by the, it will return as its
value the first element that can be produced by its description. For
example, consider the following sample session.

(R) %
ROSIE Version 3.0 (PSL) 26-May-86

<1> Assert each of John, Jack and Joe is a man.<2> Assert John does love Mary...1't

GI,OBAL I)atabase
MARY IS A WOMAN.
JOE IS A MAN.
JACK IS A MAN.
JOHN IS A MAN.

4,. ..- . * "~ *~**~ - -". 5

8. Terms 139 p

<4> Display the man.
JOE
<5> Display the man who does love Mary.
JOHN

If no element can be produced, an error is called, i.e.,

No such element exists:
THE description

This type of term is most commonly used as a variable under which
the intermediate values of computation are stored. For instance, in the
ruleset

To generate the length of a tuple:
Private: a counter.
[1] Let the counter be 0.
[2] For each member of the tuple,

let the counter be the counter + 1. e

[3] Produce the counter.
End.

the counter is used as a local variable to keep track of the number of
elements seen in a given tuple. This example also shows the common use -

of the let database action as an assignment operator.

ROSIE permits a shorthand syntax for descriptive terms introduced
by the via the possessive case of apostrophe s, e.g.,

John's mother

expands to

the mother of John

The syntax used above is term's description, where the
parser adds of term to the prepositions associated with'.

description, e.g.,

the city's mayor in 1971

expands to

the mayor of the city in 1971

%'

8. Terms 140

8.4.1.2 A... and AN...

The semantics of descriptive terms introduced by the articles, a
and an, are similar to the, with one exception. Like the terms, the
description is requested to produce an element that becomes the value of
the term. However, if no such element can be produced, an element will
be created as with the create database action. This element will be
asserted as an instance of the description and returned as the value of
the term.

(R)
ROSIE Version 3.0 (PSL) 26-H2ay-86 J

<2>? ,.
tGLOBAL Database]

<3> Display a truck. ., e

TRUCK 7- 1 "-
<4> ?

GLOBAL Database -
TRUCK ik1 IS A TRUCK.

<5> Display a truck.
TRUCK ;-l .

To create an element, ROSIE takes the class noun of the description
and appends the suffix #N, where N, a positive integer associated with
the class noun, is incremented by one for each element so created.

8.4.1.3 A NEW...

A descriptive term introduced by the special article form a new
never attempts to generate an instance of its description. Rather, it
automatically creates an element, asserting that element as an instance .

of the description and returning that element as its value.

<6> Assert Bill does own a new truck and
John does own a new truck.

<7> ?
GLOBAL Database]

JOHN DOES OWN TRUCK 13. .'..

BILL DOES OWN TRUCK 12.
TRUCK ;3 IS A TRUCK.
TRUCK Ii2 IS A TRUCK.
TRUCK '11 IS A TRUCK.

,...

S U %. ,, - A - wE W R 7' W N it a WUA - l W u -v4 -w ~Wu Pd -

8. Terms 142

Display the name of every man.

is equivalent to

For each man, display the name of that man.

Note also that when a quantified term appears within a relative clause,e.g.,
Display the target which does satisfy every requirement.

then transformation is applied to that relative clause form (because it
is a sentence). Hence, the above example is equivalent to

2

Display the target such that there is no requirement which
that target does not satisfy.

8.4.2.1 SOME... %

The quantifier some causes iteration to continue until it finds
one element that satisfies the expression in which the quantified term
appears. Since an action can be said to be ambivalent to any argument
it receives, this type of term is more appropriate to use within a
sentence. An action that contains a some term will be executed only
once, using the first element produced from the term's description. A
sentence will be tested repeatedly on each element until the test
succeeds. J.

For instance, the action,
"

Dispatch some fighter to the target.

will be transformed by the parser into
If there is a fighter,-

,

dispatch that fighter to the target.

while the sentence,

some fighter is unassigned

2 Actually, a precise paraphrase would be %

Display the target such that there is no requirement
where 'that target does satisfy that

requirement' is not provably true.

However, intentional propositions and the is provably predicate have
not vet been introduced, and, since they tend to otherwise obscure the '%

examples in this section, they are not used here. %e%

%. I

).,." .,.,,'.,.,.-" o V - .: ,'""''".' .Z % ',.-,-".".'.; . -.... ' "4 2"2 '. ' -.. .

JI .vr w WW Jr vvf tWAf Wr qMl : x, w .' - K.:,. _- . ,. - - =UW yr-,.u. 'ubwW,

8. Terms 143 MM

from the iterative action,

While some fighter is unassigned, -
dispatch that fighter to *he target.

will be transformed into
While there is a fighter which is unassigned,

dispatch that fighter to the target.

For more elaborate applications, consider the following actions,

For each fighter which is assigned to some target,
display that fighter.

For each target at some airfield which is on alert,
defend that target.

and their equivalents without quantifiers,

For each fighter such that there is a target
where that fighter is assigned to that target,

display that fighter.

If there is an airfield which is on alert,
for each target at that airfield, defend that target.

The first example demonstrates the interpretation of a some term that
appears in a relative clause. This can be compared to the second
example in which the some term is a component (i.e., object of a
preposition) of a component (i.e., the description being iterated over)
of an iterative action.

8.4.2.2 EVERY...

The every quantifier is essentially the inverse of some, causing
iteration to continue until it finds one element that fails to satisfy
the expression in which the quantified term appears. An action that
contains an every term will be executed for each element produced. A
sentence will be tested until an element fails to satisfy the test or
until all elements have been produced, in which case the test succeeds.

The action,

Dispatch every fighter to the target.

will be transformed by the parser into the equivalent of e..

For each fighter, dispatch that fighter to the target.

and the sentence,

8. Terms 144

every fighter is assigned

from the iterative action,

If every fighter is assigned, initiate the strike.

will be transformed into the equivalent of

Unless there is a fighter which is not assigned,
initiate the strike.

For more elaborate applications, consider the following example ,'

pairs:

For each fighter which did strike every objective,
display that fighter.

For each target at every airfield which is on alert,

defend that target.

and their nonquantified equivalents: ,.

For each fighter such that there is no objective -

which that fighter did not strike,
display that fighter.

For each airfield which is on alert,
for each target at that airfield, defend that target. ,.. .

The first example demonstrates the interpretation of an every term that
appears in a relative clause. This can be compared to the second
example in which the every term is a component (i.e., object of a
preposition) of a component (i.e., the description being iterated over)
of an iterative action.

8.5 ANAPHORIC TERMS AND RULE VARIABLES
<anaphor> =: THAT <class noun>

<rule var>

<rule var> :: <desc var>

Anaphoric terms and rule variables provide a means of referencing
elements produced from a description. They do this by making either an
implicit (as in the case of anaphoric terms) or explicit (as with rule
variables) reference to the description variable associated with the e
target description. At runtime, such a reference evaluates to the
element stored under that description variable.

...

-U.,. .° o

8. Terms 145

z4

An anaphoric term is composed of the function word that preceded by
a class noun of some description appearing earlier in the rule in which
the term appears. For example, in

For each positive integer from 1 to 10, display that integer.

that integer references the description positive integer from 1 to 10.

When encountered at parse time, the parser expands an anaphoric
term into an explicit reference to the description variable of the
target description. When this reference is evaluated, it will return
the valued cached under the description variable. If nothing is cached,
it will generate the error,

Unbound ANAPHORIC TERM:
THAT class noun

By supplying the name of the description variable the user can make
explicit reference to it by using a rule variable of the same name, %
e.g.,

For each positive integer (I) from 1 to 10, display I.

When the parser encounters a single word name, such as I, which is the ..

same as an explicitly designated description variable, it treats the ..

name as a rule variable and translates it into a explicit reference to
the description variable. As with anaphoric terms, when this reference
is evaluated, it either returns the element cached under the description .
variable, or, if no such element exists, it generates the error,

Unbound RULE VARIABLE:
variable

The scope of anaphoric terms and rule variables is limited to the
rule in which the target description is evaluated. A description ,

variable cannot be referenced, nor its value accessible outside of this
ru l e.

8.6 ITERATIVE TERMS

<iter term> :: ONE 01' <term> , -term>] LJ OR <term,"
EITHER <term> , Kterm>]--', OR <term>
EACH OF <term> [, <term>I* [,] AND <term>
BOTH <term> [,] AND <term>

'For further details, see Section 7.5.

-- . - ;.*.-"- .- ~w.,M~bt . .==

*0~ * * ~ _ _ - -.

8. Terms 146

The iterative terms provide a unique device for looping over a
group of elements to perform an action or test a condition. They are
essentially a specialized form of the quantified descriptive terms in
which the elements over which iteration is to be performed are
explicitly named.' Like quantified descriptions, the iterative terms

actually change the structure of the action or sentence in which they
appear.

There are two types of iterative terms, the disjunctive iterators
and the conjunctive iterators. Both are characterized by a term list,
where each term is separated by a comma (,) and the last term is
separated from the others by the disjunctive or or the conjunctive and,
respectively. When iterating over the term list, successive terms are

evaluated one by one as needed.

The disjunctive iterators are introduced by the phrase one of or
either, corresponding to the descriptive terms introduced by the

quantifier some. A conjunctive iterator must be introduced by the
phrase each of, which corresponds to the every quantified descriptive '

term. A conjunctive form of just two elements can be introduced by the
word both.

8.6.1 ONE OF... and EITHER... ".

The one of and either disjunctive iterators will loop over an V
expression for each of the elements from their term list until one of

these elements satisfies some halting criteria. An action that contains -

sr h an iterative term will be executed only once, using the first "

element from tie term list. 5 A sentence containing a disjunctive
iterator will be tested for each element from the term list until the
test succeeds.

For instance, the sentence,

either fighter #1, fighter #2 or fighter #3 is unassigned

from the iterative action, .

While either fighter #1, fighter #2 or fighter #3 is unassigned,
dispatch a fighter to the target.

will first test the 'element is unassigned' predicate with fighter #1 as
element. If that test succeeds, then the dispatch procedure is
executed, otherwise the test is applied to fighter #2, etc.

'In the old manual, the quantified descriptive terms and the
iterative terms were grouped together in a single class called the
pseudo-terms.

5While this semantic is recognized as not being an especially
useful one, it is nonetheless included for completeness.

,?.

,4

,6

8. Terms 147

8.6.2 EACH OF... and BOTH...

Like one of and either, the iterative terms introduced by each of
and both loop over an expression for each of the elements from their

term list until one of these elements satisfies some halting criteria.

This criterion, however, is the inverse of that used by the former. An

action that contains a conjunctive iterator will be executed for each

element from the term list. A sentence will be tested repeatedly, using

each element until one of the elements causes the test to fail or the ,

term list is exhausted, in which case the test succeeds.

For instance, the action,

Dispatch each of fighter #1, fighter #2 and fighter #3.

will apply the dispatch procedure in turn to fighter #1,
fighter #2, and fighter #3, while the sentence,

both fighter #1 and fighter #2 is assigned 'J

from the iterative action,

If both fighter #1 and fighter #2 is assigned,
initiate the strike. -V.

will succeed if 'fighter #1 is assigned' and then 'fighter #2 is assigned'
both test true.

* -o

0."o

,i **p
0,r

9. Elements 149

IX. ELEMENTS

This chapter reintroduces elements, ROSIE's data primitives.

ROSIE's elements define its space of concepts. These elements include
the simple elements: names, numbers, strings, patterns, tuples, and

filesegments; and the intentional elements: class elements, intentional
descriptions, intentional propositions, and intentional procedures. The

simple elements consist of variations on the basic data types found in

most symbolic programming languages, while the intentional elements
provide a means of treating units of descriptive, declarative, and

procedural knowledge as data.

.- '

9.1 ELEMENT BASICS

<element> :: <name element> : .

<number element>
<tuple element> .0
<string element>
<pattern element>

<filesegment>
<class element>
<intentional description>

<intentional proposition>
<intentional procedure>

ROSIE's primitive data types are called elements. All terms
evaluate to elements. Rulesets are passed elements as arguments and can

be defined to generate a sequence of elements on request. Elements can
be stored as the arguments of declarative relations and affirmed as
instances of class relations.

9.1.1 Types of Elements

Elements can be divided between two categories: simple elements .
and intentional elements. These include:

4. 1N %

pwong
Text Box
preceding page blank - not filmed

9. Elements 150

Simple Elements Examples ,-v

names battalion #5
numbers

simple numbers 3.1412
unit constants 55 miles/hour
labeled constants probability 0.75 ,. ;,

strings "The ratio HEP/COG:"
patterns (("Yes"l"No") (bind to the reply), cr,
tuples <pol soft, <5 waves, FX-4>>
filesegments 'file: "intel", to report a finding'

Intentional Elements

class elements any non-offensive target
intentional descriptions 'an action at the current time' .0

intentional prop,sitions 'visibility does approximate 3.5 miles'
intentional procedures 'deploy the unit to sector #3'

Several of the simple elements (i.e., names, numbers, strings, and
tuples) exist as slightly more complex variations on the basic data
types found in most symbolic programming languages. The other simple
elements provide explicit representation for data structures used in
operations that are unique to ROSIE. For instances, filesegments
identify portions of a program file that can be manipulated via the file
package, and patterns interface to ROSIE's string pattern matcher and - .

support complex input and output operations.

The intentional elements provide ROSIE with limited "self-
referential" capabilities, allowing programs to treat units of
descriptive, declarative, and procedural knowledge as data. Class
elements and intentional descriptions permit program control over the
retrieval and definition of class relations, e.g.,

Execute every instance of 'an action at the current time'.

Intentional propositions capture the intent of relations between
objects, which can be passed as arguments to rulesets, e.g.,

Report 'visibility does approximate 3.5 miles'. '

as well as asserted, tested, or denied. Intentional procedures provide
a representation for working with suspended actions, e.g.,

Execute 'deploy the unit to sector #3' at time 100.

which can be queued and later executed on demand. Essentially, the
intentional elements give knowledge engineers a vehicle for developing
meta-level control mechanisms. .',

. .

y9",. "°

%" , .'

9. Elements 151

9.1.2 Evaluation Names

Every element has an evaluation name, which is its character string
representation. Whenever an element is sent to an output device, such
as the user's terminal, or coerced into a string element, its evaluation
name is used. Each type of element has its own format for creating an
evaluation name such that, if parsed and evaluated, it would return the
original element.

For example, consider the following term,

<the general, 3 + 4, John's mother, John>

which is a tuple element with four embedded terms: the general, a
descriptive term; 3 + 4, an arithmetic expression; John's mother,
shorthand for the mother of John; and John, a name element. Assuming
the embedded terms evaluate to George Custard, 7, Sara Lee, and John,
respectively, the tuple would evaluate to

<GENERAL CUSTARD, 7, SARA LEE, JOHN>

This would likewise become the evaluation name of the tuple and would
appear whenever the tuple was sent to an output device or coerced into a .
string.

9.1.3 Equivalence versus Equality

ROSIE supports two comparison operations for determining the
sameness of elements, equality and equivalence. Each is an operation

of two arguments, defined as follows: .

* Equality succeeds if its arguments are of the same type and

produce the same evaluation name.1

* Equivalence succeeds if one or both arguments can be coerced
into equal elements.

According to the above, equality is defined as one might think, while
equivalence is essentially defined as a test of set intersection. This
is an important distinction to remember, because the "equality" special
sentence forms, i.e.,

<term> is [not] equal to -term>
<term> [H] <term>

actually test equivalence. Whenever we talk about comparing two
elements for equality using the above operators, we are really talking

'Assume the "sameness" of evaluation names is tested with the LISP N.N
equal function.

&KA~JI?,?..*
- %.

9. Elements 155

an element is a description

Concludes true if element is an intentional description, false
otherwise.

an element is a proposition '

Concludes true if element is an intentional proposition, false

otherwise..

an element is a procedure

Concludes true if element is an intentional procedure, false -
otherw ise . , 1w7 .'

the element type of an element

Produces the type of element, i.e., one of

NAME FILESEGMENT
NUMBER CLASS
TUPLE DESCRIPTION
STRING PROPOSITION
PATTERN PROCEDURE

an element [= n element
an element is [not] equal to an element

Concludes true if both elements are equivalent, false otherwise.
Element equivalence is defined in Section 9.1.3.

an instance of an element

If element is an intentional description or a class element,
produces successive instance of its class, otherwise simply
produces element, e.g.,

<6> Assert each of Jim, Jack and Joe is a man.
<7> Display every instance of 'a man'.
JOE

JACK
JIM

<8> Display every instance of a man.
JOE

w.~ ~~~~~~~~~~~ j-iJ ~, 4 * * xr .. . - *.

9. Elements 156

an argument of an element

If element takes other elements as arguments (i.e., tuples,
patterns, filesegments, and the intentional elements), successively
produces those elements, otherwise produces nothing, e.g.,

<9> Display every argument of <A, B, C>.
A
B
C %
<10> Display every argument of 'John does love Mary'. 0%0
JOHN
MARY

the substitution of an element for an element in an element

Produces a copy of the third element with the first occurrence
of the second element replaced with the first element, e.g., b.

<1> Display the substitution of Bill for John in 'John is a man'.
'BILL IS A MAN'

substitute an element for an element in an element

Destructively substitutes the first element for the first instance
of the second element in the third element, e.g.,

<5> Let the sentence be 'John is a man'.
<6> ?
GLOBAL Database

'JOHN IS A MAN' IS A SENTENCE.

<7> Substitute Bill for John in the sentence.
<8>2

GLOBAL Database

'BILL IS A MAN' IS A SENTENCE.

a copy of an element ,

Produces a copy of element, e.g., given the pr*'vious example

A9 A Let the test sentence be a (cop\ o{ Ell(,f the s ci ti e

<10-''?
[GLOBAL, Database J

BILL IS A MAN' IS A TEST SENTENCE.,
BILlI, IS A "IAN' IS A SENTENCE . .,

<11- Substitute Joe for Bill in the test serten(v'.

%'

Z...

9. Elements 157

<12> ?
GLOBAL Database -

'JOE IS A MAN' IS A TEST SENTENCE.
'BILL IS A MAN' IS A SENTENCE. ..

% %

.,5.

-
"5'

.". '* '

- 55. 2",

" . ,

. 2" ',' '.' .',''. '.'," . v °..' .',',. -.2

_"p

9.2 Names 159 .
Z.1

9.2 NAMES

<name element> [<atom>]* <atom>

A name element is a sequence of one or more nonreserved tokens.
Names are most often employed as labels on abstract concepts. Names can

also be used as abbreviations for identify filesegment elements (see .
Section 9.7) as well as alternate databases (see Chapter 10).

Examples of legal names--

John ,
Mr. John Smith
General George Custard
Battalion #5
PA 6-5000
Washington State University

Names cannot include strings or numbers.

Examples of illegal names--

John "The Smasher" Brown
Employee 0029 A4
I.R.S. Section 319

Note that while the first two examples will cause a parsing error, the
third will not; I.R.S. Section 319 will be interpreted as a number
(i.e., a labeled constant).

%

'-. ..-

* -*.

V V V -- -. . . J ...-

pwong
Text Box
preceding page blank - not filmed

9.3 Numbers 161
%.

9.3 NUMBERS

<number element> <simple number>
= <unit constant>

<labeled constant>

<simple number> <number>

<unit constant> : <number> [<atom>] <atom>

<labeled constant> ::= [<atom>]* <atom> <number>

<number> :: <integer>
<real>

<integer> :: [+/-Jnnn ,.

<real> :: [+/-jnnn.[nnn][E[+/-]nnn]
[+/-][nnnl.nnn[E[+/-]nnn] %
[+/-jnnnE[+/-]nnn

A number element is used to represent numeric values. Numbers can -,.e

be o, three types: simple numbers, unit constants, and labeled .
constants. ROSIE's arithmetic operators (+ - /), as well as its
comparison operators (= > < >= <) and their complements (~ ~> ~< ~>
-<=), combine and compare units and labels in a manner which should seem
intuitively correct. They also ensure that these combinaticIs and
comparisons are sensible. For example, attempting to add 3 apples to 2
oranges will cause a mismatched units error.

Units and labels improve the expressiveness and readability of -\

numeric computations. They greatly enhance the representational power
of numbers, making their occurrence in code more meaningful.

9.3.1 Types of Numbers

There are three types of number elements: simple number, unit
constants, and labeled constants. These are defined below.

Simple Numbers

A simple number can be expressed as either an integr or a real,

10 1J

2.718

with no associated units or labels. By this def in ition, simple, numbers
subsume the concept of numbers found In most programming 1 algldges.

- E-%

% ,4

pwong
Text Box
preceding page blank - not filmed

WI--I

9.3 Numbers 163

would be the evaluation name of the example number illustrated above. U
Labeled Constants

%%

A labeled constant consists of an integer or a real preceded by one
or more nonreserved tokens referred to as its label, e.g.,

certainty 0.75

Ground Combat Division 13

9.3.2 Constraints on Numbers

The following constraints apply to how numbers may be specified,
compared, and combined:

There is no such thing as a unit constant with a label or a
labeled constant with units. Thus, trying to specify a number
such as

probability 75 percent

will result in the parser generating a syntax error.

" When numbers are compared using the operations (> < >= <=) or
their complements (~> ~< ~>= ~<=), both numbers must be of the
same type and have the same units or label; if not, an error
occurs. -j.

* When numbers are added (+) or subtracted (-), both numbers must '-.
be the same type with the same units or labels.

* When numbers are multiplied (':) or divided (/), they must both
be labeled constants with identical labels, or unit constants
(units do not have to be identical), or one of the numbers must
be a simple number.

* The exponentiation operators () and (**) require that the
exponent be a simple number with an integer value; the other
operand can be a number of any type. -,-P--

9.3.3 Operations on Numbers

In the following operations, a number refers to a number element, %

an integer refers to a simple number with an integer value, anid an
element refers to an arbitrary element.

an element is a number
an element is a positive number
an element is a negative number
an element is a simple number -'

-a"-

% %* **** **** *~ * **** **** ~~ * ** - -.- -- *

9.3 Numbers 165

The exponent operation (^) and (**) requires that the
exponent (i.e., the second argument) be a simple number with
an integer value. The other operand can be any number type.
If it is a labeled constant, the result retains the same
label. If it is a unit constant, the units also will reflect
exponent iat ion.

If the above constraints are not met, then the error message

Illegal arguments:
element op element

will be generated. _

a number [-]>[:] a number
a number is [not] greater than [or equal to] a number

a number [~]<[=] a number
a number is [not] less than [or equal to] a number

The following special sentence forms are available for comparing number
elements and have the obvious results. Comparisons can be made only
between numbers with the same units or labels, otherwise an error occurs.

a number does range from a lower bound to an upper bound

Concludes true if number is greater than or equal to lower bound
and less than or equal to upper bound.

the numeric value of a number

Produces a simple number representing the value of number...

the absolute value of a number

Produces the absolute value of number, preserving units or labels. N''

the negation of a number

Produces the negation of number, preserving units or labels.

the floor of a number

Produces the floor of number, preserving units or labels.

:I N2

,*..

.~%St. °' 4A .~ *\"-: 0

WTIIt IW.%MJ1rTI7 rZUJV WU WWU WW-L ftW PnflJV kiWv "V 1 1WI~

9.3 Numbers 166

the ceiling of a number

Produces the ceiling of number, preserving units or labels.

the square of a number

Produces number ^ 2.

the square root of a number wA.

Produces the square root of number as a simple number.

the [arc]sine of a number [in radians]
the [arcicosine of a number [in radians] -

the [arc]tangent of a number [in radians]

Produces simple numbers representing various trigonometric values of
number in degrees (by default) or radians.

the [anti]Iog of a number

Produces logarithmic (natural log) value of number as a simple
number.

a number from a lower bound to an upper bound [by a step] "

Produces successive numbers in the specified range by step
(defaults to 1). All numbers must have the same units or labels.

an integer from a lower bound to an upper bound [by a step]

Produces successive integers in the specified range by step
(defaults to 1). Each integer must be a simple number with an
integer value.

a random number from a lower bound to an upper bound

Produces a random number within the designated bounds.

I. ~
6. %

• -'"v
p.%

•-:..:.-

9.4 Tuples 167

9.4 TUPLES %

<tuple> < [<term> [, <term>]*] >

A tuple element represents an ordered sequence of elements (i.e., a
vector of elements). A tuple is delimited by a pair of left and right
angle brackets (< >) and is composed of zero or more terms separated by
commas. For exam, e, the following are all valid tuples

< >

<1, 2, 3>
<the mayor, 33.5, < >>

When evaluated, the terms of the tuple will be evaluated in order .
from left to right; the resulting values will appear in the tuple. The
evaluation name of a tuple consists of a left angle bracket, followed by
the evaluation names of each element in the tuple separated by commas
and terminated with a right angle bracket.

9.4.1 Operations on Tuples

In the following operations, a tuple refers to a tuple element, and
a position refers to a simple number with a positive integer value no
greater than the length of the tuple with which it appears.

a tuple is empty

Concludes true if tuple contains no elements, e.g.,

<4> If <> is empty, display yes.

YES

the le jth of a tuple V.,'

Produces the number of elements in tuple.

a member of a tuple [from a position]

Produces successive members of tuple starting with the element
at position (defaults to 1), e.g.,

<5> Display the member of <a, b, c>.

A
<6> Display every member of <a, b, c>.
A
B
C

<7> Display every member of <a, b, c> from 2. %

B
C

p
"'a •"

-a,

9.4 Tuples 168

the member of a tuple at a position , "

Produces the element of tuple at position, e.g.,
W"

<8> Display the member of <a, b, c> at 2.
B
<9> Display every member of <a, b, c> at 2.
B

the first member of a tuple %.

Produces the element in the first position of tuple, e.g., %

<10> Display the first member of <a, b, c>.
A

:?'
the second member of a tuple %

Produces the element in the second position of tuple, e.g.,

<11> Display the second member of <a, b, c>.
B

the last member of a tuple

Produces the element in the last position of tuple, e.g.,

<12> Display the last member of <a, b, c>.
C

a tail of a tuple [from a position]

Produces successively shorter tails of tuple from position
(defaults to 2), e.g.,

<13> Display every tail of <a, b, c>. r
<B, C>
<C>

the tail of a tuple at a position

Produces a tuple of all elements in tuple from position,
inclusive, e.g., C

%-

,wwrldovi, F'w1W~fflWWrW1 -'W9W' rWWUVWWWJUWUWWVWU-VW WW1FW~WKWX,~fJ7WWW m-w'ImImQ

9.4 Tuples 169

<14> Display the tail of <a, b, c, d> at 3. r 4

<C, D>

the reverse of a tuple AV

Produces a tuple containing the elements of tuple in reverse
order, e.g.,

<15> Display the reverse of <a, b, c>. ,vi,
<C, B, A>

the concatenation of a tuple with a tuple

Produces a tuple containing the elements of the first tuple
followed by the elements of the second, e.g.,

<16> Display the concatenation of <a, b> with <1, 2>.
<A, B, 1, 2>

the tuple containing each <description>

Produces a tuple containing every instance of <description>, e.g.,

<17> Display the tuple containing each integer from 1 to 5.
<1, 2, 3, 4, 5>

sort a tuple in ascending order ',.

sort a tuple in descending order

Sorts the elements of tuple; destructively changes tuple, e.g.,

<18> Let the tuple be <1, 2, 3, 4, 5>.
<19> Sort the tuple in descending order. '' b
<20>
GLOBAL Database

<5, 4, 3, 2, 1> IS A TUPLE.

Tuple must be a tuple of comparable numbers. .

sort a tuple in ascending pair order
sort a tuple in descending pair order

Tuple must be a tuple of tuples where the first element of
each component tuple is a comparable number, e.g.,

<21> Let the tuple be -1, A-, <2, B>, <3, C-.

.
'S. *.....

9.4 Tuples 170

<22> Sort the tuple in descending pair order.

<23> ?GLOBAL Database]

«<3, C>, <2, B>, <1, A > IS A TUPLE.

4

V°.,

f- .%

"'7

'..:-

9.5 Strings 172

below would write the string to "testfile", inserting a line break before
format to avoid running off the end of the line.

<2> Open "testfile" for output.
<3> Send (Free format "Strings may be tagged

with a format.") to "testfile".
<4> Close "testfile".
<5> Type "testfile".
Strings may be tagged with a
format.

Every output device is assumed to have an associated line length
accessible to ROSIE. ROSIE is not extremely sophisticated about
introducing line breaks and has only limited knowledge of punctuation
and no knowledge of hyphenation.

Mixed format strings enable the construction of blocks of

alternating fixed and free (or free and fixed) format strings. When
sent to an output device, the free format components will be contoured N
to fit the device, while the fixed format components will be output as
is. ROSIE does not place a line break between alternating fixed and
free format strings. If needed, such breaks must be specified by the
user.

ROSIE supports the ability to coerce fixed format string into free
and free format strings into fixed. However, once a fixed format string
has been transformed into a free format string, there is no way to
recover the formatting information (i.e., placement of line breaks,
indentation, etc.) of the original string.

9.5.2 Strings and Patterns

String and pattern elements are closely related. Pattern elements
(discussed in Section 9.6) describe languages of strings. When this
language describes one and only one string, then the pattern can be
coerced into that string. 3

By the above definition, the reader may consider strings and
patterns to be, at a conceptual level, instances of the same class of

data element. A string is simply a pattern that describes a language
consisting of itself This is a significant notion because it permits
strings to inherit the considerable expressive and representational
power of patterns.

'In most instances, coerc ion is automatic. This is because string
representation is more space efficient. Str ings are easily coercible
back into pat terns.

,-. I

- , . , . ., % , , -, i , = % - ' ' % % - % 5 , ' % % " " 5 ' • " " " % " - " ' .-" .-' " % , # = " " " " " -" ' " ' 4 " - ' ' " = -" -' "
.% "

" " J'%"
'

9.5 Strings 176

print a string [on a file]

Equivalent to send with the system switch $PRETTYFORMAT
turned on.

If string is specified using a pattern element, its arguments %
are coerced into strings without surrounding double or single quotes
and output in lower case, e.g.,

<11> Send ('plaintiff did suffer "a loss of one eye"', cr}.
'PLAINTIFF DID SUFFER "a loss of one eye"'
<12> Print ('plaintiff did suffer "a loss of one eye"', cr".
Plaintiff did suffer a loss of one eye

The first letter of string will be capitalized automatically. .

print a name as a string i"1
When $PRETTYFORMAT i, on, every instance of name will be
output using string, e.g.,

<13> Print John Brown as "John Brown".
<14> Send ('the plaintiff did suffer "a loss of one eye"', cr}. %..
'JOHN BROWN DID SUFFER "a loss of one eye"
<15> Print ('the plaintiff did suffer "a loss of one eye"', cr}.
John Brown did suffer a loss of one eye g-

match a string against a pattern

Invokes the pattern matcher to compare string against pattern.
If the match succeeds, any variable bindings indicated in pattern
are performed, otherwise, this action does nothing.

a string is matched by a pattern ,

Concludes true if string can be successfully matched against
pattern, false otherwise. If the match succeeds, any variable
bindings indicated in pattern are performed.

% 4

'%''WL:' :";:'W"k'"L'"L',"'"L",';: '
"

'," '"','','" "', "" " " '" "" "'/"" / "'''"',"-' "'" """2

9.6 Patterns 178

{"Airfield: ", the airfield, " Target: ", the target at
that airfield, CR, " Capabilities are ", the capabilities
of that target, CR, " Vulnerability is ", the vulnerability
of that target)

respectively generate strings of the form,

"The value is 10"

"JOHN does like ACCOUNTING"

"Airfield: MIROW Target: MUNITIONS ASSEMBLY AREA
Capabilities are 100 PERCENT
Vulnerability is EXCELLENT"

9.6.2 Matching Text

When a pattern is used for testing whether a string belongs to the
language described by the pattern, each subpattern represents a
restriction on a distinct substring of the string being matched. The
following examples illustrate some simple patterns and the strings they
can match:

Pattern Matches

{"Dear ", anything (bind X), ",") "Dear John,"
"Dear Sir,"
"Dear Lucy Brown Butler,"

{3 numbers, "-", 2 numbers, "-", 4 numbers) "563-08-4582"

3 or more letters, ") 1 blank, "fILE: 1245<cr>"
1 or more numbers, CR) "Los Angeles, 90025<cr>"

A pattern can be matched against a string, the characters of a text
file, or input from the user's terminal.

Subpatterns are separated either by commas (,), which represent
conjunction, or vertical bars (I), which represent disjunction. Logical
blocks of subpatterns may be delimited by a set of curly braces. Both
commas and vertical bars are right associative. Commas have a higher
precedence and therefore bind more tightly than vertical bars, e.g.,

{a,b,cI 1,2,31x,y,z)

and %

{{a,b,c) I{1,2,3)I{x,y,z)}

are equivalent.

-I

9.6 Patterns 179

A pattern variable, when specified, will be bound to the substring
matching the subpattern with which it is associated. For example, when

("Dear ", anything (bind X), ",")

is matched against

"Dear Lucy Brown Butler,"

the pattern variable X, which is associated with the subpattern
anything, will be bound to the string "Lucy Brown Butler". Pattern
variables allow programs to extract fields of text from the matched
string.

Pattern variables also provide a way of further constraining the
language described by a pattern. When the same pattern variable appears
more than once in a pattern, the pattern will match only the target
string if the pattern variable can be bound consistently (i.e., to the
same substring). For example, the pattern

(anything (bind X), " equals ", anything (bound to X))

will match "3 equals 3" but not "2 equals 3". Thus, pattern variables
extend the formal descriptive power of patterns beyond "e, ular
expressions.

9.6.3 Subpatterns

<subpat> <bind spec>

<subpat> [<subpat>]*

{ <subpat> I <subpat>]*)

FREE FORMAT <subpat> [<subpat>]*

FIXED FORMAT <subpat> [, <subpat>]* '

= BOX <subpat> TO WIDTH <term>

PAD <subpat>

LEFT JUSTIFY <subpat> [<dimen>]
RIGHT JUSTIFY <subpat> [<dimen>]
CENTER JUSTIFY <subpat> [<dimen>]

LJ [<term> [BY <term>]] <subpat> .. ,
RJ [<term> [BY <term>]] <subpat>
CJ [<term> [BY <term>]] <subpat>

OVERLAY <subpat> ON <subpat> [<coords>] [<padding>]

9.6 Patterns 180

ADJOIN <subpat> [, <subpat>]*

<integer> [OF] <subpat>

: <integer> OR MOPE [OF] <subpat>
<integer> OR LESS (OF] <subpat>
<integer> OR FEWER [OF] <subpat>

<char class> [[NOT] IN <term>]

ANYTHING
SOMETHING

LINE(SI

RETURN[S]
CR[S]

CODES (<integer> [, <integer>]*)

CHARCODE <term>

CONTROL <term>

BACKSPACE[S]
BS
BLANK[S]
DELETE[S]
END
EOL[S]
ESCAPE[S]
PAGEIS]
QUOTE[S]
TAB[S]

<bind spec> <subpat> (BIND TO <bind form> [AS <bind type>])
<subpat> (BIND <bind form> [TO <bind type>])
BIND <subpat> TO <bind form> [AS <bind type>]

::= <subpat> (BOUND TO <bind form>)

<bind type> A NAME
::= A NUMBER
: A STRING .'
: A TUPLE
::= A PATTERN

: A CLASS
::= A DESCRIPTION

= A PR OPOSITION
A PROCEDURE

A
-

9.6 Patterns 181

A FILESEGMENT
AN ELEMENT

<dimen> TO LENGTH <term> [AND WIDTH <term>]
TO WIDTH <term>

<coords> :: AT < <integer> , <integer> >

<just> STARTING LEFT
STARTING RIGHT
CENTERING

<char class> ::= [NON]ALPHANUMERIC[S]
[NON]BLANK[S]
[NON]CONTROL[S]
[NON]DIGIT(S]
[NONILETTER[S]
[NON]NUMBER[S]
[NONINUMERAL[S]] .

CHARACTER[S]

This section describes each of the legal subpattern forms, many of
which take subpatterns as arguments. Some subpatterns permit the
description of languages containing more than one string; an error
occurs if an attempt is made to coerce such subpatterns into a string.
Other subpatterns are supplied primarily to format text; such
subpatterns must (and automatically will) be coerced into a string
before they can be used for matching.

Commas and Vertical Bars

The extent of a subpattern or a group of subpatterns can be
delimited with a pair of curly braces (()). Subpatterns within curly
braces can be separated by either commas (,) or vertical bars (I).

Commas can appear in subpatterns used for generating text, in which
they denote concatenation, or matching text, in which they denote
conjunction. Vertical bars, denoting disjunction, can appear only in
subpatterns used for matching text. Commas have a higher precedence
than vertical bars; both are right associative. The use of commas and
vertical bars is described as follows:

(<subpat> [, <subpat>]*)

When used in generating text, concatenates each <subpat>. If the

.

h~b % O&Z
&~~~ 5*xl -kAZ 11

9.6 Patterns 182

<subpat> are not all the same format, returns a mixed format string,
otherwise returns a string of that format. Treating strings as
rectangular blocks of text, concatenation appends the characters of
the last line of one string to the first line of the next.

When used in matching, specifies that each <subpat> must appear in
succession in the string being matched.

{ <subpat> [<subpat>]*)

May only be used in matching operations. Specifies that one of the
<subpat> must appear in the string being matched. Matching is done
independent of <subpat> order.

Text Formatting Subpatterns

The following subpatterns are provided primarily for manipulating
free and fixed formatted strings. They are intended for text generation
rather than matching. They may, however, be used in pattern matching.
When one of these subpatterns appears as a component of a pattern meant
for matching text, it will be coerced into a string before it is passed
on to the matcher. This means that such a subpattern must be coercible
into a string, i.e., embedded subpatterns that can be used only to match ,'
text will cause an error at runtime.

Many of the following support operations on fixed format strings.
For these operations, it is best to think of a fixed format string as a
rectangular block of text.' The number of lines in such a string is
known as its length, and the number of characters in its longest line,
its width. Likewise, a free format string can also be thought of as a
rectangular block of text, but with length always equal to 1.

free format <subpat> [, <subpat>]*

Each <subpat> is concatenated into a single free format string. If
any <subpat> is a fixed format string, it will be coerced into a free
format string, i.e., user-defined line breaks will be discarded.

NOTE: When this subpattern is not the only component of a pattern, it
should be delimited with a left and right curly brace, e.g.,

(free format subpat,

$Internally, fixed format strings are implemented as two-
dimensional ragged arrays. Each row represents a line of text, and all %%
but the last row is followed by an implicit line break--the actual end-
of-line character is introduced by the output routine and does not
actually appear in the string.

mm.

P %

V. Ii%

9.6 Patterns 183

to avoid confusion to yourself as well as those trying to read your
code.

fixed format <subpat> [, <subpat>]*

Each <subpat> is concatenated into a single fixed format string. If
any <subpat> is a free format string, it will be coerced into a fixed
format string--no line breaks will be inserted into this string.

NOTE: When this subpattern is not the only component of a pattern, it N

should be delimited with a left and right curly brace, e.g.,

(fixed format subpat,...

to avoid confusion to yourself as well as those trying to read your
code.

box <subpat> to width <term>

Intended for coercing free format strings into fixed format strings
where no line of the string exceeds a given width.

If <subpat> is a fixed format string, generates that.

If <subpat> is a free format string, it is coerced into fixed format
string. No line of the resulting string will exceed <term>
characters, where <term> must evaluate to a positive integer.

If <subpat> is a mixed format string, then box is applied to
each component, and the results are concatenated into a single fixed
format string.

pad <subpat>

Intended for squaring the ragged edges of fixed format strings. ,-

If <subpat> is a free format string, generates that.

If <subpat> is a fixed format string of width N generates a
similar string with all lines of length N, padding on the right
with blanks.

If <subpat> is a mixed format string, then pad is applied to each
component string, and the results are concatenated into a new mixed
format string.

* .'"U 'S ~% \ . \,. ~ %V"UI.' *~%%~ * * S.

9.6 Patterns 184

(I left I right I center I) justify <subpat> [<dimen>I

<dimen> to length <term> [and width <term>]
to width <term>

Intended for generating rectangular blocks of text from <subpat>
in which lines are filled from the left or the right, or in which
characters are centered on each line.

Generates a fixed format string with no ragged edges. The resulting
string will have the dimensions specified by the length and width
options, whose arguments must evaluate to positive integers. If the
length or width dimensions are not given, then these values will
be the length and width of <subpat>.

If <subpat> is a free or mixed format string, it will be boxed to
fit the width of the resulting string.

Characters from each line in <subpat> are copied into the
corresponding line of the resulting string. If the dimensions of
<subpat> exceed the dimensions of that string, <subpat> will be
truncated.

Left justification copies characters from left to right, e.g.,

(left justify "abc" to width 5)

generates "abc ". If necessary, truncates characters on the
right.

Right justification copies characters from right to left, e.g.,

{right justify "abc" to width 5)

generates " abc". If necessary, truncates characters on the
left.

Center justification copies characters from the center out, e.g.,

(center justify "abc" to width 5)

generates " abc ", truncating characters on the left and right
as required. If a line in <subpat> will not center exactly, the odd
character is pushed to the right.

U [<term>] [by <term>] <subpat>
RJ [<term>] [by <term>] <subpat>
CJ [<term>] [by <term>] <subpat>

Shorthand notation for the justification subpatterns described above.
The [<term>] option designates length, and [by <term>], width.

%. H

t ,P'

9.6 Patterns 185

overlay <subpat> on <subpat> (<coords>j [<padding>]

<coords> at < <term> , <term> >

<padding> starting left
starting right
centering

Intended for superimposing one string on top of another.

Generates a fixed format string with the dimensions of the second
<subpat>. The characters of the resulting string are copied from
both <subpat>; characters from the first replace characters of the
second where overlap occurs, e.g.,

(overlay "Mr. John" on "Mr. Bill Brown")

generates "Mr. John Brown".

Both <subpat> are coerced into a fixed format string if they are not
already in this format.

If the <coords> option is given, it must be expressed as a tuple of
two positive integers, specifying some column and row position in
the final string, respectively. Once the characters of the second %
<subpat> are copied into the string, the characters of first <subpat>
will be copied into it starting after the specified column and row
position, e.g.,

(overlay "John" on "Mr. Bill Brown" at <4,0>)

generates "Mr. John Brown". The coordinates default to <0,0>,
specifying the upper-left corner of the string.

The <padding> option specifies the justification for characters
copied from the first <subpat>. Starting left copies characters from*vS.
left to right, truncating on right; starting right copies from
right to left, truncating on the left; and centering centers A
characters, truncating on either side and pushing the odd character
to the right. .

adjoin <subpat> 1, <subpat>]*

Intended for concatenating corresponding lines from each <subpat>. -.

Each <subpat> that is not a fixed format string is coerced into a
fixed format string.

Generates a fixed format string whose lines are the concatenation of
corresponding lines of each <subpat>, e.g.,

-. N

9.6 Patterns 186

(adjoin {U by 30:
(free format "Hoping to trim the $130 billion

U.S. trade deficit, the IEEE and
the National Bureau of Standards
jointly explored the need to make")),

(U by 30:
(free format "communication with Japan, the primary

economic competitor of the United
States, a \"first priority.\" To
discuss these concerns, the...")))

generates

"Hoping to trim the $130 communication with Japan, the
billion U.S. trade deficit, primary economic competitor
the IEEE and the National of the United States, a
Bureau of Standards jointly "first priority." To discuss
explored the need to make these concerns, the..."

The <subpat> do not need to be the same length. Each <subpat> is
treated as being the length of the longest. The empty string ("")
is used as the extra lines of any <subpat> that is shorter than this.

NOTE: When this subpattern is not the only component of a pattern, it
should be delimited with a left and right curly brace, e.g.,

(adjoin subpat,

to avoid confusion to yourself as well as those trying to read your
code.

Text Matching Subpatterns

The next set of subpatterns allows users to describe a virtual set ..

of strings. These subpatterns may appear only as components of patterns
against which strings will be compared.

<integer> or (I more I less I fewer I) [of] <subpat>

Intended to match against a variable number of instances of <subpat>.

<integer> or more specifies <subpat> must appear at least <integer>
consecutive times in the string being examined.

<integer> or less (or fewer) specifies <subpat> must appear
no more than <integer> consecutive times in the string.

..' "
%%q~,- ~,% w % ~ ~ ~ . **.,*. ** -

9.6 Patterns 187

<char class> ([not] in <term>]

<char class> ::= [non]alphanumeric[s]
I = [non] control [s

: [non]digit[s]
::= [nonIletter[s]
::= [non]number[s]
::= (non]numeral[s]
::= [non]blank[s]
::= characterIs]

Intended for matching individual characters that fall in or out of
a particular character class.

The following character classes are recognized. Each class specifies
a set of characters to which a character being matched can belong.
These include:

letter -- a-z and A-Z;

digit -- 0-9
number
numeral

alphanumeric -- any letter or digit;

control -- any control character, i.e., <ctrl>A-Z;

blank -- the blank space character;

character -- any character.

Preceding a character class with the prefix non designates its
inverse (i.e., any character not in that class). The optional
suffix S is included to enhance readability and has no other
significance.

The [not] in <term> option, in which <term> must evaluate
to a string, posts additional restrictions on the matching process. If
in <term> is used, the characters matched must also appear as one
of the characters in <term>, e.g., N 1_

character in "0123456789"

is equivalent to digit. The inverse is true for not in <term>, e.g.,

character not in "0123456789"

is equivalent to nondigit.

I..
. ::- .'%

9.6 Patterns 188

anything

Equivalent to

(0 or more characters not in EOL)

where EOL is the end-of-line character.

something

Equivalent to

(1 or more characters not in (EOL))

NOTE: Neither anything nor something will match beyond the %

end-of-line character. This is to ensure that the matcher does not scan
an entire text file before discovering that a match fails. For matching
beyond the end-of-line character, use the line subpattern.

linefs]

Equivalent to

(0 or more characters, CR)

Matches all characters up to and including a line break.

Subpatterns for Both

The next set of subpatterns specify single instances of a string
and may be used for text generation and matching.

<term>

Intended to introduce arbitrary expressions into a pattern at runtime.

<term> may evaluate to any arbitrary element. Unless it returns a
string or a pattern, the evaluation name of the resulting element is
coerced into a string.

For generation, the value of <term> is inserted into the resulting
string. If <term> evaluates to a pattern, it is first coerced into
a string; if a string, it is left as is; if anything else, its
evaluation name is coerced into a string.

For matching, the value of <term> is coerced into an NFA and linked
into the NFA of the pattern. Thus, the value of <term> is used in
matching. If this value is a pattern or string, it is turned into

~ - ~~j.4.d.P ~ ~ . ~ .'v-I

9.6 Patterns 189

an NFA, and linked into the nattern; if anything else, its evaluation
name is coerced into a string, turned into an NFA and linked into
the pattern.

<integer> [of] <subpat>

Indicates <integer> iterations of <subpat>.

For generation, returns the string that results from concatenating
<subpat> with itself <integer> times.

For matching, <subpat> must appear in the text <integer> consecutive .%
times.

'.

return [s]
CR[s]

Intended for matching or generating a line break.

For generation, forces a break between lines of text. Since strings
are implemented as two-dimensional arrays, this does not actually
place an end-of-line character in the resulting text. Rather, it
specifies that succeeding characters should appear in the next row of
the array.

For matching, matches against an end-of-line character appearing in
the text.

To generate a string that actually contains the end-of-line .
character, see EOL below. $,

quote[s]

Matches the double quote character ("), or generates a string that
contains a double quote. . ,

codes (<integer> (, <integer>]*) ,

Each <integer, is assumed to be an integer value representation of
some character, e.g., ASCII. Matches or generates the string of
characters specified by these codes.

Inverse of charcode. ." ""

NOTE: For the following, assume ASCII character representation. r..*

• .%

9.6 Patterns 190

backspace[s]
bs

Equivalent to {codes (8)), i.e., <ctrl>H.

blank[s]

Equivalent to (codes (32)).

end

Equivalent to {codes (4)), i.e., <ctrl>D.

When matched against text in a file, matches the end-of-file %
character.

When matched against a string, matches the end of the string.

When matched against text from the terminal, matches a <ctrl>D typed
by the user.

EOL[s]

Equivalent to (codes (10)), i.e., <ctrl>J.

This subpattern should not be used to insert line breaks in strings.
It is provided for cases, such as the anything and something
subpatterns, where a string must explicitly contain the end-of-line
character.

escape s] ,C

esc F% It

Equivalent to (codes (27)).

formfeed [s] '-,.-

page[s]

Equivalent to {codes (12)), i.e., <ctrl>L.

tab[s]

Equivalent to (codes (9)), i.e., <ctrl>I.

, a
NZ-

C.P

9.6 Patterns 191

charcode <term>

Intended for matching or generation a string of characters in their
integer (machine) representation, e.g., ASCII.

Characters in <term>, which will be coerced into a string, will be
converted into their integer representation. For instance, the
pattern,

(charcode "A B C")

will generate the string "6532663267", given an ASCII representation.

Inverse of codes.

control <term>

Intended for matching or generating a string of control characters.

Characters in <term>, which will be coerced into a string, will be
converted into control characters. For instance, outputting

{control "G")

will beep the user's terminal.

9.6.4 Pattern Variable Binding

<bind spec> <subpat> (BIND TO <bind form> [AS <bind type>])
<subpat> (BIND <bind form> [TO <bind type>])
BIND <subpat> TO <bind form> [AS <bind type>]
<subpat> (BOUND TO <bind form>)

<bind form> <atom>
THE <description>
<description> S <term>
THAT <class noun>

<bind type> A NAME
A NUMBER
A STRING
A TUPLE
A PATTERN
A CLASS
A DESCRIPTION
A PROPOSITION
A PROCEDURE
A FILESEGMENT
AN ELEMENT

pop

9.6 Patterns 192

Any subpattern may appear in a bind spec. This causes the portion
of the text matched by the subpattern to be bound to a pattern variable
specified by the bind spec. If the same pattern variable appears in
another bind spec later in the pattern, then the matched substrings must
be equal in order for the pattern match to succeed. If a <bind type>
specification is given, then ROSIE will attempt to coerce the substring
into an element of that type.

The numerous variations for the bind spec are provided to enhance
readability; they are syntactic sugar and semantically equivalent. The
(bound to <bind form>) bind spec is intended to be used in the second
(and third, and fourth, etc.) occurrence of a pattern variable, e.g., ,

{3 or more digits (bind N to a number), "-", anything (bound to N))

will match "59483-59483", binding N to the number 59483.
,f

9.6.4.1 Pattern Variable Specification

The <bind form> component of a bind spec designates the pattern
variable. This designation may be done with either a one-word name, a
description introduced by the, or an anaphoric reference to such a
description, e.g.,

(bind N) %
(bind the reply)
(bound to that reply)

When a one-word name is used, it explicitly names the pattern
variable, much like the <desc var> component of description syntax names
a description variable. After a successful match, the value to which
this variable is bound can be referenced outside of the pattern using a
rule variable of the same name.

When a description is used, it implicitly names the pattern
variable via its associated description variable. This variable may be
referenced anaphorically in a later bind spec. After a successful
match, the value bound to the pattern variable will be stored in the
database as though the action,

let the description be value

were executed, e.g.,

<2> Match "Mr. John Brown" against
("Mr. ", anything (bind the man), end) and

display that man.
"John Brown"
<3> ?
GLOBAL Database
"John Brown" IS A MAN.

% %"

,- ,* .

9.6 Patterns 193

The value bound to the variable can be referenced outside of the pattern
as a reference to the description.

NOTE: An anaphoric term can be used only in a bind spec if it
references a description used in an earlier bind spec. The reference is
treated as designating the pattern variable of the earlier bind spec.

9.6.4.2 Conversion of Bound Substrings

If given, the <bind type> component tells the pattern matcher to
coerce the bound substring into an element of the designated type. The %
default type is string, which requires no conversion.

Conversion to the bind type is done after the pattern successfully
matches the text. Conversion is accomplished by parsing and evaluating
the bound substring and then checking whether the resulting element
matches the prescribed type.

If it does, the pattern variable will be bound to this element, and
if not, the pattern match fails, e.g.,

<4> Match "Mr. John Brown" against
("Mr. ", anything (bind the man to a name), end} and

display that man.
JOHN BROWN
<5> ?
GLOBAL Database I
JOHN BROWN IS A MAN.

The bind type element accepts any substring that can successfully be
coerced into an element.

9.6.5 The Pattern Matching Process

String pattern matching is a nondeterministic, data-driven process.
When a stream of characters from some input device (i.e., a string, a
file, or the user's terminal) is matched against a pattern, the pattern
matcher triggers success as soon as it recognizes a string belonging to
the language of strings described by the pattern. If a pattern can
match a string in more than one way (e.g., the pattern % l

([3 digits, "-", anythin.q (bindX) I
(anything (bird X), "-", 3 letters))

could match "123-abc" in two ways, one binding X to "abc", the other
binding X to "123"), then the exact manner in which the string will be l-e -
recognized is not defined; no attempt is made to ensure "order of
recognition" or preserve the ordering of disjunctive subpatterns.

.

.:..d':

.1" -

9.6 Patterns 194

ROSIE's matching operations, such as read and match, accept a
pattern as an argument. They redirect I/0 to the desired input stream,
construct an NFA 6 from the pattern, and pass the NFA to the pattern 0

matcher. The pattern matcher interrogates the NFA as it reads
characters from standard input, simulating a nondeterministic search
through space of strings in a breadth-first manner.

The NFA is represented as a cyclic graph, the nodes of which are
called states. There can be three types of transitions out of any 7.
state: (1) character transitions, which are followed upon recognizing a
particular instance of a character; (2) class transitions, which can be

followed upon recognizing an instance of a character class; and (3)
epsilon transitions, which are not used for character recognition, but
provide a flexible mechanism for linking portions of the same state that
must be represented independently. A state may also be tagged as a
final state and as either starting or ending a subpattern of some bind
spec.

The pattern matcher operates by advancing a line of travelers
through the NFA. Each traveler is advanced until one encounters a final
state, which causes the match to succeed, or until the number of
travelers goes to zero, which causes the match to fail. Each traveler
maintains pertinent information about the particular route of the NFA it
follows (e.g., its state, how pattern variables have been bound along
the way, etc.).

Fetching characters one at a time until success or failure is
known, the matcher enters a cycle of advancing each traveler whose state
has a transition on the character. When a traveler's state has several
valid transition for one character, it is cloned into enough identical ,
travelers to follow each path. When no transition exists, the traveler
is terminated. If a traveler reaches a final state, this portion of the
match succeeds. If no traveler can be advanced, the match fails. The
match also fails if no final state is reached after reading the end-
of-file character.'

When a traveler traverses the states associated with the subpattern
of a pattern variable, it begins recording the characters it encounters.
When it exits those states, it checks to see whether it has previously
recorded a binding for that variable. If not, it binds the variable to
the characters collected and continues on. Otherwise, it checks the
characters recently collected against the characters pieviously bound; ,
if equal, it continues on, otherwise it terminates itself.

'The NFA cannot be further reduced to a DFA (Deterministic Finite
Automata) because pattern variables require structural information that
would otherwise be lost.

'The last character of any string is implicitly the end-of-file
character.

,.. Af .,.

9.6 Patterns 195

After a traveler reaches a final state, the matcher recovers from
that traveler all pattern variable bindings established during its
particular traversal of the NFA. The matcher attempts to convert each
bound substring into an element of the type specified in its associated
bind spec. Normally, the type is string, which needs no conversion. If
the type is other than string, the substring is parsed as a term,
evaluated, and the type of the resulting element compared to the type of
the bind spec. A mismatch in types causes the pattern match to fail.*
Assuming a successful conversion, the pattern variable is bound to the
resulting element such that it can be referenced outside the pattern,
and the pattern match ends. ..

Note again that through all of this, the pattern matcher never
checks for ambiguities in the pattern, nor does it specify the order in
which disjunctive subpatterns will be traversed. If it is important for
components of a pattern to be traversed in a predefined manner, it is
the responsibility of the programmer to eliminate possible ambiguities.

9.6.6 Example Application of Patterns

The two example rulesets below demonstrate how patterns can be
applied to generating and processing menus of variable length.

.. ...
<2> List "menu".

To generate a menu selection for a list: '
Private: a menu, a count.
[I] If the list is empty, return.
[2] Let the count be 1 and the menu be (1).
(3] Send "Il1 (the member of the list at]){cr)".
[4) For each member of the list's tail,

let the count be the count + 1 and
the menu be (the menu I the count) and

send "[(the count)] (that member)(cr)".
[5] If there is a selection from the list with the menu,

produce that response.
End. ..

To generate the selection from a list with a menu:
Private: a reply.
Execute cyclically.
[11 Send "{cr}Select one entry:
[2] Read "(anything (bind the reply)){cr)",
[3] Choose situation:

if the reply is equal to "", return;
if the reply is not matched by the menu, /"

$If processing the substring results in a syntax or runtime error,
the match also fails.

I-
1'o °

9.6 Patterns 196

send "(crlInvalid response: (the reply}{cr)";
default: produce the member of the list

(at the number from the reply).
End.

<3> Display the menu selection for <Drewitz, Mirow, Parchim>.

[11 Drewitz
(2] Mirow
[3] Parchim

Select one entry: 2
Mirow

The first ruleset builds a menu from a tuple of possible choices.
It passes that menu to the other ruleset that displays it and queries
the user for a selection. Given a selection, the first ruleset produces
the selected member of the tuple.

9.6.7 Operations on Patterns

In the following operations, a string refers to a string element, a
pattern refers to a pattern element, and a file refers to a string
element that names a text file to which a channel has been open (see
Chapter 11). Additional operations on patterns that can be coerced into V-*
strings are given in Section 9.5.4.

read a pattern [from a file]

Reads a segment of text from file. " " "

Characters are input one at a time from file until sufficient
text has been read to

1) recognize an instance of pattern, at uhich time
read returns successfully; or .._-0

2) recognize that no instance can be matched, at which
point read calls an error. '-r

Fields of the input text can only be retrieved via pattern variables. . "
,.4

File must be open for input or an error occurs. %

match a string against a pattorn

Invokes the pattern matcher to compare string against pattern.
If the match succeeds, any variable bindings indicated in pattorn
are performed, otherwise, this action does nothing.

%.

9.6 Patterns 197

a string is matchod by a pattern

Concludes true if string can be successfully matched against
pattern, false otherwise. If the match succeeds, any variable
bindings indicated in pattern are performed.

.. S

..,,*..

.'.1

5 •%

i-,

'V

.4. ,'

--I

9.7 Filesegments 199

9.7 FILESEGMENTS

<filesegment> <header> [, <rule spec>J
FILE : <term> f, <header>l [, <rule spec>j

<rule spec> <integer> [<integer>]

BEFORE <term>
AT <term>
FROM <term> TO <term> .. .

AFTER <term> '.

A filesegment allows users to identify and manipulate rulesets,
program files, and portions of program files. Filesegments are provided
primarily to enable users to manipulate pieces of code through program
control. Filesegments are used extensively by the file package and
break package operations.

Filesegments are delimited by a pair of left quotes and optionally
consist of a file specifier, ruleset header, and rule sequence
specifier, e.g.,

'file: 'animals"' e, ,

'file: "animals", [rule] 1'
'file: "animals", to apply a rule'
'file: "animals", to apply a rule, after [rule] '
'to apply a rule, from 1 to 3'

The first example specifies the entire contents of the program file

called "animals". The second specifies only the first file rule of that
file. The third specifies a ruleset from that file. The next, every
rule from that ruleset between the first rule and the end statement,
exclusive. The last example specifies a sequence of rules from a
ruleset.

NOTE: In the last example, no file is givei.. In such cases, ROSIE
fills in the file name automatically if the ruleset is known to the
system.

9.7.1 Shorthand for Filesegments

The syntax of fileegments presented above is a formal mechanism.-
for use in ROSIE progr,ims. ROSIE also supports a shorthand syntax for

naming filesegments. This shorthand is far more convenient and easy to
use than the formal syntax when manipulating program files from the top-
level monitor. Note however that only ruilesets in noticed program files
(see Chapter 13) can be spec. i f ied us Ing the shurthi-11id notat ion. P * *

P .. , .

"''-.4
• % V'4

. , ,.

• , , • * , , , , . , . . o ,- . . €' ,r ', , .' w" 4 4" 4 " 4 ' ' ,@ ' ' '= '.' ,p ' ' '. ',, . %, V

pwong
Text Box
preceding page blank - not filmed

9.7 Filesegments 200

With this shorthand, a file may be designated by the string that
names it, e.g., the filesegment

'file: "animals"'

and shorthand string

"animals"

refer to the same program file.

A ruleset can be identified by a name element that matches some ,
consecutive subsequence of the ruleset's name, e.g., the filesegment

'to apply a rule'

which is named apply, can be specified with any of

applypply

p1
etc.

If the shorthand matches more than one ruleset, ROSIE queries the user PN
with each of the possibilities, e.g., P

pI => 'file: "animals", to decide if a rule does apply (Y or N)? N
'file: "animals", to apply a rule (Y or N)? Y

and allows the user to choose.

The shorthand syntax does not allow the specifications of sequences
of file rules or ruleset rules. The file package operations, such as
load, edit, and list, will accept both the formal syntax and the
shorthand.

Filesegments, their application in developing and maintaining
program files, and operations on filesegments are discussed further in
Chapter 13.

t.

S.,,.

b" -

4..1

-- '.v ' " , ' '; , : ". ; ';" "; ,. ° ' . . " . , , '. % .°' ; v %''.'";.?':<' '%'.; -.f

9.8 Class Elements 201

9.8 CLASS ELEMENTS

<class element> ::= ANY <description>

A class element provides a limited deductive capability. A class
element is composed of a description preceded by the function word any,
e.g.,

any battalion
any colorless green idea
any rule which does apply to the situation

When encountered during the execution of a program, ROSIE either
produces the elements named by the description or tests an element for
inclusion among them.

When a class element appears as an argument of a proposition, it
acts as a "wild card," matching any corresponding argument of similar
propositions that belong to the implied class. In addition, the matched
elements can be referenced anaphorically.

Class elements are typically used for deductive retrieval. For
instance, if deciding the truth or falsity of

any man does love Mary V

when the database contains

John does love Mary
John is a man

ROSIE would conclude true. After this, the matched element John could
be referenced by that man. However, this is only one aspect of class
elements; class elements behave quite differently for database actions
that generate elements.

A clash element will never be produced by a description. If a
class element is encountered while generating the instances of a class,
then, rather than producing that element, each element named by its
description will be produced. This is to say, the "generate elements
from a descripticn" routine is called recursively on the class element's
description. e.g.,

GLOBAL Database
MARVIN IS A MORTAL.
ANY MAN IS A MORTAL.
JOHN IS A MAN.
JOE IS A MAN.
BILL IS A MAN.

% %.

9.8 Class Elements 202

<5> Display every mortal.
MARVIN
JOHN
JOE
BILL

This is also true for elements produced from a generator ruleset.

9.8.1 Motivation and Intended Use

The class element was motivated by the need for an efficient means
of retrieving specific components of affirmed propositions. For
example, if we know that each woman who works in Washington D.C. works
at a particular bureau, the class element any bureau coupled with the
anaphoric term that bureau in

For each woman who does work at any bureau in Washington D.C.,
display <that woman, that bureau>.

enables us to retrieve the corresponding bureau without iterating
through all bureaus in the database, e.g., as in

For each bureau,
for each woman who does work at that bureau in Washington D.C.,
display <that woman, that bureau>.

The primary application of class elements is in goal-directed
backchaining to test a proposition. This function is particularly
useful when much of the domain knowledge consists of a taxonomy with
intended property inheritance. The class element construct makes these
applications straightforward.

As an illustrative example, consider the following assertions:

Assert any thing which is mortal will die in time.
Assert any human is mortal.
Assert any Greek is a human.
Assert Socrates is a Greek.

While these will be stored in the physical database as

any thing which is mortal will die in time
any human is mortal
any Greek is a huaan
Socrates is a Greek

conceptually, a "virtual database" exists that includes the relations

Socrates is a human .,

any Greek is mortal
Socrates is mortal

9.8 Class Elements 203

any human will die in time
any Greek will die in time
Socrates will die in time

The reader should note that although ROSIE will conclude that such
propositions in the virtual database are true, it will do so only if one
of those propositions is explicitly tested for, i.e., they will not
appear in the physical database as affirmed propositions. The net
effect of class elements is to trade computation time for efficient -Y
allocation of memory.

9.8.2 Potential Pitfalls

There are several potential pitfalls associated with the
implementation of class elements. In most applications, a user will
never encounter these problems; they appear only as the use of class
elements becomes more complex. This section discusses some of the ways
in which class elements may create odd or erroneous behavior, and how
such situations may be overcome or at least avoided.

* Recursive definitions

It is possible to define classes recursively, e.g.,

any man is a man

or, via a more circuitous route,

any man is a human
any human is a mortal
any mortal is a man

In either instance, a recursive definition is created that, if
undetected, could result in an infinite ioop and, eventually, a stack
overflow error. ROSIE can detect circularities, such as those listed
above, which arise from affirmed propositions, but only when there
is no intermediate call to a ruleset.

When generating from a class element, ROSIE maintains a record of all
classes it has generated from in uninterrupted succession. If a
class element is encountered that ROSIE has already seen, it is not
generated from further. .9.

Unfortunately, it is not possible to detect all recursive definitions.
If a ruleset becomes involved in the loop, e.g.,

To generate a man:
[1] Produce any man.
End.

ROSIE will be unable to detect the problem and enter an infinite loop.

'.i

.- ,. ."" " "..".,. " " * " ."...

9.8 Class Elements 204

- As arguments to rulesets

A class element, like any other type of element, can be passed as an
argument to a ruleset. Once passed, it is stored in the ruleset's
private database as an instance of a formal parameter. At this point,
any number of problems can arise. The following are a summary of
common problems:

Situation 1--

Assuming the database is empty, consider the ruleset,

To decide if a person does love a woman:
[1] If the person = any man, L

conclude true,
otherwise conclude false.

End.

invoked by Ci

If any man does love Mary . . .

Upon invoking this ruleset, the private database contains

Mary is a woman
Any man is a person

Executing the first and only rule of the ruleset will attempt to test
whether the value of the descriptive term the person is equal
to the element any man. A fatal flaw at this point is to
believe that the person will evaluate to any man; rather
it will try to evaluate to an instance of man. Since no such
instance exists, it will result in an error, i.e.,

No such element exists:
THE MAN

Situation 2--

Suppose the ruleset is defined as

To decide if a person does love a woman:
[11 If the person = John,

conclude true,
otherwise conclude false.

End.

and the database contains

**.:~ * °.- .5

9.8 Class Elements 205

Jim is a man
John is a man
Jack is a man

When invoked, the person would evaluate to Jim and the
test would fail.

There are two ways to have the test succeed. One way is to rewrite
the first rule as

If some person = John . . .

which would generate all instances of person (and, thus, all
instances of man) until it found one equal to John. The
other is to rewrite it as

If John is a person . . .
.0

which would subsequently test the proposition 'John is a man' and
also succeed.

Situation 3--

Assuming the situation above, when we invoked the ruleset with

If any man does love Mary

what happens to the binding of any man's description variable?
It gets bound within the first rule of the ruleset and unbound when
the ruleset terminates. This means that the element generated by
any man cannot be passed out of the ruleset.

Situation 4--

Finally, consider

To decide if a man does love a woman:
[1] If some man = John,

conclude true,
otherwise conclude false.

End .,' f-.

which, if invoked as before, defines the class of man recursively
and would eventually be interpreted as defining the empty set. The '.

equality test would, in course, fail. The only way to avoid this
situation is not to use formal parameters that might conflict with
classes defined outside of the private database.

"S

S.b

-0 "-a
IV5Z ; e -Z7;!

9.8 Class Elements 206

While the above are only a small sample of the types of problems
one might conceivably come across, this discussion should serve to
demonstrate that class elements can be problematic, and their
application should be undertaken with care.

:.,'..-l

INS

0 '

V€ Ilk:

-_.1

9.9 Intentional Descriptions 207

9.9 INTENTIONAL DESCRIPTIONS

<intentional description> ' THE <description>
<a/an> <description>
<description> ' S <term>

An intentional description represents reference to the elements
named by 'a description, similar in many ways to a class element. There
is one key distinction between the two. As seen earlier, class elements
trigger a deductive mechanism, one off-shoot of which is the inability
to retrieve class elements from the the database, making class elements
impossible to pass to more than one ruleset and difficult to work with
in a programmatic way. Intentional descriptions are not recognized as
possessing this special deductive property, and, thus, their use is not
as restricted.

Intentional descriptions provide a mechanism for temporarily
suspending the evaluation of descriptive terms. In a sense, intentional %.%-

descriptions act as an indirect pointer to a set of data elements,
conceptually serving a function that resembles "call-by-name" in ALGOL.

Intentional descriptions consist of a description, prefixed by one
of the articles a, an, or the, and delimited by a pair of left quotes,
e.g.,

'the equipment list' V,-.
'a command which is for time 100'
'the target's status'

Intentional descriptions permit system builders to represent and relate
indefinite elements and generic concepts without requiring him to define
explicit instances of them. The elements referenced by an intentional
description may or may not exist, i.e., the set of elements described
may be null.

9.9.1 INSTANCE OF...

The set of elements referenced by an intentional description can be 1A

accessed via the instance of construct, e.g.,

<2> Let <t-shirt, boots, parka, hat> be the clothing list.
<3> Display the instance of 'the clothing list'.
<T-SHIRT, BOOTS, PARKA, HAT>
<4> Assert Mirow is an airfield.
<5> Assert each of runway, munitions soft and munitions

assembly area is a target at Mirow.
<6> Display every instance of 'a target at any airfield'.
MUNITIONS ASSEMBLY AREA
MUNITIONS SOFT
RUNWAY , .'

.

si%

9.9 Intentional Descriptions 208

Instance of is essentially an intentional description evaluator.
It acts as a macro that expands in place to the actual description used
in the intentional. The effect of this is to make the forms

instance of 'the description'
and

description

equivalent and interchangeable. As an illustration of this consider the
following.•V

<9> Assert each of Jim, Jack and John is a man. %

<10> ?
GLOBAL Database] -

JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<11> Display a man
'THE MAN'
<12> Display the instance of 'a man'.
JOHN
<13> Display every instance of 'a man'.
JOHN
JACK
JIM
<14> If John is an instance of 'a man', display yes.
YES
<15> Assert Bill is an instance of 'a man'.
<16> ?
GLOBAL Database

BILL IS A MAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<17> Deny Jack is an instance of 'a man'.
<18> ?
GLOBAL Database

BILL IS A MAN.
JOHN IS A MAN.
JIM IS A MAN.

<19> Let the instance of 'the man' be George.
<20> ?
GLOBAL Database] .,.

GEORGE IS A MAN.

'a

9.9 Intentional Descriptions 209

9.9.2 The "Call-by-Name" Property '9..

The "call-by-name" property of intentional descriptions permits
users to affect global relationships programmatically. As an example,
consider a generic facility for adding elements to a tuple. The action,

If the weather will be turning rainy,
include the rain gear in 'the clothing list'.

uses the intentional description 'the clothing list' to implicitly 4 .
reference a tuple of elements (e.g., <t-shirt, boots>); the rain gear is
an explicit reference to another element (e.g., parka). Invoking the "%'A
ruleset wx.f'%

To include an item in a list: _A|
[1] Let the instance of the list be

the concatenation of such an instance with <the item>.
End.

will access the instance of 'the clothing list' and modify it to include
the new element. After executing the above rule, 'the clothing list' will
reference a tuple containing <t-shirt, boots, parka>.

9.9.3 Operations on Intentional Descriptions

In the following operations, a description refers to either an
intentional description or a class element, and a database refers to a
name element identifying a database that, if optional, defaults to the
active database (see Chapter 10).

instantiate a description to an element [in a database]

Equivalent to executing

let the instance of the description be the element

when database is active.

an instance of a description [in a database]

Produces successive instances of description from database.

NOTE: If the database option is not given, instance of
can, if need be, call a generator ruleset. However, if database is --

given, elements will strictly be generated from database. ..

rs I

"'% -% • ".(% .% .% ,% '. "- I

9.9 Intentional Descriptions 210

an element was [not) an instance of a description [in a database]
an element is [not] an instance of a description [in a database)
an element will [not] be an instance of a description [in a database)

These propositional forms can be used alternately to assert, deny, or
test that element was, is, or will be an instance of description
in database, e.g.,

<2> Assert John is an instance of 'a man'.
<3> ?
GLOBAL Database
JOHN IS A MAN. -"

<4> Assert Mary is not an instance of 'a man' in beliefs.
<5> Beliefs?
[BELIEFS Database -

MARY IS NOT A MAN.

<6> If John is an instance of 'a man', display yes.
YES
<7> Deny Mary is not an instance of 'a man' in beliefs.
<8> Beliefs?
[BELIEFS Database •

NOTE: If the database option is not used, testing these forms
is equivalent to testing the propositions

element was [not] a description
element is [not] a description
element will [not] be a description

in that a predicate ruleset could be invoked to decide truth or falsity.
However, if database is given, then a test will strictly be applied
to the propositions affirmed in database. A

increment a description (by a number] [in a database]
decrement a description [by a number] [in a database]

Alternately increments or decrements the instance of description
in database as with

lot the instance of the description in the database

be such an instance the number

V.-

.?
D

,

U, %

4

S. S. .~.,'.'l .-

9.10 Intentional Propositions 215

<2> If 'John does not love Mary' is negated, display yes.
YES

the query from a proposition

Produces a string in which proposition is restated as a question, e.g.,

<3> Display the query from 'John is a happy man'.
"IS JOHN A HAPPY MAN?"

NOTE: If proposition is negated, the negation is ignored in the

resulting query, e.g.,

<4> Display the query from 'John is not a happy man'.
"IS JOHN A HAPPY MAN?" P

% •

.. r%0I

PA

ad%

L~*J. -O'

P.'

.' .

-.v:i

.'*.,,

.1"$

9.11 Intentional Procedures 217

.A

9.11 INTENTIONAL PROCEDURES

<intentional procedure> <procedure>

An intentional procedure enables users to treat the procedure
action type as an element of data. Intentional procedures capture the
intent of unexecuted actions, which can then be manipulated through
program control and executed at a later time.

An intentional procedure is designated by delimiting a procedure
with a pair of matching left quotes, e.g.,

move USS Nimitz from Le Havre to New York'
'broadcast the report'
'rendezvous with the strike unit'

As -n example application of intentional procedures, consider a ,'P
program that queues actions by some time metric, e.g.,

Assert 'move USS Nimitz from Le Havre to New York' is 1"
an action to execute at time 100.

Assert 'broadcast the report' is an action to execute
at time 120. A1 -.

Assert 'rendezvous with the strike unit' is an action
to execute at time 150.

and executes actions in the queue, e.g.,

For each action to execute at the current time,
execute that action.

'0"
9.11.1 Operations on Intentional Procedures

In the following, a procedure refers to an intentional procedure I. %

element.

execute a procedure .

Exeuutes procedure, e.g.,

Execute 'display hi donna'.

HI DONNA

-P t

."--

,% ."5,

V

"S - - .-.- .- - - ~ k Z~h.~ - ''' '

pwong
Text Box
preceding page blank - not filmed

10. Database Mechanism 219
.." %,

X. THE DATABASE MECHANISM v
L P

The initial, intermediate, and final results of ROSIE programs are
stored as affirmed propositions in ROSIE's database. Propositions can ..

be asserted (affirmed in the database) and denied (removed from the
database). It is possible to test the truth or falsity of a proposition
against the contents of the database as well as generate the members of
a class defined by affirmed class relations (i.e., propositions using
the is-a copula).

ROSIE's database structure actually consists of two conceptually
separate layers. The first is the physical database, which contains
affirmed propositions. The second is the virtual database, which
consists of those relations that can be computed from other relations
via ruleset invocation or a limited deductive retrieval mechanism
provided with class elements.

10.1 THE PHYSICAL DATABASE

The physical database is used to store propositions. Propositions
are affirmed under a three-valued logic system, i.e., a proposition is .
either true, false, or unknown. Additionally, the physical database can
consist of up to three separate databases at a time. These databases
are tiered so that propositions in one may hide propositions in another.
ROSIE also allows users to create alternate databases, which may be
swapped in and out of context by program control.

10.1.1 Three-Valued Logic

Propositions are affirmed in the physical database using a three-
valued logic system. Within such a system, if a proposition or its
negation is affirmed, then the proposition is provably true or false,
respectively. Otherwise, the proposition is unknown and has an
indeterminate truth value. ,

This style of three-valued logic provides ROSIE with an "open-
world" assumption. It implies that ROSIE may not have complete
knowledge about a particular situation. In such cases, truth or falsity
will not be inferred from the absence of contradictory information.'

'This does not mean, however, that assumptive behavior will not %"
appear in a program. For instance, the action,

If John does lik.-' Mary, let John be Mary's boyfriend,
otherwise let any man be Mary's boyfriend.

executes its then-part only if the condition succeeds. If the condition
does not succeed, then the else-part is executed; i.,., Rt)SI F does not
test if the proposition is provably false.

.%

, " ,, %" "." .. "" ...- Le... ..

pwong
Text Box
preceding page blank - not filmed

10. Database Mechanism 220

10.1.2 Database Actions

ROSIE provides four primitive actions for manipulating the physical
database: assert, deny, let, and create. A user adds to the database
by asserting propositions, e.g.,

assert USS Nimitz is docked at Le Havre 0. .ft

by assigning, via let, a distinct value as the one and only instance of
a class, e.g.,

let the objective be Red River Crossing

or by creating a generic instance with create, e.g.,

create a strategic command center

Propositions are removed from the database by denial, e.g.,

deny USS Nimitz is docked at Le Havre

Note that denial is not retroactive, i.e., if the denied proposition was
not affirmed in the first place, the deny action will have no latent
effect if the proposition is affirmed at a later time.

10.1.3 Contradictory Assertions

The physical database is automatically kept consistent in regard to
simple contradictions. A simple contradiction occurs when the
complement of a proposition being asserted is already affirmed in the
database. In such cases, the affirmed complement is discarded in favor e
of the new assertion, e.g.,

<2> Assert USS Nimitz is docked at Le Havre.
<3> ?
GLOBAL Database

USS NIMITZ IS DOCKED AT LE HAVER.

<4> Assert USS Nimitz is not docked at Le Havre.
<5> ?

GLOBAL Database
USS NIMITZ IS NOT DOCKED AT LE HAVRE.

ROSIE's ability to check for inconsistencies in the physical
database is limited to immediately comparable propositions. It does not
include reasoning through the effects of rulesets or virtual relations,
e.g.,

<6> Assert John does like any woman.
<7> Assert each of Mary and Sara is a woman.
<8> If John does like Mary, display yes, otherwise display no.
YES

%::.-:

"-AL

10. Database Mechanism 221

<9> Assert John does not like Mary.
<10> ?
I GLOBAL Database

JOHN DOES NOT LIKE MARY.
JOHN DOES LIKE ANY WOMAN.
SARA IS A WOMAN.
MARY IS A WOMAN.

<11> If John does like Mary,. display yes, otherwise display no.
NO
<12>

In this interaction, ROSIE will not catch the contradiction of
statements <6> and <9>. In such cases, the order of assertions
ultimately defines the truth value of the proposition in question.

10.1.4 Alternate Databases

Occasionally, a method is needed for partitioning data, i.e.,
storing different facts in different databases. This may arise because ,.
we wish to model multiple points of view or because we want to restrict
attention momentarily to a subset of those facts that are most relevant.
To support such needs, ROSIE allows users to create alternate databases
and specify when they should be brought in and out of context.

10.1.4.1 Naming and Creating Databases

Every database has a name by which it can be identified. This can
be any name element; multiword database names are allowed. ROSIE comes
with a predefined database, named global, which functions as the global
database. The private database of a ruleset invocation (see
Section 4.2.3.3) is named private. An alternate database is named by
the user when created.

The user can create and subsequently name an alternate database
with the activate procedure, e.g.,

activate conclusions "'

which makes that database the active database. If no such database
exists, one by that name is created.

10.1.4.2 The Global, Active, and Private Databases

The physical database is structured such that three databases can
be in context at any given time. Conceptually, one can imagine that the
physical database has three slots that can be filled to form a composite
database. These slots are tiered, one on top of the other. When
accessing the physical database, ROSIE moves down through the database
in the topmost slot to the database in the lowest slot. This has the

%'.W, %
.1L 40

10. Database Mechanism 222

-Si.

effect that information at one level could obscure information at
another.

The slot at the lowest level is reserved for the global database,
which is always present. The slot at the highest level is reserved for
the private database of a ruleset invocation and changes as rulesets
come in and out of context. The middle slot is reserved for the active
database. This slot can be filled with any alternate database specified
by the user with the activate procedure. Thus, when searching the
database, ROSIE firsts examines the private database, then the active,
and then the global.

The global database is created whenever a ROSIE session is
initiated. It is intended to contain information that remains constant
throughout the execution of a program. When no alternate database is
active, the global database is treated as the active database.

Each ruleset invocation is allocated a private database. Whenever
an invocation is in context (i.e., has not been suspended by the
invocation of another ruleset) its private database becomes the private
database. A private database and the relations asserted into it are
discarded upon termination of the invocation. As noted in Section
4.2.3.3, there are a number of restrictions on the use of the private
database. In addition, the private database cannot be explicitly .p..
activated or deactivated.

The active database is maintained and controlled by the user's
program. A user can bring alternate databases in and out of an active
role with the activate and deactivate procedures. For instances,

activate conclusions

makes the alternate database named conclusions the active database. If w.
this is followed by

activate beliefs

the current contents of the active database will be stored under the
name conclusions, and the data stored under the name beliefs will become
active. The call

deactivate

will deactivate beliefs without activdting any other alternate database,
making the global database active.

An alternate database can be "temporarily" activated from within a
ruleset with the swap in procedure. Swap in remembers which database
was active at the time it was called. When the ruleset invocation
terminates, the original active database is reactivated automatically.
This is true even if the invocation is terminated due to an error,
making swap in an effective method for restoring system state.

*. .'

%-

Pe.- '

10. Database Mechanism 223

10.1.4.3 Accessing the Physical Database

The database actions assert and deny are restricted to the active
database (and, in a limited form, to the private database). Tests are
made against the entire physical database. There is a set of database
operations such as

add a proposition to a database
and

remove a proposition from a database

that allows programs to specify the database in which particular
database actions are to be executed.

As an illustrative example, consider the following sample session:

(R)
ROSIE Version 3.0 (PSL) 26-May-86]

<2> Assert each of Jim, Jack and John is a man.
<3> Assert each of Mary and Sara is a woman.
<4> Assert any man does like any woman.
<5>
GLOBAL Database
ANY MAN DOES LIKE ANY WOMAN.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<6> Display every man.
JOHN
JACK
JIM
<7> Activate beliefs. .:* *

<8> ?
BELIEFS Database]

<9> Global?
[GLOBAL Database]

ANY MAN DOES LIKE ANY WOMAN.
SARA IS A WOMAN.
MARY IS A WOMAN. I
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN. ." ."

%* %,,

<10> Display every man.
JOHN
JACK
JIM

N .V.

10. Database Mechanism 224

<11> If John does like Sara, display yes.
YES
<12> Assert John does not like Sara.
<13> ?

BELIEFS Database]
JOHN DOES NOT LIKE SARA.

<14> If John does like Sara, display yes.
<15> Deactivate.
<16> ?

GLOBAL Database]
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<17> If John does like Sara, display yes. ,.

YES
<18> Beliefs?
[BELIEFS Database]

JOHN DOES NOT LIKE SARA.

Statements <2> through <4> initialize the global database.
Statement <5> demonstrates use of the ? command to examine the contents
of the active database, initially global. Statement <6> accesses
elements of the database.

In statement <7>, we activate an alternate database named beliefs.
When we examine the contents of the active database in <8>, we find that
it is empty. Statement <9> shows, however, that our initial assertions
are still present in the global database, and statements <10> and <11>
show that these assertions are still accessible. Statements <12>
through <14> illustrate how we can overload relations in the global
database.

Statement <15> deactivates beliefs database, reactivating global
database. While statements <16> and <17> demonstrate that our actions N.%

in the beliefs database had no ill effects on the contents of global,
statement <18> shows that we have not lost those assertions.

10.2 THE VIRTUAL DATABASE

The virtual database provides support for relations that either
cannot or should not be described by affirmed propositions. For
instance, relations such as '3 is greater than 2' are more practical to
compute than store. The virtual database consists of both predicate and
generator rulesets, and virtual relations.

A% A

. re

10. Database Mechanism 225

Predicate and generator rulesets, discussed in Chapter 4, allow
users to define subroutines for alternately deciding the truth or
falsity of a proposition, or producing the elements of a class. Virtual
relations, which are affirmed propositions containing a class element
argument, e.g.,

any ship is a vessel

give users a method for specifying relations that hold over a range of
elements.

The primary trade-off between the physical and virtual database is
time versus space. In general, relations stored explicitly in the
physical database require more memory than equivalent relations from the
virtual database. Alternatively, relations derived from the virtual
database require extended computation for their retrieval.

10.2.1 Predicate and Generator Rulesets %

One component of the virtual database are relations that can be
computed by predicate and generator rulesets. These rulesets are
invoked automatically when the physical database is unable to satisfy a
request for information. Their results are treated as though formulated
from relations in the physical database.

Predicate rulesets provide a means of deciding the truth or falsity
of a proposition through direct computation. When ROSIE is unable to
prove or disprove a proposition from affirmed propositions in the
database, ROSIE looks for a predicate ruleset for testing the
proposition or its complement. If such a ruleset exists, it is invoked
automatically and its resulting conclusion, or failure to return a
conclusion, decides the outcome of the test. For more information, see
Section 4.2.2.2.

Generator rulesets are used to produce a stream of elements
belonging to a class. When generating instances of a class, ROSIE first Of
produces all elements that satisfy a relation of the form

element is a class

in the physical database. Once all such elements have been exhausted,
ROSIE searches the virtual databasc for a ruleset capable of generating
additional elements of the class, invoking this ruleset if it exists. .'

For further details on generator rulesets, see Section 4.2.2.3; for .
further details about element generation, see Chapter 7.

Rulesets, when defined, are stored in a single structure, .''.

accessible globally and indexed by their header. When ROSIE looks up a .
ruleset, it examines the global ruleset store for the appropriately
identified ruleset. While individual rulesets may be enabled and ,'

disabled by program control, there is no way to scope or otherwise
partition the ruleset store.

,'- 14

N. 01%

%

10. Database Mechanism 226

10.2.2 Virtual Relations

A virtual relation is a proposition that specifies a relationship
that holds for a class of elements, rather than for a single specific
element, e.g. ,

any man is mortal

as opposed to

Jim is mortal
Jack is mortal
John is mortal %
etc.

As observable in the above example, the key feature of a virtual
relation is the presence of a class element (e.g., any man). If a
class element appears as an argument to an affirmed proposition in the
physical database, or if a class element is embedded within an argument
of such a proposition, then that proposition is said to describe a
virtual relation. ROSIE recognizes class elements as implicit
references to any element that can be generated from its base
description. A proposition that contains a class element holds for any
element referenced by that class.

As an illustrated example, consider the following sample session: .A£.

(R)
ROSIE Version 3.0 (PSL) 26-May-86] N

<2> Assert each of Jim, Jack and John is a man and
each of Mary and Sara is a woman. %

<3> Assert any man does like any woman.
<4> Assert John does not like Sara. ' d
<5> Assert any woman is a person and any man is a person.
<6> ?
[GLOBAL Database]

JOHN DOES NOT LIKE SARA.
ANY MAN DOES LIKE ANY WOMAN.
ANY MAN IS A PERSON.
ANY WOMAN IS A PERSON.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<7> If John does like Jack, display yes.
<8> If John does not like Jack, display yes.
<9> If John does like Mary, display yes.
YES

%?¢.

10. Database Mechanism 227

<10> If John does like Sara, display yes.
<11> If John does not like Sara, display yes.
YES
<12> Display every person.
SARA
MARY
JOHN
JACK
JIM
<13> Display every person who does like Mary.
JOHN
JACK
JIM .,

<14> Display every person who does like Sara.
JACK
JIM
<15> Display every person who does like any person.
JOHN %
JACK
JIM
<16> Display every person who does not like any person.
JOHN

Statements <2> through <5> initialize the database, defining a
class of man, woman, and person, as well as specifying a does like
relation that holds between instances of man and woman. Statements
<7> through <11> demonstrate the virtual relations in proving the truth
or falsity of propositions. Finally, statements <12> through <16>
demonstrate how virtual relations behave when used to generate instances
of a class.

The example above points out an important aspect of class elements,
namely, delayed evaluation. If we had said in statement <5>

Assert every woman is a person and every man is a person.

then the propositions,

SARA IS A PERSON
MARY IS A PERSON
JOHN IS A PERSON
etc.

would have appeared in the database when we made the query of statement
<6>. Since class elements act as placeholders for the individual
instances of a class, the effect of using the any construct is to delay
enumeration of all pertinent is-a relations until needed. This is an
important property when all elements of a class are not known a priori.

v 'o~vr- 1r, or. I % ' 4,4.' %

10. Database Mechanism 228

A final observation that arises from this example is the
application of virtual relations as "default" relations. By placing the
assertion in statement <3> before any other assertion of the does like
relation, we have effectively made it the default; it will be the last
relation encountered when testing the truth or falsity of any
proposition concerning the does like relation, allowing us to test for
exceptions such as in statement <11>.

10.3 ASSERTING, TESTING, AND DENYING PROPOSITIONS 9.

In this section, we provide a somewhat more precise definition of
what it means to assert, deny, and test a proposition. Whenever
asserting, denying, or testing a proposition, ROSIE first evaluates its
the arguments, i.e., its subject, object, and the objects of its
prepositions. ROSIE follows the appropriate procedures described below.

NOTE: If the proposition specifies a class relation, e.g.,

Red River Crossing is an objective which is strategic

then it potentially specifies a set of propositions, i.e., the base is-a
relation, e.g.,

Red River Crossing is an objective

and the relations in the relative clause, e.g.,

Red River Crossing is strategic

In such cases, the following procedures are applied to each proposition
in that set, starting with the base is-a relation.

Assertions-- -

To assert a proposition (initiating an assert event), ROSIE does
the following: .'.

1) It checks for an assert demon monitoring assert events of the
given proposition, invoking the demon if it exists.

2) If there is no such demon or if the demon's invocation is
terminated by the continue procedure, ROSIE proceeds to the
next step, otherwise the assert event is aborted.

3) if the proposition or its complement has already been affirmed
in the active database, ROSIE discards the existing assertion.

4) ROSIE adds the given proposition to the active database, making
it the most recent assertion.

* 9-..-

% .%.]

- - " i |.f •

10. Database Mechanism 229

Denials-- ,

To deny a proposition (initiating
a deny event), ROSIE does the

following: %.

1) It checks for a deny demon monitoring deny events of the given ,

proposition, invoking the demon if it exists.

2) If there is no such demon or if the demon's invocation is
terminated by the continue procedure, ROSIE proceeds to the V_
next step, otherwise the deny event is aborted.

3) If the given proposition has been affirmed in the active
database, ROSIE removes it, otherwise, no action occurs. e

Tests - -

To test a proposition (initiating a test event), ROSIE does the 0 %

following:

1) It checks for a test demon monitoring test events of the given
proposition, invoking the demon if it exists.

2) If there is no such demon or if the demon's invocation is ".
terminated by the continue procedure, ROSIE proceeds to the
next step, otherwise the test fails.

3) ROSIE tries to prove or disprove the proposition by examining -W,
all affirmed propositions in order of recency.

a) If the proposition being tested is affirmed, or if it can -
be deduced from a virtual relation, then the test succeeds.

b) Alternatively, if the complement of the given proposition
is affirmed, or can be inferred from a virtual relation,
then the test fails.

4) If none of the above conditions is true, ROSIE looks up a
predicate ruleset that tests for the proposition or its
complement--only one or the other can be defined at one time. q
If such a ruleset exists, it is invoked and its results decide %

the truth or falsity of the proposition as follows:

a) If predicate tests for the proposition and concludes true,
then the test succeeds. If it concludes false or returns
without making a conclusion, then the test fails;

b) Alternatively, if the predicate tests for the proposition s
complement and concludes false, then the test succeeds.
Otherwise, the test fails. "h-.%

* ' .*q

10. Database Mechanism 230

NOTE: When examining all affirmed propositions in step 3 above, ROSIE is
working with a partially closed database and will consider only those
propositions that are similar to the test proposition (i.e., which use
the same verb form and associated prepositions) and which were affirmed
at the start of the test event. This means that adding or removing
propositions from this set during the test will not affect its outcome.
For example, consider the following interactions

<10> List "test".

To decide if a person is a man:

[1] Create a person who does like Mary.
121 Conclude false.
End.

"p.

[GLOBAL Database
JOHN DOES LIKE MARY.

<12> If any man does like Mary, display that man.
<13> ?
[GLOBAL Database

1

PERSON ol DOES LIKE MARY.
JOHN DOES LIKE MARY. .%

PERSON #1 IS A PERSON.

When line <12> compares 'any man does like Mary' to the affirmed
proposition 'John does like Mary' it calls the ruleset seen in line <10>
to decide if 'John is a man'. The ruleset concludes false, but it also
affirms a new instance of the does like relation. Obviously, this has
the potential for causing the test in line <12> to continue
indefinitely, but because the test event is closed over the does like %l..#
relation, the new relation is not considered and the test halts.

-

10.4 AUTO-QUERY MODE

ROSIE provides a facility for automatically querying an outside

data source (such as the user) when the truth or falsity of a
proposition cannot be determined. This mechanism is controlled by the N.7
system switch $AUTOQUERYFLG (the default setting is off).

When $AUTOQUERYFLG is on, and ROSIE is not able to prove or
disprove the truth or falsity of a proposition, ROSIE will look for the
predicate ruleset

To decide if a proposition is confirmed:

If such a ruleset exists, it will be applied to the positive form of the
proposition. The conclusion of the iuleset decides the truth value of
the proposition.

, -- "" ~.'.~ %?'?./.%4 4, ~~,,' '5.5'. .*~...*'%' .'..*,-,f:; ..

10. Database Mechanism 231

ROSIE provides a default query mode predicate defined as

To decide if a proposition is confirmed:
Private: a reply.
Execute cyclically.
[1] Send "{cr)(the query for the proposition). -
[21 Read "(anything (bind to the reply)){cr)".
(3] Select the uppercase of the reply:

<"YES"> assert the proposition is provably true and
conclude true; %

<"NO"> assert the proposition is provably false and
conclude false;

< .> return;

default: send "(cr)Please respond YES or NO{cr)".
End.

To see how this facility works, consider the following sample
session.

(R)
ROSIE Version 3.0 (PSL) 26-May-86]

<2> ?
GLOBAL Database

<3> If John is a man, display yes.
<4> Switch on $AUTOQUERYFLG.
<5> Redo 3.

IS JOHN A MAN? y

Please respond YES or NO %

IS JOHN A MAN? yes
YES
<6> ?
GLOBAL Database]
JOHN IS A MAN.

<7> Redo 3.
YES
<8> If John does not love Mary, display yes.

DOES JOHN LOVE MARY? yes
<9> ?

GLOBAL Database
JOHN DOES LOVE MARY.
JOHN IS A MAN.

%'

7..

"'S

10. Database Mechanism 232 1

With this definition, the auto-query mechanism allows ROSIE to '4'

build up its database by consulting the user. While this mechanism is

not always appropriate, it is extremely useful for diagnostic tasks.

10.5 DATABASE OPERATIONS

In the following operations: A database refers to a name element
identifying a database; a file refers to a string element that
identifies a text file to which a channel has been open (see Chapter
11); a proposition refers to an intentional proposition; a description
refers to an intentional description; and an element refers to any
arbitrary element. Unless otherwise specified, these operations cannot
be applied to the private database of a ruleset invocation. Operations
that take an optional database argument will be applied to the active
database by default. If no alternate database is active, the global
database is treated as the active database.

activate [a database]

Sets the active database to be database. If no such database exists,
one is created by that name. If database is not given, the global
database is activated.

deactivate

Deactivates the active database, if any, and activates the global
database.

swap in a database .'5'

Temporarily activates database. "

If executed within a ruleset, the active database will be reset to
its original value when the ruleset invocation terminates.

If used in a monitor rule, resets the active database upon execution
of the rule.

the active database

Produces the name of the active database, or GLOBAL, if no database " 5

is active.

a database

Successively produces the names of existing databases, including the

.5 -,
5.ol%.

.5"..

10. Database Mechanism 233

global database but not including the private database. The name of
the active database will be produced first.

an alternate database

Successively produces the names of existing alternate databases, not
including the global database. The name of the active database will
be generated first.

show (a databasel

Displays every affirmed proposition in database. If the name
private is given, displays the contents of the active private
database.

2

* #- W

Equivalent to show; a shorthand for use within the top-level
monitor or a break monitor. .

<name element>?

Equivalent to show <name element>; a shorthand for use within the
top-level monitor or a break monitor. Private? displays the
contents of the private database of a ruleset invocation. .- '-.

NOTE: This syntax supersedes the older <term>? syntax, which
was equivalent to describe <term>.

c- a-.

clear a database
clear database . '

Removes all affirmed propositions from database. If database is
given, clears the active database.

NOTE: This operation does not remove propositions using deny and,
thus, will not invoke a deny demon.

dump [a database] as a file

Stores (in a machine readable format) the contents of database into
file .db (i.e., a file whose name is created by appending a .db

2Only applies during a ruleset invocation.

.~~~~~~- . ., ..-..

N - - - e W ZL~e i e ; e . "e.',.".."..,,".,". "",," ,,- ,."... ,.',.". " .'.= I.-. '

10. Database Mechanism 234 .-

extension to file). 4P

restore a file [to a database]

Undoes dump. Reads the contents of a database from file.db and "
makes them the contents of database, discarding the older contents
of database if any.

An error occurs if file.db does not exist.

copy to a database

Copies the contents of the active database to database, destroying -

anything that was in database.

copy from a database

Copies the contents of database into the active database, destroying
anything that was in the active database.

If database does not name an existing database, equivalent to clear
database.

forget about an element [in a databaseI

Removes all propositions from database that use element as a
top-level argument--does not check if element is embedded in an
argument.

describe an element [in a database]

Displays all propositions from database that use element as a
top-level argument.

an affirmed proposition [from a database]

Successively produces every affirmed proposition from database as
an intentional proposition.

assert <proposition> land <proposition,".-,

Affirms each -proposition> in the active database.

%. 9.9**

10. Database Mechanism 235

assert a proposition [in a database]
add a proposition to a database

Asserts proposition in database.

deny <proposition> [and <proposition>]*

Removes each <proposition> from the active database.

deny a proposition [from a database].
remove a proposition from a database

Denies proposition from database.

create <a/an> <description> Il

Creates an instance of <description>. This instance will be a name
element generated by appending #N to the class noun of <description>,
where N, a positive integer associated with the class noun, is
incremented by one for each name so created.

This element is asserted as an instance of <description> in the
active database, e.g.,

<3> Create a happy man.
<4> ?
f GLOBAL Database]

MAN #1 IS A HAPPY MAN.

let <let form> [and <let form>]

<let form> the <description> be <term>
.: <term> ' s <description> be <term>
= <term> be the <description>
: <term> be <term> ' s <description>

Makes the value of <term> the singular instance of <description> in
the active database, e.g.,

Let the counter be 1

is conceptually equivalent to executing

Deny every counter is a counter and assert I is a counter

NOTE: <term> and <description> can be arranged in any order; in the
case of

del.

10. Database Mechanism 236

Let the desc #1 be the desc #2

desc #1 is treated as <description> and the desc #2 as <term>.

instantiate a description to an element [in a database]

Equivalent to executing

let the instance of description be element

when database is active.

an instance of a description [in a database]

Produces successive instances of description from database.

NOTE: If the in database option is not given, instance of can, if
need be, call a generator ruleset. However, if database is given, 4%

elements will strictly be generated from database.

an element was [not] an instance of a description [in a database]
an element is [not] an instance of a description [in a database]
an element will [not] be an instance of a description [in a & tabase]

These propositional forms can be used alternately to assert, deny, or

test that element was, is, or will be an instance of description in
database, e.g., ..

<2> Assert John is an instance of 'a man'.
<3> ?
[GLOBAL Database]

JOHN IS A MAN.

<4> Assert Mary is not an instance of 'a man' in beliefs.
<5> Beliefs? N J'.
BELIEFS Database]

MARY IS NOT A MAN.

<6> If John is an instance of 'a man', display yes.
YES
<7> Deny Mary is not an instance of 'a man' in beliefs.
<8> Beliefs?
[BELIEFS Database]

NOTE: If the in database option is not used, testing these forms is
equivalent to testing the propositions

N.~ %

10. Database Mechanism 237

element was [not] a description
element is [not] a description
element will [not] be a description

in that a predicate ruleset could be invoked to decide truth or
falsity. However, if database is given, then a test will strictly
be applied to the propositions affirmed in database.

i a[

increment a description [by a number] [in a database]
decrement a description [by a number] [in a database]

Alternately increments or decrements the instance of description in
database as with ,

let the instance of the description in the database
be such an instance * the number

a proposition is [not] provably true

a proposition is [not] provably false

When used as a predicate,

proposition is provably true

concludes true if proposition can be proved true from assertions
in the database or from a predicate ruleset, false otherwise; and

proposition is provably false

concludes true if the complement of proposition can be proved true
from assertions or a predicate ruleset, false otherwise, e.g.,

If 'John is a man' is not provably true, , . -
Unless John is a man . . .-

If 'John is a man' is provably false,

If John is not a man, _

When asserted, ""-

proposition is provably true

asserts proposition, and

proposition is not provably true

denies proposition, and %
a.

proposition is [not] provably false

%4P0%% -'.4

'; " 0 " 4 € € '€"""€"""€.€ " €" € ."" ." ; ," " "€"€"- ", .".""," ''" ",'.'.- ' . -'" '."-" ",".' . -' .",'-'-'

10. Database Mechanism 238

likewise asserts or denies the complement of proposition, e.g.,

Assert 'John is a man' is provably true

Assert John is a man

Assert 'John is a man' is not provably true

Deny John is a man

Assert 'John is a man' is provably false
Assert John is not a man

Assert 'John is a man' is not provably false

Deny John is not a man

When denied,

proposition is provably true :

~. '.

denies proposition, and

proposition is not provably true

asserts proposition, and

proposition is [not] provably false

likewise denies or asserts the complement of proposition, e.g.,

Deny 'John is a man' is provably true

Deny John is a man

Deny 'John is a man' is not provably true

Assert John is a man

Deny 'John is a man' is provably false

Deny John is not a man

Deny 'John is a man' is not provably false

Assert John is not a man

a proposition is [not] true [in a database]
a proposition is [not] false [in a database]

Like is provably with the addition that database is activated before
proposit ion or its complement is asserted, denied, or tested.

0.. *

'',op •

10. Database Mechanism 239

NOTE: Unlike the is provably predicate, these forms will not invoke
a predicate ruleset to prove or disprove proposition; such proof must
come strictly from the assertions in database.

Pd.

. -

11. Input/Output 241

Xl. INPUT/OUTPUT

The input/output (I/O) operations allow programs to read from and
write to text files, communicate with the user's terminal, and initiate

jobs on the host operating system. Users can also create transcript
files that record all or part of a ROSIE session.

11.1 CHANNELS

All I/0 passes through an internal data structure called a channel.
A channel is a line to a file device through which input can be read or
output written. The user's terminal is one such device; text files in
the host directory system are another. Where the host operating system
(OS) permits, a special channel is available for sending commands to the %
OS and reading the results.

Input from a channel is performed using the read procedure, which %

takes a pattern element as one of its arguments. Characters are read
one at a time until the pattern has been matched. Pattern variables
provide a means of extracting substrings of the input text.

Output to a channel is performed using either the display, send,
or print procedures. Display simply outputs the evaluation name of any
given element to the standard output channel, while send outputs a
formatted string to some specified channel. Print is a specialized form
of send that attempts to "beautify" the string before output.

11.1.1 Opening and Closing Channels

Before a file can be accessed for input or output, a channel must

be open to it. The channel can be open for reading or writing, but not

both simultaneously. Exceptions to this are the TTY channel and the OS
channel, which are special channels open for both reading and writing.

A channel is created using the open procedure. For instance, the
action,

Open "mydata" for input.

ope'Is an input channel to the text file "mydata", and
'Ira

Open "myresults" for output.

opers an output channel to the text file "myresults".

1 f the file did not exist before, it will be created. If it did ,.

exist, the old contents will be destroyed.

; .*N

%. -. ..-.-.. 1

...............................

pwong
Text Box
preceding page blank - not filmed

11. Input/Output 242

Once open, a channel assumes the name of the file. Therefore, in
the above examples, we can refer to the channels open as "mydata" and
"myresults", respectively. To perform I/0 through a channel
explicitly, its names must be passed as an argument to the particular
I/O operation being applied.

ROSIE does not allow more than a single channel to be open to the
same file at a time. To open a new channel to a file, any existing
channel to that file must be closed. Additionally, depending on the
implementation, output to directory files may be buffered, and,
therefore, not written to disk until the channel to the file is closed.
It is a good practice to keep track of open channels and to close them
immediately when they are no longer required.

A channel is closed with the close procedure. The action,

Close "myresults".

will close the channel to "myresults", allowing a new channel to be
opened to that file. If the channel was open for output, then the
output buffer, if one exists, is flushed and the file written to disk. -

11.1.2 The Standard I/O and TTY Channels

Default I/0 goes through a special channel called the standard
input channel and the standard output channel, respectively. The
standard I/O channels essentially provide an indirect reference to other
channels.

Standard I/0 is initially directed to the TTY channel (i.e., the
user's terminal) but can be redirected to any other channel. The TTY
channel can be referred to explicitly as "TTY:"; this channel is
always open and cannot be closed.

Standard I/0 can be redirected to a channel using the redirect
procedure, e.g.,

Redirect input to "mydata".

opens an input channel to "mydata" (if one does not already exist) and
redirects standard input to this channel. Similarly, executing

%W"
Redirect output to "myresults".

opens and redirects standard output to "myresults". Redirecting I/O
does not close the channel to which standard I/O was previously
directed. If the redirect procedure is not given a target file device,
"TTY:" is used by default.

z-# •

,rr.0. . .

s., .-

11. Input/Output 243 ,. Pr

Redirection of standard I/0 is a temporary operation. When control %

returns from the ruleset in which the redirection operation was applied,
the redirection is automatically undone (i.e., standard I/0 is
redirected back to the settings it had prior to the invocation of the
ruleset). Redirection is undone even if control is returned by a
nonstandard means, such as an error or user interrupt.

11.1.3 The OS Channel

Like the TTY channel, the OS channel is another special channel
always open for both input and output. The OS channel, however, is open
to the host operating system. Output to this channel will be executed
by the host OS as though typed to it directly. Input from this channel
is the results of execution that would appear on the standard output
device of the OS (i.e., typically the user's terminal).

For instance, assuming the operating system is UNIX,

<2> Send "pwd{cr}" to "OS:".
<3> Read "(anything (bind PATH)}(cr}" from "OS:" and display PATH.
"/a/kipps/ros ie/scratch"

we could execute the above to access the path of the current working
directory. .*

In earlier versions of ROSIE that ran in Interlisp under TOPS-20

(Teitelman, 1978), the input/output facilities supported a special
channel type called a port. When a port was opened, a new job was
logged in on a pseudo-teletype. Text sent to the port was read by
TOPS-20 as though typed by a "user," and the output of execution could
be retrieved by reading from the port. Unfortunately, not all operating
systems or LISPs provide the appropriate facilities for implementing
ports. Thus, when ROSIE moved out of TOPS-20, ports were discarded.

The OS channel is new to ROSIE 3.0 and is an attempt to provide
some of the functionality lost with ports. Unlike ports, there is only
one OS channel. Also, where jobs sent to a port ran asynchronous to
computations in ROSIE, jobs sent to the OS channel must run to
completion before control is returned to the user's program.

The OS channel is named "OS:" and must be explicitly referenced to
be used. Commands sent to the OS channel must be terminated with a -.

carriage return. Also, it is an error to try to redirect standard I/0
to "oS:" '

NOTE: Even though the OS channel is substantially more constrained than -..

were ports, they still may not be possible to support in some
implementations of ROSIE.

V... • . .,'

4...-......... ,'.

~*. * - ~ f.A..kY,..2",. ..A. .- .

11. Input/Output 244

11.2 THE USE OF PATTERNS

The pattern and string elements are provided primarily to support
complex I/0 operations. Output operations write strings to a file
device. Input operations read characters from a file device, matching
the characters against a pattern of "acceptable" input.

11.2.1 Sending Formatted Text

The two output procedures send and print take as an argument a
string to be written to some file device. This argument can actually be
any type of element. If it is not a string, it will be coerced into a
string according to the following two rules:

* If a pattern element, then that pattern must describe a
language of one and only one string. The pattern will be
coerced into that string. These rules of coercion will be

applied to the arguments of the pattern recursively. Unless
the pattern explicitly specifies otherwise, the resulting
string will have fixed format.

* If any other element, then the evaluation name of that element
is coerced int.o a fixed format string. Note that if a pattern
is embedded in another element, such as a tuple, it will not be
treated specially from other embedded elements (i.e., its
evaluation name will be coerced into a string).

As discussed in Section 9.5, strings have either a free, fixed, or '

mixed format. A string's format specifies the method in which the
characters of the string will be displayed on the target output device.
Free format strings contain no explicit line breaks; line breaks are
introduced as required to make the text in the string fit the line
length of the output device. Fixed format strings may contain explicit
line break information; such strings are sent to the output device as .
is. Mixed format strings are composites of free and fixed format
strings, interleaved; free format components are output to fit the line
length of the device, while fixed format components are output as given.

11.2.2 Reading against a Pattern

All input Lakes place through the read procedure, which accepts as
an argument a pattern against which input is matched. Characters from
the input device are read one at a time until the string thus
accumulated is recognized as an instanct of the pattern. If at any time
the pattern matcher recognizes that the string will never match the
pattern, an error occurs.

Substrings of the text read from the device caia only bo retrieved
using pattern var iblos. For example,

Read (anything (bind the reply), cr1.

-2:

p"p,

" '- " " t ",' "-' ". .-; '.-' ' ' '- -", .-"-', -'z .-"-'.- .-'. , .-'-'. ' - . .'- -'. ' '. '.- .- . . v .'- . '-P :

11. Input/Output 245 A'.
AS..

•O I

reads a line of text terminated by an end-of-line character from standard
input and binds the text (less the end-of-line character) to the reply
(as described in Section 9.6.4) as a string. This binding is then
accessible to the user's program.

An important observation to make is that the pattern matcher quits
upon recognizing the shortest instance of the pattern. This means that
executing

Read (anything (bind the reply)).

will always result in binding the reply to the empty string (""), which
is the smallest substring recognized by anything. ROSIE provides no
"reasonableness" checker for patterns, meaning the ROSIE programmer is
responsible for ensuring the correctness of all patterns used.

A final observation to note is that read actually will accept any
type of element as an argument, not just patterns. If the element is a
string, then it is coerced into a pattern describing a language
consisting only of itself. If any other element type, the evaluation 'A

name of the element is coerced into a string and pattern.

11.3 CREATING TRANSCRIPT FILES

ROSIE provides a mechanism for sending everything that appears on
the user's terminal to a file on disk. This is a convenient way to save
a transcript of all or part of a ROSIE session. All of the example
sessions appearing in this document were obtained in a dribble session.

After executing the dribble procedure, e.g.,

Dribble to "mylog".

a copy of all terminal I/0 at the top-level monitor, as well as in a
break monitor, is sent to the dribble file; a channel should never be
open to the dribble file while a dribble session is active. Executing,

Stop dribbling.

discontinues the dribble operation and closes the dribble file.

Note that dribbling only saves terminal I/0 when issued to a ROSIE
monitor. While you may edit files, enter LISP, or jump up to the host
operating system from within a dribble session, those interactions with
the terminal will not be recorded in the dribble file.

, ..:?..4
. -- i.mm nmumm mum nn i n in an in i i i ~ i -al ...

11. Input/Output 246

11.4 INPUT/OUTPUT OPERATIONS

In the following operations: A file refers to a string element that
identifies a text file (or an open channel) using whatever filenaming
conventions are appropriate for the host operating system; a string can a% a

be a string element or it will be coerced into a string element as --
described in Section 11.2.1; a pattern can be a pattern element or it ,_,

will be coerced into a pattern as described in Section 11.2.2; a name
can be any name element; an integer can be any simple number with an
integer value greater than or equal to 0; and an element can be any
element of arbitrary type. Additionally,

"TTY:" (the TTY channel) is a special channel open for both
input. and. autpi. fxnom the, teprmina l.; by defauLt., the '
standard 1/0 channel;

"OS: (the OS channel) is a special channel open for both input ,

and output to the host operating system.

Unless otherwise specified, operations that take a file as an optional
argument will be applied to the standard I/0 channel by default.

open a file for input ""
open a file for output

Opens a channel to file for the given access type. Calls an %.%
error if file is already open.

NOTE: A file cannot be open for both input or output, nor may more
than one channel be open to the same file at the same time.

, '. a.

open a file to read
open a file to write ,

Archaic forms of open for. Change existing code to use open for. %
S% '

close a file

Closes the channel to file. Calls an error if file is ..
not open, or if the file is "TTY:" or "OS:". ..-.

close everything

Closes all open channels except "TTY:", "OS:" and the dribble
file. Redirects standard I/O to "TTY:",

-.

N
_*

11. Input/Output 247

redirect input [to a file]
redirect output [to a file]

Temporarily redirects standard I/0 to file; if no file is given, V
"TTY:" is used.

When executed within a ruleset, redirects standard I/0 to its previous
setting upon termination. In a monitor rule, resets standard I/O after

executing the rule.

If a channel is not already open to file, one is automatically open.
When this occurs, redirection to the original setting will close the
channel to file.

NOTE: If redirect opens file, do not close file yourself.

NOTE: Standard I/O may not be redirected to the OS channel.

the standard input channel

the standard output channel

Produces the channel (as a string element) to which the standard I/0
channels are directed.

the TTY channel

Produces "TTY:". -'

the OS channel

Produces "OS:".
V.

an open channel

Produces a sequence of open channels as string elements naming the
files to which they are open. These are ordered by recency (i.e., the
name of the last channel open will be the first produced). Does not

produce "TTY:" or "OS:".

an element is a filename

Concludes true if element could name a file.

NOTE: At the moment this predicate is quite primitive and will succeed
if element is either a string or name element.

a- :;,.

, .4%

11. Input/Output 248

a file is open for input
a file is open for output
a file is open for input/output

Concludes true if there is an open channel to file, and that
channel is open for input, output, or either, respectively, otherwise
concludes false.

a file is available for input

Concludes true if the given file is known to the host operating system
(e.g., if it can be located on disk), otherwise concludes false.

NOTE: This predicate makes the assumption that any file known to
the OS can be open for input.

.,

display an element "'--

Outputs the evaluation name of element (followed by a line break) to
standard input.

tab to an integer [on a file]

Causes the next character sent to file to be printed at the
column position specified by integer, starting from 0.

NOTE: If the column position on the current line is already past this ,.
point, output will begin at this point on the next line. ,

send a string [to a file]

Outputs srring to file. if applied to a nonstring, coercion
to a string is automatic."%

NOTE: File must be open for output or an error occurs.

print a string [on a file]

Like send with the system switch $PRETTYFORMAT turned on to
enhance the readability of output.

If string is specified using a pattern element, arguments to the
pattern are coerced into strings without surrounding double or single
quotes and output in lowercase, e.g.,

<11> Send ('plaintiff did suffer "a loss of one eye"', cr}.

-I

-* %

11. Input/Output 249

'PLAINTIFF DID SUFFER "a loss of one eye"'
<12> Print ('plaintiff did suffer "a loss of one eye"', cr).
Plaintiff did suffer a loss of one eye

The first letter of string will automatically be capitalized.

NOTE: File must be open for output or an error occurs.

print a name as a string

When $PRETTYFORMAT is on, all instances of name will be output
as string, e.g.,

<13> Print John Brown as "John Brown".
<14> Send ('the plaintiff did suffer "a loss of one eye"', cr}.
'JOHN BROWN DID SUFFER "a loss of one eye"'
<15> Print ('the plaintiff did suffer "a loss of one eye", cr).
John Brown did suffer a loss of one eye

read a pattern [from a file]

Reads a segment of text from file.

Characters are input one at a time from file unti.l
sufficient text has been read to either

1) recognize an instance of pattern, at which time read
returns successfully; or

2) recognize that no instance can be matched, at which time read
calls an error.

Portions of the input text can only be retrieved via pattern variables.

NOTE: File must be open for input or an error occurs. .- r

For the following operations, file need not be open for input or output.

type a file .,.-:

Lists the contents of file on "TTY:.

copy a file to a file

Copies the contents of the first file to the second. If the second
file already exists, its old contents are destroyed.

%- . "Je t' .,,'..',"- . "-"- . "-"- . ' -. ", .". . ",' '-,, .-. ' '. '2", ; ,' '-.- '''- ,.'''- . """- -,, .","v , -"." .-. -".-•"

11. Input/Output 250

append a file to a file

Appends the contents of the first file to the end of the second.

rename a file to a file

Changes the name of the first file to the second. If a file by that
name already exists, it is destroyed.

delete a file

Deletes file from the user's directory. Does not ask for
conformation. No error occurs if file does not actually exist.

dskin a file

Loads file using the implementation LISP's load function or
its equivalent. Provided for loading LISP files into the system.

dribble to a file

Opens a special output channel to file, making it the dribble file.
After this, a copy of all terminal I/0 will be sent to file. The
dribble file may not be closed except with stop dribbling.

NOTE: You may edit files while dribbling, but that part of the session " "'-'
will not be dribbled.

stop dribbling . . -

Closes the dribble file and stops copying terminal I/0. If no dribble
file is open, an error occurs.

~.5.

op

12. Errors and Error Recovery 251

XII. ERRORS AND ERROR RECOVERY

V

Runtime errors are either recoverable or nonrecoverable, and either .

system generated or generated by the user's program. When a runtime
error occurs, execution is temporarily suspended, and an error message
is printed indicating the problem and the ruleset in which it was
encountered. While ROSIE does not support an elaborate error handler,
it does provide a mechanism for trapping and recovering from runtime
errors. .1

12.1 NONRECOVERABLE AND USER ERRORS

When one of the few nonrecoverable errors occurs or when the user's
program calls an error, control is unconditionally returned to the top-
level monitor and all computations aborted. A user's program can call
an error, aborting computations, with the quit procedure, i.e.,

quit [because a string]

Throws control to the top-level monitor. If the because option is
given, the string is printed to the standard output channel (normally
the user' s terminal) before aborting computation.

12.2 RECOVERABLE ERRORS

Most runtime errors in ROSIE 3.0 are recoverable. This means that "
they can be trapped and possibly fixed, allowing computations to resume "
from the offending rule gracefully. In addition, user interrupts,
signaled by hitting <ctrl>C, are treated as recoverable errors.

When a recoverable error occurs, ROSIE does two things in sequence.
First, it attempts to invoke an assert demon that, if defined, traps the
error and permits automatic error recovery. If no such demon exists, or
if it did not signal for computations to be resumed, control is thrown
into a break loop. Within the break loop, the user can edit the
offending rule, fix the error, and resume computations.

For further information on interactions in the break loop, see
Section 14.3.

12.3 THE ERROR DEMON

Automatic error recovery can be controlled through the use of a .

special assert demon called the error demon. When processing a
recoverable error, ROSIE simulates an assertion of the proposition

-.- -.

12. Errors and Error Recovery 252

<string, fileseginent> is an error

where <string, filesegment> is a tuple element containing string, which
identifies the error message, and filesegment, which identifies the
ruleset rule causing the error,.

This proposition is not actually asserted into the database, but it
will invoke an assert demon of the form

Before asserting a message is an error: -

if .uch a demon exists. Further, if the error demon executes the
continue procedure, then computation will be resumed automatically at
the point of the error call.

'ep.

13. File Package 253

XIII. THE FILE PACKAGE %

The file package is the heart of ROSIE's programming environment.
It helps the user build, modify, examine, and maintain programs in a way
that exploits the modular and English-like nature of ROSIE rulesets. It
also encourages interactive and real-time system development by
minimizing the parsing and compiling overhead caused by changes to rules
and rulesets.

13.1 PROGRAM FILES

A ROSIE program is developed and maintained in a program file. A
program file is actually a set of files that resides in the user's N,..
directory. These files contain the source code of the program, the code % ...,

derived from parsing the program, and the binary code representation of
the program derived by further compilation.

The component files of the program file share a common root name
(i.e., the name given the program file when created with the build
procedure). They are distinguished by their extension. These files are

explained briefly below:

file.txt -- contains the actual source code of the program in
its original text form. It is the only "human" readable file
in the group and is the file that should be printed when a
hardcopy of the program is required.

* file.map -- contains the executable HILEV representation of
the code in the .txt file, as well as a map linking the
corresponding components of both files. The contents of the
.map file are what is actually loaded and modified during
program development. Jb

" file.cmp -- contains the binary code representation of a J*
program compiled from the HILEV in the .map file. This file ON

is created by the compile procedure and normally exists only
when the user is satisfied with the behavior of a system and -

desires to improve performance. -

None of these files should ever be modified directly by the user since
each is required by the file package and is related in unobvious ways. "

A program file is named by a string element that is consistent with
the file-naming conventions of the host operating system. ROSIE is not
extremely sophisticated about file-naming conventions and may do the
unexpected when accessing files in other than the current working
directory. It is hoped that such issues will be addressed at some
future date.

1,% .'.%

.Wr A1_ _ lr.,

13. File Package 254

J. J

13.2 USING THE FILE PACKAGE

To the user, a program file is simply a text file containing ROSIE
source code. A program file is created with the build procedure. This
procedure takes a single argument that becomes the name of the program
file. Once created, the user can add code to the empty program file,
and, when finished, write it to disk.

To work on an existing program file, the user must first notice it.
This is normally done with the load procedure, which brings the .map
file into the system, noticing the contents of that file as well as
enabling its rulesets and executing its file rules. a"

The user can examine the contents of a program file with the list
procedure, which shows the program's source code drawn from the .txt
file. The scan procedure also lists the contents of a program file,
but in an abbreviated form. The user can examine ROSIE's interpretation
of his code with the deparse procedure. The deparser automatically
generates source code from the HILEV representation of a program,
illustrating ROSIE's interpretation of the program with indentation and
parentheses. .

The user may change portions of a program file with the copy,
move, and erase procedures. The edit procedure allows a user to edit
noticed program files, or portions of such files, while insert allows a
user to insert edited code before or after some portion of a noticed
program file. After editing, changes to a program file can be written
to disk with the save procedure.

When the system builder is satisfied with the behavior of his code,
ROSIE permits him to optimize his program with the compile procedure. _
Compile converts ruleset definitions and file rules into binary code,
storing this code in the .Cmp file. Loading a compiled program file .-

will enable the compiled definitions and execute the compiled file
rules.

The sysload procedure can be used to load a file without noticing
it. This is more efficient, but does not allow the user to edit or
examine the contents of the file. Similarly, the notice procedure can
be used to notice a file without actually enabling it, while the enable
procedure enables the contents of a noticed program file.2 There is
also a disable procedure, which undefines rulesets, an unnotice
procedure, which causes the file package to forget what it knows about a
file, and an unload procedure, which first disables a file and then "
unnotices it.

'Any rule that is not part of a ruleset is a file rule. .,*.,
2 Enabling defines the rulesets and executes the file rules of the

program file.

. -

%., r

13. File Package 255
0%1

Finally, the parse procedure permits users to build program files
for code that was edited or developed outside of the ROSIE environment.
For instance, the .text files of pre-ROSIE 3.0 programs wust be ported
to ROSIE 3.0 using parse.

13.3 DEFINING RULESETS AND FILE RULES A

A program file may contain any number of ruleset definitions or
file rules. When loaded, the contents of the program file are noticed
and enabled. Enabling defines the program file's rulesets, allowing
them to be invoked. Enabling also executes the program file's file
rules.

Actually, when a program file is loaded, only its rulesets without
syntax errors are noticed and enabled. Rulesets that contain syntax

4 errors in anything other than their header are not enabled but are still
noticed. Rulesets that contain syntax errors in their header are not
even noticed and may be fixed only by editing the entire program file.
File rules are collected in a group to be executed after all rulesets in
the file have been enabled and the file closed. If the file contains
any syntax errors, then none of its file rules are executed.

As an illustrated example, consider the following sample session
with the program file, called "integers", which prints a sequence of
integers from 1 to 5. It contains two file rules and one ruleset
definition.

(R)
I ROSIE Version 3.0 (PSL) 26-May-86 P,

<2> Load "integers".

Loading FILE: "integers"...
TO PRINT-NUMBERS

-4

Done loading.

<3> List "integers".

[rule 11 Let the first number be 1.

[rule 2] Let the last number be 5.

To print-numbers:
This rule prints a sequence of numbers. I

[I] For each integer from the first number to the last number,
display that integer.

End.

<4> List 'file: "integers", to print-numbers, 1'.'"%

2.

4,-1

, 44

13. File Package 256 v

This rule prints a sequence of numbers.]
[1] For each integer from the first number to the last number,

display that integer. all

<5> Print-numbers.

2
3
4
5

In the example above, note the rule numbers printed as comments at
the beginning of every file rule and ruleset rule. These comments are
inserted and updated automatically by the file package. They are
displayed along with the rule when examining or editing the rule text.
Individual rules may be cited by number (e.g., statement <4> above
demonstrates the use of a filesegment to examine the text of the first
rule of the ruleset) and, once identified, may be passed as arguments to
any of the file package operations.

Comments that appear in a program file are always associated with
the closest file item after the comment. When such an item is examined
or edited (as in statement <2>), the text of the comments appears with
the text of the item.

A recommended method for organizing large programs is to maintain
three separate program files: one for regular (nonsystem) rulesets,
another for system rulesets, and a third for file rules. Since system
rulesets and file rules are normally simple to debug, this scheme allows
the user to compile these two components of a system early and
concentrate on the task of developing the main body of code.

13.4 EDITING AND MODIFYING PROGRAM FILES 'r

Some file package operations, such as edit, insert, copy, and
move, are used to modify the text of program files. In the past, this p

aspect of the file package often became a bottleneck in the rapid
development of a ROSIE program. In ROSIE 3.0, these processes have been
substantially revised with the goal of improving the speed with which .*

editing tasks can be performed.

In earlier releases of ROSIE, any changes to a program file were
immediately written to disk. This was done to ensure that edits were
not lost. While a fine idea, in practice it restricted program
development considerably by making even the smallest edits excessively
time consuming. In addition, any program text sent to the editor was
unconditionally reparsed, regardless of what changes were actually made
to it. While filesegments allowed users to edit small portions of a
file, files that needed editing in ;everal spots required several calls
to the editor, each one again writing the program file to disk.

13. File Package 258
.-.

'file: "integers", 1'

specifies the first file rule of that file, while

'file: "integers", 1 2'

specifies every file item between the first and second file rules. The %
fi lesegment

'file: "integers", to print-numbers'

identifies the one ruleset, and the filesegment

'file: "integers", to print-numbers, 1'

identifies the first rule of that ruleset.

It is also possible to identify a ruleset without specifying the
program file from which it originated, e.g.,

'to print-numbers'

If there exists an enabled ruleset (noticed or not) with a matching
header, then it is the ruleset identified by the filesegment. If no
such ruleset is enabled, ROSIE searches the list of noticed rulesets.
The filesegment identifies the first of these to match. If this fails,
then the filesegment is considered to be unknown to the file package and
an error occurs.

13.5.1 Rule Sequence Specifiers

As seen above in the BNF for filesegments, file rules and ruleset
rules may be identified by number using a rule sequence specifier--
rule numbers must be positive integers. There are two variations on
rule sequence specifiers.

The simplest form,

<rule spec> ::= <integer> I<integer>J

is a shorthand intended for use at the top-level monitor. It accepts
only integers (as opposed to arbitrary terms) as rule specifiers. When
specified as

.3-

it identifies the third rule, while

14' 4'

identifies the first through the fourth rule, inclusive.

1o:' , Iw F',
P W ' ' , - ," , "4 4 ' ," ' +' ' " ." "." " , ." - 4 " ', " " ' '. '." 4 " ," .' ' " ." .' ' " " " " ," ," ." , ," ," ." ' ', .' ' " . " ' . ", , ' I,, -.S

l.

% % op,

13. File Package 259

The other form,

<rule spec> : BEFORE <term>
AT <term> :.4%

FROM <term> TO <term>
AFTER <term>

permits arbitrary terms (which must evaluate to positive integers) to ,
specify rules. This form offers greater functionality and readability
than the other. When specified as

.,before 4'
-. 4•

it identifies either every file item from the beginning of the program
file up to, but not including, the fourth file rule, or every item of a
ruleset between its header and fourth rule, exclusive. When specified .

as.5. .

, at 3'

it identifies the third rule only;

frorn 3 to 7'

identifies the third through seventh rule, inclusive. Finally,

. after 4'

either identifies every file item immediately after the fourth file
rule, or every ruleset rule between the fourth rule and the end
statement, exclusive.

13.5.2 Shorthand Notation

The examples above illustrate the formal syntax of filesegments.
There is also a convenient shorthand notation that is recognized by all
of the file package operations. While this nhorthand excludes the .*'*,-

specification of rule sequences, it does allow files and rulesets to be
identified simply and easily.

The following are examples of this shorthand for naming elements in
the "integers" program file:

Shorthand Fi lesegment

"integers" file: "integers"'

PRINT-NU9BERS 'file: "integers", to print-numbers'
PRIN7 " e"
NUMBERS
RIN

v..

~ ~ .*.', *,

13. File Package 260

The shorthand string names either a loaded (and noticed) program
file or a program file that exists on disk. If no such program file can
be found an error occurs.

A name element indicates a noticed ruleset. The element is 4.

compared to the name of each noticed ruleset, using the following rules:

* If the element matches the name of one and only one ruleset
exactly, then that ruleset is selected.

* If it exactly matches more than one ruleset, then the user is
queried to choose the correct ruleset.

If the characters in the element exactly match some substring
of the name of one and only one ruleset, then that ruleset is
selected. a'

If it partially matches more than one ruleset, the user is
queried to choose the correct one. ..W

If the name cannot be found to identify a ruleset, then it is coerced
into a lowercase string and treated as the shorthand for a file. If no
such file exists, an error occurs.

13.6 FILE PACKAGE OPERATIONS

In the following operatior.s, a filespec refers to either a
filesegment element or the shorthand notation for a filesegment--only
the contents of noticed program files can be designated in shorthand--
and a file refers to a string element that names a text file.

build a filespec

Creates a new program file for filespec. Build leaves the
file noticed, so the user can immediately begin editing it. The file ,%
must be saved before it appears on disk.

load a filespec "

Loads and notices a program file or a portion of a program file.

If filespec names a program file, e.g.,

load 'file: "myprog'" ,,'.

the entire fi Ie is loaded into the R()SIE1 session. Rulesets def ined in
the file will be defined in ROSIE. If the file cont aiIis no syntax
errors, then its file rules will be executed after its rulesets have

been defined.

"-a- . *

4~" * ~ 5* * ~ ' .'., . .

, J.. ,!

13. File Package 261

If the .cmp file exists and if the write date of the .cmp file

is more recent than that of the .map file, the compiled version of

the program file will be loaded. %

If filespec names a sequence of file rules or a ruleset from a file,
e.g.,

load 'file: "myprog", to move a ship from a port'

then the entire program file is noticed, but only the specified
portion of the file is enabled.

NOTE: When a portion of a program file is specified, it will always
come from the .map file and never from the .cmp file. 'e.

sysload a filespec

Same as load, but the file is not noticed and so cannot be listed
or edited. Sysloaded files require less memory.

Program files that are not going to be edited or examined should be
sysloaded--for example, the system ruleset library is sysloaded.
Noticing a file requires a large amount of space, and too many large
noticed files will significantly impair system performance. ..- ,

Unlike earlier releases, in ROSIE 3.0 sysloaded rulesets may be
broken, traced, and disabled (although not re-enabled).

notice a filespec • .

Notices the contents of a program file without enabling the file's
rulesets or executing its file rules. Rulesets can later be defined 7-,

and file rules executed with the enable procedure, i.e., the ' "
load procedure is essentially a notice followed by an enable.

enable a filespec

Enables the given filesegment. If this is a program file, defines
its rulesets and executes its file rules. If a ruleset, simply
defines that ruleset. If the filesegment is not already noticed,
attempts to load the appropriate program file.

compile a filespec ."

Compiles a program file, storing the binary code in a .cmp file.

If the file is not already noticed, it will be noticed automatically.

F.

'* '
" 5-'5

iI

13. File Package 262 .

After compilation, the .cmp file will be loaded.

A program file can be compiled even if portions of it contain syntax

errors. A ruleset must be free of syntax errors before it can be

compiled. N

If filespec specifies a ruleset, then only that ruleset will

be compiled. The resulting binary will not be sent to disk, but it

will replace the ruleset's definition in core.
a.1

change a filespec to a filespec 4..

Renames the program file designated by the first filespec to the

program file named by the second. This is the only safe way to

rename a program file.

%.

parse a file

Converts file (assumed to be a text file containing the source

code to a ROSIE program) into a program file. The new program file
is automatically loaded.

list a filespec

Displays the text associated with filespec to the terminal.

scan a filespec '

Summarizes the contents and status of filespec, which indicate syntax .- ,

errors and other relevant information, e.g.,

<6> Scan "integers".

'FILE: "integers"' ontains:

(Rules 1 and 2]
TO PRINT-NUMBERS [1 rule]

deparse a filespec

Lists ROSIE's interpretation of filespec by "deparsing" its

associated HILEV code. ,,. ,

The deparser is essentially a text generator, i.e., given a piece of

HILEV code, it produces the ROSIE source code equivalent. This %
machine-generated source code illustrates how terms and clauses were

interpreted with proper indentation and by going to the extreme in

N... A..

13. File Package 263

its use of parentheses as delimiters, e.g.,

<7> Deparse "integers".

[Rule 11 LET THE FIRST NUMBER BE 1. -

[Rule 2] LET THE LAST NUMBER BE 5.

TO PRINT-NUMBERS:
-p

[1] FOR EACH INTEGER (FROM THE FIRST NUMBER) (TO THE
LAST NUMBER), . .'

DISPLAY THAT INTEGER.

END.

This operation can be essential to understanding and debugging complex
ROSIE expressions.

decode a filespec

Lists the HILEV code associated with filespec.

erase a filespec

Removes filespec from its program file. Erasing an entire program ..e."-
file does not delete the .txt and .map files, but merely nulls out
their contents. In ROSIE 3.0, erase no longer asks for confirmation
from the user before making the change.

NOTE: Erasing an enabled ruleset does not disable the ruleset. For
this, one must use the disable procedure. '-

copy a filespec before a filespec
copy a filespec after a filespec

Copies (splices) the first filespec before or after the second.

move a filespec before a filespec
move a filespec after a filespec

Equivalent to a copy followed by an erase of the first filespec. .V.

NOTE: Some intuitive restrictions are placed on the movements of
particular types of filesegments. For instance, although it is
permissible to copy the rules of one ruleset into another ruleset, one

may not copy an entire ruleset into another.

I% %

- '.4

-~ *' 9/~$4*~'~.~ X.* . ~,--.7~.'j. ~ ~ .*.-**i'-**::. .:.*. *:

W§V M4 MK,

13. File Package 264

edit a filespec

Invokes the user's text editor (see below) to edit the text of
filespec. The edited filesegment is then parsed and loaded,.z
replacing the original. ROSIE allows users to edit entire program
files, sequences of file rules, rulesets, or sequences of ruleset
rules (i.e., any filesegment).

insert before a filespec
insert after a filespec

Invokes the user's text editor, allowing the user to compose code
that should be inserted before or after filespec.

NOTE: The "user's editor" is taken from the lisp variable
$ROSIEEDITOR, which will be bound from the environment variable
EDITOR if possible or to "edit" if not. The user may specify a text
editor of preference by setting the EDITOR environment variable at the
OS level or by setting the $ROSIEEDITOR lisp variable in the .rosierc
file, e.g.,

(SETQ $ROSIEEDITOR "emacs")

NOTE: The erase, copy, move, edit, and insert operations do not
automatically write program file changes to disk. This must be done
explicitly using the save operation. -

save [a filespec] N

Updates the .txt and .map files of filespec on disk to reflect
changes made during a ROSIE session.

If filespec is not given, ROSIE appraises the user of all program
files that have beer modified and need to be saved, giving the user
the option of saving each in turn.

NOTE: Save is called by 'ogout.
w- V

disable a filespec

The inverse of the enable procedure. If filespec names a progrim
file, disable undefines all rulesets of that file; if a rulese-,-
disables only that ruleset.

NOTE: A ruleset need not be noticed to be disabled, but it may not
be re-enabled without being noticed.

' N,

0,,
'p.,

13. File Package 265

unnotice a filespec

The inverse of the notice procedure. If filespec names a program
file, unnotice causes the file package to forget about everything
in that file (this is not equivalent to erase); if a ruleset,
causes the file package to forget about just that ruleset.

unload a filespec

The inverse of load; a disable followed by an unnotice.

find a string in a filespec "'

Lists the component filesegments in filespec in whose text appears
string. Upper- and lowercase characters are treated equivalently.

When an instance of string is found, lists the filesegment in which
it appears as well as the first line that references string, e.g.,

<8> find "number" in "integers".

Searching 'FILE: "integers "'.
'FILE: "integers", AT 1'

"Let the first number be l."

'FILE: "integers", AT 2'

"Let the last number be 5."

'TO PRINT-NUMBERS'
"To print-numbers:"

'TO PRINT-NUMBERS, AT 1'
"For each integer from the first number to the last number,"

Done searching.

. ...

5""

o .. , : .. ,. :..... , . , ,...../ . ., ; .. -..... p

14. Break Package: Debugging 267
J. .1'

XIV. THE BREAK PACKAGE: DEBUGGING PROGRAMS

The break package is a facility for monitoring and debugging
programs. It is primarily intended for use with rulesets and ruleset %
rules, but it can be used to monitor other aspects of a program as well.
It includes features that allow a user to resume from recoverable
errors, to monitor control flow, to interrupt and examine ruleset
invocations as well as the results they generate, and to profile the
effective computation time of various aspects of a ROSIE program. '

The three components of the break package, the trace, break, and
profile facilities, allow the user to temporarily modify or break
selected ruleset or demon definitions (even if the selected rulesets or
demons are not defined) and access different features of the break
package.

14.1 BREAKABLE ASPECTS OF A PROGRAM

Any aspect of a program that is capable of invoking a ruleset or
demon is breakable, even if no such ruleset or demon exists. Thus, it
is possible to break database actions, such as assertions, denials, and
tests of a proposition, and generation from a class, in addition to
calls on defined rulesets and demons.

To trace assertions of a particular proposition, one would break
the assert demon for that proposition, e.g.,

Trace 'before asserting a man does love a woman'.

Similarly, to trace the values produced for some class, one would break
the produce demon for that class, e.g.,

Trace 'before producing a target at an airfield'.

Both actions break the demons that would normally be invoked before the ,.>
occurrence of the particular assert or produce event. If these demons r.
are not defined, then a dummy (no-op) definition will be enabled and
broken.

It is likewise possible to break undefined rulesets. When a break
throws control into the interactive break loop, monitor-level commands
are executed in the context of the ruleset invocation (i.e., as though
they are actually rules of the ruleset). Thus, breaking undefined
rulesets allows the user to play the part of the ruleset definition.
This offers an appealing aid to program development where the user is
uncertain of how particular rulesets should behave and wishes to .
experiment. If an undefined ruleset that is broken becomes defined, the
dummy definition is replaced by the new definition, however the ruleset
remains broken. Rulesets may be unbroken only by explicit command.

,? A,,,

:~

pwong
Text Box
preceding page blank - not filmed

14. Break Package: Debugging 268

Within defined rulesets and demons (except system rulesets), it is
also possible to break the execution of individual rule. For instance,

Break 'to move a ship to a destination, 3'.

will cause control to enter a break loop prior to executing the third
rule of the move to procedural ruleset. Note however that redefining
the ruleset (e.g., after an edit) will remove the break.

Finally, when the ruleset being broken is either a generator N.

ruleset or a generate demon, the produce demon for its class is also
broken automatically, since the values being produced are only visible
from the produce demon. When either the generator ruleset or generate
demon are unbroken, the produce demon will be unbroken as well.

14.2 THE TRACE FACILITY

The trace facility modifies the definition of a ruleset to display
a message whenever control passes in or out of the ruleset. Upon
invoking a traced ruleset, a message is printed stating the trace depth
and the title of the broken ruleset, with formal parameters replaced by
the values of actual parameters. When exited, another message is
printed stating that control is returning from the ruleset. Results, if
any, are displayed at this time as well.

The results of a ruleset are dependent upon the ruleset's type.
Procedural and generator rulesets never return a value. Predicates can
return a conclusion of true or false or make no conclusion at all.
Demons can either continue the interrupted event or not. Tracing a
ruleset rule has the same effect as described above, with the additional
effect of displaying a message prior to executing the rule.

The following example illustrates a trace of a demo program called

players".

<13> List "Players".

To find basketball players:
[11 Send "(Every man who is tall) is a basketball player.{cr}".
End.

To decide if a person is tall:

[1] If the person's height is greater than 6.7 feet,
conclude true, otherwise conclude false.

End.

'The values produced by a generator are bound to its description
variable and not explicitly returned.

.% A

4

14. Break Package: Debugging 269

To generate a man:
Ill Produce each of Jim, Jack and John.
End.

To generate the height of a person:
[11 Select the person:

<Jim> produce 6.4 feet;
<Jack> produce 6.9 feet;
<John> produce 5.8 feet.

End.

<14> Trace "players".

Breaking 'FILE: "players"' ..
TO FIND BASKETBALL PLAYERS -- broken.
TO DECIDE IF A PERSON IS TALL -- broken.
TO GENERATE A MAN -- broken. r
BEFORE PRODUCING A MAN -- broken. %r

TO GENERATE THE HEIGHT OF A PERSON -- broken.
BEFORE PRODUCING A HEIGHT OF A PERSON -- broken.
Done breaking.

<15> Find basketball players.

1: TO FIND BASKETBALL PLAYERS
2: GENERATING A MAN
2: Producing JIM
3: TESTING IF JIM IS TALL
4: GENERATING A HEIGHT OF JIM
4: Producing 6.4 FEET

3: Concluding FALSE from:
TESTING IF JIM IS TALL

2: Producing JACK
3: TESTING IF JACK IS TALL
4: GENERATING A HEIGHT OF JACK
4: Producing 6.9 FEET

3: Concluding TRUE from:
TESTING IF JACK IS TALL

JACK is a basketball player.
2: Producing JOHN -v
3: TESTING IF JOHN IS TALL 0
4: GENERATING A HEIGHT OF JOHN
4: Producing 5.8 FEET

3: Concluding FALSE from:
TESTING IF JOHN IS TALL

1: Returning from:
TO FIND BASKETBALL PLAYERS

<16> Untrace "players". %

Unbreaking 'FILE: "players"'....
TO FIND BASKETBALL PLAYERS-- redefined.

,N.--V

14. Break Package: Debugging 270

TO DECIDE IF A PERSON IS TALL -- redefined.
BEFORE PRODUCING A MAN -- disabled. C
TO GENERATE A MAN -- redefined.
BEFORE PRODUCING A HEIGHT OF A PERSON -- disabled.
TO GENERATE THE HEIGHT OF A PERSON -- redefined.
Done unbreaking. %

Note above that tracing a generator also traces its associated
produce demon, e.g., as in the case of the generators for man and -,

height. A result of this can be observed in the generation of each man
at level 2 of the trace. The first comment at level 2 comes from the
generator, stating simply that it is beginning to generate from the
class of man. All other comments at level 2 come from the associated %
produce demon, stating the elements that are being produced for this
class.

14.3 THE BREAK FACILITY

The break facility modifies a ruleset definition to halt the .1
invocation of that ruleset temporarily and pass control to an ". |I
interactive monitor called a break loop. Commands at the break loop
level are executed within the context of the ruleset invocation. From
within a break loop, the user can examine and change the private
database of the broken invocation, or move down the stack of ruleset
invocations, examining and changing the private databases at other
levels.

When the broken ruleset is a generator, two levels of break occur;
the first as the ruleset is invoked and the second whenever the ruleset
attempts to produce an element. This gives the user the ability to
examine and modify each element produced.

14.3.1 Break Commands "'a.--.'

Control can enter a break loop when either a broken ruleset is
invoked or when a continuable runtime error occurs (see Chapter 12).
Within a break lcop, the user can interrogate the system, perform normal
computations, examine the context of the invocation, and continue or
return from the ruleset. Additionally, the break loop gives the user
access to a number of special break commands.

4 1~

The break commands cannot be invoked in conjunction with other
actions. They must appear as singleton commands to the monitor. All
break actions end with an exclamation point (!); this punctuation is
used to avoid confusion with procedures of the same name.

The break commands are available from within a break loop:

a

. ", " :'', "-" ""-" ".- "..

14. Break Package: Debugging 271

eval!

Resumes computation without releasing control of the broken ruleset
or rule. Once the computation is completed, control is returned to
the break monitor, where the user can examine the results of the
computation or its effect on the system state. When the break is
finally released, computation of the broken ruleset or rule will not
be unnecessarily repeated.

NOTE: This command is not operational when the break loop was entered
due to a runtime error.

result!

Displays the results (if any) from the evaluation of the broken ruleset
or rule. 1i

list [(j ruleset I <integer> 1)]!

Calls the file package operation list on the broken ruleset or
ruleset rule. If no argument is given, calls list on the broken
filesegment. If the ruleset option is given, calls list on the
entire ruleset. If the <integer> option is given, calls list on z
that rule of the broken ruleset.

edit [(I ruleset I <integer> I)]!

Like list, except that it applies the file package operation edit
to the designated filesegment.

resume [(I ruleset I <integer> I)]!

Releases the break and allows computation of the broken ruleset or rule
to resume. If this computation was previously made via the eval
command, then the evaluation of the ruleset is not repeated.

The ruleset and <integer> options are operational only if the break

V loop was entered by a runtime error. In such cases, these options
allow you to restart the ruleset invocation or resume computations
from any rule in the ruleset. If no argument is given, resumes
computation from the rule that triggered the error.

return!

Releases the break, throwing control out of the ruleset invocation
without allowing computation of the broken ruleset to continue.

:a
° ' " ""'# " • " ",e ,' " "J' "" '-° " % % . % i" - " ". ',' ''. '- .' "- " .b-" J, - ' '. %" -"'-" " "" "" "" '" '.'" 5

14. Break Package: Debugging 272

v#.

conclude true!
conclude false!

Releases the break, concluding true or false without resuming .
computation of the broken ruleset. -

NOTE: May be used only within a broken predicate ruleset.

produce an element!

If called from within a generator ruleset, attempts to produce
element, possibly invoking a produce demon. If called from
within a produce demon, actually replaces the element currently
being produced with element.

The difference between the two cases is subtle but distinct. In the
first case, element is produced as the one and only element
generated by the ruleset. In the second, it is produced as just one
of the elements generated. In either case, the break is released
without computation of the broken ruleset being resumed.

NOTE: May be used only within a generator ruleset or a produce demon.

trace! "

Displays a backtrace of suspended ruleset invocations.

Each invocation is depicted using the ruleset's header followed by the
number of the rule currently being invoked. A star (*) is placed to .- ,
the left of the current (i.e., examinable) ruleset frame.

The current frame at the time of the break is a frame of the broken
ruleset. This is also the frame at the top of the stack. The frame _
at the very bottom (which is not accessible) is the frame for the
top-level monitor.

down!

Changes the current frame to the next frame down on the frame stack,
and thus allows the examination of the calling ruleset's private
database.

up! ,*.*

Changes the current frame to be the next higher frame on the frame stack.

%"

I. .-
'7

14. Break Package: Debugging 273

top!

Sets the current frame to its original value (i.e., the frame of the
broken ruleset).

bottom!

Sets the current frame to be the frame for the ruleset invocation
at the bottom of the stack (i.e., the frame of the initial ruleset
invocation).

quit!

Throws control back to the last break point. That is to say, if the
user is nested several layers deep in break monitors, control can be
returned to earlier layers successively. %

pop!

Throws control back to the ruleset invocation that called the
currently broken ruleset. That is, if ruleset X invoked ruleset Y ...

and a break was called from ruleset Y, pop! would forget
about the invocation of Y and make it appear as though the break
was called from the invocation of X. This command provides a means
resuming computation from any point on the frame stack.

help!

Displays a short synopsis of the break actions.

In addition to these, the following operations can also be useful from
within a break: .,,

private?

Displays the contents of the private database in the current frame.

produce an element.

When used within a generator ruleset, attempts to produce element
without releasing the break afterwards.

quit.

Aborts computation, throwing control back to the top-level monitor.

14. Break Package: Debugging 274

14.3.2 Example Session

In the following example of break loop interactions, the test
rulesets are taken from the "players" program seen earlier.

<18> Break each of tall and height.

Breaking 'FILE: "players"'...
TO DECIDE IF A PERSON IS TALL -- broken.

Done breaking.'%

Breaking 'FILE: "players"'...
TO GENERATE THE HEIGHT OF A PERSON -- broken.
BEFORE PRODUCING A HEIGHT OF A PERSON -- broken.
Done breaking.

<19> Find basketball players. j-.',

Broken at:
'TO DECIDE IF A PERSON IS TALL'.

[ll Private?
PRIVATE Database "

JlI IS A PERSON.

At this point, control has just entered the break loop. The first thing
we do is check the broken ruleset's private database to see how the
predicate is being applied.

[21 List!

> [1] If the person's height is greater than 6.7 feet,
> conclude true, otherwise conclude false.

131 List ruleset!

> To decide if a person is tall:

> [I] If the person's height is greater than 6.7 feet,
> conclude true, otherwise conclude false.

> End.

In line [2], we examine the break point; not surprisingly, this is the
first rule. In line [31 we examine The entire ruleset.

2Note that some output is offset by angle brackets (>). This
convention is used here to avoid confusion with type-in and will not
appear in an actual ROSIE session.

N N % %

s'--..

14. Break Package: Debugging 275

[41 Eval!

Broken at:
'TO GENERATE THE HEIGHT OF A PERSON'.

[1] private? _
PRIVATE Database] V t

JIM IS A PERSON.

[2] List!

> (11 Select the person:
> <Jim> produce 6.4 feet;
> <Jack> produce 6.9 feet;
> <John> produce 5.8 feet.

(31 Resume!

The eval! command in line [4) allows computation to resume without
releasing control of the break. Control then enters another level of
break when the broken height generator is invoked. In line [] and [2],
we examine the private database and the break point, respectively. The
resume! command in line [3) allows computation to continue and releases
the control of the break.

Broken at:
'BEFORE PRODUCING A HEIGHT OF A PERSON'.

Tentatively producing:

6.4 FEET

[1] private?
PRIVATE Database

JIM IS A PERSON.
6.4 FEET IS A HEIGHT.

Control is again thrown into a break loop when the broken produce demon
associated with the height generator is invoked. Notice that when we
examine the private database of this ruleset we find an extra assertion;
this is the value being produced.

[3] Resume!
Continuing from:

'BEFORE PRODUCING A HEIGHT OF A PERSON'
Returning from:

'TO GENERATE THE HEIGHT OF A PERSON'
Evaluated.
[51 Result!
Concluding FALSE.

• , ,V . -

.-:.-V*

14. Break Package: Debugging 276

When we resume computations, control returns to the top-most break loop,
where we can examine the results of the computation. Now, say we don't
like these results. We could do the following.

[6] Eval!

Broken at: e
'TO GENERATE THE HEIGHT OF A PERSON'.

[1] Resume!

Broken at:
'BEFORE PRODUCING A HEIGHT OF A PERSON'.

Tentatively producing:
b.4 FEET

(I1 Produce 6.8 feet!
Producing 6.8 FEET for:

'BEFORE PRODUCING A HEIGHT OF A PERSON'
Returning from:

'TO GENERATE THE HEIGHT OF A PERSON'
Evaluated.
[7] Result!
Concluding TRUE.
[8] Resume!
Concluding TRUE for: 0

'TO DECIDE IF A PERSON IS TALL'
JIM is a basketball player.

At line [], we reevaluated the computation, continuing as before. At
line [11 of the produce demon break loop, however, instead of allowing
the tentative value to be produced, we instead produce a different
value. This value passes the test for tallness, causing the predicate
to succeed. We now release the break, and the find procedure outputs a
message about a candidate basketball player.

Broken at:
'TO DECIDE IF A PERSON IS TALL'.

[1] Private?
PRIVATE Database J .. .

JACK IS A PERSON.

[2] Resume!

Broken at:
'TO GENERATE THE HEIGHT OF A PERSON'.

[1] Resume!

% - T

-U' ~ *.~. ., , ~ * * * * * * , ~ - -

14. Break Package: Debugging 277

Broken at:
'BEFORE PRODUCING A HEIGHT OF A PERSON'.

Tentatively producing:
6.9 FEET %

Control enters a break loop again on Jack. Here we continued
computations up to the produce demon.

[1] Trace!
BEFORE PRODUCING A HEIGHT OF A PERSON"-.
TO GENERATE THE HEIGHT OF A PERSON [rule 1]
TO DECIDE IF A PERSON IS TALL [rule 1]
TO GENERATE A MAN [rule 1]
TO FIND BASKETBALL PLAYERS [rule 1]
[Top-level Monitor]

(2] Down!
TO GENERATE THE HEIGHT OF A PERSON

[31 Down!
* TO DECIDE IF A PERSON IS TALL
[4] Down!
TO GENERATE A MAN

[51 Trace!
BEFORE PRODUCING A HEIGHT OF A PERSON
TO GENERATE THE HEIGHT OF A PERSON [rule 1]
TO DECIDE IF A PERSON IS TALL [rule 1]
TO GENERATE A MAN [rule 11
TO FIND BASKETBALL PLAYERS [rule 1]
[Top-level Monitor]

[6] private? -K

PRIVATE Database

[71 List ruleset!

> To generate a man:

> [1) Produce each of Jim, Jack and John.

> End.

[8) Top!
:': BEFORE PRODUCING A HEIGHT OF A PERSON
[10] Pop!

Broken at:
'TO GENERATE THE HEIGHT OF A PERSON' .. ' %e

[21 Pop!

A..%'-

14. Break Package: Debugging 279

TO GENERATE A MAN -- broken.
TO GENERATE THE HEIGHT OF A PERSON -- broken.
Done breaking.

<22> find basketball players.
JACK is a basketball player.
<23> profile report.

Timing results for:

[1) TO FIND BASKETBALL PLAYERS
[2] TO DECIDE IF A PERSON IS TALL
131 TO GENERATE A MAN
[41 TO GENERATE THE HEIGHT OF A PERSON

Ruleset Total Number Time per Percent of
Time (sec) of Calls Call (sec) Total Time

[1] FIND 0.017 1 0.017 5
[2] TALL 0.102 3 0.034 33 %O

[3] MAN 0.102 1 0.101 33
[4] HEIGHT 0.085 3 0.028 27

I Totals: 0.306 8 0.038

When nesting of profiled rulesets occurs, time is charged only to %

the innermost invocation. Further, the timing statistics are cumulative
until reset by profile reset.

%

14.5 RESTORING BROKEN RULESETS

The unbreak and untrace procedures restore broken rulesets to
their original state. If a ruleset was edited while broken, the edits
are not lost when the ruleset is unbroken.

Unbreak and untrace actually do exactly the same thing; both
procedures are provided for historical reasons. These procedures are
used to restore any ruleset broken by either the break, trace, or
profile facilities.

14.6 BREAK PACKAGE OPERATIONS

In the following operations, a filespec is a reference to a -

filesegment using either the formal or shorthand notation.

NOTE: To break, trace, or profile a ruleset, the ruleset need not be
noticed nor even exist. If undefined, a dummy definition is supplied.
To break, trace, or profile individual rules within a ruleset, the
ruleset must be noticed.

A .A.

14. Break Package: Debugging 280

break [a filespec]

If given no argument, breaks all noticed program files. If applied
to a program file, redefines all rulesets of that file so that their
invocation causes control to enter a break. If applied to a ruleset,
redefines just that ruleset to throw control into a break loop when
invoked.

If applied to a generator ruleset, also breaks the produced demon of
the same name. This allows the user to examine each element before
it is actually produced.

If applied to a rule or sequence of rules within a ruleset, redefines
the ruleset such that a message is printed when the ruleset is
entered and control is passed to a break loop before each broken
rule is executed.

trace [a filespec]

Similar to break, with the exception that, rather than entering
a break loop, rulesets within filespec are redefined to print
messages prior to and following invocation. Trace messages designate
the calling level, the calling form, and ti- 'alue being returned.

profile [a filespec] VU

Like break and trace, this procedure redefines the rulesets within
,

filespec. Profiling keeps track of the frequency and execution
time of selected filesegments. Performance information is collected
incrementally. Re-profiling a ruleset resets the profile information
associated with it.

profile report

Displays the profiling information collected so far.

profile reset

Reinitializes all profiling information.

unbreak [a filespec]
untrace [a filespec]

Restores all broken rulesets (i.e., redefined by break, trace, or '
profile) within filespec. If no filespec is given, unbreaks
all broken rulesets. Unbreaking a profiled ruleset causes all

,%
"- .""-

14. Break Package: Debugging 281

profiling information on that ruleset to vanish.

NOTE: It is not possible to unbreak a single rule in a ruleset
without unbreaking the entire ruleset.

41.

% ,

A%

:..

"'V .

SI

...-..

, ,, .. , y. . .,.,f ,,,,. , .' ',,W'-',C ,,..., ,"..',? "?'?."-"'' ,.-. > ,. ., .,.....

A. Example Programs 283

APPENDIX A:
EXAMPLE PROGRAMS

Examples provide a good introduction to ROSIE. The following
annotated ROSIE systems serve to illustrate several of the concepts
discussed in the manual. Because ROSIE is unlike any other high-level
language, it requires some practice before the user begins to approach
problems in a "ROSIE-compatible" manner. Examining example systems is
the first step in learning how to program in ROSIE in an intelligible
and effective manner.

The first example system, FORTUNE, demonstrates a simple
application of ROSIE that exercises many of its basic data manipulation
capabilities. The second example, POIROT, demonstrates the use of
alternate databases as a method for describing distinct belief spaces.
The third example, ANIMAL, shows how to build a control structure on top
of ROSIE. The first two examples were adapted for ROSIE 3.0 from an
earlier ROSIE document entitled "Programming in ROSIE: An Introduction
by Means of Examples," (Fain et al., 1982); readers interested in seeing
other (though outdated) examples of ROSIE programming techniques are
referred to this document.

NOTE: These and other ROSIE demo programs are provided with the standard
ROSIE distribution and should be on-line at your installation. See your
site consultant for information on how they can be accessed.

I

.1g
Cs.

5% .

, . - . - "p . , . . . o .. j%, -. , - -. %'% ".%- -% ,% %.- '.% % ,%' " "% '. .'.

pwong
Text Box
preceding page blank - not filmed

A. Example Programs: FORTUNE 285

FORTUNE -- THE BASICS

The FORTUNE demo system performs a mock portfolio analysis.
FORTUNE was written several years ago to demonstrate ROSIE's
capabilities to the editors of Fortune magazine.

Developing a knowledge-based system for any task requires
designating the pertinent information needed and determining how it
should be used. In ROSIE, this often means deciding what should go into
the database and what should be encapsulated, procedurally, into
rulesets.

For the task of FORTUNE, the problem statement was given as shown
below:

Renewable energy, electronics, and optics are high-technology .
areas of investment, and genetic engineering is a high-technology
area of investment that is speculative. Communications,
photography, automotive, and machine tools are conservative
areas of investment, and petroleum is an area of investment
that affords rapid write-off but is a little risky. Petroleum
and renewable energy are current topics of legislation.

John Doe owns an investment portfolio that includes renewable
energy, petroleum, automotive, and communications, and Mary Jones
owns an investment portfolio that includes renewable energy,
genetic engineering, and optics. John Doe and Mary Jones are
investors. John Doe's line of credit is $20,000 and Mary Jones'
is $10,000.

Any area of investment is a stock and any stock that is a
current topic of legislation is volatile. Investors who hold
high-technology stock are generally interested in productivity,
and investors who hold speculative stock will be interested in
robotics and artificial intelligence.

ROSIE is an innovation in both productivity and artificial .
intelligence, which are technology areas.

For each investor, we want to be able to list the holdings for
that investor, giving such related information as the investor's "k
name, and a title such as "Current holdings" and marking as
"VOLATILE" all volatile stocks held by the investor.

We want to do a profile of Mary Jones. This means listing any
speculative stocks she holds with an appropriate title. If she
holds no speculative stocks, an appropriate message should be
given. .l

We should send a separate technology-area bulletin to every
investor interested in that area announcing each technology

dy,

pwong
Text Box
preceding page blank - not filmed

A. Example Programs: FORTUNE 286

innovation in that area. One bulletin per innovation, please.
If the same innovation relates to multiple areas, send multiple
bulletins with appropriately differing titles.

Finally, we want to try to find a customer for ROSIE. This
investor must be interested in productivity and artificial
intelligence. ffe or she must have a line of credit exceeding
$1,000. If a customer is found, record the reasons for.selecting
him or her as a ROSIE prospect. Display the customer and the
reasons.

The problem definition clearly separates the static from the
procedural. We encode the static information by adding facts to the
database. In the rules seen below, note the close correspondence
between the text and its codification in ROSIE.

[FORTUNE DATA]

[rule 11 Assert any high-technology area of investment is an area of
investment that does involve high technology.

[rule 21 Assert any speculative area of investment is an area of
investment that is speculative.

[rule 3] Assert any conservative area of investment is an area of
investment that is conservative.

[rule 4] Assert each of renewable energy, electronics and optics
is a high-technology area of investment and

genetic engineering is a high-technology area of
investment that is speculative.

[rule 5] Assert each of communications, photography, automotive and
machine tools is a conservative area of
investment and

petroleum is an area of investment that does afford
rapid write-off and that is a little risky.

[rule 6] Assert each of petroleum and renewable energy is a current
topic of legislation. 4.

[rule 7] Assert each of John Doe and Mary Jones is an investor.

[rule 8] Assert John Doe does own an investment portfolio that does
include each of renewable energy, petroleum,
automotive and communications and

Mary Jones does own an investment portfolio that
does include each of renewable energy, genetic
engineering and optics. %A*

[rule 9] Let John Doe's line-of-credit be $ 20000 and

%'-.

IL1

A. Example Programs: FORTUNE 287

Mary Jones's line-of-credit be $ 10000.

[rule 101 Assert any area of investment is a stock and any stock that
is a current topic of legislation is volatile.

[rule 11] Assert any stock that does involve high technology is
a high-technology stock.

[rule 12] Assert any stock that is speculative is a speculative stock.

[rule 13] Assert any stock that is conservative is a conservative stock.

[rule 14] Assert every investor who is a holder of some high-technology
stock will be interested in productivity and

every investor who is a holder of some speculative
stock will be interested in each of robotics and
artificial intelligence.

[rule 15] Assert ROSIE is an innovation in each of productivity and
artificial intelligence and

each of productivity and artificial intelligence
is a technology area.

Rules 1, 2, and 3 make use of class elements (introduced by any)
to define general attributes of the three areas of investment mentioned
in the problem statement. Note that in earlier releases of ROSIE,
similar attributes would have been generated automatically, e.g.,
anything that was a speculative area of investment would also be
speculative. Unfortunately, that feature also made deductions that were
not exactly accurate, such as anything that is a high-technology area
of investment is also high-technology (used as an adjective attribute).
Thus, in ROSIE 3.0 the attributes of a class must be stated explicitly
as they are here.

Rules 4, 5, and 6 encapsulate the first paragraph of the problem
statement. Notice the use of the each of iterator to establish
identical is-a relations for a number of elements. While each of these *

assertions could have been made separately with the same end result, the
use of each of makes them more compact and easy to read, i.e., more like
English and less like a programming language. Note also that in the
rules above, indenting helps to clarify the extent of each assertion.

Rule 7 establishes the relation is an investor for John Doe and
Mary Jones. This will implicitly provide a link between those rules
that apply to investors in general and the information stored for each
of the individuals.

Rules 8 and 9 correspond to the second paragraph of the problem
statement. The let action in rule 9 establishes $ 20000 uniquely as the
line-of-credit of John Doe and $ 10000 as the line-of-credit of Mary
Jones. Note that <term>'s <description> expands into <description> of

I. *

A. Example Programs: FORTUNE 288

<term>, attaching an additional prepositional phrase to description.
Note also the necessity to hyphenate line-of-credit. If there were no
hyphenation, e.g., John Doe's line of credit, then line would have two
prepositional phrases attached, i.e., of credit and of John Doe; since
both use the same preposition, the parser would call a syntax error.
Hyphens make line-of-credit all one word, circumventing the parsers
recognition of the preposition of.

Rules 10 through 13 again use class elements to make a link between
the class stock and the class area of investment. ROSIE uses such links
for deductive information retrieval. For instance, to get a high-
technology stock, ROSIE sees that this could be any stock which does
involve high technology. Then ROSIE finds that any area of investment
is a stock, any high-technology area of investment is an area of
investment, and renewable energy is a high-technology area of
investment. Since any high-technology area of investment does involve -
high technology, renewable energy can be deduced as a high-technology
stock.

Rule 14 could likewise have been expressed using class elements.
Instead, a quantified descriptive term (introduced by every) was used,
resulting in instance-specific rather than class-specific relations to
appear in the database. The use of every tells us that the programmer
does not anticipate any more investors being added to the database.
Since every creates an explicit rather than implicit link to the
members of a class at the time of evaluation, it would be more
appropriate to use class elements when all members of a class are not
known a priori.

Finally, rule 15 turns that fourth paragraph of the problem
statement into ROSIE-compatible form.

The database resulting from the execution of rules 1 through 15
would have the following appearance:

[GLOBAL Database]
ANY STOCK WHICH IS A CURRENT TOPIC OF LEGISLATION IS VOLATILE.
ANY CONSERVATIVE AREA OF INVESTMENT IS CONSERVATIVE.
GENETIC ENGINEERING IS SPECULATIVE.
ANY SPECULATIVE AREA OF INVESTMENT IS SPECULATIVE.
MARY JONES WILL BE INTERESTED IN ARTIFICIAL INTELLIGENCE.
MARY JONES WILL BE INTERESTED IN ROBOTICS.
JOHN DOE WILL BE INTERESTED IN PRODUCTIVITY. %
MARY JONES WILL BE INTERESTED IN PRODUCTIVITY.
MARY JONES DOES OWN PORTFOLIO #2.
JOHN DOE DOES OWN PORTFOLIO #1.
PORTFOLIO #2 DOES INCLUDE OPTICS. %
PORTFOLIO #2 DOES INCLUDE GENETIC ENGINEERING.
PORTFOLIO #2 DOES INCLUDE RENEWABLE ENERGY.
PORTFOLIO #I1 DOES INCLUDE COMMUNICATIONS.
PORTFOLIO #1. DOES INCLUDE AUTOMOTIVE.
PORTFOLIO #1 DOES INCLUDE PETROLEUM.

A,..?

'o"%,,

A. Example Programs: FORTUNE 289

PORTFOLIO #1 DOES INCLUDE RENEWABLE ENERGY.
PETROLEUM DOES AFFORD RAPID WRITE-OFF.
ANY HIGH-TECHNOLOGY AREA OF INVESTMENT DOES INVOLVE HIGH TECHNOLOGY.
ARTIFICIAL INTELLIGENCE IS A TECHNOLOGY AREA.
PRODUCTIVITY IS A TECHNOLOGY AREA.
ROSIE IS AN INNOVATION IN ARTIFICIAL INTELLIGENCE.
ROSIE IS AN INNOVATION IN PRODUCTIVITY.
ANY STOCK WHICH IS CONSERVATIVE IS A CONSERVATIVE STOCK.
ANY STOCK WHICH IS SPECULATIVE IS A SPECULATIVE STOCK.
ANY STOCK WHICH DOES INVOLVE HIGH TECHNOLOGY IS A
HIGH-TECHNOLOGY STOCK.
ANY AREA OF INVESTMENT IS A STOCK.
$ 15000 IS A LNE-OF-CREDIT OF MARY JONES.
$ 20000 IS A L,.NE-OF-CREDIT OF JOHN DOE.
PORTFOLIO 02 IS AN INVESTMENT PORTFOLIO.
PORTFOLIO lI IS AN INVESTMENT PORTFOLIO.
MARY JONES IS AN INVESTOR.
JOHN DOE IS AN INVESTOR.
RENEWABLE ENERGY IS A CURRENT TOPIC OF LEGISLATION.
PETROLEUM IS A CURRENT TOPIC OF LEGISLATION.
PETROLEUM IS A LI7LE RISKY.
MACHINE TOOLS IS A CONSERVATIVE AREA OF INVESTMENT.
AUTOMOTIVE IS A CONSERVATIVE AREA OF INVESTMENT.
PHOTOGRAPHY IS A CONSERVATIVE AREA OF INVESTMENT.
COMMUNICATIONS IS A CONSERVATIVE AREA OF INVESTMENT.
GENETIC ENGINEERING IS A HIGH-TECHNOLOGY AREA OF INVESTMENT.
OPTICS IS A HIGH-TECHNOLOGY AREA OF INVESThENT.
ELECTRONICS IS A HIGH-TECHNOLOGY AREA OF INVESTMENT.
RENEWABLE ENERGY IS A HIGH-TECHNOLOGY AREA OF INVESTMENT.
PETROLEUM IS AN AREA OF INVESTMENT.
ANY CONSERVATIVE AREA OF INVESTMENT IS AN AREA OF INVESTMENT.
ANY SPECULATIVE AREA OF INVESTMENT IS AN AREA OF INVESTMENT.
ANY HIGH-TECHNOLOGY AREA OF INVESTMENT IS AN AREA OF INVESTMENT.

Note that the appearance of

MARY JONES WILL BE INTERESTED IN PRODUCTIVITY

came about through the use of every in rule 14.

The remainder of problem statement requires a variety of tasks to
be performed. These tasks are codified as the ROSIE rulesets seen
below.

FORTUNE RULESETS

To decide if a given investor is a holder of a given stock:

[1] If the given investor does own any investment portfolio that
does include the given stock,

%

A. Example Programs: FORTUNE 290

conclude true, otherwise conclude false.

End.

To decide if a given stock is held by a given investor:

[i1 If the given investor is a holder of the given stock,
conclude true, otherwise conclude false.

End.

---------------------- Show investors' holdings ----------------------

To list-holdings:

[1] For each investor,
send "{cr)(that investor}'s current holdings:(cr)" and
for each stock that is held by that investor,
send " (that stock)" and I
if that stock is volatile then send -- VOLATILE!!" and
send "(cr)".

End. B

------------- Show an investor's speculative stocks ----------------

To list-speculatives of a given investor: VV

[11 If the given investor is a holder of any speculative stock, then
send "{cr)(that investor}'s speculative holdings:(cr)" and
send " (every speculative stock that is held by that investor)(cr)",

otherwise
send "{cr)(the given investor) has no speculative holdings.{cr)".

End.

- Notify investors of innovations in their interest areas ------

To announce innovations:

[1] Send "(cr)".

121 For each technology area,
send "'* (that area) BULLETIN to: {every investor who will

be interested in that area) -- Find out about (every
innovation in that area)(cr)".

* Y.,

A. Example Programs: FORTUNE 291

End.

[---- Look for someone with good credit who is interested in ROSIE ----

To locate customers:

[1] If there is an investor who will be interested in each of productivity
and artificial intelligence and who has a line-of-credit that
is greater than $ 1000, %

let that investor be ROSIE's first customer and
assert each of 'that investor does have good credit' and e

'that investor does like each of artificial
intelligence and productivity'

is a reason for 'that investor is a customer of ROSIE'.

121 Send "(cr}ROSIE's first customer is (ROSIE's first customer}

The reasons for this include:{cr}" and %A

send " (every reason for 'that customer is a customer of ROSIE'}{cr)".

[4] Send "(cr}".

End. .,,..

-------------------- Procedure to demo the system --------------------

To demonstrate:

[1] Send "{cr}[rule 1] List-holdings.(cr}" and list-holdings.

(2] Send "(cr}[rule 21 List-speculatives of Mary Jones.{cr)" and
list-speculatives of Mary Jones.

[3] Send "{cr}(rule 3] Announce innovations.(cr)" and announce innovations. -'

14) Send '{cr}[rule 4] Locate a customer.(cr)" and locate a customer.

End.

The FORTUNE program consists of three pieces: four procedural
rulesets (one for each of the four tasks outlined in the problem
statement), two support predicate rulesets, and a "driver" procedural
ruleset that organizes the actual demonstration.

The predicate ruleset,

To decide if a given investor is a holder of a given stock:

E -%" -%

A. Example Programs: FORTUNE 292

shows how a predicate can be used when the criteria for class membership
cannot be encapsul&ted in a proposition and asserted in the database.
For the is a holder of relation to be true, two dependent database
relations must coexist: (1) the investor must own an investment
portfolio, and (2) that portfolio must include the desired stock.

The predicate ruleset,

To decide if a given stock is held by a given investor:

essentially coerces an equivalence between the is a holder of and the is
held by relations. The manner of employing predicates allows one to
express the same idea naturally in different contexts; predicates can
provide equivalent semantics for different ROSIE relations.

The procedural rulesets, %

To list-holdings:
To list-speculatives of a given investor:
To announce innovations:

illustrate the primary mechanism for output in ROSIE--the send
procedure and patterns for text formatting. In particular, these
rulesets illustrate the new extended string syntax being introduced in
ROSIE 3.0. The first and third ruleset use the for each action to
generate the elements of the set conforming to the given description,
iteratively printing a message for each such element.

The procedural ruleset,

To locate customers:

exemplifies a number of interesting points. First it shows the use of .,

each of in testing, e.g., the same investor who is interested in
productivity must also be interested in artificial intelligence. Note
also that this ruleset uses $ 1000 in a comparison. This is a called a .
labeled constant and can be added, subtracted, compared, etc., in the
same manner as 1000 alone. Finally, this ruleset also incorporates the
use of intentional propositions (proposition between single quotes). - -
Intentional propositions let you manipulate declarative knowledge as
data. j. ,

The procedural ruleset,

To demonstrate:

organizes the demonstration itself. Once at the top level of ROSIE, we
can load the FORTUNE program and type demonstrate, with the following

%4 ,

results:

... jV

V ~ %% .% ".

A. Example Programs: FORTUNE 293

<4> demonstrate.

[rule 11 List-holdings. -

MARY JONES's current holdings:
GENETIC ENGINEERING
OPTICS
RENEWABLE ENERGY -- VOLATILE!!

JOHN DOE's current holdings:
PETROLEUM -- VOLATILE!!

AUTOMOTIVE
COMMUN I CATIONS
RENEWABLE ENERGY -- VOLATILE!!

[rule 2] List-speculatives of Mary Jones.

MARY JONES' s speculative holdings:
GENETIC ENGINEERING

[rule 3] Announce innovations.

ARTIFICIAL INTELLIGENCE BULLETIN to: MARY JONES -- Find out

about ROSIE
*** PRODUCTIVITY BULLETIN to: MARY JONES -- Find out about ROSIE
*** PRODUCTIVITY BULLETIN to: JOHN DOE -- Find out about ROSIE

[rule 4] Locate a customer.

ROSIE's first customer is MARY JONES
The reasons for this include:

'MARY JONES DOES LIKE PRODUCTIVITY'
'MARY JONES DOES HAVE GOOD CREDIT'
'MARY JONES DOES LIKE AI'

%.,.

A. Example Programs: POIROT 295

POIROT -- ALTERNATE DATABASES
'V

The next demo system, POIROT, introduces ROSIE to the world of the
detective. The motivation behind this system, however, is not to
explore the principles of investigation, but to examine the use of
alternate databases within a multiple database structure.

The problem statement in this domain is straightforward:

Given some set of facts and some set of participants, the
detective, POIROT, must uncover the information necessary to
deduce which of the participants might be guilty.

POIROT uncovers information by mediating a dialogue between the 4. '
user and each participant. POIROT then uses the information
gleaned from the interrogation to make his deductions, i.e.,
the user asks the questions and POIROT makes the inferences.

In any scenario there will be only one victim, who is found ., I

either dead, shot, or stabbed. Each potential suspect has
his or her own viewpoint of and knowledge about the situation.

Note that in terms of implementation, the last sentence requires a
method for simulating the privacy of each participant's memory as well
as some mechanism for simulating the question/answer protocol of
interrogation.

The mechanism for simulating "belief" in this system is quite
simple. Segregation of idiosyncratic knowledge is accomplished with
alternate databases. The knowledge that is unique to each participant
is stored in a distinct alternate database for that participant.
Information that is available to everyone is stored in the global
database. At the beginning of the case, we set up the following
scenario from rules in four different program files:

SCENARIO

[rule 1] Assert both any woman and any man is a person.

[rule 21 Assert each of John and Poirot is a man.

[rule 3] Assert each of Mary and Sara is a woman.

[rule 4] Assert Mary is rich.

[rule 5] Assert Mary is found dead.

[rule 61 Let the detective be Poirot.

e.,

JOHN I

* " i

pwong
Text Box
preceding page blank - not filmed

A. Example Programs: POIROT 296

[rule 11 Activate John's world.

[rule 2] Assert John does need money.

[rule 31 Assert John is married to Mary.

[rule 41 Assert John did love Mary.

[rule 5] Deactivate.

[SARA]

[rule 1] Activate Sara's world.

[rule 21 Assert Sara is a sister of Mary.

[rule 3] Assert Sara does love John.

[rule 4] Assert John did not love Mary.

[rule 5] Assert John does love Sara.

[rule 6] Deactivate.

POIROT]

[rule 1] Activate Poirot's world.

[rule 2] Assert Sara is involved and John is involved.

[rule 3] Deactivate.

The first file establishes general definitions and facts about the
case in the global database. Each of the other files begins with an .4

action to activate an alternate database, which acts as the world of a
particular participant. All subsequent assertions affirm relations
exclusively in that database. The generator 'to generate the world of an
individual' (defined below) causes John's world to evaluate to JOHNS, P
and so on--thus, the name of the first alternate database is actually
JOHNS. Note that the program file defining this generator must be
loaded before the scenario files. ,.',,

The presence of ROSIE's multiple database structure enables the
representation of contradictions, i.e., as long as they reside in
different databases. For instance, Sara believes that 'John does not
love Mary' (rule 4 of SARA), while John believes the opposite (rule 4 e
of JOHN). Because ROSIE attempts to maintain consistency within a
database, both beliefs could not be in one database unless they were
treated as propositions in the following format

A. Example Programs: POIROT z97

Sara does believe 'John does not love Mary'
John does believe 'John does love Mary'

Thus, the database for an individual acts as the belief space for that
individual it represents.

The code for POIROT is given below. Note that rulesets do not
reside in any database. They are accessible regardless of which
database is active.

DETECTIVE RULESETS W

---------------- General relation about participants-----------------

To decide if a character is a victim:

[1] If the character is found either dead, stabbed, or shot,
conclude true, otherwise conclude false.

End.
-.4

To generate the victim:

[1] If any thing is found either dead, stabbed, or shot,
produce that thing.

End.

To decide if a character is related to an individual:

[I] If the character is married to the individual or
the individual is married to that character,

note 'the character is married to the individual' and
conclude true.

[2] If the character is a sister of the individual,
note 'the character is a sister of the individual' and
conclude true.

3] If the character is a brother of the individual, .

note 'the character is a brother of the individual' and

conclude true.

[4] If the character is a mother of the individual,
note 'the character is a mother to the individual' and
conclude true.

%

[51 If the character is a father of the individual, "

I.%

A. Example Programs: POIROT 298

note 'the character is a father to the individual' and
conclude true.

[6] If the character is a son of the individual,
note 'the character is a son of the individual' and
conclude true.

[7] If the character is a daughter of the individual,
note 'the character is a daughter of the individual' and
conclude true.

End.

-------------------- Procedure to demo the system --------------------]

To detect:

[1] Swap in Poirot's world.

[2] For each person who is involved,
send "{crInterrogating (that person}(cr)" and
interrogate that person.

[31 Send "{cr)Suspects: 1otives--(cr)".

(4] For each suspect,
send "{cr) (that suspect): (every reason for suspicion

of that suspect)..

[5] Send "{2 crs)". V.

End.

------------- Solicit questions from the user ------------------]

To interrogate a character:

Private: a reply.

Execute cyclically. :.-"..

[11 Send "(cr)> " * ': _

[2) Read "(anything (bind the reply)}(cr}".

[31 Match the lowercase of the reply:

-• "p * , ., - ,'- ,-..,.. , - ,-.-,~ , .-- , ,- . . ,-.--,%* ~i ,t)

A. Example Programs: POIROT 299

return;

("interrogee?"1

display the character;

("is it that ", anything (bind PROP), "?"}

question the character about PROP;

default: send "MUST USE THE FORM: Is it that <proposition>?{cr)".

End.

To question a character about a query:

[11 Swap in the character's world.

[2] If there is a proposition from "'(the query)'" and
that proposition is provably true,

note that proposition and repeat facts,
otherwise display UNKNOWN.

End.

----------------- Deduce who could be the murderer-------------------

To generate a suspect:

[1] For each person (P) who is involved,

if P does love any person who is married to the victim,
assert jealousy is a reason for suspicion of P, and .

if P does need money and the victim is rich and
P is related to that victim,

assert monetary gain is a reason for suspicion of P, and

if P was rejected by either the victim or any person
who does love that victim,

assert revenge is a reason for suspicion of P, and

if there is a reason for suspicion of P,
produce P.

End.

.4

A. Example Programs: POIROT 300

----------------- Remember newly acquired information ----------------

To note a statement:

[11 Add the statement to facts.

End.

-------- Relate what Poirot now knows --------------------

To repeat facts: .

[1] For each affirmed proposition from facts,
add that proposition to Poirot's world and
echo that proposition.

[2] Clear facts.

End.

To echo a fact:

[1] Send "Yes, {the fact).{cr)".

End.

--------------- Returns a database name for a character --------------

To generate a world of a character:

[1] Produce the name from "(the characteris".

End.

As with the FORTUNE example, it is convenient to think of this
program as consisting of three parts: First, some support predicates
and generators; second, the driver routine; and third, the rulesets
invoked by the driver.

Among the support routines is the definition of what it means to be

a victim. Note that this definition could easily have been defined by
asserting a proposition of the form

any person who is found either dead, shot,
or stabbed is a victim

This approach was not taken for reasons that will become clear. Given
this latter approach, in order to find the victim, it is necessary to
iterate through each instance of the class person until an instance is
found that is either dead, shot, or stabbed. The approach seen in

N~

- %. "

A. Example Programs: POIROT 301

POIROT takes advantage of the fact that there will be only one instance
of the relations

element is found dead
element is found shot
element is found stabbed

affirmed at any given time, and that element will be the victim. Thus,
in the predicate ruleset,

To decide if a character is a victim:

it is only necessary to check if the character is found dead, shot, or '.-.

stabbed. The generator ruleset,

To generate the victim:

operates in a similar fashion, but uses a trick to retrieve element.
Testing the proposition in rule [11 first finds the instance of the is
found relation that is affirmed and then tests if element is a thing.
The trick is that all elements satisfy this predicate, allowing the
ruleset to produce the victim after accessing the database a maximum of
four times. The bottom line of this discussion is the following, since
there is only one victim and potentially many persons, the approach
taken in POIROT is the most efficient.

The procedural ruleset,

To detect:

acts as the driver routine. Rule [1] activates the database for the
detective; this is done with swap in so that the originally active
database (in this case the global database) will be reactivated
automatically when the ruleset terminates. Rule [2] applies the
interrogate procedure to each person the detective thinks is invo;ved.
After interrogation, rule [4] lists the possible suspects and their
motives.

The interrogate procedure runs interactively, allowing the user to
ask the questions. This ruleset is running under a cyclic execution
monitor, which means its rules are executed from top-to-bottom over and
over until execution of the return procedure. This ruleset also uses
the private class reply, which will be bound to the substring matched by
the pattern in rule [2]. This ruleset works by prompting the user for a %
question in rule [1] and then reading one line of input from the user in
rule 121. The user's options are a carriage return, indicating the
interrogation is over; the question "Interrogee?", which names the e,.
person currently under questioning; or a question of the form .' ..,

Ia'
Is it that proposit ion? ,'

. "%

: = - r a & I -d ' I - - fr = "" , _ ,

A. Example Programs: POIROT 302

Note that the input is first converted to lower case to standardize the
form of comparison. The substring matching proposition is then sent to
the question procedure, which queries the interrogee.

The question procedure first temporarily activates the database of
the interrogee. In rule [2], the question is evaluated. First, rule
[2] tries to turn the string representing the question into an
intentional proposition, if possible, and then it tests the truth or
falsity of this proposition given the current state of the database.
Given that it tests true, the ruleset notes and lists that fact as well
as any other facts that were discovered as a result. Facts are
incrementally stored in the facts database by the note procedure and
listed by the repeat procedure, which also moves those facts to the
detective's database.

The detective goes to work in the generator ruleset,

To generate a suspect:

which is called after everyone involved in the case has been
interrogated. For each person involved, this ruleset amasses motives
based on its "knowledge" of the psychology of crime. In this case,
three of the more common motives for murder (i.e., jealousy, monetary
gain, and revenge) are represented.

The following interactions show POIROT at work on the case
described in the scenario given above:

<7> ?
GLOBAL Database]
MARY IS FOUND DEAD.
MARY IS RICH.
POIROT IS A DETECTIVE.
SARA IS A WOMAN.
MARY IS A WOMAN.
POIROT IS A MAN.
JOHN IS A MAN.
ANY MAN IS A PERSON. ,% %
ANY WOMAN IS A PERSON.

<8> Johns?
JOHNS Database]
JOHN IS MARRIED TO MARY.
JOHN DOES NEED MONEY.
JOHN DID LOVE MARY.

<9> Saras?
[SARAS Database]

JOHN DOES LOVE SARA.
SARA DOES LOVE JOHN. .
JOHN DID NOT LOVE MARY.

P%

A. Example Programs: POIROT 303

SARA IS A SISTER OF MARY.

<10> Poirots?
[POIROTS Database]

JOHN IS INVOLVED.
SARA IS INVOLVED.

<11> Detect.

Interrogating JOHN

> Is it that John is related to the victim?
Yes, 'JOHN IS RELATED TO MARY'. %
Yes, 'JOHN IS MARRIED TO MARY'.

> Is it that John did love Mary?
Yes, 'JOHN DID LOVE MARY'. -\

> Is it that John does need money?
Yes, 'JOHN DOES NEED MONEY'.

> Is it that John does love Sara?

UNKNOWN

> .

Interrogating SARA

> Is it that Sara is related to the victim?
Yes, 'SARA IS RELATED TO MARY'.
Yes, 'SARA IS A SISTER OF MARY'.

> Is it that Sara does love John?
Yes, 'SARA DOES LOVE JOHN'. *'.

> Is it that John does love Sara?
Yes, 'JOHN DOES LOVE SARA'.

a-%

Suspects: Motives- -

JOHN: MONETARY GAIN
SARA: JEALOUSY

<12> Poirots?
POIROTS Database
JOHN DOES LOVE SARA.
SARA DOES LOVE JOHN. V
JOHN DOES NEED MONEY.

A. Example Programs: POIROT 304

JOHN DID LOVE MARY.
JEALOUSY IS A REASON FOR SUSPICION OF SARA.
MONETARY GAIN IS A REASON FOR SUSPICION OF JOHN.
SARA IS A SISTER OF MARY.
JOHN IS MARRIED TO MARY.
SARA IS RELATED TO MARY.
JOHN IS RELATED TO MARY.
JOHN IS INVOLVED.
SARA IS INVOLVED.

As a final note, even though the question, "Is it that John does
love Sara?" elicits a response of UNKNOWN from the interrogation of
John's database and "Yes, 'JOHN DOES LOVE SARA'." from Sara's database,
the statement appears as a fact in Poirot's database. This illustrates
that the mechanism for segregating beliefs used in POIROT is too simple
for even this small exercise. One next step that might be taken to
relieve the problem seen here is to develop a mechanism for describing
certainty as well as belief, however, that is outside the scope of this . N
example.

H

'. P'.,,

>-.

- ~ *or

A. Example Programs: ANIMAL 305

ANIMAL -- EMBEDDED CONTROL STRUCTURES

The last demo system, ANIMAL, illustrates how to build a simple
control structure on top of ROSIE. In this case, the control structure
is a production system monitor that applies rules in a goal-directed . -

(i.e., backward-chaining) manner.

ANIMAL is derived from a system described in (Winston, 1979) in
which "Robbie the robot" develops a set of rules for classifying animals
in the zoo. Applying these rules in a backward-chaining manner allows
Robbie to determine which animal he is seeing. Thus, the problem ,

statement for ANIMAL is

Given Robbie's rules, figure out which of the possible seven
animals the user is thinking of. ,. q

For the purposes of ANIMAL, each rule will be represented as a set
of assertions about its preconditions and conclusions. For instance,
the rule

IF the animal is a mammal
and it eats meat,

THEN it is a carnivore.

will be represented by the three propositions.,,.

'animal is a mammal' is a precondition of rule #6
'animal does eat meat' is a precondition of rule #6
'animal is a carnivore' is a conclusion of rule #6:V

These propositions are asserted by a file rule of the form

[rule 6) Let the conclusion of a new rule be 'animal is a carnivore' and

assert each of 'animal does eat meat' and %
'animal is a mammal'

is a precondition of that rule.

Note that a new rule creates the name of the rule (i.e., the comment
[rule 6] has no bearing). This is rule #6 because the preceding five
file rules created five new ANIMAL rules.

There are 15 ANIMAL rules in all, defined as follows:

ANIMAL DATA]

[rule 1] Let the conclusion of a new rule be 'animal is a mammal' and
assert 'animal does give milk'

is a precondition of that rule. %

(rule 2] Let the conclusion of a new rule be 'animal is a mammal' and

% %
I&: .-V

.p,

(% N ' '',' ','I,'X ' ',':'-L '-'.': -' "- "-"": ""X'.". ." ' "" , -. ;" 'i''>-'..', .,,:v - ".' ," ,% -.-- - '.,-:,.'v., .' % ,,,' % , ,.-, '.p

A. Example Programs: ANIMAL 306

assert 'animal does have hair'
is a precondition of that rule.

(rule 3] Let the conclusion of a new rule be 'animal is a bird' and
assert 'animal does lay eggs'

is a precondition of that rule.

(rule 4] Let the conclusion of a new rule be 'animal is a bird' and
assert 'animal does have feathers'

is a precondition of that rule. %

(rule 5] Let the conclusion of a new rule be 'animal is a carnivore' and
assert each of 'animal does have pointed teeth',

'animal does have claws',
'animal does have its eyes pointed ahead' and
'animal is a mammal'

is a precondition of that rule. Of

(rule 6] Let the conclusion of a new rule be 'animal is a carnivore' and
assert each of 'animal does eat meat' and

'animal is a mammal'
is a precondition of that rule. '" ' *

[rule 71 Let the conclusion of a new rule be 'animal is an ungulate' and
assert each of 'animal does chew cud' ari "-" "

'animal is a mammal'
is a precondition of tha rule.

(rule 8] Let the conclusion of a new rule be 'animal is an ungulate' and
assert each of 'animal does have hoofs' and

'animal is a mammal'
is a precondition of that rule.

(rule 9] Let the conclusion of a new rule be 'animal is a cheetah' and
assert each of 'animal does have dark spots',

'animal is tawny colored' and
'animal is a carnivore'

is a precondition of that rule.

*%

[rule 10] Let the conclusion of a new rule be 'animal is a tiger' and
assert each of 'animal does have black stripes',

'animal is tawny colored' and
'animal is a carnivore'

W
"-' --.

A. Example Programs: ANIMAL 307 !r ,

is a precondition of that rule.

[rule 11] Let the conclusion of a new rule be 'animal is a giraffe' and
assert each of 'animal does have dark spots',

'animal is tawny colored',
'animal does have long legs-and-neck', and
'animal is an ungulate'

is a precondition of that rule.

(rule 12] Let the conclusion of a new rule be 'animal is a zebra' and
assert each of 'animal is white with black stripes', and n

'animal is an ungulate'
is a precondition of that rule.

[rule 13] Let the conclusion of a new rule be 'animal is an ostrich' and
assert each of 'animal is black-and-white',

'animal does have long legs-and-neck',
U

'animal does not fly' and
'animal is a bird'

is a precondition of that rule.

[rule 141 Let the conclusion of a new rule be 'animal is a penguin' and
assert each of 'animal is black-and-white',

'animal does swim',
'animal does not fly' and
'animal is a bird'

is a precondition of that rule.

[rule 15] Let the conclusion of a new rule be 'animal is an albatross' and
assert each of 'animal is a good flyer' and

'animal is a bird'
is a precondition of that rule.

[rule 16] Assert each of 'animal is a cheetah',
animal is a tiger',
animal is a giraffe',
animal is a zebra',
'animal is an ostrich',
animal is a penguin' and
'animal is an albatross'

is a hypothesis.

The last rule defines the seven possible hypotheses about which the . '%

system can make any conclusions.

.V %

A. Example Programs: ANIMAL 308

Given these rules, ANIMAL applies them using a very simple backward-
chaining strategy. To begin, it iterates through the hypotheses until
it finds one that it can prove. It then prints that that hypothesis is
true and quits. To prove a hypothesis, ANIMAL looks for a rule that
concludes that hypothesis and then treats the preconditions of that rule
as new hypotheses to prove--if the preconditions of a rule are true,
then its conclusion is true. If a hypothesis is not a conclusion of a
rule, then ANIMAL asks the user a yes/no question to confirm or deny the
hypothesis. Thus, ANIMAL starts a game of "20 questions" that leads to
identifying the animal.

The rulesets used for applying the ANIMAL rules in this manner are
relatively simple and straightforward. They are defined below.

ANIMAL RULESETS]

------- Procedure to demo the system --------------------

To diagnose:

[1] For each hypothesis until that hypothesis is provably true,
apply the rule of which that hypothesis is a conclusion. -- .

[21 If there is a hypothesis that is provably true,
send "(cr)Hypothesis: {that hypothesis}{cr}{cr}",

otherwise,
send "(cr)No hypothesis can be confirmed.{cr}{cr}". -.. ,

End.

---- Procedure that tests a rule--------------------

To apply a rule:

[1] Choose situation:

if every precondition of the rule is true,
assert the conclusion of the rule is provably true;

if there is no precondition (of the rule) that is unknown,
assert the conclusion of the rule is provably false. * .-

End.

--- Figure out how to test a hypothesis'--------------

To decide if a hypothesis is true:

~%
U.+.+

N 'x " ' + - % :C ' 2 Lv - ' - : : ."-.+:''+:vi'' :.'"" "', -,,''. .' ."".''.''.'." ." "".:;"-v ,. ;. '.'.'.'" :," :,',,'2,N ,,%'w.,,

A. Example Programs: ANIMAL 309

[1] If the hypothesis is unknown, return.

[2] If the hypothesis is provably true, conclude true.

j3] If the hypothesis is provably false, conclude false.

[4] Choose situation:

if the hypothesis is a conclusion of any rule,
then for each rule of which that hypothesis is a conclusion

until that hypothesis is provably either true or false,
apply that rule, and

if the hypothesis is provably true,
conclude true;

if the hypothesis is confirmed, conclude true;

default: unless the hypothesis is [now] unknown, conclude false.

End.

------------------ Query the user for yes/no answer -------------------

To decide if a hypothesis is confirmed:

Private: a reply.

Execute cyclically..

I1] Send "{cr)Q: (the query for the hypothesis)".

[2] Send "(criA: "6

[3] Read "{anything (bind the reply))(cr".

[4] Select the uppercase of the reply:

<"YES"> If the hypothesis is not negated,
assert the hypothesis is provably true and conclude true,

otherwise,
assert the hypothesis is provably false and conclude false;

<"NO"> If the hypothesis is not negated,
assert the hypothesis is provably false and conclude false,

otherwise,
assert the hypothesis is provably true and conclude true;

<"?"> Assert the hypothesis is unknown and return; .j

default: send "(cr)Type YES or NO (or ? for unknown).(cr)".

A. Example Programs: ANIMAL 310

End.

ANIMAL consists of four rulesets: one procedural ruleset that acts
as the driver routine; another that applies a rule; a predicate ruleset
that decides how to prove a hypothesis; and, finally, another predicate
that asks the user to confirm a hypothesis.

Rule [1] in

To diagnose:

iterates through each of the possible hypotheses. On each iteration, it *, .
applies the rule that could prove that hypothesis--for simplicity we
assume only one such rule for each of the initial hypotheses. Note that
the until part of rule [1] is tested after the rule is applied,
terminating rule [1) when a hypothesis is proved by the rule for which
it is a conclusion.

The next ruleset,

To apply a rule:

shows that ANIMAL also assumes a three-valued logic system, i.e., a
hypothesis can either be true, false, or unknown. There are three
situations that can occur when applying a rule: (1) each of the rule's
preconditions can be true, in which case its conclusion is true; (2) all -.-

of the rule's preconditions are false (i.e., not unknown), in which case
its conclusion is false; or (3) some of its preconditions are unknown,
in which case nothing can be said about the hypothesis. . ,

The predicate ruleset,

To decide if a hypothesis is true:

is straightforward up to rule [4]. Rule [4] addresses the situation of
whether the hypothesis is the conclusion of some rule. If it is, then
it could be the conclusion of several rules, in which case each is
applied until the hypothesis is either confirmed or denied. If not a
conclusion, then the user is asked to confirm. Control enters the
default block if the user denies the hypothesis or labels it as unknown.

Finally, the predicate ruleset,

To decide if a hypothesis is confirmed:

uses the query for system generator to convert the hypothesis into a
yes/no question. The user is prompted with this question until he
answers yes, no, or ?, confirming, denying, or labeling as unknown the
hypothesis, respectively.

'. ,',

A. Example Programs: ANIMAL 311

The interactions seen below demonstrate how ANIMAL works when
trying to identify the user's choice, which in this case is a cheetah.
Note that diagnose is called with the database conclusions active, thus
allowing us to see which conclusions are made by ANIMAL.

<2> Activate conclusions.
<3> ?
I CONCLUSIONS Database]

<4> display every hypothesis.
'ANIMAL IS AN ALBATROSS'
'ANIMAL IS A PENGUIN'
'ANIMAL IS AN OSTRICH'
'ANIMAL IS A ZEBRA'
'ANIMAL IS A GIRAFFE'
'ANIMAL IS A TIGER'
'ANIMAL IS A CHEETAH'
<5> Diagnose.

Q: DOES ANIMAL HAVE FEATHERS? ."

A: no

Q: DOES ANIMAL HAVE HAIR?
A: ?

Q: DOES ANIMAL GIVE MILK?
A: yes

Q: DOES ANIMAL HAVE HOOFS?
A: no

Q: DOES ANIMAL EAT MEAT? t
A: ?

Q: DOES ANIMAL HAVE ITS EYES POINTED AHEAD? *./
A: yes

Q: DOES ANIMAL HAVE CLAWS?

A: yes

Q: DOES ANIMAL HAVE POINTED TEETH?

: yes

Q: IS ANIMAL TAWNY COLORED?

A: yes

Q: DOES ANIMAL HAVE BLACK STRIPES?

A: no %

Q: DOES ANIMAL HAVE DARK SPOTS?

A: yes

B.'N

S%-

I I..B ~ *~B* P * ~ .- I* 1 I~-...-.-. %

A. Example Programs: ANIMAL 312

Hypothesis: 'ANIMAL IS A CHEETAH'

<6> ?
CONCLUSIONS Database J

ANIMAL DOES GIVE MILK.
ANIMAL DOES HAVE DARK SPOTS.
ANIMAL DOES NOT HAVE BLACK STRIPES.
ANIMAL DOES HAVE POINTED TEETH.
ANIMAL DOES HAVE CLAWS.
ANIMAL DOES HAVE ITS EYES POINTED AHEAD.
ANIMAL DOES NOT HAVE HOOFS.
ANIMAL DOES NOT HAVE FEATHERS.
ANIMAL IS TAWNY COLORED.
'ANIMAL DOES EAT MEAT' IS UNKNOWN.
'ANI6MAL DOES HAVE HAIR' IS UNKNOWN.
ANIMAL IS A CHEETAH. me

ANIMAL IS NOT A TIGER.
ANIMAL IS A CARNIVORE.
ANIMAL IS NOT A GIRAFFE.
ANIMAL IS NOT A ZEBRA.
ANIMAL IS NOT AN UNGULATE.
ANIMAL IS A MAMMAL.
ANIMAL IS NOT AN OSTRICH. .

ANIMAL IS NOT A PENGUIN.
ANIMAL IS NOT AN ALBATROSS.
ANIMAL IS NOT A BIRD.

.,.."

.

""v " " . . . "." " . -' ", , '. ' ". . '. ' '. , '. ' ' '. '. , " . .. , J.e,

B. Error Messages 313

APPENDIX B:
ERROR MESSAGES

There are several types of errors that can be encountered during
the course of using ROSIE. There are errors that can occur during the
tokenization of a file or when parsing the results of tokenization, and
there are errors that can occur at runtime, all but one of which is
recoverable.' In each case, the error message printed provides an
indication of the problem. Below is a list of the possible error
messages (in boldface) each of which is followed by a short comment to
help diagnose the problem.

PARSING AND TOKENIZATION ERRORS

The following error messages will be encountered during
tokenization and parsing. Note that tokenization errors automatically %
abort the parsing task, sending control back to the top-level monitor. %.-7"
Parsing errors do not abort the parsing tasks. If a parsing error
occurs when parsing a program file, ROSIE will print a message
indicating where in the program file the erroneous code can be found.

Can't find anaphoric reference:
Parsing context

Encountered during parsing.

An anaphoric term (that class noun) or an anaphoric description
(such class noun) references a description that is not processed
before it in the rule currently being parsed.

See Section 7.5.
r- A.

Discarding unexpected END STATEMENT.

Warning.

Encountered during parsing.

An end statement was encountered that did not terminate a ruleset.
Discarded end statement will not appear in the .txt file when saved.

See Section 4.2.
* .-. .

A stack overflow, giving the error message "Computation depth %
limit exceeded", is currently the only nonrecoverable runtime error.

'Z, Z_1-#.'.,1

~v ' F'~ 4 4MS,~ *S. ~ . ~ %% .

B. Error Messages 314

Discarding unexpected MONITOR DECLARATION.

Warning.

Encountered during parsing.

An execution monitor declaration can appear only once in a ruleset
and only immediately before the first rule. Warning given when
this declaration is found anywhere else. Discarded declaration
will not appear in the .txt file when saved.

See Section 4.2. A'

Discarding unexpected PRIVATE DECLARATION.

Warning.

Encountered during parsing.

A private class declaration can appear only once in a ruleset
and only immediately after the rule header. Warning given when ,,, ,
this declaration is found anywhere else. Discarded declaration
will not appear in the txt file when saved. ' ' **

See Section 4.2.

Has atomic formal parameters.

Encountered when parsing a system ruleset.

The formal parameters of a system ruleset body must be a list or NIL.

Illegal PATTERN VARIABLE specification:
Parsing context W-

Encountered during parsing.

A pattern variable can be specified only as a single token name,
a description introduced by the function word the or an '...v.
anaphoric term (i.e., introduced by that).

See Section 9.6. -,

Illegal specification of units: -
Parsing context

Encountered during parsing.

. * ,L,
P. P

N' N~a

by.

B. Error Messages 315

The units of a unit constant must be atomic tokens combined under
multiplication, division, or exponentiation, e.g.,

34 k*m/s^2

This error is called when these units are incorrectly combined.
dp

See Section 9.3.

Inserting missing END STATEMENT.

Warning.

Encountered during parsing.
,%% '

Called when processing a ruleset and encounters the start of a new
ruleset or the last file rule before the terminating end statement. 5.

Adds end statement automatically.

Not a lisp lambda-form. NY

Encountered when parsing a system ruleset.

Expression read after system ruleset header (using the LISP read
function) is not a LISP lambda-form.

See Section 4.4.

Obsolete use of EXECUTE ACTION:
Parsing context

Warning. %

Encountered during parsing. %

Earlier ROSIE's provided the execute actions, call and go. In
ROSIE 3.0 these have been subsumed by the procedure action type.
While ROSIE 3.0 still supports the execute actions, they may riot
be supported in the future and should be removed from your code.

QUANTIFIED TERMS may not appear in BREAK COMMANDS: -
Parsing context

Encountered during parsing.

A quantified descriptive term or iterative term was found to occupy
the position of <term> in a break command of the form

% .%

' .5

.5%

" " " /., , , ;'.,' 1" .- .- '., ',
' " " .. - . " """ " . ' " ."-"- - , ".--."" " " " " " "" " - . .". p

Ip*W

B. Error Messages 316

Produce <term>!

Such terms cannot be used in this position.

QUANTIFIED TERMS may not appear in PRIVATE DECLARATIONS:
Parsing context

Encountered during parsing.

A quantified descriptive term or iterative term was found to occupy
the position of <term> in a private class declaration of the form %

Private: . . . <class> (initially <term>)

Such terms cannot be used in this position.

Replacing NLAMBDA with LAMBDA.

Warning.

Encountered when parsing a system ruleset.

In earlier releases of ROSIE (Interlisp), a system ruleset body was
required to be a spreading-NLAMBDA, while in ROSIE 3.0, they
are required to be a LISP lambda form. The difference is that
one starts with the keyword NLAMBDA while the other LAMBDA.

This warning is called when a system ruleset body is found to start
with an NLAMBDA. Assumes pre-ROSIE 3.0 system ruleset and
automatically replaces with a LAMBDA. New ruleset will appear in
the .txt file when saved.

.M. W.-

Unexpected end of file. ,.;.

Encountered during tokenization.

The tokenizer reached the end of input while in the process of
scanning a file item, i.e., the file item was improperly terminated.

Unmatched left parenthesis or missing body after:
System ruleset header

Encountered during tokenization. %J1

Lnable to read body (a LISP lambda form) corresponding to
system ruleset header using the LISP read function. Probably
caused by mismatched parentheses.

% A

i* .i ? .

B. Error Messages 317

Prep used twice in a prepositional phrase:
Parsing context

Encounter during parsing.

The same preposition (prep) appears twice in the chain of
preposition/term pairs associated with a procedure, proposition, Vi
description, or ruleset header.

RUNTIME ERRORS

The following errors will be encountered in normal runtime
operations. Errors that are particular to a small set of tuleases from
the system support library are noted as such. All but one of the errors
seen here are recoverable. When called, a recoverable error throws
control into a break loop, from which the error can be corrected and
computations continued. The nonrecoverable error aborts computations
and throws control back to the top-level monitor.

NOTE: The following error messages (starting Bad argument type . . .
are called by system rulesets when an argument is not of the type
expected. The type expectation that was violated is specified as
(not TYPE). The argument causing the error is given in italics after
the error message.

Bad argument type to ACTIVATE (not NAME): V

The database .',"

Called by:

To activate a database

J. I,

Bad argument type to ADD (not NAME):
The database

Called by:

To add a proposition to a database %

Bad argument type to ADD (not PROPOSITION):
The proposition

Called by:

To add a proposition to a database

,%;,

B. Error Messages 318

Bad argument type to ASSERT (not NAME):

The database

Called by:

To assert a proposition in a database

Bad argument type to ASSERT (not PROPOSITION):
The proposition

Called by:

To assert a proposition [in a database]

Bad argument type to CLEAR (not NAME):
The database

Called by:

To clear a database .. "*

Bad argument type to CONCATENATION (not TUPLE):

The tuple

Called by:

To generate the concatenation of a tuple with a tuple

Bad argument type to COPY (not NAME):
The database

Called by:

To copy from a database
To copy to a database

Bad argument type to DECREMENT (not DESCRIPTION):
The description I?.

Called by:

To decrement a description [by an amount] [in a database]

Bad argument type to DECREMENT (not NAME):
The database

'p 'p ... * ."P- .

B. Error Messages 319

Called by:

To decrement a description by an amount in a database

Bad argument type to DECREMENT (not NUMBER):
The amount

Called by:

To decrement a description [by an amount] [in a database]

Bad argument type to DENY (not NAME):
The database

Called by:

To deny a proposition from a database

Bad argument type to DENY (not PROPOSITION):
The proposition

* ,% _%.

Called by: " ,

To deny a proposition [from a database]

Bad argument type to DESCRIBE (not NAME):
The database

Called by:

To describe an element in a database

Bad argument type to DUMP (not NAME):
The database

,.=

Called by:

To dump a database as a file

Bad argument type to EMPTY (not TUPLE):
The tuple

Called by:

To decide if a tuple is empty

.* aN,.

-(a.'. $

a,' a,

-'S *"--,N " ' '- V -- "-"" """" ""~~. • . ';; ,""."'-."."""" ""..'"." "j.. " " " ""d " ." " . ." ""?-

B. Error Messages 320

Bad argument type to EXECUTE (not PROCEDURE):
The procedure

Called by:

To execute a procedure

Bad argument type to FALSE (not NAME):
The database

Called by:

Before denying a proposition is (not] false in a database-
Before asserting a proposition is (not] false in a database

To decide if a proposition is false in a database

Bad argument type to FALSE (not PROPOSITION):
The proposition ..

Called by:

Before denying a proposition is [not] false in a database
Before asserting a proposition is [not] false in a database
To decide if a proposition is false in a database

Bad argument type to FIRST MEMBER (not TUPLE): %
The tuple .

Called by:

To generate the first member of a tuple

Bad argument type to FIX (not INTEGER): -.
The line

Called by:

To fix a line

Bad argument type to FORGET (not NAME):
The database '. .

Called oy: 'S-,2-,

To forget about an element in a database

.' ,

S. 'J

B. Error Messages 321

Bad argument type to INCREMENT (not DESCRIPTION): i:jj'.
The description

Called by:

To increment a description [by an amount] [in a database]

Bad argument type to INCREMENT (not NAME):
The database

Called by:

To increment a description by an amount in a database

Bad argument type to INCREMENT (not NUMBER):
The amount

Called by:

To increment a description [by an amount] [in a database]

Bad argument type to INSTANCE (not NAME):
The database *" ..

Called by:

To generate an instance of an element in a database

Bad argument type to INSTANTIATE (not DESCRIPTION):
The description

Called by:
%. *%

To instantiate a description to an element [in a database]

Bad argument type to INSTANTIATE (not NAME):
The database

Called by:

To instantiate a description to an element in a database "

% %.%

B. Error Messages 322

Bad argument type to INTEGER (not INTEGER):
The lower bound or The upper bound or The step

Called by:

To generate an integer from a lower bound to an upper bound [by a step]

Bad argument type to LAST MEMBER (not TUPLE):
The tuple

Called by:

To generate the last member of a tuple

Bad argument type to MEMBER (not INTEGER):
The position

Called by:
To decide if an element is a member of a tuple at a position N.
To decide if an element is a member of a tuple from a position
To generate the member of a tupee at a position
To generate a member of a tuple from a position .:

Bad argument type to MEMBER (not TUPLE):
The tuple

Called by:

To decide if an element is a member of a tuple [at a position]
To decide if an element is a member of a tuple from a position " .,

To generate the member of a tuple [at a position)
To generate a member of a tuple from a position

Bad argument type to NEGATED (not PROPOSITION):
The proposition

Called by:

To decide if a proposition is negated

Bad argument type to NUMBER (not NUMBER):

The lower bound or the upper bound or the step

Called by:

To generate a number from a lower bound to an upper bound [by a step]

Ile

B. Error Messages 323

Bad argument type to PRINT (not NAME):
The database

Called by:

To print a name as a string

Bad argument type to PROPOSITION (not NAME):
The database -..

Called by:

To generate an affirmed proposition from a database

Bad argument type to PROVABLY (not PROPOSITION):
The proposition %

Called by: IA

Before denying a proposition is [not] provably true/false
Before asserting a proposition is [not] provably true/false
To decide if a proposition is provably true/false .[, ,

Bad argument type to QUERY (not PROPOSITION):
The proposition

Called by:

To generate a query for a proposition

Bad argument type to REDO (not INTEGER): . J.

The line

Called by:

To redo a line [thru a line] [for N times]

Bad argument type to REDO (not NUMBER):
NI times argument

Called by:

To redo a line [thru a line] for N times

9J ~1

.'**...

. '%w., -

Vrn-jW

B. Error Messages 324

Bad argument type to REMOVE (not NAME):

The database

Called by:

To remove a proposition from a database

Bad argument type to REMOVE (not PROPOSITION):
The proposition

Called by:

To remove a proposition from a database

Bad argument type to RESTORE (not NAME):
The database

Called by:

To restore a file to a database

Bad argument type to REVERSE (not TUPLE):
The tuple

Called by:

To generate the reverse of a tuple

Bad argument type to SECOND MEMBER (not TUPLE):
The tuple

Called by:

To generate the second member of a aple .

Bad argument type to SET (not NAME):
The switch %

Called by:

To decide if a switch is set

Bad argument type to SHOW (not NAME):
The database

Called by:

.. '. V -

B. Error Messages 325

To show a database

Bad argument type to SORT (not TUPLE):
The tuple

Called by:

To sort a tuple in an order

Bad argument type to SWAP (not NAME):
The database

Called by:

To swap in a database

Bad argument type to SWITCH (not NAME):
The switch

Called by:

To switch off a switch
To switch on a switch

Bad argument type to TAB (not INTEGER):

The column

Called by:

To tab to a column [in a file]

Bad argument type to TAIL (not INTEGER):
The position

Called by:

To generate the tail of a tuple at a position
To generate the tail of a tuple from a position

Bad argument type to TAIL (not TUPLE):
The tuple

Called by:

To generate the tail of a tuple [at a position]

'.-7,;-

B. Error Messages 326

To generate the tail of a tuple from a position

Bad argument type to TOGGLE (not NAME):
The switch

Called by:

To toggle off a switch
To toggle on a switch
To toggle a switch

Bad argument type to TRUE (not NAME): e-
The database

Called by:

Before denying a proposition is [not] true in a database %

Before asserting a proposition is [not] true in a database
To decide if a proposition is true in a database

Bad argument type to TRUE (not PROPOSITION): S.

The proposition

Called by:

Before denying a proposition is [not] true in a database .,.
Before asserting a proposition is [not] true in a database
To decide if a proposition is true in a database

Bad value from SYSTEM GENERATOR:
Value

Called when a generator ruleset defined as a system ruleset returns
something (value) that is neither a LISP atom or list.

See Section 4.4.

CLASS ELEMENT returned from PRODUCE DEMON:
Element

Class elements cannot be returned from a produce demon. V

Computation depth limit exceeded.

Nonrecoverable error.

-. ~' v~v]

B. Error Messages 327

Encountered at runtime.

Called when ruleset invocation stack exhausted (size: 120 frames).
Indicates infinite loop or poor program design or both.

CONCLUDE not inside PREDICATE.

The conclude procedure can be called only from a predicate ruleset.

See Section 4.2.

CONTINUE not inside DEMON.

The continue procedure can be called only from a demon.

See Section 4.3. ',$

Can't close "OS:" channel.

Can't close "TTY:" channel.

Called by:

To close a file

when file is either "OS: or "TTY:".

See Section 11.1.

Can't find program files for:
Filesegment

Called by any of the file package operations that try to load or
rename a program file (fileseginent) and can't find the
.txt or .map files on disk.

See Chapter 13.
-%

Defined as SYSTEM RULESET:
Filesegment",

Called when trying to break, trace, or profile a rule inside of
filesegment when it names a system ruleset.

See Section 14.1.

5-.:5.-.. :.-; . A-Y;;

B. Error Messages 328

File already open:
The file

Called by:

To open a file for input/output

when a channel to file is already open.

See Section 11.1.

File not open for input: v*
The file

Called by:

To read a string from a file

when file is not open for input.

See Section 11.1.

File not open for output:
The file

Called by:

To send a string to a file
To tab to a column in a file

when file is not open for output.

See Section 11.1.

File not open:
The file

Called by:

To close a file

when file is not opcn.

See Section 11.1.

Filesegment already exists:
The filespec

.1';"

B. Error Messages 329

Called by:

To build a filespec

when filespec names a program file that has already been noticed.

Filesegment not broken:
Filesegment

Called when trying to unbreak or untrace a ruleset (filesegment)
that is not broken.

Filesegment not enabled:
Filesegment

Called when trying to break, trace, or profile a ruleset from some
program file when that ruleset is not enabled. This is not the
same as trying to break a ruleset that is not enabled when the
program file of the ruleset is not given.

See Section 14.1.

Filesegment unknown to system: W-

Filesegment

Called from any of the file package and break package operations when .

filesegment is not noticed.

See Chapter 13.

Illegal argument to EVALUATE: '.. -

Timer argument

Called by: -

To evaluate a rule [against timer]

when the timer argument is anything but timer.

Illegal argument to STOP:
Dribbling argument . 4,

Called by: -

To stop dribbling

• 4% .
.:

B. Error Messages 330

when the dribbling argument is anything but dribbling.

Illegal BOX width:
Element oi

Called from the box subpattern.

See Section 9.6.

Illegal comparison:
Element] op element2

Called by one of the comparison operators (op) when the
operands (elementl and element2) cannot be compared under
that operation. %

See Section 9.3.

Illegal expression to EVALUATE:
The rule .

Called by:

To evaluate a rule [against timer)

when rule cannot be parsed as a ROSIE rule. .,q

Illegal I/0 access to AVAILABLE:
Input argument

Called by:

To decide a file is available for input

when the input argument is anything but input.

Illegal I/0 access to OPEN:

Input/output argument or read/write argument

Called by:

To decide if a file is open for input/output
To open a file for input/output
To open a file to read/write

when the input/output argument is anything but input or

B. Error Messages 331

output, or (in the case of the is open predicate)
input/output, or when the read/write argument is anything
but read or write.

Illegal i/O access to REDIRECT:
Input/output argument

Called by:

To redirect input/output [to a file]

when the input/output argument is anything but input or output.

Illegal operation:
Elementl op element2

Called by one of the arithmetic operators (op) when the
operands (elementl and element2) can't be combined under
that operation.

See Section 9.3. -

Illegal order to SORT: .. %
The order

Called by:

To sort a tuple in an order

when order is anything but ascending order, descending order,
ascending pair order, or descending pair order.

Illegal truth value to CONCLUDE: ".-"
True/false argument

Called by:

To conclude true/false

when the true/false argument is anything but true or false.

Illegal truth value to PROVABLY:
True/false argument

Called by:

V .

AVS..
! i

B. Error Messages 332

Before denying an element is [not] provably true/false 0
Before asserting an element is (not] provably true/false
To decide if an element is provably true/false

when the true/false argument is anything but true or false.

Illegal tuple to SORT:
The tuple

Called by:

To sort a tuple in an order

when tuple does not contain elements that can be sorted.

See Section 9.4.

Illegal unit of measure to [ARC]COSINE:
Radians argument

Called by:

To generate the farc]cosine of a number in radians

when the radians argument is anything but radians.

Illegal unit of measure to [ARC]SINE:
Radians argument

Called by:

To generate the {arcjsine of a number in radians

when the radians argument is anything but radians.

Illegal unit of measure to [ARCITANGENT:
Radians argument

Called by:

To generate the [arcjtangent of a number in radians

when the radians argument is anything but radians.

Index out of range in MEMBER:
The position

%7% ., .,%-

"% .*,,,_- -- .'.' " :,. '%L '.' '','',-'. ',',
L "

".''. %,Jx';" ," "".. ". -.'- ,"-..' -- "- -" " '. . .". .-...-. ."..-.-... .-.. . . ., , "

B. Error Messages 333
p.,P

Called by: p."v.

To decide if an element is a member of a tuple at a position
To decide if an element is a member of a tuple from a position
To generate the member of a tuple at a position
To generate a member of a tuple from a position

when position is negative or larger than tuple.

Index out of range in TAIL:
The position

Called by: ,

To generate the tail of a tuple at a position
To generate the tail of a tuple from a position

when position is negative or larger than tuple.

Input from file won't match pattern:
The pattern

Called by:

To read a pattern from a file

See Section 9.6.

Lexical error detected in:
Filename "

Encountered during parsing.

Called when a lexical error occurred during tokenization of a
file (filename).

No DRIBBLE FILE currently active.

Called by:

To stop dribbling

No such file exists:
Filename

Called when attempting to open a file (filename) that cannot 10

US

.' '' S.,oI

M. ' U.

B. Error Messages 334

be found on disk.

No such element exists:
THE description

Called when evaluating a simple descriptive term introduced by
the function word the and no element can be generated from
description.

See Section 8.4.

NOTE: When description is a call to a system generator, this error
indicates that the arguments to the generator were bad. Unlike
the other rulesets from the system support library, system
generators do not normally call an error when passed bad arguments,
rather they produce nothing. This is done to permit graceful error
recovery, e.g., the predicate there is a description fails
if description produces nothing, but does not call an error.

Not able to open file:
Filename

Called when a file (filename) exists but cannot be open.

Not coercible into a filename:
Element

Called by a ruleset that received element as a filename argument.
Element could not be coerced into a filename.

See Section 11.1. .,

Nothing saved for line N.

Called by history facility when attempt is made to access monitor
rule N and that rule is not one of the last 40 monitor rules
seen.

See Chapter 3.

Only files may be renamed:
The source filespec or the target filespec

Called by: "

To change a source filespec to a target filespec

, ,

%'. .

'* ' " ,

B. Error Messages 335

when either filespec names a portion of a program file rather
than a complete program file.

PRODUCE not inside GENERATOR.

The produce procedure can be called only from a generator i. ,,,
ruleset or a produce demon.

See Section 4.2.3.5.

Pattern not coercible to string:
Pat tern

Called when attempting to coerce pattern into a string and
pattern describes a language of more than one string. . ,

See Section 9.6.

Procedure not defined:
Procedure

Called when attempts to invoke procedure that currently is
not enabled.

Syntax error detected in:
Filesegment

Called by break package when trying to break, trace, or profile a
ruleset rule (fileseginent) when the ruleset contains a
syntax error.

See Chapter 14.

Terminal input won't match pattern:
The pattern

Called by:

To read a pattern

See Section 9.6.

. .-

.7.. .

,.

B. Error Messages 336

Unbound ANAPHORIC TERM:
THAT class noun

Called when evaluating an anaphoric term (that class noun) that
references an unbound description variable.

See Section 7.3.

Unbound RULE VARIABLE: A
Variable

Called when evaluating a rule variable (variable) that referencers
an unbound description variable.

See Section 7.3. %

• %

. .~ .

..-...,

.o . °

C. System Switches 337

APPENDIX C:
SYSTEM SWITCHES

N

ROSIE supports a small number of system switches to control certain
aspects of system behavior (these switches are implemented as LISP
variables whose values are T when on and NIL when off). Some switches
are supported to make ROSIE 3.0 act like earlier versions of ROSIE and
others simply to suppress noncritical features that the user may not
like.

The system switches include:

$AUTOQUERYFLG -- (default setting: off)

This switch controls ROSIE's actions when it can neither prove nor
disprove the truth or falsity of a proposition, i.e., the action
if, after examining the database and rulesets, the truth value of a
proposition is still unknown.

When this switch is on, ROSIE will look for the predicate ruleset,

To decide if a proposition is confirmed:

If such a ruleset exists, it will be applied to the positive form of A

the proposition. The conclusion of the ruleset decides the truth or
falsity of this form, which then decides the truth of the target
proposition.

ROSIE provides a default query mode predicate defined as

To decide if a proposition is confirmed:
Private: a reply.
Execute cyclically.
[1] Send "{cr){the query for the proposition) -.

[2] Read "(anything (bind to the reply)}{cr)".
[3] Select the uppercase of the reply:

<"YES"> assert the proposition is provably true
and conclude true;

<"NO"> assert the proposition is provably false
and conclude false;

< > return;
default: send "{cr}Please respond YES or NO{cr)".

End.

To see how this works, consider the following sample session

"% %

I"?

% ' " *' . . * - .. *,

C. System Switches 338

<2> ?
[GLOBAL Database]

<3> If John is a man, display yes.
<4> Switch on $AUTOQUERYFLG.
<5> Redo 3.

IS JOHN A MAN? y

Please respond YES or NO

IS JOHN A MAN? YES '
YES
<6> ?
[GLOBAL Database

JOHN IS A MAN.

<7> Redo 3.
YES

<8> If John does not love Mary, display yes.

DOES JOHN LOVE MARY? YES
<9> ?
GLOBAL Database
JOHN DOES LOVE MARY.
JOHN IS A MAN.

The auto-query mechanism allows ROSIE to build up its database by
consulting the user. While this mechanism is not always appropriate,
it is extremely useful for diagnostic tasks.

$COMPRULESETS -- (default setting: off)
$EXPDRULESETS -- (default setting: on)

These two switches apply when a ruleset is defined (enabled) in a
ROSIE session. %

When the $COMPRULESETS switch is on, the definition of a ruleset
will be compiled in core when defined.

When the $EXPDRULESETS switch is on, the definition of a ruleset
will be optimized (through a series of macro expansions) when defined.

When either of these flags is set, load time of a program file will
be increased about ten times. For program files containing a dozen
or more rulesets, this means an increase from a matter of seconds to
half a minute or more, but the compiled and optimized (compiling
also optimizes) definitions run much faster.

.4

-4 ..3

4....
* - W v .. * m ~. 4 * ,i--.

C. System Switches 339

$EXTENDSEARCH -- (default setting: on)

This switch controls the manner in which ROSIE conducts its search
of the physical database--yet another aspect of ROSIE 3.0 that
differs from earlier ROSIEs.

In earlier releases, the physical database structure was two-tiered. 1_ 4

When searching the physical database, ROSIE would first examine the
private database then the active. It would examine only the global
database when active._r

The structure of the physical database in ROSIE 3.0 is three-tiered.
ROSIE first consults the private database (which has been reduced to
a much restricted form), then the active database, and then the
global database. If the global database is also the active database,
it will only be examined once. %

When this switch is off, ROSIE returns to a two-tiered database * ..
structure. The following sample session illustrates the difference.

<2> Assert each of Jim, Jack and John is a man.
<3> ?
GLOBAL Database]

JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<4> Activate tmp.
<5> ?
TMP Database]

<6> Display every man.
JOHN
JACK
JIM
<7> If John is a man, display yes, otherwise display no.
YES
<8> Switch off $EXTENDSEARCH. -
<9> Display every man.
<10> If John is a man, display yes, otherwise display no.
NO

$MIXPRINTMODE -- (default setting: off) .-

When ROSIE 3.0 displays things like the evaluation name of an element,
e.g., %N.

<19> Display 'John is a man'.
'JOHN IS A MAN'

the contents of a database, e.g.,

... :-

Cr. .'. C.-.-.

'" 2 ' "J " ; -:," ." : ; : ; ::" : , ; : : :V ": . --:.;. . ft- - fo-;t -;_:°-::

C. System Switches 340

<20> Assert each of Jim, Jack and John is a man.
<21> ?
GLOBAL Database J

JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

or coerces an element into a string, e.g.,

<22> Display the string from (the man)..or
"JOHN"

it does so putting all characters (except those within string tokens)
into uppercase. In earlier releases, such output was done in mixed -

case, e.g., -

<23> Switch on $MIXPRINTMODE.
<24> Redo 19 thru 22.
'JOHN is a man'
[GLOBAL Database

JOHN is a man.
JACK is a man.
JIM is a man.

"JOHN",""

Fixed syntactic constructs, such as prepositions, appeared in
lowercase while arbitrary arguments appeared in uppercase. Mixed
case is helpful when learning to distinguish Letween such constructs,
but is undesirable in a finished system.

When $MIXPRINTMODE is on, output appears as it would in earlier
releases of ROSIE. When off, output is in uppercase.

$PRETTYFORMAT -- (default setting: off)

This switch also controls the format of output. When on, output
will appear in lowercase (even if $MIXPRINTMODE is on). Further,
strings will appear without surrounding double quotes, the intentional
elements without single quotes, and the first nonseparator character
of the string will be capitalized, e.g.,,-.

<25> Switch on $PRETTYFORMAT.

<26> Display 'John is a man .

John is a man

The print procedure is equivalent to the send procedure when
$PRETTYFORMAT is on (see Chapter 11).

This switch also allows the user to control the format of explicitly
named tokens, working in conjunction with the print as procedure.

.. .%

% % %,':

C. System Switches 341

The print as procedure takes two arguments, one a name element and
the other a string. When the $PRETTYFORMAT is on, instances
of the name will be output as the given string, e.g.,

<27> Print John Brown as "John Brown".
<28> Display 'John Brown is a man'.
< D lJohn Brown is a man '.

$PRINTMSGS -- (default setting: on)

This switch controls whether miscellaneous system messages are output. %
For instance, most of the file package commands output messages that
trace their operation. While such messages are not necessary for -

system performance, they do provide a sense of security that comes from
knowing what's happening. In a finished ROSIE expert system, such
messages may appear irrelevant. They can be disabled by switching off
$PRINTMSGS.

$REMOVEDUPLS -- (default setting: off) .e

This switch deals with the generation of elements from a description.
It enables a feature found in older releases of ROSIE but that is
not the standard for ROSIE 3.0.

Descriptions are thought of as implicitly naming a set of elements.
Further, descriptions can be used as generators to produce these
elements in sequence. In an attempt to ensure the purity of the notion
that descriptions named sets, earlier ROSIEs always removed duplicate
elements from the sequence produced by a description, e.g., in
ROSIE (Version 2), the following would occur N .

<10> Display every member of <1,2,2,3,3,3>.
1 .
2

3
'.'.%"-

while in ROSIE 3.0,

<10> Display every member of <1,2,2,3,3,3>.
1
2
3

3
3

This change was not the result of some great conceptual insight, but U.-

prompted purely by pragmatics. The test to ensure that an element
wasn't produced twice turned generation of elements into an O(n2) process.

2.P,

C. System Switches 342

Thus, while this feature ensured set purity, set purity was rarely an A
issue, often an annoyance, and greatly hindered system performance.

The old mechanism was not removed from ROSIE 3.0, merely disabled.
When $REMOVEDUPLS is on, this mechanism is reenabled.

OPERATIONS ON SYSTEM SWITCHES

The operations for turning switches on and off as well as for NA
checking their setting are defined as follows:

switch on a switch"switch off a switch

Respectively, enables or disables switch, which is one of ROSIE's
system switches.

<15> Switch on $MIXPRINTMODE.
<16> ?

GLOBAL Database] -4/.-
SARA is a woman.
MARY is a woman.
JOHN is a man.
JACK is a man.
JIM is a man.

toggle on a switch
toggle off a switch

Like switch on/off except that, if executed in a ruleset,
switch reverts to its original setting when the ruleset terminates.

toggle a switch ,*

If switch is on, turns it off, otherwise turns it or.

a switch is set

Concludes true if switch is on, concludes false otherwise, e.g.,

<17> If $MIXPRINTMODE is set, display yes.
YES

A-,7

".....

b., %

C. System Switches 343

info switches

Lists the setting of all system switches, e.g.,

<18> Info switches.

$AUTOQUERYFLG is off
$COMPRULESETS is off
$EXPDRULESETS is on
$EXTENDSEARCH is on
$MIXPRINTMODE is on
$PRETTYFORMAT is off
$PRINTMSGS is on
$REMOVEDJPLS is off

.. %

A. ~

References 345

REFERENCES

- -

Anderson, R. H., and J. J. Gillogly, RAND Intelligent Terminal Agent
(RITA): Design Philosophy, The RAND Corporation, R-1809-ARPA, 1976.

Anderson, R. H., M. Gallegos, J. J. Gillogly, R. B. Greenberg, and R. V.
Villanueva, RITA Reference Manual, The RAND Corporation, R-1808-ARPA,
1977.

Beebe, H. M., H. S. Goodman, G. L. Henry, and D. S. Snell, "The Adept
Workstation: A Knowledge-Based System for Combat Intelligence
Analysis," Proceedings of the Seventh MIT/ONR Workshop on C3 Systems,
Massachusetts Institute of Technology, Cambridge, MA, 1984.

Callero, M., D. A. Waterman, and J. R. Kipps, TATR: A Prototype Expert
System for Tactical Air Targeting, The RAND Corporation, R-3096-ARPA,
1984.

Fain, J., D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowizral, and D.
A. Waterman, The ROSIE Language Reference Manual, The RAND
Corporation, N-1647-ARPA, 1981.

Fain, J., F. Hayes-Roth, H. Sowizral, and D. A. Waterman, Programming in
ROSIE: An Introduction by Means of Examples, The RAND Corporation,
N-1646-ARPA, 1982. .

Forgy, C. L., The OPS5 User's Manual, Technical Report CMU-CS-81-135,
Computer Science Department, Carnegie-Mellon University, Pittsburgh,
PA, 1981.

Galway, W., M. L. Griss, B. Morrison, and B. Othmer, The Portable
Standard LISP User Manual, The Utah Symbolic Computation Group,
University of Utah, Salt Lake City, UT, 1984.

Hayes-Roth, F., D. A. Waterman, and D. Lenat (eds.), Building Expert
Systems, Addison-Wesley Publishing Co., Inc., Reading, MA, 1983.

Hayes-Roth, F., D. Gorlin, S. Rosenschein, H. Sowizral, and D. A.
Waterman, Rationale and Motivation for ROSIE, The RAND Corporation,
N-1648-ARPA, 1981.

Irons, E. T., "Syntax Graphs and Fast Context-Free Parsing," Research ?

Report 71-1, Yale University, New Haven, CT, 1971.

Kowalski, R., "Algorithm Logic + Control," Communications of the ACM,
Vol. 22, No. 7, 1979.

i,.

pwong
Text Box
preceding page blank - not filmed

References 346

Kruppenbacher, T. A., "The Application of Artificial Intelligence to
Contract Management," Masters thesis, Department of Civil,
Environmental and Architectural Engineering, University of Colorado,
Boulder, CO, 1984.

1, .'.l, .

McDermott, J., and C. Forgy, "Production System Conflict Resolution
Strategies," D. A. Waterman and F. Hayes-Roth (eds.), in
Pattern-Directed Inference Systems, Academic Press, New York, NY,
1978.

Pagan, F. G., Formal Specification of Programming Languages: A %
Panoramic Primer, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

Paul, J., D. A. Waterman, and M. A. Peterson, "SAL: An Expert System for N"..
Evaluating Asbestos Claims," Proceedings of the First Australian
Artificial Intelligence Congress, Melbourne, 1986.

Sowizral, H. A., and J. R. Kipps, ROSIE: A Programming Environment for
Expert Systems, The RAND Corporation, R-3246-ARPA, 1985. %

Teitelman, W. et al., Interlisp Reference Manual, (3d rev.) Xerox Palo
Alto Research Center, Palo Alto, CA, 1978.

Tomita, M., "An Efficient Context-free Parsing Algorithm for Natural
Languages," Proceedings of Nineth International Joint Conference on
Artificial Intelligence (IJCAI-85), pp. 756-764, Los Angeles, CA,
1985.

van Melle, W., E. H. Shortliffe, and B. G. Buchanan, "EMYCIN: A
Domain-independent System That Aids in Constructing Knowledge-Based
Consultation Programs," Machine Intelligence, Infotech State of the
Art, Report 9, No. 3, 1981.

Waterman, D. A., J. Paul, B. Florman, and J. R. Kipps, An Explanation
Facility for the ROSIE Knowledge Engineering Language, The RAND .

Corporation, R-3406-ARPA, 1986. ."- .%

Waterman, D. A., and M. A. Peterson, Models of Legal Decisionmaking, The
RAND Corporation, R-2717-ICJ, 1981.

Waterman, D. A., R. H. Anderson, F. Hayes-Roth, P. Klahr, G. Martins,
and S. J. Rosenschein, Design of a Rule-Oriented System for
Implementing Expertise, The RAND Corporation, N-1158-ARPA, 1979. ,,

Winston, P.H., Artificial Intelligence, Addison-Wesley Publishing Co.,
Inc., Reading, MA, 1979.

S . -. - - 5 - S .°S. . . .

-~. ~ S S 5 5 " .,

Index 347

INDEX

$AUTOQUERYFLG 230; 337 V ;

$COMPRULESETS 338 .E

$EXPDRULESETS 338
$EXTENDSEARCH 339
$MIXPRINTMODE 339
$PRETTYFORMAT 176; 248; 340

$PRINTMSGS 341
$REMOVEDUPLS 341
$ROSIEEDITOR 49; 264
cmp files 253 S. ,

db files (see dump and restore) 233
map files 253
rosie-ed 49
rosierc 43; 264,%
text files 255
txt files 253
<ctrl>C 56; 251
<ctrl>D 64
<ctrl>Z 58
<atom> 27
<integer> 27
<number> 27
<string> 27
<CONTINUE> 87
<FALSE> 87
<TRUE> 87

" number an integer 164

a number an integer 164

a number an neer 164

a number * a number 164

a number a number 164

a number - a number 164

a number I a number 164 .] ,-

an element [11 an element 155

<term> [~]: <term> 111; 151
<term> [<[] <term> 111
<term> [~]>[: <term>

a number [~]<[=] a number 165
<term> [~]<[=] <term> 11-

L k

I ndex 348

-%°*

a number [~1>[=] a number 165
<term> []>[=] <term> 111

<integer>? 59
<name element>? 59; 233
? 59; 233
?? 59
private? 273

(<subpat> [<subpat>* 181

(<subpat> [<subpat>]* 1 182
a new

a new <descxipt.ian> 140
alan

(I a I an I) <description> 140
absolute value 6.

the absolute value of a number 165
action blocks 89
actions 89

conditional actions 95
conditional blocks 96
database actions 93; 220
execute actions 89
iterative actions 100
procedures 93
types of 89

activate
activate [a database] 232

active database 221
active database

the active database 232
add

add-a proposition to a database 212; 235
addition operator (+) 164
adjectives vs class compounds 131
adjoin

adjoin <subpat> [, <subpat>]* 185
affirmed proposition

an affirmed proposition [from a database] 212; 234
affirmed propositions 219
alphanumeric

[non]alphanumeric[s] [[not] in <term>] 186
alternate database

an alternate database 233
alternate databases 221
ambiguity 38
anaphoric descriptions 127
anaphoric reference 126; 144

resolving ambiguity 128
anaphoric terms 126; 144

, ,::. N NS,
',-' all

Iiff1.5' YT V' CrV. V "

Index 349

and
<action> and <action block> 67

<disjunct> [, and <disjunct>]* 105

<primary> and <conjunct> 105

ANIMAL 305

antilog
the [anti]log of a number 166

any
any <description> 201

anything ".

anything 188
apostrophe s

possessive case 139

append
N

append a file to a file 250

arccosine
the [arclcosine of a number [in radians] 166

arcsine

the [arcjsine of a number [in radians] 166

arctangent
the [arc]tangent of a number [in radians] 166

argument passing 78
argument

an argument of an element 156 %%

arithmetic operators 26; 135

arithmetic terms 135
ASCII characters

generation of (see charcode) 191

assert demons 82

assert events 82; 94; 228 - -

assert % d,

assert a proposition [in a database] 212; 235

assert <proposition> land <proposition>]* 94; 234

asserting propositions 228

assignment operator (see let) 94

associativity 38

of action blocks 91

of arithmetic operators 137

of conditional actions 96

of conditional blocks 98
of conditions 106

of iterative actions 102

of unit constants 162

atomic tokens 21 %" %*

auto-query mode 230

available
a file is available for input 248

backspace
backspacefsj 190 ,, -
bs 190

backward reasoner in ROSIE 303

... '

% '%%'VV l.~ ", % C 'C% '.

Index 350

be and do
auxiliary forms of 26

before
before asserting <pred form>: 81.
before denying <pred form>: 81
before executing <proc form>: 81
before generating <genr form>: 81
before producing <genr form>: 81 d"

before testing [if] <pred form>: 81
blank

blank[s] 190
[nonjblank[s] [[not] in <term>] 186

BNF
lexical 27
linguistic 28

boolean connectors 105
both

both <term> [,] and <term> 147 . t'.

bottom
bottom! 273 p. 4

box
box <subpat> to width <term> 183

break characters 18; 26
break commands 22; 270

bottom! 273
conclude false! 272
conclude true! 272
down! 272
edit [(I ruleset I <integer> 1)]! 271
eval! 270
help! 273
list [(I ruleset I <integer> 1)]! 271
pop! 273
produce an element! 272
quit! 273
result! 271
resume [(I ruleset I <integer> 1)1! 271 , '.
return! 271 ' 4

top! 273
trace! 272
up! 272

break loops 56; 270
break package 267

break facility 270
profile facility 278
trace facility 268
unbreaking 279

break
break [a filespec] 280
bs

190

- ~ J w P-P-%_

I ndex 351

build
build a filespec 260

call 89
cardinality operators 112
ceiling

the ceiling of a number 166
center justify

center justify <subpat> [<dimen>] 184
CJ [<term>] [by <term>) : <subpat> 184

change
change a filespec to a filespec 262

channel
an open channel 247 ZOO
the OS channel 247
the standard input channel 247
the standard output channel 247
the TTY channel 247

channels 241
closing 241
opening 241
operations on 246
OS channel 243
reading from 244
sending to 244
standard I/0 channels 242
TTY channels 242

character classes 18
character codes

generation of 191
recognition of (see codes) 189 4-

characters
character[s] [[not] in <term>] 186

charcode
charcode <term> 191

choose
choose situation: [selector[;]]* [default: <action block>[;]] 97

class elements 201
potential pitfalls 203

class membership 108
generating 118
pitfalls 119
testing 116

class nouns 116
class relations 109
class

an element is a class 154
the class from a string 175

classes 116 I.

compounds vs adjectives 131
with relaLive clause 120

clear

.

A - "*~% *..'**"/i*

Index 352

clear a database 233
clear database 233

close
close a file 246
close everything 246

closing I/0 channels 241
codes

codes (<integer> [, <integer>]*) 189
comma blocks 91
comma-and 105
comma-or 105
comment characters 19
comments 22
communicating with the ope.rating system 243
comparison operators 111
compile

compile a filespec 261
compiling program files 254
complement of a proposition 110
complementation 108
concatenation

the concatenation of a tuple with a tuple 169
concatenat ion

in patterns 181 ,'
conclude

conclude false 81
conclude false! 272
conclude true 81
conclude true! 272

conditional actions 90; 95
conditional blocks 90; 96
conditions 105
confirm

a proposition is confirmed 230; 337
conjunction

in conditions 105
in patterns 181
in relative clauses 121

constant
an element is a labeled constant 164
an element is a unit constant 164

containing
the tuple containing each <description> 169

continue
continue 81

contradictory assertions 220
control

control <term> 191
[nonlcontrol[s] [[not] in <term>] 186

copy
a copy Of an element 156

o4 ,.

Index 353

copy a file to a file 249
copy a filespec after a filespec 263
copy a filespec before a filespec 263
copy from a database 234 %
copy to a database 234

cosine
the [arcicosine of a number [in radians] 166

CR
CR[s] 189

create
create <a/an> <description> 95; 235 .4.

cyclic monitor 72
data types (see elements) 134
database actions 90; 93; 220

database
a database 232 ' -V.,

an alternate database 233
the active database 232

databases 219
accessing 223 "
activating 221
active database 221
alternate 221
creating 221
global database 221
naming 221 .,-

operations on 232
physical 219
private database 221

virtual database 224
deactivate

deactivate 232 .,-
debugging aids 267
declarations 21 "
decode

decode a filespec 263
decrement

decrement a description [by a number] [in a database] 210; 237
delete

delete a file 64; 250
demo programs 283

ANIMAL 305
FORTUNE 285
POIROT 295

demons 81
assert 82

deny 82
generate 82
generator 83
procedural 82
produce 83

%~~ -A .%-
.p., ."

.....-.. *..-.-'...-...-..~~~~p -. --- -- - - ..-.

Index 354

test 82
types of 82

deny demons 82
deny events 82; 94; 229
deny

deny a proposition [from a database] 213; 235
deny <proposition> [and <proposition>)* 94; 235

denying propositions 228
deparse

deparse a filespec 262 * e.
describe ,.

describe an element [in a Jatabase] 61; 234
description variables 125
devaript ion

an element is a description 155
the description from a string 175

descriptions 115
anaphoric 127
asserting members 130
denying members 130
description variables 125
generating members 129
testing membership 129

descriptive terms 137
quantified 141
simple 138

digit
[non]digit[s] [[not] in <term>] 186

digits 19
disable

disable a filespec 264
disabling program files 254
disambiguation 38
disjunction

in conditions 105
in patterns 182
in relative clauses 121

display
display an element 61; 248

division operator (/) 164
do

do nothing 93
down

down! 272
dribble

dribble to a file 61; 250
stop dribbling 250 %

dskin
dskin a file 64; 250 %

dump
dump [a database] as a file 233

%.

2! :::::

Index 355

.:.5,..

each of
each of <term> (, <term>]* [,] and <term> 147

edit
edit a filespec 264
edit [(I ruleset I <integer> 1)]! 271

editing program files 254; 256
EDITOR (unix shell variable) 49; 264
either

either <term> [, <term>)* (.,} or <term> 146
element type

the element type of an element 155
element

the element from a string 174
elements 149

as terms 134
class elements 201
equivalence vs. equality 151
evaluation names 151
filesegments 199
intentional 149
intentional descriptions 207 del:

intentional procedures 217
intentional propositions 211
labeled constants 163
names 159
numbers 161
operations on 153
patterns 177
simple 149
simple numbers 161
strings 171 '

tuples 167
types of 149; 155
unit constants 162

embedded control structures 305
empty

a tuple is empty 167
enable

enable a filespec 261
enabling program files 254
end statement 73
end

end 190 UM
end. 73

entering LISP (see lisp) 64
EOL

EOL[s] 190
equal

an element is equal to en element 155
<term> is [not] equal to <term> 111; 151

equivalence vs. equality 151

",. " 1
I'

. _'p " " .)-' - ,,"% "' " m * " " % " % '" "% " '- "% % % " " " ."% ""., "" ".."- •" • " "- • . ' " -" " ,,. ""
%" "W

Index 356

erase

erase a filespec 263
error demon 85; 251
error messages 313
error

<a string, a filesegment> is an error 252
errors 5b; 251

error messages 313
nonrecoverable 251
parsing 313
recoverable 251
recovery 270
runtime 317
scanning 313
tokenization 313

esc

esc 190;I..".
escape characters 19escape

esc 190

escape[s] 190 *

eval
eval! 271

evaluate
evaluate a string [against timer] 175

evaluation names 151
event-driven program control 81
events

and demons 81
assert 82; 94; 228
continuing (see continue) 81
deny 82; 94; 229 ,' . '

generate 83; 112; 129; 138
produce 84
test 82; 229 '. V

types of 82
every

every -description- 143
examining program files 254
excev ,

except -term 125
execute actions

go and call 89 %

execute
execute a procedure 217
execute cyclically. 72 "e
execute randomly.
execute sequentially. 72

execution monitor 7q
execution monitor declaration 72
exiting LISP (see lisp) b4

J, ".. "o

- . -.. -.v " ..-. .- ,' -' ,-. ,- -. ..-- -- - -. - ., -- --. .- - -- --, .- . .,- , .• --. .-..- .-. -, - -, - -. .- -.,V -* --V"V-: '

. ',,-: ,... ; ,'; ;-.. ',' , -,'',.; ... ,,.'.:, . +','v;. v , ,,, -v .. .,,...,,, ..;,.,..V-..

1e~w~a~nrrnaUNTp -inn~l~lnwxuy RU ujwwwwwwuwwj~wwVr

Index 357

owl

exiting ROSIE (see logout) 58 .,
exponential notation 20
exponentiation operator (- and **) 164
extended string syntax 23
external access 243
false

a proposition is false [in a database] 214; 238
a proposition is provably false 213; 237

file items 20
file package 253
file specifiers 199
filename

an element is a filename 247
files (see program files) Z53
fil esegment

an element is a filesegment 154
the filesegment from a string 175

filesegments 199
application of 257
operations on 260 A?'
rule sequence specifiers 258
shorthand notation 199; 259

files * **. ./

loading LISP files (see dskin) 64
find

find a string in a filespec 265
first member

the first member of a tuple 168
fix

fix [a line] 60
fixed format strings 171
fixed format .

fixed format <subpat> [, <subpat>]* 183
floor ,,

the floor of a number 165 -*

for each
for each <description>, <action block> 101 % %

forget
forget about an element [in a database] 61; 234

format
fixed format <subpat> [• <subpat>]* 183
free format <subpat> [, <subpat>]* 182

formfeed
formfeed[s] 190
page[s] 190

FORTUNE 285 .•..
free format strings 171
free format

free format <subpat> [, <subpat>]* 182
garbage collection (see reclaim) 65
generate demons 82

%.-

Index 358

generate events 83; 112; 129; 138
generator demons 83
generator rulesets 76
global database 221
go 89
greater

a number is greater than [or equal to] a number 165
<term> is [not] greater than (or equal to] <term> 111

has t -,.

<term> has <a/an> <description> 112
<. .<term> has just one <description> 112<term> has more than one <description> 112 -

<term> has no <description> 112
headers 69
help

help! 273
HILEV 15; 64; 253
history facility 44
if

if <condition> <then part> [<else part>] 96
increment

increment a description [by a number] [in a database] 210; 237
info

info date 63
info loaded 63
info switches 62; 342
info system 63

input/output 241
input

a file is available for input 248
a file is open for input 248
a file is open for input/output 248
the standard input channel 247
open a file for input 246
redirect input [to a file] 247

insert ".'
insert after a filespec 264
insert before a filespec 264

instance
an instance of a description [in a database] 209; 236
an instance of an element 155
an element is an instance of a description [in a database] 210; 236
an element was an instance of a description [in a database] 210; 236
an element will be an instance of a description [in a database] 210; 236

instantiate
instantiate a description to an element [in a database] 209; 236

integer
an integer from a lower bound to an upper bound [by a step] 166
an element is a negative integer 164.an element is a positive integer 164
an element is an integer 164

- - - - - -- .. ,, - - -. - T

I ndex 359

intentional descriptions 207
call-by-name property of 209
evaluation of 207
operations on 209 ,

intentional elements 149 -

class elements 201
intentional descriptions 207
intentional procedures 217
intentional propositions 211

intentional procedures 217
operations on 217

intentional propositions 211
evaluation of 211
operations on Z12

interrupts 56
intransitivity 108
iterative actions 91; 100
iterative terms 145
just ify

center justify <subpat> [<dimen>] 184 4
CJ [<term>] [by <term>] : <subpat> 184
left justify <subpat> [<dimen>] 184
LJ [<term>] [by <term>] : <subpat> 184
right justify <subpat> [<dimen>] 184
RJ [<term>] [by <term>] : <subpat> 184 IN

label
the label of a number 164

labeled constant w- ,
an element is a labeled constant 164

labeled constants 163
LAMBDA 85
lambda form 85
last member

the last member of a tuple 168 N-
left justify

left justify <subpat> [<dimen>] 184
LU [<term>] [by <term>] : <subpat> 184

length
the length of a string 174
the length of a tuple 167

less
a number is less than [or equal to] a number 165
<term> is [not] less than [or equal to] <term> 111

let
let <term> be the <description> [and <term> be the <description>]* 94; 235

letter
[noniletter[s] [[not] in <term>] 186

letters 19
line

linels] 188
lisp

v. w -' e '... .'..j ,¢ %. %,%d% % %'. . % .

a.

Index 360

lisp 64
LISP

entering (see lisp) 64
exiting (see lisp) 64
garbage collecting (see reclaim) 65
loading files (see dskin) 64

LIST-TO-TUPLE (LST) 87
list

list a filespec 262
list [(I ruleset I <integer> 1)]! 271

load
load a filespec 260

loading LISP files (see dskin) 64
loading program files 254
log

the jantillog of a number 166
logout 66

logout 66-.
lowercase %,%

the lowercase of a string 174
match

match a string against a pattern 176; 196
match <term-,: [selector[;]]* Idefault: <action block>[;)] 98

matched .. .

a string is matched by a pattern 176; 197 .-
member

a member of a ruple [from a position] 167
the first member of a tuple 168
the last member of a tuple 166
the member of a tuple at a position 168
the second member of a tuple 168

mixed format strings 171
modifying program files 254; 256
monitor rule 44
move

move a files pec after a filespec 263
move a filespec before a filespec 263

multiplication operator (1 164
name

an element is a name 154
the name from a string 175

names 159
negated propositions 110
negated

a proposition is negated 214
negation

the negation of a number 165
negative integer

an element is a negative integer 164
nogat i'e number

an element is a negative number 163 a.

- -:.W%*"
• #.,.

Index 361

NIL 87
nonal phanumeric

[non]alphanumeric[s] [[not] in <term>] 186
nonbiank

[noniblank[s] [[not] in <term>] 186
noncontrol

[non]control[s] [[not] in <term>] 186 .-
nondig-it

[non]digit[s] [[not] in <term>] 186
nonletter , -.

[non]letter[s] [[not] in <term>] 186
nonnumber

[non]number[s] [[not] in <term>] 186
nonnuineraJ

[non]numeral[s] [[not] in <term>] 186
nonrecoverable errors 251
not

<term> <is/do aux> not [<a/an>] [<term>) [<pphrase>] 110
not-ice *

notice a filespec 261
noticing program files 254

noun phrase specifiers 26
number

a number from a lower bound to an upper bound [by a step] 166
a random number from a lower bound to an upper bound 166 A %

an element is a negative number 163
an element is a number 154; 163
an element is a positive number 163
an element is a simple number 164
the number from a string 175
[non]number[s] [[not] in <term>] 186

numbers 161
arithmetic operators 163
comparisons 163
constraints on 163
labeled constants 163
operations on 163
simple numbers 161
types of 161
unit constants 162

numeral
InonlnumeralIs] [[not] in <term>] 186

numeric operators 135
numeric tokens 20
numeric value

the numeric value of a number 165 rV

one of
one of <term> [, <term>]-,' [,j or <term> 146

open
a file is open for input 248
a file is open for input/output 248

"'- '# " , 'm """", ' 1 "% '""a ' % """ ' "' ' %." ,% " *" -K" ." -".".'" • ,'" "* .'" ","- " "'-: %

Index 362

%w'.a file is open for output 248 e
an open channel 247
open a file for input 246
open a file for output 246
open a file to read 246
open a file to write 246 "4.'

opening I/O channels 241
or

<conjunct> or <disjunct> 105
<disjunct> [, or <disjunct>]* 105

OS channel 243
OS channel

the OS channel 247
output

a file is open for input/output 248
a file is open for output 248
the standard output channel 247
open a file for output 246 ,,,,
redirect output [to a file] 247

overlay ' .
overlay <subpat> on <subpat> [<coords>] [<padding>] 185

pad . =

pad <subpat> 183
page

formfeed[s 190
page[s] 190 -..

paraphrase
paraphrase 64 .,."'

parse tree generation 38
parse

parse a file 262
parsemode

parsemode 64
parsing 15
parsing errors 313
pattern variables 191
pattern

an element is a pattern 154
the pattern from a string 175

patterns 177
example application 195
operations on 196
outputing text 244
reading against 24
relations to strings 172
subpatterris 179
text formatting 177
text matching 178
the matching process 193 ..-

physical databases 219
POIROT 295

% %

i'I

Index 363

pop s

pop ! 273
positive integer

an element is a positive integer 164
positive number

an element is a positive number 163
precedence 38

of arithmetic operators 137
of conditions 106
of unit constants 162 ./

predicate rulesets 74
predication 108
prepositional phrase 39
prepositions 26
primitive sentences 107
print

print a name as a string 176; 249
print a string [on a file] 176; 248

private class declaration 72
private classes 71
private database 78; 221
private

private: <formal> [([initially] <term>)J [, .J*. 72
private? 273

procedural demons 82
procedural rulesets 73
procedure

an element is a procedure 155
the procedure from a string 175

procedures 90; 93
produce demons 83
produce events 84
produce

produce an element 80
produce an element! 272
produce an element. 273

profile
profile report 280 --.
profile reset 280
profile ja filespec] 280

profiling facility 278
program files 253

building 254
compiling 254
disabling 254
editing 254; 256
enabling 254
examining 254
loading 254
modifying 254; 256
noticing 254

- . .72.. "

I ndex 364

proposition P'
an affirmed proposition [from a database] 212; 234
an element is a proposition 155
the proposition from a string 175

propositions 107
asserting 228
denying 228 %
testing 228

provably
a proposition is provably false 213; 237
a proposition is provably true 213; 237

quantified descriptive terms 141
queries 22
query

the query from a proposition 215
quit

quit [because a string] 81; 251
quit! 273
quit. 273 A

quote
quote[s] 189

random monitor 72
random number

a random number from a lower bound to an upper bound 166
range

a number does range from a lower bound to an upper bound 165
read

open a file to read 246
read a pattern [from a file] 196; 249

reclaim
reclaim 65

recoverable errors 251
redirect

redirect input [to a file] 247

redirect output [to a file] 247
redirecting standard I/O 242 %

redo
redo 60
redo a line [thru a line] [for N times] 60 W-7

relative clause specifiers 26

relative clauses 120
remove

remove a proposition from a database 213; 235
rename

rename a file to a file 250
reserved words 26
restore

restore a file [to a database] 234 N"
result

result! 271
resume

% ,

Index 365

resume [(I ruleset <integer> j)]! 271
return

CR[s] 189
return 80
return! 271
return[s] 189

reverse
the reverse of a tuple 169

right justify
right justify <subpat> [<dimen>] 184

RJ [<term>] [by <term>] : <subpat> 184

RITA 9
root names 116

root
the square root of a number 166

rule sequence specifiers 199; 258

rule variables 126; 144

rules 21; 67
ruleset headers 21

in filesegment 199

rulesets 69
generator 76

predicate 74

procedural 73
system 85

types of 73

runtime errors 317

save
save as a file 65
save [a filespec] 264

scan J,"

scan a filespec 262
scanniAg errors 313

scanning program files 254

second member
the second member of a tuple 168

select
selet . " <term>: [selector[;)]] [default: <action block>[;11 97

send
send a string [to a file] 175; 248

sentences 106
propositions 107

* special forms 110
types of 106

separator characters 18

* soquintial monitor 72

Si :,-4irch is set 62; 342

show I.a d1 abase] 233
' riptiVe terms 138

.:S-

V1,

I ndex 366

simple elements 149 V
filesegments 199
labeled constants 163
names 159
numbers 161
patterns 177
simple numbers 161
strings 171
tuples 167
unit constants 162

simple number
an element is a simple number 164

simple numbers 161
sine

the [arcjsine of a number [in radians] 166
some

some <description> 142
something

something 188
sort

sort a tuple in ascending order 169
sort a tuple in ascending pair order 169
sort a tuple in descending order 169
sort a tuple in descending pair order 169

special sentence forms 110
square root -.

the square root of a number 166
square

the square of a number 166
standard input

the standard input channel 247
standard output

the standard output channel 247
stop '*.'-

stop dribbling 61; 250
string delimiter 18
string tokens 20
string

an element is a string 154
the string from an element 174

strings 171
extended syntax 23
fixed format 171
format attribute 171
free format 171
mixed format 171
operations on 173
relations to patterns 172

subpatterns 179
conjunction of 181
disjunction of 182

S.. , . I .1.'

*~JA.:;.

Index 367

text formatting 182
text matching 186 L
<integer> or (I more I less I fewer I) (of] <subpat> 186
<integer> [of] <subpat> 189
<term> 188
adjoin <subpat> [, <subpat>]* 185
anything 187
backspace[s] 190
blank[s) 190
box <subpat> to width <term> 183
bs 190
center justify <subpat> [<dimen>] 184
character[s] [[not] in <term>] 186 '
charcode <term> 191.
CJ [<term>] [by <term>] : <subpat> 184
codes (<integer> [, <integer>]*) 189
control <term> 191
CR~s] 189 ".
end 190
EOL[s] 190
esc 190
escape[s) 190
fixed format <subpat> [<subpat>]* 183
formfeed[s] 190
free format <subpat> [, <subpat>]* 182
left justify <subpat> [<dimen>] 184 e
line(s] 188
LJ [<term>] [by <term>] : <subpat> 184
overlay <subpat> on <subpat> [<coords>] [<padding>] 185
pad <subpat> 183
page[s] 190
quote(s] 189
return[s] 189
right justify <subpat> [<dimen>] 184
RJ [<term>] [by <term>] : <subpat> 184
something 188
tab[s] 190
[non]alphanumeric[s] [[not] in <term>] 186
[non]blank[s] [[not] in <term>] 186
[non]control[s] [[not] in <term>] 186
[non]digit[s] [[not] in <term>] 186
[non]letter[s] [[not] in <term>] 186
[non]number[s] [[not] in <term>] 186
[non]numeral[s] [[not] in <term>] 186-%
{ <subpat> [, <subpat>]* 1 181
{ <subpat> [1 <subpat>]* } 182

substitute
substitute an element for an element in an element 156

substitution
the substitution of an element for an element in an element 156

subtraction operator (-) 164

'. .- .

z.r''

Index 368

such that
(such that <condition>) 122
such that (<condition>) 122
such that <sentence> 122

such
such [<a/an>] <class noun> [(<desc var>)j 127

suspending ROSIE 58
swap

swap in a database 232
switch

switch off a switch 61; 342 %
switch on a switch 61; 342 .%'

sysload
sysload a, filespec 261

sysouts (see save) 65
system ruleset library 87
system rulesets 85
system switches 58; 337

operations on 342
system

system ruleset <header>: 85
tab

tab to an integer [on a file] 248
tab[s] 190

tail
a tail of a tuple [from a position] 168
the tail of a tuple at a position 168

tangent
the [arcitangent of a number [in radians] 166

terminator characters 19
terms 133

anaphoric 144
arithmetic 135
descriptive 137
elementary 134; 149
iterative 145
quantified descriptive 141
rule variable 144
simple descriptive 138
types of 133

test demons 82
test events 82; 229
testing propositions 228
text formatting 177
text formatting subpatterns

<integer> [of] <subpat> 189
<term> 188
adjoin <subpat> [, <subpat>]* 185
backspacels] 190
blank[s] 190
box <subpat> to width <term> 183

'.4

..m,.

S... '. .. -- .' -. - - . . --4""

I ndex 369

bs 190
center justify <subpat> [<dimen>j 184
charcode <term> 191
CJ [<term>] [by <term>] :<subpat> 184
codes (<integer> [, <integer>]*) 189
control <term> 191
CR[s] 189
end 190
EOL~sJ 190
esc 190
escapets] 190 .
fixed format <subpat> 1~<subpat>]* 183
formfeed[s] 190
free format <subpat> [, <subpat>1* 18~2.
left justify <subpat> [<dimen>] 184
LJ [<term>] [by <term>] :<subpat> 184
overlay <subpat> on <subpat> t<coords>I [<padding>] 185 V

pad <subpat> 183
page(s] 190
quote[s] 189
return[s] 189
right justify <subpat> [<dimen>J 184
RJ [<term>] [by <term>] <subpat> 184
tab[s] 190
t<subpat> [, <subpat>]* 1 181

text matching 178
the matching process 193

text matching subpatterns
<integer> or (I more I less I fewer I)[of] <subpat> 186
<integer> [of) <subpat> 189
<term> 188
anything 187
backspacels] 190
blank[s] 190
b s 190
character[s] [[not] in <term>] 186
charcode <term> 191
codes (<integer> [, <integer>]* 189
control <term> 191
CR[sJ 189
end 190
EOL[s] 190
esc 190 V
escape[s] 190
formfeed[s] 190
linefs] 188
page[s] 190
quote[s] 189
return[s] 189
something 188
tab[s] 190

Index 370 V

(non]alphanumeric[s] [[not] in <term>] 186
[non]blank[s] [[not] in <term>] 186
[non]control[s] [[not] in <term>] 186
[non]digit[s] [[not] in <term>] 186
[non]letter[s] [[not] in <term>] 186
[nonlnumber[s] [[not] in <term>1 186
[non]numeral[s] [[not] in <term>] 186
(<subpat> [, <subpat>]*) 181
{ <subpat> [I <subpat>]* 1 182

that
that (I <verb phrase> I <special vp> I) 123
that <class noun> 145
that <term> (I <verb phrase> I <rel op> I) 124

the
<term> ' S <description> 138 ;e V
the <description> 138

there
there is <a/an> <description> 112
there is just one <description> 112
there is more than one <description> 112
there is no <description> 112 *"'A

thing
an element is a thing 153

to
to <atom> [<formal>] [<private pp>]*: 73
to decide <formal> <be aux> <a/an> <root name> [<private pp>]*: 74
to decide <formal> <be aux> <atom> [<formal>] [<private pp>]*: 74
to decide <formal> <be aux> <prep> [<formal>] [<private pp>]*: 74
to decide <formal> <do aux> <atom> [<formal>] [<private pp>]*: 74
to generate [(I the I a I an I)] <root name> [<private pp>]*: 76

toggle
toggle a switch 62; 342
toggle off a switch 62; 342
toggle on a switch 62; 342

tokenization 17
tokenization errors 313
tokenizer 17
tokens 20
top-level monitor 43
top

top! 273
trace

trace [a filespec] 280
trace! 272

tracing execution 268
tracing performance 278
transcript files 245
transitivity 108
true

a proposition is provably true 213; 237
a proposition is true [in a database] 214; 238

Index 371

TTY channel ..0
the TTY channel 247

tuple
an element is a tuple 154
the tuple containing each <description> 169
the tuple f rom a string 175

tuples 167

operations on 167
type

type a file 63; 249
unbreak

unbreak [a filespec] 280
unbreaking broken rulesets 279
unit constant

an element is a unit constant 164
unit constants 162
units

the units of a number 164
unless

unless <condition> <then part> [<else part>] 96
unload

unload a filespec 265
unnotice

unnotice a filespec 265
until

until <condition>, <action block> 101
untrace

untrace [a filespec] 280
up

up! 272
uppercase

the uppercase of a string 174
value

the absolute value of a number 165
the numeric value of a number 165

verb phrases 108
virtual database 224
virtual relations 226
where

(where <condition>) 122
where (<condition>) 122
where <sentence> 122

which
<prep> which <term> <verb phrase> 124
which (j <verb phrase> I <special vp> 1) 123
which <term> (I <verb phrase> I <rel op> I) 124

while
while <condition>, <action block> 101

who ',
who (I <verb phrase> I <special vp> I) 123
who <term> (j <verb phrase> I <rel op> I) 124

AI.,

Index 372

whom
<prep> whom <term> <verb phrase> 124

whose
whose <description> <be aux> <term> 124

write
open a file to write 246

46

%A~

4. A

%.

'..W d

% % %.

Z&.

