]
|

W
v,
v W

3
')
il
\ \\
\\)
e
g

L t_g
La
;""nv
B
3
S BRSBTS

©
N
<+
™
=
T
Q
<

NS

= e
.:'J F

The New ROSIE® Reference
Manual and User’s Guide

L x
x :.,_:.-'\- ‘*-" s

o T e e P

L o e |
b

James R. Kipps, Bruce Florman, Henry A. Sowizral

Pff.i
"t

e o T I

«
-l

o

_'l‘ _':_':

U S
fe e

-
o=
(3]
-
-
o
PP PAT 6 e g a0 o P | r
" ‘11. -

i -‘
l “This document b:s been approved | Eh i ; ' ::
| for public release ar }m:., its | - = o
| distribubion is unlimited. | A i
! . £

NATIONAL DEFENSE
RESEARCH INSTITUTE

R-3448-DARPA/RC A

The New ROSIE® Reference i
Manual and User’s Guide 5

James R. Kipps, Bruce Florman, Henry A. Sowizral

ol

June 1987

iy XA, !

Prepared for the
Defense Advanced Research Projects Agency

IR ARRAREP

-. =

..74 A

R-3448-DARPA/RC

READ INSTRUCTIONS
BEFORE COMPLETING FORM ‘
: mmﬂf't Zﬂn.ot NUMBER

4. TITLE (and Subtitie)

The New ROSIE Reference Manual and User's

S. TYPE OF REPORYT & PERIOD COVERED

Guide

6. PERFORMING ORG. REPORT NUMBER

(7. AUTHOR(e)
J. Kipps, B. Florman, H. Sowizral

[8 Al -] RANT NUMBER(e)

MDA903-85-C-0030

. ORMING ORGANIZATION W AM
The RAND Corpoation
1700 Main Street
Santa Monica, CA 90406

0. RAM ELEMENT, PROJECT, TASK

Al & WORK UNIT NUMBERS

11, CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Agency
Department of Defense

2. REPORT DATE
June 1987

e ———————————
13. NUMBER OF PAGES

372

)
] rea Office) | '8. SECUMITY CLASS. (of this repert)
Unclassified
. A WNGRADING
LE
76. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release - Distribution Unlimited

No Restrictions

17. DISTRIBUTION STATEMENT (of the sbetract snéered in Block 20, Il differant from Report)

18. SUPPLEMENTARY HNOTES

e —
19. XEY WORDS (Continue on reverse eide Il nececsary and Identily by biock mumber)

Programming Languages
Programming Manuals

—
20. ABSTRACT (Continue oy reverse side If ly by dleck ber)

see reverse side

DD , 'y W73

EDITION OF | NOV 68 i3 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-

ol

L » C) Cas
\i. T ¥ 3,\.:\ N \.;_:. -\i :::.__ By

~
\:,, ."‘: "\-
o gt iy

o ~

A
-

A
>
r-,s.i ‘

B

aey
'ﬁr\.l‘

S

» ”\
-'\’t'
=

*\
ey
’

Lo
e
Bl

"h'\.,ﬁ‘_‘q - -
| £
o ’I<'
e
¥
sl

—a

.
¥
A s

- v, R
ot
oy
s
Ponote!)

-ﬂ‘-..".‘, -
Pl i
o o
Bl e

I’ -I- "‘ e
R
{}?;7
.
v

o i

e
-.“

.
L
A A Ay

s
o
- ;I.)I

-
l‘. 4

|

,

|

Ei.

e
45
" ""
TS
‘l
P

5%
v

s
z

i
e
' v
s

ERERERERLY
Tl ‘.':\‘:\

9 0% .
] Wi 0 !
o ,(\.'u " . “:n.'::_-q :-\:.q‘.h\‘."_-\:;\.\\
WO A W OO NG A N LY

% ';2}(:5*"'#"

R Bt B Rte BN e WU U U OUTR U WU TN W T

ggﬂ'l" cq_.mnc:mou QF THIS PAGE(When Data Entered)

O

-~ “—

7 ROSIE (Rule Oriented System for
Implementing Expertise) is a computer
programming language/environment developed
for the Defense Advanced Research Projects
Agency. ROSIE is designed specifically for
developing expert systems, and its primary
purpose is to aid the knowledge acquisition
process. To this end, ROSIE assumes its
most characteristic feature, an expressive
and highly readable English-like syntax.
This report constitutes a new reference
manual and user's guide for the ROSIE
programming language/environment. It
consists of an informal yet detailed
discussion of the syntax and semantics of
ROSIE 3.0, including an explanation of the
programming environment as a whole. The

]

-

T

& SR

s

o

.
.-.'l."..‘..'

a5

st

g o,

S

> N

i'. £
o

fu

j.

2%

report supersedes all earlier documents A
describing ROSIE. A technical audience is :52
assumed, but the introduction provides a e
comprehensive overview of the ROSIE M
language for those interested in a less . 5
ec‘mical presentation. - ;/ E o
A i S AT S
.] ,4 1‘ / .- \:
Jrwpadr [y P e &
\ \ hes)
§ f\l
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
".’- - - - . L L . oW . e = - - - -
R A S
:.-.’\- ‘i.«l' -\.’C{\f“-. {‘N.-\J',‘; g, ,-’-_ I s 0 e s T N e ey

= 33t -

PREFACE

|

ROSIE' (Rule-Oriented System for Implementing Expertise) is a
computer programming language/environment developed at The RAND
Corporation for the Defense Advanced Research Projects Agency. ROSIE
evolved from a succession of projects in artificial intelligence and
expert systems. The most recent release of ROSIE (Version 3.0) is the
result of an effort to refine and enhance the fundamental design of the
language; while all extent versions of ROSIE are implemented in
Interlisp, ROSIE 3.0 is implemented in PSL (Portable Standard Lisp).
Many aspects of ROSIE 3.0 show performance improvements of two to five
times over earlier versions. In addition, ROSIE 3.0 can be ported to
any computing environment capable of supporting PSL. Because PSL is
supported on a wider range of computing environments than Interlisp, the
availability of ROSIE has increased substantially with the 3.0 release.

XA R xS Y

| "l e S §

This report constitutes a new reference manual and user's guide for
the ROSIE programming language/environment. It consists of an informal
yet detailed discussion of the syntax and semantics of ROSIE 3.0,
including an explanation of the programming environment as a whole. The
report supersedes all earlier documents describing ROSIE, including RAND
Notes N-1648-ARPA, Rationale and Motivation for ROSIE, November 1981;
N-1647-ARPA, The ROSIE Language Reference Manual, December 1981; and
N-1646-ARPA, Programming in ROSIE: An Introduction by Means of
Examples, February 1982, all of which describe ROSIE 1.0. The present
report also supersedes RAND Report R-3246-ARPA, ROSIE: A Programming
Environment for Expert Systems, October 1985, which describes ROSIE 2.5.

| e e v,

WO OO

This study was prepared for the Defense Advanced Research Projects
Agency under RAND's National Defense Research Institute, a Federally
Funded Research and Development Center supported by the Office of the
Secretary of Defense. In addition, RAND's own research funds were used
to complete the effort.

EFEIL L FAA

'ROSIE is a registered trademark of The RAND Corporation.

- = e

= .
Sa 'E
9 =
y B
2
G ! 1 n/ g
Codes ty
ai ua/or §
bTIC | o 3
L8]
i -
@orPY ! 1 el
|NSPECTED ”\ { M
. &

B T —

SGEIhm

RGO T X X e M 'f".("

SUMMARY

This report is a reference manual and user's guide for the ROSIE
programming language/environment and is intended to serve as the primary
documentation for this system. The main body of this report consists of
an informal, yet detailed, discussion of the syntax and semantics of
ROSIE (Version 3.0), including an explanation of the programming
environment as a whole. A technical audience of readers is assumed;
readers interested in a less-involved presentation are directed to the
introduction of this report, which provides a comprehensive overview of
the ROSIE language.

ROSIE (Rule-Oriented System for Implementing Expertise) is a
general-purpose programming language/environment, designed specifically
for developing expert systems. The language has evolved from a
relatively simple initial design (Waterman et al., 1979) to a
sophisticated expert system building tool (Sowizral and Kipps, 1985).
The culminating effort of the ROSIE Language Development Project is
ROSIE 3.0, in which the fundamental design of the language has been
refined and enhanced.

The primary motivation behind ROSIE's design is to aid the
knowledge acquisition process (i.e., the process by which knowledge
engineers formalize the heuristics of an expert into executable code).
To this end, ROSIE assumes its most characteristic feature, an
expressive and highly readable English-like syntax. A second objective
has been to support the development of significant applications. ROSIE
provides a variety of language and programming environment features
aimed at this goal. The language allows system builders to describe
complex relations simply and to manipulate them symbolically and
deductively.

The ROSIE project was initiated in 1979; the first release of the
language, ROSIE 1.0, was available by 1980. Since then, the language
has evolved through many phases of design and refinement. The current
release, ROSIE 3.0, reflects insights gained from several years of
experience with large ROSIE applications. ROSIE 3.0 is substantially
more powerful and less constrained in both its syntax and semantics than
any previous release.

The work presented here is not merely a concatenation or
recompilation of existing documents, but rather it is a newly written
document providing an informal description of the ROSIE language. In
it, all aspects of the language that concern the ROSIE programmer are
discussed in detail, including several previously undocumented and
unsupported features of the language. Incompatibilities with older
releases are pointed out where applicable.

",

Y Y AR = 00 WA Y, 0 VRN G s LSRG

.._..' ‘.\..“_._. \'.'n

L re..
[Ny
XX,

+ Y WP IRNRIIE PUOSTION Mt Y FUTRE N VLAY O U O O P T O O O

- vii -

OVERVIEW

This report is a reference manual and user's guide for the ROSIE
programming language and development environment, describing the version
3.0 release of ROSIE. This document supersedes all other manuals and
documents describing ROSIE; notably, Hayes-Roth et al., 1981, Fain et
al., 1981, and Fain et al., 1982, each of which describe the earlier 1.0
release, and Sowizral and Kipps, 1985, which describes the 2.5 release.

WHAT IS ROSIE?

ROSIE (Rule-Oriented System for Implementing Expertise) is a
general-purpose programming language/environment intended for
applications in Artificial Intelligence (AI). In particular, The RAND
Corporation developed ROSIE to provide knowledge engineers with an
environment for building expert systems. ROSIE attempts to provide a
complete working environment for developers of expert systems. System
builders may create and maintain program files, execute and edit code,
and manipulate databases all from within ROSIE's interactive
environment.

The ROSIE language itself supports a number of advanced programming
capabilities, some of which can be found in other high-level Al
programming languages, others of which are unique to ROSIE. These
features include:

. rulesets to modularize and scope rules, localizing the context
in which they apply

. a demon facility to provide event-driven program control

. high-level data types for manipulating units of procedural,
declarative, and descriptive knowledge as data

. a string pattern matcher to support advanced 1/0 operations

. extended variations of the data types and control structures
found in most symbolic languages

Features such as rulesets and the pattern matcher blend with the
naturalness of ROSIE's English-like syntax to produce a comfortable and
expressive environment in which to construct expert rules.

ROSIE is designed to be adaptable to a wide variety of tasks and
does not embody any particular problem-solving techniques or paradigms.
Because of its ''general-purpose” flavor, it is less structured and more
flexible than many contemporary Al systems and tools. Nonetheless, the
design of ROSIE exploits and integrates many current ideas in artificial

ot

L L
S S ¥ Y ok

(Y
[y

A AR
L

TR

BT o T S Ba
£

s P LN

Fd
v %]

R

I" (‘

A S R O A T U ST SO Y O RO NGOG ORI R UG
Y.

Py 4
- viii - o

o
intelligence research and brings substantial modeling capabilities into gf
the hands of expert system development teams.

I.n

; READABILITY .;
| N
The primary design goal for the ROSIE language is that it achieve \n
exceptional readability. To this end, ROSIE adopts a stylized version .
of English as its syntax. This goal derives from a motivation to aid La
the knowledge acquisition process (i.e., the process by which knowledge ﬁ
engineers formalize the heuristics of an expert into an executable >
program). ROSIE's English-like syntax is its most characteristic ;
feature, lending the language a number of desirable qualities. It !
enables ROSIE rules to be understood by nonprogrammers and assists the
knowledge engineer in constructing computational models by providing a o
framework that is adaptable to a wide variety of problem domains. %
Kot
With ROSIE, the knowledge engineer can translate expert rules into y

an executable program using substantially the same terminology as the
domain expert. As a result, ROSIE's English-like syntax improves the
interaction between those involved in the knowledge acquisition process. g
The domain expert can examine the heuristics encoded in ROSIE, suggest e
modifications directly, and play a greater role in the implementation of

systems that model his expertise. Also, because programs can be scanned B
and modified interactively, heuristic development is made possible (and

even practical) in a conference or demonstration environment, without

the usual delays associated with program modification. ? ’
w
These benefits, however, are not automatic. Although readable code 3_
is not hard to generate for an experienced ROSIE programmer, novices :Jw
often find that it is just as easy to write cryptically as clearly-- .:
sometimes even easier. Also, syntax can be a very superficial artifact -
of any programming language; when the syntax mimics English, the =
possibilities for misinterpretation are only increased. Although ROSIE Qj
gives the illusion of understanding a rich subset of the English N
language, ROSIE is not a natural-language understanding system. ROSIE -
parses a program by concentrating on the lexical and grammatical role of -‘;
words as they relate to one another in legal sentence forms. The s
parsing process strictly follows the syntactic rules defined in a e
contrived context-free grammar. Thus, the semantic meaning of ROSIE IO
code can at times be counterintuitive to its natural interpretation. :f
o
o
HISTORY OF DEVELOPMENT v
As with most other computer systems reaching a relatively mature ﬁa,
level of documentation, ROSIE has a long history of development. ROSIE g?
has been an ongoing research effort at RAND since 1979; the language has -::
grown and evolved in many ways over the years. We have worked at : X
improving ROSIE's expressive power without sacrificing its readability, W
at regularizing its grammar without sacrificing its expressiveness, and ~
at extending its semantics without introducing new complexities. ::t
::.': '
;i:,
S
.
s
o

- -u W [‘!"'v."“" '}“.l'f_' ’.f .r‘-f‘ ‘vf'i' J‘d‘ L P I i

-ix-

The historic precursor to ROSIE is the RAND Intelligent Terminal
Agent, RITA (Anderson et al., 1977; Anderson and Gillogly, 1976).
Influenced by the success of MYCIN's rule-oriented style of knowledge
representation and the appeal that its English-like explanation facility
had for users, RITA was a positive first attempt at making rule-based
programming languages easier to use and understand. Production rules in
RITA were defined using an English-like syntax with a restricted set of
options. RITA's database consisted of object/attribute/value triples,
and its monitors allowed either pattern-directed or goal-directed
control. Although its syntactic and expressive powers were limited,
RITA showed that a stylized form of English could be used for describing
procedural knowledge in a rule-based language.

The preliminary design of ROSIE (Waterman et al., 1979), developed
by Donald Waterman, Fredrick Hayes-Roth, Robert Anderson, Stanley
Rosenschein, Gary Martins, and Philip Klahr, proposed a programming
system that would be the natural successor to RITA. The proposal
outlined the deficiencies in RITA and described how they might be overcome
in ROSIE. One such deficiency noted was the awkward manner in which
context switching was achieved in RITA (i.e., scoping the applicability of
rules); this observation influenced the introduction of rulesets as a
programming construct in ROSIE. ROSIE also adopted several of the best
ideas from RITA, such as RITA's I/0 pattern matcher, and improved upon
RITA's expressiveness and semantics. The first implementation of ROSIE
(Version 0) was written by Danny Gorlin using Interlisp on a PDP-10 class
computer and, later, on a DECsystem-20/60. Stanley Rosenschein served as
project leader for the initial development effort, and introduced some
prolog-like constructs and English-like descriptions into the language.

The second implementation of ROSIE (Version 1) was heavily
influenced by the insights gained from the 1980 Expert Systems Workshop
organized in part by Fredrick Hayes-Roth and Donald Waterman. Stanley
Rosenschein left RAND in 1980, passing leadership of the project to
Fredrick Hayes-Roth. Henry Sowizral joined RAND about this time and took
over ROSIE implementation after Danny Gorlin left. In 1981, the design of
ROSIE had begun to reach a level of stability. A number of in-house
applications were being explored using ROSIE, and copies of ROSIE 1.0 were
being distributed to sites outside of RAND. Keith Westcourt and Jill Fain
joined the project in 1981. Keith Westcourt implemented the port facility
for communicating with TOPS-20 from inside ROSIE and reimplemented ROSIE's
string pattern matcher. Jill Fain helped test and document the language.

These early implementations of ROSIE included direct support for
many special-purpose operations. Such operations were hardwired into
the language because they did not fit easily into any general linguistic
structure. Some operations required special arguments, others performed
actions that were considered expedient in a programming language. As
the number of special action verbs began to multiply, ROSIE's grammar
grew increasingly complex, and the need to simplify became

Ll PR,

SCALR IR LRrS

LA

-
>
!

AR

P e e Y

T w s % 8

A

overwhelmingly apparent. From 1982 to 1986, generalized linguistic ¥
constructs were introduced that could subsume many of the existing e
"special" constructs. Two examples include removing distinctions .
between system-defined and user-defined operations and introducing new ﬁ
data elements, such as patterns and filesegments, to describe hitherto ‘;
special argument forms. X

Henry Sowizral became project leader in 1982 when Fredrick
Hayes-Roth left RAND. This was the beginning of the third

implementation of ROSIE (Version 2), in which the development ?
environment was moved from Interlisp under TOPS-20 to VAX-Interlisp on {\
the VAX 11/780 and Interlisp-D on the XEROX-1100 (Dolphin). Keith {
Westcourt and Jill Fain left RAND later that year, after which James ;Q
Kipps came to RAND and took over ROSIE implementation. Ross Quinlan, .
also at RAND chat year, implemented an efficient context-free parser "
generator in C that replaced ROSIE's LISP-based parser on the VAX ‘*

implementation.

In 1983, ROSIE 2.3 was released, and work was begun on a redesign
of the language aimed at expanding its functionality and improving its
performance. Two parallel efforts started at this time were the
reimplementation of ROSIE in PSL (Portable Standard Lisp) and the
development of a ROSIE compiler in C. Jed Marti and Larry Baer joined
the project in 1983; Jed Marti, to automate the porting of ROSIE's
Interlisp sources to PSL, and Larry Baer, to implement C-ROSIE.
Unfortunately, neither effort bore fruit. During this time, James Kipps
implemented two experimental versions of ROSIE: D-ROSIE, a distributed

REE 2% W 3R R
oY VoK

-

NPy

language, in which ROSIEs running on remote machines (Dolphins)
communicated via shared databases; and XPLROSIE (Waterman et al., 1986),
which provided built-in explanation facilities to support the ;
explanation research being conducted by Donald Waterman and Jody Paul. i
Bruce Florman, who joined RAND in 1984, took over the further e
development of XPLROSIE.

A

‘o W

The final implementation of ROSIE (Version 3.0) was completed in E‘

1985 by James Kipps and Bruce Florman. ROSIE 3.0, essentially a
redesign and reimplementation of the ROSIE language, is written in
Portable Standard Lisp and is documented by this report. An effort
outside of RAND is currently continuing the development of a C-based
version of ROSIE.

"

. e
P Y)

[S

The ROSIE Language Development Project culminated its efforts in

~
December of 1985. DARPA funding for the ROSIE project was discontinued \
after 1985, but the project was given an additional year of funding by by
RAND, with James Kipps as project leader, to support distribution as -
well as to continue testing and debugging. Although the ROSIE project iy
has run to completion, the ROSIE environment is still in use at RAND and ﬁ:.
elsewhere, providing a testbed for new research. G\‘
N
-~
X
'yl
~,
LA
%9
N
T R L B R G D R R R N NN IR NN RN RN IR

-xi-

NOTATIONAL CONVENTIONS

The following notational conventions hold when syntactic constructs
and examples of their use are presented and discussed:

Boldface Examples of ROSIE code appear in boldface. Boldface is
also used to highlight fixed parts of language constructs
when appropriate.

Italics Italicized words either designate fundamental data types,
i.e.,

name

number

string
pattern

tuple
filesegment
class element
description
proposition
procedure

D O H D H H D

)

or role that such elements can play, i.e.,

file
a database

[

When appearing as an argument to a syntactic construct, e.g.,
send ¢ string to a file
they specify that any term can be used as an argument in that
position, but that term must evaluate to an element which
satisfies given type or role.
<standard> Words in standard font and enclosed in matching left/right
angle brackets represent syntactic categories. When appearing
in a linguistic construct, e.g.,
<term> DOES <atom> [<term>] [<pphrase>]

they designate its component syntactic structure.

The following syntactic categories appear throughout the

manual:
<atom> -- any nonreserved atomic token
<number> -- any numeric token (real or integer)

L

Py
o Ay

”..,.
Cas A

")
)

-l',l.

w

A

73
T

a4

" 5

-

v, ',*.'ﬁ"‘i'
{ l‘ l' L

A

.54$$S
Py

>
L)

AL XA A
X

-

L=

g

- xii -

<integer> -- any positive integer

<string> -- any sequence of characters surrounded by
double quotes ("ccc")

<prep> -- any token known to be a preposition (see
Section 2.3)

<a/an> -- one of the tokens a or an
4 <term> -~ any term, i.e., high-level data object,
i (see Chapter 8)
’ <pphrase> -- a sequence of prepositional phrases, i.e.,
<pphrase> ::= [<prep> <term>]#

- o = e

A complete description of ROSIE's lexical and syntactic
components appears in Section 2.4.

[] Constructs enclosed by matching square brackets are optional.
: [1+ Square brackets followed by a star indicate Kleene closure,
; i.e., the enclosed constructs can appear zero or more times.
|
(D Parentheses and vertical bars surround alternatives separated
by vertical bars, only one of which can occur in that
position.

Italics are used to highlight new concepts when they are introduced.

e

When discussing programming operations available in the basic
) configuration of the ROSIE system, the following notational conventions
: apply. Within this notation, words in angle brackets correspond to
N fixed parts of the construct being discussed--these will appear in
' boldface in the manual--while words in italics correspond to variable
parts of the construct--these will appear in italics.

<imperative> [&/an argtype]| [<prep> &/an argtypel]*

Used to define the syntax of system defined procedures, where
<imperative> is the name of the procedure, and the optional
object and <prep> clauses correspond to possible arguments to
the procedure, e.g.,

read a pattern [from g file]
a/an argtype <verb> [a/an argtype] |[<prep> a/an argtypel¥

Used to define the syntax of system predicates, where <verb>
corresponds to the auxiliary and main verb of the predicate,

? . - . - - V. N Wy FE O o Walg ¥ aWpyt, € An T Ty"™ N*n" h NSRS T Yt LT AR S s T
AN OEP Vo100 0t W10 RO (S G N, S, ¥ A o o A S S RV A, A Y S £ VN

- -

[B Ja T,

N

&% h N % Cw

~

PR N AN

S‘-:r&‘.

- xiii -

and the subject, optional object, and <prep> clauses .
correspond to possible arguments to the predicate, e.g., i

a string is matched by a pattern

the <class> [<prep> a/an argtype]*
a/an <class> [<prep> a/an argtypel]*

o e
b~~~

Used to define the syntax of system generators, where <class>
corresponds to the root name of the class being generated

over, and the optional <prep> clauses correspond to possible
Y arguments to the generator.

Note the two forms this can take: One is introduced with the
articles a/an; and the other with the article the.

B! This notation is used to signify whether the generator ’
k produces a single instance, e.g.,

the absolute value of a number

or a possible stream of instances, e.g.,

an integer from & lower bound to an upper bound

STRUCTURE OF MANUAL

\ In structuring this manual, we were faced with several competing
A goals. First, we wanted this to be the primary source of documentation '
for the ROSIE language. Next, we wanted to provide system builders with .
sufficient information to allow them to use the language well. Finally,
we wished to provide an informal, yet comprehensive, set of
implementation criteria to sustain those who support and maintain ROSIE
in the future.

- -
-

Meeting our first objective required that we make the information
within this manual available to a wide audience of readers. Thus, it
had to be complete and concise without being overly detailed.
Obviously, this would be counter to our second two objectives, which
require a detailed and precise description of the language and assume a .
technical audience. In order that we might meet both goals, we provide \
a comprehensive, but nontechnical, overview of ROSIE in the q
introduction, and then assume a technique audience of readers for the
remaining chapters.

LR O I N

L

N o el

Chapter 1, the introduction, gives new ROSIE users a quick look at
the language and some familiarity with concepts appearing later in the :
manual. The introduction is also recommended reading for those with)
prior ROSIE experience since it may offer some advance warning to the)
changes and additions to be found in ROSIE 3.0. Readers who merely wish
to know what ROSIE-is and what it can do are directed to the
introduction and Appendix A, which presents several example programs.

P xR

A

iV W R L% > LN RN
AN M T My C OIS

A
X

L]
T LATASA e AT T o
P A YO FR A0, 98, L B b X o N ()

PR X N X X R

vy

- xiv -

Chapter 2 describes the syntactic structure of the language. In
this chapter, we discuss the lexical decomposition that ROSIE source
code goes through on its way to the parser. We explain how the parser
operates and provide a listing of the BNF describing ROSIE's syntax as
well as the reserved words of the language.

Chapter 3 discusses the basics of running ROSIE. This chapter is
intended to provide new users with the information they need to start
interacting with ROSIE as well as building ROSIE programs.

The next six chapters constitute the main body of text and describe
the actual structure of the language. When pertinent, sections within
these chapters begin with an abridged portion of the BNF demonstrating
the syntax of the particular linguistic components being presented.

Also when pertinent, these chapters include a list of operations
provided to work on these components.

At first glance, the organization of these chapters may seem
counterintuitive. First we present the programming structures (rules
and rulesets), then the principle linguistic structures (actions,
sentences and descriptions), and finally the data objects and data
primitives (terms and elements). Readers already familiar with ROSIE or
other high-level programming languages may question this scheme because
it is the reverse order in which such concepts are normally presented.
We feel, however, that this is the correct approach for properly
explaining ROSIE.

ROSIE is unlike other programming languages in that the data types
it provides are not its simplest component. While ROSIE supports
extensions of the data types commonly found in other symbolic languages,
it also supports some advanced data types, such as the intentional
elements, which are used to treat principal linguistic structures as
data. To discuss such data types, we must first introduce actions,
sentences, and descriptions. However, these structures often invoke
rulesets, and understanding their semantics assumes an understanding of
rulesets and ruleset invocation; thus, a discussion of rulesets must
precede them. However, a major component of ruleset invocation is the
execution of rules. This finally led to our ordering our discussion
accordingly as rules, rulesets, actions, sentences, descriptions, terms,
and elements.

Chapter 10 describes the structure of ROSIE's database, which, up
to this point, has only been alluded to. The database is composed of
two spaces: one, the space of stored or affirmed relations; the other,
the space of computed or virtual relations.

Chapters 11 and 12 cover ROSIE's support of input and output (I/0)
and the error handler. In Chapter 11, we discuss the basic sorts of I/0
operations provided in the language. In Chapter 12, we talk about
nonrecoverable and recoverable runtime errors and what mechanism ROSIE
provides for dealing with them.

- -

=~
L L A -

RN s o A L LR
1 -

M

- XV -

Chapters 13 and 14 discuss two important features of ROSIE's
development environment, the file package and the break package. The
file package is used to build, edit, and otherwise maintain program
files. The break package is used to monitor and debug program behavior.

This manual contains three appendixes. Appendix A presents several
example programs. Appendix B is a listing of possible error messages to
be encountered when parsing or running a ROSIE program. Appendix C
specifies the various system switches available for configuring various
aspects of the ROSIE environment.

PN

Y

¥

3
)

>
[AS
o

‘.'.{) ’S

ol s

R

225@

1‘.

£ &

e e U & S S Tt i I, N e ym M AL LIS A I I T M Ve 0 ¥ R I RN e e e e 0 T T Y
I W RIS 1N e S T L “' o o el L Sl SR ,_.-.r.-__r,‘(‘.rd- Lot L

0t 2} 0

- xvii -

ACKNOWLEDGMENTS

We would like to thank Jean Thomas for her help in preparing this
report for publication, and Robert Weissler and Jody Paul for their
insightful and cogent reviews. We would also like to thank Joyce Grey,
who administers the distribution of ROSIE. But we would especially like
to acknowledge the efforts of the many people who influenced the
evolution of the ROSIE language, including Robert Anderson, Larry Baer,
Jill Fain, Fredrick Hayes-Roth, Daniel Gorlin, Philip Klahr, Jed Marti,
Gary Martins, Jody Paul, Ross Quinlan, Stanley Rosenschein, Donald
Waterman, and Keith Westcourt; a summary of their contributions can be
found in the Overview under "History of Development."

h - . L) » ‘™ g L - SN el . e e ny . -
SN0 00 B0 N O DTG 006 0 0 e 0, e N R R P N A NG A g 0 e D) N R R

¥ o,

-

WP

23

- - N

O A A
i3

o

Ll
?\"- 'r_\

&3

« v & ® £
’ LORAA A W -k
¥ ﬁ ,,s} 4.4 1::-_._:.;,':

L 4
>

s

P A 4
P

[y

L

.i1§5ﬁ .

.ot
7

-

X0
- - -

l..;
o
l:::'
l..’!
- xix - *@
2
\'c
CONTENTS ny
DN
f
c.::
3
213237 X o X iii i
";'
L
SUMMARY ... eetttn ettt et e et e e e et et e e e v ZX
OVERVIEW et e e et e e e e e e e e e e e vii o
What IS ROSIE? o .vorennenein et eneinen e aneneananeananss vii o,
T T DL 2 viii 'h;
History of Developmentc...iiiiiiineireneeeennnnnnns viii b;
Notational CONVENtionSuiuniininenenennenenenenenennnn. xi M1
Structure of Manual i, xiii -
N
ACKNOWLEDGMENTS . ..ottt e e e e ettt e e e e e e xvii g :
%
¢
Section o
o
‘|
I. INTRODUCTION ot ettneeennseeetanenennanecenonenunnennn 1 oy
By
A
1.1 System Organizationiiiiiiiiiiiiinennnnnen 1 ’
1.2 Programming Structuresccciieitinnneenannsen 2 .
1.2.1 RuleS ...ttt ittt i itenennnonenennoaaonnnns 2
1.2.2 Rulesetsuttiiininiii it nnnnnnne s 3 'Q
1.2.3 DEMOMS +tvveen e ee e ieneneneneneennnenenenns 4 L
1.2.4 Ruleset Executionc¢cciiiiiernnneennonn 5 s‘t
1.3 Linguistic Structuresc.ciiiiiiiiiieiinnnens 6 b ’
1.3.1 ACtions ..ttt i i i i et e i e e 6 J
1.3.2 Sentencesciiiiiiiiitit it 6
1.3.3 Terms tiiiiti ittt tetestaseasannannenss 7
1.3.4 Elements ...ttt itante i 8 g
1.4 The Database Mechanismooiiiiiinnnnn... 9 Y,
1.4.1 The Physical Databaseuiuveuiennennnn. 9 >3
1.4.2 The Virtual Databaseccoeeevennnnnn. 10 Ny
1.5 Strengths and Weaknesses 10 !
1.6 Closing Remarks i iiininnnnnnn. 12)
o
II. SYNTACTIC STRUCTUREttt ittt tieeieiianns 15 ;:'
P
o
2.1 Parsing BasiCs ...ttt e e 15 N
2.2 Tokenization ...ttt ittt inr it ae e 17 -
2.2.1 The Character Setc.uiiiiiivinnnnnennnn. 18 ,
2.2.2 Tokens and File Items0ccueunn .. 20 *\'
2.2.3 COMMENES t ittt et ettt e ittt e en e 22 Q
2.2.4 Extended String Syntax, 23 o
OGN

:f
X
N
%
g,

::
'l
.
- XX - \d
!
2.3 Reserved Words ittt ii it e e 26 ’
2.4 The ROSIE GIammarcouiuinununnunnnneeeeeennn. 27 :"
2.4.1 The Lexical BNF ... iiiiiiiiiiitinnrennnnnnnans 27 ;
2.4.2 The Linguistic BNF 0 itiiiiininnnnenns 28 Y
2.5 Parse Tree Generationiiiiiiiinninennnennas 38 g
2.5.1 Associativity, Precedence, and Disambiguation ... 38 }
2.5.2 The Disambiguation of Prepositional Phrases 39 ﬂ
2.5.3 Directing Disambiguation with Parentheses 40 v
W)
III. RUNNING ROSIE «uuuvtenntneeeeiteeaieaieeaneannnnens 43 ¥
3.1 Getting Started i i i e 43 5
3.2 Interactions at the Top Level, 44 "
3.3 Building ROSIE Programsc.ceiuemenrennoannnns 48 '
3.4 Debugging Facilities it iiiiiriinnnnnnenan 53 N
. 3.5 Errors, Interrupts, and Break Loops 56 R
X 3.6 Exiting a8 ROSIE Session, 58 -
t 3.7 System Switchesitiniiiiiiiiniiiitenneiiaaneana 58 .
\ 3.8 Top-Level Operationsc. i iiiiiiinnnnnannnn 59 'Q
IV. PROGRAMMING STRUCTURESttt ittt iinnannanennens 67 :
\
: B O £ B - 67 \
.2 Rulesetst e e e 68 v
4.2.1 Defining Rulesets i, 69 X
4.2.1.1 Header Statementsc.viiineenenennenns 70 }f
4.2.1.2 Private Class Declarations0.0uuu.. 72 -
4.2.1.3 Execution Monitorsieiiiiniiineann.. 72 o
4.2.1.4 The Ruleset Body, 73 :
4.2.1.5 End Statementsc..ciiiiiieiiti e 73 :0
4.2.2 Ruleset Types .. .iiiiiiiiiniiiiiiiiennnneennnnn 73 '
4.2.2.1 Procedural Rulesetsc.c0iiiieunnnnn 73
4.2.2.2 Predicate Rulesetsc.viieninunnnnnn 74 e,
. 4.2.2.3 Generator Rulesets0 iiiiiinennenn. 76 1]
X 4.2.3 Invoking Rulesetscciiiiinrnnnnnnnns 77 t
y 4.2.3.1 Calling Forms00iiiiiiininnnnnennan. 77 4
g 4.2.3.2 Argument Passing i, 78 N:
4.2.3.3 The Private Database 78
4.2.3.4 Execution Monitors i i 79 S
i 4.2.3.5 Terminating Procedures 79 :t
4.3 DeMONS .ttt ittt e e e e e e e 81 3
4.3.1 Types of DemONS ... iiiiit it iaannnns 82 Lo
4.3.2 Demon Invocationt 83 R
4.3.3 The Generator Demonsc.cv.iuiiun.nn. 83 . "y
4.3.4 The Error Demon i, 85 -
4.4 System RULESELSottt 85 A
4.4.1 Defining System Rulesets 86 ;{
4.4.2 Calling System Rulesetscccou.... 86 7
.
5

Ayt

=

o :
s,
0
\ - - - \ O.\l Q‘\.‘\l “l
» 8

R, T Y W N M
N AN, ., -~

T N AT T e RO DY
X \ o) e oo n .

" yw b P T MY Ny A
UL DA UL T M M iy Wi WhUN 4 Y i o iy M XY

-

LI
o)
0':fl'
o). g
- xxi -
V. ACTIONS AND CONTROL FLOWciiiiiiiiniinnnnnnnn.. 89
5.1 Actions and Action Blocks, 89
5.1.1 Types of Actions inennnnnn. 89
5.1.2 Associativity of Action Blocks 91
5.1.3 Comma Blocks and Parentheses 91
5.2 Procedures ... i i et 93
5.3 Database AcCtions it et e e e, 93
5.3.1 ASSERT... and DENY... i 94
5.3.2 LET. .. i e e e e e 94
5.3.3 CREATE. .. i i it i e ettt e e 95
5.4 Conditional Actionsttt 95
5.4.1 TF... and UNLESS...t iiiiiiiinannnnnn 96
5.4.2 Associativity e e 96
5.5 Conditional Blocks it iiiinanrinnnn. 96
5.5.1 SELECT . .. it i e e e e 97
5.5.2 CHOOSE. .. it ittt ittt st eenennraaeeenns 97
5.5.3 MATCH. .. i ittt i s ettt e e 98
5.5.4 Associativity e e e e 98
5.6 Iterative ACLIONSttt iinnnereianenneeennn, 100
5.6.1 FOR EACH.ttt 101
5.6.2 WHILE... and UNTIL... iiiiunnnnnnnnn. 101
5.6.3 Associativity ... e e 102
VI. CONDITIONS, SENTENCES, AND PROPOSITIONS 105
6.1 Conditions and Boolean Connectors 105
6.1.1 Boolean ConnectorSuvieumenonennnnneennns 105
6.1.2 Associativity and Precedence 106
6.2 SeNLENCES ...ttt ittt tint e ee e etenaeesaneenneeens 106
6.2.1 Propositionsuiinuniiiiiii i 107
6.2.1.1 Verb Phrasesciiiiiiimneninnnennn, 108
6.2.1.2 Properties of Class Relations 109
6.2.1.3 Negation: NOT... i, 110
6.2.2 Special Sentence Forms 110
6.2.2.1 EQUAL TO..., LESS THAN..., and GREATER THAN... 111
6.2.2.2 THERE IS... ..ttt e 112
6.2.2.3 HAS. .. L e 112
VII. DESCRIPTIONS AND CLASSES ... i i e 115 ~
I'..
720 S O - 13- - 116 ité,
7.1.1 Testing for Membership 116 :ﬁf‘
7.1.2 Generating from a Class 118 AT,
7.1.3 Potential Pitfall to Class Membership 119 -
7.2 Relative Clausest i 120 I;;
7.2.1 Logical Groupingsiiuiiuiininii.. 121 Py
7.2.2 SUCH THAT... and WHERE... 122 ﬁ;-
7.2.3 THAT..., WHICH..., and WHO... 123 phehd
.
Il
B
K
3
RS,
el
NGy
T

4 — '
.'.
'
ret

¢y,
uh
s,
- xxii - |":,
e
l::‘:
70208 WHOSE. .. oottt et et et 124 "
7.2.5 WHICH... and WHOM... ccovenenininn, 124 -
7.2.6 EXCEPT. .. ittt et 125 >
7.3 Description Variables i, 125
7.3.1 Anaphoric Terms and Rule Variables 126 N
7.4 Anaphoric Descriptions: SUCH... 127 adl
7.5 Resolving Anaphoric References 128 X
7.6 Uses of Descriptions ittt iiinennnnan. 128 .
7.6.1 Testing for Membership 129 iy
7.6.2 Generating Elements 0., 129 .ﬂ
7.6.3 Asserting and Denying Members 130 41
7.7 Compound Classes versus Adjectives 131 kﬁ
Y
VITI. TERMS ..ot e e e 133 X
8.1 Types of Termst iiiieinnannnn 133 y
B.2 ELBMENES ..ttt ittt it e 134 N
8.3 Arithmetic Expressions iuiiineninennn. 135 A
8.3.1 Operators and Operations 135 "
8.3.2 Associativity and Precedence 137)
8.4 Descriptive Termsttt 137
8.4.1 Simple Descriptive Terms 138 -
8.4.1.1 THE... ... 138 ~
8.4.1.2 A... and AN..., 140 o
B.4.1.3 ANEW... ottt 140 N
8.4.2 Quantified Descriptive Terms 141 8"
8.4.2.1 SOME. 142
B.4.2.2 EVERY ... ottt e 143 i,
8.5 Anaphoric Terms and Rule Variables 144 i
8.6 Jterative Termsttt 145 :Q
8.6.1 ONE OF... and EITHER... 146 \pﬁ
8.6.2 EACH OF... and BOTH...c.vien.n. 147 '
IX. ELEMENTS ..ttt e 149 N
3R
9.1 Element Basics 149 RS
9.1.1 Types of EIEMENTS . ..oorveonnee e 149 hS¢
9.1.2 Evaluation Names 0iuiuiiiniioo... 151 Tl
9.1.3 Equivalence versus Equality 151
9.1.4 General Operations on Elements 153 o
9.2 NAMeS ... e 159 15
9.3 NUMDETS ..ottt 161 e
9.3.1 Types of Numbersuuuiiniuninn. ... 161 ;\i
9.3.2 Constraints on Numbers 163 e
9.3.3 Operations on Numbers 163 -
9.6 Tuples 167 : "
9.4.1 Operations on Tuples 167 -
9.5 SEIINGS it 171 ;
9.5.1 Formatted Stringsuoo... 171 ¥
Ot
N
N
I\

B\

L/

0.
3
)
- xxiii -
9.5.2 Strings and Patterns i, 172
9.5.3 Extended String Syntax00, 173
9.5.4 Operations on Strings i 173
9.6 PaAtternSttt i i et e s 177
9.6.1 Generating TeXtc.iiuiiirnnioneraninssens 177
9.6.2 Matching Textiiiiiiiirinnntenannnenns 178
9.6.3 Subpatterns i i s 179
9.6.4 Pattern Variable Binding 191
9.6.4.1 Pattern Variable Specification 192
9.6.4.2 Conversion of Bound Substrings 193
9.6.5 The Pattern Matching Process 193
9.6.6 Example Application of Patterns 195
9.6.7 Operations on Patterns 196
9.7 Filesegmentsiuiuiiiietn et ennnennnnnenn 199
9.7.1 Shorthand for Filesegments 199
9.8 Class Elementsttt eeenneennanns 201
9.8.1 Motivation and Intended Use 202
9.8.2 Potential Pitfalls, 203
9.9 Intentional Descriptions ity 207
9.9.1 INSTANCE OFttt ittt ittt it 207
9.9.2 The "Call-by-Name" Property 209
9.9.3 Operations on Intentional Descriptions 209 \
9.10 Intentional Propositions 211 Ny
9.10.1 IS PROVABLY... ...ouiininennininninannanannnnn. 211 ooy
9.10.2 Operations on Intentional Propositions 212 o]
9.11 Intentional Procedurescioieiiinnenn. 217 o
9.11.1 Operations on Intentional Procedures 217 -
» 0
X. THE DATABASE MECHANISM i 219)
10.1 The Physical Databasecoviununennnanennn. 219 "
10.1.1 Three-Valued Logic 219 3
10.1.2 Database Actionsty 220
10.1.3 Contradictory Assertions 220
10.1.4 Alternate Databases 221
10.1.4.1 Naming and Creating Databases 221
10.1.4.2 The Global, Active and Private Databases 221
10.1.4.3 Accessing the Physical Database 223
10.2 The Virtual Database 224
10.2.1 Predicate and Generator Rulesets 225 o,
10.2.2 Virtual Relations 226 4 Q
10.3 Asserting, Testing, and Denying Propositions 228 n':
10.4 AULO-QUETY MOGe ... \vvrie et 230 o
10.5 Database Operationsc..c.ovinineanann .. 232 ‘o)
XI. INPUT/OUTPUT . e e 241 e
11,1 Channelsonioniiaai 241 N
11.1.1 Opening and Closing Channels 241 g?~
"
¥
o
2

s A

-
oy]

LY R .".ll" X ‘..‘I‘. "..‘. ! ' ..‘ .‘.l. (Y '. 5 "\ '\." - .-t.'- | 7 \ " ..-‘.- LA TR TR .-n (AR, 5' AT gt LR
‘ o [} * L] . Ll)

Dl)

- xxiv =
11.1.2 The Standard I/0 and TTY Channels 242
11.1.3 The OS Channelttt iiiiniinnveennn 243
11.2 The Use of Patternsc.cuiuiiiiiiinnnnennnneennn 244
11.2.1 Sending Formatted Textc.ciuiiuiinnnnn. 244
11.2.2 Reading against a Pattern 244
11.3 Creating Transcript Files 245
11.4 Input/Output Operationsceiiiuiiinnnnnnnn, 246
XII. ERRORS AND ERROR RECOVERYot 251
12.1 Nonrecoverable and User Errorsccuuu.. 251
12.2 Recoverable Errors i, 251
12.3 The Error Demonottt ennns 251
XIIT. THE FILE PACKAGE i i ittt 253
13.1 Program Filesttt innnneennn 253
13.2 Using the File Package 0. 0iiiiiiiiinninnn 254
13.3 Defining Rulesets and File Rules 255
13.4 Editing and Modifying Program Files 256
13.5 Using Filesegments i, 257
13.5.1 Rule Sequence Specifiers 258
13.5.2 Shorthand Notationc.ciiiiiinennnnnns 259
13.6 File Package Operations iiunnnn. 260
XIV. THE BREAK PACKAGE: DEBUGGING PROGRAMS 267
14.1 Breakable Aspects of a Program 267
14.2 The Trace Facility 268
14.3 The Break Facility 270
14.3.1 Break Commands i iiiiiinn. 270
14.3.2 Example Sessioniiiiiiii i, 274
14.4 The Profile Facility i, 278
14.5 Restoring Broken Rulesets 279
14.6 Break Package Operationscciuiuiiiunnn.n.n 279
APPENDIX A: EXAMPLE PROGRAMS i i 283
FORTUNE -- The Basics 285
POIROT -- Alternate Databases 295
ANIMAL -- Embedded Control Structures 305
APPENDIX B: ERROR MESSAGES i i i i 313
Parsing and Tokenization Errors 313
Runtime Errors e e 317

. . R T e e AT
“" Y e N U A S

A AL AR BT R A A AT N RN

P AARA
4 8 &
\;‘I.‘I' 2l

-
)

-

O
it

L g
h Y

e T Y SR N 4
» .

»
LS

» IRENL RS
RN
LRI

Aay] v

Cg S I

b
ey
ey

-~

b
[7 T Y

o

.'4".1'.'.

WA
.

. 0 l.

[d
.
’

APPENDIX C: SYSTEM SWITCHES i it 337

Operations on System Switches 342
REFERENCES ... i i i i s i e s 345
INDE K i e e e e e 347

AR

f\1

hd
oo

-.. > "'-‘ ‘-‘ o
LC AT

RENES

»

~
S
~

[4
."’I

.,.
2

A -'-f-f~-f‘f C A Y f-' d‘i‘ O TR LA LY,

AT I, SN T RIS W W W o WO DA,

. Y et 8'a 3's £°2 82 A" *' f [] g gat 0,
Tut vt gttt Gt et 0tk agd g byt uwww¢“%WNWﬁWWﬁﬂﬂ%
)

1. Introduction

INTRODUCTION

The introduction is organized in a manner similar to the main body
of the manual, though without as much of the laborious detail. This
chapter is recommended reading for all new ROSIE users because it
provides a broad overview of the language and introduces concepts that
will be appearing throughout the manual.

1.1 SYSTEM ORGANIZATION

ROSIE exists as a system of three major components. One component,
the parser, translates ROSIE source code into a machine-executable
representation. The runtime component supplies the functions that
support the execution of this parsed code. The third component
encompasses those features that describe ROSIE's interactive programming
environment .

Before ROSIE code can be executed, it must be parsed (translated)
into a machine-executable representation called HILEV. Parsing consists
of three phases: (1) lexical analysis (or tokenization) of the source
file (i.e., recognizing file items, such as rules and declarations, and
transforming each file item into a list of tokens); (2) generating a
parse tree for each file item; and (3) transforming each parse tree into
its executable HILEV representation.

The functions supporting the execution of HILEV fall into three
categories: (1) functions that work on elements (ROSIE's data
primitives); (2) functions that manipulate the database; and (3)
functions that invoke rulesets and demons. Functions in the first
category define elements and test their equivalence. Elements can be
organized into cl/gsses, so another operation of these functions is to
generate instances ot a given class and chain through class hierarchies.
The database functions provide for such operations as creating databases
and switching context between alternate databases. The final set of
functions support the invocation of rulesets and demons, which are
programming structures used to proceduralize the applicability of rules.

The interactive programming environment provides a workspace for
developing, debugging, editing, and running programs. Features include:

. the top-level monitor, which accepts and executes commands from
the user's terminal

the history mechanism, which allows users to review and
re-execute past commands

o

5,

PR

'fl".":...'
5“’5&’?1 .
A A

=i

Y
e

. s
[

.

.
»

e % o
,(Seal 3l

e

= T e g
yyryxs
S

TR P e Y A v < av N
b-"Q"t("l“l',‘!"*ﬁ“c-) B 'C,'«"‘ . .-\. . YO TP l"'.t| 000 4" Yo gV, e gt gt gt gt pV. st gt "al et ab al. %ad * YRR

LR
L

P s

o

1. Introduction 2 ,‘:
.

.

l'.

d the file package, which permits users to build, load, examine, ‘.

edit, and otherwise manipulate program files

. the break package, which provides interactive debugging and
error recovery mechanisms

..,.‘i, .

AN YL

£ 8L

5

e S)

e,

-~
é
ROSIE's working environment shields the user from the complexity of the oy
other two components, essentially acting as a front end to the parsing E/
and runtime components. —
R
N
1.2 PROGRAMMING STRUCTURES .
N
hY
The principal programming structures in ROSIE are rules, rulesets, .
and demons. Rules correspond to executable programming statements, e
while rulesets equate to rule subroutines; demons are a specialized form >
of ruleset. ROSIE programs are defined as collections of interacting A
rulesets and demons. To run a program, one issues a rule to ROSIE's top- -
level monitor, which parses and executes the rule. Supposedly, the rule ;
will invoke a ruleset, which executes the rules in its body, invoking -
other rulesets, and so on. ..
1.2.1 Rules -
-
Iy
Rules consist of an ordered sequence of actions, separated by the kY
conjunctive and and terminated by a period (.), e.g.,} o
.
Assert the report was received at the current time and :
relay that report to every module. =
P
. . o
If any red battalion does advance toward any strategic A
objective and that objective is undefended, &
move some blue battali~n to that objective and
report 'that battalion was directed to that objective'. "
L]
v
.
For each blue battalion (BBTL) in sector #15, t:
advise BBTL to 'move to Red River Crossing' and ,:
assert BBTL was given a new directive. 9
While any strategic objective is not defended, -
keep some blue battalion on alert. -
A rule executes each of its component actions in turn. As one can i:
observe from these examples, ROSIE "rules" differ significantly from the by
'The first example rule contains two actions, an assert action and T3
a procedure; the second, a conditional action; the last two example ,:
rules illustrate two different types of iterative actions. Note that ;a
the conditional and iterative actions take nested action blocks as '
arguments. ¢
~
i
B
.:.
by
'
..

RN AT LY S LA ST AL S

.

Y

3

1. Introduction 3

notion of rule found in production system architectures such as OPS5
(Forgy., 1981) and EMYCIN (van Melle, 1981). While ROSIE rules can
appear in the if-then form of production rules, they can also appear
using other control abstractions (e.g., as seen above in the for-each
and while forms). The key point to keep in mind is that ROSIE rules are
not treated like production rules. Rules are treated strictly as
executable programming statements.

1.2.2 Rulesets

The applicability and context in which rules are executed can be
controlled by organizing rules into rulesets. Like subroutines in more
conventional programming languages, rulesets provide a convenient way to
modularize rules into coherent procedural units. One of ROSIE's
strengths is that these modules can be invoked in a natural and
transparent way using generalized English-like linguistic structures.
There are three types of rulesets: procedural, predicate, and generator
rulesets. Each ruleset type serves a conceptually different purpose;
each gets invoked in a different way; and each returns a different form
of value.

A procedural ruleset enacts a procedure (a type of action) and does
not return a result to the calling form. As an example, consider the
procedural ruleset,

To move a vessel from a source to a destination:
[1] Deny the vessel is docked at the source.

[2] Assert the vessel is docked at the destination.
End.

which updates the database when invoked by a procedure such as in
Move USS Nimitz from Le Havre to Auckland.

A predicate ruleset provides a means of computing the truth or
falsity of a propos. tion (a declarative m-ary relation). When ROSIE
cannot otherwise decide a proposition's truth value from relations in
its database, it automatically invokes the corresponding predicate
ruleset if one exists. For instance, the predicate ruleset

To decide if a vessel is seaworthy:
[1] If the vessel does float, conclude true,
otherwise, if the vessel does leak,
conclude false.
End.

will be invoked by

If USS Nimitz is seaworthy,
move USS Nimitz from Le Havre to Auckland.

-,

- L Tl D Jal e T I R O T O T T o e VO T Y Ta e Lt e e S T Y e o
W, v n" '.) J“ {,{ o “ L2 P -'.r LA q':-l‘. < -‘\-':.J'_ ..\f o " "Q‘ Ly ‘\-‘\-“ \.'\ "\-f'\ S N ‘\'\-‘\ 4 " "

L]

?kj?

5w e v
Ay l::r::f:’\

.
[

..:
vy "‘f

?.'q
s

1’-“1"
Y I

es
N

4
A

“n"‘." ..' l‘ :’ Ay
Pd '. : ...-.:\

,Y’,'rf

'
[4

P]
.

PRy

% ¢
s e’

e

W

atr”
'~

X

1. Introduction 4

if the proposition 'USS Nimitz is seaworthy' cannot otherwise be proved
or disproved from assertions in the database. A predicate ruleset can
conclude true or false, returning a boolean value to the calling form,
or it can simply terminate, returning nothing and implying an
indeterminate truth value.

A generator ruleset produces instances of a class. When generating
from a class (say, the class of ship), ROSIE first produces all elements
that satisfy the proposition 'element is a class' in the database, e.g.,
assuming the database contains

USS Nimitz is a ship
USS Coral Sea is a ship
USS Enterprise is a ship

then generating every ship successively produces USS Nimitz, USS Coral
Sea, and USS Enterprise. Once all such elements have been exhausted,
ROSIE can invoke a generator ruleset for computing additional members of
the class. For instance, the generator ruleset

To generate a vessel at a port:

[1] Produce every boat which is docked at the port.
[2] Produce every ship which is docked at the port.
End.

would produce a continuous stream of elements when invoked by

While some vessel at Auckland is not seaworthy,
repair that vessel.

until all elements produced satisfied the 'element is seaworthy’
predicate. Like predicates, calls to generator rulesets are made
transparently through interactions with the database and do not affect
the readability of code.

1.2.3 Demons

ROSIE also supports a specialized form of ruleset called demons.
Demons selectively capture control of computations just prior to the
occurrences of an event. Once invoked, a demon can interrogate the
system state and either allow the interrupted event to resume or release
control without continuing the event. As an example, consider the
demon,

Before executing to move a ship from a source to a destination:

[1] Unless some vessel at the source is equal to the ship,
return, otherwise continue.

End.

A

Sy

)

A8 4

CRARS
" e

” 5_‘"!"‘

EN A,

X

A

[V -
..‘.. LN]

LLIAEL

. s s
Te LS
A

’

¥
v
Y

e

NSRS I TR AR AN N AR O A N VR MR P U T UM T U O UTORY TRARA AT Tag ap VAR V.8 0 TR oW

'
e
'o'::"
) :".‘T
1. Introduction 5 Shsh
A
o
which would be awakened by 3*3'
Tat'e
Move USS Nimitz from Le Havre to Auckland.
¢
aoohy o
Execution of the procedure would continue only if its arguments (i.e., 4¢%ﬁ
USS Nimitz, Le Havre, and Auckland) satisfy the constraints posted by Np?;
the demon. "-Q
;:,'n
Demons provide a mechanism for event-driven program control. They .
can be used for tracing and debugging during program development. They }
can monitor changes to the database and check the database for gz i
consistency as it undergoes change. hay
B! h
. &
1.2.4 Ruleset Execution Y
Although rulesets and demons are invoked in different ways, once ?‘¢
called they follow the same steps. First, a private database is w*
established; this is used to store information that is local to the ?g:
ruleset invocation, such as parameter bindings. For example, when f\'
RN
To move a ship from a source to a destination: -
-:\
is invoked by N
J J
ol
Move USS Nimitz from Le Havre to Auckland. :ﬁ:
Y
the propositions,
prop 5
WL d
USS Nimitz is a ship -}x.:-
Le Havre is a source Zf{
Auckland is a destination '\f:
Ly !
are asserted into the private database. Next, the rules in the roed

ruleset's body are executed one-by-one according to an execution ~
monitor.? There are three types of monitors that execute rules either i
sequentiglly (first rule to last), cyclically (first rule to last then -
repeat), or randomly (any rule at random then repeat). A ruleset ; v
invocation terminates when the last rule has been executed (if the $
monitor is sequential) or when control is explicitly returned to the
calling form by a terminating procedure, such as conclude, produce, |§
t

)

»

continue, or return. Y
-
R
)
hev
g:.'s
2The execution monitor should not be confused with the notion of ,#
control monitors found in production systems. Although execution ﬁs
monitors ''control' the execution of rules, the control is very rigid and ;zﬂ
does not provide the notion of a conflict set or of conflict resolution X

(McDermott and Forgy, 1978). "

N T T T T T L T N N R R AT AT VT U PR VRN L PRI ST SO X AR R RPN i 0‘,.(.
(

1. Introduction ' 6 "
:’}.‘
1.3 LINGUISTIC STRUCTURES :::q

ROSIE supports three fundamental linguistic structures for encoding

heuristics: actions, sentences, and terms. Actions advance the flow of oy
control, sentences state declarative relations, and terms function as '
data objects. $§
e

: by

1.3.1 Actions

F)

By definition, a rule always contains at least one action. Actions &m

can invoke procedural rulesets, e.g., qza
e\

Deploy a blue battalion to the objective. {0
conditionally execute an embedded block of actions, e.g., 8
I d t
p,
If some red battalion does threaten any strategic D ';
objective and that objective is undefended, £yl

deploy some blue battalion to that objective. 59‘
or iterate over an action block, e.g., RLL
oy

For each blue battalion (BBTL) in sector #15, e

advise BBTL to 'move to Red River Crossing' and e
assert BBTL was given a new directive. ;"' X

-h

While any strategic objective is not defended, s

keep every blue battalion on alert. "
i

Actions such as Y
N
LS

Assert the objective was displayed 7

Deny battalion #5 is deployed to sector #8 Ve

Let the objective be Red River Crossing o

.4ﬁ
add and remove relations from the database. Ny
l" i

1.3.2 Sentences ' '
Sentences specify declarative relations whose truth or falsity can : o
be tested. Some sentence forms test the cardinality of a class, e.g., b-:
oy
if there is more than one unit which is on alert . v
while others test the equality of data objects i :

>

N
if the type of aircraft is equal to F-111X . . . Z‘i:“
R

&
Another type of sentence exists, called a proposition, for which truth {r{f
and falsity can be computed by predicate rulesets. \(}
kJ.'
:-"':-

s
X

Syl
~§.d

ORI RS20

o LRl A P L T o e T T D SN S T T S T S S T S N S
1.8, ¥/ AN 1GNNS Wt v . b 't e n WO, v

- 1. Introduction 7
There are five basic syntactic forms for propositions, each of
which captures a specific class of English usage, i.e.,

class membership term Is a description
battalion #5 is a blue infantry battalion

predication term iIs verb [prep term]*
Red River Crossing will be undefended at 0830 hours

predicate complement term is adjective term [prep term)™
the battalion was deployed rapidly to Red River Crossing

intransitive verbs term do verb [prep term]*
the battalion will proceed to the objective

transitive verbs term do verb term [prep term)*
battalion #5 did receive the message at 1500 hours

As the reader may observe from the above examples, propositions may be
expressed in either past, present, or future tense’ and modified by
prepositional phrases. Propositions can be negated by inserting the

word not before the main verb, e.g., S:z‘
\’\
battalion #5 did not receive the message at 1500 hours :::-‘}_

rel
N

The database actions, assert and deny, take propositions as
arguments, adding or removing them from the database. Actions such as

if, while, and until accept boolean combinations of sentences, which they ;S:'
test against system state. i
N
*
W~

IS

1.3.3 Terms

»

Terms are ROSIE's data objects. They correspond to expressions
that have one (or possibly more) values as their interpretation. These

e

.

values will be one of ten data primitives called elements. Terms serve o
as arguments to actions and sentences as well as other terms. oo,
- 4

it

.

%

['s

There are five forms terms can take. £lements can act as terms,
evaluating to themselves. Arithmetic expressions, e.g.,

the DE * (the exposed aircraft / the number of aircraft) ‘;: \
> o
are terms that evaluate to number elements. Descriptive terms, e.g., ?:)
|
the distance from home base .
every blue battalion which is undeployed WA
N
While ROSIE recognizes a distinction between propositions that 5;:l

‘s
vary in tense, it does not use tense information further. Tense is o
supported merely to allow a wider range of expression.

X IR%S.

‘»
.,

[/

& uS
[

;-

A ‘I
4%

r
4

A
r
&

»
2

-y e - ~ - - . . . i . . e e te n,
LA AT A AT AN l‘a‘l.q“ SCN l‘.l.q"‘i‘. 9.0 0, N, 4‘!||. » U hY, >‘ ' (’& & *\" ’.h > R ;

T P T R N R R I B P P T W P T PR U oW W U O N 0 U oo

1. Introduction 8

evaluate to one, some, or all instances of a class.® There are also
anaphoric terms, e.g.,)

that battalion :::;.
¥
which evaluate to an element previously produced from a description, and '#L
iterative terms, e.g., :ﬁ
one of F-111X, F-4X or F-16X 3
each of battalion #5 and battalion #8 N
.

.
which evaluate to one or all members of a given sequence. ::
w0

1.3.4 Elements 3

U

Terms evaluate to elements. Elements can be divided between two
categories: simple elements and intentional elements. These include:

CEEFe LD

Simple Elements Examples
names battalion #5 d
numbers f.'h
simple numbers 3.1412 o~
unit constants 55 miles/hour :\:
labeled constants probability 0.75 2:-
strings "The ratio HEP/COG:" ",
patterns {{"Yes"]"No")} (bind to the reply), cr}
tuples <pol soft, <5 waves, FX-4>> o
filesegments 'file: "intel”, to report a finding' ;\
N
Intentional Elements E:i
“~
class elements any non-offensive target
Intentional descriptions ‘an action at the current time’' R
Intentional propositions 'visibility does approximate 3.5 miles’ .:"
Intentional procedures 'deploy the unit to sector #3' e
o~
Several of the simple elements (i.e., names, numbers, strings, and -y
tuples) exist as slightly more complex variations on the basic data
types founc in most symbolic programming languages. The others (i.e., <
patterns and filesegments) provide explicit representation for data :
structures used in operations that are unique to ROSIE. For instances, (]
filesegments identify portions of a program file that can be manipulated ¢

via the file package, and patterns interface to ROSIE's string pattern
matcher and support complex input and output operations. -

N
“The major component of a descriptive term is a description, which g
is composed of a class reference (e.g., blue battalion) and optionally s
modified by a relative clause (e.g., which is undeployed). d

b g o T o
' o
RN

Y

w e
»)
Y
s
Nt
~I o . N8t \'--\ “ \ﬂ‘\-‘\!..‘- LR

RN ' R A" 4 TR LAY e AR SR O A A A L LS PR A RN
‘!‘.‘l‘u‘l‘-'!“.l.n.l.-. ,‘..».l L) ~ -‘ " 5 k) “ ." \\ ..\ "N \\ -~ !- .\ A .Q \ ‘.

1. Introduction 9

The intentional elements provide ROSIE with limited "self-
referential’ capabilities, allowing programs to treat units of
descriptive, declarative, and procedural knowledge as data. C(lass
elements and intentional descriptions permit program control over the
evaluation of class relations, e.g.,

Execute every instance of 'an action at the current time'.

Intent ional propositions capture the intent of relations between
objects, which can be passed as arguments to rulesets, e.g.,

Report 'visibility does approximate 3.5 miles’.

as well as asserted, tested, or denied. [ntentional procedures provide
a representation for working with suspended actions, e.g.,

Execute 'deploy the unit to sector #3' at time 100.

which can be queued and later executed on demand. Essentially, the
intentional elements give knowledge engineers a vehicle for developing
meta-level control mechanisms.

1.4 THE DATABASE MECHANISM

The initial, intermediate, and final results of ROSIE programs are
stored as affirmed propositions in ROSIE's database. Propositions can
be asserted (affirmed in the database) and denied (removed from the
database). It is possible to test the truth or falsity of a proposition
against the contents of the database as well as generate the members of
a class defined by affirmed class relations (i.e., propositions using
the is-a copula).

ROSIE's database structure actually consists of two conceptually
separate layers. The first is the physical database, which contains
affirmed propositions. The second is the virtual database, which
consists of those relations that can be computed from other relations
via ruleset invocation or through a limited deductive retrieval
mechanism provided with class elements.

1.4.1 The Physical Database

The physical database can be employed to store facts about the
world as well as intermediate computational results. These facts and
results must be propositions, which are affirmed using a three-valued
logic system. Propositions stored in the database may have a truth
value of true or fglse;, propositions that are not in the database have
an rndetermingte truth value. This three-valued logic provides ROSIE
with an "open-world" assumption, which implies that ROSIE may not have
complete information about a particular situation; truth or falsity will
not be inferred in the absence of contradictory information.

'.{ / 'J"I,'l '-P’.‘.’ e ‘.r»-f 7 '-’-'. f..-.,\...f.;'\._f ‘.' N - '-." A ORI R n.“-\,-‘..'._v'.'f-.".-

1. Introduction

Occasionally in Al applications, a method is needed for storing
different facts in different databases. This may arise because we wish
to model multiple points of view or because we want to restrict
attention momentarily to a subset of those facts that are most relevant.
To support such needs, ROSIE allows users to create glternate databases
and specify when they should be activared and deactivated (i.e., swapped
in and out of context).

1.4.2 The Virtual Database

The virtual database supports relations that either cannot be
described by affirmed propositions or for which such a representation is
not economical. For instance, relations such as '3 is greater than 2’
are more economical to compute than store. The virtual database
consists of both predicate and generator rulesets, and virtual
relations.

Predicate and generator rulesets allow users to define subroutines
for deciding the truth or falsity of a proposition or producing the
elements of a class, respectively. Virtual relations, which are
affirmed propositions containing a cl/ass element argument, e.g.,

any ship is a vessel

give users a method for specifying relations that hold over a class of
elements.

The essential trade-off between the physical and virtual database
is space versus time. In general, relations stored explicitly in the
physical database require more memory for their representation than
relations stored in the virtual database, while relations stored in the
virtual database require extended computation for their retrieval.

1.5 STRENGTHS AND WEAKNESSES

As we have seen, ROSIE programs are described as collections of
rulesets and demons that affect the flow of control through direct
invocation, initiation of an event, and interactions with the database.
ROSIE differs in several respects from other current "expert system'
languages. ROSIE is not a production syvstem architecture, nor is it an
object-oriented or frame-based language or a language for programming
logic. ROSIE is similar to production system architectures in that
"factual knowledge" is stored as relations in a common database, and all
work is done through side effects on these relations. Yet, it is unlike
production systems because it does not contain an inference engine, and
its "rules"” behave like executable code. ROSIE's innate control
structure is actually quite similar to the procedural, top-down control
structure found in languages such as LISP or PASCAL. However, ROSIE
provides a wider array of data abstractions than is available in other
procedural programming languages. These aspects distinguish ROSIE from

-

RRAAY
2P P

2

A

)

‘)

L]
C N N

14
Ve

y .’l {.-
I NY

]

.-
£,
LS
f;.

7

L4

't
Ly

sl
P

»r

1. Introduction 1"

other contemporary systems and greatly affect how one builds an expert
system in ROSIE.

P e e &]

There is a general consensus among those doing research in the area
of expert systems that components of knowledge should be abstracted away
from components of control (Kowalski, 1979; Hayes-Roth et al., 1983).
The strength of production systems rests largely on the distinction they
make between knowledge and control. Unfortunately, few production
systems provide access to their control mechanisms, and, thus, aspects
of control often appear in the knowledge base anyway. In ROSIE, the
problems of delimiting knowledge from control are reversed. Since ROSIE
resembles a "conventional" programming language, the system builder has
greater access to mechanisms for describing control than is available in
most production system architectures, which normally provide control
abstractions only as some form of inferencing over if-them rules. Yet,
the system builder has virtually no means of separating aspects of
control from knowledge. When building an expert system in ROSIE, one is
forced to either intermix control and knowledge or build a control
structure on top of ROSIE. Both approaches have the undesirable side
effect of detracting from the readability and performance of the
resulting system.

WEREF ISP PEE LE AR TN

The first approach is undesirable because it essentially means that
knowledge is "hardwired" into the system. This has the effect of making
the system's code very rigid and inflexible. In addition, since no
clear delineation of knowledge from control exists, it becomes difficult
to distinguish between the two, which detracts from the code's
readability for nonprogrammers. The second approach is equally
problematic. The essence of this approach is to build a rule
interpreter on top of ROSIE--where the interpreter provides a variety of
the specialized control structures needed for the target system--and
then define the system's knowledge in terms of this new "meta-level"
language. The problem with this approach is that ROSIE does not provide
hooks into its English-like syntax, nor does it provide a mechanism for
easily defining new data types. Thus, knowledge in such a system must
be encoded using ROSIE's existing data primitives. While this can be
done successfully via the intentional elements, the encoded knowledge
loses much if not all claim to being readable. Additionally, the extra
level of interpretation substantially degrades system performance.

AT, NN YT NTRIEE B Fl

S ae e JE NE

Wi Py DO YT

The lack of support for the abstraction of knowledge from control
can be viewed as a fundamental flaw in the design of ROSIE and its major
weakness. Despite this, ROSIE does have some redeeming qualities that
recommend it for work in expert systems research. ROSIE has been
successfully used in the development of several large-scale prototype
expert systems. These include: LDS, a Legal Decision-making System,
(Waterman and Peterson, 1981); TATR, a Tactical Air Target Recommender,
(Callero et al., 1984); DSCAS, a Differing Site Condition Analysis
System (Kruppenbacher, 1984); Adept, a workstation to aid combat
intelligence analysts (Beebe et al., 1984); and SAL, a System for
Asbestos Litigation (Paul et al., 1986).

EECROYTEC YT e

S e =]

ST ey

= e 5|

A
A R A A A B R A O A A A N R N A O MO M N M W M £ W M N W W WL W WA WML WA A UM W

1. Introduction 12

pp——

One of ROSIE's strengths is its use as a prototyping language. As
a general-purpose programming language, ROSIE gives the system builder
far more "control over control" than is available in most other "expert
system" languages. This means that the system builder is not hampered
by an otherwise rigid and narrow control structure, allowing the rapid
development of prototypes. In addition, ROSIE's English-like syntax can
be used to produce highly readable code. With ROSIE, a knowledge
engineer can extract rules of expertise approximately three times faster
than with ROSIE's non-English-like counterparts.® Such rules, coded in
the terminology of the target domain, can later be used as formal
documentation when transforming the prototype into a "mature" expert
system.

1.6 CLOSING REMARKS

The ROSIE Language Development Project ran to completion in
December of 1985. The final product of this effort is the version 3.0
release of ROSIE. ROSIE 3.0 is a complete reimplementation of ROSIE in
PSL (Portable Standard Lisp) (Galway, 1984). We initiated the move to
PSL as a means of improving ROSIE's performance and increasing its
availability; PSL requires less memory, executes faster, and runs under
a wider range of host environments than Interlisp (Teitelman, 1978), the
language in which ROSIE was first developed. In the process of porting
ROSIE to PSL, we took the opportunity to refine and enhance the design
of the language.

VOO OORT YOOI T 0 K EXEFD P R NN

Our primary goal in reimplementing ROSIE was not to change the
basic definition of the language but to simplify and modularize its
internal structure. This was done without a loss of generality or
functionality. Thus, while making extensive changes to the major
components of ROSIE, we have maintained a high degree of upward
compatibility with existing code. Some of the outward changes, such as
the introduction of filesegments as a data type, have been discussed
(though not explicitly pointed out) earlier in this report. Other
changes include the treatment of strings as two-dimensional ragged
arrays and the inclusion of a new terse syntax for patterns. Overall
performance improvements have been substantial, and certain components,
such as the parser, file package, and string pattern matcher--which had
previously caused significant bottlenecks in the programming process--=
run two to five times faster in ROSIE 3.0 than in any earlier release.

TESAASAAT

Although the development of ROSIE is no longer an active project at
The RAND Corporation, the ROSIE environment is still being used as a
testbed for research. One example of this is the experimental
explanation facility being studied in XPLROSIE (Waterman et al., 1986).
There is also work being done on melding a frame-based programming
paradigm into the ROSIE environment. Finally, there is a group

SEITCTOR] T sUs

*D. A. Waterman, personal communication.

i - e

O T IO O WM S VO U T T ™ P 1 U T T P P o T 7 o WAL WPl WP P o WL L W U WL W WO M WU L e WL

1. Introduction 13

examining how the knowledge acquisition process might be automated to
the point of allowing knowledge engineers to develop large and robust
ROSIE systems from a relatively small number of interviews with the
domain expert. The ultimate goal of all this work is to overcome some
of ROSIE's weaknesses and to provide knowledge engineers with a flexible
environment in which expert rules can be formulated and later
transformed into a high-performance expert system.

’\l'n)'t .'- :n"- N
N

'
s,

LSS

2. Syntactic Structure 15

li. SYNTACTIC STRUCTURE

A fundamental task when learning how to program in ROSIE is
learning the language's syntactic rules and how to apply them
effectively. This is not a trivial task. While ROSIE appears to
"understand” an impressive subset of the English language, it draws the
sum total of its "knowledge" from a context-free grammar and actually
has very little real understanding of English at all. Novices and
experienced programmers alike often forget this point, writing very
English-like code, which is completely incomprehensible to ROSIE.

Before ROSIE code can be executed, it must be translated or parsed
into a machine-executable representation. Parsing consists of three
phases: (1) tokenization, (2) parse tree generation, and (3)
transformation. In this chapter, we will be discussing the first two
phases of parsing; the third phase does not directly concern the user
and will not be discussed.

Most of the design decisions regarding ROSIE's syntactic structure
follow immediately from the choices made for its linguistic structures.
Familiarity with ROSIE's linguistic structures (presented in succeeding
chapters) may help novice users gain a better grasp of ROSIE's syntax.
First-time readers are recommended to give the following sections only a
cursory glance, returning to them after reviewing the rest of the
manual.

2.1 PARSING BASICS

Parsing is the process by which a ROSIE source program is
transformed into a machine-executable representation called HILEV.
Parsing follows a three-step process: (1) lexical analysis (or
tokenization); (2) parse tree generation; and (3) transformation.
Tokenization is the process of breaking up words and special characters
of the source code into tokens and grouping tokens together into
independent file items. Parse tree generation is the process of
deriving a unique parse tree for a given file item that represents its
syntactic structure. Transformation is the process of mapping a parse
tree into its HILEV representation.

To illustrate, consider parsing a file containing the ruleset,

A

\\“l')')‘li?
" l‘l.l'i ”
Y YAy

LA S

Aty e
2

.

.
.

.I

‘* I"{

.
L

o]
C

<

>~
X

&Y
7 ‘f'i

%

e th)
fora

2

* Ly

LA N
N,
e’e’e

L]
»

r\,\,'l
I A Ay

'-n o
st

h

P

»

2. Syntactic Structure 16

To diagnose a situation:

[1] Apply every rule that does conclude some 0
hypothesis about the situation. -
[2] For each rule that does conclude some true :

hypothesis about the situation,
print "(that rule} does apply, concluding:
\ {that hypothesis}".

V '.1

End. =
Tokenization would decompose this into the four lists of tokens, %
(TO DIAGNOSE A SITUATION :) W

(APPLY EVERY RULE THAT DOES CONCLUDE SOME W&
HYPOTHESIS ABOUT THE SITUATION .) X

(FOR EACH RULE THAT DOES CONCLUDE SOME TRUE -
HYPOTHESIS ABOUT THE SITUATION , PRINT { { o

THAT RULE } " does apply, concluding" , CR , -

" ", { THAT HYPOTHESIS } } .) =9

(END .) N

s

representing four separate and syntactically independent file items. 13
The second file item (starting APPLY EVERY RULE . . .) generates the \j~
parse tree,! o
l,"

<rule> _::"

<action> }?l

| 4

74

<procedure> o
\ .~\

<term> o

\

<desc> A

/ \ ,.-:

<class> <rel clggiff o

<verb phrase> ‘;’

—— — N

<do aux> <term> <pphrase>
N ~

<desc> <term> N

| N g

<class> <defc> ﬁ;

<class> ?_

APPLY EVERY RULE WHICH DOES CONCLUDE SOME HYPOTHESIS ABOUT THE SITUATION ::‘_
7777777 ’Actudily this is only an approximation; the real parse tree for ;}
this file item would be somewhat more complex. \f_
l- ~ v‘
l.;\ i

R

B

>

R

N

Gy T L A O T N o N R, A A N N A T g A 0 Y A R DA A A e

2. Syntactic Structure 17

for which the transformation process would produce the LISP expression,

(<RULE>
(<DO>
(<FOREVERY>
(<DESC> <G0282> (<IDENT> RULE)
(<IFSOME> (<DESC> <G0283> (<IDENT> HYPOTHESIS) NIL NIL)
(<PROVABLE> 'DOESBIN 'PRESENT T
(<USRVAR> <G0282> RULE)
(<SYSVAR> <G0283>)
(<IDENT> CONCLUDE
(ABOUT (<THE> (<DESC> <G0284>
(<IDENT> SITUATION) NIL NIL))))))
(THAT DOES CONCLUDE SOME HYPOTHESIS ABOUT THE SITUATION))
(<GO> (<IDENT> APPLY (*OBJECT* (<SYSVAR> <(G0282>)))}))))

as its HILEV representation.?

2.2 TOKENIZATION

Lexical analysis of ROSIE source code is a process of recognizing
file items and generating a list of representative tokens for each.
This process 1s referred to as tokenization, and the lexical analyzer as
the tokenizer. Below is an example of a ROSIE rule (a file item) and
the list of tokens that would be produced for it.

Assert [that] <"item 3,4", 3.4 KG/M"2, Dave's age> is a tuple.
(ASSERT < "item 3,4" , 3.4 KG/M"2 , DAVE ' S AGE > IS A TUPLE .)

One should observe that ROSIE is not case sensitive, except with respect
to strings (e.g., "item 3,4"), and that tokenization returns all atomic
tokens in uppercase. Notice also that comments--any characters
surrounded by matching left and right square brackets ([])--are not part
of the resulting list of tokens.

The tokenizer follows a simple algorithm. It is either scanning
for a token, collecting the characters of a token, or processing those
characters into a token. Scanning involves reading characters one at a
time and throwing away those that do not start tokens, such as blanks,
tabs, and new lines. Collecting means gathering characters that make up
a token in a buffer. Finally, processing means converting characters
from the buffer into either an gtomic, numeric, or string token. Once a
token has been processed, it is added to a list of tokens that
correspond to a file item. This list is eventually returned as the
result of tokenization.

“ROSIE users are never expected to deal with HILEV directly,
therefore the definition of the various HILEV functions is not pertinent
to this discussion.

" .
A N0 N

LS

«

Ly

h o T 4
% Yy

1".’“
."

‘S A ’:.‘_'.
-— s

3

A

=,

'ﬁzdfﬂﬂd
XA

A
e

7"

" W 0 AU o Y e N . e e N R e e e e e N
O 8 AN S A N N A A R 2, T G N i, A A N s N X T, S e N Y o N N

2. Syntactic Structure 18

2.2.1 The Character Set

In order to distinguish one token from the next, characters are
divided into one of eight character classes. When the tokenizer reads a
character, the character's class tells the tokenizer what to do next.
For instance, it can either add the character to the token being built,
finish the current token and start a new token, or terminate the
tokenization process all together.

The eight character classes and the characters that belong to each
are described below:

®* separator characters: blanks, tabs, line feeds,
and all other control and
nonprinting characters

These characters delimit (or separate) tokens and are
otherwise ignored. 1If the tokenizer encounters a separator
character while scanning, it simply ignores the character and
moves on to the next. If the tokenizer is in the collecting
phase, it processes the contents of the token buffer and
starts scanning for the next token.

* break characters: {yy1 """y, <>~=

These characters are recognized as single character tokens.
When the tokenizer encounters a break character, it processes
the contents of token buffer (if any), after which it adds a
token representing the break character to the token list and
begins scanning for a new token.

NOTE: The arithmetic operators (i.e., + - * / ") are not break
characters; thus, 3*4 constitutes a single token, while 3 * 4
constitutes three separate tokens.

® string delimiter: "

This character introduces and terminates strings. By default,
it is the double quote ("), and all succeeding references to
the double quote should be understood as references to the
string delimiter character.

Normally, the characters encountered between a pair of matching
double quotes become the characters of the resulting string.
When the opening double quote is encountered, the contents of
the token buffer (if any) are processed, after which the
tokenizer starts collecting the characters of the string.

In ROSIE 3.0, the lexical syntax of strings has been
substantially enhanced from previous versions of ROSIE. This

/

new syntax will be discussed later in Section 2.2.4.

v
~ "l‘

1|

Ll
o~

<

>

~ -
“f

_1 rrLee
": tx-.. -

'{ v'. -'. ..' -'. -" -
A S NS
. s [y

."l", f'v{‘l(‘ -‘ %':“)
2 I." L7 (l‘.l l“vl

s
. W
PR

ay '-"l
‘. { ("

.~

.
.

L]
-

', 4
.

IR
(MY

It'..t'/f.

L]
L $

Syl
[AAS

)I({J

Py

D pta u's 8% 2% 3% &t a .0 4" Jatl 4 g a¥

2. Syntactic Structure 19

(]

Square brackets delimit comments, which are otherwise ignored
by the tokenizer with the exception that comments can be

nested. When the open comment character ([) is encountered, the
tokenizer scans past characters to the matching close comment
character (]). The entire comment is treated as though it were
a single separator character.

* comment characters:

®* escape character: \

This character tells the tokenizer to treat the next character
as though it were of the class Jetter. The escape character is
otherwise ignored and will not appear among the resulting
tokens.

NOTE: The escape character is not recognized within comments
and can take on special properties when found in a string.

® terminator characters: v ?

These characters can (but do not always) indicate to the
tokenizer that it has reached the end of a file item.

A terminator character is only recognized as such if it is

the last nonseparator character on a line of text (where either
an end-of-line character or end-of-file character can indicate
the end of a line of text). An additional restriction maintains
that the colon (:) can function as a terminator only when the
first token of the item is one of to, system, or before, i.e.,
the colon is a terminator character only when it terminates a
ruleset header.

If a character does not satisfy these restrictions, then it is
not treated as a terminator. The characters (. ! ?) are
treated as belonging to the class of letters and the colon
(:) to the class of break characters.
* digits: 0-9
When encountered, a digit is added to the current token or
starts a new one if none yet exists.

» Jetters: a-z A-Z2 -+ /) " @# S % & _

Most printing characters belong to this class. When
encountered, a letter is added to the current token or starts
a new one if none yet exists.

N P IS
X T o O A o

i
84 ¥~.)

v
h]

o0
2

£7
} 4

'
A

(LM

.
(

o

»
-
.

[y
]

rd .'..'.l' {§ r v
A

2. Syntactic Structure 20

In the processing phase, if the contents of a token buffer can be
interpreted as a numeric or string token, then that type of token is
created. Otherwise, the characters are coerced into an atomic token.

2.2.2 Tokens and File items

When the tokenizer is invoked, it successively reads characters
from an input source, such as a file or the user's terminal, until it
encounters one of the terminating characters (. ! 7 :). Reaching such a
character indicates to the tokenizer that it has recognized one file
Item. It returns a list of tokens created from intervening characters
as the representation of that item. There are three types of tokens and
five types of file items.

A token can be one of the following types:
®* numeric tokens
which include integers of the form,
(+/-]nnn
and real numbers® of the form,

(+/-](nnn) .nnn[E{+/-]nnn]
[+/-]nnn.[nnn) [E[+/-]|nnn]
(+/-1nnnE{+/-]nnn

where nnn represents 1 or more digits, e.g.,

-23

3.14

.2

2.
-1.25E-9

Numeric tokens can optionally be preceded by a unary plus (+)
or minus (-) and followed by an exponent.

® string tokens

which begin and end with a double quote and include all
characters encountered between the double quotes. A double
quote can be included in a string by escaping it, e.g.,

"MacArthur said, \"l shall return.\""

’If the number nnn. (e.g., Let the counter be 1.) appears as the

last token on a line, then it will be recognized as an integer rather
than a real, where the decimal point is treated as a terminator.

- -

. b'.!.'wn‘ LS STACATAS SR at ‘F‘.ﬂ \< [-.\-,‘g,\ln \‘-;- \' o
¢ L LA A) e N 3 A) LN b N N

Ny

& -."n..‘.l...t.. K. o'l‘ " "F .' ‘; v ‘,‘ -‘ -

‘v ‘v .
=51

’S)El

L,

B By

¥y
SRR,

&

TN _ B X P 2 %
e
ALY
POy

2
22

= 'y
B

xS
-t

e

Ty
L0y

e

ALV ALY

()
':::.
2. Syntactic Structure 21 Wi
N
* gtomic tokens At
e e
which covers any token not recognizable as a numeric or)
string token. Thus, the following lﬁg:
Nt
3.1.2 N
JK=DK iy
3+4 el
*4DESIGNS i 8
OILeGAS l_.\:‘,
r;g
are examples of unusual, but legal, atomic tokens. ; j‘
A
A token's type is used when generating the parse tree representation of e\, -

the file item. When a rule from ROSIE's BNF requires a particular type
of token, it will be specified as <atom>, <string>, <number>, or

o

<integer>, where <integer> will only match a numeric token that is a Wt
positive integer. These nonterminals will match any nonreserved token f,f
(see Section 2.3) of the designated type. tﬁ&
P
There are five types of file items recognized by the tokenizer: q
N
* ruleset headers N

,
7

which introduce ruleset definitions. A ruleset header can
start with one of to, system or before, e.g.,

V’(';

To move a ship to a destination: 77
System ruleset to move a ship to a destination: e
Before executing to move a ship to a destination: R..)

o
e

and is always terminated by a colon (:).

®* declarations and rules

. 4
4

)
Ny
which include private class declarations, e.g., o
,
SRR
.) L. NN
Private: a counter (initially 0), a reply. N
execut ion monitor declarations, e.g., :uu,
Execute cyclically. ey
ruleset rules and file rules, e.g., uf;.
Assert battalion #5 was diverted to sector #7. -
>
and end statements, e.g., i:*‘
sy
)
End. PN
Y
DY
:‘f‘
A
RER)
S
o
gy
-
bi“f
T F L PP T T e e T T A S e YU VL Nty R T At W - e .- o d
n‘...l‘!\'?‘l‘t‘l.. |‘:‘n',‘|‘. ALY .*'P ool o " ’. .' .'f " ' W '('F: " oY ') W '('r' ,l(‘ " '.) \' "' o

2. Syntactic Structure 22

These file items appear as a sequence of tokens terminated by
a period (.).

® queries

which are special command forms recognized by the top-level
monitor and within a break loop, e.g.,

??
Conclusions?
14?

They are characterized as terminating with a question mark (7).
¢ break commands

which are special command forms recognized only within a break
loop, e.g.,

Eval!
Resume ruleset!

They are characterized as terminating with an exclamation
point (!).

2.2.3 Comments

Comments can appear anywhere in ROSIE source code. Comments are
preceded by a left square bracket ([) and terminated by a right square
bracket (]). Additionally, comments can be nested to any depth.

When a comment appears within the text of a file item, it is
treated like a separator character. This means that if the tokenizer
were in the collecting phase, it would process the token, add it to the
list of tokens, and start scanning for a new token. Comments that
appear outside of a file item are likewise ignored. The text of such
comments will be associated with the text of the file item immediately
following them, meaning that when a file item is edited or examined via
the file package, the comments immediately preceding it will appear with
the text of the file item as well.

There are several restrictions upon comments appearing outside of a
file item:

1) If a comment precedes a file item, but begins on the same line
as that item, e.g.,

[2] Assert

its text will be discarded by tokenizer.

~ O A RS NN Y A R
ASLAN B

W58, %0 e " A

T LN LT &P T T B B AT AE AT A PAL I TS T %
vu.'o. Jo. A% ..‘m .. .l._.l.n‘al' ""

x n*'-'

:‘r{' ?}',’ ’{'{“ ’
Ry T o o

i owoey
INEREREY
» "-.-
¢cn‘

ot A

o f
o °

Ls

g
[

S

..
.
s«

‘.. \.
3

- 9
2
A

»

_-ﬁ%
;iy.ﬁ,
’ -

> ,
!7 ‘7

X

N
~
Nl
~
N
“»

LTINS

2. Syntactic Structure 23

2) If a comment follows a file item, but begins on the same line
as that item, e.g.,

End. [End of report info]

it will be included with the text of that file item, rather
than the text of the next file item.

3) If a comment (or sequence of comments) is not otherwise
followed by a file item, it is discarded.

ROSIE automatically generates comments to attach rule numbers to
file rules and ruleset rules. It supplies the numbers and keeps them
up-to-date whenever a program file is edited or otherwise modified.

It has been our experience that ROSIE programs require far fewer
comments than is typical of other programming languages. Despite the
fact that claims to a "self-documenting” language have been made in the
past, ROSIE code is remarkably expressive and needs little
documentation.

2.2.4 Extended String Syntax

Among the changes to appear in ROSIE 3.0 is an extension to the
lexical syntax of strings. This syntax allows the otherwise verbose and
unwieldy syntax of pattern elements (see Section 9.6) to be captured in
a form that outwardly appears to be a single string token, thus
enhancing both the clearity and readability of patterns. The new syntax
subsumes the older form (i.e., zero or more characters delimited by
double quotes) and in most cases is compatible with strings in existing
code.

When the tokenizer encounters a double quote ("), it begins reading
a string. If a matching double quote is encountered before the end-
of-line character, the tokenizer creates a string token of the form
"ccc", where ccc are the characters appearing between the opening and

closing quotes. Thus, when reading the characters
"This is a string”
the tokenizer will treat them as constituting a string token.

However, if the end-of-line character is encountered before the
closing double quote, the tokenizer assumes an instance of the extended
string syntax, the result of which will be a list of tokens specifying a
pattern. For example, scanning the characters

"East is east and west is west,
and never the twain shall meet"

PP W

(h" n

487y .)

Rl P.(: !‘.--' -f 1_ -q_ '._ﬂ",f: -‘ ,!‘..u" ",' -‘. .-, 'n._ n'_ .'_:..‘v'\-’ -. \‘_ ‘1' \'.m.;_‘.-.---‘..\'.\.; “n -"{\’3)'*\’5'\'\)
9 RN 1 9.0 5. Y Y. X X b p . Ty, . Ao o n AR

3 2w s
CA AL Ly

oy
v;./"(ff

S'—’
5

l- .'
P
'i.. 'l 4

y J
y

L 0

L
-

Pyt

2. Syntactic Structure 24 /i
L} 'i
o
u~
generates the tokens ‘]
-
{ "East is east and west is west" | CR , o
"and never the twain shall meet" })
\
These tokens would be parsed as a pattern; the pattern can be coerced :a
back into a string element (see Section 9.5). Terms and subpatterns may LNt
be embedded in strings by delimiting them with matching left and right .
curly braces ({ }). .
To be precise, the lexical analysis of strings is guided by the }i‘
following rules: it
R
* Strings are delimited by a pair of matching double quotes ("); o
;]
* Characters appearing in a string and surrounded by a pair of :::
left and right curly braces ({ }) are scanned as though they J :
existed outside of the string, e.g., ‘,~
\J
"ls {the hypothesis} correct? " 3
. oy
will be scanned as the pattern o
P
{ "I1s ", { THE HYPOTHESIS } , " correct? " }
Note also that &
"This {"is a trick"} string" "::
3
will be scanned as Q ’
{ "This " , { "is a trick" } , " string" } by
A
* When the scanner reaches an end-of-line character before a e
closing double quote, it inserts a carriage return subpattern a
(CR) into the resulting list of tokens, separating the :u_
characters on one line from the characters on the other, e.g., :¢'
-~
"fOO ‘..‘
fum” e
will be scanned as ﬁi;
{ ”fOO” , CR , "fum" } ;':'
The string to the left of the carriage return will end with the :%‘
last nonseparator character encountered before the end-of-line Qj,
character. The string to the right of the carriage return will RN
start with the first nonseparator character encountered after the \}
end-of-line character; all intervening separator characters (with Lo
the exception of the end-of-line character that always inserts an [
o,
\Z_'.
50

2. Syntactic Structure 25

additional carriage return) are ignored.
As an example, consider the string

"Airfield: {the airfield}] Target: {the target}
Capabilities are {the capabilities of that target}
Vulnerability is {the vulnerability of that target}"

»
-

which will be scanned as

P

s

>
{ "Airfield: " , { THE AIRFIELD } , " Target: " , :::1
{ THE TARGET } , CR , "Capabilities are " , { THE A
CAPABILITIES OF THAT TARGET } , CR , "Vulnerability is " o
U

, { THE VULNERABILITY OF THAT TARGET } }

e

Note that the indentations of the source string are not

)

-

preserved. otod

i

e If a back slash (\) is the first or last character of a line, :ﬂ%
then it (and its use as the escape character) is ignored. All a)

separator characters that respectively follow or precede the back

7 9

slash will appear in the resulting tokens, e.g., z;,
Y
"Airfield: {the airfield) Target: {the target) .-:E:’

K Do

\ Capabilities are {the capabilities of that target)

:'_v
\ Vulnerability is {the vulnerability of that target}" o
will be scanned as ey
)
{ "Airfield: " , { THE AIRFIELD } , " Target: " , Ty
{ THE TARGET } , CR , " Capabilities are " , pEhY
{ THE CAPABILITIES OF THAT TARGET } , CR , {:#
" Vulnerability is " , { THE VULNERABILITY OF THAT
TARGET } } N,
-
N,
This provides a simple technique for preserving indentation. N
.P.'a
* The special attributes of any character appearing in the string i:ﬁ‘
will be ignored if immediately preceded by the escape character,

e.g., vy
: : S
"MacArthur said, \"| shall return.\"" N

o

will be scanned as the token, :
"MazArthur said, "I shall return.™" ¥ #;
*',
Note that this use of the back slash is superseded when the back :a:'
slash is the first or last character on a line. vl
* 4
2

® No other characters or character strings have any special

|\I\
-\'.\
ﬁ&ﬁ

-
s
.
JENAN

N Y

s & K%y

P e P At T MM Ta s et R - R - - e e PR
'l.!.l.- ’f‘ a .‘ 2 l ’ "'., “»,” \‘\-' ARINT ‘-,~ -' - \" RO RN AL N ‘.". T

2. Syntactic Structure 26
significance unless they appear between left and right curly
braces.
¢ If none of the above features (with the exception of the escape Nﬁ’
character) are encountered while scanning a string, then the ka
string will be returned as a single string token. Otherwise, it o
will be returned as a list of tokens designating a pattern element. :N;
0t
2.3 RESERVED WORDS :1."
e
Reserved words are tokens that can only appear as literals in :::
specific syntactic constructs. All break characters are reserved words, :~$
as are a large set of prepositions, and the auxiliary forms of be and £
do. The following is a list of the reserved words used in ROSIE 3.0: .
Ks
(1) CYy | 'y , <> ~ = 7 1 '$\
ath
2) + - K /7 % .
»
(3) ABOUT AT DURING ON THRU WITHIN .
ABOVE BECAUSE FOR ONTO TO WITHOUT o
ACROSS BEFORE FROM OUT TOWARD -::
AFTER BEHIND 1IN OUTSIDE UNDER :\'
AGAINST BELOW INSIDE OVER UNTIL 'a:‘
ALONG BESIDE INTO PER up AN
AMONG BETWEEN NEAR SINCE VIA .
AROUND BY OF THAN WHILE IR
AS DOWN OFF THROUGH WITH o~
f\q"
(4) AM DID DOES WAS WERE WILL ot
ARE DO IS .
(5) A ANY EITHER SOME THE THAT ;»;
AN EACH EVERY SUCH e
- ¥
.
(6) WHERE WHICH WHO WHOM WHOSE EXCEPT :};
EACY
) AND HAS LET THERE UNLESS OTHERWISE ./
ELSE IF NOT o
These are arranged (loosely) according to usage, i.e., (1) break Tif
characters, (2) arithmetic operators, (3) prepositions, (&) auxiliary k?‘
forms of be and do, (5) noun phrase specifiers, (6) relative clause L)'
specifiers, and (7) other reserved words. -
Ny
NG
AN
e
BAY
:ﬁ:&
NS
RN
T
‘:h:"-

I's
'

et .

oy .’; (TR . Ny ’J‘(‘ A el et AT -{:‘;-"-\.'. ARSI "J'A'.ﬁ\.';'(\.".-_".'.'.' - .":.“-.'_-_..: RO -_-..‘-...-_‘_\..._...\»._....\
. Al <! 2 o o ' - i L . A P 3 A R A -

2. Syntactic Structure 27

2.4 THE ROSIE GRAMMAR
The Backus-Naur form (BNF) (Pagan, 1981) description of ROSIE's
syntax is provided below for users who want a terse but complete
definition of the language. The following conventions apply:
¢ Uppercase indicates terminal symbols (i.e., tokens that must
appear in a sentential segment in order for that segment to

be recognized as an instance of a grammar rule);

* Angle brackets (< >) surround nonterminal symbols (i.e., symbols
that are found in the left-hand side of a production);

* There are four "special" nonterminal symbols, which match a
single token according to type:

<string> matches any string token;
<number> matches any numeric token;
<integer> matches any positive integer;
<atom> matches any nonreserved atomic token.
A simple lexical BNF for these token types is provided below;
* Square brackets (| }) surround optional constructs and appear
when the ordering of alternative productions of a nonterminal
is unimportant;
* Vertical bar (|) separates alternate constructs;
®* The epsilon symbol (&) denotes null productions.
2.4.1 The Lexical BNF
The lexical BNF describes (in a limited fashion) the syntax of
tokens. In a ROSIE source program, tokens are normally delimited by
separator and break characters. In the following rules, nnr stands for

any sequence of one or more digits, and ccc stands for any sequence of
letters or digits.

<token> = <number>

= <string>

= <atom>
<number> ::= <integer>

::= <real>
<integer> ::= [+|-]nnn

e _'.;*r\f_‘.- A o Tu e e g _\l‘..-f'\c' \1' ul'_;.’-\'
. . L e M4 o v L)

& ald
.n¢l -

Py . 2
tu a4y
Fa

RN -
s]
Yol

"b’ (4

.y o § W
e

NNV
LA A

T

H
X

N N L

RAY PO

e

DR A ‘\‘

I.’-‘ f.'o"

A I I
“

«
h 2

]

- ¥ € o
LA AR)
«r K

-]
I

MY
v e
o
(s
(]
.

L
" N" ‘n .)

s" ".l -l\

p "‘(; € WO o %
(AAAA ol
P s _‘$:b..

2. Syntactic Structure 28

<real> 2= [+])-|nnn. |nnn) [E{+]| -~ |nnn)
: (+]-)|nnn) .onn(E(+]|-]nnn)
[+|-)nnnE|+| - |nnn

"

<string>

<atom> ::= cccC
2.4.2 The Linguistic BNF

Once the tokenizer has produced a set of file items representing a
source program, control passes to the driver routines. The driver
attempts to identify each file item as an instance of the nonterminal
symbol <program>, which represents the start symbol of the BNF seen
below. Note that rulesets are not a part of this BNF; rulesets are
organized from their components after parsing.

<program> ::= <declaration>
: <query cmd>
1= <rule>

2

<query cmd>

<integer™ 7
: <name element> ?
R4

NOTE: <name element> is a sequence of one or more <atom>.

<declaration> ::= EXECUTE <monitor>

::= PRIVATE <class list>
PRIVATE : <class list>
END
: <header>
::= SYSTEM RULESET <header>

<class list> ::= <formal> [([INITTIALLY] <term>)] |, <class list>]
<monitor> = SEQUENTIALLY

= RANDOMLY

= CYCLICALLY

<header>

TO GENERATE <genr form>
BEFORE GENERATING <genr form>
BEFORE PRODUCING <genr form>

1]

0

i

TO DECIDE [IF] <pred form>
BEFORE TESTING {IF] <pred form>

TO <proc form>
BEFORE INVOKING <proc form>

1) .l.l

¥ "o

~ L.

. 'y " ‘I--" S O AR f‘.'-‘-f'-"'.(ﬁ"u(\r t t‘-\r --\,»-\-". Y

‘
s
S NG A

.

.-
\$-
\ Y
o
>
LY

s
s
W

(PO R O

o a)
e

.

o
r

[
l,.

Pl

s

L

"
)

X

IR T

N
P

"
% Ar

)

‘*v
w

\"

R
'S

2. Syntactic Structure 29

-

L)

-y NN N A A AN N e e S e e eaels Cat e
AASAA R R A s T A o A T R T L Ty S v I

::= BEFORE ASSERTING <pred form>
:= BEFORE DENYING <pred form>

<genr form> <determiner>] <root name> [<private s>
% PP

<proc form> <atom> |<formal>] [<private pps>]

<formal> <be aux> <a/an> <root name> [<private pps>|
: <formal> <be aux> <atom> [<formal>] [<private pps>]
::= <formal> <be aux> <prep> [<formal>] [<private pps>]
::= <formal> <do aux> <atom> [~formal>] |[<private pps>]

<pred form>

1]

<determiner> ::= THE | <a/an>
<a/an> ::= A | AN
<root name> .:= <atom list>
<private pps> ::= <prep> <formal> [<private pps>]
<formal> ::= [<a/an>] <root name>
<opt pphrase> ::= <pphrase>
S

<pphrase> = <pp> <pphrase>

= (pp)

<pp> ::= <prep> <term>
: (<prep> <term>)

NOTE: It is important to notice the order of productions for
prepositional phrases. This ordering specifies that the longest
chain of prepositions is always preferred. Compare the use of
prepositions in the <procedure> and <proposition> rules to that in
the <description> rules. The fundamental difference is that the
former use the <opt pphrase> production while the latter uses the
<pphrase> production.

<rule> ::= <action block>

<action>
<action> AND <action block>

<action block>

NOTE: The highest level <action block> will take the shortest
chain of <action>.

<action> ::= (<action block>)
: <data action>

<jiter action>

<cond action>

]}

1}

-

h |
ﬂh

k)
AR

E}Eﬁfﬁ

SO
a }‘.J

I T T N

a

&% % Y S
Y

2

R
o

C N 4
A% % v
. "" P ‘.4'
-

e
o

R

1
.
¢ &

A
A

P A
v

LA RS

v

ll
)

LS
v

ek

N

e
s) <

2. Syntactic Structure 30

<cond block>
<exec action>
<procedure>

T

<data action> ASSERT <prop block>
DENY <prop block>
LET <let block>

CREATE <a/an> <description>

<prop block> <proposition>

::= <proposition> AND <prop block>

'::"t;-‘ g‘

. .,\

N

<let block> ::= <let form> ?ﬁ
::= <let form> AND <let block> o)

- =

s

<let form> THE <description> BE <term>
<term> ' S <description> BE <term>
<term> BE THE <description>

<term> BE <term> ' S <description>

{1 I I | 1 |
oAy

4

<

w .

”,

<cond action> IF <condition> <then part>

= IF <condition> <then part> <else part> o
= UNLESS <condition> <then part> NN
= UNLESS <condition> <then part> <else part> aﬂ.
».
>,
L
NOTE: The <else part> attaches to the deepest <cond action>. ¥
5-
<then part> ::= , [THEN] <action block> [,] -
. . S
= THEN <action> {\;
= (<action block>) s
I.:(
<else part> ::= OTHERWISE , <action block> [,] oSt
= OTHERWISE <action> -9
= ELSE , <action block> [,) “e
= ELSE <action> S
s
<cond block> ::= <select block> tx
::= <choose block> .
= <match block>
™3
<select block> ::= SELECT <term> : <select form> [,] <default block> :ii‘
ROR
<select form> ::= <tuple element> <action block> S
:= <tuple element> <action block> ; <select form> :2_:
<match block> ::= MATCH <term> : <match form> [;] <default block> ;;%
\
R
-
<match form> ::= <pattern element> <action block>)
= <pattern element> <action block> ; <match form> 5\
! 4
<choose block> ::= CHOOSE SITUATION : <choose form> <default block> '
)
*a
G

-

)
o PR TR I ..' RS LR ,".." --'-.".. 4 -_'.."' vy e e -_'.. PC RSO - ._" et ~_"..._' -':_\" DN S A T '4_"‘\' ;"’\" * ".

w, wp e,
N

falgd
[‘
g
O
2. Syntactic Structure 31 >
:-.“f
<choose form> ::= IF <condition> <then part> -'N,'
::= IF <condition> <then part> ; <choose form> S
<default block> ::= ¢ AR
= DEFAULT : <action block> [;] oyt
ﬁ'&}
NOTE: The <action block> and <default block> always attach to the f: _
most deeply embedded conditional block. N
<iter action> ::= <iter block> , <action block> [,] -:.N
= <jter block> (<action block>) ALY
e
<iter block> ::= <for part> [<while part>] [<until part>] oA
= <while part> [<until part>] fols
= <until part> — ¢
".' +
<for part> ::= FOR EACH <description> PSRN

’ﬁ-
. . s Ay
<while part> ::= WHILE <condition> A,
Cah N

<unti] part> ::= UNTIL <condition> .

2
<procedure> ::= DO NOTHING ;:J‘::
= PRODUCE <term> ,:_:'.7
= DISPLAY <term> e
= <atom> [<term>] <opt pphrase> S
NOTE: The do nothing, produce, and display procedures are all if—.
defined specially; do nothing, because do is a reserved word and ; ':
A

will not match <atom>; produce and display., because their normal
usage does not conform to the default syntax.

X

4
55

1}

<condition> <disjunct>

o A
= <comma or> f“:’v
::= <comma and> el
. NG
<comma or> ::= <disjunct> [, OR <comma or>] e
At SN
. e N
<comma and> ::= <disjunct> [, AND <comma and>]
Fs
N
\
NOTE: Sequences of ', OR' and ', AND' may not appear in the same o d
<condition> unless delimited with parentheses. "\ﬁ
N
o) o L'y
<disjunct> = <conjunct> OR <disjunct> -
::= <conjunct> N
~_.‘-_‘ d
<conjunct> ::= <primary> AND <conjunct> ks
1= <primary> o
-1.) '..

<primary> ::= (<condition>)

L

K‘-":" AT

Rt N RN AN N A0y

I .'
| o
i !
; 2. Syntactic Structure 32 A
) J
¢
1= <sentence> AY
NOTE: AND has precedence over OR; precedence can be o
overridden with parentheses. {:'
-
<sentence> ::= <proposition> {t
:= <special form> n
\
<proposition> ::= <term> <verb phrase> ’
4
|
<verb phrase> = <be aux> <a/an> <description> ;”
= <be aux> <atom> [<term>] <opt pphrase> ::'
= <be aux> <prep> [<term>]| <opt pphrase> A
::= <do aux> <atom> [<term>] <opt pphrase> o’
<be aux> ::= WAS [NOT] !
, ::= WERE [NOT] 3
= AM [NOT] ,t'
= ARE [NOT] o~
= IS [NOT])
= WILL [NOT] BE .
<do aux> ::= DID [NOT] e
= DO [NOT] o
= DOES [NOT] .
= WILL [NOT] s
<special form> ::= THERE IS <how many> <description> :i
= THERE IS SUCH <a/an> <class noun> }
= <term> <special vp> [(<desc var>)] A
<how many> ::= NO W
;= <ag/an> -
:= JUST ONE et
:= MORE THAN ONE ,l
'ﬂ
A
<special vp> = HAS <how many> <description> o
= HAS SUCH <a/an> <class noun> [(<desc var>)] o
= <rel op> <t >
rel op erm ,l:i)
<rel op> ::= IS [NOT] EQUAL TO o
::= IS [NOT] GREATER THAN [OR EQUAL TO] :}*
= IS [NOT|] LESS THAN [OR EQUAL TO] i
(SR
- = =
= ¢
= > o™
= ~> \\:\
= >= :v\
= ~>= \.‘
I < . ‘
Y.
A 1
& '
N
.
|::\ g
. N
-F‘qf" "f".f',-“'gn"‘,:-"‘ ~u :';“'.r"',-"..-t"‘.i-:"r:'.- ; '-{'.'_\. \;,-.____:.._\.._\‘;.’__\ '\"_\‘_-.__-._.__-. ;.;_\‘_\:-."-.;-. PR et ~...;_A_‘\\-_._- “AN \- N

R ey

-

2. Syntactic Structure 33 v

AL
- - Pl

Y !
0 o %
' = <= Y
= ~<= [
% o
M .
A <term> ::= <subterm> .
a . “
k HEE—E Y > 8
i : arith expr 3

.

1

..

I

<arith expr> <arith expr> + <mult expr> X
. ::= <arith expr> - <mult expr>
'y ::= <mult expr>

K L
G J
N <mult expr> ::= <mult expr> * <expt expr>)
1:= <mult expr> / <expt expr> ;:
. 1= <expt expr>
;: <expr expr> = <subterm> ~ <expt expr> e
¥ ::= <subterm> ¥¥ <expt expr> .
2 ::= <subterm> 4
NOTE: Precedence Associativity A
.)
o™ e right .
e o/ left K
i + - left s
))
(Y I
<subterm> ::= (<term>) e
. = <iter term>
) = <desc term>)
+ = <anaphora>
b = <element>
b i
:g <iter term> ::= ONE OF <term list> {,] OR <term> ’
. = EITHER <term list> {,] OR <term>
L ::= EACH OF <term list> [,] AND <term> o
~ ::= BOTH <term> AND <term> .
A
M <term list> ::= <term> [, <term list>] "
i A
<desc term> ::= THE TUPLE CONTAINING EACH <description>
£~ ;1= <term> ' § <description> :
4 = THE <description> .
"4 = A NEW <description> R
o = <a/an> <description> -
; = SUCH A NEW <class noun> [(<desc var>)| 3
= SUCH <a/an> <class noun> {[(<desc var>)]
" ::= SOME <description> 5
o ::= EVERY <description> <
i; NOTE: <term>'S <description> is equivalent to <description> OF <term> :
> K,
<description> ::= SUCH <class noun> [(<desc var>)] '
b : N
D |
?.: :
v "
@
% N
~ N

Nt o S L), r - -~ .t R LR
N AT N o A o s e o, e T

| 2. Syntactic Structure 34

<class>
<class> <rel clause>

NOTE: A <rel clause> will always attach to the rightmost
<description>.

oY

<class> [<root name>] <class noun> [(<desc var>)]

[<root name>)] <class noun> {(<desc var>)] <pphrase>

&

NOTE: A <class> will try to take no prepositional attachments. -i:
Fa.ling that, the leftmost <class> will attempt to take the =
longest chain of prepositions. e
{B
<root name> ::= <atom> [<root name>] i
Ry
= A4
<class noun> ::= <atom> N
Y
™
<desc var> ::= <atom> 3
g
- 03
<rel clause> ::= <disj clause> lt
.. N L N
<disj clause> = <conj clause> [OR <disj clause>] e d
N
o
<conj clause> ::= <clause form> [AND <conj clause>] C;{
e
) w4
NOTE: AND has precedence over OR; precedence can be overridden S
with parentheses. -
[J
ey
<clause form> ::= (<rel clause>) b N
= <such that/where> Wk
= <that/which/who> ‘b.;‘
= <whose> ‘
= <which/whom>
:= <except>

<such that/where> (<st/w> <condition>)

<st/w> <primary>

<st/w> = SUCH THAT
= WHERE
<that/which/who> ::= <t/w/w> [<term>] <verb phrase> o ::
= <t/w/w> <special vp> \ﬁ
= <t/w/w> <term> <rel op> BNy
<t/w/w> = THAT :-"' :
= WHICH ol
- L' W WU
= WHO o
}!
<whose> ::= WHOSE <description> <be aux> <term> vy
.';‘.r.
e
&~
ol
;b.;‘.-
‘-"*
sy
gy
)
“a N
- \d ; . - - LRI R LI I TR T I . . S I I I R I I e -m RN PR
‘..- "” V . o'y \' N AN N AN N N f\"" *" o " QORI P I X

2. Syntactic Structure

<which/whom> ::= <prep> <w/w> <term> <verb phrase>
<w/w> ::= WHICH

::= WHOM
<except> ::= EXCEPT <term>

<anaphora> ::

<rule var>

<element>

THAT <class noun>
<rule var>

<desc var>

= <name element>

<number element>

<tuple element>

<string element>

<pattern element>
<filesegment>

<class element>
<intentional description>
<intentional proposition>
<intentional procedure>

<name element> ::= <atom list>

<atom list>

<number element>

::= <atom> [<atom list>]

<number>
::= <number> <atom list>
<atom list> <number>

<tuple element> ::= < [<term list>] >

<string element> ::= <string>

<pattern element> ::= { <pat spec> }

<filesegment> ::= ' FILE <string> [, <header>] |
::= ' <header> [, <rule spec>] '

<rule spec>

BEFORE <term>

AT <term>

FROM <term> TO <term>
AFTER <term>
<integer>

::= <integer> <integer>

<class element>

<intentional description> ::=

::= ANY <description>

THE <description>
S <description>

o= ' <term>

35

, <rule spec>]

(IR -.' -'.
\)':.,\ ‘\,_‘
por ..

)
i

P4
N &

, 7

}'v;i{'i "
el e

¥

s

Ny |
%

r
f
0

. l’(
«
&

g

| 3
s
v

2. Syntactic Structure

<intentional
<intentional

<pat spec> :

<pat disj>

<pat conj>

NOTE: The conjunctive (,) has precedence over the disjunctive (]);

proposition> ::= '

procedure>

]

ci= <a/an> <description>

I NN N NN X E

36

::= ' SUCH <a/an> <class noun> '

<proposition>

::= ' <procedure>

FIXED FORMAT <pat conj>
FREE FORMAT <pat conj>
ADJOIN <pat conj>
<pat disj>

<pat conj> | <pat disj>
= <pat conj>

<bind spec> , <pat conj>
<bind spec>

precedence can be overridden with curly braces.

<bind spec>

<bind type> ::

<bind form>

<rep spec>

<rep form>

nou

Imonon

nhn T

nn

<rep spec>

<rep spec>
<rep spec>

(
(

<rep spec> { BIND <bind form> TO <bind type>)
(

<rep spec>

BIND <bind form>)

<rep spec> (BOUND TO <bind form>)
BIND <rep spec> TO <bind form> AS <bind type>

BIND <rep spec> TO <bind form>

<a/an>
<a/an>
<a/an>
<a/an>
<a/an>
<a/an>
<a/an>
<a/an>
<a/an>
<a/an>
<a/an>

NAME

NUMBER
STRING
TUPLE
PATTERN
CLASS
DESCRIPTION
PROPOSITION
PROCEDURE
FILESEGMENT
ELEMENT

<desc var>
THE <description>
S <description>

<term>

[<rep form> [OF}] <subpat>
ANYTHING
SOMETHING

<integer>

Y)Y "> % M) PR T Th JO TR i I T T]
e O PPN AN TN NN Y

AOA AN TA A m

. e

"a 30 e
WA

. a ™™

.

LAY ‘p’\’
> n

ST
0 i A

»

BIND TO <bind form> AS <bind type>)
BIND TO <bind form>)

.

AT SR AT T

Gﬁ:a? :fzi?¢

£ v &
\ &
K

e A

X '-:\‘_ﬁ'g.
N & 4 A o
L o T

-\{

>
)

P AT IR A
v

A4

4

. - R >
””'53ﬁik-
/-

'

»

T
RS
s % &

.

&5 NS

25#}?
o'y

ALy
X0
PR A RS

W' hul ia L, RPNV P AR AN LY TN RS LN L TRNM] HRAURUADHR LA UNUR UN 'Y Y W I LN U LY LW O LA

2. Syntactic Structure 37

<integer> OR MORE
<integer> OR LESS
<integer> OR FEWER

T

{ <pat spec> }

BOX <subpat> TO WIDTH <term>

PAD <subpat>

LEFT JUSTIFY <subpat> [<box size>]
LJ {<term> [BY <term>]] : <subpat>
RIGHT JUSTIFY <subpat> [<box size>]
RJ [<term> [BY <term>]] : <subpat>
CENTER JUSTIFY <subpat> [<box size>]
CJ [<term> [BY <term>]] : <subpat>
CODES (<int list>)

<subpat> ::

= BELL[S]
= TAB([S]
= ECL[S]
= BACKSPACE[S]
= BS
= PAGE[S)
= FORMFEED({S]
= ESCAPE[S]
= EOL[S]
:= END
:= BLANK[S]
1= QUOTE[S]
:= RETURN(S]
:= CR[S]
:= CHARCODE <term>
:= CONTROL <term>
:= LINE[S]
1= <char class> [[NOT] IN <term>]
:= <term>
RN
<box size> ::= TO LENGTH <term> [AND WIDTH <term>] B
= TO WIDTH <term> Ny
I
v
<coords> ::= AT < <term> , <term> > NN
<padding> ::= STARTING LEFT e
= STARTING RIGHT Ry
= CENTERING DN
>
<int list> ::= <integer> [, <int list>) B\,
<char class> ::= [NON]JALPHANUMERIC(S] AT
= [NON]BLANK[S] gl
= [NON]CONTROL{S] PN
= [NON]DIGIT[S] A
= [NON]LETTER([S]
= [NON]NUMBER(S]
\J' Y
%!
N
i
PN
N
',.-"
WIS e \ AN ',. P , ~ AN oY \;\.‘,\ = \;,-.;_\'.\.\.';.','.;;.‘ Pad N A A -

2. Syntactic Structure 38

::= [NON]NUMERAL[S]
::= CHARACTER[S]

2.5 PARSE TREE GENERATION

Once the tokenizer has processed the characters of a file item, the
resulting list of tokens is passed to the parse tree generator (PTG),
which produces a tree representation of some rightmost derivation of the
file item. The PTG is the most complex component of the parser.

The PTG, based upon fast multitrack parsing techniques for general
context-free languages (Irons, 1971; Quinlan, unpublished working
notes), resembles an LALR parser that follows all derivations of a file
item in a breadth-first manner." It is responsible for detecting syntax
errors as well as resolving ambiguities.

One feature of the PTG found in ROSIE 3.0 (but not found in earlier
ROSIEs) is a complete and consistent set of disambiguation rules. These
rules have eliminated the occurrence of ambiguity errors, even in the
presence of prepositional phrases (a common source of such parsing
errors in earlier ROSIEs). This feature enhances code readability by
reducing the number of delimiting parentheses otherwise required to
avoid surface-level ambiguities. Unfortunately, this feature is not
without cost, adding an extra burden on the ROSIE programmer to ensure
that his code is interpreted correctly.

2.5.1 Associativity, Precedence, and Disambiguation

The PTG derives its rules of precedence and associativity, and
ultimately its rules for resolving ambiguities, out of the context-
free grammar from which its parse table was compiled. For ROSIE 3.0,
this is the grammar seen in Section 2.4. The rules of precedence and
associativity describe how otherwise ambiguous sentence fragments will
be interpreted.

In ROSIE 3.0, precedence and associativity are immediately
decidable from the order of productions in the grammar. When a
nonterminal can be derived from several alternative productions, the
production appearing earliest in the grammar is preferred to the
productions appearing later. Given two alternate derivations, the
preferred derivation is selected via a depth-first, left-to-right
comparison of the productions used in both. First, the productions at
the roots of each parse tree are compared. If the same production appears
in both positions, then the productions of the leftmost children are
compared and so on. When the two productions being compared are
different, then the parse tree using thec preferred production is
returned as the preferred derivation.

“This technique is similar to that found in Tomita (1985).

-

[
)

t

OAA

%,

PP LA
LN

.
L)

)

‘a8
s Y
»
P

3 SN B
17:?5.?

"
-

)
LA P

A B A
* 1]

] 'v._'n
a 4y ey

.
»'

-
»

-

s
o

b,

Y

L4 - L4 L] L - «_ 7 LA o . v - " . -
I R T T T L T S e e P T A P I
AT NI N SN N PN R NN IO I N A e A e Ty

2. Syntactic Structure 39

While the grammar in Section 2.4 should be used a- the ultimate
authority on questions of associativity, precedence, and disambiguation,
we will not be so fiendish as to say that is all there is to know.
Succeeding chapters covering linguistic structures with particularly
problematic syntax (e.g., embedded actions and action blocks) will
include discussions on the associativity and precedence of such
structures. In addition, the file package provides a tool for
"deparsing" file items--deparsing translates the HILEV representat:ion of
a file item into ROSIE source code, demonstrating the interpretation of
that file item visibly through the use of indentation and parentheses.

2.5.2 The Disambiguation of Prepositional Phrases
The singularly most problematic of all ROSIE's syntactic forms is

the prepositional phrase. Prepositional phrases are modifiers,
attaching additional arguments to certain linguistic structures. They
are allowed to modify the action verb of a procedure, e.g.,

move & ship from Le Havre to Auckland
the relational verb of a proposition, e.g.,

the ship did move from lLe Havre to Auckland
and the clgss noun of a description,

the ship in dry-dock
Descriptions can further be modified by a relative clause, e.g.,

the ship in dry-dock which did move from Auckland

the main verb of which may likewise be modified by a prepositional
phrase. Since descriptive terms, such as

the ship in dry-dock

are commonly used as arguments to procedures and propositions as well as
other descriptions, there is considerable room for ambiguity.

In places where an ambiguous parse is possible, the following two
rules apply to the interpretation of prepositional phrases:

* A prepositional phrase will always modify the closest verb, if
syntactically possible.

. If the surrounding context does not support a verb, a
prepositional phrase will modify the class noun of the leftmost
description preceding the preposition.®

*If the surrounding context does not support such a description, a
Syntax error occurs.

L U T T, ET UL S S S
e P .

Uy PV PO VO P O Y W,

- P
R T T L PR S
LRI A N 4 TS

PRPLPAIRT|
s ‘s ‘s

rp e
R

oA

s 4 4
.

PO
o
RN .
s M ey

AR SR

réy

Y

LAAS

2. Syntactic Structure 40

As an aside, a relative clause will attach itself to the
description immediately preceding it; once attached, the class noun of
that description cannot be further modified by a prepositional phrase.

To illustrate these rules, consider the following pairs of examples
selected because their default interpretation is somewhat
counterintuitive.

report the name of the man

report (the name) (of the man)

move the ship which does come from the port to the harbor

move (the ship (which does come (from the port) (to the harbor)))

the ship from the port on the coast did move to the harbor

(the ship (from the port) (on the coast)) did move (to the harbor)

the man did hit the lady from the city who is wearing blue

(the man) did hit (the lady) (from the city who is wearing blue)

Parentheses in the second statement of each example pair (regular font)
delimit the extent of descriptive terms and relative clauses,
demonstrating the default associations of prepositional phrases and
relative clauses.

2.5.3 Directing Disambiguation with Parentheses

Users can direct the attachment of prepositional phrases (as well
as other syntactic forms) with parentheses. Essentially, parentheses
narrow the context of interpretation. With parentheses a user can
indicate precisely the syntactic groupings desired.

As an example, consider the earlier unparenthesized examples. The
intuitive interpretation of these statements will be made by ROSIE if we
add parentheses as indicated below:

report (the name of the man)

move (the ship which does come from the port) to the harbor

the ship (from the port on the coast) did move to the harbor

the man did hit the lady (from the city) who is wearing blue
By surrounding the name of the man with parentheses, report is no
longer in the context of interpretation, meaning the phrase introduced
by of can only modify name. Alternatively, the change to the second

example hides the verb come and allows the phrase introduced by to to
correctly modify the verb move. The third example is similar to the

AR I AN PN RN N NN

;_\‘_\."

..{uq—v
i)

e

NN
AT

Y

[}
v
¥

[R
a A

[y

A
oL

b

O

¥ ltl'!

Pk A
gy

LT
AR

L 8

!
L)

e
v “:",':‘t wat

»
.

- ,-' '1

.
L AR

- v -
.
ala

.;.";-'.’ A M
P « ’.'-'a'-"

.\vﬂ
0

-"|.‘
L)
A

N T

2. Syntactic Structure 41

first; the fourth, however, is unique. Since the relative clause must
attach to a description immediately preceding it, and it can no longer
attach to city, the phrase introduced by from must attach to lady so

that the relative clause can modify the description lady from the city.

WD

Pl d
o

S

HEEG

e

e TN}
[

RN
[N |

a¥ X~
[N * -
A
B
-

40

. . . . -
R Y I .

PN A RS
'fkpsuys'

’.
S Y

SR

N A
3 NS 2,

7 ry
¢

Yy Y w
YO
.

TIES

%

l' ,<l. l' " l'{
."‘S‘~
r NN

..'J

‘a
P "‘. \".".1
o AR

3. Running ROSIE 43

111, RUNNING ROSIE K

This chapter describes the general operating procedures for running
ROSIE. While it is intended as a beginner's guide, those readers
already familiar with ROSIE may find this information instructional as
well. In this chapter, we present ROSIE's interactive working
environment and discuss how one normally develops a program in this
environment.!®

3.1 GETTING STARTED

ROSIE is an interactive programming system, and so in one respect
is similar to LISP. To get started, enter a ROSIE session. In UNIX,?
this can be done with the command rosie, which puts you into ROSIE's top-
level monitor, e.g.,

% rosie
(R)
{ ROSIE Version 3.0 (PSL) 15-Apr-86]

<1>

During initialization of a ROSIE session, the file .rosierc,? if
present, will be loaded from the user's home directory. This file may
only contain LISP expressions, which are evaluated at load time.
Typically, these are commands to load specific user modules, set system
switches (discussed in Appendix C), etc.

Upon entering the top level, ROSIE prints a banner line describing
the version and date of your system, and then prompts you for the first
line of input. From this point on, you are talking with ROSIE. All
aspects of system development, testing, refinement, and maintenance can
be done from the top-level monitor.

1This chapter assumes ROSIE 3.0 running in PSL under UNIX 4.2. See
your site consultant for system operating procedures specific to your
installation.

2Assuming your paths are initialized to include the ROSIE/bin
directory.

IThis file name may be different for sites not running ROSIE under
UNIX. Check with your site consultant.

AT LA A e S ST 4 L e e At R e,

-

LS

g g 2
‘hv.

Is
'I
PRIANR

St
L]
>

Lt
NN

,-'»
¥

I.’.‘r{
({ 7.

LS

[W A

DA
&

F

.
L I)
i

AN

ATATY Gy Nt
Jl ’I ."'.N"‘i. ,("

v

]

£ ":':q

T

- ‘ - ‘
R

I
»
B "5SS,

)

n S TN AN BN |
XX T NN
5'5{':{”‘\

- an e .

I R Y LR R R R T U 7UNTLE O TOUL TUR IO TO O PR TP WX PO U W T L WA T e TUNG TN AR KN AN (RS ON

3. Running ROSIE 44

3.2 INTERACTIONS AT THE TOP LEVEL

The top-level monitor is an interactive control loop that prompts
the user with the current line number surrounded by angle brackets. The
user commands ROSIE by issuing a monitor rule to the top level. The top
level immediately parses and executes each monitor rule as it is
received and then prompts for another.

ROSIE provides a history facility for interactions at the top

R
level. This facility keeps track of the last 40 monitor rules issued. :t;
These can be examined by the user, re-executed, and even edited. ROSIE Ezc
also provides a small set of monitor commands with an abbreviated syntax ﬁwj
for examining the history list and the database structure. i:f

L et

The following sample session is provided to give the new user a ~o 3
feeling for working in ROSIE's top-level monitor. This demonstration is :J:
by no means complete, but it should make the reference manual easier to }ﬁr
understand and your first attempt at interacting with ROSIE more X
successful. ‘;“
el

(R)
[ROSIE Version 3.0 (PSL) 30-May-86]

<2> Assert John is a man.
<3> Assert each of Mary and Sara is a woman.
<4> 7
[GLOBAL Database]
SARA IS A WOMAN.
MARY IS A WOMAN.

JOHN IS A MAN. -
f\
Programming in ROSIE consists primarily of actions performed on e
relations in the database. The database is built up by asserting .
propositions. Lines <2> and <3> above are examples of such assertions. ij\
In line <2>, we assert that the element John is a member of the class ?:;
man. In line <3>, we make a similar assertion, which is applied to the ﬁ(\v
elements Mary and Sara successively. In line <4>, we use the ? monitor Qf:t
command to examine the contents of the database. N,
Note: Line <1> is missing because it commanded ROSIE to dribble this .
session to a text file. {f
N ",'.‘
<5> Assert any man does like any woman. Tt
<6> 7 AV
[GLOBAL Database | -
ANY MAN DOES LIKE ANY WOMAN. DA
SARA IS A WOMAN. A
MARY IS A WOMAN. S0
JOHN IS A MAN. .
RN
N
T
gRA

[I Y
| 2P
et

Cmta e R AR Rt et A, et mtar.cataman
e . AR OSON oA e e

P S S
" 2% -

KA .‘1 '-"k f gy 'J‘ .:" -f l‘\,.‘ ~p l,\"\f\.’; e R AT AT IR

3. Running ROSIE 45

The elements seen in lines <2> and <3> (i.e., John, Mary, and
Sara) are called names. Line <5> gives an example of another type of
element called class elements. Here, any man and any woman are both
class elements. A class element implicitly represents any element that
is a member of that class. Thus, any man represents any element, such
as John, that satisfies the 'element is a man' relation.

Another thing to notice is the use of does in line <5>. The main
verb of any ROSIE proposition must be introduced by an auxiliary form of
be or do. Hence, we have does like rather than likes.

<7> Display every woman that John does like.
SARA
MARY

In line <7> we have an example of a quantified descriptive term,
i.e., every woman that John does like. This is distinguished from a
class element by the use of the function word every rather than any.
Instead of being an implicit placeholder for elements of the class
described, this type of te.m explicitly evaluates to a sequence of those
elements, each of which is passed to the display procedure in turn.

To find the elements of woman that John does like, ROSIE goes
through the following process. First, it finds the elements of the
class woman, and then it uses the relative clause as a filter on those
elements, i.e., each element generated must satisfy the relation

John does like element

To decide if 'John does like Sara', ROSIE examines the database for
instances of the does like relation, comparing the target proposition to
each until it can be confirmed or disproved. Comparison to the
proposition asserted in line <5> confirms the proposition because John
is a member of the class man and Sara is a member of the class woman.
Thus, Sara can be passed to display. Likewise, Mary will go through
the same tests and be passed to display.

<8> 77

<8> 77

<7> DISPLAY EVERY WOMAN THAT JOHN DOES LIKE.
<6> ?

<5> ASSERT ANY MAN DOES LIKE ANY WOMAN.

<4L> 7

<3> ASSERT EACH OF MARY AND SARA IS A WOMAN.
<2> ASSERT JOHN IS A MAN.

<1> DRIBBLE TO "demo".

<9> Redo 7.
SARA
MARY

e meea e
v)
3 y g " 2

L S LN

D R O R A O T A
p A

>)
£ii
o,

N
.I

/
,'v

S SN
PN N SN SRV
a L -

oA RS

Z]‘
.

~ vy
.

P
v

Y 2
Ianll

l’ll’

X
"" "' '.'

v

s €a vp' s Ve @) % A gl ' i = § v S gad “ ‘e p ¥ J (AN ANNAN AN o L o i U T 8% At Al

3. Running ROSIE 46

Lines <8> and <9> demonstrate the use of the history facility. The
?? monitor command displays up to the last 40 monitor rules issued,
while the redo procedure allows the user to re-execute any of those
rules.

<10> Deny any man does like any woman.
<11> ?
{ GLOBAL Database]

SARA IS A WOMAN.

MARY IS A WOMAN.

JOHN IS A MAN.

In line <10> we have an example of how to remove an assertion from
the database. Note here that the denial of a proposition that contains
a class element requires that the class element be used in the denial,
i.e., we could not have used 'John does like any woman'.

<12> Assert any man does like a woman.
<13> ?
{ GLOBAL Database]

ANY MAN DOES LIKE SARA.

SARA 1S A WOMAN.

MARY IS A WOMAN.

JOHN IS A MAN.

In line <12> we see an important difference between any and a.
The article a introduces simple descriptive terms, and so is like every
in the respect that it is an explicit rather than implicit reference to
a member of a class, evaluating to the first element that can be
generated from that class (i.e., Sara). This element then appears as
an argument to the asserted proposition.

<14> Forget about every woman.
<15> ?
| GLOBAL Database]

JOHN IS A MAN.

Here's another example of how to delete propositions from the
database. The forget about procedure causes every proposition
containing an instance of its argument to be removed from the database.
As seen before in line <7>, the quantifier every causes this procedure
to be applied to each member of the class woman.

<16> Assert any man does like a woman.
<17> ?
[GLOBAL Database |

ANY MAN DOES LIKE WOMAN 1.

WOMAN #1 IS A WOMAN.

JOHN IS A MAN.

LI L R
B

~ TN R O Rt O N R EP AL '-"‘-' A A \'.“'\‘ T WAL AT
o . x ad " " P, YN,

e L.
At .
0 N e e e e -

O I e X o K . » " . . a)

- ™

X _J
&k

x|

T‘ﬂf’ >

-
T,

PirereTe AN S
e P

g

s &
{l'.‘l." ‘

207
RS

C X ¥ 8 v = 2.7
; 5 4 S
;&&2;3,} y

2 s = a -a" T .‘1
5}‘.{'-{ n"*n s, -'

Y
LA

4

I T
4
{‘-.‘S‘"t.{'. &

B4
oy G

L

k]
o

‘s
aNs S,

Juy AN
L AR
A

<5y
7,

-a) A' » {'f

i

Lol
.

5{5(\‘) .;.l 'll
. ".;Q.'n «

"ah ey Y R RN ket 48 "2t A A b2 802 s B'a A¥x 42 2%a 8% "2 878 4°0 §°0 8 6 0 6" 8'8 0 §.4 £.6 4.0 8.8 fad £ .5 4.0 S0 da’ o’ Vet ke ol

: 3. Running ROSIE 47 4
N 2
K -
i, In this example, we find another property about the article a. ;

When there is no element in the database that belongs to the class, the
. use of a demands that one be created. After the proposition

] WOMAN #1 is a woman

&
rLCL

is asserted, the term a woman evaluates to WOMAN #1, which then
appears as an argument of the proposition being asserted.

.

P <18> Display the woman. ’
N WOMAN #1
S
.: Another article, the, is similar to a in that it evaluates to the .
first element that can be generated as the instance of a given class, t
but the generates an error if no such element exists. b
Y .
_3 <19> Deny any man does like a woman. :f
'$ <20> Assert any man does like any woman. .
<21> Assert John does not like Sara. Y
<22> ? 14
. [GLOBAL Database] S
" JOHN DOES NOT LIKE SARA. ;
™ ANY MAN DOES LIKE ANY WOMAN. ”
N SARA IS A WOMAN. <
i MARY IS A WOMAN. X
- JOHN IS A MAN. :
. <23> Redo 7. {
»* MARY :
" ,
1 Now, returning to our original definition of does like, lines <20> g
_i and <21> show how we can establish a default relation and an exceptional r3
A relation, respectively. In line <23>, we use the redo procedure to .
lk, re-execute line <7>, we see that only Mary can be generated as a member
of the given class. When attempting to prove 'John does like Sara’ s
d ROSIE hits the proposition asserted in line <21> before the one from -
> line <20>, thus disproving rather than confirming the target proposition <
and filtering Sara out of the class woman that John does like. :
y <24> Activate beliefs.
' <25> Assert John does like Sara. .
ﬁ <26> ? K
? [BELIEFS Database] -
& JOHN DOES LIKE SARA. N
L
. ROSIE allows users to create alternate databases and bring them
= into context with the activate procedure seen in line <24>. Here we >
>, create and activate the database beliefs. Unless otherwise directed, .
< assertions go into the active database, and so the assertion in line K
L <25> went into beliefs. X
:
‘ Y
~ -
:- X
< .
-]
¢
'

s, Nt 2 N G N A A X A R EN N R

N T T I T)
. . [

L O RO

va L TN WU N UL FUR 43 a¥ ‘o pig ghp “s 2% 2%k 2’ a'L 2% 2°R a'1 28 8%t '8 a1 a'h 2’ 't 42 s pht*

3. Running ROSIE 48

<27> Global?

[GLOBAL Database]
JOHN DOES NOT LIKE SARA.
ANY MAN DOES LIKE ANY WOMAN,
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.

<28> Display every woman.
SARA

MARY

<29> Redo 7.

SARA

MARY

Line <27> demonstrates another monitor command for examining the
contents of a particular database; note that the information in the
global database was not lost even though this database is no longer
active. Line <28> demonstrates yet another attribute of ROSIE's
database structure, name'y, that information stored in the global
database, even when not active, is still accessible.® Also notice that
when we re-execute line <7>, we now get both Sara and Mary again. This
is because ROSIE can prove 'John does like Sara' in the active database
before finding it could be disproved in the global database.

<30> Clear database.
<31> 7
[BELIEFS Database]

<32> Redo 7.
MARY

Another way to remove propositions from a database is with the
clear procedure. Now when we re-execute line <7>, Sara is again
filtered from the given class.

3.3 BUILDING ROSIE PROGRAMS

One builds a ROSIE program out of rules, rulesets, and demons.
These constitute the principal programming structures in ROSIE (they are
discussed in more detail in Chapter 4). Basically, a rule is an
executable programming statement (a monitor rule is simply a rule issued
at the top-level monitor), while a ruleset is a rule subroutine; demons
are special types of rulesets. To start a program, one issues a rule to
the top level that invokes a ruleset. The ruleset executes the rules in
its body that will presumably make changes to the database, query the
user for information, and/or invoke other rulesets, etc.

“*This is only true of the global database.

L T SO .- - v R T R P A AL S TG RAMICES VG A
ot T Nf~{ {f R I A N A AR A N A I PCRTICRTAT W)

~\$ iy ., 1% s WPy W

AN
5, &}‘.}{3&?

'y
<+ >

P e
ay

.
"

.r..r '
£

-

FY A RAS
,J{:‘&'.\ ‘-[l.:

Y
2"

‘l A, l. l.

£

" 'J."l.'n.'g‘
XA
l‘.

.
AR RO

-~ 5w, v,y

‘.'/.'l'|
Ay

XX

"

5 Ay
}J'f‘
xa

RANSIIEY
P
RN

L
b*k

W LAY L LA LIRS spd nof o 4§ N.0 8.8 i,8° N ! N 5 g% 2 2" Ao o J 4p o% A, " h ath o¥a" POIVUS . " gat 8

3. Running ROSIE 49

Rulesets cannot be defined at the top level, but must be defined in
program files. Program files can also contain rules not contained in a
ruleset; these are called file rules. File rules are normally used to
initialize the database. Although a single program file can contain any
number of rulesets and file rules, it is a good practice to organize
large applications into several files: one for the main body of code,
one for utility rulesets, and one for file rules. Program files are
created and further changed via operations of the file package (see
Chapter 13).

Program files are stored on disk. To incorporate an existing file
into ROSIE, use the load procedure, e.g.,

<2> Load "myprog".

This tells ROSIE to load the program file "myprog" from disk.® Loading
does two things: first, it notices the contents of the file; and
second, it enables those contents. Noticing is the act of recording the
file's contents, while enabling is the process of defining rulesets and
executing file rules. A file can also be enabled without being noticed
via the sysload procedure. Program files that you wish to edit during a
ROSIE session should be loaded--you can only edit no'iced files--while
other program files should be sysloaded to make efficient use of space.

Program files are created with the build procedure, e.g.,
<3> Build '"players".

Build creates a noticed (albeit empty) program file of the given name.
To add rulesets and file rules, use the edit procedure, e.g.,

<4> Edit "players'.

This calls up the user's preferred text editor® on the ROSIE edit file
(i.e., a buffer file, which, in UNIX based ROSIE, is called .rosie-
ed). When the user exits the editor, ROSIE parses and loads the
contents of the edit file, retaining it in place of the original code.

To see how this works, assume we called the editor as in line <4>,
added some code and exited the editor, e.g.,

®Actually, ROSIE loads the file myprog.map or, if compiled,
myprog.cmp.

®*ROSIE determines the user's preferred editor from the LISP
variable $ROSIEEDITOR. In UNIX based ROSIE, this variable is
initially set to the environment variable EDITOR, or just "edit" if
this variable is not set.

R VA

AR AT
Tttt

v
V
.

2l
2

g
L

30

s

.
>55

R A T A
5 o0 e e,
LA [N

Vo
s 2
'y

SArs s T
A A
PR

‘s
<5

.-'r/'(

L [N c-'.l./' "l ,l
el

P

e

Y\ 44 Y

L
1,

Sq

y e o e
’II..I.- SOA

3. Running ROSIE 50

AR

Scanning...
Done.

Parsing...

TO FIND BASKETBALL PLAYERS

TO DECIDE IF A PERSON IS TALL
Done.

Loading. ..
TO FIND BASKETBALL PLAYERS
TO DECIDE IF A PERSON IS TALL

Done.
The list procedure allows us to examine the contents of the file, e.g.,
£
. " " 0
<5> List "players'. NN
. "-
To find basketball players: NN
[1] Send "{Every man who is tall} is a basketball player.{cr}". o
End. SN
PREY
To decide if a person is tall: el
[1] If the person's height is greater than 6.7 feet, I
conclude true, otherwise conclude false. vﬁ:
End. ‘\;\“
S
{rule 1] Assert each of Jim, Jack, John, and Joe is a man.
[rule 2] Let Jim's height be 6.4 feet and
Jack's height be 6.8 feet and
John's height be 5.7 feet and
Joe's height ve 7.1 feet.
As you can see this is a very simple program. The two file rules
initialize the database to contain several men of varying heights, e.g.,
<6> ?
[GLOBAL Database |
7.1 FEET IS A HEIGHT OF JOE.
5.7 FEET IS A HEIGHT OF JOHN.
6.8 FEET IS A HEIGHT OF JACK.
6.4 FEET IS A HEIGHT OF JIM.
JOE IS A MAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.
The procedural ruleset 'to find basketball players’ defines the procedure
that starts the program running, and the predicate rulest 'to decide if a
person is tall' is used to decide when a particular candidate meets the
requirement for being a basketball player. We would start this program
by calling the find basketball players procedure, e.g.,
SR
v
332
O NG N NP OGN A AN T e T o L N S W T o .:.r i

3. Running ROSIE 51

<7> Find basketball players.
JOE is a basketball player.
JACK is a basketball player.

which prints a message for each suitable candidate it finds.

To update the program, we simply call the editor on the program
file and make the desired changes. While this is good for a small file,
it seems an awkward approach for making a small change to a large file
containing possibly several dozen rulesets. To combat such situations,
ROSIE provides a special-purpose data primitive called a filesegment.

A filesegment allows the user to specify contiguous portions of a
program file, such as a sequence of file rules or ruleset rules as well
as an entire ruleset or program file. In addition, certain types of
filesegments can be specified using a convenient shorthand notation,
e.g., the filesegment

'file: "players™’
can be specified as simply "players” and
'file: "players"”, to decide if a person is tall’

as tall. The file package operations and break package operations take
filesegments as arguments. Thus, the file package and break package
operations can be applied to entire files or portions thereof, e.g.,

<8> List 'file: "players''.

To find basketball players:
[1] Send "{Every man who is tall} is a basketball player.{cr}".
End.

To decide if a person is tall:

{1] If the person's height 1s greater than 6.7 feet,
conclude true, otherwise conclude false.

End.

[rule 1] Assert each of Jim, Jack, John, and Joe is a man.

[rule 2] Let Jim's height be 6.4 feet and
Jack's height be 6.8 feet and
John's height be 5.7 feet and
Joe's height be 7.1 feet.

<9> List 'file: "players", to decide if a person is tall'.
To decide if a person is tall:

[1] If the person's height is greater than 6.7 feet,
conclude true, otherwise conclude false.

End.

ot
]
; d"
o
3. Running ROSIE 52 .l:f
3
‘,
<10> List tall. l..
To decide if a person is tall: g
[1] If the person's height is greater than 6.7 feet, W
conclude true, otherwise conclude false. *q
End. .
b
<11> List 'file: "players", to decide if a person is tall, 1'. .
o
[1] If the person's height is greater than 6.7 feet, 4
conclude true, otherwise conclude false. g
" S
If we wish to change the criterion for deciding tallness in the
demo program, we could simply edit the ruleset defining this property, .3
=
e.g., :w'
3
<12> Edit tall. N
o
In fact, we could just edit the offending rule of that ruleset, e.g., LA
“w
<12> Edit 'to decide if a person is tall, 1'. N
LY
Scanning. .. ;§
Done scanning. b,
A
Parsing... -
Done parsing. -
...--
Loading. .. :::
TO DECIDE IF A PERSON IS TALL -- redefined. o
Done loading. M
S
<13> List tall. "
-
To decide if a person is tall: o
[1] if the person's height is greater than 6.9 feet, o
conclude true, otherwise conclude false. by
End. -
After editing, the ruleset will be redefined and exhibit the desired new :it
behavior, e.g., :}}
~eN
<14> Find basketball players. M
JOE is a basketball player. T
-\{ '
i
F
F
n
0
A
o
\"_-.
et et a ol - B N AN ANy nc T "'.-‘ -'.".r".':‘. .'J'.'.f..f-':'J'..‘.-‘.n".'-t'-‘:-I'_\-‘\'-";'-‘:\'\-'.'.':'."'."'.'_\."‘-P\ N

3. Running ROSIE 53

So far, everything we have done to "players" has been kept in core,
i.e., nothing has been safely written to disk. Edits can be written to
disk with the save procedure. Given a program file, save updates the
program's .txt and .map files to reflect changes made during a ROSIE
session. If, as in the case of "players”, the files players.txt and
players.map do not yet exist, they are created. The .txt file is a
copy of the program source code, and the .map files is its HILEV
representation as well as & mapping between source and HILEV.

—
Once satisfied with a program's behavior, the user can improve Qy:
performance of the program file via the compile procedure. Compiling a :}$\
program file creates a .cmp file containing the binary machine code }}i:
representation of the HILEV in the .map file. Rulesets run on the .:i;
’- -

order of three to five times faster when compiled.

RO

el

3.4 DEBUGGING FACILITIES -2
L

If not satisfied with a program's behavior, ROSIE provides several AL
facilities for monitoring various aspects of its behavior. These S,

facilities can be used alternately for finding bugs in the code or .
improving performance. S

The primary source of debugging aids come from the break package. e
The break package (discussed in Chapter 14) allows the user to W
e

temporarily redefine rulesets and demons in order to monitor control
flow and/or interrupt execution at key points. There are three basic

facilities in the break package: a trace facility, break facility, and },;
profile facility. The trace facility redefines rulesets such that a N
message is printed before and after invocation. The break facility :\ﬁ%
temporarily interrupts execution, throwing control into an interactive fzf\
break loop from which system state can be examined and the computation A

aborted or resumed. The profiler redefines rulesets to collect

s,

performance information on each invocation. When, via the break ».if
package, an errant ruleset has been found, it is then a simple matter to xS
edit and fix the bug. A
Of course, if the bug was introduced by a misinterpretation of itj-
ROSIE's syntax, it may be very hard to find. That is, the errant code
may look correct, but its syntactic interpretation is not what one might ff)
think. This type of problem occurs most frequently with rules of i“:
associativity, e.g., is :::
-\'_.
record the name of the snip i:f

»

L}

S 4y
LT

really

.
h

DR
’,

record (the name of the ship)

Y
¢ (4
-"r‘:.\‘\

3. Running ROSIE 54

which is the intuitive interpretation, or
record (the name) of the ship

which is ROSIE's interpretation. Such problems can be detected with the
deparse procedure.

The deparser (part of the file package) is a ROSIE source code
generator. Given the HILEV representation of a filesegment, the
deparser generates its source code equivalent. While this generated
code lacks certain stylistic eloquence--the deparser is not a very good
pretty printer--it does highlight ROSIE's interpretation of code by
delimiting possibly ambiguous code segments with parentheses and
illustrating associations of embedded code blocks with indentation.

For instance, consider the procedural ruleset

To report a finding:

[1] Send "{the finding}{cr}".

[2] Add the proposition from "'{the finding)}'" to findings.
End.

adapted from the SPILL demo program. In this ruleset, the finding is a
string such as

"spill is detected at WOC-6"
which reports some observation about a chemical spill as a ROSIE
proposition. Rule [2] of the ruleset is supposed to turn the finding
into an intentional proposition and assert it into the findings

database. When we call this ruleset, e.g.,

<16> Report '"spill is detected at WOC-6".
spill is detected at WOC-6

In 'TO REPORT A FINDING, AT 2'
No such element exists:

THE PROPOSITION

Broken at:
'TO REPORT A FINDING, [rule] 2'.

(1] quit.
In 'TO REPORT A FINDING, AT 2'

<17>

an error occurs, throwing control into a break loop. Examining this
ruleset with the deparser, e.g.,

3. Running ROSIE 55

<17> Deparse report.

TO REPORT A FINDING:

[1]) SEND {THE FINDING, CR}.
[2] ADD (THE PROPOSITION) FROM {"'", THE FINDING, "'"} TO FINDINGS.
END.

we see that from "'{the finding}'"’ actually modifies add rather than
the proposition. We can fix this problem by delimiting the correct
interpretation with parentheses, e.g.,

<18> Edit report.

Scanning. ..
Done scanning.

&l
Parsing... :?:
TO REPORT A FINDING :{i
Done parsing.)
ANy
!
A
Loading. ..
TO REPORT A FINDING -- redefined. O,
Done loading. e

<19> List report.

To report a finding:

(1] Send "{the finding}{cr}". o
(2] Add (the proposition from "'{the finding}'") to findings. e
End. ffﬂf
<20> Deparse report. ;ij:
TO REPORT A FINDING: S
[1) SEND {THE FINDING, CR}. et
{2] ADD (THE PROPOSITION FROM {"'", THE FINDING, "'"}) TO FINDINGS. e
END. e
.8
.”A"‘
<21> Report "spill is detected at WOC-6". T
spill is detected at WOC-6 NN
<22> Findings? PN
[FINDINGS Database | Ta
SPILL IS DETECTED AT WOC-6.)
.. \'
and the ruleset now runs to completion. v
7‘::
)
o
A,
RS
"Lexical analysis transforms this into tue expression scen in the }ta?
example. “
LRGN
~
PSS
A
:\r'
gn
'y

hY
.

T
LI

3. Running ROSIE 56

3.5 ERRORS, INTERRUPTS, AND BREAK LOOPS

ROSIE is very tolerant of errors and other interrupts. Most
runtime eryors are recoverable, allowing computations to resume from the
point of the error. When a recoverable error occurs, control is thrown
into an interactive monitor, called a bregk loop, from which the
interrupted computations can be resumed. User interrupts, signaled by
hitting <ctrl>C, are also treated as recoverable errors.

A break loop is an extension of the top-level monitor. The
extensions primarily reside in a set of break commands that are
accessible only within a break loop. Details about all the break
commands can be found in Chapter 14. Briefly, the brecak commands allow
the user to examine various aspects of system state at the time of the
break and then resume computations from that point.

For instance, consider our previous example using the ruleset

To report a finding:

[1] Send "{the finding}{cr)}".

[2] Add the proposition from "'{the finding}'" to findings.
End.

When we ran this the first time, e.g.,

<16> Report ''spill is detected at WOC-6".
spill is detected at WOC-6

In 'TO REPORT A FINDING, AT 2'
No such element exists:
THE PROPOSITION

Broken at:
"TO REPORT A FINDING, [rule] 2'.

(1]

we encountered a runtime error due to the fact that the proposition was
being evaluated instead of the proposition from "'{the finding}'".

Since this is a recoverable error, control is thrown into a break
loop.® If yon do not wish to deal with the error, you can return to the
top level via the quit procedure as we did before. This aborts the
computation. Otherwise, you can try to fix the error and resume
computations from the break point.

*If this error had not been recoverable, such as a stack overfilow
error, control would have returned to the top-level monitor.

[}
- ,'t ;a ,\- ’i

¢ 7

{

x

S
s

]

‘.
S
>

L
B,

A

e,

oS
\'l
r L

X

e
- -

“, A

. -~ c
° l.. A‘- l'. ‘.' h'. a

e e
T
. .

Fd

)

e

¥

3. Running ROSIE 57 ey
W

ol

The prompt in a break loop is the line number surrounded by square t'\'
brackets ([]). Square brackets are used to remind you that the current 2y

environment resides Iinside the invocation of a ruleset. Note that each
break loop has its own command history and, thus, each break loop starts
at line [1]. Also note that you can have several layers of break loops,

e.g.,

.‘..
S

[1] Report "spill is not detected at WOC-6". v,
spill is not detected at WOC-6
A
In 'TO REPORT A FINDING, AT 2' iri
No such element exists: A
THE PROPOSITION e
vl
Broken at: -
"TO REPORT A FINDING, [rule] 2'. }it
F)
LIPS
You can return to earlier breaks with the quit! break command, e.g., -:i”
‘ -
RS
P _‘-J\ g
{1] Quit! s W
Broken at: e
"TO REPORT A FINDING, [rule] 2'. o
e
(2] - -
. ,-'
which is distinguished from the qQuit procedure by terminating with an
exclamation point (!). e
-
RN
From the break loop, we can examine aspects of system state, such :}:
as the state of the invocation's private database, e.g., \:s
N
[2] Private?
[PRIVATE Database | T
"spill is detected at WOC-6" IS A FINDING. e
e
We can also execute anything we can execute from the top level, e.g., S
t ’- -
[3] Deparse report.
«—
TO REPORT A FINDING: N
[1) SEND {THE FINDING, CR}. gg;'
(2] ADD (THE PROPOSITION) FROM {"'"., THE FINDING, "'"} TO FINDINGS. o
END.)
{4) Edit report. Y
-
o
allowing us to discover and repair the problem. Once fixed, we can o
resume computations from the broken rule, e.g., £:~
N
i

[5] Resume!

»

.
(]

NS e
f'f"-"',,.".-‘.' ;
2L LSS

N TR GURLR LR CRELIRES

3. Running ROSIE 58

or from some other rule, e.g.,
{5] Resume 1!

or simply restart the ruleset invocation, e.g.,
{5] Resume ruleset!

There are also break commands such as list! and edit! for easily
examining and editing the broken ruleset rule and commands such as
trace! and pop! for examining and moving about the stack of ruleset
invocations. For further details, see Chapter 14.

3.6 EXITING A ROSIE SESSION

Always terminate a ROSIE session with the logout procedure, e.g.,
<25> Logout.

Files edited but not saved:
'"FILE: "players''’

Save 'FILE: "players"' (Y or N)? y
Saving 'FILE: "players''
Done saving.

As the example above demonstrates, logout performs various clean-up
tasks, such as closing open files, ending a dribble session, or
informing the user of edits not written to disk.

When running under UNIX, the user can temporarily suspend a ROSIE
session by hitting <ctrl>Z; this returns the user to the operating
system level. The session can be resumed in the same manner as any
other suspended UNIX job (i.e., typically by typing fg).

3.7 SYSTEM SWITCHES

ROSIE supports a small number of system switches to control certain
aspects of system behavior (these switches are implemented as LISP
variables whose values are T when on and NIL when off). Some switches
are supported to make ROSIE 3.0 act like earlier versions or ROSIE and
others simply to suppress noncritical features that the user may not
like.

The system switches supported by ROSIE 3.0 are further described in
Appendix C.

~

L T e i L T T i e i o T I L v VS o B)
RO }_IJ'\rJ'. CaNE N N ~\..r -’. ., v'_-_ . - -_.r_. X .r. ‘.7_ e .

' ..t}-j

T Y
Al
.’{-.5'.."‘-

[/
X

Yatptal
b

'

b

[
&5

*x
.

'll_\. 5. h}

2

5

oK

4 %NS S et
PRA
‘.:?‘:"-J‘-f':‘\ N

I

"n'.~.-, L.
., . P
SO NTIEN

P

[
14

'
FRRY

N)
P AR S
R NN

.
1

[Ad

3. Running ROSIE

3.8 TOP-LEVEL OPERATIONS

The following are opecrations found to be useful at the top level.
The file package commands are not included here but can be found in
Chapter 13.

?

Lists the contents of the active database; equivalent to executing
the show procedure, e.g.,

<2> Assert each of Jim, Jack, and John is a man.
<3> 7
[GLOBAL Database]

JOHN IS A MAN.

JACK IS A MAN.

JIM IS A MAN.

<name element>?

<name element> ::= [<atom>]* <atom>

Lists the contents of the database named <name element>. Equivalent

to calling show <name element>, e.g.,

<4> Assert 'John does love Mary' in active beliefs.
<5> Active beliefs?
[ACTIVE BELIEFS Database |

JOHN DOES LOVE MARY.

??
Lists up to the last 40 monitor rules issued by the user, e.g.,
<6> 17?

<6> 27
<5> ACTIVE BELIEFS?

<4> ASSERT 'JOHN DOES LOVE MARY' IN ACTIVE BELIEFS.
<3> 7

<2> ASSERT EACH OF JIM, JACK AND JOHN IS A MAN.

<1> DRIBBLE TO "log".

<integer>?

Lists the rule designated by <integer> if it was one of the last
40 monitor rules issued by the user, e.g.,

R T I e ~lr -

) o

59

N . e . - e T, e e L [T . -
8,760, 590,90, 90 9 N, “(. > < » y v " W)\)"‘f\ N "' Q’ o {\" - *\I Lo ,N-\’ '."“ RGN
» > .

o

N NN,

~

.‘1“:

AR E

.
NS
ary

AR

A
.

.
v

»
»

LY

PR Y
.
l‘-

Ay
ANAL

AR
o

5N

T el

AN Vs
‘;.-" l'" LA

‘s v
AR
.

A 4

I
a

" s
5

14

2

"v;'t'/'ﬂ
R

:.'.;'-. "n'."-
L4
A LR LN

¢
»
.

v vy
3 & 4,
A

.

FELL PP LS N
Uﬁ?;ﬂﬁfﬁﬁﬁV' ;f

‘s % e

3. Running ROSIE 60

<7> 27

<2> ASSERT EACH OF JIM, JACK AND JOHN IS A MAN.

redo & Jine [thru & Iline] [for N times)

Re-executes the designated sequences of monitor rules, where each
line must evaluate to a positive integer specifying one of the
last 40 monitor rules, e.g.,

3

4
T
<8> Redo 3. D
| GLOBAL Database | ;j{
JOHN IS A MAN. W
JACK IS A MAN. T
JIM IS A MAN. :\$\
RS
LAY,
If the for N times option is given, re-executes the sequence ‘ :
N times, where N must be a positive integer. c"fl
'
.
redo e
L.
Re-executes the previous line. }:?‘
)
J.‘-'.‘
fix [a line]
P
Allows users to edit and resubmit monitor rules. Calls the user's i::r
text editor on a dummy file containing the text of the designated rule, (ufc
executing the modified rule when the user exits the edit session. The e
new rule is remembered instead of the call to fix that exhumed s,
it, and thus, the new rule can be referred to later, e.g., .
RO
<9 Fix 2. e
e ™
L
<9> ASSERT EACH OF MARY AND SARA IS5 A WOMAN. i{;w
210> 77 AON
<10> 77 -Z'f\:‘
<9> ASSERT EACH OF MARY AND SARA IS A WOMAN. 2 W
<8> REDO 3. :.&:
<7> 27 ! W
<6> 77)
<5- ACTI!VE BELIEFS? -
<4 ASSERT 'JOHN DOES LOVE MARY' IN ACTIVE BELIEFS. VS
<2> ASSERT EACH OF JIM, JACK AND JOHN 1S A MAN. Sﬁ‘f:
<1~ DRIBBLE TO "log". v
‘ . N
If no /ine is given, applies fix to the previous line. N .
:'\
- W
e
‘\‘Q....

F‘..'

S
| 3

%

[}

Ly

)
3

e S
»

3. Running ROSIE 61

describe an element [in a database)

Displays all propositions from database that use element as a
top-level argument, e.g.,

<11> Describe John in active beliefs.

JOHN DOES LOVE MARY

forget about an element [in & database]

Removes all propositions from database that use element as a
top-level argument, e.g.,

<12> Forget about John in active beliefs.
<13> Active beliefs?
[ACTIVE BELIEFS Database]
display an element
Prints element to standard output (by default, the user's terminal), e.g.,
<14> Display the woman.
SARA
dribble to a file
Opens a special output channel to file, making it the dribble file.
After this, a copy of all terminal 1/0 will be sent to file. The

dribble file may not be closed except with stop dribbling.

This is a convenient way to save a transcript of all or part of a
ROSIE session for later viewing.

NOTE: You may edit while dribbling, but that part of the session will
not be dribbled.

stop dribbling
Closes the dribble file and stops copying terminal 1/0. 1If no dribble
file is open, an error occurs.

switch on a switch

switch off 4 switch

Respectively, enables or disables switch, which is one of ROSIE's

S TR TP R O I I A TP T Y I S P S I L P e) D T PR I R P I S L I
s _.(.r__.f. oy -r.r_ Y . -I' J‘- J‘\-’ Tl 0. \\ '\. ,'.\\.- .\ .‘.\\.\- .

AR & B
" %

v_&‘:

&
2 4

L

“

fm st

iy i Ve BN
-

a

.'1".{- Bl A

'('.

PR AN Y |
I g
A I’Al's

Lty
e N

7 et

Sh NS

P

R A NS

«

~\

LI BRI .
':. -‘lx."n‘. :'

)

.
s

3. Running ROSIE 62
W)
system switches defined in Appendix C, e.g., a;v
<15> Switch on $MIXPRINTMODE. ”
<16> ? ;\;
[GLOBAL Database | ot
SARA is a women. ;~f
MARY is a woman. I:
JOHN is a man. -
JACK is a man.
JIM is a man.
NOTE: When the $MIXPRINTMODE is on, ROSIE uses the older form of
printing relations in which keywords are in lowercase and everything
else (sometimes) is in uppercase.

e
toggle on a switch TN
toggle off a switch e

Lin?

Like switch on/off except that, if executed in a ruleset, R
switch is reset to its original value when the ruleset terminates. -

7
toggle a switch oty

[

If switch is on, turns it off, otherwise turns it on. re
a switch is set $”$~
'.\f.'
o)
Concludes true if switch is on, cuscludes false otherwise, e.g., }:i‘
.?Irl
<17> If SMIXPRINTMODE is set, display yes. R
YES }f:.-‘
oy
info switches "\'

SN

Lists the setting of all system switches, e.g., -

S

<18> Info switches. T
oA

ARAS

SAUTOQUERYFLG is off Ui
SCOMPRULESETS is off o
SEXPDRULESETS is on .
SEXTENDSEARCH is on :\?\r
SMIXPRINTMODE is on o
SPRETTYFORMAT is off :u$.
SPRINTMSGS is on R,
SREMOVEDUPLS is off fedy
[

"

o0

S

AN

QN

0

\’ ‘\

LN

o

'_';::_\

AT

I PN
el e, v ,_-‘.‘-'.‘-'\'.*-*\,‘. '-'~“:‘-1'"-"~“-' .‘;-.._". :..‘; \' -.. \'.". _-.(:.‘_: ‘_: .).J:_..‘_-.__-.'r:.“:.'_-.’..‘_\.“._;.*‘-\‘_'- o .-_J_.

AP M A B TR AN R K Tl AR A A A LT R R A R AR A N A U I U Y o oW oy oY Uy * A pte 23 AN gt et - tocaly gt

;;: 3. Running ROSIE 63 .
N)
]
!. v
&9 o
o info system y
)
« Lists the system name, version number, the version of LISP used to)
.a implement ROSIE, and the system creation date, e.g.,
N ‘
o <19> Info system. ¢
i 3
“ (R) A
- [ROSIE Version 3.0 (PSL) 15-Apr-86]
- “
v info date :
“ Prints the current date and system name in comment form, e.g., :
] <20> Info date. :
s (R) :
Wy [ROSIE Version 3.0 (PSL) 30-May-86] -
e info loaded :

e
L}

f Lists pertinent information about loaded and noticed program N
= files, e.g., -
* :.
<21> Info loaded. -
] :
.z} Files currently loaded and noticed by filepkg: hY
o ’
™~ '"FILE: "report'' \
! Last changed: Not written to disk Ly
Not compiled
~ >
% Contains 1 ruleset, 0 filerules y
3 All rulesets enabled =
;t Edited but not saved “
N "3
R 'FILE: "players"’ Ny
’ .
N Last changed: Fri May 30 14:11:31 1986 hE
N A
< Not compiled N
& .
' Contains 2 rulesets, 2 filerules

TN All rulesets enabled N
* D‘ 4
N .
n :
k type a file .
List the contents of file on the user's terminal. ‘:

- .
- K
’. -
= '
‘.. '_‘
" v

T, T e T A J__w.-.- A ST AT A " N
! v . o o . . () £) L) o '] o 8 5

w
; “
: R
3. Running ROSIE 64 X
3
delete a file P
l*‘
Deletes file from the user's directory. Does not ask for -
confirmation. No error occurs if the file does not actually exist.)
-
",
J i
dskin a file Y
Loads file using the implementation LISP's load function -8
(or its equivalent). Provided for loading LISP files into the system. N
j ’
NOTE: For further information on the entire set of operations for file N
input and output, see Chapter 11. *es
o~
b
i <
Isp O
oY
v o
Throws control into a LISP break loop. Exiting the break loop (in PSL .:5‘
this is done by hitting <ctrl>D or q) returns control to the tat
top-level monitor.)
I,
[
-
paraphrase ‘_
NG
Throws control into a special monitor for verifying the interpretation N
of ROSIE code. .
e
: The parsemode monitor reads and parses ROSIE rules and other file gi'
‘ items, and then displays its interpretation of the code using ~e)
) parentheses and indentation to highlight the boundaries of terms, . ;'
; clauses, and phrases, e.g., o
<22> paraphrase. i;
> Move the ship from the port. e
1 MOVE (THE SHIP) (FROM THE PORT). :{;-
Y r::.‘
> Move (the ship from the port). N
MOVE (THE SHIP (FROM THE PORT)). o
>Quit. .
<23> ::
Exiting this monitor by hitting a <ctrl-C or by entering quit. y)
throws control back to the top-level monitor. o
.:Z:_' \
parsemode :‘::::
]
Like paraphrase, this operation throws control into a special -}}
monitor for examining the interpretation of ROSIE code. However, the
e
Ny
A
g
Al
~
e
c
LSRN
--‘:_ 4
s . .r:'-r:' -' :!"«/':4"-4".-" .-".r r. NS e -~ 4" Ny '-r.'-f" M ..- ,; X ; \"- '. - ‘. S '. Sl = ‘.‘: . - : "

n
1)
o
1 3. Running ROSIE 65 I
: 4
: ;
: parsemode monitor displays the HILEV interpretation of the code, e.g., ~
. A%
\ <23> parsemode. !
i > Move the ship from the port. -
i (<RULE> e
} .
&Q (<DO> o~
Oy (<GO> (<IDENT> MOVE :‘
' (*OBJECT** (<THE> (<DESC> <D/56236/G0383> .
(<IDENT> SHIP) NIL NIL))) 8,
3 (FROM (<THE> (<DESC> <D/56253/G0384> A
. (<IDENT> PORT) NIL NIL))))))) .
’
{ > Move (the ship from the port). :,
¥ (<RULE>]
(<DO> .
a (<GO> (<IDENT> MOVE ‘3
4 (*OBJECT* (<THE>
N (<DESC> <D/58293/G0386>
N (<IDENT> SHIP
' (FROM -
(<THE> ‘
(<DESC> <D/58276/G0385> <
(<IDENT> PORT) NIL NIL)))) :;
NIL NIL))))))) 5
b > Quit. .
<24>
" 1
j HILEV is the machine executable representation of a parsed file item. N
< o
1 reclaim :
. Forces a LISP garbage collect (i.e., reclaims previously used dynamic ;\
v storage that is no longer needed so that it may be allocated for :\
.: another purpose later on). e
) ¢
¢ ;
save as a file
: Writes the current ROSIE session core image as an executable file to f:
.. file. This essentially "freezes' the state of the program that N
! calls it. The user can run the executable file and resume the ROSIE }
; session following the point at which save was called. s
f» NOTE: Save as closes all open channels (including the channel to)
, the dribble file) before creating the executable file. -3
By K
:0 :.:
¥ .
o Y
\ ~
4 ~
4 >
. -
“a '\
b -
S

“

v
Sy

e € A o o, T
LR ROR LAY -.-. (RN

3. Running ROSIE 66

e
LN

N N

logout

..
v

Kills the ROSIE session. THIS IS THE ONLY SAFE WAY TO EXIT ROSIE.

h
by

If edited program files have not been written to disk, ROSIE will issue
a warning and allow the user to save his edits using the file package
operation save.

5

-
.

f.‘..{ 4
=,

,..
I{-ﬁ-"*.

& 4
st

« »
D
AN

Lo
O

e

ﬂ:‘- I 2

AL
PR,

3

a
DA ." i

_ G
R A A XAy
,:.-, o S

Cala

I.: : ' ~':\
P

n -"-‘ :-ﬁ-
Py

l‘

L 4
v’

bt iR ol)

DR

N '»:,\;,\;_\;_'.:,\‘ -

T et A" A" ¥
> \.-‘--_-\"\\ .\' Y -'l ta

TR T

-
ATV

RPN

AR T ogat B’ LT WLV R AR A to§an W PLA 7\ 1 oy * T TIATOR T O T TN egt ETORT O \ . N o

4. Programming Structures 67

IV. PROGRAMMING STRUCTURES

ROSIE's principal programming structures are rules, rulesets, and
demons. Rules correspond to executable programming statements, while
rulesets equate to rule subroutines; demons are a specialized form of
ruleset. ROSIE programs are defined as collections of interacting
rulesets and demons. To run a program, one issues a rule to ROSIE's top-
level monitor, which immediately executes the rule. The rule will
invoke a ruleset, which executes the rules in its body, invoking other
rulesets, and so on.

In this chapter, we provide a definition of rules and rulesets,
primarily focusing on how one defines and invokes rulesets.

4.1 RULES

<rule> ::= <ac*ion block>

<action>
1:= <actjon> AND <action block>

<action block>

Rules consist of a sequence of one or more &ctions,! separated by

the conjunctive and and terminated by a period (.), e.g.,?

Assert the report was received at the current time and
relay that report to every module.

If any red battalion does advance toward any strategic
objective and that objective is undefended,
move some blue battalion to that objective and
report 'that battalion was directed to that objective'.

For each blue battalion (BBTL) in sector #15,
advise BBTL to 'move to Red River Crossing’' and
assert BBTL was given a new directive.

While any strategic objective is not defended,
keep some blue battalion on alert.

'The concept of "one or more nction" appears frequently and is
referred to as an action block.

2The first example rule contains two actions, an &ssert action and
a procedure; the second, a conditionai action; the last two example
rules illustrate two different types of iterative actions. Note that
the conditional and iterative actions take nested action blocks as
arguments.

- . < g - . . . R S T I T . "o e - . A
. ,'. Y A S N O T T I L LN AN T A O S A I L R S o St Y
A N . T AP A A e RN AN f Iy

Vall'ell on '~
Eie S % A
-?-, -

L YWY
e

a
Fd
.'..

XA XA
5495y
L)

*
s

7/
-5 45 %

ig

,.
)
P

A

A

Ay
Ly

.
.
a_ e

LSl
a4 8
a

‘ .I .I .\

S

.

R
LI

z
LY

SN ¢
‘l’l‘.

't’/_t

F A
55

e R
'\.\‘.}‘ '\;’ ':

i

)

OO W T U T T O U U URT U U UN LR URT R R URT R R R ROV RO A A U A O U R A R R U AT O DU ROV T U

4. Programming Structures 68

A rule executes each of its component actions in turn. Execution
halts after the last action. Execution can be terminated earlier by
executing a terminating procedure (i.e., return, produce, conclude, or
continue), or by aborting computations with the quit procedure.?

L
4.2 RULESETS o
O
<ruleset> = <header> AN
[<private decl>] N
[<monitor decl>] ﬁﬁ
[<rule>]* N,
<end stmt> by
Laly
= SYSTEM RULESET <header> o
<system body> -,
<end stmt> ;:
7
<header> ::= TO GENERATE <genr form> A
= TO DECIDE [IF] <pred form> Al
::= TO <proc form> -
<genr form> ::= [<spec>] <root name> [<private pps>] :ﬁ’
<proc form> ::= <atom> [<formal>] [<private pps>] ::j
P
<pred form> ::= <formal> <be aux> <a/an> <root name> [<private pps>] A
::= <formal> <be aux> <atom> [<formal>] [<private pps>] -
= <formal> <be aux> <prep> [<formal>] [<private pps>] o
1:= <formal> <do aux> <atom> ([<formal>] [<private pps>] -
<spec> ::= (| THE | A | AN |) .,
<root name> ::= <atom> [<atom>]* :ia
<private pps> ::= <prep> <formal> [<private pps>] 515
<formal> ::= [<a/an>] <root name> -
<private decl> ::= PRIVATE [:] <class list> L
<class list> ::= <formal> {[([INITIALLY] <term>)] [, <class list>] o
<monitor decl> ::= EXECUTE SEQUENTIALLY Dy
= EXECUTE CYCLICALLY . -
\;..
’From the programmer's standpoint, rules are not all that Hjl'
interesting. They are essentially a linguistic convenience used to 3:'
string together groups of actions. Actions are what actually control -:w
system behavior and are discussed further in Chapter 5.
}Cﬂ
0N
N
\":\'

E]
e

STV AR, - L W P

“
-

T A T Al AT e At .‘-._' o n,

)
)
\ "
o]
4. Programming Structures 69 A
¢
e
::= EXECUTE RANDOMLY .]
¥l
. B
<system body> ::= (LAMBDA (-args-) . -body-) .
oy
<end stmt> ::= END . (ol
AN
u
The applicability and context in which rules are executed can be HV*'
controlled by grouping rules into rulesets. Like subroutines in more Mk
conventional programming languages, rulesets provide a convenient way to]
modularize rules into coherent procedural units. One of ROSIE's N
strengths is that these modules can be invoked in a natural and R
transparent way using generalized English-like linguistic structures. {j{f
N
Users can define three different types of rulesets: procedural, iy
predicate, and generator rulesets. Each type varies along the lines of .
how it is invoked and what values (if any) it can return. There also &fi:
exists a hybrid class of rulesets called demons. Demons fire upon the cﬁ{:
occurrence of some specified event and have the capability of deciding NENY)
whether to let the interrupted event proceed. Rulesets and demons can -{x
optionally be designated as system rulesets. The body of a system :fa
ruleset is defined using a LISP lambda form, which provides a convenient
mechanism to interface with software packages developed in or accessible AR
from LISP. e
o
KR
AP
4.2.1 Defining Rulesets s
Rulesets (and demons) are derined in program files; ROSIE does not ‘}}:[
allow rulesets to be defined from the top-level monitor.® A ruleset P
definition begins with a header statement, which must be terminated by a ia:
colon (:), and ends with an end statement. After the header, the user PO

L)

7

may optionally specify a declaration of private classes and an execution
monitor. The body of a ruleset is defined as an ordered sequence of
zero or more rules.®

.

a

Sy e
o o

LRl s

PR A

As an example, consider the ruleset,

r APl

IR T
PR A P 4

N a o & O Lol A
2 g

A
|

ey

A
» "\
'

Al
<

“For more information on building and loading program files, sce
Chapter 13.
*A ruleset consisting of zero rules is a null-op.

'y 'V'C ;
‘Jsf‘-’ P

«
>

IR AR
. «

&

2 ¢ 4 & o
Y% N N

L

-
av A o N A AR N T T B T P AT T O I S I B S SR SNE R WP O
{ oy .'n Pt e X i X o) AN .0. ’ X X \ \- A Y. Y o X “'.‘\'&‘ ’ W '

e i
RLAPCAY XY MY X

4. Programming Structures 70

To generate a response to a query:

Private: a reply.

Execute cyclically.

[1] Send "{cr}{the query} ".

[2] Read "{anything (bind the reply)}.{cr}".

[3] If the lowercase of the reply = either "yes" or "no",
produce that reply,
otherwise send "Please enter YES or NO.{cr}".

End.

This is a generator ruleset, so designated by the fact that its header
starts with the words

To generate .

This ruleset produces instances of the class response to guery, where
query could be anything (but will probably be a string element posing a
yes/no question). It uses the private class reply and a cyclic
execution monitor. Its body consists of three rules, numbered [1]
through [3]. The behavior of this ruleset is to prompt the user
repeatedly with the value of the query until the user inputs yes or no.

4.2.1.1 Header Statements

A ruleset's header designates its type, names its formal parameters
and identifies its calling form. There are three basic forms a header
can have. These correspond to the three types of rulesets as well as
ROSIE's three principal linguistic structures. A precise description of
these three forms will be given in Section 4.2.2. 1In this section, we
will examine the basics.

A ruleset's type is implicit in the syntax of its header. The
header of a generator ruleset always begins with the keywords

To generate .

while a predicate ruleset header always begins with
To decide .

and a procedural ruleset header simply begins with
To .

While the exact syntactic structure of headers varies between ruleset
types, they all share a few fundamental aspects.

The header always specifies the name of the ruleset. This will be
one (or possibly more) token(s)® corresponding to the root concept being
defined. For instance, the name of the procedural ruleset

*Only generator rulesets and predicate rulesets that test class
relations (i.e., relations using the is-4 copula) can have multitoken
names.

R i o e A A g N R N R S KA

Ty

. 'w- -- '-‘ .
N

LNt 2]

YN

el

2
R

&4
)

AATUR
AN 5

Vet S N e
AR

ﬁﬁ;?ﬂ

;‘-’

':,--

R
‘t' ("“'Iw
1Tt !

e T 4
;
[NLATY
S

o
L

s

P

t 4

3%

7
,v,"

o N

»

\
v

.
b 7 S l"l-

4y

.
.

’
v

i,
o "-

t‘l

4. Programming Structures 71

To move a ship from a source to a destination:
is move, the name of the predicate ruleset

To decide if 2 ship was anchored in a4 port:
is anchored, and the name of a generator ruleset

To generate the absolute value of a number:

is absolute value.

Another common feature of headers is the specification of formal
parameters. These are called private classes because they are specified
as indefinite references to a class and are bound and accessed
accordingly (in the above examples the private classes are italicized).
Private classes fill distinct linguistic roles. For instance, both
procedural and predicate rulesets can optionally take a parameter that
acts as the object of their main verb, and a predicate ruleset always
has a parameter that plays the role of its subject. Additional private
class parameters can be specified in a chain of prepositional phrases’

appearing at the end of the header. Such a chain can contain any number ;::a
of preposition/private class pairs as long as the same preposition is \jﬁﬁ
not used twice. :#{j
o)
The calling form of a ruleset is derived from its type, name, N
associated prepositions, and additional type-specific features. Note . -
that the private class parameters of a header have no bearing on the :fﬁ}
unique identification of a ruleset. This means that you may not have f&}:
two rulesets defined simultaneously if they differ only in their }:}‘
parameter names. Note also that, internally, prepositions are I“;‘
alphabetized. This means that the order of prepositional phrases in the a
calling form does not have to correspond to the order found in the .
header. :Qf:
gy
Essentially, a ruleset's header identifies the fixed and variable -f}':
components of syntax of the ruleset calling form. The fixed parts :\:‘
include the ruleset's name and all prepositions. The variable parts Vs,
consist of the private classes. All fixed parts must appear verbatim in)
the calling form. The user passes arguments by replacing the variable r:Z\
parts with specific arguments. ?xjf
)
N
o
- o '.'\
’Since private classes may not be modified by a prepositional tl:‘
phrase, there is no prepositional attachment ambiguity in ruleset g

headers.

. %ty
el e

S T S R A G . S g e o 3

n,

O‘|'

-

'l
K¢
o
4. Programming Structures 72 o
o
>
4.2.1.2 Private Class Declarations N
The use:x may optionally specify additional private classes with a 4
private class declaration. Private classes are normally used like local Y
variables in other programming languages and are discussed further in :;:
Section 4.2.4. e
g
The syntax of a private class declaration is defined as A
-8
<private deci> ::= PRIVATE [:] <class list> ;:
<class list> ::= <formal> [([INITIALLY] <term>)] [, <class list>) ik
o
Example-- s
Private: a counter (initially 0), a reply. e
o
If given, this declaration must appear immediately after the ruleset ::
header. =
by
Ry

Note that it is possible to specify a initial binding for a private
class. When the ruleset is invoked, the initial values are evaluated
and bound sequentially, and later bindings mgy reference earlier.

.:,‘
vy

« o
SN
At
St e
.
sty

4.2.1.3 Execution Monitors

The user may also optionally designate the manner in which rules

+]

are to be executed with an execution monitor declaration, the syntax of e
which is defined as NS
N

<monitor decl> ::= EXECUTE SEQUENTIALLY :f,

= EXECUTE CYCLICALLY »¥

= EXECUTE RANDOMLY —_

This declaration tells ROSIE how to execute the rules in the ruleset's L
body, i.e., with either a sequential, cyclic, or random monitor. -]
d

4

The sequential monitor executes rules one at a time, terminating
the ruleset invocation after the last. The cyclic monitor executes

sequentially, but starts over again after executing the last rule. The ;ﬁﬁ.
random monitor repeatedly executes a rule selected by a pseudo-random T
number generator. NG,
¥
A monitor declaration must appear after the private class d
declaration (if given) and before the first rule of the ruleset, and ~:§,
there can be only one monitor in a ruleset. The monitor defaults to :?{
sequential. e
o n
:1'.-_'-
-‘-:
LN)
."_'1"
-‘:‘ h
T
‘e
")
e

4. Programming Structures 73

4.2.1.4 The Ruleset Body

The body of the ruleset can be any sequence of rules. The file
package automatically inserts line numbers in the form of comments
(e.g., [1]) before the first line of every rule. The file package
maintains these numbers and updates them whenever the ruleset is edited
or otherwise modified.

4.2.1.5 End Statements

The end statement is simply the keyword end followed by a period
{.). All rulesets must be terminaied by an eud statement. If the file
package encounters a ruleset that is not terminated by an end statement,
it will warn the user and automatically insert the missing end.

4.2.2 Ruleset Types

There are three types of rulesets: procedural, predicate, and
generator rulesets. Each ruleset type serves a conceptually different
purpose, each gets invoked in a different way, and each returns a
different form of value.

4.2.2.1 Procedural Rulesets
<header> ::= TO <proc form>
<proc form> ::= <atom> [<formal>) [<private pps>]

A procedural ruleset enacts a procedure (a type of action) and does
not return a value to the calling form. As an example, consider the
procedural ruleset,

To move a vessel from a source to a destination:
[1] Deny the vessel is docked at the source.

[2] Assert the vessel is docked at the destination.
End.

which updates the database when invoked by a procedure such as in
Move USS Nimitz from Le Havre to Auckland.

Procedural rulesets allow users to define conceptually modular tasks
that can be parameterized conveniently.

The syntax of the header for procedural rulesets is shown above.
In this syntax, <atom> plays the role of an imperative verb and names
the ruleset (e.g., move in the example). A procedural ruleset can take
an optional direct object that can be followed by any number of

. ;i.

T N e e N

b A
LA N UL N W
L. 'nf""'.

X
>

[A
f‘l’\{ iy
Rd ¢

h)
R

_.\l.

T S
A

5

A

y
«

A

2

“y

PRl)

? i s a
o o

"
W W
A

[y

v
»

4. Programming Structures 74

preposition/private class pairs. The calling form for a procedural
ruleset is identified by its name, whether it takes a direct object and
its associated prepositions.

When a procedural ruleset invocation terminates, it returns control
to the calling form. The invocation of a procedural ruleset can be
terminated in one of two ways. If it is executing its rules under a
sequential monitor, then it terminates after the last rule. It can also
be terminated by executing the return procedure.

4.2.2.2 Predicate Rulesets

<header> ::= TO DECIDE [IF] <pred form>

<pred form> <formal> <be aux> <a/an> <root name> [<private pps>]
<formal> <be aux> <atom> [<f»rmal>] [<private pps>]
<formal> <be aux> <prep> [<formal>] [<private pps>]

1:= <formal> <do aux> <atom> [<formal>] [<private pps>]

It

<root name> ::= <atom> [<atom>]¥*

<be aux> ::= WAS [NOT]
::= WERE [NOT]
AM [NOT)
ARE [NOT]
: IS [NOT]
::= WILL [NOT] BE

<do aux> ::= DID [NOT]
::= DO [NOT]
::= DOES [NOT]
::= WILL [NOT]

A predicate ruleset provides a means of computing the truth or
falsity of a proposition (a declarative n-ary relation). When ROSIE
cannot otherwise decide a proposition's truth value from relations in
its database, it automatically invokes the corresponding predicate
ruleset if one exists. For instance, the predicate ruleset

To decide if a vessel is seaworthy:
[1] If the vessel does float, conclude true,
otherwise, if the vessel does leak,
conclude faise.
End.

will be inoned by

If USS Nimitz is seaworthy,
move USS Nimitz from Le Havre to Auckland.

'J'\.f\

S T

o a‘\‘x)\“uaxkaé\'- }V'}'s;a}\}x;\;u}n St S AT N

s >
P X
‘,‘-\5

N AR
LN

.
AN

v Ny

£ € . & _
S %A

"'l
s

v,
b 4

v
PP o

b
NG Yy

L g

a i

=
L)
b

CXAG
sl V. ::::
A
.

N
Pl
"\‘.‘-'\

(!': PR

B R NS |
KA YN
PR 4 o

S
) ¢

¥
P

Pl
“hA]
S
AN
‘2/;
..l.'

4. Programming Structures 75

if the proposition 'USS Nimitz is seaworthy' cannot otherwise be proved
or disproved from assertions in the database. A predicate ruleset can
conclude true or false, returning a boolean value to the calling form,
or it can simply terminate, returning nothing and implying an
indeterminate truth value.

There is some degree of variation in the syntax of predicate
ruleset headers; this corresponds to the five syntactic forms of
propositions (see Section 6.2.1). Predicate rulesets that test a class
relation can have a multitoken name (i.e., <root name>) that represents
the base class for which the test holds, e.g., the name of

-
¥
-

T
.

(¢

o
(34
2y
W
N
(4}
3
0
3o

is strategic target. The other predicate types are named by a single
token representing the main verb of the clause; this can either be an
<atom>--e.g., the name of

» -"

oy

:: ‘l’z.‘l v

To decide if a target is located in a zone:
is located--or a <prep>--e.g., the name of
To decide if a target is on a hill:
is on. The calling form of a predicate ruleset is identified by its

name and associated prepositions, its tense and auxiliary verb form, and
whether it takes a direct object.

R

Note that while one can define a predicate ruleset (with the not
option) that tests the negation of propositions, the presence or absence
of this syntax is not used in calling or storing predicate rulesets.
Thus, a predicate and its negation may not be defined simultaneously,
and whichever is defined would decide the truth or falsity of a

o EEREREHE

proposition or its negation. et
]
ROSIE will attempt to invoke a predicate ruleset whenever it cannot iy
decide the truth or falsity of a proposition by a search of the physical 7f
database (see Chapter 10). If a predicate ruleset is defined *hat ;ﬁ
matches the proposition (i.e., contains the same main verb,
prepositions, auxiliary form, and tense) then it is invoked, and its ﬂS
d

conclusion determines the result of the test. If the predicate or tlie
proposition is negated, then the inverse of the conclusion decides the
result.

The conclusion of a predicate ruleset can be one of true, false, or
indeterminate. If the invocation is terminated by executing the
conclude procedure, its conclusion will be either true or false. If
terminated by executing return or by running out of rules to execute,
it concludes indeterminate and the truth or falsity of the proposition
goes undecided.

A | S

P
.
i

] SRR

=S

g
»

ol

R DO o L DA DA A A o D A I W D D T DAl T e D N e o

4. Programming Structures 76)

W
4.2.2.3 Generator Rulesets ':-‘::.:
AL

<header> ::= TO GENERATE <genr form> &_'

X
H .t

<genr form> ::= [<spec>] <root name> [<private pps>] s s:

"
1,
<apee> ::= (| TRE | A | AN |) '%ﬁﬁ
JOLN

A gemerator ruleset procedurally defines a class of elements, i
producing instances of the cless one-by-one on demand. Like predicate Hﬁdﬁ
rulesets, they are invoked indirectly through interactions with the kqp}
database. ':z:::
% .";
A generator ruleset may be invoked whenever a request is made for i
instances of a class. As described in Chapter 7, this happens when a e
description is used as a generator. When generating from a class (say, Py
the class of ship), ROSIE first produces all elements from assertions in L5
the database that satisfy the proposition 'element is a class', e.g., P b
assuming the database contains 1h$§
4 ,-.I
USS Nimitz is a ship X

USS Coral Sea is a ship ‘E\t
USS Enterprise is a ship e !
l- .‘F .

then generating every ship successively produces USS Nimitz, USS Coral Eﬁﬁ
Sea, and USS Enterprise. Once such elements have been exhausted, ROSIE Lactuld

can invoke a generator ruleset for computing additional members of the .
class. For instance, the generator ruleset e
S
To generate a vessel at a port: e
[1] Produce every boat which is docked at the port. t;;\j,'
[2] Produce every ship which is docked at the port. NN
End. (
. I; .,

would produce a continuous stream of elements when invoked by ¥

While some vessel at Auckland is not seaworthy,
repair that vessel.

until all elements produced satisfied the 'element is seaworthy'
predicate. Note that an invccation of & generator ruleset does not
necessarily produce a single instance of a class; it can produce zero or
more instances.

Instances are produced from a generator ruleset using the produce
procedure. This procedure takes a single argument that it produces as
an instance of the generator's class. If the element produced does not
satisfy the restrictions posted by the calling form, or if more than one
element is requested, then control is passed back to the ruleset.
Execution continues from the point where the element was produced. A
single invocation of a generator ruleset can execute the produce
procedure many times, generating a stream of elements.

S 0)

LR PR RS T » s T [S “»
B N o ot e T DM TN s s A

4. Programming Structures 17

An invocation of a generator ruleset is terminated when an element
produced satisfies halting conditions of the calling form, or the
return procedure is executed, or (under a sequential monitor) the last
rule is executed.

A generator ruleset is named by the root name of its class; this
can be one or more tokens in length. The calling form for a generator
is its name and associated prepositions. Unlike procedural and
predicate rulesets, generator rulesets may not take an optional direct
object argument.

-

4.2.3 Invoking Rulesets

As illustrated in the last section, different types of rulesets are
invoked in different ways. Procedural rulesets are invoked by executing
a procedure, predicate rulesets are invoked when testing a propositionm,
and generator rulesets are invoked when generating instances of a class.
Demons, which are discussed in the next section, are invoked just prior
to the occurrence of an event. Regardless of these differences after
being called, the invocation of any type of ruleset always proceeds in
the same fashion.

First, the invocation is given a private database. The ruleset's
formal parameters (i.e., the private classes taken from its header) are
bound in the private database to the values of the actual parameters of
the calling form. Then the rules in the ruleset's body are executed
according to the ruleset's execution monitor. A ruleset invocation can

be terminated in one of three ways. If the execution monitor is e
sequential, then the invocation can terminate upon executing the last :Ci
rule. Executing a terminating procedure is another, somewhat more vy
standard way to exit a ruleset, and executing the quit procedure, which :§$
aborts computation and throws control back to the top-level monitor, is {b{

a third method.
4.2.3.1 Calling Forms

A calling form identifies the target ruleset by its name and
associated prepositions, e.g., the procedure

Move USS Nimitz from La Havre to Auckland.
is a calling form for the procedural ruleset
To move a ship from a source to a destination:
Note that ROSIE does not use the formal parameters of the ruleset
header to decide which ruleset to invoke, only the ruleset's type,

keyword(s) and associated prepositions. Additionally, the order of
prepositional phrases does not matter. Thus, for instance, the procedure

Move U_S Nimitz to Auckland from La Havre.

4. Programming Structures 78

will behave identically to the one seen above.
4.2.3.2 Argument Passing

Arguments are passed to a ruleset invocation via the private
classes in the ruleset's header. Before the call, the actual parameters
of the calling form are evaluated. For each value, a proposition of the
form

actual is a formal

is asserted into the private database, where &ctu4l is the value of the
actual parameter and formal is the corresponding private class. For
instance, in our previous example, i.e.,

Move USS Nimitz from La Havre to Auckland.
the propositions,

USS Nimitz is a ship
La Havre is a source
Auckland is a destination

would be asserted into the private database of the ruleset invocation.
4.2.3.3 The Private Database

Each ruleset invocation is provided with a private database for
storing the intermediate results of computation. The contents of the
private database can be accessed only from within that invocation (i.e.,
a private database can be thought of as lexically scoped). Once the
invocation terminates, the private database and its contents are
discarded.

As compared to the global database and alternate databases (see
Chapter 10), a private database is a considerably restricted form of

storage. These restrictions include the following:

®* Only class membership (i.e., is-8) relations may be stored
in a private database;

®* There may be at most one instance of a private class at any
given time, e.g., if counter is a private class, then

Assert 1 is a counter and 2 is a counter.

will replace 1 with 2 as the single instance of the counter;

¢ If not appearing among the formal parameters of the header,
private classes can be declared only in a private class
declaration, e.g.,

4. Programming Structures 79

Private: a counter (initially 0), a result.

® Private classes may not be modified by a prepositional phrase
or relative clause, e.g., the term

the counter which is greater than 10

will not be treated as reference to & private class even if
counter is a private class.

* An instance of a private class may be generated using only
the function word the, e.g., a counter and every counter will
ignore the fact that counter is a private class;

®* Manipulations of the private database will not invoke
demons (i.e., demons only monitor manipulations of the global
and active database).

The instance of a private class (i.e., its value) can be accessed with
the function word the and changed with the database actions assert,
deny, and let. While this discursion may make private classes and the
private database appear rather complex, you'll actually find their use
to be quite intuitive and the restrictions negligible.®

4.2.3.4 Execution Monitors

The order of execution of rules in the ruleset's body is determined
by the ruleset's execution monitor. This can be one of sequential,
cyclic, or random. The sequential monitor executes rules one at a time
from first to last, terminating the invocation after the last rule. The
cyclic monitor repeatedly executes the rules from first to last. The
random monitor repeatedly executes rules drawn at random.

4.2.3.5 Terminating Procedures

If a ruleset's execution monitor is sequential, then the invocation
terminates after the last rule. If it is not, then the invocation must
be explicitly terminated by executing one of the terminating
procedures.’ The following operations can be used to terminate a
ruleset invocation:

*Readers already familiar with ROSIE should note that the
restrictions on private classes are new; existing code may require
editing to reflect these changes.

*Termination can also be achieved by executing the quit procedure,
which aborts computation and throws control back to the top level.

4. Programming Structures 80

return
Terminates the invocation of a ruleset or demon.
In procedural rulesets, simply ends call. In generator
rulesets, causes the ruleset to stop producing elements. In
predicate rulesets, concludes an indeterminate truth value.
In demons, causes interrupted event to be discarded.

produce sn element

This procedure may be executed only within a generator ruleset
or a produce demon.

In a generator ruleset, produces element as an instance

of the class being generated. Returns control to the invocation
if element does not satisfy a halting condition established

by the calling form. Otherwise, terminates the invocatieca.

In a produce demon, corntinues the produce event, substituting
element for the elemcnt being produced.

NOTE: Due to frequency in use, the produce procedure has
a special syutax. Normally, a procedure will take all possible
prepositional attachments, e.g., the call

Move the ship from the port.
is interpreted as

Move (the ship) from the port.
where move takes the longest chain of prepositional phrases
possible. To avoid the over use of parentheses to delimit its
single argument, produce will try to take no prepositional
attachment. Thus, the call

Produce the ship from the port.

is interpreted as

Produce (the ship from the port).

rather than
Produce (the ship) from the port.

This syntax was provided as a convenience and ran be overridden
by explicitly delimiting arguments with parentheses.

4. Programming Structures 81

conclude true
conclude false

Terminates the invocation of a predicate ruleset, concluding
either true or false for the truth value of the proposition
being tested.

continue
Terminates a demon invocation, informing ROSIE to resume
computations of the interrupted event (i.e., the event that
triggered the demon).

quit [because s string]
Throws control to the top-level monitor. If the because option

is given, string is printed to the standard output channel
(normally the user's terminal) before aborting.

4.3 DEMONS

<header> BEFORE EXECUTING <proc form>

BEFORE TESTING [IF] <pred form>

BEFORE GENERATING <genr form>
BEFORE PRODUCING <genr form>

BEFORE ASSERTING <pred form>
BEFORE DENYING <pred form>

<genr form> [<determiner>] <root name> [<private pps>]

<proc form> <atom> [<formal>] [<private pps>]

<pred form> <formal> <be aux> <a/an> <root name> [<private pps>]
<formal> <be aux> <atom> {[<formal>] [<private pps>]
<formal> <be aux> <prep> [<formal>] [<~private pps>]
<formal> <do aux> <atom> |[<~formal>] [<private pps>]

Demons are a hybrid class of rulesets that allows users to
selectively capture control of execution just prior to the occurrence of
an event. As such, demons provide a mechanism for event-driven program
control. They can be used for tracing and debugging during the program
development.. They can monitor changes to the database and check for
consistency as the database undergoes change. Once invoked, a demon can
decide whether or not the operation it preempted should resume.

For example, consider the demon

. - . N
Y 2 T D Mt e A A e S A T P S M e N SN

4. Programming Structures 82 E;::
X

]

Before executing to move a ship from a source to a destination: :::;-

(i)

[1] Unless some vessel at the source is equal to the ship, ‘.,’

return, otherwise continue. 0,

End. v:.:‘

0

which would be awakened by) ”3
]

Move USS Nimitz from Le Havre to Auckland. e,

o

Execution of the procedure would continue only if its arguments (i.e., §¢
USS Nimitz, Le Havre, and Auckland) satisfy the constraints set by "'
the demon. O

When a demon is defined, it establishes a process that monitors the g
initiation of an event. Only certain events can be monitored by demons; N
these include:

~
1) the execution of a procedure vy
2) the assertion, denial and testing of a proposition ‘.{
3) a request to generate elements of a class . h
)
..l
4) the production of a generated element. f
Upon the initiation of its event, a demon is invoked. At this point, -
the demon can interrogate the system state and either allow the N7
interrupted event to continue or release control without continuing the ':E»
event. .*(
-l
4.3.1 Types of Demons b
‘s b
There are six types of demons, which may, respectively, monitor six .*Q
types of events. These include: -
-2
. procedurgql demons, for monitoring the execution of procedures; . X
U
e.g., Pl

Before invoking to move a ship from a source to a destination:

i

. gssert, deny, and test demons, for monitoring assertions,

S

denials, and tests of propositions; Lot)
e

Before asserting a ship is docked at a port: o
Before denying a ship is docked at a port: o
Before testing a ship is docked at a port: .’;:..

Kt
. generate demons, for monitor requests to generate elements from ghh
a class; |

%

Before generating a vessel at a port: ‘: "

L

T

4. Programming Structures 83

* produce demons, for monitoring when an element is actually
produced as an instance of a class; e.g.,

Before producing a vessel at a port:

A demon's type and the exact situation it monitors is determined by its
header. As one can observe, the header syntax for demons closely
resembles that for procedural, predicate, and generator rulesets.
Likewise, the naming conventions are also the same.

The database demons (i.e., assert, deny, and test demons) share a
restriction not found in predicate rulesets. That is, the truth value
of the target proposition must match the truth value indicated in a
demon's header, otherwise the demon will not be invoked. Where a
predicate ruleset may be invoked upon testing some relation or its
negation, the database demons strictly monitor operations on the
relation their header specifies. Thus, for example, to trap the
assertion of a proposition and its negation, two assert demons must be
defined.

4.3.2 Demon Invocation

A demon is invoked immediately before the event it monitors is
about to occur. For instance, an assert demon will be invoked
immediately before a proposition that it identifies is to be affirmed in
the physical database.

Once invoked, the demon follows the standard invocation procedure
of any rulesev. The arguments of the calling form are asserted into a
private database, and the rules in the demon's body are executed under
either a sequential, cyclic, or random monitor. When the invocation
terminates, the interrupted event is either continued or discarded.

The only way to resume the interrupted event is to terminate the
demon invocation with the continue procedure. Termination by any other
means (with one exception that we will see in produce demons) causes the
event to be discarded, returning control back to the rule that initiated
the event.

4.3.3 The Generator Demons

The generator demons (i.e., generate and produce demons) may seem
redundant at first. However, they demonstrate the distinct d-fference
between requesting that elements be generated from a class dnd actually
producing those elements. For example, the term every man issues a
single request to generate the elements of the class man, which will
one-by-one produce every instance of that class. A generate demon for
the class man would be invoked once by every man (i.e., prior to
issuing the generate request), while a produce demon for this class
would be invoked zero or more times (i.e., once for every member of the
class).

LY
) “‘f‘e-'J

~ %

'y

2

XA AL
‘. L) .,l’~
- A

¥

LA P4
-

: '.‘-"1“1
o4
‘y Ay

']
P4
s

vy
.

‘rf%
A A, 4 A4 .

>
v .
e v

LA AR
44"
LA

"

.

4. Programming Structures 84

A generate demon is similar to the other types of demons. It is
invoked immediately before the occurrence of a generate event and upon
termination can either continue the event or not. If it continues the
event, it has no effect on the elements produced.

A produce demon, however, can have great effect on the elements
produced. When a produce demon is invoked, its private database will
contain an extra relation not specified in its header or private class
declaration. This extra relation will be of the form

element iS a root name

where element is the element about to be produced and root name is the
name of the demon; e.g., in the demon

Before producing a gauge reading:

this would be gauge reading. This allows the demon to consider the
element when deciding whether to continue the produce event. If the
invocation terminates with continue, then the given element is produced
as an instance of the class. If terminated by return, then the element
is not produced.!®

Unlike other demons, the invocation of a produce demon can also be
terminated with the produce procedure. When executed in a produce
demon, produce continues the interrupted event, substituting its
argument for the original element being produced.

As an example application of the produce demon, assume that we have
a generator ruleset that produces a stream of real numbers in the range
of -1.0 to 1.0 for the class gauge reading. Now assume that we want
only the absolute value of these numbers. One way to effect this change
is explicitly generate the absolute value of each gauge reading, e.g.,

Display the absolute value of every gauge reading.

but this method is somewhat awkward and verbose. Another way to effect
the change is with a produce demon defined as

Before producing a gauge reading:
[1] Produce the absolute value of the gauge reading.
End.

which will continue every produce event with the absolute value of the
private class gauge reading, the element originally being produced.

1°This does not abort the generate event, it simply means that
element will not be produced.

o

:;:;:-‘.

l':':'

4. Programming Structures 85 S:::
Iy .5'5:

4.3.4 The Error Demon :;
Automatic error recovery can be controlled through the use of a ;ﬁ;

| special assert demon called the error demon. When processing a
! recoverable error (see Chapter 12 and Appendix B), ROSIE simulates an
assertion of the proposition !

| <string, filesegment> is an error

where <string, filesegment> is a tuple element (see Section 9.4) N
containing string, which identifies the error message, and filesegment, $ 4
which identifies the ruleset rule causing the error. §\N
L)
O
This proposition is not actually asserted into the database, but it -
will invoke an assert demon of the form Tt
!, 1
A
Before asserting & message is an error: N
o
S
if such a demon exists. Further, if the error demon executes the B
continue procedure, then computation will be resumed automatically at Eﬁg
the point of the error call. .
-C.,l
A
4.4 SYSTEM RULESETS :f.:f
58S
<ruleset> ::= SYSTEM RULESET <header> : s
‘ <system body> -
<end stmt> :':o
r
L8]
' i
<system body> ::= (LAMBDA (-args-) . =-body-) e
D'.
I N
| <end stmt> ::= END . N
Rulesets and demons can optionally be designated as system :f:'
rulesets. The body of a system ruleset is defined as a LISP lambda d&
form.'' System rulesets are designated by putting the words e
’&
".I_'
System ruleset . AL
directly before the ruleset header, e.g., j{~
FAR
A
System ruleset to decide if an element is an integer: o
(lambda (elt) (cond ((fixp elt) '<true>) Sy
(t '<false>))) o
End.
o
Note that the only thing that can appear between the header and the end ;\$
statement is the lambda form (i.e., no comments, rules, or r:E.
f‘\. 0
=, 8
11 working knowledge of LISP is assumed on the part of the reader. {:
-
X
a2
&
W

G L L S N PR AR et K -
X \. .\f'* \ AT Uy Nttt Tl At

4. Programming Structures 86

declarations). System rulesets provide a convenient way to interface
with software packages developed in or accessible from LISP.

4.4.1 Defining System Rulesets

Any ruleset (including demons) can be designated as a system
ruleset by preceding its header with the words System ruleset. The
body of a system ruleset is described as a LISP lambdg form. That is,
an s-expression of the form

(lambda (-args-) -body-)

where -args- is a sequence of zero or more atoms that act as the formal
parameters of the lambda form, and -body- is a sequence of s-expressions
that define the actions of the lambda form.

As a special word of caution, be careful to ensure that each system
ruleset header is free of syntax errors, and, likewise, that its body is
free of parentheses errors. The tokenizer scans for the body of a
system ruleset by invoking the LISP reader upon recognizing a system
ruleset header. If the header is syntactically incorrect, then the
tokenizer will not know to invoke a LISP reader, resulting in the body
of the system ruleset being scanned as a normal file item. As well, if
the body has unbalanced parentheses, the LISP reader may read too far or
not far enough. Any of these situations can cause much confusion and
grief.

To avoid these and other difficulties with system rulesets, we
recommend that all system rulesets of any ROSIE program be kept simple
and stored in a separate program file from the program's non-system
rulesets.

4.4.2 Calling System Rulesets

System rulesets are called in the same way that non-system rulesets
are called. System rulesets can enact procedures, make conclusions
about the truth or falsity of propositions, produce elements of a class,
and interrupt and continue events. System rulesets cannot invoke other
rulesets, nor can they access the ROSIE database.

Unlike normal rulesets, a system ruleset invocation does not
receive a private database. Arguments are passed via the formal
parameters of the system ruleset's lambda form. When c#lled, the lambda
form associated with the system ruleset is applied (i.e., using LISP's
apply function) to arguments of the calling form. The actual
parameters are ordered by their linguistic role. The subject (if a
predicate) comes first, then direct object (if any), and then the
objects of prepositions. The objects of prepositions are ordered

alphabetically by their preposition; they are not arranged in the order
in which they appear in the ruleset header or the calling form.

P

AR
PRARY

AN NN N
4 A K

s g

VA A?

T
P

e
8 ‘l.'.:'

a v e

K
4

e
.‘
'.-
s “s

L

»
o

4 4, 8 Sd
P A

YA

<
L]
.

Vel
2rl
IR

X
)

&

-‘! P LA
.4
Q.

o

4. Programming Structures 87

The following rules apply when trying to emulate standard
terminating procedures from various types of system rulesets:

To emulate the return procedure, simply return the value NIL
from the lambda form.

To emulate the conclude procedure, return one of <true> or
<false> as the value of the invocation.

To emulate the produce procedure, the ruleset must return
either an atom, such as an id, number, or string, or a list.
An atom is treated as a single element to be produced, while a
list is treated as a sequence of such elements.

To produce a list of elements as a tuple element, ROSIE
provides the function list-to-tuple (lst), which coerces Ist, a
list of elements, into a tuple; embedded lists will also be
coerced into tuples.

To emulate the continue procedure, the demon should return the
atom <continue>.

Additionally, if a produce demon system ruleset returns a non-NIL value,
this value will be produced in lieu of the original value. Note also
that a produce demon system ruleset receives an extra argument (i.e.,
the value to be produced) as the last parameter in its calling form.
Thus, the formal parameters in its body should have one argument more
than the private class specified in its header.!?

!2Numerous examples of system rulesets can be found in ROSIE's
System Ruleset Library.

pwong
Text Box
preceding page blank - not filmed

ratoia’
"
v
e,
..
5. Actions and Control Flow 89 '..,;:
.I
|"
Fa%. %",
V. ACTIONS AND CONTROL FLOW . :r
'ol'.'
H'.:.;i
In this section, we describe an important aspect of any programming :;,‘.1,
language, its control structures. In ROSIE, most control structures are "'.a
implemented as actions, which constitute a principal syntactic and :n':,"':
linguistic category. Actions can be used to invoke a procedure, to i,
conditionally execute or iterate over a block of actions, or to iterate
actions over the instances of a class. Actions are also used to modify '\':
the contents of the database. :\.:,':.
oy
N
.
5.1 ACTIONS AND ACTION BLOCKS N
<action> ::= <procedure> P
= <data action> R
= <cond action> Lo
= <cond block> ':V"
= <jter action> S
= (<action block>) i
-:i«.
<action block> ::= <action> [AND <action>]* e
N
s
KN
Actions equate to executable operations. They are stand-alone S
statements that need not be used as an argument to anything to be ’
understood or to be executed. Actions are the things that start a ROSIE '}{\
program in motion and keep it going. ._.-:::
A
't
ROSIE provides a variety of action types. Action syntax was \:
designed to read like English and to indicate the type of operation an ,:U-"
action performs. Procedures, which are user-defined actions, can be v
equally readable when their names and parameters are selected carefully. ; N
(
WA
LA
A few action types take blocks of actions as parameters. For r:{:
example, the conditional action, i.e., i\,"-s
. | 58
if <condition>, <action block>, otherwise <action block> .
1 < . . "-}_'_n
takes two action blocks (as we'l as a condition) as arguments. An :»r\‘r
action block is a sequence of one or more actions separated by the '.;:-.:
. . L)
conjunctive and. N
d',*-
5.1.1 Types of Actions ™
. PN
There are five types of actions® in ROSIE. These five action types FoCH
offer substantial power and flexibility for encoding aspects of control ';“\i:
o
Ly
'Earlier releases supported an additional action type, execr*e Lt
actions, using go and call. Because the functionality of execut- ™
actions is subsumed by the procedure action type and the Iintentional =
SO
':‘_j.‘!
-:‘f- ¢
r,;.;"
LN

5. Actions and Control Flow 90

and considerable variation in the manner in which such code can be
written. Briefly, these action types include:

1) Procedures, which are denoted by an imperative verb, optionally
followed by a direct object and a chain of prepositional
phrases, e.g.,

report the finding to the strategic command post

The behavior of a procedure is defined by a corresponding
procedural ruleset; procedures are essentially "user-defined"
actions.

2) Database actions, which enact changes to the database, e.g.,

assert the finding was reported at time 100
deny the finding is not substantiated

let the counter be the counter + 1

create an airfield

3) Conditional actions, which are if-then-else style actions,
e.g.,

if the finding was reported and that finding was verified,

deny the finding is unsubstantiated and
act upon that finding,
otherwise verify the finding

unless the counter is greater than or equal to O,
produce the negation of the counter

4) Conditional blocks, which correspond to c4se statements in
other programming languages, e.g.,

select the country:

<Russia, Cuba>
display bad guys;

<USA, England>
display good guys;

<any third world nation>
display cant tell;

default: display need more info

Conditional blocks consist of an ordered sequence of
key/action block pairs. They execute the first action block
whose associated key satisfies some selection criteria.

procedure element type, execute actions have been phased out of ROSIE

3.0.

..... W 1)

") . D) s 3 B v . VAW,

o IS A A NN A T AT S T To e T AU Py '-_.\ AR TR T - \’\._'..‘.;.\,-'-
a AOASAS A

Wl o o 53

o
Ay Ay A

\ "L LPS AL

VAL
B A 8, 8, 4

5. Actions and Control Flow 91

5) Iterative actions, which conditionally iterate over an action
block, e.g.,

while the counter is less than the upper bound,
let the counter be the counter * 1 and produce the counter

or which iterate over the instances of a class, e.g.,

for each target at the airfield,
rate that target for each of capacity and vulnerability

and execute an action block on each iteration.
5.1.2 Associativity of Action Blocks

As demonstrated above, several action types take action blocks as
arguments. Because of this, potential ambiguity arises in regard to
nested action blocks. The rule defining the associativity of action
blocks, as well as the precedence of constructs taking action blocks as
arguments, is quite simple:

Actions associate with the most deeply nested action block
not otherwise delimited (and, thus, closed to association).

In other words, action blocks are right associative, and constructs that
take action blocks as arguments are of equal precedence.

Consider the following dummy rule

Execute action #1 and
execute action #2 and
if condition #1 is true,
execute action #3 and
execute action #4,
otherwise,
execute action #5 and
for each description #1,
execute action #6 and
execute action #7.

In this example, there are four action blocks. Indentation illustrates
the association of otherwise ambiguously embedded blocks.

5.1.3 Comma Blocks and Parentheses

If the default associativity is undesirable, action blocks can be
delimited using parentheses and commas. Action blocks delimited by
commas are called comma blocks. The appeal of comma blocks over
parenthesized action blocks is that of readability and naturalness;
commas are a far more English-like delimiter. However, comma blocks can
be used only in certain situations; parentheses are a more obvious and
versatile delimiter.

Wl

B N S A A N T T AT A T PRy T P P T

Ly
,‘-‘

- e
a

. '.:._')1

L
.l

P La s PO
4

rd

RATAE

- e
.5{ AR

gty AN
S LSS

e
%l

o
e

-

Y
14

s
-
5.

2

L}
»
)

. 'y
XA AAD

ravw
.

4

ek —ad ol ol Lok ol

5. Actions and Control Flow 92

Any action block can be delimited by surrounding it with a matching
set of left and right parentheses. Since this form of delimiting is
actually provided by the grammar rule

<action> ::= (<action block>)

it might be more appropriate to say that an action can be an action
block surrounded by parentheses. Were we to restate our previous
example as

Execute action #1 and
execute action #2 and
(if condition #1 is true,
execute action #3 and
execute action #4,
otherwise,
execute action #5) and
(for each description #1,
execute action #6) and
execute action #7.

the new association would significantly change the interpretation of the
rule. Unfortunately, parentheses are a somewhat awkward and
un-English-1like delimiter; their overuse can give otherwise readable
ROSIE code the sometimes frightening appearance of LISP.

Comma blocks allow programs to avoid the overuse of parentheses.
Essentially, a comma block is an action block introduced by a comma (,)
and terminated by a comma, a period, a closing parenthesis, or (in some
situations) a semicolon. For instance, the above example could be
rewritten as

Execute action #1 and
execute action #2 and
if condition #1 is true,
execute action #3 and
execute action #4,
otherwise,
execute action #5, and
for each description #1,
execute action #6, and
execute action #7.

and it would have exactly the same interpretation.

Comma blocks can appear only in actions that take action blocks as
arguments. This is to say, comma blocks can appear only within
conditional actions, iterative actions, and conditional blocks;? refer
to Sections 5.4, 5.5, and 5.6 for more details.

’These action forms practically required the use of comma blocks
(or parentheses) to delimit their action block arguments. This has not

5. Actions and Control Flow

5.2 PROCEDURES

<procedure> ::= <atom> [<term>] [<pphrase>]
::= DO NOTHING

A procedure invokes a procedural ruleset identified by <atom>,
which is treated as an imperative verb, the existence of a direct
object, and the set of associated prepositions, e.g., the procedure

move USS Nimitz from Le Havre to Auckland
would invoke the procedural ruleset,
To move a vessel from a source to a destination:

if such were defined, passing the direct object (USS Nimitz) and
objects of prepositions (Le Havre and Auckland) as arguments to the
ruleset.

The do nothing procedure is defined specially and is intended to
be used as a null-op, i.e., it does nothing. While this procedure has
only limited utility in ROSIE 3.0, it is available in earlier releases
of the language and is included in this release for compatibility.

5.3 DATABASE ACTIONS
<data action> ::= ASSERT <prop block>

DENY <prop block>

LET <let block>

CREATE <a/an> <description>

(TR TR

<prop block> ::= <proposition> [AND <proposition>]¥*
<let block> ::= <let form> [AND <let form>]¥*
<let form> ::= THE <description> BE <term>
<term> ' S <description> BE <term>

<term> BE THE <description>
<term> BE “term> ' S <description>

nnn

The database actions are used to add and remove relations from the
database and are described in more detail in Chapter 10, which discusses

ROSIE's database mechanism at length. Although they have the general
opearance of procedures, their special argument types (e

propositions and descriptions, as opposed to terms) restrict them from

being defined with procedural rulesets and necessitate that they be
hardwired into the ROSIE grammar.

been the case in earlier versions of ROSIE and may be a possible source

of syntactic incompatibility with existing code.

L T LT L T P L LN TN U TN P T T PO P T U U TR TN T T TR TR s R TR e T T TN T T T R R A T Y,

Wy 1Y

5. Actions and Control Flow 94

5.3.1 ASSERT... and DENY...

ASSERT <prop block>

<data action> ::
2 DENY <prop block>

<prop block> ::= <proposition> [AND <proposition>]¥*

Assert and deny respectively add and remove propositions from the
database. They initiate an assert or deny event and can trigger an
assert or deny demon.

Both assert and deny can take as arguments one or more
propositions grouped over the conjunctive and, e.g.,

assert M6-1 is a child of WOC-6 and
M6-2 is a child of M6-1 and
M6-3 is a child of M6-1

They successively initiate an assert or deny event for each such
proposition.

5.3 ZLET...
<data action> ::= LET <let block>
<let block> ::= <let form> [AND <let form>]*

<let form> ::= THE <description> BE <term>

<term> ' S <description> BE <term>
<term> BE THE <description>
<term> BE <term> ' S <description>

TR

Conceptually, let is ROSIE's assignment operator. Let makes the
value of <term> the singular instance of <description> in the database,

e.g.,
let the counter be 1
is equivalent to executing
deny every counter is a counter and assert 1 is a counter
When let asserts and denies propositions, it is actually initiating
assert and deny events that can trigger assert and deny demons. While
these demons cannot discontinue a call to let, they can block any assert
or deny event initiated by that call.

NOTE: <term> and <description> can be arranged in any order, e.g.,

let Gortz Airfield be the name of the strategic target
let the strategic target's name be Gortz Airfield

OO0 OO R QOO U M T WO R TN

=

PR,
A

el BRRnnd

e
>

B

-

L

e

i
R
iy

oG

5. Actions and Control Flow 95

In the case of
let the strategic target be the enemy airfield

the value of the enemy airfield will become the singular instance of the
strategic target, i.e., interpreted syntactically as

LET THE <description> BE <term>
5.3.3 CREATE... ,::1‘

<data action> ::= CREATE <a/an> <description>

x

Create creates a name element by appending #N to the class noun of
<description>--N, a positive integer associated with the class noun, is s
incremented by one for each element so created. This element is then
asserted as an instance of <description>, e.g.,

i %

create a happy man
is equivalent to

assert man {#1 is a happy man

This action is normally used to establish prototypical instance of a
class.

-
|

e

o
ja‘

s

5

5.4 CONDITIONAL ACTIONS

<cond action> ::= IF <condition> <then part> [<else part>]
::= UNLESS <condition> <then part> [<else part>]

<then part> ::= , [THEN] <action block> [,]

:= (<action block>) sl

:= THEN <action> };Q‘
<else part> ::= (| OTHERWISE | ELSE |) , <action block> [,]

:= (| OTHERWISE | ELSE |) (<action block>) =

(] OTHERWISE | ELSE |) <action>

The conditional actions correspond to the basic if-then-else type
actions found in most high-level programming languages. ROSIE suppecits
two forms of conditional actions, namely, the standard if form and its
inverse unless.

A%
‘,1.’.‘

T TN AT AL A IV IR 000

5. Actions and Control Flow 96

5.4.1 IF... and UNLESS...

g
:

If and unless conditionally execute a block of actions. They both
take as arguments a condition (see Chapter 6), which is a boolean
combination of sentences, an action block, representing their then-
part, and, optionally, another action block, representing their else-
part .

If executes the actions in its then-part if its condition evaluates

to true, otherwise it executes the actions in its else-part. -
Conversely, unless executes the actions in its then-part if its 'i
condition does not evaluate to true, and otherwise executes its else- ;
part. nﬁ
al
5.4.2 Associativity 5
When conditional actions are nested, a singleton else-part will
always be associated with the most deeply embedded conditional action. 5
For instance, consider
¢

If condition #1 is true,
if condition #2 is true,
execute action #1,
otherwise,
execute action #2.

s

where indentation illustrates the attachment of the singleton else-
part.

"l JI

5.5 CONDITIONAL BLOCKS

<select block>
<choose block>
<match block>

<cond block>

=

3
’
Y]
']

TR
—

VI

e —

Conditional blocks provide a specialized form of conditional
control flow. They are roughly analogous to the case and select
statements found in other programming languages. There are three types

of conditional blocks, each handling a different situation. Eﬁ
l}.,

A conditional block represents a decision table of the form e

5

block type selector: 56

[key action block;]* w;

[default: action block) "

~ whose entries are key/action block pairs and which permit the %E

specification of a selector and, optionally, a default action block. A
conditional block executes the first action block whose key satisfies
the selector, executing the default block if no key is acceptable.

wEE

LA

-~y

Ry

]

o
K

[e T R L R, W, AW S RV BFe DL BV A RTR BFe R B R e Bt B e e L e B B e N e N

5. Actions and Control Flow 97

5.5.1 SELECT...

<select block> ::= SELECT <term> :
[<tuple element> <action body> [;]]*
[DEFAULT : <action block> [;]]

Select blocks most closely resemble the case statements available
in other languages. The selector is a term that can evaluate to any
arbitrary element, and each key is a tuple of elements.

When executed, select successively evaluates each key until it
finds one containing an element that satisfies the test

element = selector

If such a key is found, its associated action block is executed, and the
call to select is terminated. If no such key exists, then the default
action block is executed.

As an illustration of this, consider the call

select the country:

<Russia, Cuba>
display bad guys;

<USA, England>
display good guys;

<any third world nation>
display cant tell;

default: display need more info

which alternatively displays bad guys, good guys, etc., depending upon
the value of the country.

5.5.2 CHOOSE...

<choose block> ::= CHOOSE SITUATION :
[IF <condition> <then part> [;]]¥*
[DEFAULT : <action block> [;]]

Choose blocks are similar to LISP's cond statement or elseif-type
constructs in other languages. A choose block specifies a set of
mutually exclusive conditions, and, once the appropriate condition is
found, executes the actions associated with that condition. Thus, the
keys of a choose block are conditions, and the selector is the state of
the system.

When exec ted, choose successively evaluates each conditional key
until it finds one that evaluates to true. If such a key is found, its
associated action block is executed, and the call to choose is
terminated. If no such key exists, then the default action block is
executed.

il PRSI OIS TOCS

-

Yl x

e N 7

ol e

o e e o

WA

el

3
g
a

S |

g

PEREE L SR IA TSI Ly S SL S e PP PR S PR ERLPE DT T U

5. Actions and Control Fiow 98

As an illustration of this, consider the call

choose situation:
if the rate is greater than 70,
display good capacity;
if the rate does range from 40 to 70,
display fair capacity;
default: display poor capacity

which performs a series of mutually exclusive tests and provides a
default action if no test succeeds.

5.5.3 MATCH...

<match block> ::= MATCH <term> :
[<pattern element> <action block> [;]]*
[DEFAULT : <action block> [;]]

N

|
%

Match blocks resemble select blocks with a twist. The twist is
that match blocks use ROSIE's string pattern matcher to decide which
action block to execute. The selector of a match block should evaluate
to a string element (see Section 9.5); if it does not, it will be
coerced into a string. The keys of a match block are pattern elements
(see Section 9.6).

:

When executed, match successively compares the selector to keys
using the pattern matcher until it finds a successful match. If such a
key is found, its associated action block is executed and the call to
match is terminated. If no such key exists, then the default action
block is executed.

As an example, consider

match the reply:
{"Yes"l"y&s"}
conclude true;
{"NO"'"I\O"}
conclude false;
default: send "Please reply Yes or No!"

Erner I

=

N
e

which might be used to decide if the user gave a yes/no answer to some
query.

r

5.5.4 Associativity

Conditional blocks are right associative. In such cases where E§
embedded condition blocks are not otherwise delimited, key/action block ?ﬁ
pairs and default action blocks will associate with the most deeply o

embedded conditional block. The extent of key/action block pairs and
default action blocks can be delimited with semicolon:s (;). Like the
comma, a semicolon is a more natural and English-like delimiter than
parentheses.

e IS

i

A T L e . T T S M M M M ML AL I A A I A A AN AN A AL A AN AT A T EAEAR AR T NRAE A ML M E T e N e N W N W e W W ML L WL e

5. Actions and Control Flow

As an example, consider

Execute action #1 and
select selector #1:
<key #1>
execute action #2 and
execute action #3;
<key #2>
select selector #2:
<key #3>
execute action #4 and
execute action #5;
default: execute action #6 and
execute action #7.

where indentation demonstrates the default association of embedded
blocks. Terminating the default action block with a semicolon after
action #6 causes the expression to be interpreted as

Execute action #1 and
select selector #1:
<key #1>
execute action #2 and
execute action #3;
<key #2>
select selector #2:
<key #3>
execute action #4 and
execute action #5;
default: execute action #6; and
execute action #7.

I1f we want action #7 to associate with the highest level action block,
it is necessary to delimit the highest level select block with
parentheses, as in

Execute action #1 and
(select selector #1:
<key #1>
execute action #2 and
execute action #3;
<key #2>
select selector #2:
<key #3>
execute action #4 and
execute action #5;
default: execute action #6) and
execute action #7.

"(':'.."-f--!"".:"-"'." e

-"-_\ P ‘.-.*.
L R CAR AL NN

5

5.8
oy

»
»
£

5 1(

> li
v, e
-

-,
by

rrx
i,
Xan

-

TR N N e e N
S A AR

8. Actions and Control Flow 100

Going back to our original example, to get the default action block to
associate with the higher-level select block, it is necessary to delimit
the nested select block with parentheses, as in,

Execute action #1 and
select selector #1:
<key #1>
execute action #2 and
execute action #3:

<key #2>
(select selector #2:
<key #3>

execute action #4 and
execute action #5);
default: execute action #6 and
execute action #7.

As a final example, by terminating the default action block of this form
with a semicolon, as in,

Execute action #1 and
select selector #1:
<key #1>
execute action #2 and
execute action #3;

<key #2>
(select selector #2:
<key #3>

execute action #4 and
execute action #5);
default: execute action #6: and
execute action #7.

we again get action #7 to associate with the highest level action block.

5.6 ITERATIVE ACTIONS

<iter action> ::= FOR EACH <description>
[WHILE <condition>]
[UNTIL <condition>] ,

<action block> [,]

FOR EACH <description>
[WHILE <condition>]
[(UNTIL <condition>]

(<action block>)

WHILE <condition>
[UNTIL <condition>} ,
<action block> {,]

RE A 3]

L) A

Ve e e e
PN A Y
LA

be |
A

»
S

NS

....4
& -
'v

“»

=t
o3

4

O
o 4 &
7 ¢4

PO g
,‘.'n ".."
Yy,

P

vttt o'}

5. Actions and Control Flow 101

WHILE <condition>
[UNTIL <condition>)
(<action block>)

UNTIL <condition> ,
<action block> [,]

UNTIL <condition>
(<action block>)

Iterative actions are used to conditionally loop over an action
block. If the for each option is specified, the action block is
executed for each instance of a description. If the while option is
given, its associated condition is tested before each iteration;
iteration continues until this condition evaluates to false.
Conversely, if the until options is specified, its associated condition
is tested after each iteration, and iteration is terminated when this
condition tests true.

For each, while, and until can be used in unison. In such cases,
the first time any halting condition is realized, the action terminates.
For instance, the action,

for each enemy warship
while there is an unassigned aircraft,
deploy that aircraft to that warship

will repeatedly execute the deploy procedure until either every enemy
warship has been produced or there are no more unassigned aircrafi.

5.6.1 FOR EACH...

For each iterates over all elements that can be generated from a
given description (see Chapter 7). On each iteration, the generated
element is bound to the description variable of that description and can
be referenced anaphorically (see Section 8.5) within the embedded action
block. For instance, the action,

for each enemy warship, attack that warship

iterates over all instances of the class enemy warship. That warship
is an anaphoric reference to each instance produced.

5.6.2 WHILE... and UNTIL...

The while and until options control iteration over an explicitly
stated condition. The while form tests its associated condition before
each iteration and terminates execution if its condition evaluates to
true. On the other hand, the until form tests its condition after each
iteration and terminates execution when its condition evaluates to true.

byt
Sy
L) !

A, A 44 v
RpLaE e A
¢¢\hﬁfﬁ/ Y

‘n' "ﬁfs‘ “u R
e Isl..fsn“:("

P
#,

Vs
11)’-_' N -':.n' q\\"
. P el ."'J' [l

g
2
e b

5. Actions and Control Flow 102

The semantics of the until form are somewhat problematic because,
syntactically, it must appear before the loop's action block, rather
than after, as its behavior would imply. Even experienced users often
forget that its condition is not tested until after the action block has
been executed.

5.6.3 Associativity

The only question of associativity with embedded iterative actions
arises from the use of action blocks (actually, comma blocks). Note
that this problem will also occur with conditional actions nested in
iterative actions, iterative actions nested within conditional actions,
and conditional actions nested within other conditionals. Although the
associativity of action blocks was discussed earlier, it will be
reviewed here for completeness.

Action blocks are right associative. Otherwise ambiguous actions
within embedded action blocks will always be associated with the most
deeply nested action block.

For example, the expression

For each description #1,
execute action #1 and
while condition #1 is true,
execute action #2 and
until condition #2 is true,
execute action #3 and
execute action #4.

would be interpreted as indicated by the given indentation. The action
blocks of the conditional and iterative actions can be delimited by
commas. Thus, rewriting the expression as

For each description #1,
execute action #1 and
while condition #1 is true,
execute action #2 and
until condition #2 is true,
execute action #3, and
execute action #4.

would associate action #4 with the next highest action block. However,
for action #4 to be associated with the top-most action block, the
embedded actions must be delimited by parentheses. Either of the
expressions,

. f,r,
\\'l"‘r}-,'

¥

r,
[

“» B
L {\.l‘.

3
;.‘-'b

n

.l
'k

s
hr

ag

e

P A
N r) ﬂ

F 3

5

»

5. Actions and Control Flow

For each description #1,
execute action #1 and
{(while condition #1 is true,
execute action #2 and
until condition #2 is true,
execute action #3) and
execute action #4,

or

For each description #1,
execute action #1 and
while condition #1 is true,
execute action #2 and
(until condition #2 is true,
execute action #3), and
execute action #4,

will suffice to achieve the desired interpretation.

‘! 07 18 0t R O NP L LTS 3% A% Ve v §'el] o . y (Y >,
o'he 05-','#.-& AASHAAASEN R UL RA R M r M pCt " M M i M b g (0 M) M o 'g‘u. b X'

103

e S T S S

-I
() o,

RSy

L
ettt

td SO
=R
L

.

T
.".'-,‘;..I%(‘l

S

e
& &
[/

P
X

T
-
[/
A

. & ;

A
5y "y '.:,-',4
[)

AR
2

< v
‘I‘o'
‘w

L
7 7

preceding page blank - not filmed

6. Conditions, Sentences, and Propositions 105

VI. CONDITIONS, SENTENCES, AND PROPOSITIONS

After actions, the next largest linguistic units are conditions,
sentences, and propositions. Unlike action and action blocks, which can
stand alone as programming statements, conditions, sentences, and
propositions may only appear as arguments of higher-level expressions,
such as conditional actions or database actions. A condition is a
boolean combination of sentences that occurs within the context of a
test, such as in if, while, or until actions. A sentence describes a
declarative relation whose truth can be decided from the database. A
proposition is a generalized type of sentence describing an n-ary
relation that can be added to or removed from the database and for which
truth or falsity can be computed by a predicate rulese-*.

6.1 CONDITIONS AND BOOLEAN CONNECTORS
<condition> ::= <disjunct> [, OR <disjunct>]:*
::= <disjunct> [, AND <disjunct>]%*
<disjunct> ::= <conjunct> OR <disjunct>
::= <conjunct>
<conjunct> ::= <primary> AND <conjunct>
1= <primary>
<primary> = (<condition>)
= <sentence>

<sentence> ::= <proposition>
: <special form>

A condition consists of a boolean combination of sentences, each of
which describes a relation on one or more data objects. Sentences are
combined using the boolean connectors and and or to create composite
logical predicates. Component logical groupings of sentences can be
indicated with commas and parentheses.

6.1.1 Boolean Connectors

There are only two boolean connectors, the conjunctive and and the
disjunctive or, but there are two forms that these connectors can take.
In one form, the sentence preceding the connector is terminated with a
comma (,), and in the other, it is not. We shall refer to the
connectors in the first form as comma-and and comma-or and the second
as simple and and or. There is a subtle but distinct difference in the
rules of associativity and precedence concerning these two forms.

T

LA
A
e

LA '\

of Pd
)"1:'1? -

0

g
! x

Frdl

t““.

X
h)
LA

i,

pwong
Text Box
preceding page blank - not filmed

6. Conditions, Sentences, and Propositions 106

~

As an example, consider the action,

If condition #1 is true or
condition #2 is true and
condition #3 is true,

execute action #1.

which is interpreted as

If condition #1 is true or
(condition #2 is true and condition #3 is true),
execute action il.

where parentheses indicate the logical grouping of sentences. Compare
this to a similar-looking action,

If condition #1 is true or
condition #2 is true, and
condition #3 is true,

execute action #1.

in which commas are used; this would be interpreted as

If (condition #1 is true or condition #2 is true) and
condition #3 is true,
execute action #1.

These opposing forms were developed to offer a more natural and
English-like alternative (as opposed to parentheses) to delimiting
logical groups of sentences. Notice, however, that the grammar does not
allow an arbitrary depth of nesting without the aid of parentheses.
Chains of comma-ands and comma-ors cannot appear in the same condition
unless such chains are delimited by parentheses. This is an artificial
constraint introduced in ROSIE 3.0 in order to avoid conditions that
might become overly complex or otherwise confusing to the human reader.

6.1.2 Associativity and Precedence

All boolean connectors are right associative. Of the four forms of
connectors, and has higher precedence and binds sentences more tightly
than or, which has higher precedence than both comma-and and comma-
or. Since comma-and and comma-or cannot be mixed, their relative
precedence is unimportant.

6.2 SENTENCES

<senternce> <proposition>

::= <special form>

Er AN AT AT AL G Ca o (M ALy

HMuNENFFENFEFENE NEN RRARS B

PRy
§4 454 Y

ool

P4
v

P)

5

T E AW Wywe W - Ak dod Boasd ek a2 A L o A o b a i A 4 A% o 4 ah o 4 ot

6. Conditions, Sentences, and Propositions

A sentence describes a declarative relation between data objects,
the truth or falsity of which can be tested. There are two types of
sentences: propositions (called primitive sentences in earlier ROSIE
documents); and everything else, where the "everything else” category
subsumes several special-case sentence forms that are hardwired into the
definition of the language.

6.2.1 Propositions

<proposition> <term> <verb phrase>

I}

<verb phrase> <be aux> <a/an> <description>
<be aux> <atom> [<term>] [<pphrase>]
<be aux> <prep> [<term>] [<pphrase>]

:= <do aux> <atom> [<term>] [<pphrase>]

<be aux> ::= WAS [NOT]
::= WERE [NOT]
= AM [NOT]
= ARE [NOT]
::= IS [NOT]
:= WILL [NOT] BE
<do aux> ::= DID [NOT]
::= DO [NOT]
::= DOES [NOT]
::= WILL {NOT]

A proposition describes a general n-ary relation whose truth or
falsity can be asserted into or denied from the database as well as
tested against the database. In addition, the truth or falsity of a
proposition can be computed by a predicate ruleset. Propositions can
specify a relation between objects, e.g.,

John does sell shoes in Baitimore
an attribute of an object, e.g.,
John is happy

and the class of an object, e.g.,

John is a salesman

Propositions can also be manipulated as data elements called intentional
propositions (see Section 9.10). The rules for asserting, denying, and
testing propositions are described further in Chapter 10 with a
discussion of ROSIE's database mechanism.

|

L!H\MN\MX\H\MMN\I\‘; PRE SRR NG Ry SRt .6 63 L Lehe L i LE L Set e R 6t SFCVEFLVLL ELLLLERIGL LT L) G LY LS LR

6. Conditions, Sentences, and Propositions 108

6.2.1.1 Verb Phrases

Propositions basically consist of two components: (1) a term, which
plays the role of subject; and (2) a verb phrase, which categorizes the
proposition and identifies its arguments. ROSIE permits five basic
categories of verb phrases. Each category captures (roughly) a specific
class of English usage, including:

Class Membership!

(|WAS|IS|WILL|) [NOT] [BE] <a/an> <description>

. is a doctor who does make house calls
. will not be a witness
. was an individual with glasses

Predication

(|IS|WAS|WILL|) [NOT] [BE] (|<atom>|<prep>|) [<pphrase>]

. is outside for the evening
. was not alone
. will be late for dinner

Complementation

(]IS|WAS|WILL|) [NOT] [BE] (|<atom>|<prep>|) <term> [<pphrase>]

. is nuclear powered
. was not really exciting to Mary
. will be running rapidly toward the goal

Intransitivity

(|DID|DOES|WILL|) [NOT] (|<atom>|<prep>|) [<pphrase>]

. did not divide by 2
. does eat with a fork
. will not fuss

Transitivity

(|DID|DOES|WILL|) [NOT] (|<atom>|<prep>|) <term> [<pphrase>]

. does study computer science
. will cook a steak for dinner
. dic not water the plants

'Although we categorize was a and will be a under class membership,
only relations using iS @ are examined to determine class membership.
Asserting Mary will be a woman will never result in Mary being
generated as an instance of the class woman.

WIAT G WA ARG ORI N Bt TN PN RO | TCaCK

el

A

R
e ti> e

P

[e P

St |

== |

L)

6. Conditions, Sentences, and Propositions 109

Verb phrases are always introduced by the is-a copula or by an auxiliary
form of be or do. The negation of a verb phrase can be derived by
inserting the reserved word not immediately after the introductory form
of be or do, and all verb phrases can be expressed in either past,
present, or future tense.?

6.2.1.2 Properties of Class Relations

Propositions that describe class relations (i.e., using the class
membership verb phrase) inherit special properties because they specify
the relationship of an object to a description (see Chapter 7). When
the description is modified by a relative clause (see Section 7.2}, such
propositions actually represent a set of relations.

Basically, descriptions name a subclass of elements. A description
is dominated by a reference to a class (see Section 7.1). The
description can optionally be modified by a relative clause that posts
restrictions on the elements of the class. Thus, the description forms
a subclass of those elements.

When a description is modified by a relative clause, the relations
of the relative clause act as additional sentences to assert, deny, and
test. For instance, the proposition,

John is a salesman who does sell shoes in
Baltimore and who is not happy

actually specifies the three relations,

John is a salesman
John does sell shoes in Baltimore
John is not happy

If the above proposition were asserted, then all three relations would
appear in the database; if it were denied, than all three forms would be
removed from the database; and if it were tested, than all three would
have to be true for the test to succeed.

Because the relative clause of a description can be any arbitrary
condition, sometimes a class relation cannot be asserted or denied. To
assert or deny a class relation, its associated relative clause may only
contain propositions combined under conjunction. See Chapter 7 for
further details.

2Tense is provided only to enhance expressibility. While ROSIE can
distinguish between propositions that differ in tense, it does not
provide any temporal semantics for, say, deciding that a proposition in
past tense is true because the same proposition in present tense was
true previously, etc.

CRRRENS| WA R ek e RE

R EE

@
1

=% e

N

21

-
e

5

s

=¥

o

G

I

e]

b B

o
i
&)

Y JW?#?#T&W&QCNT&W‘JG;&W@&Q’

6. Conditions, Sentences, and Propositions 110

6.2.1.3 Negation: NOT...

As indicated earlier, the complement of a proposition can be
obtained by inserting the reserved word not immediately after the
auxiliary in its verb phrase. (This is also called negating the
proposition.) A negated proposition can be asserted, denied or tested,
acting in all but a single case as one would intuitively expect.

The one exceptional situation occurs with respect to any class
relation whose description is modified by a relative clause. In this
case, the negation remains on the base is-a relation and does not carry
over into the relations specified in the relative clause. For example,
the proposition,

LS e R L L e e e = Y S RS SRS ST S]

John is not a salesman who does sell shoes in Baltimore

bl
-
S
essentially specifies the relations, 5
X
John is not a salesman ;
John does sell shoes in Baltimore -
&
rather than Q
~
John is a salesman ()
John does not sell shoes in Baltimore e
or

g
John is not a salesman g
John loes not sell shoes in Baltimore 2
8
either of which seem somewhat more consistent. There is no good -
argument for why this definition has been adopted other than that the -
latter two definitions, if actually intended, can still be achieved by &
making precise statements, i.e., 3
John is a salesman who does not sell shoes in Baltimore B
and ?
o~
)
John is not a salesman who does not sell shoes in Baltimore P
f’{
‘ L

6.2.2 Special Sentence Forms
>
.~l

-

<special form> ::= THERE IS <how many> <description>
::= <term> <“special vp>

e

<how many> = NO
= <a/an>
!:[
LE)
%
.
-
o
.l(
X

|

EARRA Fal Sel SHE SRE SHE. BN B BV RS AN RN SR RS LS RS RS LS 0 0SS B 00 S50 1S S A RN LS R RSN AT AV A N A T SV I T Pl SV AN

6. Conditions, Sentences, and Propositions 11

JUST ONE
MORE THAN ONE

..
..

HAS <how many> <description>
<rel op> <term>

<special vp> ::

IS [NOT) EQUAL TO
[NOT] GREATER THAN [OR EQUAL TO]
IS [NOT] LESS THAN [OR EQUAL TO]

<rel op> ::

nun
—
w

= >

= >=

1= A= &

= < b

1= ~<

= <= »

= = _1’

Besides propositions, ROSIE allows several special sentence forms E&

whose truth or falsity may only be tested. The definition of these et
forms is hardwired into the language and cannot be changed by “the user. %E
NOTE: Many special verb forms appearing in earlier releases of ROSIE :ﬁ

have been reimplemented as predicate rulesets and added to the system
ruleset library. These predicates are described where pertinent in the
sections on string elements, pattern elements, intentional propositions,
and file I/O.

6.2.2.1 EQUAL TO..., LESS THAN..., and GREATER THAN...

Element equivalence can be tested using the sentence forms,

PP BB

=

<cerm> is [not] equal to <term>
<term> [~]= <term>

)

P

which can be written in a terse or expanded notation. Similarly, the
numeric comparison forms,

<term> is |not] greater than [or equal to] <term>
<term> [~]>[] <term>

<term> is [not] less than [or equal to] <term>
<term> [~]<[Z] <term>

can also be specified in a terse or expanded style. Each of these
sentence forms takes two terms as arguments and applies the indicated
comparison operator to the values of these terms. The comparison
operatois are described in more detail in Secticns 9.1 and 9.3,
respectively.

PEEr] RS TS)

s

[=

B R W N A N N W T o A T e T T o L T s T R P X M P T X D M ST o

6. Conditions, Sentences, and Propositions 112

6.2.2.2 THERE 15...

The remaining special sentence forms are provided as a convenience
for testing the cardinality of a subclass of elements specified by a
description. The forms

there is no <description>

there is <a/an> <description>

there is just one <description>
there is more than one <description>

examine the number of elements that can be generated from a description:
The first form, e.g.,

If there is no objection to the bill,
ratify that bill.

evaluates to true if no elements can be generated; the second form,
e.g.,

While there is an unassigned aircraft,
dispatch that aircraft to the strike force.

evaluates to true if at least one element can be generated; the third
form, e.g.,

If there is just one runway at some airfield,
strike that runway at that airfield.

if only one element can be generated; and the fourth form, e.g.,

Until there is more than one task force at the river,
stay on alert.

evaluates to true if at least two elements can be generated. Note that
these forms all initiate a generate event for the description (see
Section 7.6.2) and, therefore, can be interrupted by a generator demon.

8.2.2.3 HAS...

o Peenassy] TahESLE WRERIIRE

o
S
o

There also exists a hybrid form of the above, i.e.,

<term> has no <description>

<term> has <a/an> <description>

<term> has just one <description>
<term> has ‘more than one <description>

which is semantically equivalent to

there is no <description> of <term>
there is <a/an> <description> of <term>

-

e

o 5

L A A T L L AL U UM L T AT ST AU T T L N U T M L N L e L L L e e e L e L L M T U U LT LM U U L LT U L L

6. Conditions, Sentences, and Propositions 113
there is just one <description> of <term>
there is more than one <description> of <term>

respectively, where the prepositional phrase of <term> would act as a
modifier on the description's class, e.g.,

John has a girlfriend who is tall
would actually be treated as the sentence

there is a girlfriend of John who is tall
and

Gortz Airfield has more than one runway in use
as the sentence

there is more than one runway of Gortz Airfield in use

Therefore, has simply acts as a restricted, yet at times more readable,
form of there is.

§é
|

»

e
BV s LA G000 L ET SR T Ly S p PtV PO o Lo g 0. 08 o) U6 9410, 09 S0 O S 0. PV S ST t‘(‘

DTEW IR X

7. Descriptions and Classes 115

Vil. DESCRIPTIONS AND CLASSES

<description> ::= <class> [<rel clause>]
: such <atom> [<desc var>]

<class> ::= <root name> [(<desc var>)] [<pphrase>]
<root name> ::= [<atom>]* <class noun>

<class noun> ::= <atom>

<desc var> ::= <atom>

The concept of a description underlies much of ROSIE's data
manipulation capabilities. A description is composed of a class
reference, an optional relative clause, and a description variable. A
description's class names some set of elements satisfying an is-a
relation, while its relative clause acts as a filter on those elements--
thus, a description represents some subset of the elements named by its
class. The description variable provides a unit of temporary storage
for caching instances of a description.

|
|
|
|
! Descriptions are used by ROSIE in three ways:
| 1) testing an element for membership in the set being described
2) generating one, some, or all members of that set
3) adding or removing members from that set.
For instances, given the example description,
vessel at Le Havre which is seaworthy
[we can write three rules that illustrate the uses of a description:

If USS Nimitz is a vessel at Le Havre which is seaworthy,
then move USS Nimitz from Le Havre to Auckland.

Display every vessel at Le Havre which is seaworthy.
Let USS Nimitz be the vessel at Le Havre which is seaworthy.
The elements named by a description are retrieved from the database
on demand. Because of this, their representation is implicit in the

: description. Thus, the set of elements described can change as the
| database changes.
b

N ey LY
Ll S

EASRE AN
J RN

»

~f
preceding page blank - not filmed| '.S’

o

a 1

3 kY
gt
Fa V!
U

s
A

Pl
X I 1A

b
o

s

L/

n"s t

Py
‘M‘i}

S
‘v'.\l‘- s

S
»
L]

.i

4

s
.
.
[

»
".-.'.'. '."' .-’
[-

z

B A

1

;Gs
%3

/A

R J
4€?2‘!
A A

- m
Py
‘:-" -

Ny
. i
'\éf;ﬁ

o

53

¥

<
’

-...-~ ~

s

QAN

"y

pwong
Text Box
preceding page blank - not filmed

7. Descriptions and Classes 116

7.1 CLASSES

<class> ::= <root name> [(<desc var>)| [<pphrase>]
<root name> ::= [<atom>]* <class noun>
<class noun> ::= <atom>

The major component of a description is its class. A class names a
set of elements that satisfies an affirmed class relation or that can be
generated as instances of the class.!

Syntactically, a class reference is specified as a sequence of one
or more tokens, called its root name, optionally modified by a chain of
prepositional phrases,? e.g.,

any target at the airfield
every strategic command center for the red army
the member of <A, B, C> at 1

where the objects of prepositions act as arguments to the class. The
last token of a root name is called its class noun and is used in
anaphoric references to a description, e.g.,’

that target
some such center
that member

A class names a set of elements against which another element can
be tested for membership or from which individual elements can be
generated. Testing and generation may possibly invoke predicate
rulesets or generator rulesets, respectively.

7.1.1 Testing for Membership

To test whether an element belongs to a class (e.g., to test if
John belongs to the class man), ROSIE tests if a proposition of the
form

!Not all elements that satisfy a class relation can be generated as
an instance of the class and visa versa.

2For the time being, ignore the optional <desc var> component, as
it is a part of the surrounding description and not a feature of a
class.

'The first and last are examples of anaphoric terms (see Section
8.5), and the middle is an example of a quantified descriptive term (see
Section 8.4) using an anaphoric description (see Section 7.4).

RS ‘7
< \.' .\“\“ -. v

L
o

""'."n_'}"‘ s L
2 g A By
A

AL
LA

iﬁsiﬁ\\ﬁ
S SN

N P -~
..-{ﬂ LY
AR

RT3
* 4
-

7. Descriptions and Classes 117

element is a class
as in
John is a man

is provably true. This test conducts a search of the physical and the
virtual database (see Chapter 10) as follows:

1) All affirmed propositions of the form

elt is a class
and

elt is not a class
are examined in order of recency (i.e., the most recently
asserted is examined first);
2a) If the proposition being examined is of the form
elt is a class

and element = elt is true, where = tests equivalence as
described in Section 9.1.3, then the membership test succeeds.

2b) If the proposition is of the form
elt is not a class
and element = elt, then the test fails.
3) If no affirmed proposition can prove or disprove membership,
then ROSIE tests the proposition using & predicate ruleset. If
a predicate ruleset of the form
To decide if elt is a class:
as in
To decide if an element is a man:
or its complement

To decide if e/t is not a class:

is defined, then this ruleset is invoked, and its conclusion
alternately confirms or disproves the membership test."

“If the predicate is defined and does not conclude true or false,
then the test fails. If instead its complement is defined and returns
an indeterminate value, the test succeeds. Both cannot be defined
simultaneously.

e T N P R A o s D S
WA PG A AT A

(LN R
éﬁ;g?{f#b

....,
J?.; !
.TH

’
»

P

rr‘.f“«‘:-. %

o W
[N

.
'
'

T2]

M

[X Ry
e e
1.:/',.1' A

v

o 4
b2
[/

-
.
-
-
-
.
-
-
-
5
J
«
-
-
-
-
-
>
-
-
-
-
-
-
-
]
«
.
-
-
»
-
-
«
»
]
T
-
-
-

RS YO R YO AR A PG AN MU AN RN A KW Y KW YOI RN

-
™

¥

=

7. Descriptions and Classes 118 W

Nt

N

This is the general method applied to testing all propositions and is ~3

further described in Chapter 10. :
W

7.1.2 Generating from a Class ;. T
L

To generate an instance of a class (e.g., an instance of man), Ry

ROSIE also examines the contents of the physical and virtual database. ¢ 4S

Elements are produced in succession until one of these elements
satisfies a halting condition.® Generation of instances of a class LA
behaves as follows: '

:

| 1) As with testing for membership, all affirmed propositions of
the form

1
Y‘—A“_“": .-

|

elt is a class

-~
N

s
a !

and

N
q &
P

elt is not a class

'l"‘l
b

L4
4

h
5

Fa

are examined in order of recency;

2

rd

2) When a proposition is of the form

elt is not a class

ANt

) a_r

as in AR
Mary is not a man S
or NN
any woman is not a man :‘.\;‘.:}
X
then e/t is added to a list of things known not to be in the S
class, and control is returned to Step 1. Otherwise, when a RS

proposition is of the form ——-

elt is a class g

as in -

John is a man

o
™
then we proceed to Step 3; '\ﬁy,
5 .\
A
3a) 1f elt is not a class element® and if elt is not equivalent to gﬁi $
any member of the list of things known not to be in the class, \
*The halting condition is established by the construct that H-‘
initiates the generate event and is described further in Section 7.6.2. ,ﬁ;
®A class element is characterized as a description introduced by ALy
the function word any (see Section 9.8). "1Q
Ly \J
AT
A
R
e 0]
<l
S
Py

Tm Tm vaTa e ot
LI I A

-t « -

h 1 A" .-‘;;-_' n -"-\".—‘\I l‘: LA

7. Descriptions and Classes 119

element is produced, terminating the generation process if it
satisfies the halting condition;

3b) If elt is a class element, e.g.,
any mortal is a man

then Step 3a is applied to each successive element generated
from its associated description, i.e., in this case, instances
of the class mortal;

4) [If, after exhausting all such affirmed propositions, no element
produced satisfies the given halting condition, ROSIE looks up
a generator ruleset of the form

To generate a class:
as in
To generate a man:

If such a ruleset exists, it is invoked, and each element
generated via the produce procedure is applied to Step 3a.

NOTE: When examining all affirmed class relations in Step 1 above,
ROSIE is working with a partially closed database. This means that
ROSIE will examine only those class relations that were affirmed at the
beginning of the generate event. Thus, the action,

For each man, create a man.

will cause ROSIE to create a new man for each instance already in the
database; it will not cause ROSIE to create instances of man
indefinitely.

7.1.3 Potential Pitfall to Class Membership

One undesirable side effect to the definitions for membership and
generation is a potentially contradictory enumeration of class members.
Namely, the elements represented by a class may be determined by one of
two methods: 1) finding all elements that satisfy a class membership
test; or 2) finding all elements that can be generated as an instance of
the class. Although these statements intuitively sound alike, they
actually can describe two distinct sets of elements.

Proving that an element satisfies a class relation may invoke a
predicate ruleset, while enumerating the elements of a class may invoke
a generator ruleset. Since there is no practical method to ensure
consistency in the definitions of corresponding rulesets, the two
methods are not necessarily equivalent.

AR 2 R > .t .
L '.r L AN ra.r A

- »
. N A

\(.‘_?’-.q.'\.._

» "

B

TR

.i*"~{p'r-*;.ﬂ-
» Sh Y

WANALYN LEN B FLERE RN RE AT O 30 a8 a‘as 2" 5 O . E 0.5 0.8 0.0 L 8 5.0 1.8 ‘o8 ‘gl -gf (T

U\“\‘ ~"‘"\' ~ <

WY N YLX
Aok 4

»

o3

Y KA S S

S -
YN

T el as

P
2

PO Ty S B
a4

/

NPEP LS

o8

"'.f ﬁ‘ ‘.l " L

7. Descriptions and Classes 120

As an example, one may define the predicate

To decide if a person is a man:
[1] If the person is equal to either Jim, Jack or John,
conclude true,
otherwise, conclude false.
End.

which implicitly defines one set of elements for the class man, and
then a generator ruleset

To generate a man:
[1] Produce each of Bill, Brian and Bob.
End.
which defines a distinct set of elements for the same class. It is the

responsibility of the system builder to ensure that such behavior does
not adversely affect the integrity of his code.

7.2 RELATIVE CLAUSES

<rel clause> ::= <disj clause>

<disj clause> <conj clause> [OR <disj clause>}*

<conj clause> ::= <clause form> [AND <conj clause>]*

(<rel clause>)
<such that/where>
<that/which/who>
<whose>
<which/whom>

1 1= <except>

<clause form>

(<st/w> <condition>)}
<st/w> <primary>

<such that/where>

<st/w> = SUCH THAT
= WHERE
<that/which/who> = <t/w/w> [<term>] <verb phrase>
= <t/w/w> <special vp>
= <t/w/w> <term> <rel op>
<t/w/w> = THAT
= WHICH
= WHO
<whose> = WHOSE <description> <be aux> <term>

Larl ard gt L L _Ga f3- g ¢ LT * . [L] []]

7. Descriptions and Classes 121

<which/whom> ::= <prep> <w/w> <term> <verb phrase>

WHICH
WHOM

<w/w>

<except> ::= EXCEPT <term>

Descriptions can be modified by a relative clause, which acts like
a filter on the elements of the description's class. Each time an
element is generated from or compared to the elements of the
description's class, the constraints specified by the relative clause
are tested. If the test succeeds, the generation or comparison is
allowed to continue, otherwise it is aborted.

A relative clause is actually a specialized form of condition (see
Chapter 6), representing a boolean combination of sentences. The
sentences used in a relative clause can be specified with a syntax that
corresponds to English grammar. For example, the sentence,

there is a command center which is situated on hill #3
essentially represent the condition,

there is a command center and that command center is
situated on hill #3

There is a variety of forms that the sentences in a relative clause
can take, many of which allow implicit reference to the element being
described. Logical groups of relative clause forms can be built over
conjunction and disjunction.

7.2.1 Logical Groupings

Boolean combinations of relative clause forms can be constructed
with the conjunctive and and the disjunctive or. Fo. instance, the
actions

Display every city which does support music
and whose population is small.

Display every club of which John is a member and
which John does attend regularly or
of which Bill is a member and
which Bill does attend regularly.

demonstrate legal combinations of clauses.

Both the conjunctive and and disjunction or are right associative.
Conjunction has a greater precedence than disjunction, and thus binds
relative clause forms more tightly. The second example above would be
interpreted as

A A AN A R N NN NS
AN A A 2 A AL N AT T T

-

-
-

rl

. v .
.

s

R
PP

>
hd

Py
A

P AN

qﬁﬁ#;\ﬁ

P oAl
A4
’

s

LT A ST
"R

)

L
s 5,

.l'l"

P
ot

hY
<

A

’
%

LA AN

24

Rty 4

[k ol
<

e’

S\f\\f

a5

.
»

r

o]

o

X

7. Descriptions and Classes 122 -.:;»
N

by

Display every club (of which John is a member and . J

which John does attend regularly) or fey

(of which Bill is a member and

which Bill does attend regularly). '\'

V)

where parentheses designate the logical groupings of clauses. As with f\'
conditions, the default precedence of the logical connectors can be ;"
overridden with parentheses. "
V5]

7.2.2 SUCH THAT... and WHERE... -.';:.
RN

<such that/where> ::= (<st/w> <condition>) St

Y,

1= <st/w> <primary> oA
<st/w> ::= SUCH THAT =8

= WHERE .$\
.'ﬁ
. U
<primary> = (<condition>) y*&
= <sentence> NN,
viny

The most general relative clause forms are those introduced by the e
words such that and where. When delimited with parentheses, they can ::{J
be followed by any condition, otherwise by any arbitrary sentence. This .};\
form of relative clause does not implicitly reference the description :({S
being modified; such a reference must appear explicitly. ;:}‘
[iA
Examples-- 8
a:i

For each integer from 1 to 100 (where that integer is even A,

. . . Ly

and that integer is a multiple of 3), SaNg

display that integer. ::.;

o

For each integer from 1 to 100,

if that integer is even and that integer is a multiple of 3, ;';{
display that integer. Qf ;
" ('
~
Display every employee such that that employee does play tennis. C"’,‘.\
, .l
For each employee, A.\i
if that employee does play tennis, -
display that employee. tfﬁ_
W
Assert John is a man where John is happy. :x
Assert John is a man and assert John is happy. Sg;z

In the example pairs seen above (and in similar examples seen throughout
the remainder of this chapter), each action in regular font has
equivalent semantics to the action in boldface preceding it.

NS
W W,
LT LPRSY T TR LI A T IR R I TS T I IR T T TP T TP RTINS TR ~
e e o e e ey o e b o o * e A

7. Descriptions and Classes 123

7.2.3 THAT..., WHICH..., and WHO...

Next in generality come relative clause forms introduced by that,
which, and who. There are two forms that these clauses can take.
While both make an implicit reference to the modified description, each
form differs in where it places that reference in its target relatio..

First Argument Forms

<that/which/who> ::= <t/w/w> <verb phrase>
1= <t/w/w> <special vp>
<t/w/w> ::= THAT
:= WHICH
:= WHO

In one form, that, which, or who is followed by a verb phrase
(i.e., either the generalized verb phrase of a proposition or the
special verb phrase of some other sentence form). Clauses of this type
represent a relation with an implicit reference to the description as
the subject (i.e., first argument) of the given verb phrase.

Examples--

For each integer (which is greater than 10 and
which is less than 25),
display that integer.

For each integer (where that integer > 10 and
that integer < 25),
display that integer.

Display every mother who has a son.

Display every mother where that mother has a son.

Display every employee who does play tennis.

Display every employee where that employee does play tennis.

Assert John is a man who is happy.

Assert John is a man where John is happy.

Second Argument Forms

<that/which/who> ::= <t/w/w> <term> <verb phrase>
:= <t/w/w> <term> <rel op>
<t/w/w> ::= THAT
::= WHICH
= WHO

SRl] TRRSNSS SN FENN

T g
-

¥
2

P eks
it o R T

RS B
PR

T e e

T |

r

FEEIE

7] OSSO

o
A

Y s

o
25

L5001 e Y G S B RS L AT LRV S PR R RS PR B R PLEC PR SRR R ¢

7. Descriptions and Classes 124

This other form is similar to the first with the exception that the
first argument of the target relation is given, and the implicit
reference becomes the direct object of the relation.

Examples--

Display every diplomat who the President is meeting on Thursday.

Display every diplomat where the President is meeting
that diplomat on Thursday.

Signal every command station which the red team did not destroy.

Signal every command station where the red team did
not destroy that station.

For each value which any result is equal to,
display that value.

For each value where any result is equal to that value,
display that value.

7.2.4 WHOSE...
<whose> ::= WHOSE <description> <be aux> <term>

This relative clause form represents a class relation. The
specified description is additionally modified by a prepositional phrase

introduced by the preposition of. The object of the preposition is an f?@
implicit reference to the host description. ;*;

Examples--

Display the fleet whose flagship was ship #5.
Display the fleet where ship #5 was a flagship of that fleet.

Display every list whose member at 1 is any integer.

~5

"

Display every list where any integer is a member of that list at 1.

7.2.5 WHICH... and WHOM...

<which/whom> ::= <prep> <w/w> <term> <verb phrase> g

e

5
<w/w> ::= WHICH 583
::= WHOM .
This relative clause form represents a proposition whose verb has e
been additionally modified by a prepositional phrase introduced by o
<prep>. The object of the preposition is an implicit reference to the W
host description. :E;
iteld

.o

i

L
O TR W N A N TN W W S T W L S N N W N W W W U W U N L N N U U U AW LY VA R I s Tt

T TS T bl B a2 C g wreer Lo L LR 2ad g a) L

7. Descriptions and Classes 125

Examples--

Display the man for whom the bell does toll.
Display the man for whom the bell does toll.
Attack the hill on which the red army did locate
the command center.
Attack the hill where the red army did locate
the command center on that hill.
For each list of which any integer is a member at 1,
display that list.
For each list where any integer is a member of that list at 1,
display that list.
Assert AAAI is a professional organization to
which John does beiong.

Assert AAAI is a professional organization where
John does belong to that organization.

7.2.6 EXCEPT...
<except> ::= EXCEPT <term>

The final relative clause form provides a terse form of is not
equal to and filters out any element of the host description that is
equal (see Section 9.1.3) to <term>.

Examples--

Signal every command station except any red unit.

Signal every command station where that command station is
not equal to any red unit.

For each member except either Jim, Jack, or John,
display that member.

For each member where that member is not equal to either
Jim, Jack, or John,
display that member.

7.3 DESCRIPTION VARIABLES

A normally invisible yet extremely useful component of a
description is its description variable. A description variable
provides a unit of temporary storage. When an element is produced from
a description, or tested for membership against a description, or

Y rrX
‘”ﬁ)ﬁb‘“
5 '-"""’

2
v

13

7

o W
,’l
[

§ 5%
2

"

A
P A AL
H S

M,

’ A,. J. /vg

(s
P XA

v e 3

\ ‘..._..
S

L

A

ST

SR T S N PR A
AP AT ST TR R

7. Descriptions and Classes 126

asserted or denied as an instance of a description, it is cached under
the description variable. Such elements can be accessed later within
the rule in which the description appears.

For instance, in
For each integer from 1 to 10, display that integer.

the description variable of integer from 1 to 10 is successive bound to
an integer in the range of one to ten. In each iteration, that value is
accessed with the anaphoric term, that integer.

7.3.1 Anaphoric Terms and Rule Variables

A description variable can be referenced (and its value accessed)
both implicitly with an gnaphoric term and explicitly with a rule
variable. Note that most of the relative clause forms automatically
reference the description variable of the description they modify.

An anaphoric term is composed of the function word that preceded by
the class noun of the description being referenced (e.g., that integer).
The parser turns this into an explicit reference to the description
variable. When this reference is evaluated, it will return the value
cached under the description variable. 1If nothing is cached, it will
generate the error

Unbound ANAPHORIC TERM:
THAT class noun

In some cases, an implicit reference is inadequate. In order to
avoid otherwise ambiguous and conflicting references, the user must
supply the name of the desired description variable and then reference
that variable by name. This is done with the optional <desc var> syntax
and a rule variable. As an example, consider the expression

For each integer (1) from 1 to 10,
for each integer from 1 to I, display |I.

where (I) names the description variable, and every other use of | is a
rule variable that references it. As with anaphoric terms, when a rule
variable is evaluated at runtime, it either returns the element cached
under the description variable, or, if no such element exists, it
generates the error

Unbound RULE VARIABLE:
variable

LA

")

£ 4
t%\%
S,

5

o
ol

7
¥

5‘1@3?
YO0k

v e v .

I. ’ "’
" -’. u, l'.

AP

P A AR

,

(A
l'.

7. Descriptions and Classes 127

7.4 ANAPHORIC DESCRIPTIONS: SUCH...
<description> ::= SUCH <class noun> [(<desc var>)]

<class noun> ::= <atom>

Additions to existing grammar rules--

<verb phrase> ::= IS SUCH <a/an> <class noun> [{ <desc var>)|
<special vp> ::= THERE IS SUCH <a/an> <class noun> [(<desc var>)]
<desc term> ::= SUCH <a/an> <class noun> [(<desc var>)|

Sometimes a complex or verbose description must appear more than
once in a rule. Rather than requiring the repetition of the full
description in the second instance, ROSIE permits the use of an
anaphoric description.

An anaphoric description is composed of the function word such

followed by the class noun of the description being referenced. The -:‘
parser expands this into a copy of an earlier description using the same f:)
class noun. .:?
e
>

‘l

For example, the following two actions are semantically equivalent

L]
o

If there is an exemplary student of mathematics

who will graduate in June, ‘:\
recruit (every exemplary student of mathematics :—.;'_-.
who will graduate in June) for summer employment. S
.- ’l‘
If there is an exemplary student of mathematics

who will graduate in June, <
recruit every such student for summer employment.)
AN
AN

They show how anaphoric descriptions can greatly enhance the readability 2::
of otherwise verbose code. :qf

An anaphoric description functions just like a regular description.
It can be used anywhere a regular description is used as well as
referenced just like a regular description. Note that an anaphoric
description is not an identical copy of the description it references.
The copy is identical in all aspects except its description variable.
As with regular descriptions, the user has the option of explicitly
naming the description variable to be used in the copy. If the user
does not specify the description variable, then the system generates a
new ''unique’ variable name.

T 00 g g o g i s gty s g gt bt g gt) s g bl il gt (b b el al alb bt gl B B B0 N

N PO PPN ACN NN N

mT ay 8§ 8,

7. Descriptions and Classes 128

7.5 RESOLVING ANAPHORIC REFERENCES

There are two methods for anaphorically referencing a description,
i.e., with anaphoric terms and with anaphoric descriptions. Such
references are resolved by the parser.

In most cases, when a description is encountered by the parser, it
is indexed at the front of a list of class noun/description pairs. When
the parser encounters an anaphoric reference, it searches this list from

the front looking for the first description indexed under the class noun
appearing in the reference.

This does not simply result in a right-to-left scan from the
reference to the target description. The precise workings of the parser
can be illustrated with the following example rule:

If there is a position which does have line-of-sight to
the position of the enemy,
deploy the unit to that position.
In this rule, that position refers to a position which . . . rather than
the position of This is due to the latter description being
processed before the former--because it is a component of the former--

and thus appearing in the list of class noun/description pairs after it.

There are two cases where a description cannot be referenced
anaphorically:

1) Wwhen it is used to specify an Iis-4 proposition, e.g.,
<34, 57> is a position of the enemy

2) Wwhen it 1s used to specify an rntentional description (see
Section 9.9), e.g.,

‘the position of the enemy’
Note that in each case the user still has the option of explicitly
naming the description variable used and referencing it with a rule

variable. Note also that descriptions associated terms, e.g., the
enemy, can still be referenced anaphorically.

7.6 USES OF DESCRIPTIONS
As mentioned earlier, descriptions are used by ROSIE in three ways:

1) testing an element for membership in the set being described

ot

v 4.
U

AV
l.'
o

" »
[N

AN
“ St
AL

,,;:n
]
2

-y
o
%

’

L

PRI A |
l"..'.‘-tl'
.'i".l"’ ¢ X ..‘ N
l'-A.l.‘.".'- s %

'

7. Descriptions and Classes 129

2) generating one, some, or all members of that set
3) adding or removing members from that set
7.6.1 Testing for Membership
Propositions of the form
element is a description

can be used to test element for membership among the set of elements
named by description.

In performing such a test, ROSIE first determines if element is a
member of description's class, as described in Section 7.1.1. If so,

K

then element is cached under description's description variable, and the :::*
relative clause of description is evaluated. If there is no relative :::
clause, or if it evaluates to true, then the test succeeds. Otherwise, -:x
the description variable is unbound and the test fails. N

s
'v
.

7.6.2 Generating Elements

Many constructs use descriptions to generate elements (initiating
generate events), e.g.,

AL)
(R

N

for each description
there is g/an description
the description

every description

Elements are generated from description in the following manner:

7

1) The construct establishes a halting condition,’ and then

initiates a generate event on descriptions.

2) For each successive element that can be produced by
description's class (see Section 7.1.2), that element is cached
under description's description variable. Then, description's
relative clause, if any, and the halting condition are
evaluated in turn. If either condition fails, then the
description variable is unbound and the next element is tried.
In the case where the relative clause fails, the halting
condition is not evaluated.

wWhen generate event is concluded, description's description variable
will be bound to the last element produced, but only if that element

"The halting condition depends upon the construct. For instance, a
construct such as the will halt on the first element produced, while
every won't halt while there is an element that can be produced.

MY

s

[Y

7. Descriptions and Classes 130

satisfied the relative clause and the halting condition, otherwise the
description variable will be unbound.

7.6.3 Asserting and Denying Members

An element can be added or removed from the set of elements named
by a description in several ways. One way is to pass a proposition of
the form

element is a/an description

to assert or deny, while another is to make the element the
distinguished member of the set using let, i.e.,

let element be the description
A system generated element can be added to the set with create, i.e.,
create a/an description

For any of these actions, the relative clause of description may only
contain clause forms that expand into propositions. Further, these
forms may only be joined over conjunction.

While the semantics of the database actions mentioned above are
described in Section 5.3 and again, more fully, in Chapter 10, the
following sample session demonstrates their application.

(R)
[ROSIE Version 3.0 (PSL) 26-May-86]

<1> Create a battalion which is on alert.
<2> 7
{ GLOBAL Database]

BATTALION #1 IS ON ALERT.

BATTALION #1 IS A BLUE BATTALION.

<3> Assert battalion #1 is a blue battalion that was deployed to
sector #12 and for which any red battalion is looking.

<4> ?
[GLOBAL Database |}

BATTALION #1 IS ON ALERT.

BATTALION #1 WAS DEPLOYED TO SECTOR #12.

ANY RED BATTALION IS LOOKING FOR BATTALION #1.

BATTALION #1 IS A BLUE BATTALION.

<5> Deny battalion {5 is a blue battalion which was deployed
to sector #12.

L0 At K,
RS
Jz@l-fff

5 %

a8
A A A

.
A
a

'.I<

.
-,

R
RN

L9\

AP zs." 4‘
'’ 4 *m

-

PN e

>

| 7. Descriptions and Classes 131 oy
I a-
2

<6> ? N

A

[GLOBAL Database |
BATTALION #1 IS ON ALERT.
ANY RED BATTALION IS LOOKING FOR BATTALION #1.

S
%

<7> Let the blue battalion whose strength is 25 be battalion #1. "
<g8> 7 !‘I"‘a
[GLOBAL Database]

i

BATTALION #1 IS ON ALERT. PN
BATTALION #1 IS A BLUE BATTALION. ;n:x‘
25 IS A STRENGTH OF BATTALION #1. :,:,:
.';‘.::\)
A
7.7 COMPOUND CLASSES VERSUS ADJECTIVES -
N
NN
ROSIE 3.0 diverges from earlier ROSIEs by one significant aspect in Q;:ﬁ
its definition of classes and descriptions. While this change will not :\:n"
create any syntactic incompatibilities with existing code, it may Qy:w
introduce problems with code behavior. This change surrounds the notion iﬁigf
of compound classes versus descriptions modified by adjectives. For L.
instance, xﬁx:
)
s
football player :::i...r

is an instance of a compound class, while

.l
by

big bad burly man A
(A
\'_\:'
is an instance of a description modified by three adjectives. s}:}u
h Y
LAC
by
If you examine ROSIE's grammar, you will notice that it does not }f;i,
distinguish between compound nouns and adjectives. In order to make ~
such a distinction, ROSIE's parsing mechanism requires special knowledge ORI
about lexical word classes such as adjectives. For reasons that will PN
not be discussed here, providing ROSIE with the words in this class is AN
somewhat more problematic than providing ROSIE with its knowledge of AN
prepositions. PRI,
Earlier releases of ROSIE traditionally opted for adjectives over T
compound classes. This definition was considered to be more functional .:}:}
and flexible, the argument being that, were the distinction important, SN
compound nouns could always be formed with hyphenation, e.g., szl'
pr -t
A’J
football-player -
<N
. IS
Unfortunately, experience reveals that class compounds appear with great \i*.
frequency in ROSIE code, and, when they appear, they must be (1) :eﬁ L
hyphenated, which detracts from code readability, or (2) emulated as \ﬁ\f
descriptions modified by adjectives, which degrades system performance. » "W,
BRSO
R
.':\':'.
A
AN

4,,"-"\1 AN AT AL AR L 'I,'/_:-’.. PSRN .’.-'.';',':_.-;...-'..:'.\,."...‘.‘\"’.“.\‘,

o

)

N

.t

«

~

-.: ﬁ.. -

7. Descriptions and Classes 132

In ROSIE 3.0, the root name of a class may be one or more tokens
long, thus permitting compound classes, and descriptions may only be
modified by a relative clause. This eliminates the problems mentioned
above, but introduces the constraint that adjective restrictions must
now appear in the relative clause, e.g.,

some strategic objective
must be written as
some objective which is strategic
if strategic is meant to function as an adjective.

Adjectives can be emulated with virtual relations (see Chapter 10),
e.g.,

any strategic objective is strategic
While this is not the perfect solution, it is not as awkward or

inefficient as representing class compounds as descriptions with
adjectives.

TAAY

e At p e s
A SRR AN

‘ fy'b-'n
- -

b

R -‘;.;'
)
ot RARA n‘~f

C

-‘l ‘.’\.' -

=
(]

e 'we wWl T s = » ¥F E &I ¥§F Emsis W 9. TwT.TdASw «- ¥ ¥ W W 8 N A ee———— e T T T

Vill. TERMS

This chapter introduces a basic component of any high-level
language, namely the data types that the language supports and the
linguistic structures that it provides for data abstraction. ROSIE's
primitive data types are called elements, and the data abstractions used
to represent elements are called terms. When ROSIE encounters a term
during the execution of a program, it evaluates the term and passes the
resulting value to the construct in which the term appeared. In this
chapter, we focus on the available term forms and how these forms are
evaluated. While we include a short section on elements, Chapter 9
deals with elements in greater detail.

8.1 TYPES OF TERMS

<term> ::= <element>

: <arith expr>
<desc term>
<anaphor>
(= <iter term>

fl

A term is a form of data abstraction representing one or possibly
any number of data objects. These data objects are drawn from ROSIE's
ten data primitives called el/ements. Terms serve as arguments to
actions and sentences as well as other terms.

There are essentially five types of terms:
1) FElements, which evaluate to themseives

2) Arithmetic expressions, which provide a small set of infix
arithmetic operations

3) Descriptive terms, which apply operators in the form of
articles (e.g., a8 and the) and quantifiers (e.g., some and
every) to descriptions and evaluate to one, some, or all of
the elements described

4) Anaphoric terms and rule variables, which evaluate to elements
generated from a description or created by the string pattern
matcher

5) [Iterative terms, which permit the specification of an explicit
set of elements over which a test or action is iterated.

Terms can be nested to an arbitrary depth, and an arbitrary number
of embedded terms can appear at the same level, e.g.,

B

'
A M

e
P]
ePe s

.
LR

s et
« '
S

«
LT AN

)

°y

l,
P e

P
> %

-
g

Ly o 5
{-{1"'

LRy
“',~ .
Pl

‘.",'_;"-'.n'.."l B
“ I
B,

, ’ P a

.
’

l"

.. '

P e T I AL
»

L s

-
~

Y

YN X
P,
4 44 5

8. Terms 134

the man (from the city (by the river (to the east) .
(in the valley))
(in Ohio))
(in the suit (from the store (in Chicago)))
(by the drugstore (on the corner))

Embedded terms are normally evaluated in postorder (i.e., from left to
right and from the inside out). In the above example, the east would be
evaluated first, then the valley, then the river to the east in the
valley, then Ohio, then the city by the river . . ., etc.

NOTE: While ROSIE attempts to preserve ordering whenever possible
during the evaluation of terms, the definition of the language does not
guarantee that ordering will always be maintained. Unless the
definition of an operation clearly specifies the treatment of its
arguments, users should avoid writing code that depends upon order of
evaluation for proper performance.

|

oy

wn N .
I A
[N ‘."\ 5 vy

v

.
L)

S"‘-
A

8.2 ELEMENTS

<element> <name element>

<number element>

<tuple element>

<string element>

<pattern element>
<filesegment>

<class element>
<intentional description>
<intentional proposition>
::= <intentional procedure>

1

U}

1§

u

i

Whenever a term is encountered as an argument to an action, or a
sentence, or another term, it is evaluated. It will evaluate to one or
possibly a sequence of elements, which will be passed on to the
construct in which the term appears. Hence, elements are passed as the
arguments of rulesets, and they are produced as the results of a
generator ruleset. They appear as the arguments propositions affirmed
in the database as well as the object of affirmed class relations.

Elements can be divided between two categories: simple elements and
intentional elements. These include:

s

|

o
PRLRPAENTS '.h.

1

L)

]

2t
Y Wy

.-l s, tat gt g ¥ et e" "atat st " aT e s AT " - K [e e e PO S SR S TR S St L S) 'I.’
'\.’x"-."‘:"-."f-."\"-. R “fﬂ."\f-:‘.'\'f'\'f-.,'."'_1.'.,\.":-\.','. \'_*.'.'\-':‘.i\'.‘ +. "'\'.'. TR L P "R, Y e L, T S T S S M-S W S L, PLA SN Y

Amw A= o

-~

3
3

A
]
.

©

8. Terms 135

Simple Elements Examples
names battalion #5
numbers
simple numbers 3.1412
unit constants 55 miles/hour
labeled constants probability 0.75
strings "The ratio HEP/COG:"
patterns {{"Yes"|"No"} (bind to the reply), cr}
tuples <pol soft, <5 waves, FX-4>>
filesegments 'file: "intel”, to report a finding’

Intentional Elements

class elements any non-offensive target

Intentional descriptions 'an action at the current time'

intent ional propositions 'visibility does approximate 3.5 miles’
Iintentional procedures ‘deploy the unit to sector #3'

Most of the simple elements correspond to the basic data types found in
other symbolic languages. Elements such as patterns and filesegments
interface to facilities that are unique to ROSIE. The intentional
elements provide ROSIE with limited "self-referential" capabilities,
allowing programs to treat units of descriptive, declarative, and
procedural knowledge as data. Elements are discussed further in
Chapter 9.

8.3 ARITHMETIC EXPRESSIONS

<arith expr> ::= <term> <op> <term>
<op> = +
=/

Arithmetic expressions support a predefined set of infix arithmetic
operators. Arithmetic expressions are treated as terms that evaluate
to number elements. Each operator is a function of two arguments, which
must evaluate to number elements whose units or labels are compatible
under the given operation.

8.3.1 Operators and Operations
ROSIE supports five arithmetic operators: (+) for addition; (-) for
subtraction; (%) for multiplication; (/) for division; and (") and (%)

for exponentiation.! Note that in order for these operators to be

'The uparrow () is being introduced for the first time in
ROSIE 3.0.

LS L TR S IR DR R S NV] L P A SRR
O g i Y e e L N S N AR 3

-

T

~
Ny

2

s

VNS A

ARy

8. Terms 136

recognized by the parser they must be surrounded by separator
characters, e.g., 3 * 4 as opposed to 3*4--the former will be treated as
an arithmetic expression, while the latter as a name element.

The label and units of the numbers to which these operators are
applied must be compatible under the following rules:

* When numbers are added (+) or subtracted (-), both numbers must
be of the same type and have the same units or label. The
result is a number with the same units or label.

. When numbers are multiplied (*) or divided (/), they must
either both be label ccnstants with the same label or both be
unit constants with comparable units (see Section 9.3), or one
of the two numbers must be a simple number. The result is a
number that has the appropriate label or units.

* Exponentiation (° and **) requires that the exponent (the second
operand) be a simple number with an integer value. The other
operand can be any number type. If it is a label constant, the
result retains the label. If it is a unit constant, the units
will also reflect exponentiation.

If the above constraints are not met, then the error message

Illegal arguments:
element op element

. %
»

KX
will be generated. :S:E
AT
Note that these operations do not distinguish computations between N :}
real numbers and integers. If applied to two integers, an operation :\,
will attempt to return an integer, otherwise a real number is returned,
e.g., 10 /5 returns 2 while 10 / 4 returns 2.5. When at least one of ﬁ?
the operands is a real number, the result will be a real. :;
-~
)
As an example, consider the following expressions and their ﬁ$
resulting values: "
Example Results
3+4 7
5 apples - 2 apples 3 apples
time 9 + time 1 time 10
3/4 0.75 >
55 miles/hour * 3 hour 165 miles ~
time 5 * 2 time 10 N
~
52 25 ot
5 ° -2 0.04

3 feet 3 27 feet 3

AP e e . R R A A A M R e s NN AT T I N I I T N U I TV I T T T U U PUBTUTU IR TRV TR T T TS T

8. Terms 137

Notice that ROSIE does not understand plurality in units; thus the use
of 3 hour as opposed to 3 hours. Also note that while the arithmetic
operators must be delimited by separator characters when used in
arithmetic expressions, the opposite is true when used in the units of a
number, e.g., 3 feet ~ 3 as opposed to 27 feet'3.

8.3.2 Associativity and Precedence

The rules of associativity and precedence for the arithmetic
operators are fairly standard. The operations of addition (+),
subtraction (-), multiplication ()., and division (/) are all left
associative. Exponentiation (~ and **) is right associative.

Exponentiation has the highest precedence, then multiplication and
division, then addition and subtraction. Thus, the expression

3+4*5 °"6/6 "5*%4+3
would be interpreted as

((3+ (((&* (57 6)) / (6 5)) % 4)) + 3)
When used within a prepositional phrase, e.g.,

the absolute value of 5 * -6

precedence of the arithmetic operators is less than that of
prepositions. Thus, the above example would be interpreted as

(the absolute value of 5) * -6
and not

the absolute value of (5 ¥ -6)

8.4 DESCRIPTIVE TERMS

<desc terms> THE <description>

<term> ' S <description>
<a/an> <description>

A NEW <description>

SOME <description>

EVERY <description>

It

Descriptive terms reference and evaluate to the elements named by a
description (see Chapter 7). Descriptive terms fall into two
categories, the simple descriptive terms and the quantified descriptive
terms. Simple descriptive terms evaluate to one and only one of the
elements named by a description, while quantified descriptive terms
evaluate to a sequence of some or all of these elements.

T AT e N TN AT e e
SR VG T VR U, TR TR Ao A oA R I e T O S S S

=

W W W

-

8. Terms 138

A descriptive term consists of two components, a function word and
a description. The function word can either be one of the articles,
the, a or an, e.g.,

the sortie rate of airfield #3
an emergency

the special article form, @ new, e.g.,
a new rule which does conclude the hypothesis
or one of the quantifiers, some or every, e.g.,

some ship which is not seaworthy
every strike force in sector #5

The function word serves to introduce the term and specifies how the
term is to be evaluated.

When evaluated, a descriptive term initiates a generate event on
its description after establishing a halting condition based upon the
semantics of its function word. The halting condition is successively
applied to each element named by the description until it evaluates to
true, terminating the generate event. If the halting condition is
successfully met, then the description variable of the term's
description will be bound to the element that satisfied it. This
element is treated as the value of the term and can be accessed by an
anaphoric term or a rule variable (see Section §.5).

8.4.1 Simple Descriptive Terms

Simple descriptive terms are introduced by the articles, the, a and
an, and by the special article form, a new. This type of descriptive
term will evaluate to one and only one element.

8.4.1.1 THE...

If the descriptive term is introduced by the, it will return as its
value the first element that can be produced by its description. For
example, consider the following sample session.

(R)
[ROSIE Version 3.0 (PSL) 26-May-86]

<1> Assert each of John, Jack and Joe is a man.
<2> Assert John does love Mary.
<3> 7
[GLOBAL Database]
MARY IS A WOMAN.
JOE IS A MAN.
JACK 1S A MAN.
JOHN IS A MAN.

.«
v

Ul s A4
B

o, .

AR

'y

AN
. A . \A \.‘v'

RN
™ »

5

[4 .":":

¥ l"~

x

[
*

l"q'

JK.I&' l‘

T NA

¢ recer
LA

f
L4

'

AR
Do

AL RN R S RN A I R BN AN A A B AN AN I N NI NI NI U RN NG U IR T NU PUT, 7,

8. Terms

<4> Display the man.

JOE

<5> Display the man who does love Mary.
JOHN

If no element can be produced, an error is called, i.e.,

No such element exists:
THE description

This type of term is most commonly used as a variable under whi

the intermediate values of computation are stored. For instance, in the

ruleset

To generate the length of a tuple:
Private: a counter.
[1] Let the counter be O.
[2] For each member of the tuple,

let the counter be the counter + 1.
[3] Produce the counter.
End.

the counter is used as a local variable to keep track of the number

elements seen in a given tuple. This example also shows the common use

of the let database action as an assignment operator.

ROSIE permits a shorthand syntax for descriptive terms introduc
by the via the possessive case of apostrophe s, e.g.,

John's mother
expands to

the mother of John
The syntax used above is term's description, where the
parser adds of term to the prepositions associated with
description, e.g.,

the city's mayor in 1971

expands to

the mayor of the city in 1971

N e TS R L Yt Lt T et a e e At at
» P I ST AL AN SN AT oY R A o A
fol, Lo d A s W R A R I S M e e e e WA SN Wt

139

ch

of

ed

PR
..
LY

LLINK

&

J&;ﬂ)’» ot
5_.

ﬁﬁ
LRLRFBENEALY

¥
’

5

8,
-‘.. o

TR

A

e %
Q

a
[y

L O SO

l""‘; b}
P AN

SN
)

N S
PN XN
LY4A ;

Sara
o’

4
-’ffn‘q
l.l'l.l.l‘

3
ey
r S

A A N

¢
DN A
P A LAY

'f.l'.’f
. 5

g

Y]
P
LI T
B

IS g

.

5 'l 'l

218

-

T

B

8. Terms 140

8.4.1.2 A... and AN...

The semantics of descriptive terms introduced by the articles, a
and an, are similar to the, with one exception. Like the terms, the
description is requested to produce an element that becomes the value of
the term. However, if no such element can be produced, an element will
be created as with the create database action. This element will be
asserted as an instance of the description and returned as the value of
the term.

(R)
[ROSIE Version 3.0 (PSL) 26-May-86 |}

<2> ?
| GLOBAL Database |

<3> Display a truck.

TRUCK #1

<4> 7

[GLOBAL Database |
TRUCK 41 IS A TRUCK.

<5> Display a truck.
TRUCK

To create an element, ROSIE takes the class noun of the description
and appends the suffix #N, where N, a positive integer associated with
the class noun, is incremented by one for each element so created.

8.4.1.3 A NEW...

A descriptive term introduced by the special article form a new
never attempts to generate an instance of its description. Rather, it
automatically creates an element, asserting that element as an instance
of the description and returning that element as its value.

<6> Assert Bill does own a new truck and
John does own a new truck.

<7> 7

[GLOBAL Database]
JOHN DOES OWN TRUCK 7
BILL DOES OwN TRUCK #
TRUCK #3 IS A TRUCK.
TRUCK #2 1S A TRUCK.
TRUCK #1 IS A TRUCK.

'I .i. "' ". ." l‘.’\v..‘.

4
.

-

I" "la
[]
e

»
L N

o 2‘-'

A .

4
B
-‘\l‘

1] 4 Iy
’
.

w el
! 5‘7.n
8

‘s
£
'l’

LR A RN
'.’ﬂ: Ly ‘ll. g

xi#?ﬁ
AT

"' . * (] *
$’ -..5'. ,

8. Terms 141

8.4.2 Quantified Descriptive Terms

Quantified descriptive terms are introduced by the quantifiers,
some and every, e.g.,

some target which does satisfy every engagement requirement

providing an implicit form of iteration over the elements named by a
description. Unlike the other terms we have seen, quantified
descriptive terms do not evaluate to a single element. At a conceptual
level, they evaluate to a sequence of elements. In reality, quantified
descriptive terms change the structure of the expression in which they
appear, causing repeated evaluation of that expression.

s

L3

When an action or sentence contains a quantified descriptive term
as an argument, the parser performs a transformation on that action or
sentence such that it is embedded in an iterative loop. The loop
operator takes two arguments, i.e., (1) the description and (2) the
expression over which to iterate. The occurrence of the quantified term
in the expression is replaced with a reference to its description
variable. Thus, the semantics of an action such as

at

‘
fete

X

Display every integer from 1 to 10.
are equivalent to
For each integer from 1 to 10, display that integer.

The loop operator actually works by initiating a generate event on
the given description. The halting condition for this event contains
the transformed expression, which can be evaluated repeatedly as each
element is produced. In addition, the halting condition also contains a
cue that decides when to terminate the generate event. The semantics of
this cue depends upon the quantifier and the type of expression in which
the term appears.

When the expression in question is an action, the iterative loop
simply executes the action repeatedly. When the expression is a
sentence used in a test, e.g.,

If some target is vulnerable

then the loop repeatedly evaluates the sentence until it tests true or g
false depending on the quantifier. For instance, the above example is
equivalent to c |

If there is a target where that target is vulnerable .

Note that a quantified descriptive term only changes the immediate
sentence or action in which it appears. If it is nested within a term
to any depth, then it changes the immediate sentence or action in which
that term appears, e.g., the action,

LU U U AW U U U UM A AT U U AU R T AU i C. .
: R TUSTURE AL MU TN MU U U USSR T SR AT L&I‘.\-‘L’é

-

-~ ———— -

m MLV "‘.ﬁ :}- : a!: Qv :' c LR AN .';-._- « ..".\'.._:-._;..1 DR ._n-._-‘..) . Ty '..".'_"-.I‘-"__'- U IR SR e

L' m-—-mmmm—_-mmm"m‘"HlW'lﬂ“FH"IWH“"W‘&IU'W

8. Terms 142

Display the name of every man.
is equivalent to
For each man, display the name of that man.

Note also that when a quantified term appears within a relative clause,
e.g.,

Display the target which does satisfy every requirement.

then transformation is applied to that relative clause form (because it
is a sentence). Hence, the above example is equivalent to?

Display the target such that there is no requirement which
that target does not satisfy.

8.4.2.1 SOME...

The quantifier some causes iteration to continue until it finds
one element that satisfies the expression in which the quantified term
appears. Since an action can be said to be ambivalent to any argument
it receives, this type of term is more appropriate to use within a
sentence. An action that contains a some term will be executed only
once, using the first element produced from the term's description. A
sentence will be tested repeatedly on each element until the test
succeeds.

For instance, the action,
Dispatch some fighter to the target.
will be transformed by the parser into

If there is a fighter,
dispatch that fighter to the target.

while the sentence,
some fighter is unassigned
ZActually, a precise paraphrase would be
Display the target such that there is no requirement
where 'that target does satisfy that
requirement’ is not provably true.
However, intentional propositions and the is provably predicate have

not vet been introduced, and, since they tend to otherwise obscure the
examples in this section, they are not used here.

v s :i ;I "I“
R

Yy
A

L TR R
w3
J¥J¢~$ P

o

8. Terms 143

\F(E;
Pl o

4
h)

from the iterative action,

w o

While some fighter is unassigned,
dispatch that fighter to the target.

will be transformed into

While there is a fighter which is unassigned,
dispatch that fighter to the target.

For more elaborate applications, consider the following actions,

For each fighter which is assigned to some target,
display that fighter.

For each target at some airfield which is on alert,
defend that target.

and their equivalents without quantifiers,

For each fighter such that there is a target
where that fighter is assigned to that target,
display that fighter.

If there is an airfield which is on alert,
for each target at that airfield, defend that target.

The first example demonstrates the interpretation of a some term that
appears in a relative clause. This can be compared to the second
example in which the some term is a component (i.e., object of a
preposition) of a component (i.e., the description being iterated over)
of an iterative action.

8.4.2.2 EVERY...

The every quantifier is essentially the inverse of some, causing
iteration to continue until it finds one element that fails to satisfy
the expression in which the quantified term appears. An action that
contains an every term will be executed for each element produced. A
sentence will be tested until an element fails to satisfy the test or
until all elements have been produced, in which case the test succeeds.

The action,
Dispatch every fighter to the target.
will be transformed by the parser into the equivalent of

For each fighter, dispatch that fighter to the target.

and the sentence,

coal e Al

St e T T AT AT A T A AT R RS e T 0 e e e et
TG (AR AL A A A AT A LA e P L SR S I

8. Terms 144

every fighter is assigned
from the iterative action,
If every fighter is assigned, initiate the strike.

will be transformed into the equivalent of

Unless there is a fighter which is not assigned,
initiate the strike.

. v

A5 "y N
< f..i’

“w
VAl

N

1
»

-

NN
»

For more elaborate applications, consider the following example
pairs:

m
AR

4

For each fighter which did strike every objective,
display that fighter.

For each target at every airfield which is on alert,
defend that target.

and their nonquantified equivalents:

For each fighter such that there is no objective
which that fighter did not strike,
display that fighter.

For each airfield which is on alert,
for each target at that airfield, defend that target.

The first example demonstrates the interpretation of an every term that
appears in a relative clause. This can be compared to the second
example in which the every term is a component (i.e., object of a
preposition) of a component (i.e., the description being iterated over)
of an iterative action.

8.5 ANAPHORIC TERMS AND RULE VARIABLES

<anaphor> = THAT <class noun>
= <rule var>
<rule var> ::= <desc var>

Anaphoric terms and rule variables provide a means of referencing
elements produced from a description. They do this by making either an
implicit (as in the case of anaphoric terms) or explicit (as with rule
variables) reference to the description variable associated with the
target description. At runtime, such a reference evaluates to the
element stored under that description variable.

8. Terms 145

An anaphoric term is composed of the function word that preceded by
a class noun of some description appearing earlier in the rule in which
the term appears.® For example, in

For each positive integer from 1 to 10, display that integer.
that integer references the description positive integer from 1 to 10.

When encountered at parse time, the parser expands an anaphoric
term into an explicit reference to the description variable of the
target description. When this reference is evaluated, it will return
the valued cached under the description variable. If nothing is cached,
it will generate the error,

Unbound ANAPHORIC TERM:
THAT class noun

By supplying the name of the description variable the user can make
explicit reference to it by using a rule variable of the same name,

e.g.,
For each positive integer (1) from 1 to 10, display I.

When the parser encounters a single word name, such as |, which is the
same as an explicitly designated description variable, it treats the
name as a rule variable and translates it into a explicit reference to
the description variable. As with anaphoric terms, when this reference
is evaluated, it either returns the element cached under the description
variable, or, if no such element exists, it generates the error,

Unbound RULE VARIABLE:
variable

The scope of anaphoric terms and rule variables is limited to the
rule in which the target description is evaluated. A description
variable cannot be referenced, nor its value accessible outside of this
rule.

8.6 ITERATIVE TERMS

<iter term> * ONE OF <term> {, <term>]* [,] OR <term>
= EITHER <term> [, <term>]* [,] OR <term>
= EACH OF <term> [, <term>]* [,] AND <term>
= BOTH <term> [,] AND <term>
’For further details, see Section 7.5.

AT S S S
- -i‘ - .«

-, , ~ - Twm T, “u - - - - - - - - - - . - - - » - - -
N L T T T T e T TR L S e N
A A e S R ML SR L S N U O S OT T

CNNA
&
Al

Fo's

s
>

o [mh o
5{"5.' "'z"':": '.:
‘él 5 &

7
2.

! S-.' :{:7':'-\’3
AVYNXX:

‘P.
4

et
.-..-.‘-‘.'

'i?'lfﬂ)‘i’:

AN S
LA
LA

-

-

-' -.':A

5 .l .'a

;y ¥ . .
B
.

v

LT

IR
AR Tt]
N N Nt

5 !

LN
YN

AR
~

r 2

'~

oG

A S |
R
‘\l
»

SAAY
.

8. Terms 146

The iterative terms provide a unique device for looping over a
group of elements to perform an action or test a condition. They are
essentially a specialized form of the quantified descriptive terms in
which the elements over which iteration is to be performed are
explicitly named.* Like quantified descriptions, the iterative terms
actually change the structure of the action or sentence in which they
appear.

There are two types of iterative terms, the disjunctive iterators
and the conjunctive Iiterators. Both are characterized by a term list,
where each term is separated by a comma (,) and the last term is
separated from the others by the disjunctive or or the conjunctive and,
respectively. When iterating over the term list, successive terms are
evaluated one by one as needed.

The disjunctive iterators are introduced by the phrase one of or
either, corresponding to the descriptive terms introduced by the
quantifier some. A conjunctive iterator must be introduced by the
phrase each of, which corresponds to the every quantified descriptive
term. A conjunctive form of just two elements can be introduced by the
word both.

8.6.1 ONE OF... and EITHER...

The one of and either disjunctive iterators will loop over an
expression for each of the elements from their term list until one of
these elements satisfies some halting criteria. An action that contains
st h an iterative term will be executed only once, using the first
element from tue term list.® A sentence containing a disjunctive
iterator will be tested for each element from the term list until the
test succeeds.

For instance, the sentence,
either fighter #1, fighter #2 or fighter #3 is unassigned
from the iterative action,

while either fighter #1, fighter #2 or fighter #3 is unassigned,
dispatch a fighter to the target.

will first test the 'element is unassigned' predicate with fighter #1 as
element. 1f that test succeeds, then the dispatch procedure is
executed, otherwise the test is applied to fighter #2, etc.

“In the old manual, the quantified descriptive terms and the
iterative terms were grouped together in a single class called the
pseudo-terms.

*while this semantic is recognized as not being an especially
useful one, it is nonetheless included for completeness.

X

SRR,

e,
i‘L’f

e

SRR
r 4

b

.
o i
1
" Ty

.1.(,

2 VYR,
. L

[
l"

)

h

Ly

nubitttiatati it @t Gl antaduntt ey et ad MDA A o A S AN MM LA A AL SR ML CONR LTS A S NI Ul

8. Terms 147

8.6.2 EACH OF... and BOTH...

Like one of and either, the iterative terms introduced by each of
and both loop over an expression for each of the elements from their
term list until one of these elements satisfies some halting criteria.
This criterion, however, is the inverse of that used by the former. An
action that contains a conjunctive iterator will be executed for each
element from the term list. A sentence will be tested repeatedly, using
each element until one of the elements causes the test to fail or the
term list is exhausted, in which case the test succeeds.

For instance, the action,

Dispatch each of fighter #1, fighter #2 and fighter #3.

o
hY

will apply the dispatch procedure in turn to fighter #1,
fighter #2, and fighter #3, while the sentence,

’
AN

L]
LA AR

both fighter #1 and fighter #2 is assigned

gﬁ
» NS

from the iterative action,

0
‘l *y ¢

If both fighter #1 and fighter #2 is assigned,
Initiate the strike.

l'. »
2
rn

x

rE r

»
»
[)

will succeed if 'fighter #1 is assigned' and then 'fighter #2 is assigned’
both test true.

*
.l'l
A A,

A e 2 Y W
2
LN Y

b}

NN A SN

mlhfmm.n;&mymkﬁJWA$aﬁ4ﬁ_s"_;.L-.-.'_A".n‘ DI AU e e TR TP T DAL A RIS DRI TV T S

Wt 4 Va RN TYUA "R oYt g'6 298 a's o'8 2% 2D ot o d ath avs 4% aVh a4 4" .otk 28 2%) ot 8'8. 2% 2° N g wIw *ha8' 8 X7 G0 g 0 a0 508 A B b

Ao

S

preceding page blank - not filmed

-

9. Elements 149

AR

IX. ELEMENTS

Gy

N

This chapter reintroduces elements, ROSIE's data primitives. }ﬁ?
ROSIE's elements define its space of concepts. These elements include T

the simple elements: names, numbers, strings, patterns, tuples, and :{{f

filesegments; and the iIntentional elements: class elements, Intentional :}Ff
descriptions, Intentional propositions, and intentional procedures. The -
simple elements consist of variations on the basic data types found in i*,‘
most symbolic programming languages, while the intentional elements f:f

provide a means of treating units of descriptive, declarative, and }:L‘
procedural knowledge as data. o
Palyc

9.1 ELEMENT BASICS e

s

<element> = <name element> N

= <number element> '}:y

t

<tuple element> s
<string element>

= <pattern element> ;i%i

= <filesegment> :if'

= <class element> ~}}‘

= <intentional description> (:Q:

= <intentional proposition> v

::= <intentional procedure> .

ROSIE's primitive data types are called elements. All terms ?i:
evaluate to elements. Rulesets are passed elements as arguments and can ::{:f
be defined to generate a sequence of elements on request. Elements can S
be stored as the arguments of declarative relations and affirmed as Wy

instances of class relations.
9.1.1 Types of Elements N

Elements can be divided between two categories: simple elements
and intentional elements. These include: Sav)

b
. "
.J,v"'

L
¥

N
27,

-~

‘s e

WA

[
|‘.f.f

[4

%
EXAL

~ T I AR N e o T N R T o i e T A Y i S TP A T ST AT Ay
Lia) e Wi, . ¢ & e 5 . 'y W > 'y

o‘ug;. e O M %

pwong
Text Box
preceding page blank - not filmed

9. Elements

-l W 'at TaB Vb Yol v 4 ad vat tal ‘at Yab *a8 2l Saf o)

Simple Elements Examples
names battalion #5
numbers

simple numbers 3.1412

unit constants
labeled constants

55 miles/hour
probability 0.75

strings "The ratio HEP/COG:"

patterns {{"Yes"|"No"} (bind to the reply), cr}
tuples <pol soft, <5 waves, FX-4>>
filesegments 'file: "intel”, to report a finding’

150

Intentional Elements

class elements any non-offensive target

Iintentional descriptions 'an action at the current time'
Intentional propnsitions 'visibility does approximate 3.5 miles’
Iintentional procedures ‘deploy the unit to sector #3'

Several of the simple elements (i.e., names, numbers, strings, and
tuples) exist as slightly more complex variations on the basic data
types found in most symbolic programming languages. The other simple
elements provide explicit representation for data structures used in
operations that are unique to ROSIE. For instances, filesegments
identify portions of a program file that can be manipulated via the file
package, and patterns interface to ROSIE's string pattern matcher and
support complex input and output operations.

The intentional elements provide ROSIE with limited "self-
referential" capabilities, allowing programs to treat units of
descriptive, declarative, and procedural knowledge as data. Class
elements and Intentional descriptions permit program control over the
retrieval and definition of class relations, e.g.,

Execute every instance of 'an action at the current time'.

Intentional propositions capture the intent of relations between
objects, which can be passed as arguments to rulesets, e.g.,

Report 'visibility does approximate 3.5 miles’'.

as well as asserted, tested, or denied. Intentional procedures provide
a representation for working with suspended actions, e.g.,

Execute 'deploy the unit to sector #3' at time 100.

which can be queued and later executed on demand. Essentially, the
intentional elements give knowledge engineers a vehicle for developing
meta-level control mechanisms.

B A LN

A

N

Y e s

r{\. .:v‘,‘ |""-:

'(./.11

’l

)
ﬁlﬂ‘- 5

A
X,

&
KA

b Y
5

R

r-

l:n\

B
-
0

X
i

.

&4

9. Elements 151

9.1.2 Evaluation Names

Every element has an evgluation name, which is its character string
representation. Whenever an element is sent to an output device, such
as the user's terminal, or coerced into a string element, its evaluation
name is used. Each type of element has its own format for creating an
evaluation name such that, if parsed and evaluated, it would return the
original element.

For example, consider the following term,
<the general, 3 + 4, John's mother, John>

which is a tuple element with four embedded terms: the general, a
descriptive term; 3 +* 4, an arithmetic expression; John's mother,
shorthand for the mother of John; and John, a name element. Assuming
the embedded terms evaluate to George Custard, 7, Sara Lee, and John,
respectively, the tuple would evaluate to

<GENERAL CUSTARD, 7, SARA LEE, JOHN>

This would likewise become the evaluation name of the tuple and would
appear whenever the tuple was sent to an output device or coerced into a
string.

9.1.3 Equivalence versus Equality

ROSIE supports two comparison operations for determining the
"sameness' of elements, equality and equivalence. Each is an operation
of two arguments, defined as follows:

. Equality succeeds if its arguments are of the same type and
produce the same evaluation name.!

° Equivalence succeeds if one or both arguments can be coerced
into equal elements.

According to the above, equality is defined as one might think, while
equivalence is essentially defined as a test of set intersection. This
is an important distinction to remember, because the "equality" special
sentence forms, i.e.,

<term> is [not] equal to <term>
<term> [~]= <term>

actually test equivalence. Whenever we talk about comparing two
elements for equality using the above operators, we are really talking

'Assume the '"sameness' of evaluation names is tested with the LISP
equal function.

LAY

. v A
.
o B

%S5

o T R T PRI
.wa.v:@' ke
ENA};?

..
‘0
LA,

v I
L4
. \"-’4- 73
k3

¥
[

e e
L N)
o N A)
"h'\“ v A

. 5,
AR

a
-s'n P4

f

& 9
A
PNCNN NN

,
‘N7

.
s &2 'u",‘ ‘:n'..
v 5 AT

.
2.
-

.‘.
‘L a

2

\j;bﬁss
R YLY 0

P4

ey
b
)

]
’
[

NS

x'r

el
B A A

9. Elements 152

about equivalence. Our earlier definition of "strict" equality is only
supported for internal operations and is not accessible to the user.

In practice, the only situation in which equality and equivalence
produce distinctly different behavior occurs when one or both arguments
are class elements (i.e., a description introduced by the function word
any), or when a class element is nested within either argument. A
class element functions as a "wild card" element, matching any instance
of its designated class. Thus, the test

§
;

John = any man

will succeed only if some instance of man is equivalent to John. Such
cases as

YT R FE A

any mortal = any man

will succeed only if some instance of mortal is equivalent to some
instance of man.

b o o W S SF i

To be more precise, equivalence is a function of two arguments

described recursively as follows: §

g

1) If both arguments are class elements, then they are equivalent &

if some instance of the second argument is provably an instance Q

of the first, e.g., :

any mortal = any man g

only if §

some man is a mortal 5

' 2) 1If only one argument is a class element, then they are 3
: equivalent if the argument that is not a class element is ﬁ
I provably an instance of the class, e.g., %
| 3

g John = any man

«

only if
John is a man
3) If both arguments are of the same type and contain no embedded

elements (i.e., names, numbers, and strings), then they are
equivalent if they produce the same evaluation name.

e

4) Finally, if both arguments are of the same type but do contain
embedded elements (i.e., tuples, patterns, filesegments, and
the intentional elements), then the equivalence test is applied
recursively to the corresponding elements of each. The two
arguments are equivalent if their fixed parts are the same and
their corresponding elements are equivalent, e.g.,

AR

]

9. Elements

<any man, Mary> = <John, any woman>

only if

John

any man
and
Mary = any woman

Additional constraints exist on elements containing descriptions
(i.e., intentional descriptions, and intentional propositions that

specify class relations) when their descriptions are modified by a _?
relative clause. For instance, the intentional proposition “‘
'John is a salesman from Detroit who does sell shoes in Baltimore’ ; k&
contains a description modified by the relative clause 5;
o

who does sell shoes in Baltimore oo

e

e

In such cases, the "embedded" elements include the subject, the direct
object (if any), and the objects of prepositions (e.g., John and
Detroit) but not the terms within the relative clause (e.g., Baltimore).
In order for two corresponding descriptions to be equivalent, they must
use the same sequence of tokens in their relative clauses, e.g.,

-

-
=

'the man who is happy'

A

is equivalent to
'the man who is happy'

but not

TEILEL,

'the man where that man is happy'

That is to say, ROSIE does not test for logical equivalence of relative
clauses.

‘f

v

9.1.4 General Operations on Elements

|

-y
e

In the following operations an element can be any type of element.

o

an element is a thing

Always concludes true, i.e., every element is a member of the
class thing.

The thing class, when used in a class element, is actually more
functional than a cursory glance would suggest. For instance, say you
wanted to define the vessel class as any element that is the

subject of a does float relation, regardless of whether it is a

AR

——
P

77 f_.r]
it
]

. e et e e Bl T s e A A EE S BT EATE IR AR AN M. AR T T NA MM TR BUN U S UR UL Y RU Rl L WL W W W Ls LM A e T AR TRl —:.;

9. Elements 154
ship, boat, dinghy, raft, etc. This can be done
simply by asserting the proposition,
any thing that does float is a vessel

Then, testing 'element is a vessel' would first test 'element
is a thing' (always succeeding) and then test 'el/ement does float'.

Note however that one may not generate from the thing class, i.e.,
evaluating the term,

g
-

every vessel

will not produce all subjects of affirmed does float relations.

an element is a name

Concludes true if element is a name element, false otherwise.

an element is a number "‘§
Concludes true if element is a number element, false otherwise.)

an element is a tuple
g
Concludes true if element is a tuple element, false otherwise. &‘
>

P

an element is a string

Concludes true if element is a string element, false otherwise.

r

an element is a pattern

o

Concludes true if element is a pattern element, false otherwise.

an element is a filesegment

Concludes true if element is a filesegment, false otherwise.

s

=

an element is a class

2. 2
r fie o
o

2

Concludes true if element is a class element, false otherwise.

{EJ :f. ‘r

A

2 I 2

by
o
N R N e TN A T D T T e T T T T T T T T W o T o T e T T o

M
o
~l
&
n':'::
. pee §
9. Elements 155 ‘-',':’:
rate
. e ;‘ J
an element is a description K
el
Concludes true if element is an intentional description, false
. "y
otherwise. o
B
~
. "]
an element is a proposition & ;:
o
Concludes true if element is an intentional proposition, false
otherwise. o0
el
P
an element is a procedure e
WAL,
M
Concludes true if element is an intentional procedure, false .
otherwise. \;:
l. *
X
TN
the element type of an element o
NN
ol
Produces the type of element, i.e., one of
ALY
NAME FILESEGMENT Bt
NUMBER CLASS S
TUPLE DESCRIPTION NN
STRING PROPOSITION A
PATTERN PROCEDURE)
o
an element [~]= an element -:;:'
an element is [not] equal to an element e
Concludes true if both elements are equivalent, false otherwise. -’._
Element equivalence is defined in Section 9.1.3. NN
N
s
an instance of an element ﬁ:ﬁ:
DERA
If element is an intentional description or a class element,
produces successive instance of its class, otherwise simply bSO~
produces element, e.g., :_'
<6> Assert each of Jim, Jack and Joe is a man. jﬁ}}
<7> Display every instance of 'a man'. F}:ﬁ
JOE A
JACK }j};‘
JIM “aie
<8> Display every instance of a man. ol
JOE A
ALY
e
ol
A
RSy
EACY
i
AORSA

PRWU TV W TWUwTw W WITEITON TN "TATIN T TN TPATUN "R T e "l 7l NN A ETW "W AW R "IFsRe FRSSTTEETE -".
-

9. Elements 156

an argument of an element

If element takes other elements as arguments (i.e., tuples,
patterns, filesegments, and the intentional elements), successively
produces those elements, otherwise produces nothing, e.g.,

<9> Display every argument of <A, B, C>.

A

B

c

<10> Display every argument of 'John does love Mary'.
JOHN

MARY

the substitution of an element for an element in an element

Produces a copy of the third element with the first occurrence
of the second element replaced with the first element, e.g.,

<1> Display the substitution of Bill for John in 'John is a man'.

"BILL IS A MAN'

substitute an element for an element in an element

Destructively substitutes the first element for the {irst instance
of the second element in the third element, e.g.,

<5> Let the sentence be 'John is a man'.
<6> 7
[GLOBAL Database)

"JOHN IS A MAN' IS A SENTENCE.

<7>» Substitute Bill for John in the sentence.
<8> 7
[GLOBAL Database |

"BILL IS A MAN' IS A SENTENCE.

a copy of an element
Produces a copy of element, e.g., given the previous example

<9> Let the test sentence be a copy of the sentence.
<10- 7
| GLOBAL Database |

"BILL IS A MAN' IS A TEST SENTENCE.

"BILL IS A MAN' IS A SENTENCE.

<11~ Substitute Joe for Bill in the test sentence.

4R 28 g% SN
\,‘s;.:'. '\ 4 ¢
AN AN

R AL

'
X
s e

v %

LN S BN]
RANDIE
. =
l.ﬁn
;"51:.1’4'{'

‘!':l .‘lq

- e
e
AR

v

. -

2R T
_ If%Wﬁ- J mﬁﬂﬂﬁﬁw.

Ly v LR R MG B e e

LRNLLLLS .q-.v\-\.t\ AR S I N
R AR MY (RN NCRE Y0 Th Th T L R RAR AR AL

a\....r‘f.w....-..f fo.......r\r\f\f\ R A A AR A P \f\a\.. «sr, INT,

. ‘ .
LA P I " vﬂ\.'nvl * . -‘\.-l-
PPN Tt AU v o WSl g TR A 5 s [

et ' A u-.(. Pt \.i- [<3 S .'I-..I-. \.‘.N.-.N\ x -lm\fﬂfﬁtfﬁv. .-«-........- ..-..

‘.
<

N,
™
L 3

-
-

157
R R e

R I

«, .
AafafaA AcXNafRurtala'

~wt .
SN
-

s

X
.. m
!

23]
|)]
Z
E.
[l
Z Q
Ll Z
720 ¢
=
= 2
w0
3 n
[
<
<
75}
v -
—
- 4
Q0 Z <
v < X
o X
Q <
™ <G
o [72]
2a”
—
—
3 G -
< O =
o, M
OII
A
~N O
—
V —

9. Elements

preceding page blank - not filmed

9.2 Names

9.2 NAMES

<name element> ::= [<atom>]* <atom>

Section 9.7) as well as alternate databases (see Chapter 10).

Examples of legal names--

John

Mr. John Smith

General George Custard
Battalion #5

PA 6-5000

Washington State University

Names cannot include strings or numbers.
Examples of illegal names--
John "The Smasher” Brown
Employee 0029 A4
I.R.S. Section 319
Note that while the first two examples will cause & parsing error,

third will not; 1.R.S. Section 319 will be interpreted as a number
(i.e., a labeled constant).

A name element is a sequence of one or more nonreserved tokens.
Names are most often employed as labels on abstract concepts. Names can X
also be used as abbreviations for identify filesegment elements (see

159

0a's'y

L{'-’)

7
7

s ™
[&3

2
Vrs:

S5y

\- - .

[N N L

the

..
RN
AR ARN

T Y |
..‘y"v.‘- %
'\,\- PN

‘,
S
[d

pwong
Text Box
preceding page blank - not filmed

o O]
O
. . N
preceding page blank - not filmed M
9.3 Numbers 161 NN
-~
A
oS
AN
9.3 NUMBERS afs
nfy¥)
<number element> ::= <simple number> A
= <unit constant> -:':;
= <labeled constant> i
St
-
<simple number> ::= <number> ;\$~
FRY]
<unit constant> ::= <number> [<atom>]* <atom> A
A,
. el
<labeled constant> ::= [<atom>]®* <atom> <number> o
N
YN
o
<number> ::= <integer> NN
::= <real> e
. 2o
<integer> ::= [+/-]nnn x\?_
,":.'-'.,
<real> ::= [+/-lnnn.[nnn][E[+/~]|nnn] N
::= [+/-](nnn).nnn|{E[+/~]nnn] I
::= [+/-|nnnE[+/-]nnn r e
I3 . . "'-I
A number element is used to represent numeric values. Numbers can NN
be o. three types: simple numbers, unit constants, and labeled -;uiv'
constants. ROSIE's arithmetic operators (+ - / * "), as well as its :fth
comparison operators (= > < >= <=) and their complements (~= ~> ~< ~>= -}*::
~<=), combine and compare units and labels in a manner which should seem v
intuitively correct. They also ensure that these combinaticns and .
comparisons are sensible. For example, attempting to add 3 apples to 2 S
oranges will cause a mismatched units error. ;}Qa'
\.';\':~
Units and labels improve the expressiveness and readability of t):-,
numeric computations. They greatly enhance the representational power T
of numbers, making their occurrence in code more meaningful. . -
W
- ,I ‘.
3.3.1 Types of Numbers :-f::-,-'_
e \'
A
n.' l-.b
There are three types of number elements: simple number, unit O
constants, and labeled constants. These are defined below. Y
Simple Numbers
A simple number can be expressed as either an integer or a real,
e.g8.,
10 .$~:n
2.718 B
RS
with no associated units or labels. By this definition, simple numbers _:.‘:‘._
subsume the concept of numbers found in most programming languages. o

QPR Pt P I SRR R PR T ML P PR N TN e T T T e e e e e T
N AT I AT NP I A A Y Y A A A A A A A A A N A A A A A R

pwong
Text Box
preceding page blank - not filmed

9.3 Numbers 162

Unit Constants .

»

A unit constant consists of an integer or a real followed by one or
more nonreserved atomic tokens. e.g.,

3 apples

55 miles/hour

20.8 feet*pounds/seconds "2
200 metric tons/cubic feet

13.7 1/feet’2 !

13.7 feet™-2 N

4

These tokens represent composite units of measure that can be combined ﬁ
under multiplication, division, or exponentiation.? A precise d
definition of the syntax of unit constants is demonstrated by the 5
following BNF -
-

b

. 3 k‘

<unit constant> ::= <number> [1/]<units> s

<units> ::= <unit> n

1= <unit>¥*<units> -

;= <unit>/<units> 3

:= <unit> <integer> -

:= <unit>**<integer> b

&

<unit> ::= [<atom>]* <atom> b

where (*) and (/) represent multiplication and division, and (") and
(*¥%) both represent exponentiation. The (*) and (/) operatrrs have
equal precedence and are left associative; the (") and (%) operators
have a higher precedence and are right associative.

ROSIE's basic arithmetic operators know how to combine units, e.g.,
the unit constant

4 R*S/T*U"2/V
can be created by evaluating the arithmetic expression
d* (OO R)y* 18/ ((rT* (U "2)) /1Y)

When creating an evaluation name for a unit constant, ROSIE always flips
units with negative exponents in the denominator. Thus,

ERETA XA IO T, G

4 R*S*V/T*U "2

2Except for the ability to recognize and combine embedded
operators, ROSIE does not have any special knowledge concerning units of
measure.

RHEELLL] MEE L

e 7 T P A PN P M N N LN N U LW A Y U L S U W W O A N W DT Ot 00 00 A 0 L DN

b |

e A

’

MU TGN TAR TR T AP B W WIWLU W T WL BRIV L P S0 ¢ g4 @'k o Dad® RO O R ™ Y

9.3 Numbers 163

would be the evaluation name of the example number illustrated above.

Labeled Constants

A labeled constant consists of an integer or a real preceded by ocone
or more nonreserved tokens referred to as its label, e.g.,

certainty 0.75
Ground Combat Division 13

9.3.2 Constraints on Numbers

The following constraints apply to how numbers may be specified,
compared, and combined:

b There is no such thing as a unit constant with a label or a
labeled constant with units. Thus, trying to specify a number
such as

probability 75 percent
will result in the parser generating a syntax error.

. When numbers are compared using the operations (> < >= <=) or
their complements (~> ~< ~>= ~<=), both numbers must be of the
same type and have the same units or label; if not, an error
occurs.

. When numbers are added (+) or subtracted (-), both numbers must
be the same type with the same units or labels.

N When numbers are multiplied (%) or divided (/), they must both
be labeled constants with identical labels, or unit constants
(units do not have to be identical), or one of the numbers must
be a simple number.

. The exponentiation operators (") and (**) require that the

exponent be a simple number with an integer value; the other

operand can be a number of any type.

9.3.3 Operations on Numbers

In the following operations, a number refers to a number element,
an Integer refers to a simple number with an integer value, and an
element refers to an arbitrary element.

an element is a number

an element is a positive number
an element is a negative number
an element is a simple number

Sy
f;pébz

.‘I

)

>
&
)

[
, T T
PN

»>

PN
AN
Iﬁﬂ(#-

ey
i ¢ ;‘ g

o

.,
Z

SR
. E{E}

4

Y
el
yy
{ N

a_»
)

s

2

b

rn'l'l.l
P '.- “n "-'
AT

>
<
.

Y

a)
5l’l
Al

‘./I
P Al ok o

& NS
['¢
“y

Y
[
b

R

o8
PR
r

.
’

‘,_'

VNI
:"- '-"v ‘v”"
s o

LA

4

g
»

.

Nt
"4:“]
»

’
e

.o

I)
."'.n. -_'-_

5550
X4

]
»

9.3 Numbers 164

S R

-

an element is an integer

an element is a positive integer
an element is a negative integer
an element is a unit constant
an element is a labeled constan’

The above predicates conclude true if element is a number
element with the prescribed properties.

NOTE: The integer properties refer to simple numbers only.

'y Y RIYLYE
oy !'J',"..T

the units of 2 pumber

%

Produces a name element representing the units of number.

the label of a number

AT AL

Produces a name element representing the label of number. gﬁ

i

a number * a number o

a number - a number 24

a number * a number ¥

a number / & number A
a number ~ an integer |

a number ** an integer }:

<t

ROSIE provides the above infix arithmetic operators: }5

-

precedence associativity operation gh

Sk right (exponentiation) |

* / left (multiplication and division) :'J.;

ke left (addition and subtraction) B

o

The label and units of the numbers to which these operators are A
applied must be compatible according to the following rules: g

o

®* When numbers are added (+) or subtracted (-), both numbers :{:

must be of the same type and have the same units or labels. EE

The result is 2 number of the same type with the same units NG

\B

or labels.

* When numbers are multiplied (¥*) or divided (/), they m st
either both be labeled constants with the same label or both
be unit constants with comparable units, or one of the two
numbers must be a simple number. The result is a number that
has the appropriate label or units.

A B

|

P

. |
-

r

O O N N N P MR SO PO N TS NS MO P P e P A 0 0 N N SO A LS O S O N 20 0 T PO T T e M W N M T

9.3 Numbers 165

* The exponent operation (") and (**) requires that the
exponent (i.e., the second argument) be a simple number with
an integer value. The other operand can be any number type.
If it is a labeled constant, the result retains the same
label. If it is a unit constant, the units also will reflect
exponentiation.

If the above constraints are not met, then the error message

Illegal arguments:
element op element

will be generated.

a number [~]>[=] a number
a number is [not] greater than [or equal to] a number

& number [~]<[=] a number
a number is [not] less than [or equal to] a number

The following special sentence forms are available for comparing number

elements and have the obvious results. Comparisons can be made only
between numbers with the same units or labels, otherwise an error occurs.

Concludes true if number is greater than or equal to Jower bound

! a number does range from a lower bound to an upper bound
|

} and less than or equal to upper bound.

|

the numeric value of a2 number

Produces a simple number representing the value of number.

| the absolute value of @ number

Produces the absolute value of number, preserving units or labels.

the negation of a number

Produces the negation of number, preserving units or labels.

the floor of a number

Produces the floor of number, preserving units or labels.

» NS AN

‘
~ '

Re e R e R R o _0at Bar @t 0.0 0.0 4,0 2.0 A B R b e bih f o d b h e o B e B RV AU AV T Talotel ol a8 tal Vol of el

¢
.« e, 4w
AL
- \'.--'.‘S

'-&?‘\Yq'-‘

OREAL RN TRTR R T A AT RN Y RERERI P
Tttt B S L S A W Ot

x
-‘ p]

}\.’
NAA

~

N ¥,

[oR ¢
"t'
N

o,
4

>
AY

t
.n,{,
LY
Uy

" 1“\"\4"" ‘e
ﬁrfa.:ﬁi
» .'.“.l".l l?’

.
)
b3

4
&
A

9.3 Numbers 166

the ceiling of a number

Produces the ceiling of number, preserving units or labels.

the square of a number

Produces number ~ 2.

the square root of & number

Produces the square root of number as a simple number.

"

N

the [arc]sine of & number [in radians] . _.
the [arc]cosine of & number [in radians]
the [arc]tangent of & number [in radians]

N

I
hY ‘F"\I\" l(‘

Produces simple numbers representing various trigonometric values of
number in degrees (by default) or radianms.
the [anti]log of a number

Produces logarithmic (natural log) value of number as a simple
number.

a number from s lower bound to an upper bound [by a step]

Produces successive numbers in the specified range by step
(defaults to 1). All numbers must have the same units or labels.

%

~w
J“. - .
an integer from a Jlower bound to an upper bound [by a step] s N
4.‘.\._ -
PR Yy
Produces successive integers in the specified range by step Gb;%

(defaults to 1). Each integer must be a simple number with an
integer value.

'
’

riAS S

a random number from a lower bound to an upper bound

LA

S_‘. ‘. 4
1"

Produces a random number within the designated bounds.

L A T gt P Lo

ALK P T W AR Y WS N U U N WU U U U T I U T T T VU U T U I VU T SO U WU WIS W WO O T U v WOy T gty LUp" 3p e 18 ¥ e

P
- 4
-
.-'l'
9.4 Tuples 167 W
o,
S,
A
9.4 TUPLES .t_,'- 4
' * 20
<tuple> ::= < [<term> [, <term>]*] >
o
A tuple element represents an ordered sequence of elements (i.e., a :NA:
vector of elements). A tuple is delimited by a pair of left and right ;:f
angle brackets (< >») and is composed of zero or more terms separated by 5,
commas. For examy “e, the following are all valid tuples (s
< > R
<1, 2, 3> o
<the mayor, 33.5, < >> DI
=iy
When evaluated, the terms of the tuple will be evaluated in order ‘]
from left to right; the resulting values will appear in the tuple. The .
evaluation name of a tuple consists of a left angle bracket, followed by '.-;)
the evaluation names of each element in the tuple separated by commas .::-d'
and terminated with a right angle bracket. :.":G
Saoe]
.) =y
9.4.7 Operations on Tuples NN
In the following operations, a4 tuple refers to a tuple element, and f"_{j
a position refers to a simple number with a positive integer value no A
greater than the length of the tuple with which it appears. vy
v
P RSACS
a tuple is empty e
Concludes true if tuple contains no elements, e.g., ;;J"',‘\
L
<4> If <> is empty, display yes. ;:"::
YES RN
A
Yy
L o
the le 3jth of a tuple STV
NNt
il
Produces the number of elements in tuple. S,
Y,
| oot
| a member of a tuple [from a position] T
| R
f Produces successive members of tuple starting with the element ENN
‘ at position (defaults to 1), e.g., i
.~:..-::
<5> Display the member of <a, b, c>. ANy
A QN
i <6> Display every member of <a, b, c>. AN
‘ A A
B ~h
C R
<7> Display every member of <a, b, c> from 2. e
B e
c ~

l-‘.
O
Y
O A P L P R A et T Y A A T T L e W N
A V N ﬁ}‘ﬁii‘l‘:\'.\':\ﬁ'-{\t&ﬁ\‘:‘.'C\'.ﬁ:',.s.(\.‘f\'a.{uﬂ R X MO A AL X

9.4 Tuples 168

the member of a tuple at a position
Produces the element of tuple at position, e.g.,
<8> Display the member of <a, b, c> at 2.
E9> Display every member of <a, b, ¢> at 2.
B
the first member of a tuple
Produces the element in the first position of tuple, e.g.,
<10> Display the first member of <a, b, c>,.
A
the second member of a tuple
Produces the elemént in the second position of tuple, e.g.,
<11> Display the second member of <a, b, c>.
B
the last member of & tuple
Produces the element in the last position of tuple, e.g.,
<12> Display the last member of <a, b, c>.
C
a tail of a tuple [from a position]

Produces successively shorter tails of tuple from position
(defaults to 2), e.g.,

<13> Display every tail of <a, b, c>.
<B, C>
<C>

the tail of a tuple at a position

Produces a tuple of all elements in tuple from position,
inclusive, e.g.,

Pt

yrrll

A}
1}

vy
XN

e
XN

A

Tl
L4

-

-..4
€T
[2 U I I]
1'-‘l'.‘
0l

ot

NN

Iy
.
.
£_a

a
Pol'4
& %y

4
N

¥,
}‘:"ri

| S

e

. '.’;4'.:.r
..‘ 2

433&
L 2P

S

LS4 A

a
LS

PR PO

s

b2 gl A% B At Al A o ¥ Ao A% A% gt AT 4%, Mo Ale Rue B¥. A o Ria 4 o f-a f o A a4 4 1'a 2 & B AS A 2.0 doll AP A8 L 0 B % B 0 Ra% Rot 5. A, 82 _fa _J

9.4 Tuples 169

<14> Display the tail of <a, b, c, d> at 3.
\ <C, D>
the reverse of & tuple

Produces a tuple containing the elements of tuple in reverse
order, e.g.,

<15> Display the reverse of <a, b, c>.
<C, B, A>

the concatenation of a tuple with & tuple

Produces a tuple containing the elements of the first tuple -,
>
followed by the elements of the second, e.g., oy
N
g
<16> Display the concatenation of <a, b> with <1, 2>, e
<A, B, 1, 2> it
E
- A
the tuple containing each <description> ".f:'.r
A
"
Produces a tuple containing every instance of <description>, e.g., :51;
s
<17> Display the tuple containing each integer from 1 to 5.
<1, 2, 3, &, 5> ot
R
S
sort a tuple in ascending order S
| sort @ tuple in descending order P
Sorts the elements of tuple; destructively changes tuple, e.g., ;f
I. ‘
LN
<18> Let the tuple be <1, 2, 3, 4, 5>. ﬁf}
<19> Sort the tuple in descending order. S
<20> ? S
{ GLOBAL Database | '
<5, 4, 3, 2, 1> IS A TUPLE. o
Tuple must be a tuple of comparable numbers. Zf};
R
.‘:'J
‘_"f
sort a tuple in ascending pair order
sort 4 tuple in descending pair order Ay
|-\‘
oo
Tuple must be a tuple of tuples where the first element of :;5:
each component tuple is a comparable number, e.g., 3;$
AN
<21> Let the tuple be <<1, A>, <2, B>, <3, C»>. A
AN
.‘.\:.
=
.‘\':
N
.I’}-'

170

9.4 Tuples

<22> Sort the tuple in descending pair order.

<23> ?

[GLOBAL Database |

<<3, C>, <2, B>, <1, A>> [S A TUPLE.

)
A

Se,- I\}..'L
el A

.n. "

o

by » T NS Y559
Ve NN TN
a -\-\)\f.\l‘*‘ -ﬂ\)\ P4 \.-- -\ .\ . r\f\f\’

LR A

j G
PN XA .-\ww\...n\-f\-*\'

'. -\-v\.i\ f\-'\--wﬁ‘\a
ror Ll lL,

'..\'nfnf-'_-...q.'-q‘--...

R

';J"I'J"I,'J".f'

“p .f'f.:’- e

’~4‘ Ny

‘o Ty .’.. .-
¥ o'

‘If Ilf~f

s Wy +* e,

,'bq,'» AT A -‘,-".:_.

>

1

SEENEE X B 3 A A o aummm § & &

PR WS Ny,

P I W

~ar ar &

9.5 Strings 171

9.5 STRINGS

<string element> ::= <string>

<string> ::=""

1% Yeoce”

A string element is a sequence of characters delimited by double
quotes ("), e.g.,

:

Vay

"This is a string"

T X B

Sl
X

"Please respond now:

N

Strings distinguish between uppercase and lowercase characters. Several
features are being introduced in ROSIE 3.0 that greatly increase the
functionality, expressiveness, and performance of strings as well as
operations on strings.

In previous versions of ROSIE, the string element was simply
implemented as the string data type (i.e., a one-dimensional character
array or vector) of the underlying LISP system. ROSIE 3.0 implements
strings as two-dimensional ragged arrays, permitting strings to be
conceptualized and manipulated as rectangular blocks of text.

Additional features include: fixed and free formatted strings, extended
string formatting capabilities via the pattern element; augmented string
syntax; automatic coercion of elements into strings; and operations for
coercing strings back into other element types.

e

9.5.1 Formatted Strings

Strings come with a new format attribute. A string may be tagged
as having either a fixed, free, or mixed format. The format of a string

defines the manner in which the string will appear on an output device. 53
There is only one significant difference between fixed and free format -JQ
strings, namely, the placement of line breaks. Free format strings may :ﬂ%

contain no explicit end-of-line character; line breaks are introduced as
needed to fit the text to the line length of an output device. Fixed
format strings are assumed to be "user formatted"; users may specify

-

o

"

where line breaks are to appear. Mixed format strings are composites of o
alternating fixed and free format strings. ﬂk

S

s
A

o e

"
v,

Fixed format strings subsure the concept of string found in earlier
releases of ROSIE. Unless otherwise specified, strings appearing in
code are, by default, fixed format. Such strings are useful for
developing tables or other textual structures in which the proper
placement of line breaks is significant.

Free format strings contain no explicit line breaks and conform to
the line length constraints of the target output device. For instance,
supposing the file "testfile" had a line length of 30, then statement <3>

.
-

<r 3 -
| Tme

2

L

- - - S—— s‘
n-nnannnannnnnanxnxnxnannnﬁﬁnhnﬁxnanxnxnxnxnxaxnxxxuinrxwxxx;!xwxnsh;huxjnxk:xxﬁjuijmxmj\i\yuily\iﬁ;M\%}ﬁ;m;$iﬁﬂ

Py e LS ‘u‘\‘v y W T P TN Y T W % e LY e e T e e T
Y A ™ g T P A = p AT LT

9.5 Strings 172

below would write the string to "testfile", inserting a line break before
format to avoid running off the end of the line.

<2> Open "testfile" for output.

<3> Send {Free format 'Strings may be tagged
with a format."} to "testfile".

<4> Close "testfile".

<5> Type "testfile".

Strings may be tagged with a

format.

Every output device is assumed to have an associated line length
accessible to ROSIE. ROSIE is not extremely sophisticated about
introducing line breaks and has only limited knowledge of punctuation
and no knowledge of hyphenation.

Mixed format strings enable the construction of blocks of
alternating fixed and free (or free and fixed) format strings. When
sent to an output device, the free format components will be contoured
to fit the device, while the fixed format components will be output as
is. ROSIE does not place a line break between alternating fixed and
free format strings. If needed, such breaks must be specified by the
user.

ROSIE supports the ability to coerce fixed format string into free
and free format strings into fixed. However, once a fixed format string
has been transformed into a free format string, there is no way to
recover the formatting information (i.e., placement of line breaks,
indentation, etc.) of the original string.

9.5.2 Strings and Patterns

String and pattern elements are closely related. Pattern elements
(discussed in Section 9.6) describe languages of strings. When this
language describes one and only one string, then the pattern can be
coerced into that string.?

By the above definition, the reader may consider strings and
patterns to be, at a conceptual level, instances of the same class of
data element. A string is simply a pattern that describes a language
consisting of itself. This is a significant notion because it permits
strings to inherit the considerable expressive and representational
power of patterns.

’In most instances, coercion is automatic. This is because string
representation is more space efficient. Strings dare easily coercible
back into patterns.

e
.
EAL A S ut

T I
a

' X}
‘

9.5 Strings 173

9.5.3 Extended String Syntax

Among the changes to strings, ROSIE 3.0 supports an extension to
the lexical syntax of strings. This extension allows strings and
patterns to be specified in a succinct form that enhances both their
clarity and readability.

The extended string syntax is recognized during tokenization (i.e.,
the lexical analysis phase of parsing ROSIE source code). When the
tokenizer encounters a double quote ("), it begins reading a string. If
a matching double quote is encountered before the end-of-line character,
the tokenizer creates a string token of the form "ccc", where ccc are
the characters appearing between the opening and closing quotes. Thus,
when reading

"This is a string"

the tokenizer will recognize it as a string token.

I1f, however, the end-of-line character is encountered first, the

tokenizer assumes an instance of the new extended string syntax, the e
result of which will be a sequence of tokens designating a pattern ol
element. For example, scanning iqx
1

"East is east and west is west, s

and never the twain shall meet" e

generates the tokens

{ "East is east and west is west" , CR ,
"and never the twain shall meet' }

These tokens would then be parsed as a pattern that is coercible into a
string of the original form. Additionally, terms and subpatterns may be
embedded in strings by delimiting them with matching left and right
curly braces.

For a precise definition of the lexical analysis of strings, see
Section 2.2.4.

Pt |
eLa

9.5.4 Operations on Strings

.
E‘ 3, I(J,A-
A - __l";?

¥
=

In the following operations, & string refers to a string element, a
pattern refers to a pattern element, & file refers to a string element
that names a text file to which a channel has been open (see
Chapter 11), a name refers to a name element, and an element refers to
an element of arbitrary type.

Unless otherwise specified, any element can be used as & string;
the element will automatically be coerced into a string by applying the
following rules:

I R R R R T N S e W W N O W W A I A W M W Y W Y e P 2 P T P PR 7 M M AL A WA L e T (";& E

[5% =

9.5 Strings 174
1) If the element is a pattern that describes a language of one
and only one string, the element is coerced into that string.

2) If the element is a pattern that describes a language of more
than one string, an error occurs.

3) If the element is any other type of element, its evaluation
name is coerced into a string.

LARARAS S s T

3

4
the length of a string ?
Produces the number of characters in string. §
- iy
the uppercase of a string .rj
)
W
Produces a copy of string with all alphabetic characters in upper 'é
.
case, e.g., g
<2> Display the uppercase of '"3.4 is a real number".
"3.4 IS A REAL NUMBER" o
¥
N
the lowercase of a string
Produces a copy of string with all alphabetic characters h
in lower case. o
o
b

the string from an element

=

Coerces element into a string using the rules specified above, e.g..

<]

<3> Display the string from 'John is a man'. 4

"'JOHN IS A MAN'" -

<4> Display the string from "{the man} is a man". gf

"JOHN is a man" yﬁ

o

the element from a string ﬁ

Produces an element obtained by parsing string as <term> and
evaluating the results, c.g.,

<5> Display the element from "<{the unit}, {the force}>".
<BATTALION #5, 1600>

String must be syntactically recognizable as <term>, and its
evaluation must result in an element.

9.5 Strings 175

the name from a string

the number from a string
the pattern from a string
the tuple from a string

the filesegment from a string
the class from a string

the description from a string
the proposition from a string
the procedure from a string

o

2o WP -

o

Like the element from a string, the above generators cause string
to be parsed as <term> and evaluated, e.g.,

« K
o o -

<6> Let the speed limit be 55 miles/hour
<7> Display the number from "the speed limit".
55 MILES/HOUR

= -

S,
&

If string cannot be parsed as a term or does not evaluate to the g

correct type of element, these generators return nothing, e.g., .
L=

<8> If there is a proposition from "bogus string",

display yes, otherwise display no. EF
NO e
it
providing a mechanism for type checking. éj
&
evaluate & string [against timer] o
‘|.d
Parses and evaluates string as <rule>. This means that string t;

5

must be syntactically recognizable as such, e.g.,

<9> Evaluate "display hi.'

HI :
3
If the against timer option is given, then the time it takes &ﬁ
to evaluate string (less parse time) is displayed after evaluation, 5d
e.g., P
<10> Evaluate "display hi." against timer. =
HI ::
b
Elapsed time = 0.017 sec *'&\s

send a string [to a file]

Outputs string to file. File must be open for output or an
error Occurs.

' S LRSS

PR EEFA

|

O A R A A N 8 A DA A D A A O TR A AR R o T L A DAl D R

9.5

Strings 176

print & string [on & file)

pri

b

Equivalent to send with the system switch $PRETTYFORMAT
turned on.

If string is specified using a pattern element, its arguments
are coerced into strings without surrounding double or single quotes
and output in lower case, e.g.,

<11> Send { 'plaintiff did suffer "a loss of one eye'"', cr}.
"PLAINTIFF DID SUFFER "a loss of one eye''
<12> Print {'plaintiff did suffer "a loss of one eye"', cr}.

Plaintiff did suffer a loss of one eye

The first letter of string will be capitalized automatically.

nt g name as a4 string

When $PRETTYFORMAT i< on, every instance of name will be
output using string, e.g.,

<13> Print John Brown as "John Brown".

<14> Send {'the plaintiff did suffer "a loss of one eye"', cr}.
"JOHN BROWN DID SUFFER "a loss of one eye''

<15> Print {'the plaintiff did suffer "a loss of one eye"
John Brown did suffer a loss of one eye

', er}.

match a4 string against a pattern

Invokes the pattern matcher to compare string against pattern.
If the match succeeds, any variable bindings indicated in pattern
are performed, otherwise, this action does nothing.

a string is matched by a pattern

Concludes true if string can be successfully matched against
pattern, false otherwise. If the match succeeds, any variable
bindings indicated in pattern are performed.

TN A \‘J,\:_-.:,u:_ \\.,_ :

b

" DRN
r L
AR

'y‘i.ﬁ,‘*:‘s“:"-::
s & a4 v ¢

AN AAAN Y

WL

9.6 Patterns 177

9.6 PATTERNS

<pattern element> ::= { <pat disj> }

<pat disj> ::= <pat conj> | <pat disj>
::= <pat conj>

<pat conj> ::= <subpat> , <pat conj>
::= <subpat>

A pattern element supports tasks of creating, comparing, and
otherwise manipulating strings. Patterns allow programs to specify
languages of strings recognizable by a finite automata. In this way,
patterns represent a virtual set of strings (i.e., the set of all
strings belonging to the described language). A pattern that describes
a language of one and only one string can be coerced into that string.
More significantly, any pattern® can be coerced into an augmented form
of nondeterministic finite automata (NFA) for recognizing strings that
belong to its language.

Patterns were formerly a special construct in ROSIE available only
as an argument to input/output (I/0) and string matching operations. In
an effort to simplify and clarify the language, patterns have been
reimplemented as a data primitive. Patterns remain the key construct
underlying complex I/0O and string manipulation operations.

A pattern is essentially an extended form of regular expression
(RE). Patterns are specified as a sequence of subpatterns delimited by
left and right curly braces ({ }) and separated by commas (,), denoting
concatenation or coniunction, and vertical bars (|), denoting
disjunction. One feature of patterns not found in REs is the inclusion
of a form of logical variable called pattern variables. Pattern
variables can be used to extract fields of text from strings being
matched and to further constrain the language described by the pattern.

9.6.1 Generating Text
When a pattern is used to generate a string, each of its component
subpatterns is coerced into a string. These substrings are concatenated
in sequence to form the resulting string. For example, the patterns
{"The value is ", 3 + 7}
{John, " does like ", the class}

“This applies as well to any string; a string is conceptually a
pattern describing a language containing only itself.

|

<

]
P _Sm 4

-
N
.

«x
“ %

W EREIRRISE W

A
BN

=

-

AT X
g <€ 22

s

E

L A T S B A A A RS TR Y

9.6 Patterns 178

{"Airfield: ", the airfield, " Target: ", the target at
that airfield, CR, " Capabilities are ", the capabilities

of that target, CR, " Vulnerability is ", the vulnerability
of that target)

respectively generate strings of the form,

"The value is 10"
"JOHN does like ACCOUNTING"

"Airfield: MIROW Target: MUNITIONS ASSEMBLY AREA
Capabilities are 100 PERCENT
Vulnerability is EXCELLENT"

9.6.2 Matching Text

When a pattern is used for testing whether a string belongs to the
language described by the pattern, each subpattern represents a
restriction on a distinct substring of the string being matched. The
following examples illustrate some simple patterns and the strings they

can match:
Pattern Matches
{"Dear ", anything (bind X), ","} "Dear John,"
"Dear Sir,"

"Dear Lucy Brown Butler,"

{3 numbers, "-", 2 numbers, "-", 4 numbers} "563-08-4582"
{3 or more letters, {";"|":"|","}, 1 blank, "fILE: 1245<cr>"

1 or more numbers, CR} "Los Angeles, 90025<cr>"

A pattern can be matched against a string, the characters of a text
file, or input from the user's terminal.

Subpatterns are separated either by commas (,), which represent
conjunction, or vertical bars (]|), which represent disjunction. Logical
blocks of subpatterns may be delimited by a set of curly braces. Both
commas and vertical bars are right associative. Commas have a higher
precedence and therefore bind more tightly than vertical bars, e.g.,

{a,b,c]|1,2,3|x,y,2}

and

A
20
LA

{{a,b,c}|(1,2,3}|{x,y.,z}}

FARS
X7

are equivalent.

v

»
-

A AR

3 a_n_4&
PR XA
R T E A

ALl

..
s

Y) , R A T T T N R T R R R O T N L,
R, L TN T 0, A SV o O A P Ay S PRI RN

9.6 Patterns 179

A pattern variable, when specified, will be bound to the substring
matching the subpattern with which it is associated. For example, when

{"Dear ", anything (bind X), ",™
is matched against
"Dear Lucy Brown Butler,"

the pattern variable X, which is associated with the subpattern
anything, will be bound to the string "Lucy Brown Butler". Pattern
variables allow programs to extract fields of text from the matched
string.

Pattern variables also provide a way of further constraining the
language described by a pattern. When the same pattern variable appears
more than once in a pattern, the pattern will match only the target
string if the pattern variable can be bound consistently (i.e., to the
same substring). For example, the pattern

{anything (bind X), " equals ", anything (bound to X)}
will match "3 equals 3" but not "2 equals 3". Thus, pattern variables
extend the formal descriptive power of patterns beyond ‘e -ular

expressions.

9.6.3 Subpatterns

<subpat> ::= <bind spec>

::= { <subpat> [, <subpat>]* }

::= { <subpat> [| <subpat>]* }

::= FREE FORMAT <subpat> [, <subpat>]=*
::= FIXED FORMAT <subpat> [, <subpat>]*

::= BOX <subpat> TO WIDTH <term>

1

PAD <subpat>

LEFT JUSTIFY <subpat> [<dimen>]
RIGHT JUSTIFY <subpat> {[<dimen>]
CENTER JUSTIFY <subpat> [<dimen>]

[T}

LJ [<term> [BY <term>]] : <subpat>
RJ [<term> [BY <term>])] : <subpat>
CJ [<term> [BY <term>]] : <subpat>

= QVERLAY <subpat> ON <subpat> {<coords>] [<padding>]

9.6 Patterns 180

ADJOIN <subpat> [, <subpat>]*

<integer> [OF] <subpat>

<integer> OR MOPE [OF] <subpat>
<integer> OR LESS (OF] <subpat>
<integer> OR FEWER [OF] <subpat>

<char class> [[NOT] IN <term>]

ANYTHING
SOMETHING

LINE(S]

RETURN[S]
CR[S]

CODES (<integer> [, <integer>]*)

CHARCODE <term>
= CONTROL <term>

BACKSPACE[S]
BS

BLANK[S]
DELETE[S)
END

EOL(S]
ESCAPE[S]
PAGE[S)
QUOTE[S])
TAB[S]

. . “e e s ee

<bind spec> : <subpat> (BIND TO <bind form> [AS <bind type>)])
<subpat> (BIND <bind form> [TO <bind type>])
BIND <subpat> TO <bind form> [AS <bind type>]

<subpat> (BOUND TO <bind form>)

‘f

<bind type> ::= A NAME

:= 4 NUMBER

.= A STRING -

.= A TUPLE]

.= A PATTERN NN

:= A CLASS _:‘_'J":J:

:= A DESCRIPTION SR

:= A PKOPOSITION RY,%¢

:= A PROCEDURE T Y
ote
ROA
w».\ﬂ
DI
YR
-'.\

WA

R R Y A, A T s AR v, P A AT AT 1K, S 6

3

9.6 Patterns 181

A FILESEGMENT

oo s

AN ELEMENT
<dimen> ::= TO LENGTH <term> [AND WIDTH <term>]
:= TO WIDTH <term>
<coords> ::= AT < <integer> , <integer> >
<just> ::= STARTING LEFT

STARTING RIGHT
CENTERING

[NON] ALPHANUMERIC(S)
[NON]BLANK([S]

[NON] CONTROL(S]
[NON]DIGIT(S]
[NON]LETTER([S]
{NON] NUMBER[S
[NON]NUMERAL[S]

<char class> ::

R R RN

0

CHARACTER(S]

This section describes each of the legal subpattern forms, many of
which take subpatterns as arguments. Some subpatterns permit the
description of languages containing more than one string; an error
occurs if an attempt is made to coerce such subpatterns into a string.
Other subpatterns are supplied primarily to format text; such
subpatterns must (and automatically will) be coerced into a string
before they can be used for matching.

Commas and Vertical Bars

The extent of a subpattern or a group of subpatterns can be
delimited with a pair of curly braces ({ }). Subpatterns within curly

braces can be separated by either commas (,) or vertical bars (}]). 3 k.
LAY

. : : . .‘|

Commas can appear in subpatterns used for generating text, in which ;h N

they denote concatenation, or matching text, in wrich they denote !
conjunction. Vertical bars, denoting disjunction, can appear only in ksw

subpatterns used for matching text. Commas have a higher precedence

than vertical bars; both are right associative. The use of commas and
vertical bars is described as follows: ‘}:
{ <subpat> [, <subpat>]* } -

When used in generating text, concatenates each <subpat>. If the

-y A Py S
"u.il.lq\.'t'-‘io'lu V‘ Wy ! - B e}

B LV AP A" RS 2 e s M AT A R P agn L P R e) L W W e 2 Y "y LN
“«. -- Q) "{”’f '..A ."I.' f.’ .F""f" 2 ol 0‘!!

T R TR Nt T Gy VF G SR
R T 2 o ot e VW A A ot

9.6 Patterns 182

<subpat> are not all the same format, returns a mixed format string,
otherwise returns a string of that format. Treating strings as
rectangular blocks of text, concatenation appends the characters of
the last line of one string to the first line of the next.

When used in matching, specifies that each <subpat> must appear in
succession in the string being matched.

{ <subpat> [| <subpat>]* }

May only be used in matching operations. Specifies that one of the
<subpat> must appear in the string being matched. Matching is done
independent of <subpat> order.

Text Formatting Subpatterns

The following subpatterns are provided primarily for manipulating
free and fixed formatted strings. They are intended for text generation
rather than matching. They may, however, be used in pattern matching.
When one of these subpatterns appears as a component of a pattern meant
for matching text, it will be coerced into a string before it is passed
on to the matcher. This means that such a subpattern must be coercible
into a string, i.e., embedded subpatterns that can be used only to match
text will cause an error at runtime.

Many of the following support operations on fixed format strings.
For these operations, it is best to think of a fixed format string as a
rectangular block of text.® The number of lines in such a string is
known as its length, and the number of characters in its longest line,
its width. Likewise, a free format string can also be thought of as a
rectangular block of text, but with length always equal to 1.

free format <subpat> [, <subpat>]*

Each <subpat> is concatenated into a single free format string. If
any <subpat> is a fixed format string, it will be coerced into a free
format string, i.e., user-defined line breaks will be discarded.

NOTE: When this subpattern is not the only component of a pattern, it
should be delimited with a left and right curly brace, e.g.,

{(free format subpat, . . . }

*Internally, fixed format strings are implemented as two-
dimensional ragged arrays. Each row represents a line of text, and all
but the last row is followed by an implicit line break--the actual end-
of-line character is introduced by the output routine and does not
actually appear in the string.

N %y I T AN IR AT S L
o v A L) L) L)

-

DAL FE
YOOCLOLY

-

-
b S

RISy
RSN S

LKA
LX Ny i

1

[]
L n s

/.1 .’..’ 4

,l

9.6 Patterns 183

to avoid confusion to yourself as well as those trying to read your
code.

fixed format <subpat> [, <subpat>]*
Each <subpat> is concatenated into a single fixed format string. 1If
any <subpat> is a free format string, it will be coerced into a fixed

format string--no line breaks will be inserted into this string.

NOTE: When this subpattern is not the only component of a pattern, it
should be delimited with a left and right curly brace, e.g.,

{fixed format subpat, . . .}

to avoid confusion to yourself as well as those trying to read your
code.

box <subpat> to width <term>

Intended for coercing free format strings into fixed format strings
where no line of the string exceeds a given width.

If <subpat> is a fixed format string, generates that.

If <subpat> is a free format string, it is coerced into fixed format
string. No line of the resulting string will exceed <term>
characters, where <term> must evaluate to a positive integer.

If <subpat> is a mixed format string, then box is applied to
each component, and the results are concatenated into a single fixed
format string.

A,

'-.-:'.'.-

pad <subpat> :ri
i

Intended for squaring the ragged edges of fixed format strings. :ﬂﬁ

If <subpat> is a free format string, generates th-t. A0

If <subpat> is a fixed format string of width N generates a };:;
similar string with all lines of length N, padding on the right j{{{:
with blanks. s‘:w

If <subpat> is a8 mixed format string, then pad is applied to each
component string, and the results are concatenated into a new mixed
format string.

v"‘o".c ¢".0 v . ,o‘.n\.t X) v N " .. \f“l " f\I\' s \-P\' "I.'

9.6 Patterns 184
|':"

:'«‘:

(XN

(| left | right | center |) justify <subpat> [<dimen>] ,:v.:';‘
"

<dimen> ::= to length <term> [and width <term>] N

= to width <term> X

N

Intended for generating rectangular blocks of text from <subpat> Qﬁ.

in which lines are filled from the left or the right, or in which
characters are centered on each line.

Generates a fixed format string with no ragged edges. The resulting

string will have the dimensions specified by the length and width \J’
options, whose arguments must evaluate to positive integers. If the)
length or width dimensions are not given, then these values will hﬁ
be the length and width of <subpat>. o
If <subpat> is a free or mixed format string, it will be boxed to o
fit the width of the resulting string. vmi
0
Characters from each line in <subpat> are copied into the et
corresponding line of the resulting string. If the dimensions of fbﬁ
<subpat> exceed the dimensions of that string, <subpat> will be
truncated. o
>
!
Left justification copies characters from left to right, e.g., :i
3
{left justify "abc" to width 5} NN
generates "abc ". If necessary, truncates characters on the TR
right. t*&é
)
\J
Right justification copies characters from right to left, e.g., S?t
~ ,‘
W
. " " . e
{right justify "abc" to width 5)
" " ('\ ;
generates abc”. If necessary, truncates characters on the S
et
left. AN
l'$
Center justification copies characters from the center out, e.g., :@~¢
{center justify "abc" to width 5) Y,
watd]
generates '~ abc ", truncating characters on the left and right a_': XN,
as required. If a line in <subpat> will not center exactly, the odd e “:
character is pushed to the right. :\Jd
- g
LJ {<term>] [by <term>] : <subpat> R$:»
RJ [<term>] |by <term>] : <subpat> Q;:‘
CJ [<term>] [by <term>] : <subpat> {§5|
.
Shorthand notation for the justification subpatterns described above. hi»
The [<term>] option designates length, and {by <term>], width. NN
"
LNAR
A
e
A

9.6 Patterns 185

overiay <subpat> on <subpat> [<coords>] [<padding>]
<coords> ::= at < <term> , <term> >

<padding> ::= starting left
::= starting right
: 1= centering

Intended for superimposing one string on top of another.

Generates a fixed format string with the dimensions of the second
<subpat>. The characters of the resulting string are copied from
both <subpat>; characters from the first replace characters of the
second where overlap occurs, e.g.,

{overlay "Mr. John" on "Mr. Bill Brown"}
generates "Mr. John Brown”.

Both <subpat> are coerced into a fixed format string if they are not
already in this format.

If the <coords> option is given, it must be expressed as a tuple of
two positive integers, specifying some column and row position in

the final string, respectively. Once the characters of the second
<subpat> are copied into the string, the characters of first <subpat>
will be copied into it starting after the specified column and row
position, e.g.,

{overlay "John" on "Mr. Bill Brown" at <4,0>}

generates "Mr. John Brown". The coordinates default to <0,0>,
specifying the upper-left corner of the string.

The <padding> option specifies the justification for characters

copied from the first <subpat>. Starting left copies characters from

left to right, truncating on right; starting right copies from

right to left, truncating on the left; and centering centers {‘

)
characters, truncating on either side and pushing the odd character
to the right. N
o3
L%)
, . . Yy "‘
adjoin <subpat> [, <subpat>]* NV
N \
Intended for concatenating corresponding lines from each <subpat>. . -
€ P
. o
Each <subpat> that is not a fixed format string is coerced into a - \3
fixed format string. :} |
'\t \
Generates a fixed format string whose lines are the concatenation of o) *\

corresponding lines of each <subpat>, e.g.,

R R D A A N A N N NI O A

9.6 Patterns 186 o

{adjoin {LJ by 30: :.’«'.
{free format "Hoping to trim the $130 billion
U.S. trade deficit, the IEEE and

the National Bureau of Standards Zﬁﬁ

jointly explored the need to make'}}, !

{LJ by 30: o
{free format "communication with Japan, the primary n’i:c,

economic competitor of theé United
States, a \"first priority.\" To

discuss these concerns, the..."}}} *;
generates &) ;::;
s
"Hoping to trim the $130 communication with Japan, the K
billion U.S. trade deficit, primary economic competitor -
the IEEE and the National of the United States, a 9y
Buresu of Standards jointly ''first priority." To discuss i
explored the need to make these concerns, the..." :#ﬂ
The <subpat> do not need to be the same length. Each <subpat> is ’ ?
treated as being the length of the longest. The empty string (") {
is used as the extra lines of any <subpat> that is shorter than this. Bﬁv
"N)
NOTE: When this subpattern is not the only component of a pattern, it Ll-{
should be delimited with a left and right curly brace, e.g., . 9
tye!
{adjoin subpat, . . .} o
"
(X
to avoid confusion to yourself as well as those trying to read your : \:
code. b ~E
.“0

Text Matching Subpatterns

o
The next set of subpatterns allows users to describe a virtual set 'nj?
. "
of strings. These subpatterns may appear only as components of patterns fﬂ“:
against which strings will be compared. ,j -
v
<integer> or (| more | less | fewer |) [of] <subpat> :
MNAR
Intended to match against a variable number of instances of <subpat>. O
o

<integer> Or more specifies <subpat> must appear at least <integer> .
consecutive times in the string being examined. :

<integer> or less (or fewer) specifies <subpat> must appear P
no more than <integer> consecutive times in the string. RGN

NN N e =g = N o S g

- < . e m A L ALY N
".' '.0"10 l.". '20.‘.. ".0~o‘~o. KaY n\ lc‘ n'. .'l‘!'.‘ﬂgl KV N o0 Y, S ¥

9.6 Patterns 187 A

<char class> [[not] in <term>] ,:,:;-:
(R 3
Al
<char class> ::= [non]alphanumeric(s] Kt
::= [non]control[s] X ‘:f“t'
::= [non)digit(s] ".9;:5
::= [non]letter(s] ",:.':t,::
::= [non)number(s] ,-‘:‘.:f..
::= (non]numeral(s] L0ATS
::= [non]blank[s] A
e
:= character(s) Vit
"y #at
. .1 5f4¢
Intended for matching individual characters that fall in or out of ﬁ%gy
a particular character class. waﬁ
itte
The following character classes are recognized. Each class specifies .
a set of characters to which a character being matched can belong. ,z‘:
These include: POy
i
o\
letter -- a-z and A-Z; $$%\;
et
digit -- 0-9 i
number .
numeral : |::.‘:
. ot
L alphanumeric -- any letter or digit; A
.‘G
L
control -- any control character, i.e., <ctrl>A-Z;
A
N
blank -- the blank space character; s
~Jn
[" -,
character -- any character. x'
: l'gi
Preceding a character class with the prefix non designates its '
inverse (i.e., any character not in that class). The optional .{Egﬂ
suffix § is included to enhance readability and has no other ﬁxe]
significance. o
508
The [not] in <term> option, in which <term> must evaluate }Qw"
to a string, posts additional restrictions on the matching process. If
in <term> is used, the characters matched must also appear as one i]
of the characters in <term>, e.g., :c\i
P
character in "0123456789")
NN
, . . W
is equivalent to digit. The inverse is true for not in <term>, e.g., oy
- ; oL
character not in "0123456789 .u:" ‘
N J
R e
i

is equivalent to nondigit. o
(1

K
R
T
9.6 Patterns 188 %

. '~

g

anything | ‘:

[.5
Equivalent to .

A
{0 or more characters not in (EOL}} ’ "
. v
4
where EOL is the end-of-line character. i
th’
. 3
something A
Equivalent to D
{
d {1 or more characters not in {EOL}} >
Ko
v
: , s
NOTE: Neither anything nor something will match beyond the R
end-of-line character. This is to ensure that the matcher does not scan g
an entire text file before discovering that a match fails. For matching :\ﬂ
beyond the end-of-line character, use the line subpattern. N

5.

line[s] ,.

e
Equivalent to o

e

{0 or more characters, CR}

N
Matches all characters up to and including a line break. gi:

fo

Y

Subpatterns for Both pY
The next set of subpatterns specify single instances of a string *\aa

and may be used for text generation and matching. i*’
2%

<term> B

At
Intended to introduce arbitrary expressions into a pattern at runtime.

:\ix
<term> may evaluate to any arbitrary element. Unless it returns a -:d:
string or a pattern, the evaluation name of the resulting element is ;xjx
coerced into a string. (&.;
For generation, the value of <term> is inserted into the resulting -

-

string. If <term> evaluates to a pattern, it is first coerced into
a string; if a string, it is left as is; if anything else, its
evaluation name is coerced into a string.

75

,'

.,;,;_
T

For matching, the value of <term> is coerced into an NFA and linked
into the NFA of the pattern. Thus, the value of <term> is used in
matching. If this value is a pattern or string, it is turned into

TyYUvYA Y
AP
I{‘: o

>

. L
wa
.l:'.v:"
".!"o?
9.6 Patterns 189 B
0
Ve
an NFA, and linked into the nattern; if anything else, its evaluation S*i
name is coerced into a string, turned into an NFA and linked into AN
the pattern. S
\J
S
<integer> [of] <subpat> (éﬁ
\J 4
Wy
) !
Indicates <integer> iterations of <subpat>. Kk
For generation, returns the string that results from concatenating 4};:
<subpat> with itself <integer> times. A
£
For matching, <subpat> must appear in the text <integer> consecutive "l
times. A
ljr'—’_.
o« A
return(s] S
CR[s] als.
L
Intended for matching or generating a line break. oYY

M
v
Lo A

For generation, forces a break between lines of text. Since strings
are implemented as two-dimensional arrays, this does not actually

o
e’ x
v
> .
L
e

7,

place an end-of-line character in the resulting text. Rather, it j{:
specifies that succeeding characters should appear in the next row of NS
the array. VSe
For matching, matches against an end-of-line character appearing in N
the text. x:_\::
:‘-"..:"
To generate a string that actually contains the end-of-line ?fzf
character, see EOL below. NSy
Y
quote|s) -_,}:,.':
KAC
yo¥
Matches the double quote character ("), or generates a string that :jaﬁf
contains a double quote. N,
al
codes (<integer> {, <integer>]*) .jgjﬁ
]
Each <integer> is assumed to be an integer value representation of :j:“:
some character, e.g., ASCII. Matches or generates the string of N
characters specified by these codes. -
pAaiNe
Inverse of charcode. _::,.\
o
LYy

NOTE: For the following, assume ASCII character representation. pLo

9.6 Patterns 190

backspace(s]
bs

Equivalent to {codes (8)}, i.e., <ctrl>H.

blank(s]

Equivalent to {codes (32)}.

end

Equivalent to {codes (4)}, i.e., <ctrl>D.

When matched against text in a file, matches the end-of-file :a\
character. tﬁu
",

N

When matched against a string, matches the end of the string. tf\
LY

When matched against text from the terminal, matches a <ctrl>D typed
by the user.

7
o

»
s

EOL[s]
Equivalent to {codes (10)}, i.e., <ctrl>J.
This subpattern should not be used to insert line breaks in strings.
It is provided for cases, such as the anything and something

subpatterns, where a string must explicitly contain the end-of-line
character. o

escape|s]

esc Y
?‘,\'-(
82
Equivalent to {codes (27)}.
A
formfeed|s] 2-:':' A
Page(s] A
|~'I

' o‘"!

. -

Equivalent to {codes (12)}, i.e., <ctrl>L.

s

e e |

tab(s]

7{: (r ld

-
o

Equivalent to {codes (9)}, i.e., <ctrl>I.

.’.
-
o

¥

S

k)

'1::’-' {{‘-’.

AT AT N A AT 4 ".\ﬂ »1\' .'\" - -'..('\'.-.r, . -"",‘ G) T . f.'-’;-‘;.;‘ f.}f" '.('- ;-,‘v,;l P J' . .’.'..(A

oINS L

9.6 Patterns 191

charcode <term>

control <term>

9.6.4 Pattern Variable Binding

cat Pal S8 B Al TR VoR fod Tl o X ol

Intended for matching or generation a string of characters in their
integer (machine) representation, e.g., ASCII.

Characters in <term>, which will be coerced into a string, will be
converted into their integer representation. For instance, the
pattern,

{charcode A B C"}

will generate the string "6532663267", given an ASCII representation.

Inverse of codes.

Intended for matching or generating a string of control characters.

Characters in <term>, which will be coerced into a string, will be
converted into control characters. For instance, outputting

{control "G"}

will beep the user's terminal.

<bind spec> ::= <subpat> (BIND TO <bind form> [AS <bind type>})
<subpat> (BIND <bind form> [TO <bind type>])
BIND <subpat> TO <bind form> [AS <bind type>]

<subpat> (BOUND TO <bind form>)

<bind form> ::= <atom>
THE <description>
<description> ' S <term>

THAT <class noun>

<bind type> ::= A NAME o
= A NUMBER o
= A STRING e
= A TUPLE g
= A PATTERN -'5-'}
= A CLASS -
= A DESCRIPTION I
= A PROPOSITION by
= A PROCEDURE Sy
= A FILESEGMENT R
= AN ELEMENT ey,

L TS

e A AR L A N I LTI I T e T T I R T T T S A A A A A L SRR EC R S S AT
N N A e G A T N Y, 1 T A N N A R R R L O T

&
S
9.6 Patterns 192 !
\
l
]
Any subpattern may appear in a bind spec. This causes the portion h}
of the text matched by the subpattern to be bound to a pattern variable »
specified by the bind spec. If the same pattern variable appears in 08
another bind spec later in the pattern, then the matched substrings must b
be equal in order for the pattern match to succeed. If a <bind type> o
specification is given, then ROSIE will attempt to coerce the substring oy A
into an element of that type. ~@
The numerous variations for the bind spec are provided to enhance h
readability; they are syntactic sugar and semantically equivalent. The oo
(bound to <bind form>) bind spec is intended to be used in the second NN
p (and third, and fourth, etc.) occurrence of a pattern variable, e.g., :ﬁ‘
o
ht
{3 or more digits (bind N to a number), "-", anything (bound to N)} il
. " B
b will match "59483-59483", binding N to the number 59483. ;:
"A.,
. cp: . N
9.6.4.1 Pattern Variable Specification :“":i
Y
'r“'f
The <bind form> component of a bind spec designates the pattern b
variable. This designation may be done with either a one-word name, a iy
description introduced by the, or an anaphoric reference to such a f:'
description, e.g., o~
AN
e
(bind N) o
(bind the reply) n
(bound to that reply) _—
When a one-word name is used, it explicitly names the pattern :ﬁﬁ‘
variable, much like the <desc var> component of description syntax names -}h
a description variable. After a successful match, the value to which :ﬁ{
this variable is bound can be referenced outside of the pattern using a -
rule variable of the same name. 5y
e
When a description is used, it implicitly names the pattern ;;’
W%

variable via its associated description variable. This variable may be
referenced anaphorically in a later bind spec. After a successful
match, the value bound to the pattern variable will be stored in the
database as though the action,

P

1.
hY $'~'\

let the description be value

LY

S

‘l

were executed, e.g.,

”
g

<2> Match "Mr. John Brown" against
{"Mr. ", anything (bind the man), end} and
display that man.
"John Brown"
<3> ?
[GLOBAL Database |
"John Brown' IS A MAN,

,
A
AL

B

- L S R 2NN N SR AT TN I I T ISR I]

v, 7, .f o« ."-.-‘-.f_'f__-" ’I X '--‘_’.’. ..“ .-, - .‘f.'l_..». .~'.-‘\:_.- R L L U LI At ..-..‘. DU g St

9.6 Patterns 193

The value bound to the variable can be referenced outside of the pattern
as a reference to the description.

NOTE: An anaphoric term can be used only in a bind spec if it
references & description used in an earlier bind spec. The reference is
treated as designating the pattern variable of the earlier bind spec.

9.6.4.2 Conversion of Bound Substrings

If given, the <bind type> component tells the pattern matcher to
coerce the bound substring into an element of the designated type. The
default type is string, which requires no conversion.

Conversion to the bind type is done after the pattern successfully
matches the text. Conversion is accomplished by parsing and evaluating
the bound substring and then checking whether the resulting element
matches the prescribed type.

If it does, the pattern variable will be bound to this element, and
if not, the pattern match fails, e.g.,

>

<4> Match "Mr. John Brown" against

“ _'. °d
]
‘.

{"Mr. ", anything (bind the man to a name), end} and A
display that man. S
JOHN BROWN SN
<5> 7 R

{ GLOBAL Database]

JOHN BROWN IS A MAN. o)

:v:_!.
~

The bind type element accepts any substring that can successfully be b \
coerced into an element. NN
A

9.6.5 The Pattern Matching Process

A

String pattern matching is a nondeterministic, data-driven process.
When a stream of characters from some input device (i.e., a string, a
file, or the user's terminal) is matched against a pattern, the pattern
matcher triggers success as soon as it recognizes a string belonging to
the language of strings described by the pattern. If a pattern can

match a string in more than one way (e.g., the pattern Efxaf
'\'.\..

[" own . . e

{{3 digits, "-", anything (bind X)} | L)
{anything (bird X), "-", 3 letters}) {:_':::".

" " " " :\’.N."

could match "123-abc” in two ways, one binding X to "abc", the other o
binding X to "123"), then the exact manner in which the string will be N
recognized is not defined; no attempt is made to ensure "order of f:;z
recognition” or preserve the ordering of disjunctive subpatterns. :;33

« € 5

&ﬂ ‘. * ﬂ
"% " , "." "
A 505 %%S

AR A
S

. n ” 03 - o AR SLRN AR QU T T N e e S L,
P o'l‘o-‘q'to".n MO N 0"'0"‘.0 q ~ N N * AN ..‘ Y ol

e

9.6 Patterns 194

ROSIE's matching operations, such as read and match, accept a
pattern as an argument. They redirect I/0 to the desired input stream,
construct an NFA® from the pattern, and pass the NFA to the pattern
matcher. The pattern matcher interrogates the NFA as it reads
characters from standard input, simulating a nondeterministic search
through space of strings in a breadth-first manner.

The NFA is represented as a cyclic graph, the nodes of which are
called states. There can be three types of transitions out of any
state: (1) character transitions, which are followed upon recognizing a
particular instance of a character; (2) class transitions, which can be
followed upon recognizing an instance of a character class; and (3)
epsilon transitions, which are not used for character recognition, but
provide a flexible mechanism for linking portions of the same state that
must be represented independently. A state may also be tagged as a
final state and as either starting or ending a subpattern of some bind
spec.

The pattern matcher operates by advancing a line of travelers
through the NFA. Each traveler is advanced until one encounters a final
state, which causes the match to succeed, or until the number of
travelers goes to zero, which causes the match to fail. Each traveler
maintains pertinent information about the particular route of the NFA it
follows (e.g., its state, how pattern variables have been bound along
the way, etc.).

Fetching characters one at a time until success or failure is

known, the matcher enters a cycle of advancing each traveler whose state i_t

has a transition on the character. When a traveler's state has several ri;?

valid transition for one character, it is cloned into enough identical ;\j'

travelers to follow each path. When no trancition exists, the traveler ,ﬁ:”
”,

is terminated. If a traveler reaches a final state, this portion of the
match succeeds. If no traveler can be advanced, the maich fails. The

match also fails if no final state is reached after reading the end- ’:,h
of-file character.’ AN
o

When a traveler traverses the states associated with the subpattern $}$:

<
N

of a pattern variable, it begins recording the characters it encounters.
When it exits those states, it checks to see whether it has previously

recorded a binding for that variable. If not, it binds the variable to :\A
the characters collected and continues on. Otherwise, it checks the ft: 1
characters recently collected against the characters previously bound; 3\,\’

if equal, it continues on, otherwise it terminates itself.

Lo

LI

*The NFA cannot be further reduced to a DFA (Deterministic Finite

oy

Automata) because pattern variables require structural information that N.:,
would otherwise be lost. ::}5_*_
"The last character of any string is implicitly the end-of-file AN

)

character.

E

£

. e o e s e e e e e e e e e e
N N A2 O I R R S N SN N AN I A I N AN N SN
N i) Aadl s

». Wy,

'u' 8. I"l'

> - ’ ey et - e e e N
e O T P i St it N R PO o AR RN I Py AT

9.6 Patterns 195

After a traveler reaches a final state, the matcher recovers from
that traveler all pattern variable bindings established during its
particular traversal of the NFA. The matcher attempts to convert each
bound substring into an element of the type specified in its associated
bind spec. Normally, the type is string, which needs no conversion. If
the type is other than string, the substring is parsed as a term,
evaluated, and the type of the resulting element compared to the type of
the bind spec. A mismatch in types causes the pattern match to fail.®
Assuming a successful conversion, the pattern variable is bound to the
resulting element such that it can be referenced outside the pattern,
and the pattern match ends.

Note again that through all of this, the pattern matcher never
checks for ambiguities in the pattern, nor does it specify the order in
which disjunctive subpatterns will be traversed. 1If it is important for
components of a pattern to be traversed in a predefined manner, it is
the responsibility of the programmer to eliminate possible ambiguities.

9.6.6 Example Application of Patterns

The two example rulesets below demonstrate how patterns can be
applied to generating and processing menus of variable length.

<2> List "menu".

To generate a menu selection for a list:
Private: a menu, a count.
[1] If the list is empty, return.
(2] Let the count be 1 and the menu be {1}.
(3] Send "[1] {the member of the list at 1}{cr}".
[4) For each member of the list's tail,
let the count be the count + 1 and
the menu be {the menu | the count} and
send "[{the count}]) {that member}{cr)}".
[S) If there is a selection from the list with the menu,
produce that response.
End.

To generate the selection from a list with a menu:
Private: a reply.
Execute cyclically.
[1] Send "{cr}Select one entry:
[2] Read "{anything (bind the reply)}{cr}".
[3] Choose situation:

if the reply is equal to "", return;

if the reply is not matched by the menu,

"

*If processing the substring results in 4 syntax or runtime error,
the match also fails.

e

o

e
P e

Aj;

s I

'y

?5 bPC

4
-

-
8.

SR

r ey
.

4.

.1

v
e et e

k'Y
N ‘u"

]

)
Y

P :_:4

e,

5 %

A
l."

é

4

b

Y

'4

ls l..
B N

Y

‘l '*

)
o .

LA

[

P

)

Ay

B,
O
S
‘ 9.6 Patterns 196 gl
. "'i.
| 1
b
send "{cr}Invalid response: {the reply}{cr}"; Ry
default: produce the member of the list o'y
(at the number from the reply). _
End. g::.fl‘.
.'l';"
I '5::'(
<3> Display the menu selection for <Drewitz, Mirow, Parchim>. fﬁﬂ}
IJ‘I‘,_-
[1) Drewitz
(2] Mirow ;’ ﬂa
[3] Parchim G

Select one entry: 2

Mirow AT
. : .) Lok
The first ruleset builds a menu from a tuple of possible choices. f}he
It passes that menu to the other ruleset that displays it and queries ;ﬁ;~
the user for a selection. Given a selection, the first ruleset produces :J:f
the selected member of the tuple. Byt :“n
'..."‘
[Ny)
9.6.7 Operations on Patterns
w L
.':.)\'
In the following operations, 4 string refers to a string element, 4 _:\ﬁ\
pattern refers to a pattern element, and & file refers to a siring ',?;:
element that names a text file to which a channel has been open (see ::{:.
Chapter 11). Additional operations on patterns that can be coerced into A,
strings are given in Section 9.5.4.
S
read a pattern [from a file] ERANS
NN
Reads a segment of text from file. AN
.-:f::-
Characters are input one at a time from file until sufficient i
text has been read to)
.f..
. ¥
1) recognize an instance of pattern, at which time }&ﬁh.
read returns successfully; or BALOS
ALY
v
2) recognize that no instance can be matched, at which
point read calls an error. ST
-'.‘d'
LN
Fields of the input text can only be retrieved via pattern variables. - :_
A
File must be open for input or an error occurs. ?: i

match & string against a pattrrn

Invokes the pattern matcher to compare string against pattern.
If the match succeeds, any variable bindings indicated in pattern
are performed, otherwise, this action does nothing. "

5 . « g v o A O T « - A RN COT R CER LTS LR . BRI
l‘.‘t'\.!‘l'..‘l‘.h ‘..'"'l .‘l‘.‘!‘&l"’i‘ ' ARSOE ‘ Ch e e ll n ‘! R n“';~ " \ o N "y Y "

9.6 Patterns 197

8 string is matched by a pattern

Concludes true if string can be successfully matched against
pattern, false otherwise. If the match succeeds, any variable
bindings indicated in pattern are performed.

SopreN
\’*l\l
v _v

ﬁ?i»}&.
A
‘ﬁ?b:.

]

"
ALY
PaCs

L4

preceding page blank - not filmed e

9.7 Filesegments 199 Z::‘,Ln“‘,;
\"'%'
"'r::‘i*:
9.7 FILESEGMENTS ":'.I:“;):'
‘l:u_\,g'
<filesegment> ::= ' <header> [, <rule spec>]
::= " FILE : <term> [, <header>] [, <rule spec>] : b
L]
A
<rule spec> ::= <jnteger> [<integer>] 5§%§
Kl
::= BEFORE <term> o
= AT <term> s
::= FROM <term> TO <term> e
::= AFTER <term> :_'.-»"
NSy
A filesegment allows users to identify and manipulate rulesets, é:)
program files, and portions of program files. Filesegments are provided -
primarily to enable users to manipulate pieces of code through program A3
control. Filesegments are used extensively by the file package and 2:?
break package operations. J¢'
o 2%
Filesegments are delimited by a pair of left quotes and optionally $‘ﬁ§
consist of a file specifier, ruleset header, and rule sequence
specifier, e.g., ;ﬁ;;
\.,\'\
g "o "o VAT
file: "animals Al
‘file: "animals”, [rule] 1’ W
‘file: "animals”, to apply a rule’ L,
‘file: "animals”, to apply a rule, after [rule] V'
‘to apply a rule, from 1 to 3’ 3."&
S 3
The first example specifies the entire contents of the program file ::ﬁbf:
called "animals”. The second specifies only the first file rule of that N,
file. The third specifies a ruleset from that file. The next, every b;},
rule from that ruleset between the first rule and the end statement,
exclusive. The last example specifies a sequence of rules from a AN
ruleset. -:*;N\
RGN
NOTE: In the last example, no file is given. In such cases, ROSIE -$\:\‘
fills in the file name automatically if the ruleset is known to the N
system. e
L3) \
9.7.1 Shorthand for Filesegments -}.{-&
:f ‘(“
The syntax of filesegments presented above is a feormal mechanism fhf\‘
for use in ROSIE programs. ROSIE also supports a shorthand syntax for 4}, }
naming filesegments. This shorthand is far more convenient and easy to -.
use than the formal syntax when manipulating program files from the top- "N
level monitor. MNote however that only rulesets in noticed program files i";‘:
(see Chapter 13) can be specified using the shorthand notation. ::::r
o

pwong
Text Box
preceding page blank - not filmed

&

o'?

9.7 Filesegments 200 X
. l:c

. ¢

With this shorthand, a file may be designated by the string that .Wq
names it, e.g., the filesegment ﬂ

‘file: "animals"' ’

and shorthand string o
l‘c:
"animals” RE
refer to the same program file. >Lj
[
A ruleset can be identified by a name element that matches some ﬂt‘
consecutive subsequence of the ruleset's name, e.g., the filesegment o
ALY
'to apply a rule’ A
» 5
which is named apply, can be specified with any of o
gt
apply R
pply ,
pl
etc. XY
[
If the shorthand matches more than one ruleset, ROSIE queries the user Q&
with each of the possibilities, c.g., :\'
a
pl => 'file: "animals", to decide if a rule does apply (Y or N)? N '
] . 1" . A} -
file: "animals", to apply a rule (Y or N)? Y ﬂ;
e
and allows the user to choose. ;:"
3
The shorthand syntax does not allow the specifications of sequences A
of file rules or ruleset rules. The file package operations, such as ‘
load, edit, and list, will accept both the formal syntax and the hv
shorthand. :::
o
Filesegments, their application in developing and maintaining f?
program files, and operations on filesegments are discussed further in bf
- &

Chapter 13.

9.8 Class Elements 201

9.8 CLASS ELEMENTS
<class element> ::= ANY <description>

A class element provides a limited deductive capability. A class
element is composed of a description preceded by the function word any,

e.g.,

any battalion
any colorless green idea
any rule which does apply to the situation

When encountered during the execution of a program, ROSIE either
produces the elements named by the description or tests an element for
inclusion among them.

When a class element appears as an argument of a proposition, it
acts as a ''wild card," matching any corresponding argument of similar
propositions that belong to the implied class. In addition, the matched
elements can be referenced anaphorically.

Class clements are typically used for deductive retrieval. For
instance, if deciding the truth or falsity of

any man does love Mary
when the database contains

John does love Mary
John is a man

ROSIE would conclude true. After this, the matched element John could
be referenced by that man. However, this is only one aspect of class

elements; class clements behave quite differently for database actions
that generate elements.

A class clement will never be produced by a description. 1f a
class element is encountered while generating the instances of a class,
then, rather than producing that element, each element named by its
description will be produced. This is to say, the "generate elements
from a descripticn' routine is called recursively on the class element's
description, o.g.,

<4 7
[GLOBAL Database |
MARVIN IS A MORTAL.
ANY MAN IS A MORTAL.
JOHN IS A MAN.
JOE IS A MAN.
BILL IS A MAN.

& o

At
ﬂl
o L

Y

oY
Al

B

_.,...
2TV =
oYY

!

X

¥

-\
<<%

V5" -{-
<%

14
»
v

Sl -
Seraes D

P .
s"'»"{-.:‘.‘;.:s .
LAY NS

A g
<,
.

f .
|~:'l

l: .
.l
>u N

”

Nata

9.8 Class Elements 202

<5> Display every mortal.
MARVIN

JOHN

JOE

BILL

This is also true for elements produced from a generator ruleset.

9.8.1 Motivation and Intended Use

The class element was motivated by the need for an efficient means
of retrieving specific components of affirmed propositions. For
example, if we know that each woman who works in Washington D.C. works
at a particular bureau, the class element any bureau coupled with the
anaphoric term that bureau in

For each woman who does work at any bureau in Washington D.C.,
display <that woman, that bureau>.

enables us to retrieve the corresponding bureau without iterating
through all bureaus in the database, e.g., as in

For each bureau,
for each woman who does work at that bureau in Washington D.C.,

display <that woman, that bureau>.

The primary application of class elements is in goal-directed
backchaining to test a proposition. This function is particularly
useful when much of the domain knowledge consists of a taxonomy with
intended property inheritance. The class element construct makes these
applications straightforward.

As an illustrative example, consider the following assertions:

Assert any thing which is mortal will die in time.
Assert any human is mortal.

Assert any Greek is a human.

Assert Socrates is a Greek.

While these will be stored in the physical database as
any thing which is mortal will die in time
any human is mortal
any Greek is a huwan

Socrates is a Greek

conceptually, a "virtual database" exists that includes the relations

Socrates is a human
any Greek is mortal
Socrates is mortal

AR
'h{'l‘ Y

-
‘\

s
B0

.-’

%W

AN
WA
o l - “'A

2

9.8 Class Elements 203

any human will die in time
any Greek will die in time
Socrates will die in time

The reader should note that although ROSIE will conclude that such
propositions in the virtual database are true, it will do so only if one
of those propositions is explicitly tested for, i.e., they will not
appear in the physical database as affirmed propositions. The net
effect of class elements is to trade computation time for efficient
allocation of memory.

9.8.2 Potential Pitfalls

There are several potential pitfalls associated with the
implementation of class elements. In most applications, a user will

never encounter these problems; they appear only as the use of class ;*
elements becomes more complex. This section discusses some of the ways .
in which class elements may create odd or erroneous behavior, and how :
such situations may be overcome or at least avoided. .
* Recursive definitions 9
It is possible to define classes recursively, e.g., :3\}3
D
any man is a man ;::?_:,
et
or, via & more circuitous route,
DY
[
any man is a human e
any human is a mortal teoe
any mortal is a man _\f.’;".
<
In either instance, a recursive definition is created that, if
undetected, could result in an infinite loop and, eventually, a stack
overflow error. ROSIE can detect circularities, such as those listed
above, which arise from affirmed propositions, but only when there
is no intermediate call to a ruleset.
When generating from a class element, ROSIE maintains a record of all
classes it has generated from in uninterrupted succession. If a A
class element is encountered that ROSIE has already seen, it is not ti:
generated from further. éﬁ
o . . o NG,
Unfortunately, it is not possible to detect all recursive definitions. ng’
If a ruleset becomes involved in the loop, e.g., -
To generate a man: ﬁ;(}
{1] Produce any man. e
End. ﬁ:ﬁ
RS

ROSIE will be unable to detect the problem and enter an infinite loop.

T

P

9.8 Class Elements 204

* As arguments to rulesets

A class element, like any other type of element, can be passed as an
argument to a ruleset. Once passed, it is stored in the ruleset's
private database as an instance of a formal parameter. At this point,
any number of problems can arise. The following are a summary of
common problems:

Situation 1--
Assuming the database is empty, consider the ruleset,

To decide if a person does love a woman:
[1] If the person = any man,

conclude true,

otherwise conclude false.
End.

invoked by
If any man does love Mary
Upon invoking this ruleset, the private database contains

Mary is a woman
Any man is a person

Executing the first and only rule of the ruleset will attempt to test
whether the value of the descriptive term the person is equal

to the element any man. A fatal flaw at this point is to

believe that the person will evaluate to any man; rather

it will try to evaluate to an instance of man. Since no such
instance exists, it will result in an error, i.e.,

No such element exists:
THE MAN

Situation 2--
Suppose the ruleset is defined as

To decide if a person does love a woman:
[1] If the person = John,

conclude true,

otherwise conclude false.
End.

and the database contains

T ot T T N O T AP E PE I R R LR
l..~ W .\-l."--l . O s SR AT UGS RN A o \J s X 3 PRIV, NN N W Y

AW

F R A
VY

uf "{\(\

.-

s |
PR |

* s ®
-

vy v
I".". .
ST *a

e
[

N A

o

&'.:'kd'. 7,
Py . P (.

". "- '.. I- ,-’
1 20 2N N]
= AN

f/l'!“.{.

L0
120

>
S

-

L

L

9.8 Class Elements

Jim is a man g
John is a man v
Jack is a man i

When invoked, the person would evaluate to Jim and the
test would fail.)

S 2

There are two ways to have the test succeed. One way is to rewrite s
the first rule as

If some person = John

which would generate all instances of person (and, thus, all
instances of man) until it found one equal to John. The
other is to rewrite it as

& o s
-~
Th Y

Y

If John is a person

oy

which would subsequently test the proposition 'John is a man' and
also succeed.

Situation 3--

Assuming the situation above, when we invoked the ruleset with

If any man does love Mary

what happens to the binding of any man's description variable? g

It gets bound within the first rule of the ruleset and unbound when 7.
the ruleset terminates. This means that the element generated by ;:

" any man cannot be passed out of the ruleset.

Situation 4--

Finally, consider

To decide if a man does love a woman:

2, [1] If some man = John,

- conclude true, “y

(otherwise conclude false. W
\ End. g

which, if invoked as before, defines the class of man recursively

‘ and would eventually be interpreted as defining the empty set. The =
3 equality test would, in course, fail. The only way to avoid this N
situation is not to use formal parameters that might conflict with v :
: classes defined outside of the private database. .:l
o L]
nd

L g
.

1%

&3

[VY

. -

’

v
.
v

-

r.s

P N

J'\

FOENE

Wk, e Py e
":’~al.~)'.) - AN , .'!‘. o o “p",

bt o o f ol)

Ly . - L . - . .
P L Y NSNS

9.8 Class Elements 206 N

While the above are only a small sample of the types of problems "
one might conceivably come across, this discussion should serve to LS
demonstrate that class elements can be problematic, and their -
application should be undertaken with care.

o

-
5H458YS

Y s

h A =
o
'fl“..

. --. ., -
l:‘l.'&

.
.‘ '

» O'Q,, !

T St) T I P o P O O O o g N e SRR W R o BV AT I TR SN
. ' M Sl okl | E Na R B X R o N

9.9 Intentional Descriptions 207

9.9 INTENTIONAL DESCRIPTIONS

'

THE <description>
<a/an> <description>
<description> ' S <term>

<intentional description>
1)

An intentional description represents reference to the elements
named by 'a description, similar in many ways to a class element. There
is one key distinction between the two. As seen earlier, class elements
trigger a deductive mechanism, one off-shoot of which is the inability
to retrieve class elements from the the database, making class elements
impossible to pass to more than one ruleset and difficult to work with
in a programmatic way. Intentional descriptions are not recognized as
possessing this special deductive property, and, thus, their use is not
as restricted.

Intentional descriptions provide a mechanism for temporarily
suspending the evaluation of descriptive terms. In a sense, intentional
descriptions act as an indirect pointer to a set of data elements,
conceptually serving a function that resembles "call-by-name" in ALGOL.

Intentional descriptions consist of a description, prefixed by one ;fﬁ
of the articles a, an, or the, and delimited by a pair of left quotes, o
e.g., o

‘e

'the equipment list’ "
'a command which is for time 100’
'the target's status' :_,_-.’

R

Intentional descriptions permit system builders to represent and relate Qf%}'
indefinite elements and generic concepts without requiring him to define :ﬁ:
explicit instances of them. The elements referenced by an intentional qf\A~
description may or may not exist, i.e., the set of elements described ;
may be null. S
9.9.1 INSTANCE OF... R

I' ‘h "\I

The set of elements referenced by an intentional description can be :;ﬂ;ﬁ
accessed via the instance of construct, e.g.,

NN,
<2> Let <t-shirt, boots, parka, hat> be the clothing list. :{{f
<3> Display the instance of 'the clothing list'. :}}:
<T-SHIRT, BOOTS, PARKA, HAT> g

<4> Assert Mirow is an airfield. ah
<5> Assert each of runway, munitions soft and munitions -~
assembly area is a target at Mirow.

v .
s

<6> Display every instance of 'a target at any airfield'. A
MUNITIONS ASSEMBLY AREA N
MUNITIONS SOFT RSN
RUNWAY IR
BN

Y,

AT

1-'-’\
o

0""-.

SN

L

A G L s G, N L L e T G A SO N AT R I AN T

e ~

9.9 Intentional Descriptions 208

Iinstance of is essentially an intentional description evaluator.
It acts as a macro that expands in place to the actual description used
in the intentional. The effect of this is to make the forms

instance of 'the description’
and
description

equivalent and interchangeable. As an illustration of this consider the
following.

<9> Assert each of Jim, Jack and John is a man.
<10> ?
[GLOBAL Database]

JOHN IS A MAN.

JACK IS A MAN.

JIM IS A MAN.
<11> Display 'a man'.
"THE MAN'
<12> Display the instance of 'a man'.
JOHN
<13> Display every instance of 'a man'.
JOHN
JACK
JIM ;
<14> If John is an instance of 'a man', display yes. phY
YES '-,"\\
<15> Assert Bill is an instance of 'a man'. -
<16> ? PR
[GLOBAL Database] A%
BILL IS A MAN. s
JOHN IS A MAN. ‘\{
JACK IS A MAN. :,?
JIM IS A MAN.
S,
:* '
<17> Deny Jack is an instance of 'a man'. e
<18> ? -
[GLOBAL Database | T
BILL IS A MAN. DS
JOHN IS A MAN. Lo
JIM IS A MAN. e
o
<19> Let the instance of 'the man' be George. ol
<20> ? A
[GLOBAL Database | ,:"‘ v
GEORGE IS A MAN. - :
"~
s
25
DS
N
RN
NN
(\
Fa Yo I
AT
.-:-\:'.
\'.\
R T e B TN T T LN e e LN 0 oMt e s a0, 00, 0 G L N, P S A A AN

9.9 Intentional Descriptions 209

9.9.2 The "Call-by-Name" Property

The "call-by-name" property of intentional descriptions permits
users to affect global relationships programmatically. As an example,
consider a generic facility for adding elements to a tuple. The action,

If the weather will be turning rainy,
include the rain gear in 'the clothing list'.

A}

uses the intentional description 'the clothing list' to implicitly o
reference a tuple of elements (e.g., <t-shirt, boots>); the rain gear is #”f:
an explicit reference to another element (e.g., parka). Invoking the ;?ﬁﬁ
ruleset 5;::
wAS

To include an item in a list: -
[1] Let the instance of the list be i\v,,.
the concatenation of such an instance with <the item>. c::'.ﬁ)
End. AR
,_v‘ Cal
will access the instance of 'the clothing list' and modify it to include DA

the new element. After executing the above rule, 'the clothing list’ will
reference a tuple containing <t-shirt, boots, parka>.

9.9.3 Operations on Intentional Descriptions

e T e)
Ay &y ,?
%

,\
s

In the following operations, & description refers to either an
intentional description or a class element, and @ database refers to a

2
r

name element identifying a database that, if optional, defaults to the ‘j:::

active database (see Chapter 10). NS
B
Sas

instantiate a description to an element [in a database]

v
4
A

&

Equivalent to executing

|

o)
IS
let the instance of the description be the element N
e
. . A
when database is active. :ﬁn’
'\ A
an instance of a description [in a database] Ry
i
Produces successive instances of description from database. RN
.f:..:
NOTE: If the databsase option is not given, instance of {;.:
can, if need be, call a generator ruleset. However, if database is -
given, elements will strictly be generated from database. 5:$$
Oy
o
'*‘-
NN
>

3

7

AR A
)

5

A
PEEL

[

(
o
¢

X

T T 0 I T O A A S P o G e N A N VA AR R R LT AR S A S NSt

hally A e e D ¢

9.9 Intentional Descriptions 210 Moy

an element was [not] an instance of s description [in a dstabase)
an element is [not] an instance of & description (in & database]

an element will [not] be an instance of a description [in & database) N
These propositional forms can be used alternately to assert, deny, or ‘\::
test that el/ement was, is, or will be an instance of description a
in database, e.g., iy

é
"

<2> Assert John is an instance of 'a man'.
<3> 7 -

[GLOBAL Database | -
JOHN IS A MAN. 2
<4> Assert Mary is not an instance of 'a man' in beliefs. ::i.
<5> Beliefs? Be
{ BELIEFS Database |} o R
MARY IS NOT A MAN. ._‘:
P\'
<6> If John is an instance of 'a man', display yes. r
YES sy
<7> Deny Mary is not an instance of 'a man' in beliefs. ot
<8> Beliefs? o
[BELIEFS Database] R
F}f'
I
ot
NOTE: 1f the database option is not used, testing these forms Ny
is equivalent to testing the propositions 0y
element was [not] a description :\'.
element is [not) a description Y
element will [not] be a description ey
I,
~
»
in that a predicate ruleset could be invoked to decide truth or falsity. ™
However, if database is given, then a test will strictly be applied =l
to the propositions affirmed in database. :-f
d
, QY
increment 4 description [by & number) [in a database) DA
decrement & description [by & number)| [in a database] '
Alternately increments or decrements the instance of description -
in database as with
AR
let the instance of the description in the database NG
be such an instance * the number <t
N
N\
S
~
'. »
CAC
S
:rf".'
ere,
VAN
Y
RIS
\'_\:.
ﬂi‘ -";,- VA N AN INAIAY -_.‘-_.-’-‘,-‘.h., ’ N -’-{‘-‘.x"_..'_ PRI ...n.;.‘_:-'_'.-_'.‘.;- "d‘v"'fﬂ‘.‘.‘.' cv e ."\..’-'~__._ °.

9.10 Intentional Propositions 21

9.10 INTENTIONAL PROPOSITIONS

<intentional propositions> ::= ' <proposition> '

An intentional proposition provides a means for treating
propositions as data. In this way, intentional propositions capture the
intent of a primitive sentence, which can then be manipulated through
program control.

An intentional proposition is designated by delimiting a
pioposition with a pair of matching left quotes, e.g.,

'John Smith was late for work'’
'the teacher did punish the student in class’
'7 is a prime number’

Since ROSIE permits programs to access, manipulate, and relate elements,
intentional propositions allow users to operate with basic relations.

As an example application of propositions, consider an assertion
such as

Midland Bank does believe 'Joe is interested in t-bills'

about the belief system of a bank. Two actions that use this can be
stated as

If any bank does believe any thing,
consider that thing as reliable.

If any bank does believe 'any person is interested in any security’
contact that person about investing in that security.

9.10.1 IS PROVABLY...

The is provably construct is a proposition form for asserting,
denying, and testing intentional propositions. This construct takes two
arguments, an intentional proposition and a truth value (one of true or
false) and alternately asserts, denies, or tests the proposition or its
complement.

As a demonstration of the is provably construct, consider the
following example pairs in which the semantics of the action in regular
font is equivalent to the action in boldface preceding it:

Assert 'John is a man' is provably true.

Assert John is a man.

Assert 'John is a man' is not provably true.

Deny John is a man.

I DO N M N N N M N o W W N M M MO T M W ML W WL WL W T TN WL W W U WL WU U U Tl WL W M T T W T T X T TR LR e T

Caldlavdd WRGERE IWRNSESEI IRKSS

*
F

&2

PR LA

3

o ol R for pp M0
© LT

-
" .

=

T
X

>~

e

TN

~

3|

e
A

y

RER

,
o

3|

(PP

4

L

9.10 Intentional Propositions 212

Deny 'John is a man' is not provably true.

Assert John is a man.

Assert 'John is a man' is provably false.

Assert John is not a man.

Assert 'John is a man' is not provably false.

Deny John is not a man.

If "John is a man' is provably true, display yes.
If John is a man, display yes.

If 'John is a man' is not provably true, display yes.

Unless John is a man, display vyes.

If "John is a man’' is provably false, display yes.

If John is not a man, display yes.

If "John is a man' is not provably false, display yes.

Unless John is not a man, display yes.

Since the is provably forms are propositions, they can also be used
as constituent relations of an intentional proposition, e.g.,

Assert "John is a man' is not provably true' is provably false.
which asserts 'John is a man'.
9.10.2 Operations on Intentional Propositions
In the following operations, a proposition refers to an intentional

proposition, and a4 database refers to a name element identifying a
database that, when used as an optional argument, defaults to the active
database (see Chapter 10).
an affirmed proposition [from & database)

Successively produces every affirmed proposition from database as

an intentional proposition element.
assert a proposition [in a database]

add a proposition to a database

Asserts proposition in database.

9.10 Intentional Propositions 213

deny a proposition [from a database)
remove & proposition from a database
Denies proposition from database.

a proposition is [not] provably true
a proposition is [not] provably false

When used as a predicate,
proposition is provably true

concludes true if proposition can be proved true from assertions
in the database or from a predicate ruleset, false otherwise; and

proposition is provably false

concludes true if the complement of proposition can be proved true
from assertions or a predicate ruleset, false otherwise, e.g.,

If "John is a man' is not provably true,

Unless John is a man,

If "John is a man' is provably false,

If John is not a man,
When asserted,
proposition is provably true

asserts proposition, and

o e

proposition is not provably true -
. o L
denies proposition, and N

o

proposition is [not] provably false

likewise asserts or denies the complement of proposition, e.g.,

Assert 'John is a man' is provably true

Assert John is a man

Assert 'John is a man' is not provably true

Deny John is a man

Assert 'John is a man' is provably false

hm.mmmmmmmmmmmumuuuuunx RN MO RN ML ML W T T P T e ﬂn.-m:m-m-ﬁ%

9.10 intentional Propositions 214

Assert John is not a man

Assert 'John is a man’ is not provably false
Deny John is not a man

When denied,

proposition is provably true
denies proposition;

proposition is not provably true
asserts proposition; and

proposition is [not] provably false

likewise denies or asserts the complement of proposition, 8.1

Deny 'John is a man' is provably true

Deny John is a man

o

)

Deny 'John is a man' is not provably true

Assert John is a man

Deny 'John is a man' is provably false

S e
(‘ .
P

Deny John is not a man

r

<

Deny 'John is a man' is not provably false

e

Assert John is not a man

a proposition is [not] true [in a database)
a proposition is [not] false [in a database]

Like is provably with the addition that database is activated
before proposition or its complement is asserted, denied, or tested.

NOTE: Unlike the is provably predicate, these forms will not
invoke a predicate ruleset to prove or disprove proposition; such
proof must come strictly from the assertions in database.

a proposition is negated

Concludes true if proposition is negated (i.e., contains the
word not), true otherwise, e.g.,

I A . . . B e i

AL

9.10 Intentional Propositions 215

<2> If 'John does not love Mary' is negated, display yes.
YES
the query from & proposition
Produces a string in which proposition is restated as a question, e.g.,

<3> Display the query from 'John is a happy man'.
"1S JOHN A HAPPY MAN?"

NOTE: 1If proposition is negated, the negation is ignored in the
resulting query, e.g.,

<4> Display the query from 'John is not a happy man'.
"IS JOHN A HAPPY MAN?"

R 2 M N R N R A Y R A N N N A A R G A

e
l-'

,
8

'«"""
[4
2

Al -
' Je Ju T Yo

e
P

P
L.
Py l"./l.
h)

'y, '.;l
P P
ALNYS

R SO

hJ

s
'g'ﬁl"
'lf

P XA

XAy

YN

"9
L]
A
]
s

B 2CH
o

0

[4
‘.'rﬁl‘a

preceding page blank - not filmed |

9.11 Intentional Procedures 217

9.11 INTENTIONAL PROCEDURES
<intentional procedure> ::= ' <procedure>

An intentional procedure enables users to treat the procedure
action type as an element of data. Intentional procedures capture the
intent of unexecuted actions, which can then be manipulated through
program control]l and executed at a later time.

An intentional procedure is designated by delimiting a procedure
with a pair of matching left quotes, e.g.,

‘'move USS Nimitz from Le Havre to New York’
‘broadcast the report’
‘'rendezvous with the strike unit'

‘1‘:\' '
A

o
‘

TN

[y
.

As an example application of intentional procedures, consider a
program that queues actions by some time metric, e.g.,

4

o

R
% :I
o
)

Assert ‘move USS Nimitz from Le Havre to New York' is
an action to execute at time 100.

Assert 'broadcast the report’ is an action to execute
at time 120.

Assert ‘'rendezvous with the strike unit’ is an action
to execute at time 150.

.

s P
P
DY

Uy
*

L)

5

Ll
-

amp
'x;-'i

%

2 %S 5h

and executes actions in the queue, e.g.,

~

N N A
L Ll

‘

For each action to execute at the current time,
execute that action.

L R NN
< v

LA

s,
h 3

9.11.1 Operations on Intentional Procedures

S

In the following, @ procedure refers to an intentional procedure
element.

g
A

£
o 4

‘Il

execute 4 procedure

AN
v/

444 o

¢ v

Execntes procedure, e.g.,

<1

l‘.:'
Lol
s

<5+ Execute 'display hi donna'.
HI DONNA

s/

.51.
A
R
X x_

5
(‘-’
7d

5
b)

Gh%

B
A

o«
N,
P4

.‘7
[}

‘r
’ . *,
0

P

R N G R T T A g T L T L UL RO T T SIS S T e Sy
:) .

- - -

.
,
.
.
.
¢
L 3
A
L[]
"
L
1]
”

pwong
Text Box
preceding page blank - not filmed

Y
- - v
|preced|ng page blank - not filmed | any
10. Database Mechanism 219 ']
Al
0N
SN
X. THE DATABASE MECHANISM ::’
T
The initial, intermediate, and final results of ROSIE programs are };3?
stored as affirmed propositions in ROSIE's database. Propositions can {: .
be asserted (affirmed in the database) and denied (removed from the :a“a,
database). It is possible to test the truth or falsity of a proposition - :
against the contents of the database as well as generate the members of v,
a class defined by affirmed class relations (i.e., propositions using won
the is-a copula). ::iti
_:.-"".
ROSIE's database structure actually consists of two conceptually '{(n{
separate layers. The first is the physical database, which contains A
affirmed propositions. The second is the virtual database, which -
consists of those relations that can be computed from other relations }:v;:
via ruleset invocation or a limited deductive retrieval mechanism .ﬂfi.
provided with class elements. tave
‘e)N
AN
ASALE
10.1 THE PHYSICAL DATABASE i
;ﬁi{
The physical database is used to store propositions. Propositions };ﬂ':
are affirmed under a three-valued logic system, i.e., a proposition is f&d
either true, false, or unknown. Additionally, the physical database can :fﬁi'
consist of up to three separate databases at a time. These databases NS

are tiered so that propositions in one may hide propositions in another.
ROSIE also allows users to create alternate databases, which may be
swapped in and out of context by program control.

10.1.1 Three-Valued Logic

Propositions are affirmed in the physical database using a three-
valued logic system. Within such a system, if a proposition or its
negation is affirmed, then the proposition is provably true or false,
respectively. Otherwise, the proposition is unknown and has an
indeterminate truth value.

This style of three-valued logic provides ROSIE with an "open-
world" assumption. It implies that ROSIE may not have complete
knowledge about a particular situation. In such cases, truth or falsity
will not be inferred from the absence of contradictory information.!®

'This does not mean, however, that assumptive bchavior will not
appear in a program. FYor instance, the action,

If John does lik» Mary, let John be Mary’'s boyfriend,
otherwise let any man be Mary's boyfriend.

executes its then-part only if the condition succeeds. 1f the condition
does not succeed, then the else-~part is executed; i.e., ROSIE does not
test if the proposition is provably false.

&
»

v

Ps .‘.f't'." Sl

5588 4% Yy
P)

‘:‘-l’\ L3/

¥

pwong
Text Box
preceding page blank - not filmed

\ARNAENRR X) la Ba® 0a% Uat hat gt (at t5" D TYXYE 84 o4 r IXE

g~

2

el

10. Database Mechanism 220 Q’
Y
N
>
10.1.2 Database Actions A
ROSIE provides four primitive actions for manipulating the physical L
database: assert, deny, let, and create. A user adds to the database :.:*
by asserting propositions, e.g., ool
ke
PRI PR LN,
assert USS Nimitz is docked at Le Havre .;; .
by assigning, via let, a distinct value as the one and only instance of N
a class, e.g., :\$
P
let the objective be Red River Crossing ;-.:'_
'
o)
or by creating a generic instance with create, e.g., 2520
ira
create a strategic command center o
oo
Propositions are removed from the database by denial, e.g., :uf
L
deny USS Nimitz is docked at Le Havre e
o
Note that denial is not retroactive, i.e., if the denied proposition was o
not affirmed in the first place, the deny action will have no latent gif
effect if the proposition is affirmed at a later time. X
10.1.3 Contradictory Assertions e
—_
The physical database is automatically kept consistent in regard to ;z}}
simple contradictions. A simple contradiction occurs when the :y?,
complement of a proposition being asserted is already affirmed in the iS:

database. 1In such cases, the affirmed complement is discarded in favor

‘\{‘\.

of the new assertion, e.g., B
Sy
<2> Assert USS Nimitz is docked at Le Havre. RN
PRt vy
[GLOBAL Database] :}:}
USS NIMITZ IS DOCKED AT LE HAVER.]
R
<4> Assert USS Nimitz is not docked at Le Havre. .
K
<5> 7 '.\:‘u
| GLOBAL Database] ;i :
USS NIMITZ 1S NOT DOCKED AT LE HAVRE. :::r
Kt
at
' , ; : . ol
ROSIE's ability to check for inconsistencies in the physical Nt
database is limited to immediately comparable propositions. It does not ..
include reasoning through the effects of rulesets or virtual relations, S
e.g., -
<6> Assert John does like any woman. :i:i
<7> Assert each of Mary and Sara is a woman. ow
<8> If John does like Mary, display yes, otherwise display no. '
YES ey
T
,‘_\3-. g
T >3
n‘.‘i (]
o a;'
:.:_\',-
N,
SN

,.r‘._- - Sy ".r\ _'- \"&" 1“l',.d'_“-_ f.-.'__.r \.r‘n"\-' \fﬁw\-‘\} ;.-F\‘_;.'_‘.'\'. . |
A A R ALt . g A

10. Database Mechanism 221

<9> Assert John does not like Mary.
<10> ?
[GLOBAL Database]

JOHN DOES NOT LIKE MARY.

JOHN DOES LIKE ANY WOMAN.

SARA IS A WOMAN.

MARY IS A WOMAN.

<11> If John does like Mary, display yes, otherwise display no.
NO
<12>

In this interaction, ROSIE will not catch the contradiction of
statements <6> and <9>. 1In such cases, the order of assertions
ultimately defines the truth value of the proposition in question.

10.1.4 Alternate Databases

Occasionally, a method is needed for partitioning data, i.e.,
storing different facts in different databases. This may arise because
we wish to model multiple points of view or because we want to restrict
attention momentarily to a subset of those facts that are most relevant.
To support such needs, ROSIE allows users to create alternate databases
and specify when they should be brought in and out of context.

10.1.4.1 Naming and Creating Databases

Every database has a name by which it can be identified. This can
be any name element; multiword database names are allowed. ROSIE comes
with a predefined database, named global, which functions as the global
database. The private database of a ruleset invocation (see
Section 4.2.3.3) is named private. An alternate database is named by
the user when created.

The user can create and subsequently name an alternate database
with the activate procedure, e.g.,

activate conclusions

which makes that database the active database. 1f no such database
exists, one by that name is created.

10.1.4.2 The Global, Active, and Private Databases

The physical database is structured such that three databases can
be in context at any given time. Conceptually, one can imagine that the
physical database has three slots that can be filled to form a composite
database. These slots are tiered, one on top of the other. When
accessing the physical database, ROSIE moves down through the database
in the topmost slot to the database in the lowest slot. This has the

AP AN AP RS IO A LT L N I R R N L I T T I T T W T N P o " L L R L L
I) o A A B A 1 S R A A X B T8 A AT IR Y TN

’ o
1 A
T g L

R

Y a e e
PR AR A
R TR

e Yot
o}

’ ':'.) .

“es" @
N ";'- Yt A

. \..':"'

Ly,

‘-

[$
|

l.'i. l‘

h e % Bl
* o
s

' x
=

o,
5’8

-

ot

2
3
v
0

S 2
.
PSSR

ve te e itk .t Ve b” ¥e ¥R 2 ¥a ¥a® S’ 02’ 8at Ra' €% 02 fat Bt fat @uh gab g0 9.0 08 a0 p t R 850070 80 05 0 08 1% 45 8's 42

10. Database Mechanism 222

effect that information at one level could obscure information at
another.

The slot at the lowest level is reserved for the global database,
which is always present. The slot at the highest level is reserved for
the private database of a ruleset invocation and changes as rulesets
come in and out of context. The middle slot is reserved for the active
database. This slot can be filled with any alternate database specified
by the user with the activate procedure. Thus, when searching the
database, ROSIE firsts examines the private database, then the active,
and then the global.

The global database is created whenever a ROSIE session is
initiated. It is intended to contain information that remains constant
throughout the execution of a program. When no alternate database is

active, the global database is treated as the active database. -ﬁ}
e
Each ruleset invocation is allocated a private database. Whenever N
an invocation is in context (i.e., has not been suspended by the ::;‘
invocation of another ruleset) its private database becomes the private v
database. A private database and the relations asserted into it are _—
discarded upon termination of the invocation. As noted in Section i}}
4.2.3.3, there are a number of restrictions on the use of the private f{*
database. In addition, the private database cannot be explicitly }:;,
activated or deactivated. el
The active database is maintained and controlled by the user's e
program. A user can bring alternate databases in and out of an active T
role with the activate and deactivate procedures. For instances, :yir}
RS
activate conclusions e
o

makes the alternate database named conclusions the active database. If
this is followed by

activate beliefs

the current contents of the active database will be stored under the
name conclusions, and the data stored under the name beliefs will become
active. The call

deactivate

will deactivate beliefs without activating any other alternate database,
making the global database active.

An alternate database can be 'temporarily" activated from within a
ruleset with the swap in procedure. Swap in remembers which database
was active at the time it was called. When the ruleset invocation
terminates, the original active database is reactivated automatically.
This is true even if the invocation is terminated due to an error,
making swap in an effective method for restoring system state.

AT TN

e

vfl

()

-
»‘ \ ‘f‘"n

10. Database Mechanism 223

10.1.4.3 Accessing the Physical Database

The database actions assert and deny are restricted to the active
database (and, in a limited form, to the private database). Tests are
made against the entire physical database. There is a set of database
operations such as

add a proposition to a database
and
remove a proposition from a database

that allows programs to specify the database in which particular
database actions are to be executed.

As an illustrative example, consider the following sample session:

(R)
{ ROSIE Version 3.0 (PSL) 26-May-86]

<2> Assert each of Jim, Jack and John is a man.
<3> Assert each of Mary and Sara is a woman.
<4> Assert any man does like any woman.
<5> ?
[GLOBAL Database |

ANY MAN DOES LIKE ANY WOMAN.

SARA IS A WOMAN.

MARY IS A WOMAN.

JOHN IS A MAN.

JACK IS A MAN.

JIM IS A MAN.
<6> Display every man.
JOHN
JACK
JIM
<7> Activate beliefs.
<8> ?

[BELIEFS Database]

<9> Global?
[GLOBAL Database]
ANY MAN DOES LIKE ANY WOMAN.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.
JACK IS A MAN.

JIM IS A MAN.
<10> Display every man.
JOHN
JACK
JIM
.. . ™ !‘. A U’Wf' -‘vl‘-I‘-'-)'-'-".'.‘:'4'-'}:\.':'."-'.'{\-'-'-I‘:'J'._' P -~ :-‘;-._:‘;_‘.'.._‘-__--.‘,?r:. "-':'.'.'

A
's. 7N,

SIS el

ENIN

’

i O

10. Database Mechanism 224

<11> If John does like Sara, display yes.
YES
<12> Assert John does not like Sara.
<13> ?
[BELIEFS Database]
JOHN DOES NOT LIKE SARA.

<14> If John does like Sara, display yes.
<15> Deactivate.
<16> ?
{ GLOBAL Database]
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<17> If John does like Sara, display yes.
YES
<18> Beliefs?
[BELIEFS Database]
JOHN DOES NOT LIKE SARA.

Statements <2> through <4> initialize the global database.
Statement <5> demonstrates use of the ? command to examine the contents
of the active database, initially global. Statement <6> accesses
elements of the database.

In statement <7>, we activate an alternate database named beliefs.
When we examine the contents of the active database in <8>, we find that
it is empty. Statement <9> shows, however, that our initial assertions
are still present in the global database, and statements <10> and <11>
show that these assertions are still accessible. Statements <12>
through <14> illustrate how we can overload relations in the global
database.

Statement <15> deactivates beliefs database, reactivating global
database. While statements <16> and <17> demonstrate that our actions
in the beliefs database had no ill effects on the contents of global,
statement <18> shows that we have not lost those assertions.

10.2 THE VIRTUAL DATABASE

The virtual database provides support for relations that either
cannot or should not be described by affirmed propositions. For
instance, relations such as '3 is greater than 2' are more practical to
compute than store. The virtual database consists of both predicate and
generator rulesets, and virtual relations.

TN Y T e e

LIS IS 'L y L] L L W, Ty RN AR LTV AL AR AT L I IS U5 D% T T T D 0 S e 2]
Za 7ty .l...l.“'.. .l.lu'w,. VW T S 0,5 N NN N NN MRS

L » NV % W

LSRN

.‘.'.l' ’
DA

N

)
<’

e

T ATl
[XA AN
fr‘x

)
l-J

N
e

a -.Q .. !
2e

o %

I 4

..-
ECA
.

1 4

Cr v o
SNy
1 _?"10 l
L Sl N

hi
i

.
LY

.
., 'l.'
4 ;’"

P
7

-ty A
Pt
A,

\.":;."r’?:.‘f | {?’,

’I
»
‘-

e,

[. Vo2 Ty T A .t 2% ath &t . (] a"R at’ aié 4t e s Bac O C 4% et A Lt BN

10. Database Mechanism 225 s,

Predicate and generator rulesets, discussed in Chapter 4, allow

users to define subroutines for alternately deciding the truth or il
falsity of a proposition, or producing the elements of a class. Virtual qu
relations, which are affirmed propositions containing a class element y '2
argument, e.g., D
any ship is a vessel .5:".'(
U ¥ e 28
give users a method for specifying relations that hold over a range of W
elements. I
T
The primary trade-off between the physical and virtual database is ::;}i
time versus space. In general, relations stored explicitly in the fkf§f
physical database require more memory than equivalent relations from the el
virtual database. Alternatively, relations derived from the virtual I
database require extended computation for their retrieval. ::::;
S
10.2.1 Predicate and Generator Rulesets ',"\.:;\
By
One component of the virtual database are relations that can be slﬁﬁh'
computed by predicate and generator rulesets. These rulesets are wN
invoked automatically when the physical database is unable to satisfy a 5\
request for information. Their results are treated as though formulated }\cs
from relations in the physical database. ;§ \
.
Predicate rulesets provide a means of deciding the truth or falsity riath
of a proposition through direct computation. When ROSIE is unable to —
prove or disprove a proposition from affirmed propositions in the ‘;tﬁ‘
database, ROSIE looks for a predicate ruleset for testing the N <~
proposition or its complement. If such a ruleset exists, it is invoked N
automatically and its resulting conclusion, or failure to return a AN
conclusion, decides the outcome of the test. For more information, see Db vy
Section 4.2.2.2. .
‘-‘;'-:'v
Generator rulesets are used to produce a stream of elements St
belonging to a class. When generating instances of a class, ROSIE first {ié’
produces all elements that satisfy a relation of the form :}}j
AP
element is a class
o T
in the physical database. Once all such elements have been exhausted, .%ﬁ\j
ROSIE searches the virtual database for a ruleset capable of generating f?:s4
additional elements of the class, invoking this ruleset if it exists. Ny
For further details on generator rulesets, see Section 4.2.2.3; for N A
further details about element generation, see Chapter 7. T
e
Rulesets, when defined, are stored in a single structure, ;::i:
accessible globally and indexed by their header. When ROSIE looks up a By
ruleset, it examines the global ruleset store for the appropriately f;:u:
identified ruleset. While individual rulesets may be enabled and N
disabled by program control, there is no way to scope or otherwise
partition the ruleset store. AR
e
RN
A
-‘\J\)
el

. . . o -
MO a0 Wit gt P e U N N

10. Database Mechanism 226

10.2.2 Virtual Relations

A virtual relation is a proposition that specifies a relationship
that holds for a class of elements, rather than for a single specific
element, e.g.,

any man is mortal
as opposed to

Jim is mortal
Jack is mortal
John is mortal
etc.

As observable in the above example, the key feature of a virtual
relation is the presence of a class element (e.g., any man). If a
class element appears as an argument to an affirmed proposition in the
physical database, or if a class element is embedded within an argument
of such a proposition, then that proposition is said to describe a
virtual relation. ROSIE recognizes class elements as implicit
references to any element that can be generated from its base
description. A proposition that contains a class element holds for any
element referenced by that class.

As an illustrated example, consider the following sample session:

(R)
[ROSIE Version 3.0 (PSL) 26-May-86 }

<2> Assert each of Jim, Jack and John is a man and
each of Mary and Sara is a woman.
<3> Assert any man does like any woman.
<4> Assert John does not like Sara.
<5> Assert any woman is a person and any man is a person.
<6> ?
[GLOBAL Database |
JOHN DOES NOT LIKE SARA.
ANY MAN DOES LIKE ANY WOMAN.
ANY MAN IS A PERSON.
ANY WOMAN IS A PERSON.
SARA IS A WOMAN.
MARY IS A WOMAN.
JOHN IS A MAN.
JACK IS A MAN.
JIM IS A MAN.

<7> 1f John does like Jack, display yes.

<8> If John does not like Jack, display yes.
<9> If John does like Mary, display yes.

YES

A

NI

e

é'\' \'
fl
". '.{\ 4 % 4

&]
N

X

L4

o

o

«SAA Y

#:?

s
]

oAy

LY
"o &

SO
A

f

»
"

v
e

x

. »
Qﬂéﬁﬂ

[/

Y W e R \‘. 'w‘(‘)fJ'-'Jl»‘!n".r‘*‘.?‘{:\-l:'.l“’"\{".h:‘.r'.f:‘ -_,\ A '(‘.-_:.‘_.-q.

10. Database Mechanism 227

<10> If John does like Sara, display yes.
<11> If John does not like Sara, display yes.
YES

<12> Display every person.

SARA

MARY

JOHN

JACK

JIM

<13> Display every person who does like Mary.
JOHN

JACK

JIM

<14> Display every person who does like Sara.
JACK

JIM

<15> Display every person who does like any person.
JOHN

JACK

JIM

<16> Display every person who does not like any person.

JOHN

Statements <2> through <5> initialize the database, defining a
class of man, woman, and person, as well as specifying a does like
relation that holds between instances of man and woman. Statements
<7> through <11> demonstrate the virtual relations in proving the truth
or falsity of propositions. Finally, statements <12> through <16>
demonstrate how virtual relations behave when used to generate instances

of a class.,

The example above points out an important aspect of class elements,
namely, delayed evaluation. If we had said in statement <5>

Assert every woman is a person and every man is a person.

then the propositions,

SARA IS A PERSON
MARY IS A PERSON
JOHN IS A PERSON
etc.

would heve appeared in the database when we made the query of statement
<6>. Since class elements act as placeholders for the individual
instances of a class, the effect of using the any construct is to delay
enumeration of all pertinent is-4 relations until needed. This is an
important property when all elements of a class are not known a priori.

L)
Y e

‘;;

Sl
'

P
)

ot

°, g ". e ’
e TN
.": l‘ l'

A8 A

bﬂ;f”.
! g

-

i
kY

"""-.'
2

l

.
»

vy
,.& 'xl‘-

7y

-G

10. Database Mechanism 228

A final observation that arises from this example is the
application of virtual relations as "default” relations. By placing the
assertion in statement <3> before any other assertion of the does like
relation, we have effectively made it the default; it will be the last
relation encountered when testing the truth or falsity of any
proposition concerning the does like relation, allowing us to test for
exceptions such as in statement <11>.

10.3 ASSERTING, TESTING, AND DENYING PROPOSITIONS

In this section, we provide a somewhat more precise definition of
what it means to assert, deny, and test a proposition. Whenever
asserting, denying, or testing a proposition, ROSIE first evaluates its
the arguments, i.e., its subject, object, and the objects of its
prepositions. ROSIE follows the appropriate procedures described below.

,3??'
Ui

*n
«

NOTE: If the proposition specifies a class relation, e.g.,

»

e

Red River Crossing is an objective which is strategic

)
N

&

then it potentially specifies a set of propositions, i.e., the base is-g
relation, e.g.,

Ay m
,{l
Y

<,
7

S
e
S

Red River Crossing is an objective

w4
'I -
[T T e

and the relations in the relative clause, e.g.,

<]

.
Red River Crossing is strategic '.;:

v,
o

. , o s <
In such cases, the following procedures are applied to each proposition tfﬁf
in that set, starting with the base is-g4 relation. el

Assertions--

To assert a proposition (initiating an assert event), ROSIE does
the following:

1) It checks for an assert demon monitoring assert events of the

given proposition, invoking the demon if it exists. D
e
Y

A

2) If there is no such demon or if the demon's invocation is #,ﬂi
terminated by the continue procedure, ROSIE proceeds to the ?ﬁ;i
next step, otherwise the assert event is aborted. th‘

L]

3) 1if the proposition or its complement has already been affirmed SR
in the active database, ROSIE discards the existing assertion. At
AN

. L , , P

4) ROSIE adds the given proposition to the active database, making ,}I;
it the most recent assertion. Sy
AV}

l- ...‘

R

NN

f%jN

o

s

-

R e e A T Wl AT AT
) L] . B . AJ)

10. Database Mechanism 229

Denials--

To deny a proposition (initiating a deny event), ROSIE does the
following:

1) It checks for a deny demon monitoring deny events of the given
proposition, invoking the demon if it exists.

2) If there is no such demon or if the demon's invocation is
terminated by the continue procedure, ROSIE proceeds to the
next step, otherwise the deny event is aborted.

3) If the given proposition has been affirmed in the active
database, ROSIE removes it, otherwise, no action occurs.

Tests~-~-

To test a proposition (initiating a test event), ROSIE does the
following:

1) It checks for a test demon monitoring test events of the given
proposition, invoking the demon if it exists.

2) If there is no such demon or if the demon's invocation is
terminated by the continue procedure, ROSIE proceeds to the
next step, otherwise the test fails.

3) ROSIE tries to prove or disprove the proposition by examining
all affirmed propositions in order of recency.

a) If the proposition being tested is affirmed, or if it can
be deduced from a virtual relation, then the test succeeds.

b) Alternatively, if the complement of the given proposition
is affirmed, or can be inferred from a virtual relation,
then the test fails.

4) 1If none of the above conditions is true, ROSIE looks up a
predicate ruleset that tests for the proposition or its
complement--only one or the other can be defined at one time.
If such a ruleset exists, it is invoked and its results decide
the truth or falsity of the proposition as follows:

a) If predicate tests for the proposition and concludes true,
then the test succeeds. If it concludes false or returns
without making a conclusion, then the test fails;

b) Alternatively, if the predicate tests for the proposition's
complement and concludes false, then the test succeeds.
Otherwise, the test fails.

“»
\‘s’;
- v,

“u

%%
P AL
ANY
&

p
?\

l,
v,

s %o s S0 N Tei
AR
ks
Y

9o
2%

hY

A
7.4,

>
‘.I
L4

LY T
P AL
sSANN
Sk

l' l.'"
Ve

‘e 2 W 0
e

RN
e

Tl
s«ﬂﬁ@

LS
CasCs
a4 I.O

.

>
LT

%s '
Ll

K L -'.('

‘2 ': ': 4

sl

1fa ey

. A A
-

e T

P
%

Y]

-

L
.
L3

wrels
vNS S S, .
PR
ety G

10. Database Mechanism 230

NOTE: When examining all affirmed propositions in step 3 above, ROSIE is
working with a partially closed database and will consider only those
propositions that are similar to the test proposition (i.e., which use
the same verb form and associated prepositions) and which were affirmed
at the start of the test event. This means that adding or removing
propositions from this set during the test will not affect its outcome.
For example, consider the following interactions

<10> List "test".
To decide if a person is a man:

(1] Create a person who does like Mary.
[2] Conclude false.

End.
<i1> ? :}\“
| GLOBAL Database | o
JOHN DOES LIKE MARY. Ry
N2
<12> If any man does like Mary, display that man. i
<13> 7
| GLOBAL Database | ,‘Q:.:
PERSON #1 DOES LIKE MARY. :‘:‘
JOHN DOES LIKE MARY. a:r:
PERSON #1 IS A PERSON. S
EN
When line <12> compares 'any man does like Mary' to the affirmed
proposition ‘John does like Mary' it calls the ruleset seen in line <10> Y

g

“
AN
I\ﬂ \.ﬁ{‘ ‘.

to decide if 'John is a man'. The ruleset concludes false, but it also

affirms a new instance of the does like relation. Obviously, this has .,
the potential for causing the test in line <12> to continue }'j
indefinitely, but because the test event is closed over the does like };};v
relation, the new relation is not considered and the test halts. .
IR
N
10.4 AUTO-QUERY MODE Q&::
s
ROSIE provides a facility for automatically querying an outside N

data source (such as the user) when the truth or falsity of a

proposition cannot be determined. This mechanism is controlled by the R
system switch $AUTOQUERYFLG (the default setting is off). i,-‘-
SN
when $AUTOQUERYFLG is on, and ROSIE is not able to prove or :}‘:'
disprove the truth or falsity of 8 proposition, ROSIE will look for the };:
predicate ruleset iy
W
To decide if a proposition is confirmed: t.":::_,
S
N
If such a ruleset exists, it will be applied to the positive form of the :} :

proposition. The conclusion of the ruleset decides the truth value of
the proposition.

&

:‘~

W
'_'_'.\.
REREN
.:_ L
- NS
;‘:&I\ " §

w o, e,
-

~ g

v Wou

10. Database Mechanism

ROSIE provides a default query mode predicate defined as

To
session.

To decide if a proposition is confirmed:
Private: a reply.
Execute cyclically.
[1] Send "{cr}{the query for the proposition} ".
[2] Read "{anything (bind to the reply)}{cr}".
{3] Select the uppercase of the reply:
<"YES"> assert the proposition is provably true and
conclude true;
<"NO"> assert the proposition is provably false and
conclude false;
<""> return;
default: send "{cr}Please respond YES or NO{cr}".
End.

see how this facility works, consider the following sample

(R)
[ROSIE Version 3.0 (PSL) 26-May-86 |

<2> 7
[GLOBAL Database |

<3> If John is a man, display yes.
<4> Switch on SAUTOQUERYFILG.
<5> Redo 3.

IS JOHN A MAN? y
Please respond YES or NO

IS JOHN A MAN? yes

YES

<6> ?

[GLOBAL Database]
JOHN IS A MAN.

<7> Redo 3.
YES
<8> If John does not love Mary, display yes.

DOES JOHN LOVE MARY? yes
<9> 7
[GLOBAL Database }
JOHN DOES LOVE MARY.
JOKN IS A MAN.

231

N -, R A AL A T I I AP A I N N I N A N P R A S S i e N N S S AL

Yy
7

"o,

o

%

E}

[

PR Ao A]
’
LAY A

5 N
i
N

v g

PP |

L4
RS

e ¥ e o
4%
t;b

h)
*
h Yo

<,

5

AL

‘l '.'- l.'

> .'.."«‘(.-.:
NN

.
.'l "' 7
R

._‘,.....“'u.
Ly RS «ﬁ¢2“;i;
8§ a0 ‘ A
SR

YASS

I'd

- . .
PP
»

:

-’

>
o s

i
LN
A't'f:"‘

by}
oy

-

.
r

s
PAhLY

B
s

4

P s
ENCAING
‘.,.'
S

10. Database Mechanism 232

With this definition, the auto-query mechanism allows ROSIE to
build up its database by consulting the user. While this mechanism is
not always appropriate, it is extremely useful for diagnostic tasks.

10.5 DATABASE OPERATIONS

In the following operations: A database refers to a name element
identifying a database; 4 file refers to a string element that
identifies a text file to which a channel has been open (see Chapter
11); & proposition refers to an intentional proposition; & description
refers to an intentional description; and an element refers to any
arbitrary element. Unless otherwise specified, these operations cannot
be applied to the private database of a ruleset invocation. Operations
that take an optional database argument will be applied to the active
database by default. If no alternate database is active, the global
database is treated as the active database.

activate (s databasel

Sets the active database to be database. If no such database exists,
one is created by that name. If database is not given, the global
database is activated.

deactivate

Deactivates the active database, if any, and activates the global
database.

swap in a database
Temporarily activates database.

If executed within a ruleset, the active database will be reset to
its original value when the ruleset invocation terminates.

If used in a monitor rule, resets the active database upon execution
of the rule.

the active database

Produces the name of the active database, or GLOBAL, if no database
is active.

a database

Successively produces the names of existing databases, including the

)l
\‘"r}_

N %

n

ALK
£4d

MY

h Yo :'
f..- Wy

i

st e e
LR .
N4 S
‘N’('-'

S I
'v~.-. AR

o N T T N
Py
L5485
2L L

N

‘A

"‘f'ffr
A
L} a

T, '-"- ‘e Tob "'ff
v
L
4

w e el

4
’ .'{"-

“y “y TN
v
s
/- X

s

.

PP .“-‘ P
.l .l.~l‘.' N

-

10. Database Mechanism 233

global database but not including the private database. The name of
the active database will be produced first.

an alternate database

Successively produces the names of existing alternate databases, not
including the global database. The name of the active database will
be generated first.

show [a database]

Displays every affirmed proposition in databsgse. If the name
private is given, displays the contents of the active private
database.?

oy
s l'.'f(:' "
YN

<

-~
‘. . '.; '.;
4

.:
[
=

7
I..’

Equivalent to show; a shorthand for use within the top-level
monitor or a break monitor.

<name element>?

Equivalent to show <name element>; a shorthand for use within the

top-level monitor or a break monitor. Private? displays the N
contents of the private database of a ruleset invocation. f::f{

AN
NOTE: This syntax supersedes the older <term>? syntax, which \:\:%
was equivalent to describe <term>. NN

* 4
'
i
»

clear a database
clear database

Removes all affirmed propositions from database. I1f database is
given, clears the active database.

NOTE: This operation does not remove propositions using deny and, G
thus, will not invoke a deny demon. ot

dump [a database] as a file

Stores (in a machine readable format) the contents of database into
file .db (i.e., a file whose name is created by appending a .db

2'3"a
)
by
-
)

20nly applies during a ruleset invocation.

~ L e SR A
o '\f‘f o q"‘ .- n "\ A

I D T L R R Y Ry L T R T I LU R PAL A SO UL SO PO TR AT PR U DA AR R AR I, YT %
OGN Ao G A A N A A P A A Y S T S A KAl o

o

10. Database Mechanism 234

extension to file).

restore g file {to a database]
Undoes dump. Reads the contents of a database from file.db and
makes them the contents of database, discarding the older contents

of database if any.
An error occurs if file.db does not exist.
copy to a database
Copies the contents of the active database to dgtabase, destroying

anything that was in database.

copy from a database

Copies the contents of database into the active database, destroying
anything that was in the active database.

If database does not name an existing database, equivalent to clear
database.

forget about an element [in a database]

,v

Removes all propositions from database that use element as a 3%?\
top-level argument--does not check if element is embedded in an e
argument . ot
describe an element [in a database]
Displays all propositions from database that use element as a
top-level argument.
(g™, g
. . N
an affirmed proposition [from a database] NG
L™ ﬁ

> P

>
Y
¢

Successively produces every affirmed proposition from database as
an intentional proposition.

R
‘

* 2

%
v

<

assert <proposition> [and <proposition>]s

-:.“ﬁ "’I
‘ a
X

Affirms each <proposition> in the active database.

[|

7
» '.J-.
1Y

[N

Ty

A
¥
4 %

e
.

. .
“
PN
."‘.
o

N
L)

o+
L4
.

-)'v

I TS TR R T

N A N AR A N A T,

T Wy W

3
o 10. Database Mechanism 235
1
4
$ assert a proposition [in a database)
add a2 proposition to a database
i Asserts proposition in database.
A
4
(]
:? deny <proposition> [and <proposition>]}*
. Removes each <proposition> from the active database.

deny a proposition [from a database]
remove a proposition from a database

AR N S e Y

Denies proposition from database.

AL

create <a/an> <description>

¥

b Creates an instance of <description>. This instance will be a name

- element generated by appending #N to the class noun of <description>,
N where N, a positive integer associated with the class noun, is

;: incremented by one for each name so created.

wh) This element is asserted as an instance of <description> in the

A active database, e.g.,

=)

<3> Create a happy man.
e <4> 7
[GLOBAL Database]
MAN #1 IS A HAPPY MAN.

'
$ let <let form> [and <let form>]
Cd
:; <let form> ::= the <description> be <term>
N} = <term> ' s <description> be <term>
= <term> be the <description>
) = <term> be <term> ' s <description>
-,'
. Makes the value of <term> the singular instance of <description> in
:. the active database, e.g.,
he
s Let the counter be 1!
N4 is conceptually equivalent to executing
£
O Deny every counter is a counter and assert 1 is a counter
i
d
X j NOTE: <term> and <description> can be arranged in any order; in the
b case of
o
."
o
"
\.
’
e
.
5.4

'hf’\"u *\r

bl AJ

T N e T e e
Bl] e .

L PN P

.
-

TSR I

.7,

v

XL

-

AR AR

BN T A

NSRS

>

1

&l a
Gl

[T R e B

'ﬁﬁﬁ??l

,'.“

U

4

....
4 .
.

.
e

-‘-"

‘5‘;‘\‘-{1‘

A XA

{-'.',‘

s ‘/:l‘ ¢

'

M Y
«. v
A

10. Database Mechanism

Let the desc #1 be the desc #2

desc #1 is treated as <description> and the desc #2 as <term>.

instantiate & description to an element [in a database]
Equivalent to executing
let the instance of description be element

when dgtabase is active.

an instance of & description [in a database]

Produces successive instances of description from database.

NOTE: If the in database option is not given, instance

need be, call a generator ruleset. However, if database is given,

elements will strictly be generated from database.

of can, if

an element was [not] an instance of & description [in a database)
an element is [not] an instance of & description [in a database]

an element will [not] be an instance of a description [in

These propositional forms can be used alternately to assert, deny, or
test that element was, is, or will be an instance of description in

database, e.g.,

<2> Assert John is an instance of 'a man'.
<3> ?
[GLOBAL Database]

JOHN IS A MAN.

<4> Assert Mary is not an instance of 'a man’' in
<5> Beliefs?
[BELIEFS Database]

MARY IS NOT A MAN.

a ditabasel

beliefs.

<6> If John is an instance of 'a man', display yes.

YES

<7> Deny Mary is not an instance of 'a man' in beliefs.

<8> Beliefs?
[BELIEFS Database |

NOTE: If the in database option is not used, testing these forms is

equivalent to testing the propositions

- 1-.;.».--,-.--..-.~'-"--'.----..----
v ?,*,WJ?JLJ..’: » *ﬂ'*'\{ i 3515(4' f‘¢5 -f. b 0l *sf‘f o

p et
Y

236

e
x,,_'_:»_-.,‘ -t

?

e

Pas
v 7

“uh

N

“y ¥ ®
£

-

o e -
LY N

’
<+

.
.
[4

Ay
PP
N

"
L4
N %
2,

e

T
Xy

YA SNy
v
=,

-
g

5k
o)

')

g

e e e A

10. Database Mechanism 237

element was [not] a description
element is [not]) a description
element will [not] be a description
in that a predicate ruleset could be invoked to decide truth or

falsity. However, if database is given, then a test will strictly
be applied to the propositions affirmed in database.

increment a description [by a number) [in a database]
decrement 2 description [by & number) [in a database]

Alternately increments or decrements the instance of description in
database as with

let the instance of the description in the database
be such an instance * the number
a proposition is [not] provably true
& proposition is [not] provably false
When used as a predicate,
proposition is provably true

concludes true if proposition can be proved true from assertions
in the database or from a predicate ruleset, false otherwise; and

proposition is provably false

concludes true if the complement of proposition can be proved true
from assertions or a predicate ruleset, false otherwise, e.g.,

If "John is a man' is not provably true,
Unless John is a man,

If 'John is a man' is provably false,
If John is not a man,

When asserted,

proposition is provably true
asserts proposition, and

proposition is not provably true

denies proposition, and

proposition is [not] provably false

,,\7
T
Pr e

|

-
i

-

cEa s

. W T,
53

%

b

?..1'

S35

&
‘#I

-
-l

L,

PR
5’\“""05\'
”‘Hﬂ“*

\-\‘- }',‘ P

4

é
)

¢

("
%)
LY

S
o ei o

{ " ‘l (

>

Y
[a’.‘:"
LA -“

B
1

. "".."f g

AL g,

.
[4
- l. -

> &L
»
v
r)

F R A
VANAS NS
e o & B
l. 0‘
Nty

»

10. Database Mechanism 238

likewise asserts or denies the complement of proposition, e.g.,

Assert 'John is a man' is provably true

Assert John is a man

Assert 'John is a man' is not provably true

Deny John is a man

Assert 'John is a man' is provably false

Assert John is not a man

Assert 'John is a man' is not provably false

Deny John is not a man
When denied,

proposition is provably true
denies proposition, and

proposition is not provably true

asserts proposition, and

proposition is [not]) provably false

A
- .
: : : ., o ERT A
likewise denies or asserts the complement of proposition, e.g., ,;}:,,
*Qﬁﬁf
L] . v . o
Deny 'John is a man' is provably true e
R
Deny John is a man SN
KN
' : v el
Deny ‘John is a man' is not provably true AT
-.‘\..")
Assert John is a man A
{h:\
Deny 'John is a man’ is provably false N
Deny John is not a man ~e g
' . - RSCSS
Deny ‘John is a man’ is not provably false
ot
Assert John is not a man %a;n;
DULA

i

a proposition is [not] true [in a database]
a proposition is [not] false [in a database]

e
{"..l
AW

7

e
oy &

L4

x

Like is provably with the addition that database is activated before
proposition or its complement is asscrted, denied, or tested.

5

':
o -.' [N

-‘l‘{.

AN
.

,
.

' % %

o,
e,

."'.{.
PP)

’rﬁi .

AT e e ool AR o e o e

N
:0. .l’ .I"- 4. 0N,

10. Database Mechanism 239 !

NOTE: Unlike the is provably predicate, these forms will not invoke
a predicate ruleset to prove or disprove proposition; such proof must
come strictly from the assertions in database.

&~

e
A
N
-.

P

"

L

4 % % e o
L4

2,
&I&:‘-‘

%

<
L}
»

\ﬁ;;;;
X

NS~

5 s
e
5

A

‘l%s
¢
In N

s,y A
I 4
5 N4

LN AN N

"
ol a
y &

.
Pia]
L |
.
‘--
o
PR

,.7.

'l:.a !

‘e b te "o}
.

~“a0
33?{/-
. "."-.',‘,"

J

*r "a

T
a ta)

T
. .

s e
R
o '
..
« .

o
-
.

Y
»

‘..' :'.'

A R PR LR " - e RS R AT ARe Th s et Tt e
.' vl 'l.-.." Ly oA OO PUREAE \.-..__.

preceding page blank - not filmed ‘;:‘.:;
11. Input/Output 241 ™
ﬂ':
..‘:4‘
Xl. INPUT/OUTPUT e

The input/output (I/0) operations allow programs to read from and O

write to text files, communicate with the user's terminal, and initiate . a
jobs on the host operating system. Users can also create transcript hﬁ:
files that record all or part of a ROSIE session. AL
£
11.1 CHANNELS s
o
e
All 1/0 passes through an internal data structure called a channel. jh;
A channel is a line to a file device through which input can be read or I
output written. The user's terminal is one such device; text files in . 8
the host directory system are another. Where the host operating system -iﬂf
(0S) permits, a special channel is available for sending commands to the :f:,
0S and reading the results. ﬁ;}’
A
. . . &
Input from a channel is performed using the read procedure, which S
takes a pattern element as one of its arguments. Characters are read B
¢ one at a time until the pattern has been matched. Pattern variables {:
provide a means of extracting substrings of the input text. }2}
'
Output to a channel is performed using either the display, send, £
; or print procedures. Display simply outputs the evaluation name of any o
) given element to the standard output channel, while send outputs a < s
X formatted string to some specified channel. Print is a specialized form S,
of send that attempts to "beautify" the string before output. e
1 :\"‘-
; 11.1.1 Opening and Closing Channels .:-:;
-IJ-
Before a file can be accessed for input or output, a channel must)
A be open to it. The channel can be open for reading or writing, but not S
¢ both simultaneously. Exceptions to this are the TTY channel and the OS g:.
’ channel, which are special channels open for both reading and writing. :v:;
R
A channel is created using the open procedure. For instance, the N
action, '
K Lot
’ v.“f
Open "mydata" for input. ol
A ..\'
! (1 (] “."‘
'y openis an input channel to the text file lnydata'. and o8y
i 1:4.‘
a
Open "myresults” for output. -
. 379
X opens an output channel to the text file "myresults”.! sﬁﬁ
: e s::\
v '1f the file did not exist before, it will be created. 1f it did :at
) exist, the old contents will be destroyed. \;}
o J
5 oo
.
X
&

T R R RN AN

P

¥

pwong
Text Box
preceding page blank - not filmed

Meh
N
vy
11. Input/Output 242 ol
509
90
e
Once open, a channel assumes the name of the file. Therefore, in N%
the above examples, we can refer to the channels open as "mydata" and
"myresults", respectively. To perform I/0 through a channel -
explicitly, its names must be passed as an argument to the particular 2
I1/0 operation being applied. "
."f'
ROSIE does not allow more than a single channel to be open to the r $
same file at a time. To open a new channel to a file, any existing ROS
channel to that file must be closed. Additionally, depending on the 35
implementation, output to directory files may be buffered, and, o
therefore, not written to disk until the channel to the file is closed. A
It is a good practice to keep track of open channels and to close them :”:i
immediately when they are no longer required. .:v
A channel is closed with the close procedure. The action, O
~
” " F *
Close "myresults”. ey
N
o,
” ” 0 ~
will close the channel to "myresults”, allowing a new channel to be)
opened to that file. If the channel was open for output, then the o
output buffer, if one exists, is flushed and the file written to disk. o
‘9 L4
W
11.1.2 The Standard 1/0 and TTY Channels ,":‘_
N
Default I/0 goes through a special channel called the standard ~;$;.
Input channel and the standard output channel, respectively. The i
standard I/0 channels essentially provide an indirect reference to other .
channels. I
N
Standard I1/0 is initially directed to the TTY channel (i.e., the %: 1
user's terminal) but can be redirected to any other channel. The TTY }‘J*
channel can be referred to explicitly as "TTY:"; this channel is s
always open and cannot be closed. FiCh
Lo
\.‘_'-.
Standard I/0 can be redirected to a channel using the redirect 'ftt
procedure, e.g., -}:}
A
. - " ” G
Redirect input to "mydata”. Tt
opens an input channel to "mydata" (if one does not already exist) and Luf“
redirects standard input to this channel. Similarly, executing ’v:}:
l.- ’
..,\J-
Redirect output to "myresults”. PN
w3
opens and redirects standard output to "myresults”. Redirecting I/0 9
does not close the channel to which standard I/0 was previously R
directed. If the redirect procedure is not given a target file device, r:$:|
"TTY:" is used by default. A

' ' ol -’ M (.4(.‘- ' -I' \. \' --' .i' ... --’.l') S .~‘ :‘ “
P P T RN AT P IR I NS IT I SR AP

R PRI
AT A R TR

e T A e T T et et R A S S N N A e
. X u P, ,)

f)

4§

11. Input/Output 243

Redirection of standard I/0 is a temporary operation. When control
returns from the ruleset in which the redirection operation was applied,
the redirection is automatically undone (i.e., standard I/0 is
redirected back to the settings it had prior to the invocation of the
ruleset). Redirection is undone even if control is returned by a
nonstandard means, such as an error or user interrupt.

11.1.3 The OS Channel

Like the TTY channel, the 0OS channel is another special channel
always open for both input and output. The OS channel, however, is open
to the host operating system. Output to this channel will be executed
by the host 0S as though typed to it directly. Input from this channel
is the results of execution that would appear on the standard output
device of the 0S (i.e., typically the user's terminal).

For instance, assuming the operating system is UNIX,

<2> Send 'pwd{cr}" to "0S:".

<3> Read "{anything (bind PATH)}{cr}" from "0S:" and display PATH.

"/a/kipps/rosie/scratch"

we could execute the above to access the path of the current working
directory.

In earlier versions of ROSIE that ran in Interlisp under TOPS-20
(Teitelman, 1978), the input/output facilities supported a special
channel type called @ port. When a port was opened, a new job was
logged in on a pseudo-teletype. Text sent to the port was read by
TOPS-20 as though typed by a "user,” and the output of execution could
be retrieved by reading from the port. Unfortunately, not all operating
systems or LISPs provide the appropriate facilities for implementing
ports. Thus, when ROSIE moved out of TOPS-20, ports were discarded.

The OS channel is new to ROSIE 3.0 and is an attempt to provide
some of the functionality lost with ports. Unlike ports, there is only
one 0S channel. Also, where jobs sent to a port ran asynchronous to
computations in ROSIE, jobs sent to the OS channel must run to
completion before control is returned to the user's program.

The 0S channel is named "OS:" and must be explicitly referenced to
be used. Commands sent to the 0S channel must be terminated with a
carriage return. Also, it is an error to try to redirect standard I1/0

to "OS:".

NOTE: Even though the 0S channel is substantially more constrained than
were ports, they still may not be possible to support in some
implementations of ROSIE.

P - -

Kad PR, LYY

!

P A~
YNX.
|'. _.

~
>
e

Y
&
SN

SASAMNS
AN,
O
R

Ay
o a
%

L/
5'51‘5

*a
/...!‘
<

.
Ay
(]

f W J
o
P
Ca

R R R
s
< £

5 .

N

s

L3R

2 1
»

L

oy
NS
Ay A

{
"
X

]

e
7.

R
P A

L85

rry
)

.

r
&t‘
-

Ay Sy
2

.-s,:w
Al

3

g
»
=

=
4
-

b‘ﬁ
e

"'l’ " -"l", ""
e :

VOASAL A AGAS O L

11. Input/Output 244

11.2 THE USE OF PATTERNS

The pattern and string elements are provided primarily to support
complex I/0 operations. Output operations write strings to a file
device. Input operations read characters from a file device, matching
the characters against a pattern of "acceptable" input.

11.2.1 Sending Formatted Text

The two output procedures send and print take as an argument a
string to be written to some file device. This argument can actually be
any type of element. If it is not a string, it will be coerced into a
string according to the following two rules:

. If a pattern element, then that pattern must describe a
language of one and only one string. The pattern will be
coerced into that string. These rules of coercion will be
applied to the arguments of the pattern recursively. Unless
the pattern explicitly specifies otherwise, the resulting
string will have fixed format.

. If any other element, then the evaluation name of that element
is coerced into a fixed format string. Note that if a pattern
is embedded in another element, such as a tuple, it will not be
treated specially from other embedded elements (i.e., its
evaluation name will be coerced into a string).

As discussed in Section 9.5, strings have either a free, fixed, or
mixed format. A string's format specifies the method in which the
characters of the string will be displayed on the target output device.
Free format strings contain no explicit line breaks; line breaks are
introdiuced as required to make the text in the string fit the line
length of the output device. Fixed format strings may contain explicit
line break information; such strings are sent to the output device as
is. Mixed format strings are composites of free and fixed format
strings, interleaved; free format components are output to fit the line
length of the device, while fixed format components are output as given.

11.2.2 Reading against a Pattern

All input takes place through the read procedure, which dccepts as
an argument a pattern against which input is matched. Characters from
the input device are read one at a time until the string thus
accumulated is recognized as an instance of the pattern. If at any time
the pattern matcher recognizes that the string will never match the
pattern, an error occurs.

Substrings of the text read from the device can only be retrieved
using pattern variibles. For example,

Read {anything (bind the reply), cr}.

"':
’5'

5N

I\.'."
SRR

LSRN

AR Ao XA

Y .l‘- 2
P

< S
ALK l.1
oo o

[
'H
-

w*
-

v
LI R P Y [TN Y » - T D e
If N OO PN RN RN AN N

11. Input/Output 245

reads a line of text terminated by an end-of-line character from standard
input and binds the text (less the end-of-line character) to the reply
(as described in Section 9.6.4) as a string. This binding is then
accessible to the user's program.

An important observation to make is that the pattern matcher quits
upon recognizing the shortest instance of the pattern. This means that
executing

Read {anything (bind the reply)}.

will always result in binding the reply to the empty string (""), which
is the smallest substring recognized by anything. ROSIE provides no
"reasonableness" checker for patterns, meaning the ROSIE programmer is
responsible for ensuring the correctness of all patterns used.

A final observation to note is that read actually will accept any
type of element as an argument, not just patterns. If the element is a
string, then it is coerced into a pattern describing a language
consisting only of itself. If any other element type, the evaluation
name of the element is coerced into a string and pattern.

11.3 CREATING TRANSCRIPT FILES

ROSIE provides a mechanism for sending everything that appears on
the user's terminal to a file on disk. This is a convenient way to save
a transcript of all or part of a ROSIE session. All of the example
sessions appearing in this document were obtained in a dribble session.

After executing the dribble procedure, e.g.,
Dribble to "mylog".

a copy of all terminal I/0O at the top-level monitor, as well as in a
break monitor, is sent to the dribble file; a channel should never be
open to the dribble file while a dribble session is active. Executing,

Stop dribbling.
discontinues the dribble operation and closes the dribble file.

Note that dribbling only saves terminal I/0 when issued to a ROSIE
monitor. While you may edit files, enter LISP, or jump up to the host
operating system from within a dribble session, those interactions with
the terminal will not be recorded in the dribble file.

T S R GRS
A O NN (I A I M A T NN NN

Tt &
-

Y
4 & &

»

LY

v "a{‘.{‘-
g
[\'5 5

‘.""'..'.".,"
Yy *
[J n‘.’-’ [#

-‘.-
4y 4
LA

s
LAY

-"b‘._'._'\{'&\"
x4 &

LA AR
>

oy
A

11. Input/Output 246

11.4 INPUT/OUTPUT OPERATIONS

In the following operations: 4 file refers to a string element that
identifies a text file (or an open channel) using whatever filenaming
conventions are appropriate for the host operating system; & string can
be a string element or it will be coerced into a string element as
described in Section 11.2.1; & pattern can be a pattern element or it
will be coerced into a pattern as described in Section 11.2.2; & name
can be any rame element; ar integer can be any simple number with an
integer value greater than or equal to 0; and an element can be any
element of arbitrary type. Additionally,

"TTY:" (the TTY channel) is a special channel open for both
irput. and. autput. from the terminal; by default., the
standard I/0 channel;

"OS:" (the 0S channel) is a special channel open for both input
and output to the host operating system.

Unless otherwise specified, operations that take a file as an optional
argument will be applied to the standard I1/0 channel by default.

open a rile for input
open a file for output

Opens a channel to file for the given access type. Calls an
error if file is already open.

NOTE: A file cannot be open for both input or output, nor may more
than one channel be open to the same file at the same time.
open a file to read

open a file to write

Archaic forms of open for. Change existing code to use open for.

close a file
Closes the channel to file. Calls an error if file is
not open, or if the file is "TTY:" or "OS:".

close everything

Closes all open channels except "TTY:", "OS:" and the dribble
file. Redirects standard I1/0 to "TTY:".

PrEr.

VA |

SANN

Y

pat
AT

. 5. v
]
-.'-. -

’

-y
[t

AN B
[N N Y
4 e -{.f .-_' [

s

hY

ey
hY

A
s
L)

s

'y

.

et
)
] 14

.

P N

s

N v v
AR
‘G

o« Ly
RTe R
R‘F-,'ﬂ)"-?:\- 1,

A

7.7

Ry}
CRENL AN
. % Y

l‘,‘.
S A

?

’l
' P
70

'-f.

¢]
v

(4

<
o’ o
:.l

o
[
oL}

‘s‘-ﬁ;::;.: h
. Xy

:,ﬂ' “ %
'.'l‘,‘(I.(.

5
’
o

L3
R

-

11. Input/Output 247

redirect input [to g file)
redirect output [to g file]

Temporarily redirects standard 1/0 to file; if no file is given,
"TTY:" is used.

When executed within a ruleset, redirects standard I/0 to its previous
setting upon termination. In a monitor rule, resets standard I/0 after
executing the rule.

If a channel is not already open to file, one is automatically open.
When this occurs, redirection to the original setting will close the
channel to file.

NOTE: If redirect opens file, do not close file yourself.

NOTE: Standard I/0 may not be redirected to the OS channel.

the standard input channel
the standard output channel

Produces the channel (as a string element) to which the standard I/0
channels are directed.

the TTY channel

Produces "TTY:".

the OS channel

an

an

Produces "0S:".

open channel

Produces a sequence of open channels as string elements naming the
files to which they are open. These are ordered by recency (i.e., the
name of the last channel open will be the first produced). Does not
produce "TTY:" or "0S:".

element is a filename

Concludes true if element could name a file.

NOTE: At the moment this predicate is quite primitive and will succeed
if element is either a string or name element.

- -

&Ny

-.:' '

.

2

I Y 4

R{J’

)
S
)

:
.
PR
‘

- '; . lv.‘ '.. S
3

B NS

E

TNy
A

l.I',
-‘l I‘l-l N
e

ch G A A

s

(. 'l"l ’

RIS)

Phe oy e |

e

PRI
N)
,‘

.‘ﬁ"I'{‘I:-’ N

AT '.P.‘."'.'

.-'.-J_‘\'--. - ..t."-’.-{-_.-._-*-..--..)-..c(-f:’-*-
Y RAANAY N TALOA

11. input/Output 248

a file is open for input
a file is open for output
a file is open for input/output

Concludes true if there is an open channel to file, and that
channel is open for input, output, or either, respectively, otherwise
concludes false.

a file is available for input

Concludes true if the given file is known to the host operating system
(e.g., if it can be located on disk), otherwise concludes false.

NOTE: This predicate makes the assumption that any file known to
the 0S5 can be open for input.

display an element

Outputs the evaluation name of element (followed by a line break) to
standard input.

tab to an integer {on a file]

Causes the next character sent to file to be printed at the
column position specified by integer, starting from O.

NOTE: 1If the column position on the current line is already past this
point, output will begin at this point on the next line.

send 2 string [to a file)

Outputs srring to file. 1If applied to a nonstring, coercion
to a string is automatic.

NOTE: File must be open for output or an error occurs.

print a string [on a file]

Like send with the system switch $PRETTYFORMAT turned on to
enhance the readability of output.

If string is specified using a pattern element, arguments to the
pattern are coerced into strings without surrounding double or single
quotes and output in lowercase, e.g.,

<11> Send {'plaintiff did suffer "a loss of one eye"', cr}.

Ny L

N P R Y A &

PO R _ et

)

'\'.'\

TT AP LI Ty PRo g W 20
X , ‘ I. ‘-" _l‘; u.g

\‘..1-’_'-"'..“' '-_"-‘.". 'Q_. TR L et :n“ ‘.: ';-):.'.\._-
O a - X >

o
('v

¥ |

T e’ .l;‘-
e
45 4,&

;22.

i rr#
SRR AGOEES
ISAANYSS

¥
L]
£l
]

st
24
e

"{’
[A4

’
Wy

4

....,
O AAAA
l. l. l.

11. Input/Output 249

"PLAINTIFF DID SUFFER "a loss of one eye''
<12> Print {'plaintiff did suffer "a loss of one eye"
Plaintiff did suffer a loss of one eye

', cr}.

The first letter of string will automatically be capitalized.

NOTE: File must be open for output or an error occurs.

print a2 name as a string

When $PRETTYFORMAT is on, all instances of name will be output
as string, e.g.,

<13> Print John Brown as "John Brown'.

<14> Send {'the plaintiff did suffer "a loss of one eye"', cr}.
"JOHN BROWN DID SUFFER "a loss of one eye''
<15> Print {'the plaintiff did suffer "a loss of one eye"', cr}.

John Brown did suffer a loss of one eye

read s pattern [from a file]
Reads a segment of text from file.

Characters are input one at a time from file until
sufficient text has been read to either

1) recognize an instance of pattern, at which time read
returns successfully; or

2) recognize that no instance can be matched, at which time read
calls an error.

Portions of the input text can only be retrieved via pattern variables.

NOTE: File must be open for input or an error occurs.

For the following operations, file need not be open for input or output.

type a file

Lists the contents of file on "TTY:".

copy a file to a file

Copies the contents of the first file to the second. If the second
file already exists, its old contents are destroyed.

o
e

{4

'éﬁEL

-
e
R

%

N}

AL N
o
- N

,
ﬁ-’}‘

P3N I

P

EAAN v

2 A,
Y,

5
2FEL/
b

_ﬂ-,.
XL
2%
Xy

VA
R
$25¢t’?

¥y £ 1 ¥
é§>x 4%

ﬁf(

R
L)

Patatal,

LS T

A
i
~% N

T
NENDIN
.,

i
s
s ey

.

L,
.‘l

»
'I

-y Y ® 2w

Pl A A
’\ ‘\;ul's DS
'{ﬂ:sﬂ'.‘s"\'

.
»

%5

-

‘u'%-' PAy
2y '\ .‘v X
AN

P Y N L PR T VY AN IR T AN RKE R A AR R AR R P T P W

s
T
4

11. Input/Output 250

append @ file to a file

Appends the contents of the first file to the end of the second.

rename a file to a file

Changes the name of the first file to the second. If a file by that
name already exists, it is destroyed.

/ -"- N

delete g file

’

K R
RN

.

b W e,

tl s

Deletes file from the user's directory. Does not ask for

conformation. No error occurs if file does not actually exist. T
\
o, "
s,
dskin a file P
. 7
Loads file using the implementation LISP's load function or At
its equivalent. Provided for loading LISP files into the system. .
-‘.-"-.
e
dribble to a file A
A
Opens a special output channel to file, making it the dribble file. LA
After this, a copy of all terminal I/0 will be sent to file. The e
dribble file may not be closed except with stop dribbling. N
A
NOTE: You may edit files while dribbling, but that part of the session ?:}
will not be dribbled. hyoGs
it
stop dribbling L:::_:,
S
Closes the dribble file and stops copying terminal I/0. If no dribble .
file is open, an error occurs. NS
R

‘\-

- m N

J'_ [J' [-" J“‘-' ‘-*‘.‘.'.

;'it ; ‘ - "}‘Q_-" R e e T e e T ‘,_:: PR P

U ORIY R (IATUAV AL RTL AT A A R R Y A KR KRN T RN MR FOVSON L R U R (B daf taf ¢ Uag 2@ 328 28 200 Y@, %28 tat . v,

-
-
-

."';:a;.? .

)
.

|
‘ 12. Errors and Error Recovery 251 Ay
s
I’.l *
1’ ~l
Ay
Xii. ERRORS AND ERROR RECOVERY ':i
L4 ¥
e
Runtime errors are either recoverable or nonrecoverable, and either ﬁhp
system generated or generated by the user's program. When a runtime ,ﬁ*:
error occurs, execution is temporarily suspended, and an error message o
is printed indicating the problem and the ruleset in which it was !
encountered. While ROSIE does not support an elaborate error handler, .
it does provide a mechanism for trapping and recovering from runtime .xﬁu
errors. ﬁ?:
RO
road
T
12.1 NONRECOVERABLE AND USER ERRORS et
N
When one of the few nonrecoverable errors occurs or when the user's A
program calls an error, control is unconditionally returned to the top- 'f:{
level monitor and all computations aborted. A user's program can call }}}L‘
an error, aborting computations, with the quit procedure, i.e., {:;:
Iy
quit [because s string] . -
-'. h\
LSS
Throws control to the top-level monitor. If the because option is ;:::‘
given, the string is printed to the standard output channel (normally :uiﬂs
the user's terminal) before aborting computation. r:::t
(l’.
12.2 RECOVERABLE ERRORS A}:
o
Most runtime errors in ROSIE 3.0 are recoverable. This means that SR
they can be trapped and possibly fixed, allowing computations to resume o
from the offending rule gracefully. In addition, user interrupts, e
signaled by hitting <ctrl>C, are treated as recoverable errors. e
> %
IS o
oS
When a recoverable error occurs, ROSIE does two things in sequence. f;:c.
First, it attempts to invoke an assert demon that, if defined, traps the ufuj’
error and permits automatic error recovery. If no such demon exists, or :::4
if it did not signal for computations to be resumed, control is thrown Rl
into a break loop. Within the break loop, the user can edit the .~
aoffending rule, fix the error, and resume computations. S
For further information on interactions in the break loop, see 33;
Section 14.3. }{y
N
12.3 THE ERROR DEMON g
Automatic error recovery can be controlled through the use of a Cﬁi;
special assert demon called the error demon. When processing a ;::i‘
recoverable error, ROSIE simulates an assertion of the proposition WHY

AN
¢ 0
- ..
12. Errors and Error Recovery 252 ks,
BRL0Y
w
<string, filesegment> is an error Et
'l
where <string, filesegment> is a tuple element containing string, which S
identifies the error message, and filesegment, which identifies the 2;;\‘
ruleset rule causing the error. A
‘I
-
&, s
This proposition is not actually asserted into the database, but it W
will invoke an assert demon of the form >Y NN
*)
Before asserting & message is an error: RO
. N
if -uch a demon exists. Further, if the error demon executes the I
l_"}

continue procedure, then computation will be resumed automatically at .;rﬂ,
the point of the error call.

1

x)

am
5
'-"'-'v
P AL
ARRAT

S

L WA IR
Pl s
5% %%
PaC4
LA

7
h

L
.

AR
o .f 't' Pd l;

‘J'x -4 S

%t
NN

LAy
S48

LY
AT
%5 %-

"

“w
.
‘v
e
“n
“w
~
.

b]
. Ay
s)'}’>(
“ S
WXy

P A
(4

3
.‘

5 N

£ £
s
Py

P

D
4 Y,
.

.

%S

NS
<
v

;l“;-\;--‘:-\-l.‘:-\:r\ .I\. \.-\‘.~- -\.\\‘u

‘val taf gl QAN RO Q"Q‘ R N I RN WU LYY Cat's 0 8's 4% 6% 4'a 20 8" 0000878 4 88 00 PYIWTTETY

000
13. File Package 253 \' N
I. 'F
Agag
Xiti. THE FILE PACKAGE -::-.$
N
St
The file package is the heart of ROSIE's programming environment. EH:'
It helps the user build, modify, examine, and maintain programs in a way ytf
that exploits the modular and English-like nature of ROSIE rulesets. It sj&f
also encourages interactive and real-time system development by g
minimizing the parsing and compiling overhead caused by changes to rules o
and rulesets. e
."n‘
AR
13.1 PROGRAM FILES ‘{v:
ALY
L
A ROSIE program is developed and maintained in a program file. A)
program file is actually a set of files that resides in the user's X
directory. These files contain the source code of the program, the code r}*:
derived from parsing the program, and the binary code representation of {5:’
the program derived by further compilation. fﬂ¢$
R
The component files of the program file share a common root name
(i.e., the name given the program file when created with the build ot
procedure). They are distinguished by their extension. These files are \;\:
explained briefly below: :{:f
l‘. \’.
* Ffile.txt -- contains the actual source code of the program in \“:{

its original text form. It is the only "human" readable file
in the group and is the file that should be printed when a S
hardcopy of the program is required. i

. file.map -- contains the executable HILEV representation of .
the code in the .txt file, as well as a map linking the -
corresponding components of both files. The contents of the '
.map file are what is actually loaded and nodified during iy
program development. f::N

;:J;'

. file.cmp -- cantains the binary code representation of a $~:
program compiled from the HILEV in the .map file. This file o)
is created by the compile procedure and normally exists only -
when the user is satisfied with the behavior of a system and IR
desires to improve performance. e

None of these files should ever be modified directly by the user since o~
each is required by the file package and is related in unobvious ways. i:i

A program file is named by a string element that is consistent with R

the file-naming conventions of the host operating system. ROSIE is not ff.

extremely sophisticated about file-naming conventions and may do the
unexpected when accessing files in other than the current working N

directory. It is hoped that such issues will be addressed at some it u}
future date. v
RN
N
ST
1‘\ ‘Q.'
-"‘ .\
el

. .. - + - ., ., e T " T e -
ISR PLTR IV IV, SV TP AU P SR I

13. File Package 254

13.2 USING THE FILE PACKAGE

To the user, a program file is simply a text file containing ROSIE
source code. A program file is created with the build procedure. This
procedure takes a single argument that becomes the name of the program
file. Once created, the user can add code to the empty program file,
and, when finished, write it to disk.

To work on an existing program file, the user must first notice it.
This is normally done with the load procedure, which brings the .map
file into the system, noticing the contents of that file as well as
enabling its rulesets and executing its file rules.!

The user can examine the contents of a program file with the list
procedure, which shows the program's source code drawn from the .txt
file. The scan procedure also lists the contents of a program file,
but in an abbreviated form. The user can examine ROSIE's interpretation
of his code with the deparse procedure. The deparser automatically
generates source code from the HILEV representation of a program,
illustrating ROSIE's interpretation of the program with indentation and
parentheses.

The user may change portions of a program file with the copy,
move, and erase procedures. The edit procedure allows a user to edit
noticed program files, or portions of such files, while insert allows a
user to insert edited code before or after some portion of a noticed
program file. After editing, changes to a program file can be written
to disk with the save procedure.

When the system builder is satisfied with the behavior of his code,
ROSIE permits him to optimize his program with the compile procedure.
Compile converts ruleset definitions and file rules into binary code,
storing this code in the .cmp file. Loading a compiled program file
will enable the compiled definitions and execute the compiled file
rules.

The sysload procedure can be used to load a file without noticing
it. This is more efficient, but does not allow the user to edit or
examine the contents of the file. Similarly, the notice procedure can
be used to notice a file without actually enabling it, while the enable
procedure enables the contents of a noticed program file.? There is
also a disable procedure, which undefines rulesets, an unnotice
procedure, which causes the file package to forget what it knows about a

file, and an unload procedure, which first disables a file and then
unnotices it.

'Any rule that is not part of a ruleset is a file rule.
?Enabling defines the rulesets and executes the file rules of the
program file.

1’\‘

o

22 PP

G

.'.,'.'_.'.-' PO
N NI
NN AN

P
N
L
"I.l A.'

Ny v T e
A,

.i.'
teS/

"'i
k)

P4

/ INJ"
P

NS
o/

S~
-~
N
.
-
r

P Pl

U A TS LY PR U 8 g0 0 . uad gt Ry ‘s 02 £'2 A'a" G mt o ab ot et Yad ‘altal ‘2t *ad *ak %ad Pak Yo *

o /3
o b

*
: . %
! 13. File Package 255 ~
L
: 3
] A
i Finally, the parse procedure permits users to build program files ,:
b for code that was edited or developed outside of the ROSIE environment. .
« For instance, the .text files of pre-ROSIE 3.0 programs must be ported -
N to ROSIE 3.0 using parse. "
‘N
B .-..‘
v '..-
) 13.3 DEFINING RULESETS AND FILE RULES e
; o
. A program file may contain any number of ruleset definitions or I,
A file rules. When loaded, the contents of the program file are noticed g
[and enabled. Enabling defines the program file's rulesets, allowing 3
: them to be invoked. Enabling also executes the program file's file RS
) rules. 5
r.
- Actually, when a program file is loaded, only its rulesets without P
¢ syntax errors are noticed and enabled. Rulesets that contain syntax e
-3 errors in anything other than their header are not enabled but are still e
’ noticed. Rulesets that contain syntax errors in their header are not N
: even noticed and may be fixed only by editing the entire program file. ?}
' File rules are collected in a group to be executed after all rulesets in N
" the file have been enabled and the file closed. If the file contains o
‘ any syntax errors, then none of its file rules are executed. $$
v .\
d L
'« As an illustrated example, consider the following sample session :ﬁ
p-- with the program file, called "integers”, which prints a sequence of yy
integers from 1 to 5. It contains two file rules and one ruleset -
definition.
' .~
(R) I
o [ROSIE Version 3.0 (PSL) 26-May-86] o~
v
s
k <2> Load "integers". rd
J B
- Loading 'FILE: "integers"' -
- TO PRINT-NUMBERS o)
A,) N
’. Done loading. s
- ‘e
~ <3> List "integers". 7
“; [rule 1} Let the first number be 1. E&‘
- D
:; {rule 2] Let the last number be 5. o
\
‘ ﬁ To print-numbers: S
{ This rule prints a sequence of numbers. | L@
3 [1} For each integer from the first number to the last number, N
- display that integer. <o
o End. -
’:‘ -
o <4> List 'file: "integers", to print-numbers, 1'. Y
3 ~
o hie,
N e’
N 0
~

13. File Package 256

[This rule prints a sequence of numbers.]
[1] For each integer from the first number to the last number,
display that integer.

<5> Print-numbers.

£ W RN

(¥4}

In the example above, note the rule numbers printed as comments at
the beginning of every file rule and ruleset rule. These comments are
inserted and updated automatically by the file package. They are
displayed along with the rule when examining or editing the rule text.
Individual rules may be cited by number (e.g., statement <4> above
demonstrates the use of a filesegment to examine the text of the first
rule of the ruleset) and, once identified, may be passed as arguments to
any of the file package operations.

Comments that appear in a program file are always associated with
the closest file item after the comment. When such an item is examined
or edited (as in statement <2>), the text of the comments appears with
the text of the item.

A recommended method for organizing large programs is to maintain
three separate program files: one for regular (nonsystem) rulesets,
another for system rulesets, and a third for file rules. Since system
rulesets and file rules are normally simple to debug, this scheme allows
the user to compile these two components of a system early and
concentrate on the task of developing the main body of code.

13.4 EDITING AND MODIFYING PROGRAM FILES

Some file package operations, such as edit, insert, copy, and
move, are used to modify the text of program files. In the past, this
aspect of the file package often became a bottleneck in the rapid
development of a ROSIE program. In ROSIE 3.0, these processes have been
substantially revised with the goal of improving the speed with which
editing tasks can be performed.

In earlier releases of ROSIE, any changes to a program file were
immediately written to disk. This was done to ensure that edits were
not lost. While a fine idea, in practice it restricted program
development considerably by making even the smallest edits excessively
time consuming. In addition, any program text sent to the editor was
unconditionally reparsed, regardless of what changes were actually made
to it. While filesegments allowed users to edit small portions of a
file, files that needed editing in <everal spots required several calls
to the editor, each one again writing the program file to disk.

¥ ™

-

v
S A,

S,
klk

-‘v

b5
"

-
.
N
-

s '.",.'. o
4
A T

b
.""l

13. File Package 257

In 3.0 release of ROSIE, all changes to a program file are
maintained in core. To update the .txt and .map files, the user must
explicitly call the save procedure.’ In addition, rules and other file
items sent to the editor will be reparsed only if their post-edit text
is detectably different from their pre-edit text.® These two changes to
the file package, as well as others not mentioned, greatly enhance the
speed with whic' edits can be made.

NOTE: The approach taken by ROSIE 3.0 requires considerably more
internal storage than the older approach. This increases the amount of
time spent doing garbage collection and other memory management tasks.
Users are advised to save edits whenever convenient, compiling files
when satisfied with their behavior, and only noticing files that are to
be edited or debugged.

-
Rt
13.5 USING FILESEGMENTS ::_-\4
B {
<filesegmeut> ::= ' FILE : <term> [, <header>] [, <rule spec>] ' Egg

::= ' <header> [, <rule spec>] ' A
::_5.3
<rule spec> = <integer> [<integer>] ;;H
e
:= BEFORE <term> ;‘}'*_x_:j:
:= AT <term> e

:= FROM <term> TO <term> :
:= AFTER <term> 3€q§
The filesegment element (described in Section 9.7) provides the ikzﬂ
ability to identify program files, rulesets, or sequences of file rules e
or ruleset rules. Each file package operation requires a filesegment haﬁ

argument. Many file package operations work on portions of a file, such

as a ruleset or individual rules, as well as the entire program file. :JEQ
To facilitate ease of use, filesegments may be specified in a convenient ':{b
shorthand notation. Mol
i‘l.&
Al
The following are examples of filesegments for identifying ﬁbfz

components of the "integers" program file. The filesegment
'file: "integers"'
identifies the entire program file. The filesegment

}If edited but unsaved files are detected when exiting a ROSIE
session, the user will be informed of their existence and asked whether
these files should be saved.

“Essentially, this means that if the text of a rule is not changed,
it will not be reparsed.

f-"ﬁ
T,

P
R N ALY M NP T M7 R M AP M T MUK LA S M A ST LY MR T T VAT A A AU U LA LN U U 0 W W I o Y

13. File Package 258

'file: "integers”, 1’
specifies the first file rule of that file, while
'file: "integers”, 1 2

specifies every file item between the first and second file rules. The
filesegment

'file: "integers"”, to print-numbers’
identifies the one ruleset, and the filesegment

'file: "integers”, to print-numbers, 1’
identifies the first rule of that ruleset.

It is also possible to identify a ruleset without specifying the
program file from which it originated, e.g.,

'to print-numbers’

If there exists an enabled ruleset (noticed or not) with a matching
header, then it is the ruleset identified by the filesegment. If no
such ruleset is enabled, ROSIE searches the list of noticed rulesets.
The filesegment identifies the first of these to match. If this fails,
then the filesegment is considered to be unknown to the file package and
an error occurs.

13.5.1 Rule Sequence Specifiers

As seen above in the BNF for filesegments, file rules and ruleset
rules may be identified by number using a rule sequence specifier--
rule numbers must be positive integers. There are two variations on
rule sequence specifiers.

The simplest form,

<rule spec> ::= <integer> [<integer>)
is a shorthand intended for use at the top-level monitor. It accepts
only integers (as opposed to arbitrary terms) as rule specifiers. When
specified as
. 3

it identifies the third rule, while

, 1 4

identifies the first through the fourth rule, inclusive.

\

N
Y

b

7

Uﬁebﬂ}

Y

By

Pl D R JN 3
Lo YL Y
AL

Yy I
o
5020,

N

I I N
4
»

Ly
5{¥'u'a

‘\'. “
>

L4

e
l‘l‘ st
Y
’)
P Y

".‘ LN
15 n‘. a '\

vy
i

R

".
o

v

O
A
(4

)
2

Sy
i

P &
)
!]

N]
[If/..'fu
ey 2
RSO

4
.\’

.
5,

13. File Package 259

The other form,

BEFORE <term>

AT <term>

FROM <term> TO <term>
= AFTER <term>

<rule spec>

permits arbitrary terms (which must evaluate to positive integers) to
specify rules. This form offers greater functionality and readability
than the other. When specified as

, before 4’

it identifies either every file item from the beginning of the program
file up to, but not including, the fourth file rule, or every item of a
ruleset between its header and fourth rule, exclusive. When specified
as

, at 3’

it identifies the third rule only;
, from 3 to 7'

identifies the third through seventh rule, inclusive. Finally,
, after 4’

either identifies every file item immediately after the fourth file
rule, or every ruleset rule between the fourth rule and the end
statement, exclusive.

13.5.2 Shorthand Notation

The examples above illustrate the formal syntax of filesegments.
There is also a convenient shorthand notation that is recognized by all
of the file package operations. While this shorthand excludes the
specification of rule sequences, it does allow files and rulesets to be
identified simply and easily.

The following are examples of this shorthand for naming elements in
the "integers” program file:

Shorthand Filesegment
"integers" "file: "integers''
PRINT-NUMBERS "file: "integers', to print-numbers'
PRINT "
NUMBERS "

RIN "

58
A
\"\

\'-.'.‘\
S

b

hY

Yy
»

LAy

.
]

.
aT,

N [] . N L] "

>
»

a
',

)

4
.
L)
-

)
&
*

-

-
cl
-
-
-
«
<
»
“
-
{3
-
-
S
.
»
-
-

r"x\ {

N

13. File Package 260 :'.:

'

P

The shorthand string names either a loaded (and noticed) program Y

file or a program file that exists on disk. If no such program file can b\
be found an error occurs. \
o

u"

A name element indicates a noticed ruleset. The element is
compared to the name of each noticed ruleset, using the following rules:

'
N

.

L)
e

. If the element matches the name of one and only one ruleset
exactly, then that ruleset is selected.

=7

e
A

AS %

i If it exactly matches more than one ruleset, then the user is
queried to choose the correct ruleset.

[d
.

¥

N If the characters in the element exactly match some substring
of the name of one and only one ruleset, then that ruleset is
selected.

~1

Id

LS]
f‘:s

I4

. . . Y
d If it partially matches more than one ruleset, the user is ,:
queried to choose the correct one. o
g V)
If the name cannot be found to identify a ruleset, then it is coerced e
into a lowercase string and treated as the shorthand for a file. 1If no lﬁi‘
such file exists, an error occurs. N
o
.-\--.
.h\-..
13.6 FILE PACKAGE OPERATIONS T
Y
In the following operatiors, @ filespec refers to either a Ty
filesegment element or the shorthand notation for a filesegment--only R
the contents of noticed program files can be designated in shorthand-- SO
and g file refers to a string element that names a text file. ::{:
AN
build a filespec
1"
. o
Creates a new program file for filespec. Build leaves the ol
file noticed, so the user can immediately begin editing it. The file A
must be saved before it appears on disk. e
LY
A
load a4 filespec g
, 4 . . NN
l.oads and notices a program file or a portion of a program file. s
. , T
1f filespec names a program file, e.g., S
load ‘file: "myprog™’ N
R
the entire file is loaded into the ROSIE session. Rulesets defined in i:i{
the file will be defined in ROSIE. If the tile contains no syntax vl
errors, then its file rules will be executed after its rulesets have MRS
been defined. . .
<
‘-".
l\"'
N
Yoo
D
N -.."
. .pf
A
e
- :.\~‘._ R .t e ,‘. ‘¢ .’ \- .-’-, o

A v\ '\-‘\f-‘('..'\.‘\-'l‘c‘\..“.l e Vl-" \-‘\' A Y N‘.\- .'. " TN ST A
- : ") oty 25 ’) LV i e X

13. File Package

If the .cmp file exists and if the write date of the .cmp file
is more recent than that of the .map file, the compiled version of
the program file will be loaded.

If filespec names a sequence of file rules or a ruleset from a file,
e.g.,

load 'file: "myprog"”, to move a ship from a port'

then the entire program file is noticed, but only the specified
portion of the file is enabled.

NOTE: When a portion of a program file is specified, it will always
come from the .map file and never from the .cmp file.

sysload a filespec

Same as load, but the file is not noticed and so cannot be listed
or edited. Sysloaded files require less memory.

Program files that are not going to be edited or examined should be
sysloaded--for example, the system ruleset library is sysloaded.
Noticing a file requires a large amount of space, and too many large
noticed files will significantly impair system performance.

Unlike earlier releases, in ROSIE 3.0 sysloaded rulesets may be
broken, traced, and disabled (although not re-enabled).

notice a filespec

Notices the contents of a program file without enabling the file's
rulesets or executing its file rules. Rulesets can later be defined
and file rules executed with the enable procedure, i.e., the

load procedure is essentially a notice followed by an enable.

enable g4 filespec

Enables the given filesegment. If this is a program file, defines
its rulesets and executes its file rules. If a ruleset, simply
defines that ruleset. If the filesegment is not already noticed,

attempts to load the appropriate program file.

compile a filespec

Compiles a program file, storing the binary code in a .cmp file.

If the file is not already noticed, it will be noticed automatically.

261

L "
PN

4

o

=y

L IS
f“{_.l_:“'/' ‘f A x

5%

Lol
kA

N3
~ s

R,

> W e
.

Do

. . . . TP TRRY . vy g g4,
. . S e b e A el LT Y gty bt g L i ML ER CR A L N T e

Sx] e
) l {bﬁf

3 oy

13. File Package 262

)

"\fn
L’.’ S

After compilation, the .cmp file will be loaded.

A program file can be compiled even if portions of it contain syntax q; r]
1 b i b Sl
errors. A ruleset must be free of syntax errors before it can be o
compiled. t;
t
]
If filespec specifies a ruleset, then only that ruleset will N,
be compiled. The resulting binary will not be sent to disk, but it
. [i s . R~
will replace the ruleset s definition in core. RN
TS
W
N4
change s filespec to a filespec -i?i'
» 1’ ¥
n
Renames the program file designated by the first filespec to the i
program file named by the second. This is the only safe way to A
rename a program file. OIS
TN,
~ ."‘,. :
u'.‘-“ .
LA
parse a file o
LS
Converts file (assumed to be a text file containing the source NN
code to a ROSIE program) into a program file. The new program file :u:u:
is automatically loaded. AN
Yoy
Y
, , BAYS
list @ filespec
.:_:-' o
Displays the text associated with filespec to the terminal. AL
SR
ALY
scan g filespec J;\:._
w. N
Summarizes the contents and status of filespec, which indicate syntax 7
-

errors and other relevant information, e.g.,

<6> Scan "integers'.

"FILE: "integers"' ‘ontains:
{Rules 1 and 2} e
TO PRINT-NUMBERS [1 rule]

deparse g filespec

Lists ROSIE's interpretation of frlespec by "deparsing" its
associated HILEV code.

The deparser is essentially a text generator, i.e., given a piece of
HILEV code, it produces the ROSIE source code equivalent. This
machine-generated source code illustrates how terms and clauses were
interpreted with proper indentation and by going to the extreme in

13. File Package 263

its use of parentheses as delimiters, e.g.,
<7> Deparse 'integers'.
[Rule 1] LET THE FIRST NUMBER BE 1.
(Rule 2] LET THE LAST NUMBER BE 5.
TO PRINT-NUMBERS:
[1] FOR EACH INTEGER (FROM THE FIRST NUMBER) (TO THE
LAST NUMBER),
DISPLAY THAT INTEGER.
END.
This operation can be essential to understanding and debugging complex
ROSIE expressions.

decode s filespec

Lists the HILEV code associated with filespec.

erase a filespec

Removes filespec from its program file. Erasing an entire program
file does not delete the .txt and .map files, but merely nulls out
their contents. In ROSIE 3.0, erase no longer asks for confirmation
from the user before making the change.

NOTE: Erasing an enabled ruleset does not disable the ruleset. For
this, one must use the disable procedure.
copy a filespec before a filespec
copy g frlespec after a filespec
Copies (splices) the first filespec before or after the second.
move a filespec before s filespec
move a filespec after a filespec
Equivalent to a copy followed by an erase of the first filespec.
NOTE: Some intuitive restrictions are placed on the movements of
particular types of filesegments. For instance, although it is

permissible to copyv the rules of one ruleset into another ruleset, one
may not copy an entire ruleset into another.

L L I R e R P L |
™)‘. Fa ‘.\ '.'-.)\..‘-'_'\‘,\‘,\‘. .-_\ J‘\-‘\

)

R
LN

.
< .

.C
A

¢

L Y

I‘.‘l :
e
a

,
ol

a”a
[4

oy - -
L]

.
-

TN
LAk
a .- 1]

h)

P AL s

T

- -

- e e

KA

o

[i Y W Dy

S % 2 82 150 §°8 8 G V.0 0,850 870. 0 5 % 1.0 £.0 .8 00 (.8 §.0 ¢.0 a” Bat 0aT Wav " ot vy’ h g'4.8"

13. File Package 264

edit a filespec

Invokes the user's text editor (see below) to edit the text of
filespec. The edited filesegment is then parsed and loaded,
replacing the original. ROSIE allows users to edit entire program
files, sequences of file rules, rulesets, or sequences of ruleset
rules (i.e., any filesegment).

insert before a filespec
insert after & filespec

Invokes the user's text editor, allowing the user to compose code
that should be inserted before or after filespec.

NOTE: The "user's editor" is taken from the lisp variable
$ROSIEEDITOR, which will be bound from the environment variable
EDITOR if possibtle or to "edit” if not. The user may specify a text
editor of preference by setting the EDITOR environment variable at the
0S level or by setting the $ROSIEEDITOR lisp variable in the .rosierc
file, e.g.,

(SETQ $ROSIEEDITOR "emacs")
NOTE: The erase, copy, move, edit, and insert operations do not
automatically write program file changes to disk. This must be done
explicitly using the save operation.

save (a filespec)

Updates the .txt and .map files of filespec on disk to reflect
changes made during a ROSIE session.

1f filespec is not given, ROSIE appraises the user of all program
files that have beer modified and need to be saved, giving the user

the option of saving each in turn.

NOTE: Save is called by iogout.

disable & filespec

The inverse of the enable procedure. If filespec names a progrim
file, disable undefines all rulesets of that file; if a ruleser,
disables only that ruleset.

NOTE: A ruleset need not be noticed to be disabled, but it may not
be re-enabled without being noticed.

15 AR R
st

LS R

AAASS Y
A [4

A taT e v 2
PSSR

h

4 4 %
M0

'l”l“'l

=
Ps

r
o ey
- Ny har

Ps
PR A

‘%
v

[T
'

I's
o

e -
[l
.
]

> »
LIP VAR
. '
A

v}
A

LA A
,'."v AL

)
»

« .
-'{
a1,

.f*

TN A A LN LN LR LA LT LD A LA L LA LR AT U R R R R R O L U A O A T R T T T O DR T O U TR TR T O O O O O ST

's 13. File Package 265
{

unnotice a4 filespec

X
Q! ' 4
” The inverse of the notice procedure. If filespec names a program
W file, unnotice causes the file package to forget about everything 4
¢.‘ in that file (this is not equivalent to erase); if a ruleset, N
§ causes the file package to forget about just that ruleset. K
) it
X]
.~ unload a filespec 9
~ }
b The inverse of load; a disable followed by an unnotice.)
e -

find 4 string in a filespec o
" Lists the component filesegments in filespec in whose text appears “
$'~ string. Upper- and lowercase characters are treated equivalently. \

Iy .
A\ (ks
f:: When an instance of string is found, lists the filesegment in which 4
L it appears as well as the first line that references string, e.g., ~
o <8> find "number" in "integers". .
S -
o .
*:'» Searching 'FILE: "integers''... N\
‘e 'FILE: "integers", AT 1’ ~3

"Let the first number be 1." '

NS '"FILE: "integers', AT 2' A
e "Let the last number be 5." =
N Ty
0 'TO PRINT-NUMBERS']
v " . " g

To print-numbers: oy

o "TO PRINT-NUMBERS, AT 1' -
s "For each integer from the first number to the last number," yo
-.:; Done searching.
l.." -
X 2]
7 N
-:"v ‘&

-, -,
R L
p:, "
L%} -

' ¥
a8 ™

L, .
W Y

.

o -

‘.l.' '-
O N
*.) -'.
o

o e

D w \--

bt A
" .~y

) .
On, -

L R T T Tl Y P U VA S DR SR __ T ' - . RN ‘.‘.. PR)

.fb"r".rk}l":r. PN,

- C e et LAt e e et
PR R LY. VYR Y Y WYY,

-
e
.
-
£
'
'y
g
-
2
-
-
-
3
-
-
'S
-
-
-
3
.
-
-
-
-
-
-
-

preceding page blank - not filmed e
14. Break Package: Debugging 267 Py
&
ey
e
.
XIlV. THE BREAK PACKAGE: DEBUGGING PROGRAMS ::
Py
o
The break package is a facility for monitoring and debugging ::
programs. It is primarily intended for use with rulesets and ruleset ,:'
rules, but it can be used to monitor other aspects of a program as well. ;*
It includes features that allow a user to resume from recoverable 315
errors, to monitor control flow, to interrupt and examine ruleset
invocations as well as the results they generate, and to profile the vl
effective computation time of various aspects of a ROSIE program. -:\:
N,
The three components of the break package, the trace, break, and :: p
profile facilities, allow the user to temporarily modify or break Y&t
selected ruleset or demon definitions (even if the selected rulesets or Sepe
demons are not defined) and access different features of the break e
package. ;»:Q
o
’A'f J
14.1 BREAKABLE ASPECTS OF A PROGRAM iy

Any aspect of a program that is capable of invoking a ruleset or
demon is breakable, even if no such ruleset or demon exists. Thus, it
is possible to break database actions, such as assertions, denials, and
tests of a proposition, and generation from a class, in additiomn to
calls on defined rulesets and demons.

To trace assertions of a particular proposition, one would break >
the assert demon for that proposition, e.g., .

Trace 'before asserting a man does love a woman'.

Similarly, to trace the values produced for some class, one would break .

the produce demon for that class, e.g., :;{i
“\‘-

Trace 'before producing a target at an airfield'. l}'::{

R
Both actions break the demons that would normally be invoked before the NN
occurrence of the particular assert or produce event. If these demons !
are not defined, then a dummy (no-op) definition will be enabled and ;E;N
broken. f\is
I-\l..
ST

It is likewise possible to break undefined rulesets. When a break Tat
throws control into the interactive break loop, monitor-level commands BN,

are executed in the context of the ruleset invocation (i.e., as though e
they are actually rules of the ruleset). Thus, breaking undefined }?ﬂ}
rulesets allows the user to play the part of the ruleset definition. {fi¢
This offers an appealing aid to program development where the user is :}:;
uncertain of how particular rulesets should behave and wishes to uﬂ\i
experiment. If an undefined ruleset that is broken becomes defined, the Y
dummy definition is replaced by the new definition, however the ruleset [
remains broken. Rulesets may be unbroken only by explicit command. .;\~.
0y

:ju*

N

o

Le
[
@

pwong
Text Box
preceding page blank - not filmed

nla e
g [}

10at et tat Sabo alatats 180t 1tatetaatata e et ate aa i At 10 e 10 1 10 4 Y e N 1

14. Break Package: Debugging 268

Within defined rulesets and demons (except system rulesets), it is
also possible to break the execution of individual rule. For instance,

Break 'to move a ship to a destination, 3'.

will cause control to enter a break loop prior to executing the third
rule of the move to procedural ruleset. Note however that redefining
the ruleset (e.g., after an edit) will remove the break.

Finally, when the ruleset being broken is either a generator
ruleset or a generate demon, the produce demon for its class is also
broken automatically, since the values being produced are only visible
from the produce demon. When either the generator ruleset or generate
demon are unbroken, the produce demon will be unbroken as well.

14.2 THE TRACE FACILITY

The trace facility modifies the definition of a ruleset to display
a message whenever control passes in or out of the ruleset. Upon
invoking a traced ruleset, a message is printed stating the trace depth
and the title of the broken ruleset, with formal parameters replaced by
the values of actual parameters. When exited, another message is
printed stating that control is returning from the ruleset. Results, if
any, are displayed at this time as well.

The results of a ruleset are dependent upon the ruleset's type.
Procedural and generator rulesets never return a value.! Predicates can
return a conclusion of true or false or make no conclusion at all.
Demons can either continue the interrupted event or not. Tracing a
ruleset rule has the same effect as described above, with the additional
effect of displaying a message prior to executing the rule.

The following example illustrates a trace of a demo program called
"players”.

<13> List "players".

To find basketball players:
{1} Send "{Every man who is tall} is a basketball player.{cr}".
End.

To decide if a person is tall:

[1] If the person's height is greater than 6.7 feet,
conclude true, otherwise conclude false.

End.

!The values produced by a generator are bound to its description
variable and not explicitly returned.

PalE S AU G o SN N
S o

4}.

"
o

-"j’ﬁ'
ks

-

7%
1 e Y e Y

l'l’

y ..

’

;.5\

-,
e

Yttt
A l" . ’
Ah WY

.
.

L

L4

N
[N

5N
& 4
Lg

-"‘
el
'

..
oy,
*
N %

e
A

NP A
‘ l'(‘

....1
‘ﬁ'

NN
e N
P

I
AR
o %
: 8
)

v
2y

AT RN A BE BT RN AR P N TR N IS UY Uy TR TR TRy --v-:--u-:'r-va..-;.,,.'.'

(X
14. Break Package: Debugging 269 97 ;;:
%
To generate a man: :"t"
[1]) Produce each of Jim, Jack and John. \'%"
End. YTy
han:
To generate the height of a person: :‘:'.,3::
[1] Select the person: o
<Jim> produce 6.4 feet; W'
<Jack> produce 6.9 feet; S
<John> produce 5.8 feet. Iy ".‘
End. ;-.};n.
f.‘b
<14> Trace '"players'. *¥
N,
Breaking 'FILE: "players'' g
TO FIND BASKETBALL PLAYERS -- broken. :J{‘" s
TO DECIDE IF A PERSON IS TALL ~-- broken. \:,-.j
TO GENERATE A MAN -- broken. :::.r
BEFORE PRODUCING A MAN -- broken. N
TO GENERATE THE HEIGHT OF A PERSON -- broken.)
BEFORE PRODUCING A HEIGHT OF A PERSON -- broken. 7
Done breaking. e
o)
<15> Find basketball players. :-"::’.,
1: TO FIND BASKETBALL PLAYERS ‘:
2: GENERATING A MAN Wt
2: Producing JIM
3: TESTING IF JIM IS TALL \:."",.
4: GENERATING A HEIGHT OF JIM N
4: Producing 6.4 FEET ey
3: Concluding FALSE from: N
TESTING IF JIM IS TALL :‘.:-‘,:.
2: Producing JACK
3: TESTING IF JACK IS TALL o K
4: GENERATING A HEIGHT OF JACK A
4: Producing 6.9 FEET n"';t,(
3: Concluding TRUE from: p-'\-,
TESTING IF JACK IS TALL R
JACK is a basketball player.
2: Producing JOHN NN
3: TESTING IF JOHN IS TALL f:-':-
4: GENERATING A HEIGHT OF JOHN ;é;-::_x'
4: Producing 5.8 FEET R
3: Concluding FALSE from: :,-"';
TESTING IF JOHN IS TALL -
1: Returning from: S5y
TO FIND BASKETBALL PLAYERS :5'%‘;
<16> Untrace 'players". haihy
nrnll
Unbreaking 'FILE: "players"'... w
TO FIND BASKETBALL PLAYERS -- redefined. ;
o
o
b
A

3% LA ,' “.-w' "= ‘P e N AL e ‘\" "'N. ‘p‘ Y > .".' ‘?'.\'. s ‘.‘n ' ~..\.\ \‘ - “r Y N"-“‘ N "‘-.\-:-'.'u;.-" " '-.F. ‘-';."-'
A SaXallul Balalad . N LN N .9, () A P aN AN oM N ¥ 3 - vy

HaX) 3 R I

W

14. Break Package: Debugging 270

TO DECIDE IF A PERSON IS TALL -- redefined.

BEFORE PRODUCING A MAN -- disabled.

TO GENERATE A MAN -- redefined.

BEFORE PRODUCING A HEIGHT OF A PERSON -- disabled.
TO GENERATE THE HEIGHT OF A PERSON -- redefined.
Done unbreaking.

Note above that tracing a generator also traces its associated
produce demon, e.g., as in the case of the generators for man and
height. A result of this can be observed in the generation of each man
at level 2 of the trace. The first comment at level 2 comes from the
generator, stating simply that it is beginning to generate from the
class of man. All other comments at level 2 come from the associated
produce demon, stating the elements that are being produced for this
class.

14.3 THE BREAK FACILITY

The break facility moc_ fies a ruleset definition to halt the
invocation of that ruleset temporarily and pass control to an
interactive monitor called a break Ioop. Commands at the break loop
level are executed within the context of the ruleset invocation. From
within a break loop, the user can examine and change the private
database of the broken invocation, or move down the stack of ruleset
invocations, examining and changing the private databases at other
levels.

When the broken ruleset is a generator, two levels of break occur;
the first as the ruleset is invoked and the second whenever the ruleset
attempts to produce an element. This gives the user the ability to
examine and modify each element produced.

14.3.1 Break Commands

Control can enter a break loop when either a broken ruleset is
invoked or when a continuable runtime error occurs (see Chapter 12).
Within a break lcop, the user can interrogate the system, perform normal
computations, examine the context of the inveccation, and continue or
return from the ruleset. Additionally, the break loop gives the user
access to a number of special break commands.

The break commands cannot be invoked in conjunction with other
actions. They must appear as singleton commands to the monitor. All
break actions end with an exclamation point (!); this punctuation is
used to avoid confusion with procedures of the same name.

The break commands are available from within a break loop:

O

e

7,

(X4

ARARRA
B A
8 5 & &

™~

..‘.“

L

LA

'5l‘.'

«

b
'.I

L4

PR AR
.

2ol

7

-
Y

s ; Al"-.':.: '
NARY

v
03
o

AN
»J \.‘.

NN
¢ -'-"‘
"

r
LN g'l. Y

Y
'
e

"

NN Y
N

-y

.\

[Y

Y
e
» ' 'e

e

Y

-

i) o
Iy 14. Break Package: Debugging 2N f
! ¢
& 2
& 1 :4
. eval! o
t .
- Resumes computation without releasing control of the broken ruleset
o or rule. Once the computation is completed, control is returned to J:
g . :
[N the break monitor, where the user can examine the results of the
! computation or its effect on the system state. When the break is)
>, finally released, computation of the broken ruleset or rule will not v
o be unnecessarily repeated. !
€ ‘
‘e NOTE: This command is not operational when the break loop was entered "
‘ due to a runtime error. N
Lo '
Ly S
1) K
- result! K
\? -y
ok Displays the results (if any) from the evaluation of the broken ruleset >
s or rule. &
) -
Ea ™)
e b
3: list {(] ruleset | <integer> |)]! ¥
o Calls the file package operation list on the broken ruleset or &
'~ ruleset rule. If no argument is given, calls list on the broken =
o filesegment. If the ruleset option is given, calls list on the Iy
o entire ruleset. If the <integer> option is given, calls list on ;
- that rule of the broken ruleset. N
*l .'v:.
. K
1.{ edit [(] ruleset | <integer> })]! i~
ﬂ ‘::
W'y Like list, except that it applies the file package operation edit :t
.‘.: to the designated filesegment. o
;‘- i ::
:}- resume [(| ruleset | <integer> |)]! v
N <
My
ﬁ: Releases the break and allows computation of the broken ruleset or rule)
b to resume. If this computation was previously made via the eval -
command, then the evaluation of the ruleset is not repeated. :
AR
' .
j The ruleset and <integer> options are operational only if the break "
s:: loop was entered by a runtime error. In such cases, these options o
» allow you to restart the ruleset invocation or resume computations ",
™ from any rule in the ruleset. If no argument is given, resumes "
- computation from the rule that triggered the error. .
N]
’ ‘w g
2
return!
-‘ x5
. Releases the break, throwing control out of the ruleset invocation ﬂ
without allowing computation of the broken ruleset to continue. Y
o¥ X
2 :
N
v S
»’. ,:'
g -
N Rt
v %
0

R R R L Py oy T O P ST IR AR TN YL VI TR S
o LD o e e s

14. Break Package: Debugging 272

conclude true!
conclude false!

Releases the break, concluding true or false without resuming
computation of the broken ruleset.

NOTE: May be used only within a broken predicate ruleset.

produce an element!

If called from within a generator ruleset, attempts to produce
element, possibly invoking a produce demon. If called from
within a produce demon, actually replaces the element currently
being produced with el/ement.

The difference between the two cases is subtle but distinct. In the
first case, element is produced as the one and only element
generated by the ruleset. In the second, it is produced as just one
of the elements generated. In either case, the break is released
without computation of the broken ruleset being resumed.

NOTE: May be used only within a generator ruleset or a produce demon.

trace!
Displays a backtrace of suspended ruleset invocations.

Each invocation is depicted using the ruleset's header followed by the
number of the rule currently being invoked. A star (%) is placed to
the left of the current (i.e., examinable) ruleset frame.

The current frame at the time of the break is a frame of the broken
ruleset. This is also the frame at the top of the stack. The frame
at the very bottom (which is not accessible) is the frame for the
top-level monitor.

down!

Changes the current frame to the next frame down on the frame stack,
and thus allows the examination of the calling ruleset's private A
database.

Changes the current frame to be the next higher frame on the frame stack.

14. Break Package: Debugging 273

top!
Sets the current frame to its original value (i.e., the frame of the
broken ruleset).

bottom!
Sets the current frame to be the frame for the ruleset invocation
at the bottom of the stack (i.e., the frame of the initial ruleset
invocation).

quit!
Throws control back to the last break point. That is to say, if the
user is nested several layers deep in break monitors, control can be
returned to earlier layers successively.

pop!
Throws control back to the ruleset invocation that called the
currently broken ruleset. That is, if ruleset X invoked ruleset Y
and a break was called from ruleset Y, pop! would forget
about the invocation of Y and make it appear as though the break
was called from the invocation of X. This command provides a means
resuming computation from any point on the frame stack.

help!

Displays a short synopsis of the break actions.

In addition to these, the following operations can also be useful from
within a break:

private?

Displays the contents of the private database in the current frame.

produce an element.

When used within a generator ruleset, attempts to produce element
without releasing the break afterwards.

quit.

Aborts computation, throwing control back to the top-level monitor.

. 0y
G St
LA A
KLU A
Vo g

h RS
[l

A IR B L
.
L}

A5
Faal
A]
XA

FALS L
ARLR LAk
Mty
ry

.{S’i‘.
S5

A Lg
v

e
e

A A

s »
P
e Nt

s

LI
.

.b
haaates
-A‘l

A

. a_»

S

s e 5

e Ty e e

.-

$.
o
!y

v
-
I

NN

>
Y

.
RS
sNA LY

14. Break Package: Debugging 274

4
Ly
by
&*

C o .
a
CR A

Py

14.3.2 Example Session

3

In the following example of break loop interactions, the test
rulesets are taken from the "players” program seen earlier.

<18> Break each of tall and height.

F\'I-“l
b

Breaking 'FILE: "players"'...
TO DECIDE IF A PERSON IS TALL ~- broken.
Done breaking.

.(.n
>
LS

&, &
P

€z =

Breaking 'FILE: "players"'
TO GENERATE THE HEIGHT OF A PERSON -- broken.
BEFORE PRODUCING A HEIGHT OF A PERSON -- broken.

",
)

i

~
Done breaking. Ni}'
...’."
<19> Find basketball plavers. :}:“
N,
Broken at: A
"TO DECIDE IF A PERSON IS TALL'. R
n‘::l
[1] Private? o
[PRIVATE Database | e
JIM IS A PERSON. Ay
teva
At this point, control has just entered the break loop. The first thing e
we do is check the broken ruleset's private database to see how the *:“i
predicate is being applied. "f:f
. o
e
[2] List! e
2uL L
> [1] If the person's height is greater than 6.7 feet, Tvav g
> conclude true, otherwise conclude false. }:af
'-_‘.'.'.
[3] List ruleset! :f;?
XN
> To decide if a person is tall: e
>
> [1] If the person's height is greater than 6.7 feet,
> conclude true, otherwise conclude false.
>
> End.

In line (2], we examine the break point,; not surprisingly, this is the
first rule. In line [3] we examine che entire ruleset.?

ZNote that some output is offset by angle brackets (>). This
convention is used here to avoid confusion with type-in and will not
appear in an actual ROSIE session.

~
L

\’sfxfb : AT P

o

3 LI " WIS U e Wi P N Cw te e e e
R A e AR DN

0
ol
‘.‘.1 (4
14. Break Package: Debugging 275 :" L
I
d&;:
[4] Eval! E 4:‘
’ §
[S
Broken at:
"TO GENERATE THE HEIGHT OF A PERSON'. :ﬂ:ﬁ
S
[1) private? :’b"
[PRIVATE Database | 5:0’
JIM IS A PERSON.)
[2] List!

> [1] Select the person:
> <Jim> produce 6.4 feet;
> <Jack> produce 6.9 feet;
> <John> produce 5.8 feet. .
ARG
[3] Resume! :3::
L\
FAdhY
The eval! command in line [4] allows computation to resume without ?:}t
releasing control of the break. Control then enters another level of ;bﬂb'
break when the broken height generator is invoked. In line [1] and {2],
we examine the private database and the break point, respectively. The :ﬁ;ﬂ:
resume! command in line [3] allows computation to continue and releases '{3}_
the control of the break. NN
"%
.h
Broken at: DN
"BEFORE PRODUCING A HEIGHT OF A PERSON'.
ESAYA
Tentatively producing: SN
6.4 FEET :::Tf
:;-* L
[1] private? ._ﬁ;:'
[PRIVATE Database]
JIM IS A PERSON. IO
6.4 FEET IS A HEIGHT. RO
. '-('.-
Control is again thrown into a break loop when the broken produce demon -:C:C
associated with the height generator is invoked. Notice that when we NN
examine the private database of this ruleset we find an extra assertion; i
this is the value being produced. S
[3] Resume!

Continuing from:

"BEFORE PRODUCING A HEIGHT OF A PERSON'
Returning from:

'TO GENERATE THE HEIGHT OF A PERSON'
Evaluated.
[5] Result!
Concluding FALSE.

&

EAESRAN

"{‘-"

o N

At At

At

-

- -~ CE I RN ST
LTV Y N P

RN

TN TN N
- \] .
(I N

K
LAY

N A I AT S AT

14. Break Package: Debugging 276

When we resume computations, control returns to the top-most break loop,
where we can examine the results of the computation. Now, say we don't
like these results. We could do the following.

.:}‘
(6] Evalt s
i
)
Broken at: >
"TO GENERATE THE HEIGHT OF A PERSON'. halt
[1] Resume! e
Broken at: o
"BEFORE PRODUCING A HEIGHT OF A PERSON'. A
Tentatively producing: T
6.4 FEET R
s
{1] Produce 6.8 feet! i;b'
Producing 6.8 FEET for: Pt
"BEFORE PRODUCING A HEIGHT OF A PERSON' A
Returning from: .
"TO GENERATE THE HEIGHT OF A PERSON' r?;:
Evaluated. S
[7] Result! o
Concluding TRUE. T
(8] Resume! A
Concluding TRUE for: .
"TO DECIDE IF A PERSON IS TALL' '}::_
JIM is a basketball player. :j\:'
ey
NS
At line [6], we reevaluated the computation, continuing as before. At '}“:‘
line [1] of the produce demon break loop, however, instead of allowing g
the tentative value to be produced, we instead produce a different ':*:’
value. This value passes the test for tallness, causing the predicate };*
to succeed. We now release the break, and the find procedure outputs a ,quz
message about a candidate basketball player. isfa
by
Broken at:
'TO DECIDE IF A PERSON IS TALL'. R
,n. ~.‘(
(1] Private? :kﬁﬂi
[PRIVATE Database | 2t
JACK IS A PERSON. A
[2] Resume! ECa
SO,
Broken at: -:H;%
'TO GENERATE THE HEIGHT OF A PERSON'. s
NVRTS
[1] Resume! !
If':\'}
.;::,‘\-_.
ROAY
~ete
ot
C:::_',".
AT

N A AN

‘\-..\ :."‘-r'.\‘‘.‘. '\r:\ hG ;-.,w’ ‘f Xt ety --P -q_-‘_-‘a-) .\"\ ;.,'-\J' ~. LR
2 y B X .) 0 # T HEY. 2} ' R

RN

Vi, ALY

14. Break Package: Debugging 277

Broken at:
"BEFORE PRODUCING A HEIGHT OF A PERSON'.

Tentatively producing:
6.9 FEET

Control enters a break loop again on Jack. Here we continued
computations up to the produce demon.

[1] Trace!

** BEFORE PRODUCING A HEIGHT OF A PERSON
TO GENERATE THE HEIGHT OF A PERSON [rule 1]
TO DECIDE IF A PERSON IS TALL [rule 1]
TO GENERATE A MAN [rule 1]
TO FIND BASKETBALL PLAYERS [rule 1]
[Top-level Monitor]

(2] Down!

* TO GENERATE THE HEIGHT OF A PERSON

[3] Down!

* TO DECIDE IF A PERSON IS TALL

(4] Down!

* TO GENERATE A MAN

[5] Trace!
BEFORE PRODUCING A HEIGHT OF A PERSON
TO GENERATE THE HEIGHT OF A PERSON [rule 1]
TO DECIDE IF A PERSON IS TALL [rule 1)

* TO GENERATE A MAN ([rule 1]
TO FIND BASKETBALL PLAYERS [rule 1]
[Top-level Monitor]

[6) private?
[PRIVATE Latabase]

[7] List ruleset!

> To generate a man:

>

> [1] Produce each of Jim, Jack and John.
>

> End.

[8] Top!

* BEFORE PRODUCING A HEIGHT OF A PERSON
(10] Pop!

Broken at:
"TO GENERATE THE HEIGHT OF A PERSON'.

[2] Pop!

T A n_.a._-*__(,.q..-r\.—_.r__r.‘(...-,_.-‘_'.v ..:.. -_\,'__‘.._-..__r.‘.—_‘.;_.,-'.,’"-_ e e
A - . R)

P4
P ol a% |
)

24

N ‘g;

e
LY
S,
s
~¢£
h Y

)

7,
'l
I
.

Y
l,

4

o et
F N AR
’

IL‘
a
~ _‘

. -
K2

o
U

\" 7, 1
}«'.*r'.'v'
WALUS

N

A A S

" R
M
‘r" {' f"/l ".'...l
. _t l... l{ ll £

()

’
& AN

-

.

14. Break Package: Debugging 278

Broken at:
'TO DECIDE IF A PERSON IS TALL'.

g
&
:

The interactions seen above demonstrate how one can examine the
computation environment and traverse the stack of ruleset invocations.
The trace! command given in line [1] prints the invocation stack--most
recently invoked first. Lines [2] thru [4] show how to move down to the
stack so that in lines [5] thru [7] it looks like control is in the
generator for man. In line [8], we jump back up to the broken demon.

']

In lines [10] and [2], we pop invocations off the top of the stack. !
This al.iows us to resume computations from any point on the stack, as f:
:"’ A

seen below.

[3] Conclude false!
Concluding FALSE for:
'TO DECIDE IF A PERSON IS TALL'

Broken at:
'TO DECIDE IF A PERSON IS TALL'.

[1] Private?
[PRIVATE Database]
JOHN IS A PERSON.

[2] Conclude true!
Concluding TRUE for:
"TO DECIDE IF A PERSON IS TALL'
JOHN is a basketball player.
<20> unbreak.

X
R
’:;

»
Unbreaking. .. q
BEFORE PRODUCING A HEIGHT OF A PERSON -- disabled.
TO GENERATE THE HEIGHT OF A PERSON -- redefined.
TO DECIDE IF A PERSON IS TALL -- redefined. i
Done unbreaking. gﬁ:
47 o
0
14.4 THE PROFILE FACILITY e
The profile facility modifies ruleset definitions so that they ?f*
gather statistical data on the computational costs of each ruleset ﬁa’
invocation. Any number of rulesets can be profiled at once. The ?23
collected statistics include the total time spent within a call and the !

i
4

number of calls made. A sample of the results is shown below using the
"players" program.

<21> profile "players".
Breaking 'FILE: "players"'...

TO FIND BASKETBALL PLAYERS -- broken.
TO DECIDE IF A PERSON IS TALL -- broken.

I 7
R T N M M M M N N A S WP LN W U WAL L LV S LA VA L AT AT AP KT

e
14. Break Package: Debugging 279 :;:,;;:;
'...:‘,
%5%5
(!
TO GENERATE A MAN -- broken. laﬁz
TO GENERATE THE HEIGHT OF A PERSON -- broken. O
Done breaking. ol
e
<22> find basketball players. {ﬁ@:
JACK is a basketball player. %‘-{.:
<23> profile report. ,'“ﬁ‘
Vi
Timing results for: :
[1] TO FIND BASKETBALL PLAYERS |ﬁ$ﬁ
{2] TO DECIDE IF A PERSON IS TALL ::"l:f:i
{3] TO GENERATE A MAN f&¥$
[4] TO GENERATE THE HEIGHT OF A PERSON W)
Ruleset Total Number Time per Percent of aff>
Time (sec) of Calls Call (sec) Total Time R
(1] FIND 0.017 1 0.017 5 '-,Ev‘
(2] TALL 0.102 3 0.034 33 ;*‘»
[3] MAN 0.102 1 0.101 33 &i-ﬁ
[4] HEIGHT 0.085 3 0.028 27
4 Xy
Lot
| Totals: 0.306 8 0.038 N
3
o
When nesting of profiled rulesets occurs, time is charged only to ﬂf‘j
the innermost invocation. Further, the timing statistics are cumulative
until reset by profile reset. g
E
B
14.5 RESTORING BROKEN RULESETS ‘..
v
X
The unbreak and untrace procedures restore broken rulesets to)
their original state. If a ruleset was edited while broken, the edits N !
are not lost when the ruleset is unbroken. kﬁni
¢ ‘~$
4 <o X
Unbreak and untrace actually do exactly the same thing; both :%?.|
procedures are provided for historical reasons. These procedures are (}¢:'

used to restore any ruleset broken by either the break, trace, or

profile facilities. AT
F \“_‘
LA
a\;.:,: A
14.6 BREAK PACKAGE OPERATIONS ifﬁ*
‘;‘V: }
In the following operations, 4 filespec is a reference to a e
filesegment using either the formal or shorthand notation. "Na)
S

o
NOTE: To break, trace, or profile a ruleset, the ruleset need not be 'gi\'
noticed nor even exist. If undefined, a dummy definition is supplied. :‘ !
To break, trace, or profile individual rules within a ruleset, the Wi
ruleset must be noticed. o
&nﬁ\
.~‘l .I\
Ry
.:r".:'\

s

s

> - » I P LY T R L I o’ . v . NN P B,
n~ £ .0".0.\'» o, t‘«'k’. -l-ao ” ‘.’ (X .‘g.n i‘.f~ 0. l D"'._Q,. 'VF&‘- Ay "‘ "" - "--'

14. Break Package: Debugging 280

break [s filespec])

If given no argument, breaks all noticed program files. If applied
to a program file, redefines all rulesets of that file so that their
invocation causes control to enter a break. If applied to a ruleset,
redefines just that ruleset to throw control into a break loop when
invoked.

If applied to a generator ruleset, also breaks the produced demon of
the same name. This allows the user to examine each element before
it is actually produced.

If applied to a rule or sequence of rules within a ruleset, redefines
the ruleset such that a message is printed when the ruleset is
entered and control is passed to a break loop before each broken
rule is executed.

trace [a filespec)

Similar to break, with the exception that, rather than entering

a break loop, rulesets within filespec are redefined to print
messages prior to and following invocation. Trace messages designate
the calling level, the calling form, and tt> —ralue being returned.

profile (a4 filespec]
Like break and trace, this procedure redefines the rulesets within
filespec. Profiling keeps track of the frequency and execution
time of selected filesegments. Performance information is collected
incrementally. Re-profiling a ruleset resets the profile information
associated with it.

profile report

Displays the profiling information collected so far.

profile reset
Reinitializes all profiling information.
unbreak [a filespec]
untrace [g filespec]
Restores all broken rulesets (i.e., redefined by break, trace, or

profile) within filespec. If no filespec is given, unbreaks
all broken rulesets. Unbreaking a profiled ruleset causes all

WA ; T L T T P T R LT R L LT L VR RN L R Sy A Wy Ol e O Cu oy, 8 e
11”..’0""’"4."‘..l'.l..ld on o » ** e () "“,..._ WY LYW V- '\"' V. ~ "" "' PRINVADIR

1.8 e Ve a0 e, 7y,

h\:ﬂfs
"’

o

2

h
X
L4

P A AL
‘c{\'ﬁ

0 Yy %)

LY

14. Break Package: Debugging 281 L

profiling information on that ruleset to vanish.

NOTE: It is not possible to unbreak a single rule in a ruleset :
without unbreaking the entire ruleset. y)

.y § P > AP LN - o g4 ¢ TN T

preceding page blank - not filmed Yooy,

)
ok
%) (3 [l
A. Example Programs 283 !:‘;':}2
e
?]
APPENDIX A: v,
EXAMPLE PROGRAMS
l:.i".'
s
D ¥}
Examples provide a good introduction to ROSIE. The following y Hﬂ?
annotated ROSIE systems serve to illustrate several of the concepts _:k:
discussed in the manual. Because ROSIE is unlike any other high-level '
language, it requires some practice before the user begins to approach x}J
problems in a "ROSIE-compatible" manner. Examining example systems is t: <)
the first step in learning how to program in ROSIE in an intelligible 245
and effective manner. roend
J‘\ "
The first example system, FORTUNE, demonstrates a simple -
application of ROSIE that exercises many of its basic data manipulation i;.;
capabilities. The second example, POIROT, demonstrates the use of Pty
alternate databases as a method for describing distinct belief spaces. ;:fﬁ
The third example, ANIMAL, shows how to build a control structure on top ,:}:,
of ROSIE. The first two examples were adapted for ROSIE 3.0 from an 3ﬁi
earlier ROSIE document entitled "Programming in ROSIE: An Introduction
by Means of Examples," (Fain et al., 1982); readers interested in seeing N
other (though outdated) examples of ROSIE programming techniques are ﬁ%ﬂ}
referred to this document. :t;{
M) "-
NOTE: These and other ROSIE demo programs are provided with the standard :f:i,
ROSIE distribution and should be on-line at your installation. See your s
site consultant for information on how they can be accessed. Y
::':'-:'f
.-:¢ "
o
NN
ot i
Vg
NG
Uy
X
sota)
Vo)
o
. .'|'|'.l
"y
Wiy
R
N
N
AN
% .h
N

P A o o S A T AN -.J\’-.(-.__-\J,-,:.._\ et \.‘;.._\'_-.,\.‘\ -.’ S R '.'.;.\‘ ~
; A e, N A o ACA 5 AL AN ANy

pwong
Text Box
preceding page blank - not filmed

preceding page blank - not filmed | {#x8

A. Example Programs: FORTUNE 285 :.:.:.i
et

!

"I:

FORTUNE -- THE BASICS '||'I::
ot Wt

The FORTUNE demo system performs a mock portfolio analysis. V.En
FORTUNE was written several years ago to demonstrate ROSIE's ”5?:
capabilities to the editors of Fortune magazine. .?g
0

Developing a knowledge-based system for any task requires ",

designating the pertinent information needed and determining how it
should be used. In ROSIE, this often means deciding what should go into

ot
the database and what should be encapsulated, procedurally, into g‘ﬂﬁ
rulesets. o ‘:‘t
{ “;‘
For the task of FORTUNE, the problem statement was given as shown N &
below: SR
i:"! :
Renewable energy, electronics, and optics are high-technology q}f'
areas of Investment, and genetic engineering is & high-technology :A:%
area of Investment that Is speculative. Communications, sjﬁ
photography, automotive, and machine tools are conservative Wiy
greas of investment, and petroleum is an area of Investment ¢ Tl
that affords rapid write-off but is a little risky. Petroleum 30F
and renewable energy are current topics of legislation. ?2:‘
pe
John Doe owns an Investment portfolio that includes renewable *:E
energy, petroleum, automotive, and communications, and Mary Jones ﬁ},
owns an Investment portfolio that includes renewable energy, A~
genetic engineering, and optics. John Doe and Mary Jones are A
Iinvestors. John Doe's line of credit is $20,000 and Mary Jones' ¢£$I
is $10,000. ::;,
LN
Any area of investment Is & stock and any stock that Iis a ht s
current topic of legislation is volatile. Investors who hold Ll
high-technology stock are generally interested in productivity, R
and Investors who hold speculative stock will be interested in ‘jx:_
robotics and artificial intelligence. :{:1
ROSIE is an innovation In both productivity and artificial “:*
intelligence, which are technology areas. L
For each investor, we want to be able to list the holdings for *
that investor, giving such related information as the Investor's :&F,
name, and a title such as "Current holdings" and marking as i
"VOLATILE" all volatile stocks held by the investor. " ':
-
We want to do & profile of Mary Jones. This means listing any i
speculative stocks she holds with an appropriate title. If she r:a:'
holds no speculative stocks, an appropriate message should be $ Y
given. < f:
Py
We should send & separate technology-area bulletin to every ’

investor interested in that area announcing each technology

pwong
Text Box
preceding page blank - not filmed

A. Example Programs: FORTUNE 286 o

innovation In that area. One bulletin per Innovation, pledse.
If the same Innovation relates to multiple aregs, send multiple -

T

bulletins with appropriately differing titles. \?
"
W,
Finally, we want to try to find & customer for ROSIE. This QQj
investor must be Interested in productivity and artificial :k&
intelligence. HNe or she must have 4 line of credit exceeding Sint
$1,000. If & customer Is found, record the reasons for selecting N
him or her as a ROSIE prospect. Display the customer and the fﬁ<
reasons. o
L ..
The problem definition clearly separates the static from the Rt
procedural. We encode the static information by adding facts to the s
database. In the rules seen below, note the close correspondence
between the text and its codification in ROSIE. W)
X}
[FORTUNE DATA]]

X 2

{rule 1] Assert any high-technology area of investment is an area of

1
Ly
investment that does involve high technology. ;
[rule 2] Assert any speculative area of investment is an area of :,>
investment that is speculative.
o
: . . i
[rule 3] Assert any conservative area of investment is an area of RN
investment that is conservative. *
[rule 4] Assert each of renewable energy, electronics and optics b_@
is a high-technology area of investment and e
X genetic engineering is a high-technology area of B,

S

investment that is speculative.

0 A
[rule 5] Assert each of communications, photography, automotive and =
machine tools is a conservative area of ot
investment and Y
petroleum is an area of investment that does afford ot
rapid write-off and that is a little risky. -::i
[rule 6] Assert each of petroleum and renewable energy is a current .
topic of legislat.on. W~ N
Zﬁ\
[rule 7] Assert each of John Doe and Mary Jones is an investor. A ':
[rule 8] Assert John Doe does own an investment portfolio that does _?'
include each of renewable energy, petroleum,
automotive and communications and iﬁ
Mary Jones does own an investment portfolio that Wil
does include each of renewable energy, genetic :f
engineering and optics. :'{:
v !
»
[rule 9] Let John Doe's line-of-credit be $§ 20000 and X
~Ta0)
NN
,\:_-.
Y
<]
oA
P e PP e LY A" %8s """, Rt BT AT m T s s "h "B " P AT AP R " 22 "2 " " " \F\f\
".‘.’l.‘l\ Y » “Y'.' “" . l "{ < ' "o "’ .’l, f * '.-" ”' 1% (W - ’ ."-{ [} N, ’

\‘. _.._

~

UNENC NN UX

A. Example Programs: FORTUNE 287

Mary Jones's line-of-credit be § 10000.

[rule 10] Assert any area of investment is a stock and any stock that
is a current topic of legislation is volatile.

[rule 11] Assert any stock that does involve high technology is
a high-technology stock.

[rule 12] Assert any stock that is speculative is a speculative stock.
[rule 13] Assert any stock that is conservative is a conservative stock.

{rule 14] Assert every investor who is a holder of some high-technology
stock will be interested in productivity and
every investor who is a holder of some speculative
stock will be interested in each of robotics and
artificial intelligence.

[rule 15] Assert ROSIE is an innovation in each of productivity and
artificial intelligence and
each of productivity and artificial intelligence
is a technology area.

Rules 1, 2, and 3 make use of class elements (introduced by any)
to define general attributes of the three areas of investment mentioned
in the problem statement. Note that in earlier releases of ROSIE,
similar attributes would have been generated automatically, e.g.,
anything that was a speculative area of investment would also be
speculative. Unfortunately, that feature also made deductions that were
not exactly accurate, such as anything that is a high-technology area
of investment is also high-technology (used as an adjective attribute).
Thus, in ROSIE 3.0 the attributes of a class must be stated explicitly
as they are here.

Rules 4, 5, and 6 encapsulate the first paragraph of the problem
statement. Notice the use of the each of iterator to establish
identical is-a4 relations for a number of elements. While each of these
assertions could have been made separately with the same end result, the
use of each of makes them more compact and easy to read, i.e., more like
English and less like a programming language. Note also that in the
rules above, indenting helps to clarify the extent of each assertion.

Rule 7 establishes the relation is an investor for John Doe and
Mary Jones. This will implicitly provide a link between those rules
that apply to investors in general and the information stored for each
of the individuals.

Rules 8 and 9 correspond to the second paragraph of the problem
statement. The let action in rule 9 establishes $ 20000 uniquely as the
line-of-credit of John Doe and $ 10000 as the line-of-credit of Mary
Jones. Note that <term>'s <description> expands into <description> of

- ~p---.--,---'l---.-¢----.\'\-.]._._.‘..\....-._‘.__‘_'_.-‘..\
s, I.'i."‘_ . o.l'.; ' » _" f‘.’" "'(" "' f’('d'-{‘{,. L A AL P e) *_-_.‘. .

*y ‘n_8
ok
PR

3

A. Example Programs: FORTUNE 288

<term>, attaching an additional prepositional phrase to description.
Note also the necessity to hyphenate line-of-credit. If there were no
hyphenation, e.g., John Doe's line of credit, then line would have two
prepositional phrases attached, i.e., of credit and of John Doe; since
both use the same preposition, the parser would call a syntax error.
Hyphens make line-of-credit all one word, circumventing the parsers
recognition of the preposition of.

Rules 10 through 13 again use class elements to make a link between
the class stock and the class area of investment. ROSIE uses such links
for deductive information retrieval. For instance, to get a high-
technology stock, ROSIE sees that this could be any stock which does
involve high technology. Then ROSIE finds that any area of investment
is a stock, any high-technology area of investment is an area of
investment, and renewable energy is a high-technology area of
investment. Since any high-technology area of investment does involve
high technology, renewable energy can be deduced as a high-technology
stock.

Rule 14 could likewise have been expressed using class elements.
Instead, a quantified descriptive term (introduced by every) was used,
resulting in instance-specific rather than class-specific relations to
appear in the database. The use of every tells us that the programmer
does not anticipate any more investors being added to the database.
Since every creates an explicit rather than implicit link to the
members of a class at the time of evaluation, it would be more
appropriate to use class elements when all members of a class are not
known a priori.

Finally, rule 15 turns that fourth paragraph of the problem
statement into ROSIE-compatible form.

The database resulting from the execution of rules 1 through 15
would have the following appearance:

{ GLOBAL Database]
ANY STOCK WHICH IS A CURRENT TOPIC OF LEGISLATION IS VOLATILE.
ANY CONSERVATIVE AREA OF INVESTMENT IS CONSERVATIVE.
GENETIC ENGINEERING IS SPECULATIVE.
ANY SPECULATIVE AREA OF INVESTMENT IS SPECULATIVE.
MARY JONES WILL BE INTERESTED IN ARTIFICIAL INTELLIGENCE.
MARY JONES WILL BE INTERESTED IN ROBOTICS.
JOHN DOE WILL BE INTERESTED IN PRODUCTIVITY.
MARY JONES WILL BE INTERESTED IN PRODUCTIVITY.
MARY JONES DOES OWN PORTFOLIO #2.
JOHN DOE DOES OWN PORTFOLIO #1.
PORTFOLIO 2 DOES INCLUDE OPTICS.
PORTFOLIO #2 DOES INCLUDE GENETIC ENGINEERING.
PORTFOLIO /2 DOES INCLUDE RENEWABLE ENERGY.
PORTFOLIO s:1 DOES INCLUDE COMMUNICATIONS.
PORTFOLIO #1 DOES INCLUDE AUTOMOTIVE.
PORTFOLIO #1 DOES INCLUDE PETROLEUM.

{

el
PR
,"i's\-"-'h"-ﬁ

L] = C rln 3 -q
l.’ ,l".l'. f",‘:"..:‘f -
BANNS
Al et e e A

3

")"'y't“': ‘

WSy

P AP
”

&:::::%{
et o

7.
v
’I

X,

7 r¢
L

\ o
o
b
A. Example Programs: FORTUNE 289 A
Aty
A
PORTFOLIO #1 DOES INCLUDE RENEWABLE ENERGY. f}ji
PETROLEUM DOES AFFORD RAPID WRITE-QOFF. = 4”
ANY HIGH-TECHNOLOGY AREA OF INVESTMENT DOES INVOLVE HIGH TECHNOLOGY. Eﬁ'f
ARTIFICIAL INTELLIGENCE IS A TECHNOLOGY AREA. :Q‘sé
PRODUCTIVITY IS A TECHNOLOGY AREA. . %kﬁ}
ROSIE IS AN INNOVATION IN ARTIFICIAL INTELLIGENCE. ‘?nbf
ROSIE IS AN INNOVATION IN PRODUCTIVITY. ﬁnqu
ANY STOCK WHICH IS CONSERVATIVE IS A CONSERVATIVE STOCK. -
ANY STOCK WHICH IS SPECULATIVE IS A SPECULATIVE STOCK. Y0
ANY STOCK WHICH DOES INVOLVE HIGH TECHNOLOGY IS A 4ﬁ$§
HIGH-TECHNOLOGY STOCK. 0y,
ANY AREA OF INVESTMENT IS A STOCK. A %i
$ 15000 IS A LINE-OF-CREDIT OF MARY JONES. } N
$ 20000 IS A .uNE-OF-CREDIT OF JOHN DOE. -
PORTFOLIO #2 IS AN INVESTMENT PORTFOLIO. fﬁg;
PORTFOLIO #1 IS AN INVESTMENT PORTFOLIO. 3:‘;
MARY JONES IS AN INVESTOR. -:::)
JOHN DOE IS AN INVESTOR. DY
RENEWABLE ENERGY IS A CURRENT TOPIC OF LEGISLATION. QJF(
PETROLEUM IS A CURRENT TOPIC OF LEGISLATION. R
PETROLEUM IS A LITTLE RISKY. o
MACHINE TOOLS IS A CONSERVATIVE AREA OF INVESTMENT. :&:
AUTOMOTIVE IS A CONSERVATIVE AREA OF INVESTMENT. o
PHOTOGRAPHY IS A CONSERVATIVE AREA OF INVESTMENT. :Xf
COMMUNICATIONS IS A CONSERVATIVE AREA OF INVESTMENT. o
GENETIC ENGINEERING IS A HIGH-TECHNOLOGY AREA OF INVESTMENT. N
OPTICS IS A HIGH-TECHNOLOGY AREA OF INVESTMENT. RPRES,
ELECTRONICS IS A HIGH-TECHNOLOGY AREA OF INVESTMENT. ,’\::
RENEWABLE ENERGY IS A HIGH-TECHNOLOGY AREA OF INVESTMENT. :ﬁpf'
PETROLEUM IS AN AREA OF INVESTMENT. \js’f
ANY CONSERVATIVE AREA OF INVESTMENT IS AN AREA OF INVESTMENT. rad
ANY SPECULATIVE AREA OF INVESTMENT IS AN AREA OF INVESTMENT. Ot
ANY HIGH-TECHNOLOGY AREA OF INVESTMENT IS AN AREA OF INVESTMENT. by
DR AR
Note that the appearance of ::fﬁ
(AR
MARY JONES WILL BE INTERESTED IN PRODUCTIVITY ;:{:ﬂ
L g
came about through the use of every in rule 14. *'
The remainder of problem statement requires a variety of tasks to ;:ﬁ:
be performed. These tasks are codified as the ROSIE rulesets seen '}:ﬂ,
below. i{f:-
Pyt
[FORTUNE RULESETS] .
e
330
To decide if a given investor is a holder of a given stock: ?ﬁ)
LA
{1] If the given investor does own any investment portfolio that W f%

does include the given stock,

T oW W

W

“‘{""."."."‘ I N "."..l'"‘.;"-ﬂ'.-"‘."" -*-’.I-{-.‘_:._..'_-.‘..’.. e
9, 3 o Rals - A A | h

A. Example Programs: FORTUNE 290

conclude true, otherwise conclude false.

End.

To decide if a given stock is held by a given investor:

[1] If the given investor is a holder of the given stock,
conclude true, otherwise conclude false.

End.

To list-holdings:

(1] For each investor,
send "{cr}{that investor}'s current holdings:{cr}" and
for each stock that is held by that investor,
send " {that stock}" and
if that stock is volatile then send " -- VOLATILE!!" and
send "{cr}".

[======mmemem- Show an investor's speculative stocks =--====-===------]
To list-speculatives of a given investor:

[1] If the given investor is a holder of any speculative stock, then
send "{cr}{that investor}'s speculative holdings:{cr}" and

send " {every speculative stock that is held by that investor}{cr}",

otherwise
send "{cr}{the given investor} has no speculative holdings.{cr}".

{=-===-- Notify investors of innovations in their interest areas ------]
To announce innovations:
[1] Send "{cr}".
(2] For each technology area,
send "% {that area} BULLETIN to: {every investor who will

be interested in that area} -- Find out about {every
innovation in that area}{cr}".

e A A e
.

L) DS

B R T ‘-'_‘a‘

]

”‘.

LR
%)
-

R 2 e Ja Y i 5t
/1_1¥¥¥,
- I

L an W
’*{4@

S5

L% 8!
CE AL

PLrLELLES
N‘Q

5

7,
Yy L
(]
.i‘

l"
7
8, A

PN,
Pl s

. s, -
FAd
.l‘l.
s/

A. Example Programs: FORTUNE 291

End.

[---- Look for someone with good credit who is interested in ROSIE ----]
To locate customers:

[1] If there is an investor who will be interested in each of productivity
and artificial intelligence and who has a line-of-credit that
is greater than § 1000,
let that investor be ROSIE's first customer and
assert each of 'that investor does have good credit’ and
'that investor does like each of artificial
intelligence and productivity'
is a reason for 'that investor is a customer of ROSIE'.

[2] Send "{cr}ROSIE's first customer is {ROSIE's first customer}

The reasons for this include:{cr}" and

send " {every reason for 'that customer is a customer of ROSIE'}{cr}".

[4] Send "{cr}".

End.

To demonstrate:
[1] Send "{cr}[rule 1] List-holdings.{cr}" and list-holdings.

[2] Send "{cr}|[rule 2] List-speculatives of Mary Jones.{cr}" and
list-speculatives of Mary Jones.

[3] Send "{cr}[rule 3] Announce innovations.{cr}" and announce innovations.

[4] Send "{cr)}{rule 4] Locate a customer.{cr}" and locate a customer.
End.

The FORTUNE program consists of three pieces: four procedural
rulesets (one for each of the four tasks outlined in the problem
statement), two support predicate rulesets, and a 'driver" procedural
ruleset that organizes the actual demonstration.

The predicate ruleset,

To decide if a given investor is a holder of a given stock:

Py

N8 4 Yy

235

LI

~% A

ORI
{,l'

”
’

vy,
4 Ay
ey

&
[

L] a
IO

¥,
a_s
e
Z.

)
WA As
S A4 4 A

LN AN

by
»

[N

A. Example Programs: FORTUNE 292

shows how a predicate can be used when the criteria for class membership
cannot be encapsulcted in a proposition and asserted in the database.
For the is a holder of relation to be true, two dependent database
relations must coexist: (1) the investor must own an investment
portfolio, and (2) that portfolio must include the desired stock.

The predicate ruleset,
To decide if a given stock is held by a given investor:

essentially coerces an equivalence between the is a holder of and the is
held by relations. The manner of employing predicates allows one to
express the same idea naturally in different contexts; predicates can
provide equivalent semantics for different ROSIE relations.

The procedural rulesets,

To list-holdings:
To list-speculatives of a given investor:
To announce innovations:

illustrate the primary mechanism for output in ROSIE--the send
procedure and patterns for text formatting. In particular, these
rulesets illustrate the new extended string syntax being introduced in
ROSIE 3.0. The first and third ruleset use the for each action to
generate the elements of the set conforming to the given description,
iteratively printing a message for each such element.

The procedural ruleset,
To locate customers:

exemplifies a number of interesting points. First it shows the use of
each of in testing, e.g., the same investor who is interested in
productivity must also be interested in artificial intelligence. Note
also that this ruleset uses $ 1000 in a comparison. This is a called a
labeled constant and can be added, subtracted, compared, etc., in the
same manner as 1000 alone. Finally, this ruleset also incorporates the
use of intentional propositions (proposition between single quotes).
Intentional propositions let you manipulate declarative knowledge as
data.

The procedural ruleset,

To demonstrate:

organizes the demonstration itself. Once at the top level of ROSIE, we
can load the FORTUNE program and type demonstrate, with the following

results:

-l\'f-

PO
PN,
LS
2

C“ rs ‘.1
?
.‘-‘_‘.é‘

;ﬁﬁsﬁ
Y
< I.

e
o
ARA

.
)

(-'\ v w

ld »

RN
-,

il

OO e I OO NAINT e T AT

A. Example Programs: FORTUNE 293

<4> demonstrate.
[rule 1] List-holdings.

MARY JONES's current holdings:
GENETIC ENGINEERING
OPTICS
RENEWABLE ENERGY -- VOLATILE!!

JOHN DOE's current holdings:
PETROLEUM -- VOLATILE!!
AUTOMOTIVE
COMMUNICATIONS
RENEWABLE ENERGY -- VOLATILE!!

{rule 2] List-speculatives of Mary Jones.

MARY JONES's speculative holdings:
GENETIC ENGINEERING

{rule 3] Announce innovations.

i ARTIFICIAL INTELLIGENCE BULLETIN to: MARY JONES -- Find out
about ROSIE

“#% PRODUCTIVITY BULLETIN to: MARY JONES -- Find out about ROSIE

*¥%% PRODUCTIVITY BULLETIN to: JOHN DOE -- Find out about ROSIE

[rule 4] Locate a customer.

ROSIE's first customer is MARY JONES
The reasons for this include:
"MARY JONES DOES LIKE PRODUCTIVITY'
'MARY JONES DOES HAVE GOOD CREDIT'
"MARY JONES DOES LIKE AI'

S LA .,

) y \‘ ‘-. ‘YP Pl
WL ORI G

v ...

PAAR M N Mo o X 8 M)

R e e A A TR ANy
PO Fe e WY, L M) . A W

f
. . -
preceding page blank - not filmed | oy
A. Example Programs: POIROT 295 % \
g
POIROT -- ALTERNATE DATABASES .?ﬁ
s
The next demo system, POIROT, introduces ROSIE to the world of the
detective. The motivation behind this system, however, is not to O,
explore the principles of investigation, but to examine the use of ﬁﬁﬂ
alternate databases within a multiple database structure. K ﬁﬁé
oM
The problem statement in this domain is straightforward: ﬁbtﬁ
Given some set of facts and some set of participants, the '&'
detective, POIROT, must uncover the Information necessary to |4b
deduce which of the participants might be guilty. <b"
o
POIROT uncovers information by mediating a dialogue between the 'ﬁ“;
user and each participant. POIROT then uses the information — @
gleaned from the interrogation to make his deductions, I.e., B,
the user asks the questions and POIROT makes the Inferences. ;bi\‘
l\.~
In any scenario there will be only one victim, who Is found :z’
either dead, shot, or stabbed. £Each potential suspect has AN
his or her own viewpoint of and knowledge about the situation.
TS
Note that in terms of implementation, the last sentence requires a :ﬁ;:'
method for simulating the privacy of each participant's memory as well R
as some mechanism for simulating the question/answer protocol of f:?;:
interrogation. RO
The mechanism for simulating "belief'" in this system is quite RS
simple. Segregation of idiosyncratic knowledge is accomplished with :{;x
alternate databases. The knowledge that is unique to each participant PN
is stored in a distinct alternate database for that participant. Y

Information that is available to everyone is stored in the global ‘o
database. At the beginning of the case, we set up the following

scenario from rules in four different program files: Qéfn
[SCENARIO) -';:f;
[rule 1] Assert both any woman and any man is a person. :{{:

[rule 2] Assert each of John and Poirot is a man.

[rule 3] Assert each of Mary and Sara is a woman.

[rule 4] Assert Mary is rich.

]
-~

[rule 5] Assert Mary is found dead.

l. l'
PR

&N

*)
-‘
N

.
Y
<+
Y

[rule 6] Let the detective be Poirot.

S

Pt
~c’&fp\

[JOHN)

-
l‘.
/Y

ALY
rLrd ?

”('n‘-‘-'-)

VI'I%I. -" L

A

- et a Tyt »,.w o Y T Lt AT e W T LN R e VLA PR W S N

\u v) o\ - L l"'-(‘ n o - }‘ > AR (\Ji..' “’:‘._‘-"a .* " \{-J '\'. o,
i v

s O

o O S I el

'+ Q¥ 0

pwong
Text Box
preceding page blank - not filmed

R R R R R R A R R T N N I I L P T N T I I R S S L U U DS O U U O ST UST UST UV U O UV U ORI O TN
) X , _ .]
it
)

A. Example Programs: POIROT 296 e
A}f
[rule 1] Activate John's world. $ j
Al

[rule 2] Assert John does need money. ax
'0'
{rule 3] Assert John is married to Mary. 5 ‘
|I
[rule 4] Assert John did love Mary. qg
{rule 5] Deactivate. S
0
d .:?'
A%

[SARA] P

[rule 1] ?E

Activate Sara's world.

[rule 2] Assert Sara is a sister of Mary. N

:’l"
[rule 3] Assert Sara does love John. b 4
"::
[rule 4] Assert John did not love Mary.
[rule 5] Assert John does love Sara. EEF
N
. "
[rule 6] Deactivate. RS
A\.
nt
[POIROT] .
&
R
[rule 1] Activate Poirot's world. NS
e)
[rule 2] Assert Sara is involved and John is involved. :"i‘
2L
frule 3] Deactivate. X
)::-,‘
The first file establishes general definitions and facts about the ﬁu;'
case in the global database. Each of the other files begins with an 'f:t
action to activate an alternate database, which acts as the world of a R
particular participant. All subsequent assertions affirm relations SN
exclusively in that database. The generator 'to generate the world of an .
individual' (defined below) causes John's world to evaluate to JOHNS, :-’:'_J‘_
and so on--thus, the name of the first alternate database is actually e
JOHNS. Note that the program file defining this generator must be ?\$'
loaded before the scenario files. -::,.
- -. \
A%
The presence of ROSIE's multiple database structure enables the -
representation of contradictions, i.e., as long as they reside in }gﬂ?
different databases. For instance, Sara believes that 'John does not ,ﬁi\‘
love Mary' (rule 4 of SARA), while John believes the opposite (rule 4 ;2;:~
of JOHN). Because RCSIE attempts to maintain consistency within a e
database, both beliefs could not be in one database unless they were W "
treated as propositions in the following format K .
.I\J.‘
E\:-.
RN
I 3N
O
ALY
RIREN
n(i

)f.' Ly W W _.r » r_‘~ LA 1 LR -‘.-\ —.\"'\1"\' ’\..*.~. N .
.0'0 . .“0. ‘0“. ‘-" ey 4 L)I . 3 i N v

.~‘ S TR IO T I I T 3) -'
K 3al

QCh)
')‘u“‘n‘.“'l‘ .‘.

A. Example Programs: POIROT 497

Sara does believe 'John does not love Mary’
John does believe 'John does love Mary'

Thus, the database for an individual acts as the belief space for that
individual it represents.

The code for POIROT is given below. Note that rulesets do not

reside in any database. They are accessible ragardless of which
database is active.

[DETECTIVE RULESETS]

[=====occecnennn-- General relation about participants =-----=----------]
To decide if & character is a victim:

{1] If the character is found either dead, stabbed, or shot,
conclude true, otherwise conclude false.

End.

To generate the victim:

(1] If any thing is found either dead, stabbed, or shot,
produce that thing.

End.

To decide if a character is related to an individual:

[{1] If the character is married to the individual or
the individual is married to that character,
note 'the character is married to the individual' and
conclude true.

[2) If the character is a sister of the individual,
note 'the character is a sister of the individual' and
conclude true.

{3] If the character is a brother of the individual,
note 'the character is a brother of the individual' and
conclude true.

<
-“'-'

[4] If the character is a mother of the individual,
note 'the character is a mother to the individual' and
conclude true.

e a

» F S
LA/

LIIhbe

<

-
»
&

3

{5] If the character is a father of the individual,

R R N N X

NP, LV

g N Y ¢ T T R AR TN A 50

A. Example Programs: POIROT

note 'the character is a father to the individual' and
conclude true.

[6] If the character is a son of the individual,
note 'the character is a son of the individual' and
conclude true.

[7] If the character is a daughter of the individual,

note 'the character is a daughter of the individual' and
conclude true.

To detect:
[1] Swap in Poirot's world.
{2] For each person who is involved,

send "{cr}Interrogating {that person}{cr}" and

interrogate that person.
[3] Send "{cr}Suspects: Motives--{cr}".
[4] For each suspect,

send "{cr} {that suspect}: {every reason for suspicion
of that suspect}”.

[5] Send "{2 crs}".

End.

[==-mmscmmcmmecmee- Solicit questions from the user =-----------~-

To interrogate a character:

Private: a reply.

Execute cyclically.

[1] Send "{cr}> ".

[2] Read "{anything (bind the reply)}{cr}”.
(3] Match the lowercase of the reply:

{H"}

3 " Y™ 0 % Vo o T TS) G0 e e 3 S W)Y) L A N N R N S e, S
‘0"’!‘“:. 0‘: lnl.u0|a'l.¢ u-l‘nb-t'-l'.".), ‘F 8,905 ALA .. il 2 L ata S s &

298

14
4

T
s .,“,-';o N

ﬂ'.s"l.)
Y
Pl

%

¢
h]
4

'(-"-'
¢
o,
L]

C A - -..-
la ‘.t.’f_-.{\
Pols
2L

A. Example Programs: POIROT 299

return;

{"interrogee?"}
display the character;

{"is it that ", anything (bind PROP), "?"}
question the character about PROP;

default: send "MUST USE THE FORM: Is it that <proposition>?{cr}".

End.

To question a character about a query:

[1] Swap in the character's world.

[2] If there is a proposition from "'{the query}'" and
that proposition is provably true,
note that proposition and repeat facts,

otherwise display UNKNOWN.

End.

To generate a suspect:
[1] For each person (P) who is involved,

if P does love any person who is married to the victim,
assert jealousy is a reason for suspicion of P, and

if P does need money and the victim is rich and
P is related to that victim,
assert monetary gain is a reason for suspicion of P, and

if P was rejected by either the victim or any person SR
who does love that victim, \3ﬁf
assert revenge is a reason for suspicion of P, and AN

if there is a reason for suspicion of P, -
produce P. B

End. .

Py, T S S Oy N T VR Y - v Nt R AT At N T T W S - -~ - »
A e N \“ll Wi e ot o W '. '\f\ . \\)\ ‘- \ NS Y 5..\ \‘\u \ ,’:‘.‘.\1"\'1 \ ._f\v..‘-

G

N) e

I N T e T T U P U N T R R R R I K R O (R T T O DY VY WX R X X AT P K X s
S‘
o
A. Example Programs: POIROT 300 :':,‘.
A':':'
o
[======-=e=mmcccne- Remember newly acquired information =--+----~cccc--- } :.:.:.
JUAN
To note a statement: <
¢ "..
[1] Add the statement to facts. :<Q
|k§
End. o
[~====e=ccr=cccmnca-- Relate what Poirot now knows --=-=<=------c-ccc---] j$*1
A
To repeat facts: i)
Iy
[1) For each affirmed proposition from facts, O
add that proposition to Poirot's world and .
echo that proposition. o
v
[2} Clear facts. *'Qs
l'...'
End. ¥
~ iy
h]
To echo a fact: ﬁ? :
[1] Send "Yes, {the fact}.{cr}". o \
)
End. -
“
[-====ccmmrmene-- Returns a database name for a character --------------] t: &
A
e
To generate a world of a character: b?ﬁa
[1] Produce the name from "{the character}s”. g\ﬁk
f\'ﬁ
End. K s;{
O]

g
-

As with the FORTUNE example, it is convenient to think of this
program as consisting of three parts: First, some support predicates

and generators; second, the driver routine; and third, the rulesets NN
invoked by the driver. D
O
l- - '
Among the support routines is the definition of what it means to be x?ﬁ
a victim. Note that this definition could easily have been defined by O
asserting a proposition of the form -
- 1
any person who is found either dead, shot, NOTA
or stabbed is a victim A
IRCHRET
\(\".‘
This approach was not taken for reasons that will become clear. Given ﬁi R

this latter approach, in order to find the victim, it is necessary to
iterate through each instance of the class person until an instance is
found that is either dead, shot, or stabbed. The approach seen in

;"r‘:

£
ve'r

Yy A X% Wy 0% .Y %]
N T e A T ot A e

f
I

[}
3

! '-‘.'- .N‘.N

A. Example Programs: POIROT 301

POIROT takes advantage of the fact that there will be only one instance
of the relations

element is found dead
element is found shot
element is found stabbed

affirmed at any given time, and that element will be the victim. Thus,
in the predicate ruleset,

To decide if a character is a victim:

it is only necessary to check if the character is found dead, shot, or
stabbed. The generator ruleset,

To generate the victim:

operates in a similar fashion, but uses a trick to retrieve element.
Testing the proposition in rule [1] first finds the instance of the is
found relation that is affirmed and then tests if element is a thing.
The trick is that all elements satisfy this predicate, allowing the
ruleset to produce the victim after accessing the database a maximum of
four times. The bottom line of this discussion is the following, since
there is only one victim and potentially many persons, the approach
taken in POIROT is the most efficient.

The procedural ruleset,
To detect:

acts as the driver routine. Rule [1]) activates the database for the
detective; this is done with swap in so that the originally active
database (in this case the global database) will be reactivated
automatically when the ruleset terminates. Rule [2] applies the
interrogate procedure to each person the detective thinks is invoived.
After interrogation, rule [4] lists the possible suspects and their
motives.

The interrogate procedure runs interactively, allowing the user to
ask the questions. This ruleset is running under a cyclic execution
monitor, which means its rules are executed from top-to-bottom over and
over until execution of the return procedure. This ruleset also uses
the private class reply, which will be bound to the substring matched by
the pattern in rule [2]. This ruleset works by prompting the user for a
question in rule [l] and then reading one line of input from the user in
rule [2]. The user's options are a carriage return, indicating the
interrogation is over; the question "Interrogee?"”, which names the
person currently under questioning; or a question of the form

Is it that proposition?

-

Wy €, Gy W O o - LR A T I . M N et T e
e NS e $ e, " LI 4' o e '\' '.'_\ _'i o« % e e e '1. [P . i W
» L, » .

B 2l ML 25

"-5,

\"

"

2

o

‘l -,
B [}
269?4-

3
P

k
{

3

|

y 4
fe

5

AAS
e
et

- fr"l’}l
A

|

o,
LYY
V,

s
(4

el

r‘;‘ A ¥

(]
’
-

I..f

LA

.J':’

A

Yy

LA
Y

l.l
5\

&

'f‘l"
ey

.
»

Wl
LR T

v

..\-. .'*.'.:’ »I
A LN

/
[/

“

-~ \"

w Wy W,

s T

A. Example Programs: POIROT 302

Note that the input is first converted to lower case to standardize the
form of comparison. The substring matching proposition is then sent to
the question procedure, which queries the interrogee.

The question procedure first temporarily activates the database of
the interrogee. In rule [2], the question is evaluated. First, rule
[2] tries to turn the string representing the question into an
intentional proposition, if possible, and then it tests the truth or
falsity of this proposition given the current state of the database.
Given that it tests true, the ruleset notes and lists that fact as well
as any other facts that were discovered as a result. Facts are
incrementally stored in the facts database by the note procedure and
listed by the repeat procedure, which also moves those facts to the
detective's database.

The detective goes to work in the generator ruleset,
To generate a suspect:

which is called after everyone involved in the case has been
interrogated. For each person involved, this ruleset amasses motives
based on its "knowledge" of the psychology of crime. In this case,
three of the more common motives for murder (i.e., jealousy, monetary
gain, and revenge) are represented.

The following interactions show POIROT at work on the case
described in the scenario given above:

<7> 7

[GLOBAL Database |
MARY IS FOUND DEAD.
MARY IS RICH.
POIROT IS A DETECTIVE.
SARA IS A WOMAN.
MARY IS A WOMAN.
POIROT IS A MAN.
JOHN IS A MAN.
ANY MAN IS A PERSON.
ANY WOMAN IS A PERSON.

<8> Johns?

| JOHNS Database |
JOHN 1S MARRIED TO MARY.
JOHN DOES NEED MONEY.
JOHUN DID LOVE MARY.

<9> Saras?

[SARAS Database |
JOHN DOES LOVE SARA.
SARA DOES LOVE JOHN.
JOHN DID NOT LOVE MARY.

St N N

WA x{-_l,\..'.("'_.'_ -.".-.-.’x}*.'.‘.'.{\'_'-';.."-.,'.I'.\..'. '.',..,'-f TN :’\;.‘-;-\;,\:.\'.‘-:_\' \.\.' N \:

AT AN

s® s
»

~

A. Example Programs: POIROT

SARA IS A SISTER OF MARY.
<10> Poirots?
[POIROTS Database]

JOHN IS INVOLVED.

SARA IS INVOLVED.
<11> Detect.

Interrogating JOHN

> Is
Yes,
Yes,

> Is
Yes,

> Is
Yes,

> Is
UNKN

>

it that John is related to the victim?
'JOHN IS RELATED TO MARY'.
'"JOHN IS MARRIED TO MARY'.

it that John did love Mary?
'JOHN DID LOVE MARY'.

it that John does need money?
"JOHN DOES NEED MONEY'.

it that John does love Sara?

OWN

Interrogating SARA

> Is it that Sara is related to the victim?
Yes, 'SARA IS RELATED TO MARY'.

Yes, "SARA IS A SISTER OF MARY'.

> Is it that Sara does love John?

Yes, 'SARA DOES LOVE JOHN'.

> Is it that John does love Sara?

Yes, 'JOHN DOES LOVE SARA'.

>

Suspects: Motives--

JOHN: MONETARY GAIN
SARA: JEALOUSY

<12> Poirots?

[POIROTS Database
JOHN DOES LOVE
SARA DOES LOVE
JOHN DOES NEED

SARA.
JOHN.
MONEY.

RESL:

.
&

o~

YRR ARL
Ay

»
3

UL |
SRR AR A
AR RN

A. Example Programs: POIROT 304 N

JOHN DID LOVE MARY.

JEALOUSY IS A REASON FOR SUSPICION OF SARA.
MONETARY GAIN IS A REASON FOR SUSPICION OF JOHN. .
SARA IS A SISTER OF MARY. N
JOHN IS MARRIED TO MARY.
SARA IS RELATED TO MARY. (e
JOHN IS RELATED TO MARY. : .
JOHN IS INVOLVED. ;
SARA IS INVOLVED. e

As a final note, even though the question, "Is it that John does N
love Sara?" elicits a response of UNKNOWN from the interrogation of AN
John's database and "Yes, 'JOHN DOES LOVE SARA'." from Sara's database, ;
the statement appears as a fact in Poirot's database. This illustrates A
that the mechanism for segregating beliefs used in POIROT is too simple P
for even this small exercise. One next step that might be taken to DA
relieve the problem seen here is to develop a mechanism for describing :fﬁf
certainty as well as belief, however, that is outside the scope of this e
example. A

7

& B N
“f*la
)

‘s
o

X

]
5 &

2
%

3
[

‘o o
A ~‘-

L AL
fsiﬁﬁ{&
Rl 4 ,

e
¢
e d

Py
Ay Ay &
rE Ay

e
7’ 4q

I
-»

". 5. ". .'. { .‘:‘
h]

P
P DALY P
2

..l
’

2

- m. . ."- ‘n"(_'(f~""-(0--f f-..’. A . .‘ A e e RN R

ARy

"- .c'\u DX

A. Example Programs: ANIMAL 305

ANIMAL -- EMBEDDED CONTROL STRUCTURES

The last demo system, ANIMAL, illustrates how to build a simple
control structure on top of ROSIE. In this case, the control structure
is a production system monitor that applies rules in a goal-directed
(i.e., backward-chaining) manner.

ANIMAL is derived from a system described in (Winston, 1979) in
which "Robbie the robot" develops a set of rules for classifying animals
in the zoo. Applying these rules in a backward-chaining manner allows
Robbie to determine which animal he is seeing. Thus, the problem
statement for ANIMAL is

Given Robbie's rules, figure out which of the possible seven
animals the user is thinking of.

For the purposes of ANIMAL, each rule will be represented as a set
of assertions about its preconditions and conclusions. For instance,

the rule
IF the animal is a mammal
and it eats meat,
THEN it is a carnivore.

will be represented by the three propositions

'animal is a mammal’' is a precondition of rule #6
'animal does eat meat’ is a precondition of rule #6
‘animal is a carnivore’' is a conclusion of rule #6

These propositions are asserted by a file rule of the form

[rule 6] Let the conclusion of a new rule be 'animal is a carnivore' and
assert each of 'animal does eat meat' and
'animal is a mammal’
is a precondition of that rule.

Note that a new rule creates the name of the rule (i.e., the comment
[rule 6] has no bearing). This is rule #6 because the preceding five
file rules created five new ANIMAL rules.

There are 15 ANIMAL rules in all, defined as follows:
[ANIMAL DATA |

[rule 1] Let the conclusion of a new rule be 'animal is a mammal' and
assert 'animal does give milk'
is a precondition of that rule.

(rule 2] Let the conclusion of a new rule be 'animal is a mammal' and

G0 VoA - WA RS LA R CRLRA

AT N
L] .

e ._-.,"\"_.,-r\.-._-; ‘\"‘s."-.‘.\‘\ N -Q'\"
~ A aN Al ., N N Kalal NS

e
4

: ‘h 5‘
A A
'Y

‘:‘
Bt
Ay -
.

b

.
i

5%
-

[

=

S

C g s

T

y
G
e

"t‘ :“:l ',
L7,

-j:,-*.
A

NS
Pl

3

- R

4

L

P

v

}
\-P

.
A}

&’ 4

A. Example Programs: ANIMAL 306

assert 'animal does have hair'
is a precondition of that rule.

{rule 3] Let the conclusion of a new rule be 'animal is a bird' and
assert 'animal does lay eggs'
is a precondition of that rule.

[rule 4] Let the conclusion of a new rule be 'animal is a bird' and
assert 'animal does have feathers'
is a precondition of that rule.

[rule 5] Let the conclusion of a new rule be 'animal is a carnivore' and
assert each of 'animal does have pointed teeth’',
'animal does have claws',
'animal does have its eyes pointed ahead' and
'animal is a mammal'
is a precondition of that rule.

[rule 6] Let the conclusion of a new rule be 'animal is a carnivore' and
assert each of 'animal does eat meat' and
'animal is a mammal'
is a precondition of that rule.

[rule 7] Let the conclusion of a new rule be 'animal is an ungulate' and
assert each of 'animal does chew cud' ard
'animal is a mammal'
is a precondition of tha. rule.

[rule 8] Let the conclusion of a new rule be 'animal is an ungulate' and
assert each of 'animal does have hoofs' and
'animal is a mammal'’
is a precondition of that rule.

[rule 9] Let the conclusion of a new rule be 'animal is a cheetah' and
assert each of 'animal does have dark spots',
'animal is tawny colored' and
'animal is a carnivore'
is a precondition of that rule.

[rule 10) Let the conclusion of a new rule be 'animal is a tiger' and
assert each of 'animal does have black stripes',
'animal is tawny colored' and
'animal is a carnivore'

tgd Tad dab gt g

gty
B

A

\\.‘5\‘.
&
w0

LY Y

A
l'.'l.

(RS

PRI

v
»

N

A. Example Programs: ANIMAL 307

[rule 11}

{rule 12]

[rule 13]

(rule 14]

[rule 15]

[rule 16]

is a precondition of that rule.

Let the conclusion of a new rule be 'animal is a giraffe' and
assert each of 'animal does have dark spots',
'animal is tawny colored',
'animal does have long legs-and-neck', and
'"animal is an ungulate'
is a precondition of that rule.

Let the conclusion of a new rule be 'animal is a zebra' and
assert each of 'animal is white with black stripes', and
'animal is an ungulate'’
is a precondition of that rule.

Let the conclusion of a new rule be 'animal is an ostrich' and
assert each of 'animal is black-and-white',
'animal does have long legs-and-neck',
'animal does not fly' and
'animal is a bird'
is a precondition of that rule.

Let the conclusion of a new rule be 'animal is a penguin' and
assert each of 'animal is black-and-white',
"animal does swim',
'animal does not fly' and
'animal is a bird'
is a precondition of that rule.

Let the conclusion of a new rule be 'animal is an albatross' and
assert each of 'animal is a good flyer' and
'animal is a bird'
is a precondition of that rule.

Assert each of 'animal is a cheetah',
'animal is a tiger',
"animal is a giraffe',
'animal is a zebra',
'animal is an ostrich',
"animal is a penguin' and
'animal is an albatross'

is a hypothesis.

The last rule defines the seven possible hypotheses about which the
system can make any conclusions.

- T T T o T 0 T ot A T N N R T PE NL PR RII PR GREE I
" ..'|'. y .‘ ' ‘.. .'-I‘ v, '.“.‘..'_ If-" " y \u v) D) » ‘J‘.(-,-'- " W\ \)

& ", '» B 5

2O
x
(; i

LE X4
5

\l~l

* . I. - .
l. .. vl‘ " , r
P

L A A Ay
)

S AN
S
A

“
et
"
Y
oA

M]

v l'..' P
b 4 4y
P

N

i)

S

"’5 y" ".r" ‘, !

°r ¥
. I“
T
4
D

" A AS Y,
S RENTEN
‘7
a8, Y

Ve
v

b

VEE
":' 9, "

TR

",

e

O A
178, 4,0 W,Q° Y, Nl a o s Y, £ a X - oM g > R ald R

LTSI WA ST T WU TASU TR T W T 7O WK PR A O U PLE T A

A. Example Programs: ANIMAL 308

Given these rules, ANIMAL applies them using a very simple backward-
chaining strategy. To begin, it iterates through the hypotheses until
it finds one that it can prove. It then prints that that hypothesis is
true and quits. To prove a hypothesis, ANIMAL looks for a rule that
concludes that hypothesis and then treats the preconditions of that rule
as new hypotheses to prove--if the preconditions of a rule are true,
then its conclusion is true. If a hypothesis is not a conclusion of a
rule, then ANIMAL asks the user a yes/no question to confirm or deny the
hypothesis. Thus, ANIMAL starts a game of '"20 questions" that leads to
identifying the animal.

The rulesets used for applying the ANIMAL rules in this manner are
relatively simple and straightforward. They are defined below.

[ANIMAL RULESETS]

To diagnose:

[1] For each hypothesis until that hypothesis is provably true,
apply the rule of which that hypothesis is a conclusion.

[2] If there is a hypothesis that is provably true,
send "{cr}Hypothesis: {that hypothesis}{cr}{cr}",

otherwise,
send "{cr}No hypothesis can be confirmed.{cr}{cr}".

To apply a rule:
[1] Choose situation:

if every precondition of the rule is true,
assert the conclusion of the rule is provably true;

if there is no precondition (of the rule) that is unknown,
assert the conclusion of thte rule is provably false.

[--------mommmmmnem- Figure out how to test a hypothesis =--~----=------]

To decide if a hypothesis is true:

o VA T A) S A CRA DA I,
A

A A A .‘-n.‘.-..-_~.--\-.“.\,‘.-.‘:.
-

b

v
LAG
[N

e &
04 I'-‘l..“.n'q'-‘ ’ S

P~
r
J‘.
(g

B

X
y &

I Iy (PR L) A O Ty Rt & 8 4. A'B & 2.4 g 8 8. B.n §.0 @7 9.0 02 02t 6, 4, w2 212 2% 2% a‘d a* * 3 ERREAENARRAN AN) --|l\'!'i"|"

ot
A. Example Programs: ANIMAL 309 .';::'::
o
[1] If the hypothesis is unknown, return. . }
N
{2] If the hypothesis is provably true, conclude true. F-
‘ J"
A
i3] If the hypothesis is provably false, conclude false. .qf:
N.
Y
S,
[4] Choose situation: aidf
» -':
if the hypothesis is a conclusion of any rule,
then for each rule of which that hypothesis is a conclusion :,:)
until that hypothesis is provably either true or false, ﬁiy
apply that rule, and tf:
if the hypothesis is provably true, N,
conclude true; o]
if the hypothesis is confirmed, conclude true; Cﬁé:'
'.'..h* s
RV A
default: unless the hypothesis is {now] unknown, conclude false. *{h,

X
<y

A
>

[=~==--=--"c-om-- Query the user for yes/no answer ---=---------------)|

\ e

T Uy
) b

XX
“A’

x
&

)S
by

To decide if a hypothesis is confirmed:

Private: a reply.

'~_~"-JE
Execute cyclically. ’C}T;
-'~‘..-.,‘
[1] Send "{cr}Q: {the query for the hypothesis}". A
oo
[2] Send "{cr}A: ".
2
TN
[3) Read "{anything (bind the reply)}{cr}". Hi:t.
[4] Select the uppercase of the reply: :-‘;:.-"\'
A
<"YES"> If the hypothesis is not negated,
assert the hypothesis is provably true and conclude true, T
otherwise, N
assert the hypothesis is provably false and conclude false; }x{\~
<"NO"> 1If the hypothesis is not negaied, ESE;
assert the hypothesis is provably false and conclude false, -
otherwise, AR
assert the hypothesis is provably true and conclude true; e
“teCA
<"?"> Assert the hypothesis is unknown and return; ::}}&
Ay
default: send "{cr}Type YES or NO (or ? for unknown).{cr}". "t
5 "l.
[-\
N
Yot !
\N}
)
NN
NN
tﬁ;

F v
NS

Ty w

0.4%,

W oSy Wy Ty BN,y ALY LA AL N e ¥ oY a™ My T T e T N
2ok 'F'-"i"' AW L NGRS N SN N A

A. Example Programs: ANIMAL 310

End.

ANIMAL consists of four rulesets: one procedural ruleset that acts
as the driver routine; another that applies a rule; a predicate ruleset
that decides how to prove a hypothesis; and, finally, another predicate
that asks the user to confirm a hypothesis.

Rule [1] in
To diagnose:

iterates through each of the possible hypotheses. On each iteration, it
applies the rule that could prove that hypothesis--for simplicity we
assume only one such rule for each of the initial hypotheses. Note that
the until part of rule [1] is tested after the rule is applied,
terminating rule [1] when a hypothesis is proved by the rule for which
it is a conclusion.

The next ruleset,
To apply a rule:

shows that ANIMAL also assumes a three-valued logic system, i.e., a
hypothesis can either be true, false, or unknown. There are three
situations that can occur when applying a rule: (1) each of the rule's
preconditions can be true, in which case its conclusion is true; (2) all
of the rule's preconditions are false (i.e., not unknown), in which case
its conclusion is false; or (3) some of its preconditions are unknown,
in which case nothing can be said about the hypothesis.

The predicate ruleset,
To decide if a hypothesis is true:

is straightforward up to rule {4]. Rule [4] addresses the situation of
whether the hypothesis is the conclusion of some rule. If it is, then
it could be the conclusion of several rules, in which case each is
applied until the hypothesis is either confirmed or denied. If not a
conclusion, then the user is asked to confirm. Control enters the
default block if the user denies the hypothesis or labels it as unknown.

Finally, the predicate ruleset,
To decide if a hypothesis is confirmed:

uses the query for system generator to convert the hypothesis into a
yes/no question. The user is prompted with this question until he
answers yes, no, or 7, confirming, denying, or labeling as unknown the
hypothesis, respectively.

b PR T TP Y
e BV WP

f-' --’;l-".- "a“_-

LI
alh

Py

N
<

SN N
YR

.:i ;‘l
o8

N N

e e w ¥
l-n)
a2
N
%Y

»
o
2%

‘#fﬁ}”

Pl

iy
PALC

o -..
AP L
P Pa o)

e

AN,

AR
v

'.f P

N
r
K J

A
R
R

-
C
”
.'
(]

ERA

7,
Crs

2

AR

s

w-._
v .,:‘ ~e
L) {'
L

.

A. Example Programs: ANIMAL

The interactions seen below demonstrate how ANIMAL works when
trying to identify the user's choice, which in this case is a cheetah.
Note that diagnose is called with the database conclusions active, thus

allowing us to see which conclusions are made by ANIMAL.

<2> Activate conclusions.

<3> ?

[CONCLUSIONS Database]

<4> display every hypothesis.

"ANIMAL
' ANIMAL
' ANIMAL
'ANIMAL
'ANIMAL
'ANIMAL
'ANIMAL

IS
1S
IS
IS
IS
IS
IS

AN ALBATROSS'
A PENGUIN'

AN OSTRICH'
A ZEBRA'

A GIRAFFE'

A TIGER'

A CHEETAH'

<5> Diagnose.

> 0O

no

DOES
?

>0

DOES
yes

> O

: DOES
: no

> 0

DOES
?

> 0

DOES
yes

> 0

DOES
yes

> O

DOES
yes

0

> 0

yes

DOES ANIMAL HAVE FEATHERS?

ANIMAL HAVE HAIR?

ANIMAL GIVE MILK?

ANIMAL HAVE HOOFS?

ANIMAL EAT MEAT?

ANIMAL HAVE ITS EYES POINTED AHEAD?

ANIMAL HAVE CLAWS?

ANIMAL HAVE POINTED TEETH?

IS ANIMAL TAWNY COLORED?

Q: DOES ANIMAL HAVE BLACK STRIPES?

A: no

Q: DOES ANIMAL HAVE DARK SPOTS?

A: yes

" .¢ ... " ‘-'. »(‘f ’) ‘f -{:‘n'.f‘..‘. -(\._.-‘. !.-_‘ {‘-(‘n '\'_;-*\' . ;.q.'-.,\-_'-(_\._'-'_‘..‘_\.
R K% Bl e (ki B i) » A A el vty N

n-"\.h

SR BON

-
-
Wy e

n

.,~.‘.-.‘r-.__-.;,~.;,\.;,-.' ~.:.-.
- . »

b Y

v
7

(R Rl
o o

56804
“I I"J
2

. - ..
s a, s

Y ¥
PR

‘.’

XEY

X'y
oL

Py 1
o« \J -“:‘J

‘.'

P
“ N
'

g Ry

.

LY
s

S
s
P o

t.,&(l
>

)
1)

i"’t"g.'.‘,'
PECACA S

e

r,
2

SN
.’I'I s 0
A LE NN
XA ?

\f. <
4

- -‘- \! \1'

SRR

L

4
VAL
AR
RIS

: ’5‘

BaCs
A

.
.
Y
..
* 4

o
i
-'I‘
A. Example Programs: ANIMAL 312 i:.;i
A
4 l"‘
Hypothesis: 'ANIMAL IS A CHEETAH' o
*?0.
<6> ?

(CONCLUSIONS Database] N
ANIMAL DOES GIVE MILK. n
ANIMAL DOES HAVE DARK SPOTS. o
ANIMAL DOES NOT HAVE BLACK STRIPES. th
ANIMAL DOES HAVE POINTED TEETH. '
ANIMAL DOES HAVE CLAWS. .
ANIMAL DOES HAVE ITS EYES POINTED AHEAD. -n S
ANIMAL DOES NOT HAVE HOOFS. N
ANIMAL DOES NOT HAVE FEATHERS. o
ANIMAL IS TAWNY COLORED. t o
*ANIMAL DOES EAT MEAT' IS UNKNOWN. &l
"ANIMAL DOES HAVE HAIR' IS UNKNOWN. .
ANIMAL IS A CHEETAH. Q}‘
ANIMAL IS NOT A TIGER. T
ANIMAL IS A CARNIVORE. »
ANIMAL IS NOT A GIRAFFE. Q
ANIMAL IS NOT A ZEBRA. e,
ANIMAL IS NOT AN UNGULATE.

ANIMAL IS A MAMMAL. 27
ANIMAL IS NOT AN OSTRICH. e
ANIMAL IS NOT A PENGUIN. KR,
ANIMAL IS NOT AN ALBATROSS.]
ANIMAL IS NOT A BIRD. o
W
£~
e
"-‘-
RS
\;. .
N
m
A
e
'Tl
.::."\
'.':‘.r
n...-} !
v
\-'
N
VK
LA
DAY
p
ot
OO
PO
RN
\':\.‘:')
LY
T

- R - (]
) s X A T G R L T e T T U T L P T TSI
WA Gt A N T YN Nk, By R O I A ARG SN AR A AL v .

B. Error Messages 313

APPENDIX B:
ERROR MESSAGES

There are several types of errors that can be encountered during
the course of using ROSIE. There are errors that can occur during the
tokenization of a file or when parsing the results of tokenization, and
there are errors that can occur at runtime, all but one of which is
recoverable.! In each case, the error message printed provides an
indication of the problem. Below is a list of the possible error
messages (in boldface) each of which is followed by a short comment to
help diagnose the problem.

PARSING AND TOKENIZATION ERRORS

The following error messages will be encountered during
tokenization and parsing. Note that tokenization errors automatically
abort the parsing task, sending control back to the top-level monitor.
Parsing errors do not abort the parsing tasks. If a parsing error
occurs when parsing a program file, ROSIE will print a message

indicating where in the program file the erroneous code can be found.

Can't find anaphoric reference:
Parsing context

Encountered during parsing.
An anaphoric term (that class noun) or an anaphoric description
(such class noun) references a description that is not processed

before it in the rule currently being parsed.

See Section 7.5.

Discarding unexpected END STATEMENT.
Warning.
Encountered during parsing.

An end statement was encountered that did not terminate a ruleset.
Discarded end statement will not appear in the .txt file when saved.

See Section 4.2.

'A stack overflow, giving the error message "Computation depth
limit exceeded", is currently the only nonrecoverable runtime error.

v’¢'
v

LS
“H YA
Pl

v
SN

> ¥
oy 44
%

R
NV
4?} ;
N [y)

7
v

>

[

’
5’&

¢kﬂ

7
X

&:?
5y

»
réee
b e

’

N

NN
S S Yy
’ LIS] " ‘l .-

\"n

v
>

S

]
A

)

E A AN

LR
SN
e

.‘,,_
I‘i.:}l"
'\Q&J a

I

. 5 0.
(~I. v

8

PR AL
L5
XA

" |
&’:,:'l‘l n
)d‘ Pty
- @

»

2

B. Error Messages 314

Discarding unexpected MONITOR DECLARATION.

Warning.

<

s

Encountered during parsing.

An execution monitor declaration can appear only once in a ruleset
and only immediately before the first rule. Warning given when
this declaration is found anywhere else. Discarded declaration
will not appear in the .txt file when saved.

;r :

>
]
fsf

<7

NSNS
2
'.’&5

See Section 4.2.

o
l"f [AA

X

Discarding unexpected PRIVATE DECLARATION.

L A
ol
L

Warning.

%y
n

'S
Py
bR
} 4

Encountered during parsing.

AN
K,

A private class declaration can appear only once in a ruleset

. . X i N

and only immediately after the rule header. Warning given when NN
. LSRN
this declaration is found anywhere else. Discarded declaration 5$~$
will not appear in the .txt file when saved. SN
R7ae

4 - ’ '

See Section &4.2. &

1

5.
<
oy

'.II

3

Has atomic formal parameters.

L/

(.
25

o

Encountered when parsing a system ruleset.

V.Y

SN

The formal parameters of a system ruleset body must be a list or NIL.

N/
URSA
lllegal PATTERN VARIABLE specification: AU
Parsing context f.-__:__.
&f\fv

Encountered during parsing.

l§

A
.\ I..
A pattern variable can be specified only as a single token name, YR
a description introduced by the function word the or an ::::Ta
anaphoric term (i.e., introduced by that). ufn;"
SN
. PPN
See Section 9.6. -
o vy T
el
N
< . . t Y
Illegal specification of units: :_;
Parsing context NN
P T
) i MO
Encountered during parsing. "
SN
N
._\,};:_-
Lo
A .l\'} '
AOAY A
NN
Fal o n
AU A
]
NN
‘_\',\":\':
POAN
..' (2, '-'q'-..\..'\-,;‘.’-.,\ O e e A T At T T A T T L T T e e e T e e ‘\._-.._-.
A 8.0y W0 N (2 u N iu > ol N () R h

8. Error Messages 315

The units of a unit constant must be atomic tokens combined under
multiplication, division, or exponentiation, e.g.,

34 k*m/s "2
This error is called when these units are incorrectly combined.

See Section 9.3.

Inserting missing END STATEMENT.
Warning.
Encountered during parsing.
Called when processing a ruleset and encounters the start of a new
ruleset or the last file rule before the terminating end statement.
Adds end statement automatically.

Not a lisp lambda-form.

Encountered when parsing a system ruleset.

Expression read after system ruleset header (using the LISP read
function) is not a LISP lambda-form.

See Section 4.4.
Obsolete use of EXECUTE ACTION:
Parsing context
Warning.
Encountered during parsing.
Earlier ROSIE's provided the execute actions, call and go. In
ROSIE 3.0 these have been subsumed by the procedure action type.

While ROSIE 3.0 still supports the execute actions, they may not
be supported in the future and should be removed from your code.

QUANTIFIED TERMS may not appear in BREAK COMMANDS:
Parsing context

Encountered during parsing.

A quantified descriptive term or iterative term was found to occupy
the position of <term> in a break command of the form

RN)

I \(N(*M\-'\(‘ !

A H

. 2
(NS

‘-._‘-I S
.

il
R
)

..
> 0

o'y’
)
e

TS
.,

2R
X

';ﬁf;

¥
»

LN AN

2

ﬁ;QF
24

VAN
RS
xS

¥

¥
YA

. "
R Y
RN .'v_'.) Yy

P S Y
.7 L

.
»

2
A

‘d' \t";‘. .’\,'\'
L
{{.'I‘I$¢’..f..f

e T 2B
24

P X

N8y
(]
l'{’

'y

fN
r. 7

oy 44}
l.. '.".I. A
A

B

ﬁﬁf#
$ "
)

YA
. L] l,
Xy

5 ‘¢
7.7,
s
A)

'N-
X
B. Error Messages 316 -&

R
o
B,
Produce <term>! "o
Such terms cannot be used in this position.
%)
.
S
QUANTIFIED TERMS may not appear in PRIVATE DECLARATIONS: -.:h'
Parsing context I
oL
Encountered during parsing. N
™
o
A quantified descriptive term or iterative term was found to occupy 4
the position of <term> in a private class declaration of the form ;q*‘
A
. N o~
Private: . . . <class> (initially <term>) £
i
Such terms cannot be used in this position. :{f
-
W
s
Replacing NLAMBDA with LAMBDA. RO
A
wWarning. .~
'
ot
Encountered when parsing a system ruleset. ;f;{
o
In earlier releases of ROSIE (Interlisp), a system ruleset body was ::;'
required to be a spreading-NLAMBDA, while in ROSIE 3.0, they SN
are required to be a LISP /gmbda form. The difference is that -
one starts with the keyword NLAMBDA while the other LAMBDA. o
PN
\r\"
This warning is called when a system ruleset body is found to start ::::
with an NLAMBDA. Assumes pre-ROSIE 3.0 system ruleset and :f:},
automatically replaces with a LAMBDA. New ruleset will appear in T
the .txt file when saved. S
P
AP
r_:/.:
Unexpected end of file. Nl
oy
Encountered during tokenization. AN
The tokenizer reached the end of input while in the process of ;T}i
scanning a file item, i.e., the file item was improperly terminated. ~1}};
RS
-.--'.\
. L BURHAS
Unmatched left parenthesis or missing body after: RSN,
System ruleset header -
N
- >
Encountered during tokenization. ngo
VR
Cnable to read body (a LISP lambda form) corresponding to N
system ruleset header using the LISP read function. Probably N
caused by mismatched parentheses. P
.':\-'\
SRS
N \'._\"
Tt
o~
S
RN
. "I
S

B. Error Messages 317
Prep used twice in a prepositional phrase:
Parsing context

Encounter during parsing.

The same preposition (prep) appears twice in the chain of

preposition/term pairs associated with a procedure, proposition,
description, or ruleset header.

RUNTIME ERRORS

The following errors will be encountered in normal runtime
aperations. Exrors that are particular to a small set of rulesets from
the system support library are noted as such. All but one of the errors
seen here are recoverable. When called, a recoverable error throws
control into a break loop, from which the error can be corrected and
computations continued. The nonrecoverable error aborts computations
and throws control back to the top-level monitor.

SACREACRENE AN
L 'd
.-

."“ '.

0 * .
&
-

[y

NOTE: The following error messages (starting Bad argument type . . .)
are called by system rulesets when an argument is not of the type
expected. The type expectation that was violated is specified as

(not TYPE). The argument causing the error is given in italics after
the error message.

NN
NN

} " 4

'-
v
e
o,
4

NS

Bad argument type to ACTIVATE (not NAME):
The database

D
1]
»

]

A

P A

VasAALY

Called by:

NN
>

To activate g d4atabase

]
d
~
POX
y o

Bad argument type to ADD (not NAME):
The databsse

[l
. o/
o)
L
.

(NPT AP
o

Called by:

To add & proposition to & database

Bad argument type to ADD (not PROPOSITION]}:
The proposition
Called by:

To add & proposition to 4 database

e 4t gte e s 8ia i tta d'a la 0 gt a 'y i's i e b et LSO TOX PO YO P TOX Tl PO UK POCRE R AR Y

B. Error Messages 318 L

Bad argument type to ASSERT (not NAME): e

The database «
s
'
Called by: Q 5
o
To assert & proposition in a database Y
LN
Bad argument type to ASSERT (not PROPOSITION): N
The proposition AN
R
:‘n\
Called by: :};:
To assert g proposition [in a database] R
Bad argument type to CLEAR (not NAME):
The database >
Call by: .
alled by A
‘e N N
To clear & database wd
'u'_:-‘. :
,;3i.
Bad argument type to CONCATENATION (not TUPLE): e
The tuple T
o
Called by: AN
::\:,s.:
To generate the concatenation of & tuple with & tuple ::;f}
G
[ot 4
Bad argument type to COPY (not NAME): R
The database ot
.".: "

Called by:

n.' ‘.,
S
)

To copy from a database

To copy to a database ?:E:”
I
AASAY
Bad argument type to DECREMENT (not DESCRIPTION): VAR

The description
Called by:

To decrement 4 description [by an amount) [in a database]

Bad argument type to DECREMENT (not NAME):
The database

B. Error Messages 319 Ee
S
R
Called by: .,:.;5
KA
To decrement & description by an amount in a database .
o
bt
Bad argument type to DECREMENT (not NUMBER): ROy :
The amount Ny
NG
Called by: 2
)
To decrement & description [by an amount)] [in a database] ﬁ:',
i
Bad argument type to DENY (not NAME): WA
The database v
)
Called by: el
-'N"' 'y
To deny & proposition from & database e :
0"':'0
Bad argument type to DENY (not PROPOSITION): e
The proposition '}:f}
!* f.
.-“'ﬁt
Called by:)
LR
[SN
To deny @ proposition [from a database] e
"-'i‘:'-.
P
Bad argument type to DESCRIBE (not NAME):)
The database e
A
Called by:
[
\:;*-*'-
To describe an element in a database ;Q?j
Y
Bad argument type to DUMP (not NAME): MNYN!
The database
s
Called by: Loy
’ o
To dump & database as a file ', LA
&.
Bad argument type to EMPTY (not TUPLE): NG
The tuple ::3;:
o
MR
Called by: Vo
AN
To decide if 4 tuple is empty [
.TF-.(
R

4
s

7
I/

/
‘f

\“.".&‘.‘-‘-
L
o)

g
D

» * A\l A ~ L3 A4 - -
T L

. "(\'I"I.'{\f‘-f‘f"-""-." ‘> ‘;\'._

W ANER BN AN AN SN ERE N UNE RN RANE RN NRURURT TS
)

B. Error Messages 320 .
A

Bad argument type to EXECUTE (not PROCEDURE):
The procedure

Called by:

e
77

To execute & procedure

-

Bad argument type to FALSE (not NAME):

The database ol
\i‘-
Called by:)

P
> &

¥

Before denying & proposition is [not] false in & database

Before asserting @ proposition is [not] false in g database S
To decide if g4 proposition is false in a database :.-;:
Ron
Bad argument type to FALSE (not PROPOSITION): ey
The proposition o
-
Called by: :::«:._
Before denying & proposition is [not] false in a database ,:
Before asserting & proposition is [not) false in a database "N
To decide if & proposition is false in a database NS
Bad argument type to FIRST MEMBER (not TUPLE): ;;;';-‘;-
The tuple (::.r::-
ol
Called by: Tl
To generate the first member of a tuple ::\f_-.
RN
N
Bad argument type to FIX (not INTEGER): ;:-::f-‘*
The line ot
Called by: e
o ::
To fix a line e
N
i,
Bad argument type to FORGET (not NAME): -
The database }.::s.:
AR
: mrEed
Called oy: A
TN
N
To forget about an element in a database '.\".\
Ny
KA
; :/,"
i
,\f\':' 3
-.",-\'-
"‘1-"4'"’-‘ .'f.-\..’;..‘ﬂ\“.d".. \.;-"".""."'.._‘.-_:-':.'_\' e -}'.'- -~ _:. A \._\ ~ LS . -'.-.;“ -"-\-.\".r" __ _ IR :.;‘_'.-

s S

W8,

' W

e @ a% a'd A€, 8 M. aUS 4P 2 8.0 i A B E R v B AR B0 "k 8 e B g b8 A8 B a0 V.0 TaR VR tag fal Saf ‘af ¥at Val Vo8 Tad .

B. Error Messages
Bad argument type to INCREMENT (not DESCRIPTION):
The description

Called by:

To increment & description [by an amount] {in a database]

Bad argument type to INCREMENT (not NAME):
The database

Called by:

To increment g description by an amount in a database

Bad argument type to INCREMENT (not NUMBER):
The amount

Called by:

To increment & description [by an amount)] [in & database]

Bad argument type to INSTANCE (not NAME):
The database

Called by:

To generate an instance of an element in a database

Bad argument type to INSTANTIATE (not DESCRIPTION):

The description

Called by:

To instantiate &4 description to an element [in a database]

Bad argument type to INSTANTIATE (not NAME):
The database

Called by:

To instantiate & description to an element in a database

W N G RN TN ST AT AT W ":“f?f:f?’*ﬁﬁ)? NN 5}‘}”«‘J\wff“a\e”fﬁf‘f"f‘f‘:“fff‘f;a“¢"=ﬁf‘a?f?
) A W, n?s

9,40 ¥V, BT .

321

LA

BSER
N

%
.

Ps

:;’3

']
a
’

I.
‘AN
X

?'.‘

_{"f"

S
_.‘.

A4
¢

Pl o o S o8 ¢

.\‘)-lll‘l‘i
TN,

I LA

- =

w o o

o9 wag Pig N R ta) bl tap Nag OB ¢

B. Error Messages 322

Bad argument type to INTEGER (not INTEGER):
The lower bound or The upper bound or The step
Called by:
To generate an integer from & lower bound to an upper bound [by a step]
Bad argument type to LAST MEMBER (not TUPLE):
The tuple
Called by:
To generate the last member of & tuple
Bad argument type to MEMBER (not INTEGER):
The position
Called by:
To decide if an element is a member of a tuple at a position
To decide if an element is a member of a tuple from & position

To generate the member of & tuple at a position
To generate a member of @ tuple from a position

Bad argument type to MEMBER (not TUPLE):

The tuple
Called by:
To decide if gn element is a member of a tuple [at & position]
To decide if an element is a member of a tuple from & position
To generate the member of 4 tuple [at a position]
To generate a member of g tuple from a position

Bad argument type to NEGATED (not PROPOSITION):

The proposition
Called by:
To decide if 4@ proposition is negated
Bad argunient type to NUMBER (not NUMBER):
The lower bound or the upper bound or the step
Called by:

To generate a number from @ lower bound to an upper bound [by & step]

W W M Y ™™ o T ™ a¥m?, " tata®y v, e TN
‘ JQ?k,% TN R R RN e

«

~ -t
e

o

i

r.
-

..
» l.""
5%, 8

.
T

/

Rerary
O
v et

’

e
". ‘!"':.
R

v
,
P

n e
.

B. Error Messages
Bad argument type to PRINT (not NAME):
The database
Called by:
To print 4@ name as g string
Bad argument type to PROPOSITION (not NAME):
The database
Called by:
To generate an affirmed proposition from g database
Bad argument type to PROVABLY (not PROPOSITION):
The proposition
Called by:
Before denying & proposition is [not] provably true/false

Before asserting & proposition is [not] provably true/false
To decide if g proposition is provably true/false

Bad argument type to QUERY (not PROPOSITION):
The proposition
Called by:
To generate a query for @ proposition
Bad argument type to REDO (not INTEGER):
The line
Called by:
To redo g line [thru g Iline] (for N times]
Bad argument type to REDO (not NUMBER):
N times argument
Called by:

To redo 4 Iine [thru a line] for N times

323

’

0N

y

S
v N
PN

.

L
A A

»

P ey
S A2

L 3
FALY
[]
¥

4 ‘ot .“r‘j
. !

.
,

LA
4 a4 N "

'Y
pd

.
»

4 4
R

e e,
v 2 e

x

o g]
v

i
AL

"ol
"
%

- e
»
4
oy

L
‘.‘l".l %

b .

.

R
|T'I‘ ¥

:'.‘:| -'.\oo,

B. Error Messages
Bad argument type to REMOVE (not NAME):
The database

Called by:

To remove & proposition from & database

Bad argument type to REMOVE (not PROPOSITION):
The proposition

Called by:

To remove & proposition from a database

Bad argument type to RESTORE {not NAME):
The database

Called by:

To restore a file to a database

Bad argument type to REVERSE (not TUPLE):
The tuple

Called by:
To generate the reverse of a tuple
Bad argument type to SECOND MEMBER (not TUPLE)
The tuple
Called by:
To generate the second member of 4@ ruple
Bad argument type to SET (not NAME):
The switch
Called by:
To decide if a switch is set
Bad argument type to SHOW (not NAME):
The database

Called by:

WY, Al 3 AL R S RIRERY

AT At AT A T A LT TR T - ~ A P A T VN Vo SN IR -
M S PR S ? 3% e (:}'ﬁ ?*ﬁ'? ?,ﬁ SNt RN o

e Y
Ct.

A

>

.

324

Y
a
NN

I .
N

4

SIS

LR

-"-"
] %=

58 A

S:QPP?7

l!.
W

R

N A4

SRRRAE
VK5l

%

‘,

-~
v
_-.{s{&

A 4
Py

[0 UL SK

pi
Jo
)

5": . .‘_ . ." ." . ‘..‘;,

P N
Iy
v .

e S

S »
PR T I
.

I

TANANSR LA)
f‘l’»‘"ﬁ"‘ ‘.. -“:,". ‘o
B, ("f{ .

gl
4 .'r |

Ay et
PP R as
PR

[]
Lo e I T 2]

)
»
)
]

i o
WA ’¢“¢‘f’w?f‘a:r‘a‘f o

Y
:":o"'v
':| (A
L0 o0
B. Error Messages 325 2
‘ .:’l:
o
To show & database y .:::.0‘
Y
Bad argument type to SORT (not TUPLE): }R’"
The tuple .::f .
R
Called by: Pl
Il.l'::
To sort g tuple in an corder
N
A
l."‘.“¢
Bad argument type to SWAP (not NAME): Eae
The database {yt!
ottty
Called by: =
KA
To swap in & database ROAS:
.‘-}w.f,
e
ALY
Bad argument type to SWITCH (not NAME): atig
The switch
OGTA)
Called by: E“»
A
To switch off & switch : l\
To switch on @ switch :3_\

NNy

Bad argument type to TAB (not INTEGER):
The column

-3

Called by: ',
To tab to @ column [in a file) N *
‘-.('-."‘\-
S lu s
RSN
Bad argument type to TAIL (not INTEGER): DA
't NN
The position NN
Called by: QN
To generate the tail of & tuple at a position g;::i
To generate the tail of & tuple from & position i}\:
L At
pres’
Bad argument type to TAIL (not TUPLE): SNy
The tuple Al
“\§\
Called by: :::-f'
» :..
To generate the tail of 4 tuple [at 4 position]
.’\J_‘ N
:',__‘.
e
.._:.(-.
e
tava”

.'lﬁ.

(PRI TRV VR Wity
s e e T T

EERS AN

4 2 7 2 ai aid g% alat b2t b2t e L8 2 600 48.8 28 |""|""“.l"

U
B. Error Messages 326 ;::‘:
%
To generate the tail of & tuple from a position ‘b?
0]
Bad argument type to TOGGLE (not NAME): .',:
The switch A
Called by: ;
v
To toggle off & switch ~)
To toggle on a switch)
To toggle & switch oS
o
S
J‘.'
Bad argument type to TRUE (not NAME): L.
The database S
Called by: ﬁ:“
|.‘*
Before denying & proposition is [not] true in & database ':o
Before asserting g proposition is [not] true in a database A
To decide if a proposition is true in & database e
4
'v'.’-
Bad argument type to TRUE (not PROPOSITION): ';_S:
The proposition Ry
Sl
Called by: ..
::\}.;'.
Before denying & proposition is [not] true in & database a:;x
Before asserting a proposition is [not] true in & database :ﬁ{n
To decide if & proposition is true in 4 database a:}:
.‘\ }
Bad value from SYSTEM GENERATOR: ~
Value i;}-t
o]
Called when a generator ruleset defined as a system ruleset returns ﬁg&:
something (vglue) that is neither a LISP atom or 1list. o
See Section &4.4. :gx,i
RN
_.-.:.
Y
CLASS ELEMENT returned from PRODUCE DEMON: o
Element .:-'i‘f
Class elements cannot be returned from a produce demon. o
NN
. . NGO
Computation depth limit exceeded. @2
Nonrecoverable error.
l\ '.
.~:Z}_:Z
..\:.:"'
e
A
R0
A D AT N S A A 2 e A S S S A T A A

A YA e R e B M X R 'R) X

B. Error Messages 327

Encountered at runtime.
Called when ruleset invocation stack exhausted (size: 120 frames).
Indicates infinite loop or poor program design or both.
CONCLUDE not inside PREDICATE.
The conclude procedure can be called only from a predicate ruleset.

See Section 4.2.

CONTINUE not inside DEMON.
The continue procedure can be called only from a demon.

See Section 4.3.
Can't close "0OS:" channel.
Can't close "TTY:" channel.
Called by:
To close a file
when file is either "OS:" or "TTY:".
See Section 11.1.
Can't find program files for:
Filesegment
Called by any of the file package operations that try to load or
rename a program file (filesegment) and can't find the
.txt or .map files on disk.
See Chapter 13.
Defined as SYSTEM RULESET:

Filesegment

Called when trying to break, trace, or profile a rule inside of
filesegment when it names a system ruleset.

See Section 14.1.

o .
Vo ~
Al
-r.".
Vo
~
N
\(’_“'
:‘d .,,‘\
NN
~n g
R
F "
.‘.\ 2
RN
3

S,

’,
A2

3

1Y

22,

5
2L,

L%
o
5 5%

..
%

N
'l
I

P

B. Error Messages
File already open:
The file

Called by:

To open 4 file for input/output
when a channel to file is already open.
See Section 11.1.

File not open for input:
The file

Called by:

To read & string from a file
when file is not open for input.
See Section 11.1.

File not open for output:
The file

Called by:

To send a string to a file
To tab to & column in a file

when file is not open for output.
See Section 11.1.
File not open:
The file
Called by:
To close g file
when file is not open.
See Section 11.1.

Filesegment already exists:
The filespec

------- LI I PR - LI S L I I e o LAPRL G P IR I P PG A T N L
'u SO PPy » _,\ \._ Ny 5-"4"\" \-.»_xs,\\.;._..\«.'«\ AT

ThE Rt N

328

B. Error Messages 329

Called by:
To build g filespec

when filespec names a program file that has already been noticed.

Filesegment not broken:
Filesegment

Called when trying to unbreak or untrace a ruleset (filesegment)
that is not broken.

Filesegment not enabled:
Filesegment

Called when trying to break, trace, or profile a ruleset from some
program file when that ruleset is not enabled. This is not the
same as trying to break a ruleset that is not enabled when the
program file of the ruleset is not given.
See Section 14.1.

Filesegment unknown to system:

Filesegment

Called from any of the file package and break package operations when
filesegment is not noticed.

See Chapter 13.
Illegal argument to EVALUATE:
Timer argument

Called by:

To evaluate g rule [against timer)

when the timer argument is anything but timer.
Illegal argument to STOP:
Dribbling argument

Called by:

To stop dribbling

LIPS - - Cet Al e . A

’ - T B T L B S T T T T Wy et S AR Tl
N e s T oy T R A N N T B A SN S O O N AN

B. Error Messages 330

when the dribbling argument is anything but dribbling.

lllegal BOX width:
Element

Called from the box subpattern.

See Section 9.6.

r
5'1"

L

=
4

lllegal comparison:
Elementl op element2

v
o,

Called by one of the comparison operators (op) when the
operands {(elementl and element2) cannot be compared under
that operation.

See Section 9.3.

Illegal expression to EVALUATE: &f-',‘.»
The rule NN
a:n’
Called by: 4;:;
PN
To evaluate g rule [against timer)
<.
when rule cannot be parsed as a ROSIE rule. ::::
o«
I
BERLN
Itlegal 1/0 access to AVAILABLE: :\i\
Input argument ———
S
Called by: T
N
To decide a4 file is available for input JASAY
e
when the input argument is anything but input.
NI,
h‘..l.-!
fllegal 1/0 access to OPEN: S
Input/output argument or read/write argument \iu;
\-

3, 7
'

e N XAX!
el e
G ggasa -

Called by:
To decide if & file is open for input/output
To open g file for input/output

To open a file to read/write

when the input/output argument is anything but input or

2 o

‘et
DAL
a

« 7 0
B

[]

.

«h Y

B. Error Messages

output, or (in the case of the is open predicate)
input/output, or when the read/write argument is anything
but read or write.

Illegal 1/0O access to REDIRECT:
Input foutput argument
Called by:

To redirect Iinput/output [to g file]

when the input/output argument is anything but input or output.

Ilegal operation:
Elementl op element2

Called by one of the arithmetic operators (op) when the
operands (element! and element2) can't be combined under
that operation.

See Section 9.3.
tllegal order to SORT:
The order
Called by:
To sort & tuple in an order

when order is anything but ascending order, descending order,
ascending pair order, or descending pair order.

illegal truth value to CONCLUDE:
True/false argument

Called by:
To conclude true/false

when the true/false argument is anything but true or false.

lHegal truth value to PROVABLY:

True/false argument

Called by:

Ce te B .
- .

."i‘ - g - '. -

S A S o O A S S A S S LA N SRS AR S AL AR
+ 0. 5%, » . » (a2 1) "" 28 s B il 2 K < Saca

331

-
=9

2SS
h'. e A
5‘.5 5:\

T
A

- -

)

A
Y
e

;.t'

4NN
C A S

AR A
P

s
S:,S

Lollt

.ﬁa?‘

2

A" o Al A

A
N LA Sk
o ;.' AR

Uy

s

.
y
.
o
[]
”
'

Pt
l.\ -5 -.: “l-5

X AR
-

AR
“

._:.'\1':1':{ ‘d“

) 2 ll -

PN
F] \d
yey
[]

‘h'.'.'.".’}
[N NN

P IN

505\
L3

II
<

]

,‘,-"\
l.{,

BACAORC

,.
RACEE
(o WAL,

55

&

LS L LY
PRE
27T F e

£55

b

S

B. Error Messages 332

Before denying an element is [not] provably true/false
Before asserting an element is [not] provably true/false
To decide if an element is provably true/false
when the true/false argument is anything but true or false.
illegal tuple to SORT:
The tuple
Called by:
To sort & tuple in an order
when tuple does not contain elements that can be sorted.
See Section 9.4.
Illegal unit of measure to [ARC]COSINE:
Radians argument
Called by:
To generate the [arc]cosine of & number in radians
when the radians argument is anything but radians.
Illegal unit of measure to [ARC]SINE:
Radians argument
Called by:
To generate the [arc]sine of 4 number in radians
when the radians argument is anything but radians.
lllegal unit of measure to [ARC]TANGENT:
Radians argument
Called by:
To generate the [arc|tangent of & number in radians

when the radians argument is anything but radians.

Index out of range in MEMBER:
The position

".'.'.'-'-"'l
P
r‘)"-. -:l'l“.,‘:",_

’.
.

A& %, ",
o
Srrrs]

€« = =

B. Error Messages 333

Called by:

To decide if an element is a member of a tuple at a position
To decide if an element is a member of a tuple from 4 position
To generate the member of & tuple at a position
To generate a member of & tuple from & position
when position is negative or larger than tuple.
index out of range in TAIL:
The position

Called by:

To generate the tail of g tuple at a position
To generate the tail of & tuple from & position

when position is negative or larger than tuple.
Input from file won't match pattern:
The pattern
Called by:
To read & pattern from a file
See Section 9.6.
Lexical error detected in:
Filename
Encountered during parsing.
Called when a lexical error occurred during tokenization of a
file (filename).
No DRIBBLE FILE currently active.
Called by:
To stop dribbling

No such file exists:
Filename

Called when attempting to open a file (filename) that cannot

~

l\’
’d

N NN NI

O
'ul_ﬂtﬂ‘.

W WA

-
L}

TYNY Y
AR

ll"

L’h

p
L3,

(A%

T
- ..
s

9

P]
i S
Iu't‘l¢

>

o
5
s

o " " . "tl
PR
o v o S

v s
rl
2’7

Y
P l’ Py "4
Y ', "%

NG
B Y]

T

n
’

AR} w -y
L :N.‘
A

["-‘
Sl ted
P

e

"

P A% A% N S]
T
Py

.'//'/i
»

g

‘l 'l

,'.’ P
(]

o
AR

(Y
I
IR

5 5 4

<

-
[N
LA

Ay S

Y

B. Error Messages 334 v
R
»
N
be found on disk. ijyg
™~

.
..(

No such element exists:
THE description

A
[N
<

3y

A
v

.?_’

Called when evaluating a simple descriptive term introduced by
the function word the and no element can be generated from
description.

2

PR

N
See Section 8.4. Ry

R
NOTE: When description is a call to a system generator, this error ;C?ﬁﬂ
indicates that the arguments to the generator were bad. Unlike NN

the other rulesets from the system support library, system

i

generators do not normally call an error when passed bad arguments, \}i-
rather they produce nothing. This is done to permit graceful error :u$\;
recovery, e.g., the predicate there is a description fails e

>

hd
/¢

D

if description produces nothing, but does not call an error.

243
'

Not able to open file:
Filename

Called when a file (filename) exists but cannot be open.

Not coercible into a filename:
Element

Called by a ruleset that received element as a filename argument.
Element could not be coerced into a filename.

See Section 11.1. 7 -

Nothing saved for line N. o
Called by history facility when attempt is made to access monitor
rule N and that rule is not one of the last 40 monitor rules
seen. ;
See Chapter 3. e

Only files may be renamed: AR

The source filespec or the target filespec s

lled by: AN
Calle y -_j-'.'(:'

To change a source filespec to a target filespec

AR AT WA T TN L . .;.'. et et
Bal all X

W Y &M D o B L R e n.v“.--" P OO TS L
Hhﬁmﬂkjy\\ﬂﬂ'fﬁfi"'hw'f\xﬁhﬁ\\

LY TR i * N 4 b g ‘da O.f Pag Sl Gt Pafl Y, Yag va) v e ata’, - ata 42 §:0 0 Bd b, - 'S LAt & Al atat Lsv it gt BuA * B te A'e 'l ‘g 0 Bte §4g 8%,

B. Error Messages 335

when either filespec names a portion of a program file rather :gz?l
than a complete program file.

PRODUCE not inside GENERATOR.

The produce procedure can be called only from a generator
ruleset or a produce demon.

See Section 4.2.3.5.

Pattern not coercible to string:

Pattern

-';‘}'-

. . . AN
Called when attempting to coerce pattern into a string and ot
pattern describes a language of more than one string. -;ﬂﬁ\'
RLSAS,:
s:‘-i':

See Section 9.6. D

Procedure not defined:
Procedure

Called when attempts to invoke procedure that currently is
not enabled.

Syntax error detected in: R
Filesegment .

Called by break package when trying to break, trace, or profile a
ruleset rule (filesegment) when the ruleset contains a
syntax error.

]

k]
"
'»
4y
o

WY

YRS
. a'. - -"'; .

"{
P

L4

See Chapter 14.

165
A

R
5

ﬂ..
y

Terminal input won't match pattern:
The pattern

. e
»
a
.
o

s

R

s P AA

PN
P

2
‘.7
'l

PN
S e

Called by:

A
o
’ .

To read a pattern -

!
LA
5
v

P

See Section 9.6.

P 4
Al
I‘.J'I

¢
i 4

T
- _&
LA
<~."‘./

v
2

%

3

"":'l'!
1
hh
I‘f-’l'

>

.
/4
.,
LA'S
’ ala e 2 n)s,

- -
LS

G N I P

B. Error Messages 336

Unbound ANAPHORIC TERM:
THAT class noun

Called when evaluating an anaphoric term (that class noun) that
references an unbound description variable.

See Section 7.3.

Unbound RULE VARIABLE:
Variable

Called when evaluating a rule variable (variable) that references
an unbound description variable.

See Section 7.3.

%
PV, PR

~
-
-
.

C. System Switches 337

APPENDIX C:
SYSTEM SWITCHES

ROSIE supports a small number of system switches to control certain
aspects of system behavior (these switches are implemented as LISP
variables whose values are T when on and NIL when off). Some switches
are supported to make ROSIE 3.0 act like earlier versions of ROSIE and
others simply to suppress noncritical features that the user may not
like.

The system switches include:
$AUTOQUERYFLG -- (default setting: off)

This switch controls ROSIE's actions when it can neither prove nor
disprove the truth or falsity of a proposition, i.e., the action
if, after examining the database and rulesets, the truth value of a
proposition is still unknown.

When this switch is on, ROSIE will look for the predicate ruleset,
To decide if a proposition is confirmed:

If such a ruleset exists, it will be applied to the positive form of
the proposition. The conclusion of the ruleset decides the truth or
falsity of this form, which then decides the truth of the target
proposition.

ROSIE provides a default query mode predicate defined as

To decide if a proposition is confirmed:
Private: a reply.
Execute cyclically.
[1] Send "{cr}{the query for the proposition} ".
[2] Read "{anything (bind to the reply)}{cr}".
[3] Select the uppercase of the reply:
<"YES"> assert the proposition is provably true
and conclude true;
<"NO"> assert the proposition is provably false
and conclude false;
<""> return;
default: send "{cr}Please respond YES or NO{cr}".
End.

To see how this works, consider the following sample session

T T A AT IR

207
LYY

R AR
(ks

-
[
-

Yy

LU N

&

-
L

r'-(‘

Pl
2

>

"‘._-. .’i.’\'.'
i Ly
AR RR]
PORAAS

o
AN
s

A B
.

PR 'Y -

Li' gty ¢ ats 2t W ERRARRRREE AR A R W U Y Y UNUPYRUSE T R P X K] Y ATHAY

C. System Switches 338

<2> 7
[GLOBAL Database]

<3> If John is a man, display yes.
<4> Switch on $AUTOQUERYFLG.
<5> Redo 3.

IS JOHN A MAN? y
Please respond YES or NO

IS JOHN A MAN? YES

YES

<6> 7?7

[GLOBAL Database]
JOHN IS A MAN.

<7> Redo 3.
YES

<8> If John does not love Mary, display yes.

DOES JOHN LOVE MARY? YES
<9> ?
[GLOBAL Database]
JOHN DOES LOVE MARY.
JOHN IS A MAN.

The auto-query mechanism allows ROSIE to build up its database by
consulting the user. While this mechanism is not always appropriate,
it is extremely useful for diagnostic tasks.

$COMPRULESETS -- (default setting: off)
$EXPDRULESETS -- (default setting: on)

These two switches apply when a ruleset is defined (enabled) in a
ROSIE session.

When the $COMPRULESETS switch is on, the definition of a ruleset
will be compiled in core when defined.

When the $EXPDRULESETS switch is on, the definition of a ruleset

will be optimized (through a series of macro expansions) when defined.

When either of these flags is set, load time of a program file will
be increased about ten times. For program files containing a dozen
or more rulesets, this means an increase from a matter of seconds to
half a minute or more, but the compiled and optimized (compiling
also optimizes) definitions run much faster.

T S N R S AT

T R O L N O 2 A R N S AR RSNy A
» . i) . N . M X » I » o B o ! i) R

:’v "’
25

ol
.

S

L4

sa'hhﬂ

lj';’,:‘(r-‘r
'//f?/

Ly '-fj i

<
i
)

S PREER e
j.!..l.:,‘ 3 1;5

B
A

-

PRIy
e
LY,

v
By

'011
e _x's
2.4
(AL - S

[R P
‘- -
Loyl

’ AT I g™ AV Cab ta¥ i gk W% Vgl Ca¥ -aF va¥ ¢ [Cal at vat.o - N LY UN U U L YU LN UL 1, a2t 9 ‘gt “at ¥ o tat cal, el S p¥. DYy T

C. System Switches 339

$EXTENDSEARCH -- (default setting: on)

This switch controls the manner in which ROSIE conducts its search
of the physical database--yet another aspect of ROSIE 3.0 that
differs from earlier ROSIEs.

In earlier releases, the physical database structure was two-tiered.
When searching the physical database, ROSIE would first examine the
private database then the active. It would examine only the global
database when active.

The structure of the physical database in ROSIE 3.0 is three-tiered.
ROSIE first consults the private database (which has been reduced to
a much restricted form), then the active database, and then the
global database. If the global database is also the active database,
it will only be examined once.

When this switch is off, ROSIE returns to a two-tiered database
structure. The following sample session illustrates the difference.

<2> Assert each of Jim, Jack and John is a man.
<3> ?
[GLOBAL Database |

JOHN IS A MAN.

JACK IS A MAN.

JIM IS A MAN.

<4> Activate tmp. jﬁisf
<5> ? ‘.\."
[TMP Database] ::A:
" {
Wt
<6> Display every man. ;b:L‘

JOHN -
JACK NS
JIM _:"‘: 3
<7> If John is a man, display yes, otherwise display no.)
YES e
<8> Switch off SEXTENDSEARCH. NIV
<9> Display every man.
<10> If John is a man, display yes, otherwise display no. FZQ“Q
NO e
.{;\::1
)
$MIXPRINTMODE -- (default setting: off) :n:.;
When ROSIE 3.0 displays things like the evaluation name of an element, N *‘
e.g., $\:\‘
<19> Display 'John i ’ Bh
isplay 'John is a man . RN

'JOHN IS A MAN'

the contents of a database, e.g.,

WU AT IR T PAk TS IARARNRRK N RA AR KX AN AN RN AN AV AN AR R

C. System Switches 340

<20> Assert each of Jim, Jack and John is a man.
<21> 7
[GLOBAL Database |
JOHN IS A MAN,
§ JACK IS A MAN.
JIM IS A MAN.

7

P,
b

or coerces an element into a string, e.g.,

S

<22> Display the string from {the man}.
"JOHN"

, l'.\" -t
[N

it does so putting all characters (except those within string tokens)
into uppercase. In earlier releases, such output was done in mixed

SR
P

case, e.g., %
N
<23> Switch on $MIXPRINTMODE. D
<24> Redo 19 thru 22. Ry
K '"JOHN is a man' PN
Y [GLOBAL Database] L0

JOHN is a man.

JACK is a man.

JIM is a man.
"JOHN"

¥ Fixed syntactic constructs, such as prepositions, appeared in
lowercase while arbitrary arguments appeared in uppercase. Mixed
case is helpful when learning to distinguish btetween such constructs,
but is undesirable in a finished system.

When $MIXPRINTMODE is on, output appears as it would in earlier
t releases of ROSIE. When off, output is in uppercase.

$PRETTYFORMAT -- (default setting: off)

This switch also controls the format of output. When on, output .

will appear in lowercase (even if $MIXPRINTMODE is on). Further, e

strings will appear without surrounding double quotes, the intentional

elements without single quotes, and the first nonseparator character WY

of the string will be capitalized, e.g., 'igﬁ'

e

<25> Switch on $PRETTYFORMAT. ;:{*
<26> Display 'John is a man'. WA

John is a man

The print procedure is equivalent to the send procedure when 0
$PRETTYFORMAT is on (see Chapter 11). -

This switch also allows the user to control the format of explicitly ‘*:{,
named tokens, working in conjunction with the print as procedure. '

N e e p g e RFAT " g \-J' NN N L NN A
5l - »

‘-:,\'.'.:_\

e S N N N YN

P

: ‘.‘A'..;
C. System Switches 341 b
ot
I. . '
: s
The print as procedure takes two arguments, one a name element and ,‘.:_._%,
the other a string. When the $PRETTYFORMAT is on, instances PG,
of the name will be output as the given string, e.g.,

o
<27> Print John Brown as "John Brown". ¥
<28> Display 'John Brown is a man'. '
John Brown is a man ,

i
$PRINTMSGS -- (default setting: on) R;\
et
)
This switch controls whether miscellaneous system messages are output. f:\,','.'_*-_,‘
For instance, most of the file package commands output messages that -:"J"-l'
trace their operation. While such messages are not necessary for Y
system performance, they do provide a sense of security that comes from o
knowing what's happening. In a finished ROSIE expert system, such :s':'f
messages may appear irrelevant. They can be disabled by switching off .':'_.-'_:.‘-
$PRINTMSGS. ';-.j-."
SRS,
by,
TR
PRYR
$REMOVEDUPLS -- (default setting: off)
RN
This switch deals with the generation of elements from a description. _'..:'_:f:
It enables a feature found in older releases of ROSIE but that is {}.__a.
not the standard for ROSIE 3.0. ::.-'_:.-'_:
Descriptions are thought of as implicitly naming a set of elements.
Further, descriptions can be used as generators to produce these :-_«;.' D
elements in sequence. In an attempt to ensure the purity of the notion \-_,‘-f.'
that descriptions named sets, earlier ROSIEs always removed duplicate :-/':}
elements from the sequence produced by a description, e.g., in \-::\:}‘-
ROSIE (Version 2), the following would occur WA
<10> Display every member of <1,2,2,3,3,3>. N
1 ::-.':.__::‘
2 A
3 T
W3
while in ROSIE 3.0, o
-\t* ‘
<10> Display every member of <1,2,2,3,3,3>. Ny
1 LN
2 N
2 2: o
3 ™y MR
3 =
3 :":"' :
&':\':'-.
'-:_\:,\
This change was not the result of some great conceptual insight, but :.-:_\\
prompted purely by pragmatics. The test to ensure that an element -.::\;::.
wasn't produced twice turned generation of elements into an 0(n?) process. T

LIRS I
ol

N A TR LA R
.n‘!.h'?.a%,‘ii?‘.a.“arﬁri}i:.&3:&.»..};...L' SN

AP RIUATURR AT U R URPU R SR, AR R U U U U Ry R U U UM U Ry U URT R O U R DT ST ORr O osr oWy :'.'.q'c'i:c‘.:

nd
C. System Switches 342
M
pea
Thus, while this feature ensured set purity, set purity was rarely an -f:
issue, often an annoyance, and greatly hindered system performance. ol
The old mechanism was not removed from ROSIE 3.0, merely disabled. _
When $REMOVEDUPLS is on, this mechanism is reenabled. .
v
W
R
OPERATIONS ON SYSTEM SWITCHES -
\f.: X
The operations for turning switches on and off as well as for Y
. : . ; e
checking their setting are defined as follows: :-‘:]
Ra!
switch on g switch SN
switch off a switch o
_\l‘..l'
LA
Respectively, enables or disables swritch, which is one of ROSIE's RNy
system switches. o
i.?:f;’l
<15> Switch on $MIXPRINTMODE. ot
<16> ? .
[GLOBAL Database] NG
SARA is a woman. S
MARY is a woman. ;{::-:
JOHN is a man. ,\,.':'
JACK is a man. N
JIM is a man. -
et
o4
toggle on & switch bﬁ;ﬁ*
toggle off s switch o
Like switch on/off except that, if executed in a ruleset, -—
switch reverts to its original setting when the ruleset terminates. :-‘:._ﬁ_
:I-:’.\
AN
toggle a switch ;f.;
-: q._*\
If switch is on, turns it off, otherwise turns it or.
AR
KON
D
a switch is set e
.
Concludes true if switch is on, concludes false otherwise, e.g., :-::v::.
<17> If $MIXPRINTMODE is set, display yes. vy
po
YES e
v“‘(\'\" /
Rt
L 3
':,‘.:\
S Ao
XSV
.-.:_\:_\
NN
;'n::\;\
LN
MR O

gy ®
DAL AT s NN

C. System Switches

info switches

Lists the setting of all

<18> Info switches.

‘.' l " V‘\

SAUTOQUERYFLG
$COMPRULESETS
SEXPDRULESETS
SEXTENDSEARCH
SMIXPRINTMODE
SPRETTYFORMAT
$PRINTMSGS is

is
is
is
is
is
is
on

system switches, e.g.,

off
off
on
on
on
off

SREMOVEDUPLS is off

RV T TN M et % e
-!‘-v

DA A LA L AR .

,.‘}-' - \}.

RN

VAN Sy

N Py
.

e

-
L)

343

[S T

'iv-

AT ':{
.

»
>
-

-
-

- a_w
A %N
R

L 7
s-{;-:‘,'.#:;'l
Ay 7 i

Y
DR
Ly
(8.8

Y
SRPLRETR Ny

EASSI AR
il L) .

MR AN NN ENKNEARM A BN Ny SV L a0 2" 6.2'0. & $a0'h 2°4) at %5 .18 a'd o 2'h 278 2 oA a®h atd asd

A o

|preceding page blank - not filmed |

References 345

REFERENCES

Anderson, R. H., and J. J. Gillogly, RAND Intelligent Terminal Agent
(RITA): Design Philosophy, The RAND Corporation, R-1809-ARPA, 1976.

Anderson, R. H., M. Gallegos, J. J. Gillogly, R. B. Greenberg, and R. V.
Villanueva, RITA Reference Manual, The RAND Corporation, R-1808-ARPA,
1977.

Beebe, H. M., H. S. Goodman, G. L. Henry, and D. S. Snell, "The Adept
Workstation: A Knowledge-Based System for Combat Intelligence
Analysis," Proceedings of the Seventh MIT/ONR Workshop on C3 Systems,
Massachusetts Institute of Technology, Cambridge, MA, 1984.

Callero, M., D. A. Waterman, and J. R. Kipps, TATR: A Prototype Expert
System for Tactical Air Targeting, The RAND Corporation, R-~3096-ARPA,
1984.

Fain, J., D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowizral, and D.
A. Waterman, The ROSIE Language Reference Manual, The RAND
Corporation, N-1647-ARPA, 1981,

Fain, J., F. Hayes-Roth, H. Sowizral, and D. A. Waterman, Programming in
ROSIE: An Introduction by Means of Examples, The RAND Corporation,
N-1646-ARPA, 1982,

Forgy, C. L., The OPSS5 User's Manual, Technical Report CMU-CS-81-135,
Computer Science Department, Carnegie-Mellon University, Pittsburgh,
PA, 1981.

Galway, W., M. L. Griss, B. Morrison, and B. Othmer, The Portable
Standard LISP User Manual, The Utah Symbolic Computation Group,
University of Utah, Salt Lake City, UT, 1984.

Hayes-Roth, F., D. A. Waterman, and D. Lenat (eds.), Building Expert
Systems, Addison-Wesley Publishing Co., Inc., Reading, MA, 1983.

Hayes-Roth, F., D. Gorlin, S. Rosenschein, H. Sowizral, and D. A.
Waterman, Rationale and Motivation for ROSIE, The RAND Corporation,
N-1648-ARPA, 1981.

Irons, E. T., "Syntax Graphs and Fast Context-Free Parsing," Research
Report 71-1, Yale University, New Haven, CT, 1971.

Kowalski, R., "Algorithm = Logic + Control," Communications of the ACM,
Vol. 22, No. 7, 1979.

8 b s e e g S

Y

.
»

Sl
MR

.(.u'- *

L

75
e
.

e
‘l‘ll

1

L4

I'.
Y
cASS
Tl

o Y LAY

<&

- ¢ L

P,

.' E) ".".-J
x
é

» A’ll L g o 3
AR N
w8 s sle Sy

AT

T
-l"

pwong
Text Box
preceding page blank - not filmed

References

Kruppenbacher, T. A., "The Application of Artificial Intelligence to
Contract Management," Masters thesis, Department of Civil,
Environmental and Architectural Engineering, University of Colorado,
Boulder, CO, 1984.

McDermott, J., and C. Forgy, '"Production System Conflict Resolution
Strategies,” D. A. Waterman and F. Hayes-Roth (eds.), in
Pattern-Directed Inference Systems, Academic Press, New York, NY,
1978.

Pagan, F. G., Formal Specification of Programming Languages: A
Panoramic Primer, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

Paul, J., D. A. Waterman, and M. A. Peterson, "SAL: An Expert System for
Evaluating Asbestos Claims," Proceedings of the First Australian
Artificial Intelligence Congress, Melbourne, 1986.

Sowizral, H. A., and J. R. Kipps, ROSIE: A Programming Environment for
Expert Systems, The RAND Corporation, R-3246-ARPA, 1985.

Teitelman, W. et al., Interlisp Reference Manual, (3d rev.) Xerox Palo
Alto Research Center, Palo Alto, CA, 1978.

Tomita, M., "An Efficient Context-free Parsing Algorithm for Natural
Languages,' Proceedings of Nineth International Joint Conference on
Artificial Intelligence (IJCAI-85), pp. 756-764, Los Angeles, CA,
1985.

van Melle, W., E. H. Shortliffe, and B. G. Buchanan, "EMYCIN: A
Domain-independent System That Aids in Constructing Knowledge-Based
Consultation Programs," Machine Intelligence, Infotech State of the
Art, Report 9, No. 3, 1981.

Waterman, D. A., J. Paul, B. Florman, and J. R. Kipps, An Explanation
Facility for the ROSIE Knowledge Engineering Language, The RAND
Corporation, R-3406-ARPA, 1986.

Waterman, D. A., and M. A. Peterson, Models of Legal Decisionmaking, The
RAND Corporation, R-2717-1CJ, 1981.

Waterman, D. A., R. H. Anderson, F. Hayes-Roth, P. Klahr, G. Martins,
and S. J. Rosenschein, Pesign of a Rule-Oriented System for
Implement ing Expertise, The RAND Corporation, N-1158-ARPA, 1979.

Winston, P.H., Artificial Intelligence, Addison-Wesley Publishing Co.,
Inc., Reading, MA, 1979.

\/

'{3‘ u‘f{t‘.—

4

27,

.."."'
fff4>

[

a'(o:

Th NN
t\{

S
\'l a

NS
+
,‘. -,)

'
%
~

P sl o o |
o
AN

b4
“

s, .?'1
.".*5. lw.'
b V-

R AN
8 4 A
E;bar"

L'y Q
7,

ol
z

L7
N

_,
hJ

LY

0 L [P\ LN LU U Oy > ‘p gt ry Caad By Bad B2t 8% 0.F Ba% $2* 820

iInd W
ndex 347 '!.;'.:

INDEX

Vo
v
A

A

.
o

SAUTOQUERYFLG 230; 337
$COMPRULESETS 338
SEXPDRULESETS 338
SEXTENDSEARCH 339
$MIXPRINTMODE 339
$PRETTYFORMAT 176; 248; 340 o Ny

Sas
LN

oty

PR A AR
Ty l‘P .
kY

SPRINTMSGS 341 _ ::\ﬁ
SREMOVEDUPLS 341 ho
SROSIEEDITOR 49; 264 3:{;
cmp files 253 TN
db files (see dump and restore) 233 .
map files 253 Raet
rosie-ed 49 AN
rosierc 43; 264 : ~:,
text files 255 o
txt files 253 ph
<ctrl>C 56; 251

<ctrl>D 64 _":\‘: i
<ctrl>2 58 __,‘.J,:
<atom> 27 -;:
<integer> 27 ::_.}__.'
<number> 27 A

<string> 27
<CONTINUE> 87

<FALSE> 87
<TRUE> 87
ot

4 number ** an integer 164

-

a number °~ an integer 164

-
s
* N
a number * & number 164 N
+ ol
IOy
a number * & number 164 B
& number - a number 164 VI
/ Ll
& number / & number 164 AR
= K ANy
an element [~]= an element 155 :Si?
<term> [~]= <term> 111; 151 -,
<term> [~]<{Z] <term> 111 TS
<term> [~]>[=] <term> 111 P
< R,
a number [~]<[=] & number 165 alﬂf‘
- E I 5
<term> [~]<[=] <term> 111 AN
>
~—
wI
S
AR
OO
.‘\.’ -
RSN
'.\3:‘ i
~ ™ R T R . S PO, Y LI L . . . ::~.}.
W N NI NN A ’\ﬂ’v'e**““&7Vhﬁf25{vﬁfﬂr*ﬁ?ﬂ?ﬁm*S?b?ﬁTﬁ”ﬁ?*fvﬂ*ﬂ

-
v
=
g
-
1
2

o

"
Nad)
7
Index 348 P
o)
N
& number [~}>[=] & number 165 ;:*
<term> [~]>[=] <term> 111 b
2
: -
<integer>? 59 N
<name element>? 59; 233 :;ﬁ.
7 59; 233 VG
77 59 !
private? 273 [
’ L
{ <subpat> [, <subpat>]* } 181 :::f-::'
l
{ <subpat> [| <subpat>]* } 182 ;l-;l:'
a new ﬁﬁﬁ,
a new <descriptian> 140 &
a/an PR
(] a | an |) <description> 140 rtj:.
absolute value ASAY
the absolute value of a number 165 Pl
action blocks 89 f:j:
actions 89 LENL N
conditional actions 95 .
conditional blocks 96 o
database actions 93; 220 T
execute actions 89 '3“})
iterative actions 100 R
procedures 93 A
types of 89
activate }L}:
activate [a database] 232 e
active database 221 B
act ive database Y
the active database 232 et
add N
add-a proposition to a database 212; 235 =¢ﬁ{:
addition operator (+) 164 e
adjectives vs class compounds 131 PR
adjoin “::
adjoin <subpat> [, <subpat>]* 185 2]
affirmed proposition _
an affirmed proposition [from a database] 212; 234 S
affirmed propositions 219 e
alphanumeric

[non}alphanumeric[s] [[not] in <term>] 186
alternate database
an alternate database 233 -

alternate databases 221 AN
ambiguity 38 DANRS
anaphoric descriptions 127 i#:':‘
anaphoric reference 126; 144 u$\$\:

resolving ambiguity 128 :itft

anaphoric terms 126; 144

Camneraman
MIASLHLNY

RN

L

A 9

and
<action> and <action block> 67

<disjunct> [, and <disjunct>]* 105
<primary> and <conjunct> 105
ANIMAL 305
antilog
the [anti)log of & number 166
any
any <description> 201
anything

anything 188
apostrophe s
possessive case 139
append
append s file to & file 250
arccosine
the [arc]cosine of & number [in radians] 166
arcsine
the [arc]sine of a number [in radians] 166
arctangent
the [arc)tangent of & number [in radians] 166
argument passing 78
argument
an argument of an element 156
arithmetic operators 26; 135
arithmetic terms 135
ASCII characters
generation of (see charcode) 191
assert demons 82
assert events 82; 94,; 228

assert
assert a proposition [in a database] 212; 235
assert <proposition> {and <proposition>]* 94;

asserting propositions 228
assignment operator (see Jet) 94
associativity 38

of action blocks 91

of arithmetic operators 137

of conditional actions 96

of conditional blocks 98

of conditions 106

of iterative actions 102

of unit constants 162
atomic tokens 21
auto-query mode 230

available

a file is available for input 248
backspace

backspace{s] 190

bs 190

backward reasoner in ROSIE 305

O N NS 'J'.'d'“'.’\".‘_

234

ol
2O A
=

P
L)

PR
A%
.{‘-

g
YN
Y

13
'

Ve
P o}

[o SN S SN DN]
4% %S
P XA A
)

h)

h]
»

ALY
ther:.
St

oS

L &d

LSS

FEE S
a2

o
"

LAt s
h PV
'y

S

o
R4

Craty
¢ 7
‘.

PO
" ‘e f
R Mg
4§ 5454

&

.
e
-

-

I's
»

Index

be and do
auxiliary forms of 26
before
before asserting <pred form>: 81
before denying <pred form>: 81
before executing <proc form>: 81
before generating <genr form>: 81
before producing <genr form>: 81
before testing [if] <pred form>: 81
blank
blank([s] 190
(non]blank(s] [[not] in <term>] 186
BNF
lexical 27
linguistic 28
boolean connectors 105
both
both <term> [,] and <term> 147
bottom
bottom! 273
box
box <subpat> to width <term> 183
break characters 18; 26
break commands 22; 270

bottom! 273

conclude false! 272

conclude true! 272

down! 272

edit [(| ruleset | <integer> |)]! 271
eval! 270

help! 273

list {(| ruleset | <integer> |)]! 271
pop! 273

produce an element! 272

quit! 273

result! 271

resume [{| ruleset | <integer> |)}! 271
return! 271

top! 273

trace! 272

up! 272

break loops 56; 270

break package 267
break facility 270
profile facility 278
trace facility 268
unbreaking 279

break
break [a filespec) 280

bs

bs 190

350

'.*4$ bﬁ-ﬁ?ﬁ::r ‘

P Xy
LR 00

.l

LB A R A

s

2

BN Y
g«

sS4
1"

kY
d
f)
LA

"4,

t.'l."‘;
l.. "

L\ g
O
0,

I'd

5 9

‘l
.
2

bt S o B
LA
e o]

- L * (7 V LY », L) », - 4, L) [} K3
o
g
' Index 351 20
b o~
: 3
3 build r:
build & filespec 260 z
call 89 =
A cardinality operators 112 $*
: ceiling i
‘ the ceiling of a number 166 ;
4 center justify Whé
center justify <subpat> [<dimen>] 184 't
CJ [<term>] [by <term>] : <subpat> 184 -
) change e
0 change g filespec to a filespec 262 \i‘
o channel Y
. an open channel 247 %
- the OS channel 247 4
the standard input channel 247)
7 the standard output channel 247 N
’ the TTY channel 247 I
2 channels 241 e
W closing 241 7
opening 241 Y
operations on 246 .
0S channel 243 R
reading from 244 e
sending to 244 e
standard I/0 channels 242 S
TTY channels 242 "
character classes 18
ﬁ' character codes }}
- generation of 191 ot
- recognition of (see codes) 189 o
< characters Y
2 character{s] [[not] in <term>] 186 e
charcode K
‘ charcode <term> 191 .
5 choose t:f
o choose situation: [selector(;]]* [default: <action block>[;]] 97 oy
X class elements 201 o
9 potential pitfalls 203 e
’ class membership 108
;: generating 118 T
- pitfalls 119
7 testing 116
;ﬁ class nouns 116 o
N class relations 109 s
‘ class P
N an element is a class 154 ;:k
o~ the class from a string 175 g
M classes 116 IN
4 compounds vs adjectives 131 ;5{
:: with relative clause 120 :
2 clear .
5 ;xi
oftH] -
A A
3 o
| “\', .".:\

.
»

e N LN L e e e e e e v
- f./:’f.f-J.' "o 7 "n‘.”-/-'--“\"l

Index

clear a database 233

clear database 233
close

close a file 246

close everything 246
closing I/0 channels 241
codes

codes (<integer> [, <integer>]*) 189
comma blocks 91
comma-and 105
comma-or 105
comment characters 19
comments 22
communicating with the operating system 243
comparison operators 111
compile

compile a filespec 261
compiling program files 254
complement of a proposition 110
complementation 108
concatenat ion

the concatenation of a tuple with a tuple 169
concatenation

in patterns 181
conclude

conclude false 81

conclude false! 272

conclude true 81

conclude true! 272
conditional actions 90; 95
conditional blocks 90; 96
conditions 105
confirm

a proposition is confirmed 230; 337
conjunction

in conditions 105

in patterns 181

in relative clauses 121
constant

an element is a labeled constant 164

an element is a unit constant 164
containing

the tuple containing each <description> 169
cont inue

continue 81
contradictory assertions 220
control

control <term> 191

[non}control[s] [[not] in <term>) 186

copy
a copy of an element 156

352

PR,
oL LA -

<4
Y

ST .
L4445
IJJ.FJJ>

-.- -'
i

PN

L4
~

h

‘-'
Ca
\'a

-

s
=2
g

;' .
"%
L4
1h s

Index 353

e
o

5
b

copy a file to a file 249

copy a filespec after a filespec 263
copy a filespec before a filespec 263
copy from a database 234

X

copy to a database 234 f‘tf*-
cosine e
the [arc]cosine of a number [in radians] 166 oheed
CR e
CR[s] 189
credte -'\
create <a/an> <description> 95; 235 -';
cyclic monitor 72 :-:._-:.f
data types (see elements) 134 -:.:}:-
database actions 90; 93; 220 e
database -
a database 232 AYs
an alternate database 233 A
the active database 232 :“-',.}','.
databases 219 o
accessing 223 AN
activating 221 .
active database 221 }:ﬁ:
alternate 221 BLTRN
creating 221 W
global database 221 .::\f_-.
naming 221 Ay

operations on 232

physical 219 N

private database 221 e

virtual database 224
deact ivate

deactivate 232
debugging aids 267

declarations 21 S:'F-‘
decode DRSS
decode a filespec 263 NN
decrement N
decrement a description [by a number] [in a database] 210; 237 N2
delete i
delete 2 file 64; 250 ' ‘:
demo programs 283 \, \.: y
ANIMAL 305 R
FORTUNE 285 AN
POIROT 295 RN
demons 81 -
assert 82 ,',3:_.
deny 82 .\"::‘
generate 82 :}.:',-.::
generator 83 ,.;:..‘\-,.
procedural 82 A

produce 83

Index 354

test 82
types of 82
deny demons 82
deny events 82; 94; 229
deny
deny a proposition (from & database] 213; 235
deny <proposition> [and <proposition>}* 94; 235
denying propositions 228

deparse 2l
deparse a filespec 262 N
describe :?$

Ve

describe an element [in a Jatabase] 61; 234
description variables 125
descriptian

an element is a description 155

A

A

v
k

the description from & string 175 v.‘_ ,
descriptions 115 ﬂ\

anaphoric 127 e

asserting members 130 oy

denying members 130 EN
description variables 125
generating members 129
testing membership 129 .;}:'
descriptive terms 137 A
quantified 141 Ry

simple 138 Canas
digit L
[nenjdigit{s] [[not] in <term>] 186 U,
digits 19 s
disable e
disable g filespec 264 F'\::
disabling program files 254 NN
disambiguation 38 -
disjunction N
in conditions 105 A
in patterns 182 RO
in relative clauses 121 t};:
display PN

display an element 61; 248
division operator (/) 164

do

do nothing 93
down

down! 272
dribble

dribble to a file 61; 250
stop dribbling 250
dskin
dskin a rfile 64; 250
dump
dump (4 database] as a file 233

B R N N S S B P S A U .
I'I.'J“\'ll‘:'f P AT A e e TR A

L] " .

PR PRI RN PR IN) Y VWOV I U ORI R A R R T AT AT LT NS a ‘6 85 2%k 2'F 2'8 2" 2'D 2% a'k ath a%® a'4 A'h %'

index 355

each of

each of <term> [, <term>]* [,] and <term> 147
edit

edit 2 filespec 264

edit [(]| ruleset | <integer> |)]! 271
editing program files 254; 256
EDITOR (unix shell variable) 49; 264
either

either <term> [, <term>}* [,} oF <term> 146
element type

the element type of an element 155
element

the element from a string 174
elements 149

as terms 134

class elements 201

equivalence vs. equality 151

evaluation names 151

filesegments 199

intentional 149

intentional descriptions 207

intentional procedures 217

intentional propositions 211

labeled constants 163

names 159

numbers 161

operations on 153

patterns 177

simple 149

simple numbers 161

strings 171

tuples 167

types of 149; 155

unit constants 162
embedded control structures 305
empty

a tuple is empty 167
enable

enable & filespec 261
enabling program files 254
end statement 73

end
end 190
end. 73
entering LISP (see 7Zisp) 64
EOL
EOL([s] 190
equal

an element is equal to sn element 155
<term> is [not] equal to <term> 111; 151
equivalence vs. equality 151

Lo ¥ SN]
LS
54 %SYY

2

Yy '-.“b' 5 ‘:"-'b
RN e}
P

"-
;‘.

&
iy

‘

AR ARRh
e N AR
WK

Vo
"‘-'.l
AN

AP

S

Tt e
@ d
v
e
P
L)
»

..
.
‘l’l
L]

v e
LA

v e
YAt g

KA
AR TRARASY
e .:'f'l-".'.

‘-*{ﬁf »©
SN

o,
o

el
'UV
l~l-.

*y N 4 '-. ‘e

€« v

2

wlrN B
eI A
K : [4

.‘:I
-
1 3

LA A
/,'..!4’
