
iD-A183 419 THE FORUIN PAPER(U) VE UNIV NEW HAVEN CT DEPT OF
COMPUTER SCIENCE T DEAN ET AL. JUL 87 VALEU/CSD/RR-55
NU4-83-K-281

UNCLASSIFIED FG 2i

monsoMEmommmm

mmmmmmmmm
lollllllllll

llllllll
mhEhhhhh

"A

11111~ L I2 2.5

IIWI 1.8

N ' 1.25'.4 III u -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDSI963-A

'mm.

00

DTIC
, SI34 ELECTED

os- U

THE FORBIN PAPER

Thomas Dean, R. James Firby and David Miller

YALEU/CSD/RR #550 0

July 1987

4.

e=DITRIUT~qN STATEMENT A
LWowod b* pubhi *eas%6

YALE UNIVERSITY,
DEPARTMENT OF COMPUTER SCIENCE

F ''IIv2

DTIC
IELECTE

THE FORBIN PAPER

Thomas Dean, R. James Firby and David Miller

YALEU/CSD/RR #550

July 1987

This work was supported in part by Office of Naval Reasearch grants

N00014-83-K-0281 and N00014-85-K-0301.

f3proved foz pulic relJ,,"ul
Distribution Unlmted_ '

L)

S&IURITY CLASSIFICATION Of THIS PAGE (Whom. Doe En"(trd) READ____ INSTRUCTIONS_____

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. EPOT fumep F. GOVT ACCE9SUN RE nciptaENTS CATALOG NUMUER

.TITL.1endwM10 L. TVP4 OF REPORT A PERIOD COVERED

The Forbin Paper Research Report
6. PERVORMINO 040. REPORT NUNSER

T. AUTOR~o)S. coNTR1ACT ON GIIAXT NGuatie.Rs

Thomas Dean, R. James Firby, David Miller 100014-83-K-0281
N00014-85-K-U301

S. PERFORMING ORGANIZATION NAME AND ADDRESS 1.PROGRAM ELEMENT. PROJECT. TASK
Yale University - Dept. of computer Science ARA a 1O"K UNIT ZNN

51 Prospect Street
Neow Haven, CT 06520

I$. CONTROLLING OFFICE NMEN AND ADDRESS It. REPORT DATE

Advanced Research Projects Agency Jl,18

1400 Wilson Blvd. " UORO AE

.221-li72
WAW MONIIN ARNCY A a ADOREKSSeif difeent hom Cntroli *fit..) Is. SECURITY CLASS. (01 at@ etp.. q ~

Off ice clf Naval Research unclassified
Information Systems Program ______________

Arlington, VA 22217 I. EI SIIAINOWOAN

1S. DISTRIOUTION STATEMENT (of chft Report)

Approved for public release: distribution unlimited

17. DISTRI81UTIOW STATEMENT (o1f e.&eect entered In 8dec1 30. It dferent. *o4m XWuei s

IS. SUPPLEMENTARY NOTES

19. KEY 0004O1 (Com an *oeree ed-o It 00.ee..up mid $416"ifp br 6106k 0401160f)

Task Networks
Scheduling
Temporal Reasoning
Hierarchical Planning

10. ASRACT (Coal#~*~ on rover" oldo if neceery oxidofr hr Woo 011010600be)

Planning is the process of formulating sequences of actions which, if carried ou'

can be expected to bring about certain situations. Search in planning involves s'

ulatng arios squeces of actions to see whether or not they will bring abol

desired situation. Since the space of possible sequences of actions is quite ''5

comparison with the set of sequences that actually bring about the desire,.sf

DD 14737 go-d ,a-Ior I No siVossu

SECUIT CLASSIFICATION OF TMIII PAGE (femu Does Enered) .J

ECtIMITy CLAUIICAIIOIW OP ams nA flllm D .Da.te q

tion, it is important to carefully guide the search. At each point in the planning

process, the planner should have before it a representation that describes the plan- N

ner's intentions and their potential consequences to help in deciding how to refine
those intentions. This is the essence of what has been called hierarchical planning.
The result of each decision constitutes a commitment on the part of the planner,
and as commitments are made during planning they form the basis for subsequent
decisions. The perfect planner would never have to retract or reconsider its previous
commitments. But then the perfect planner wouldn't really have to plan; it would
simply know, instinctively as it were, what to do next. In most situations, it is
impossible to guarantee that a decision, once made, is immune to retraction. In
the sort of routine planning situations that we are concerned with, retracting pre-
vious commitments, or backtracking as it is commonly referred to, while it can't be

avoided altogether, can be carefully controlled. Backtracking, rather broadly con-
strued as "trying another alternative", is essentially synonymous with search, and, j,.%

as such, it is unavoidable. One can, however, direct the decision making process
so that, having performed a certain amount of search (significantly less than that
requirt.d for the entire problem), one can reliab ly commit to the consequences of a
particular decision without fear of later retraction. This paper describes a planning .%

architecture that supports a form of hierarchical planning well suited to applications I.P..

involving deadlines, travel time, and resource considerations.

I''. l

_.4

Accesiof ___-_-0. .m
NTISCR&

()TIC TAii

77A

101- 2LF-Old. 66g1

SCURNITV CLA5SSPIICa&IOV OF THIS PAG MrWI. Cogs f0 t l..E .

, 6' % ..

OFFICIAL DISTRIBUTION LIST

Defense Documentation Center 12 copies
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research 2 copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Dr. Judith Daly 3 copies
Advanced Research Projects Agency
Cybernetics Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209

Office of Naval Research 1 copy
Branch Office - Boston
495 Sumner Street
Boston, Massachusetts 02210

Office of Naval Research 1 copy
Branch Office - Chicago
536 South Clark Street
Chicago, Illinois 60615

*Office of Naval Research I copy
Branch Office - Pasadena
1030 East Green Street
Pasadena, California 91106

Mr. Steven Wong I copy
New York Area Office
715 Broadway - 5th Floor
New York, New York 10003

Naval Research Laboratory 6 copies
Technical Information Division
Code 2627
Washington, D.C. 20375

Dr. A.L. Slafkosky 1 copy
Commandant of the Marine Corps
Code RD-l
Washington, D.C. 20380

Office of Naval Research 1 copy
Code 455
Arlington, Virginia 22217

- - -- - - - - - - - - % % !'

Office of Naval Research 1copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E.H. Gleissner 1 copy
Naval Ship Research and Development
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper, USNR I copy
Naval Data Automation Comumand, Code OOH
Washington Navy Yard
Washington, D.C. 20374

Dr. Robert Engelmore 2 copies
Advanced Research Project Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Professor Omar Wing 1 copy
Columbia University in the City of New York
Department of Electrical Engineering and
Computer Science
New York, New York 10027

Office of Naval Research 1 copy
Assistant Chief for Technology
Code 200
Arlington, Virginia 22217

Computer Systems Management, Inc. 5 copies
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

Ms. Robin Dillard 1 copy
Naval Ocean Systems Center
C2 Information Processing Branch (Code 8242)
271 Catalina Boulevard
San Diego, California 92152

Dr. William Woods I copy
IRN
50 Moulton Street
Cambridge, MA U2138

Professor Van Dam 1 copy
Dept. of Computer Science
Brown University
Providence, RI 02912

Professor Eugene Charni ak I copy

Dept. of Computer Science
Drown University
Providence. RI 02912

Professor Robert Wilensky 1 copy

Univ. of California
Elec. Engr. and Computer Science
Berkeley, CA 94707

Professor Allen Newell 1 copy
Dept. of Computer Science
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Professor David Waltz I copy

Univ. of Ill at Urbana-Champaign
Coordinated Science Lab
Urbana, IL 61801

Professor Patrick Winston 1 copy

MIT
545 Technology Square
Cambridge, MA 02139

Professor Marvin Minsky 1 copy

MIT
545 Technology Square
Cambridge, MA 02139

Professor Negroponte I copy

MIT
545 Technology Square
Cambridge, MA 02139

Professor Jerome Feldman 1 copy

Univ. of Rochester
Dept. of Computer Science
Rochester, MY 14627

Dr. Nils Nilsson I copy

Stanford Research Institute
Menlo Park, CA 94025

* . , 1 -ell

The Forbin Paper

Thomas Dean
Brown University

P.O. Box 1910
Providence, RI 02912

R. James Firby
Yale University

P.O. Box 2158 Yale Station
New Haven, CT 06520

David Miller
Virginia Polytechnic Institute

Blacksburg, VA 24061 L

YALEU/CSD/RR #550

July 1987

;-

Much of the work described in this paper was carried out while all three of the
authors were together at Yale University. The order of names is alphabetical and
has no other significance.

A

*.1.'

Abstract

Planning is the process of formulating sequences of actions which, if carried out,
can be expected to bring about certain situations. Search in planning involves sim-

ulating various sequences of actions to see whether or not they will bring about the
desired situation. Since the space of possible sequences of actions is quite large in
comparison with the set of sequences that actually bring about the desired situa-
tion, it is important to carefully guide the search. At each point in the planning
process, the planner should have before it a representation that describes the plan-
ner's intentions and their potential consequences to help in deciding how to refine
those intentions. This is the essence of what has been called hierarchical planning.
The result of each decision constitutes a commitment on the part of the planner,
and as commitments are made during planning they form the basis for subsequent
decisions.-Whe perfect planner would never have to retract or reconsider its previous

commitments.-_8t then the perfect planner wouldn't really have to plan; it would
simply know, instinctively as it were, what to do nex)In most situations, it is
impossible to guarantee that a decision, once made, is immune to retraction. In
the sort of routine planning situations that we are concerned with, retracting pre-
vious commitments, or backtracking as it is commonly referred to, while it can't be
avoided altogether, can be carefully controlled.) Backtracking, rather broadly con-

strued as 'trying another alternative"', is essentially synonymous with search, and, ,-.
as such, it is unavoidable?: One can, howeverv direct the decision making process
so that, having performed a certain amount of search (significantly less than that
required for the entire problem), one can reliably commit to the consequences of a
particular decision without fear of later retraction. This paper describes a planning
architecture that supports a form of hierarchical planning well suited to applications
involving deadlines, travel time, and resource considerations.

.J
"I

Acknowledgements

This paper was a long time in the writing and would not have been possible

at all without the patience and support of Drew McDermott. The clarity of the

paper, such as it is, also owes much to long discussions with Yoav Shoham and

Steve Hanks. We would like to thank these three people and the many others whom
we have harrased over the last two years.

This report describes work done by all three authors at Yale University supported

in part by the Advanced Research and Projects Agency of the Department of Defense

under Office of Naval Research contract N00014-83-K-0281. Subsequent discussion

and writing was continued after two authors moved on and was further supported

in part by DARPA Office of Naval Research contract N00014-85-K-0301 at Yale

University, NSWC contract N60921-83-G-A165 at Virginia Polytechnic and NSF

grant IRI-8612644 at Brown University. In addition, Thomas Dean was supported

at Brown University through an IBM Faculty Development Award and Jim Firby

was supported at Yale University through a Canadian NSERC 1967 Science and

Engineering Scholarship.

S

w --

~ '~ ~ ~'

Contents

1 Introduction 1

1.1 Planning as Search 1

1.2 Knowledge Required for Planning. 2

1.3 eciion aki g

1.3 eciion akig.................................
1.4 Relation to Previous Work 3

1.5 About This Paper 4

1.5.1 FORBIN: The Program 4

1.5.2 FORBIN: The Paper 6

2 Planning as Search in the FORBIN System 7

2.1 Planning Search Primitives 7

2.2 Search Strategies. 8

2.3 Summary 12X

3 An Overview of the Planner and its Algorithm 15

3.1 The Causal Theory. 15

3.2 The Temporal Database. 16

3.3 The Task Expander. 17

3.4 The Basic FORBIN Algorithm. 18

3.5 The Basic FORBIN Architecture 20

3.6 Summary 21

4 The FORBIN Plan Language: Causal Theory 23

4.1 Specifying the Causal Theory. 24

4.2 World Physics 25

4.2.1 Absolute Fact Types 25

4.2.2 Relative Fact Types. 28

1 -1 -k k

4.3 Task Descriptors. 31

4.3.1 Task Specifier. 32

4.3.2 Expected Duration 32

4.3.3 Expected Facts 33

4.3.4 Expected States 33

4.3.5 An Example 34

4.4 Summary 35

5 The FORBIN Plan Language: Expansion Library 37

5.1 The Expansion Method 37

5.1.1 Task Type 38

5.1.2 Utility. 39

5.1.3 Assumptions 39

5.1.4 Subtasks. 40

5.2 An Example Method 42

6 The FORBIN Planning Algorithm 45

6.1 Introducing a New Task into the Task Network 45

6.2 Selecting a Task to Expand. 47

6.3 Queries and Projections of Possible Expansions 47

6.4 Comparing Possible Expansions. 49

6.5 Summary of FORBIN Algorithm and Solution 52

7 Contributions 55

7.1 Extending the State of the Art in Hierarchical Planning. 55

7.2 Directions for Research in Planning. 57

7.3 Where Do We Go From Here? .. . 58

7.4 Final Word. 59

A The FORBIN Factory Domain 63

B The FORBIN Factory Task Expansion Library 65

C The FORBIN Factory Causal Theory 69

4'.

iii

List of Figures

1 Basic algorithm for task expansion 9

2 Simple task networks 11

3 Basic architecture for hierarhical planning 12

4 FORBIN algorithm for task expansion 19

5 FORBIN architecture 20

6 Examples of State Declarations 30

7 The Basic Form of a Task Descriptor 31

8 The Task Descriptor for a Lathe Setup Task 34

9 The Basic Form of a Task Expansion Method 38

10 The Subtasks for the INSTALL-1 Method 41

11 The Subtasks for the REMOVE-BIT Method 42

12 The Methods for MAKE 44

13 The Initial Task Network for Constructing a Widget and Gizmo 46

14 The Task Network After One Round of Expansion 48

15 The Further Expansion of the MAKE Widget Task 49

16 The Further Expansion of the MAKE Gizmo Task 50

17 Choosing the INSTALL-I METHOD 52

18 Layout of the Factory 64

iv

JIMNIURN T 4~u

List of Tables

1 FORBIN's Solution to the Example Problem. 54

2 Travel Times in the Factory 64

I Introduction

Programming robots and automatic machines to perform complex tasks is a difficult
and tedious operation. In a domain of any complexity, it would be difficult if not
impossible to construct a set of plans to cover every possible contingency. One way
around this problem is to program the robot so that when assigned a new task it

can construct its own detailed plan to suit the particular circumstances.

There has been a great deal of work done by AI researchers in the field of

automatic planning. Unfortunately the word "planning" often means different things

to different people. Since this paper discusses many of the issues that arise when

constructing planners and in fact describes an existing planner in some detail, it is

important to make clear just what we mean by planning. Planning is the process

of formulating sequences of actions which, if carried out, can be predicted to bring

about certain desired situations. An automatic planner is given the description of a

task specifying certain facts that should be made true and is expected to generate

from this specification, and the planner's general knowledge of a particular domain,
a sequence of actions that will serve to make those facts true. In most planning

situations the problem is not merely one of finding a sequence of actions that works,

but finding a sequence that works well, where "well" usually means something like
"can be completed in a short amount of time" or "with a small expenditure of

resources."

In the rest of this section, we will consider what this process of formulating

sequences of actions actually entails. In doing so, we will introduce a number of

themes that will run throughout the paper.

1.1 Planning as Search

Planning is generally viewed as a process of incremental construction. At any given

point in the process, the planner has before it a partially constructed plan that it
is working on. A partially constructed plan corresponds to a set of commitments to

act in various ways, where the actions or the order in which they are to be executed

may not be completely specified. For instance in constructing a plan to manufacture
a particular part, a planner may commit to using a specific manufacturing process

without committing to a specific machine with which to carry out the process.

Planning proceeds as a series of decisions concerning extensions to the current set

I

'.' ' ' ' - i ' - 1"l- "i " ' = " " " '-" " ' " -

of commitments. The new commitments serve to refine (or provide more detail to)

the partially constructed plan. The decisions required of a planner define a search
space in which each node corresponds to a partially constructed plan and each arc

corresponds to an additional commitment refining a partially constructed plan.

In order to guide search, the planner has to have some means of assessing its

progress. Such guidance is usually provided by some sort of mechanism for vali-

dating or evaluating partially constructed plans. Validation involves predicting the

consequences of the actions committed to thus far and then determining that these

actions are likely to bring about the desired state of affairs. There is no way to

completely validate a partially constructed plan without actually planning out all

the details but, possessed of appropriate knowledge, a planner can reason about

actions and their effects at many different levels of detail. Given such knowledge,

validation corresponds to predicting that the partially constructed plan brings about

the desired state of affairs given the current level of detail.

1.2 Knowledge Required for Planning

The amount of knowledge required for planning in any nontrivial domain is immense.
In order to evaluate its progress in constructing a plan, a planner has to be able to

reason about the consequences of events outside its control as well as the effects of

its own actions. In order to efficiently guide the planning process, a planner must

possess knowledge about how to proceed in constructing a plan (i.e., how to refine a

partially constructed plan). In addition to this largely static knowledge, the planner

has to keep track of its commitments (i.e., the partially constructed plan) and its

predictions concerning its own actions and the consequences of events outside its

control.

We can divide the planner's static knowledge into two components: a database

of rules that establish the cause-and-effect relations of a particular domain and a

database of rules that establish the conditions for using certain methods for refin-

ing partially constructed plans. The planner's changing knowledge concerning its

partially constructed plan and the observed and predicted events corresponding to

the context in which this plan is to be executed is captured in a temporal database.

The planner uses this temporal database and its rules for refining partially con-

structed plans to generate additional commitments. These new commitments are

2

then used to update the temporal database to reflect the consequences predicted by

the system's causal knowledge.

1.3 Decision Making

The process of refining a partially constructed plan is usually referred to as hierar-

chical planning. The main idea behind hierarchical planning is that the refinement

process can be staged in such a way that decisions made early in planning are inde-

pendent of decisions made later. It has traditionally been assumed that refinement

decisions can be made by referring only to the current partially constructed plan.

In particular, it is generally assumed that if the actions in the partially constructed
plan are only partially ordered, it is not necessary to consider any of the possible

orders consistent with this partial order. Unfortunately, this assumption is not war-

ranted in most domains. If we are considering travel time or renewable resources,

the order in which actions are carried out is critical. The planner described in this

paper makes decisions based upon the predictions generated by two programs. The

first program is responsible for keeping track of the big picture; it operates upon the

entire contents of the temporal database and reasons directly about partial orders
without considering restrictions on the current partial order. The second program

is generally assumed to operate upon a subset of the facts stored in the temporal
database; it makes predictions based upon considering a subset of all total orders

consistent with the current partially constructed plan. The first program is incom-

plete and often imprecise, but it attempts to provide a global perspective. The

second program, by concentrating upon a smaller data set, is able to be very pre-

cise, but it gains this precision at the expense of considering a much smaller set of
possibilities. Exactly how these two programs are used in deciding what refinements

to make to a partially constructed plan is central to this paper.

1.4 Relation to Previous Work

A large amount of work has been done on the problem of building a general purpose

hierarchical planner [3] [4] [14] [15] [16] and two of the early, influential systems are

NOAH [14] and NON LIN [151. These systems use a partially ordered network of tasks

to represent the plan at each level of expansion and they employ a strategy called

Least commitment that delays adding new ordering constraints as long as possible.

3

The notions of a partial order and least commitment have become central to all

planners because they decrease the need to backtrack and undo previous expansion

decisions. However, neither NOAH nor NONLIN represent time or continuous change

(like robot travel) in an adequate manner and they are thus incapable of solving
planning problems where these features are crucial.

The DEVISER system [161 extends hierarchical planning to include time and

continuous change. DEVISER, however, does not exploit the temporal information it

represents to guide the planning process as much as it could. Early expansion and

ordering choices are made arbitrarily and only later, when the plan is expanded to

great detail, is temporal information used to rule out certaln planning possibilities.
To tackle a wide class of problems in this way, DEVISER must rely on backtracking

to fix early mistaken choices. Another planning system that uses time, called ISIS

191, is designed to efficiently schedule the distribution and progress of tasks in a large
machine shop. Unfortunately, the ISIS system is extremely specialized to the job-
shop scheduling domain and cannot be considered a solution to the general class of

planning problems having to do with resources, travel time, and continuous change.

This short subsection is only meant to establish a few connections that should

be familiar to many readers. We will have more to say about competing theories in
the course of expounding upon our own.

1.5 About This Paper

This paper describes the FORBIN planner: a system for generating plans in domains
involving mobile robots, deadlines, and limited resources. We will describe the

FORBIN planner in some detail. We will also describe what we learned in building
FORBIN system. It is the latter that we believe to be more important, but obviously if
the reader is to benefit from what we learned, we will have to provide an appropriate
context. Before we begin describing our work, there are a few things that we would

like the reader to be aware of.

1.5.1 FORBIN: The Program

It is no accident that the name FORBIN (as in "The Forbin Project") is intimately

connected with a fictional computer called "The Colossus" brought to life in a movie

of the same name. FORBIN is quite a large program as planning systems go (on the

4

order of 30K lines of LISP code). Unlike its namesake however, FORBIN is not likely

to pose any threat to the safety of the world; not, at least, in the foreseeable future.

FORBIN is interminably slow. The program is slow because it tries to do too much

too well. The FORBIN planner was conceived with two seemingly innocuous design

criteria in mind. We wanted to build a planner for a nontrivial domain that would

(i) find a plan where one exists, and (ii) assuming that a plan does exist, find a

good plan. The main problem is that FORBIN attempts to solve (or at least approx-

imately solve) problems that are inherently combinatoric (i.e., problems that lack

the necessary structure to enable them to be efficiently solved). In order to solve

the problems it was designed for, FORBIN had to sacrifice performance (speed) or

completeness. Each time one of us suggested introducing some feature that con-

tributed to FORBIN being incomplete, the rest of us would hesitate, realizing that
if we allowed this feature there would be no way of characterizing the conditions

under which FORBIN would succeed. In the end, we reluctantly introduced sev-

eral sources of incompleteness into the FORBIN algorithms. At the same time, we

developed a complicated architecture that attempted to ensure that this incom-

pleteness was minimized. Completeness and performance were continually fighting 4

for preeminence, and performance was more often than not the loser. We tried

desperately to shore up our foundering colossus by adding all sorts of heuristics.

It is our contention, however, that, in the end, the domain-dependent knowledge

necessary for efficient planning will overshadow the so-called domain-independent

knowledge about planning as well as the sort of architectural considerations that

have dominated the planning literature over the last decade.

To be fair, FORBIN was a working program, and it was used to conduct a small

number of valuable experiments. All of the primary components of FORBIN have
been tested and run in other planning systems, and all of the components ran

together in the FORBIN architecture. FORBIN would quite likely have been able

to handle reasonably sized plans had its developers not been forced to do their

development on an underconfigured VAX-750. As it was, FORBIN was actually

run on very simple tasks or used to partially construct plans for more complex

tasks. Perhaps if we had had access to larger machines, we might have been able to

fool ourselves that FORBIN was a viable approach to planning, but eventually the

combinatorial explosion would have caught up with our experimentation. Believing

ourselves to be as competent as other (seemingly) more successful researchers, we

suspect that many planning systems suffer from the same ills that crippled FORBIN.

5

but that the researchers responsible for building those systems simply have not

considered problems of the complexity th~it FORBIN attempts. The rest of this paper

argues that if traditional planning in nontrivial domains has a chance of succeeding,

then the design of FORBIN should serve as a model for future planners. In presenting

our argument, we will also indicate specific places in our algorithm where detailed

knowledge of the domain is a necessary prerequisite to reasonable performance.

1.5.2 FORBIN: The Paper

There are a number of things that might be learned from reading this paper. Sec-

tions 1 and 2 provide a self-contained overview of a particular paradigm of planning

that has engaged a fair number of researchers over the last two decades. These sec-

tions might serve as an introduction to the subject for someone without a great deal

of familiarity with planning issues. Sections 2, 3, and 7 provide a fairly high-level

description of our particular contribution to this paradigm: what we did and why

we think it is important. The basic ideas are set out in Sections 2 and 3; Section 7
summarizes these ideas and places them in perspective. Sections 4, 5, and 6 pro-
vide the details necessary to understand some of the more esoteric contributions

of FORDIN, such as the representational contributions concerning reasoning about
plans, time, and causality. Section 4 is concerned with the details of causal theories,

Section 5 describes the language for specifying plans, and Section 6 provides a de-

tailed example illustrating how FORBIN actually works. Throughout this paper we

will use -xamples drawn from an automated factory domain. Most of the examples

do not require detailed knowledge of the domain. Appendix A provides the details

for those interested.

6

2 Planning as Search in the FORBIN System

The central problem in planning research is to manage the amount of search done

in building a reasonable plan. An automatic planning program spends the majority

of its time searching through the space of all plans that it could generate in order to

find a good plan. The FORBIN planne:r is no different. For a typical task assigned to

FORBIN, there will be a large number of different ways to carry it out. FORBIN's job

is to find one plan that will carry it out well. This section of the paper describes the
basic design decisions involved in choosing the search methods used by the FORBIN

program.

2.1 Planning Search Primnitives

The fundamental primitive, or operator, in the FORBIN planning search space is the

simple action. Every planner abstracts differently from the details of its specific

domain, and, hence, what is considered simple will depend on a particular planner.

When you ask for a plan to build a house, you are probably not interested in

the details of hammering nails, but neither are you likely to be satisfied with an

exhortation to consult a contractor or buy a kit and assemble it. An action is

simple when breaking it down into even simpler actions would reveal no additional

useful information given the target level of abstraction of the planner. Examples of

simple actions in the FORBIN domain are "Pick up the widget" and "Push the lathe

start button".

A task corresponds to a commitment on the part of the planner to carry out

a certain action. Typically, the action specified in a task is not simple; it is said

to be problematic. Most planners deal with tasks that involve making certain facts

true of the world. For example, if the desired fact is that block A is on block B

(i.e., (ON A B)), then the associated task is (ACHIEVE (ON A B)). Carrying out

such a task corresponds to executing primitive actions that bring about a state of
the world in which the desired fact is true. Using this notion of task, planning is %,

defined as the search for a sequence of simple actions that will carry out all of the
tasks that the planner has been assigned. In all planning systems, this search begins

with the planner knowing in detail the state that the world will be in when the first

step in the plan is executed. Each simple action is represented as an operator that

will transform the world from one state to another when actually executed. Thus.

7

finding a plan to carry out a set of tasks is equivalent to searching for a set of
operators that will transform the initial world state into a new state in which all
of the facts associated with the planner's tasks are true. To perform this sort of
search, the planner has to be able to determine what the state of the world is just
prior to applying a given operator, and it has to know exactly how each operator
changes that state. The more things that can be represented in the world state
and the more ways that operators can change that state, the wider the class of
problems that the planner can solve. However, as the complexity of the planner's
state representation increases, so does the complexity of the search it must perform.
As planning domains become more realistic, the search strategies required to deal
with them are shaped more and more for effective management of complexity than
for simply getting the right answer. Getting an answer is not good enough if it takes
too long to compute.

2.2 Search Strategies

The simplest search strategies are based on the idea of chaining operators together
one after another until an appropriate world state is produced. Forward chaining
starts with the initial world state and adds operators to move the state towards a
final state where all tasks have been accomplished. Backward chaining starts with
the final state and adds operators in reverse order until the initial world state is
produced. One of the earliest problem solvers, GPS [71, uses a search scheme com-
bining forward and backward chaining and many subsequent planners (e.g., STRIPS

[8]) have followed that lead. In chaining search schemes, each simple action is repre-
sented as an operator annotated with preconditions and effects. The preconditions
describe states of the world where executing the simple action is appropriate and
the effects describe changes to that state caused by its execution. The plan is grown
forward by adding an operator with satisfied preconditions and computing the fol-
lowing state from its effects, or backward by adding an operator with satisfied effects
and computing the previous state from its preconditions. The state of the search is
captured completely in the sequence of operators applied thus far and a description
of the state of the world following or preceding that sequence of operators (depend-
ing on whether the search method involves forward or backward chaining). When
more than one operator can be added, some form of utility function is required to
guess which one will make a better final plan. If a state is ever reached where no

8

operator can be added, the planner backtracks and selects the next best operator

at an earlier choice.

This search strategy is attractive in its simplicity but its performance can be

extremely poor. In the case where the utility function selects the best choice at

every step, the search algorithm will only have to consider a single plan, but, if the

utility function is poor, the planner may have to consider every possible combination

of operators before finding a plan that works. Indeed, there may be sequences of

operators that are infinitely long and the search would never terminate. In realistic

domains where plans at the level of simple actions are usually quite long and where

many actions are applicable in any state, one requires an extremely good utility

function if the search is to remain tractable. Research in planning has so far failed

to turn up a general theory for building utility functions and indications are that

any good function will be highly dependent on the types of tasks the planner is

designed to solve.

F Generate subtasks

Figure 1: Basic algorithm for task expansion

To build a general purpose planning system, reliance on task dependent utility

functions must be reduced. One way to do this is to alter the basic search strategy

from simple chaining to hierarchical expansion. In a hierarchical expansion planner,

the operators for simple actions are grouped into methods for performing more

general actions. These general actions are in turn represented by operators that can

91"V

be used to build even more general methods. The result is that the planner ends

up with a library of hierarchically defined abstract operators at its disposal. Each

abstract operator is associated with one or more methods, and the methods are used

to expand an abstract operator into a set of less abstract operators. Expansion is

equivalent to generating new tasks (or subtasks), since, by committing to a particular

method, the planner commits to the abstract operators (think of them in terms

of abstract actions) stipulated by the method. When assigned a set of tasks to

accomplish, the planner looks up the abstract operator for each task and chooses
an appropriate method for carrying it out. Eventually all of the abstract operators

will be expanded into simple actions and the plan will be complete. The basic

cycle of activity is depicted in Figure 1. This method of hierarchical expansion can

result in better performance than methods relying on simple chaining because the
set of possible plans for a given problem is restricted to those implicitly defined by
expansion methods in the library. To achieve reasonable performance, hierarchical

planning trades a task dependent utility function for task dependent expansion

methods in its library. The hope is that such methods will be more widely applicable

and easier to develop than the corresponding utility functions.

In the above way of thinking about planning, the initial set of tasks corresponds
to a partially constructed plan, albeit a plan at a fairly high level of abstraction.

Each task is associated with an interval of time during which the task is to be

carried out and generally there are constraints on tbe order and completion time of
tasks. At all times the planner has a partially constructed plan that it is working on.
This partially constructed plan is represented in what is called a task network [101.
Figure 2.a illustrates a simple task network corresponding to two initially supplied
tasks. Expansion results in adding subtask and precedence links to the network.

Figure 2.b shows the result of expanding each of the two tasks in Figure 2.a. The
task network encodes the basic commitments of the planner. As we will see, there

is a great deal more that has to be represented to support hierarchical planning.

In particular, the consequences of the planner's proposed actions as well as the

consequences of events outside the planner's control all have to be taken into account
in evaluating a partially constructed plan.

Figure 3 illustrates the basic architecture of planners that perform hierarchical

expansion. Arrows indicate the flow of information between modules, circles repre-

sent static knowledge sources, and the box labeled "temporal database" indicates the

dynamic component of the planner's knowledge. The task expander implements the

101

Network A

MAKE Widget I
time=O

MAKE Gizmo

Network B

MAKE Widget time=35

MAKE-T I l MAKE-T2 Wlr

Figure 2: Simple task networks

algorithm sketched in Figure 1, and the query processor assists in making choices
by answering questions concerning the contents of the temporal database. Plan- A

ners can be distinguished by the expressivity of the languages used for representing
plans and causal rules and by the techniques used for reasoning about such plans
and causal rules. The temporal database contains a set of cached deductions con-
cerning the state of the partially constructed plan and (some of) the consequences
of the proposed actions. In the NASL planner [10], the temporal database is no more
than the task network itself. In other planners, the temporal database may consist
of a task network annotated with information concerning the truth of propositions
corresponding to the effects of actions (e.g., the table of multiple effects of NOAH
[14]). ,'

The main difficulty with hierarchical planning is sorting out unexpected inter-
actions between the expansion methods for different operators. The operators and
the order of their application within a single method will have been chosen so that
they do not interfere with each other and success will be assured at execution time.

However, when a plan is built for several initially independent high-level tasks.

11
N

Figure MA 3: aicarhture oirriclpann

opertor Tfr m pdifrent expuson rmy beoeitrpreC ausentr
actonstht cmprmie te pe ocessuredsce Tortcy addalwt

thatprseFveut e orl stas rere y r operar alaycoegfe plans

wtineesdoperators crmtedffrnxansin ey prodc Whrsenru se fond thue plnner-
cins actacoadpcooise ah difrentosl msethd foress an earlier exann dalthg
mohntrci the olsater houuteptao the plniceseted cstat of the plin

sarhth chierrialontureso theqplanres that al oepanson choicestared made
inthe ontexttaof thtieqholes uture t ome lee oeappil. awin, the hopai that i

wth icntextpwilldgeneralys help the parodero inhon a bgod pland wth pler

backtracking and hence little search.

2.3 Summary

Hierarchical expansion as a search method is a way of drastically pruning the space
of plans that might be considered for a task. Hierarchical expansion using a library

12

of known methods for each type of task ensures that even partial plans considered

during the search will form complete solutions at some level of detail and that such

solutions will be good, relevant candidates. In fact, one might consider the possi-.
bility that given only a single task to perform, hierarchical expansion would lead
to consideration of only a single plan with no real search at all. Real planning

domains however, inevitably allow more than one way for expanding a task and

usually demand interleaving subtasks from separate task expansions to avoid gross

inefficiences. These considerations lead to the need for choosing between alterna-
tive expansion methods and for detecting undesirable interactions between expan-

9, sion methods. To evaluate different expansion options and detect interactions the
FORBIN planner must continually project the expected future at each point in its

plan. Thus, within the FORBIN system, the problem of planning splits into two
major subproblems: building a plan via search through its expansion hierarchy and

monitoring the evolving plan for consistency and efficiency via temporal projection.

13

%.

C
C

ft

S

S

ft

14 5

9

4'

.5

'I

P It P V - -4' - ::-IA ." IA

3 An Overview of the Planner and its Algorithm

Although the discussion in the previous section makes it clear that the FORBIN plan-
ning problem can be broken up into expansion and projection, the real contributions
of the FORBIN system center around exactly how this is done. In the introduction,
we mentioned that the planner's static knowledge can be thought of as residing
in two separate databases: one containing rules concerning cause-and-effect rela-
tions and one containing rules about how to refine partially constructed plans. In
addition, FORBIN makes use of a temporal database to keep track of the plan it is in-
crementally constructing. The temporal database is also used to track other known
events and the consequences of those events and the planner's proposed actions as
predicted by the causal rules. This database is updated via temporal projection
each time the planner commits to additional detail in the plan it is constructing.

In choosing how to refine a partially constructed plan, the planner consults the
database of refinement methods looking for suitable methods. It then uses the cur-
rent state of the temporal database to determine if any of those methods are suitable
in the current circumstances. At this point the planner generally has a small number
of candidate methods for refining its partially constructed plan. To choose between
these methods, the system performs some additional very detailed projections in
an effort to find the best method for refining its plan. The only backtracking that

FORBIN engages in is buried in the routines responsible for performing these detailed
projections. Once it has chosen a refinement method, the method is applied to the
current plan and the temporal database is updated accordingly. If FORBIN ever
finds itself unable to find an appropriate refinement method, it simply stops and
signals failure. Though FORIlN employs very sophisticated routines for tracking the
reasons why it made certain decisions, FORBIN currently has no theory about how
to recover from inappropriate decisions. As we will see, however, FORBIN goes to
great lengths to make a good decision the first time around.

Before we describe the FORBIN algorithm in more detail, we will briefly consider
some of the primary components of the reasoning process.

3.1 The Causal Theory

The causal theory specifies the way the world changes both as a result of planned
actions and as a result of autonomous processes. In particular, the theory contains

15

rules that determine the effects that occur as a result of performing certain actions.

The causal theory does not distinguish between intended effects and those that occur

as side effects of purposefully executed actions. Most effects correspond to simple

facts that are made true as a result of actions being executed or, more generally,

events occurring. But other effects deal with quantities that change continuously

over time: quantities the planner can add to, subtract from, or begin changing by
starting a process that will continue the change on its own. For example, the action
of starting an automatic milling machine has the simple effect of changing its state

from off to on and the more complex effects of using up raw material to make the
part, causing wear on the cutting bit, and at some point in the future causing a

finished part to exist where there was none before. A useful causal theory must

concisely capture the interactions that occur between events and their associated
effects. Turning on a light might cause a solar powered sculpture to begin turning,
but there should be no mention of solar powered sculptures in the causal rules
describing the effects of toggling light switches. Rather, the connection between the
switch and sculpture should be encoded in a set of rules that refer to much more
general physical theories.

3.2 The Temporal Database

The temporal database is used by the planning system to maintain a picture of the
world changing over time in accord with the current causal theory, the planner's

anticipated actions, and known autonomous processes. When planning begins, the
temporal database is given the initial world state and the time and nature of any

events that will take place in the world outside of the planner's control. The database

update routines then apply the rules from the causal theory to obtain a concise

record of the state of the world at all times in the future. As the plan is constructed,
each action the system commits to as part of the plan is added to the database along
with the time it is expected to occur. This time may be with respect to a global time

frame (e.g., between 3:00 and 3:15 PM on Tuesday) or it may be with respect to the

time frame of another event (e.g., after turning on the lathe). In either case, the

database again applies the rules from the causal theory and recomputes the world

state at all times in the future, now including changes anticipated from the new

action. Thus the database constantly maintains an accurate picture of the future

to be expected when the plan under construction is executed.

16

In addition to keeping track of facts that are true in the world, the database

protects the truth of facts that need to remain true for the plan being built to I

remain appropriate. Usually the choice of a particular action to add to the plan will

depend on the situation expected to exist at the time the action is to be executed.
For example, the planner might decide that the best way to get a new widget by 2:00

PM is to make it on the lathe and add such an action to the database. During later

planning however, the planner might decide that to fill an important order, it would
like to use the lathe to make gizmos all day long. Simply adding this additional use
of the lathe to the database would lead to an inconsistent view of the future with the

planner thinking it could do both actions at the same time. To avoid this situation

two things are done. First, when an action is added to the database, facts assumed
true in choosing the action are recorded along with the action. Second, before a new
action is chosen for use in the plan, the system asks the database whether adding it
will cause any previous assumptions to be undone. Inconsistent futures are avoided

by never adding an action to the database that will violate the assumptions of an
action added previously.

3.3 The Task Expander

A planning problem is specified to the planner as a set of abstract actions and

constraints on when these actions should be executed. The abstract actions are
generally referred to as tasks,. Refining a partially constructed plan proceeds by ex-

panding a task into a set of simpler subtasks until only primitive actions requiring

no further refinement remain. We refer collectively to the routines responsible for
performing these expansions as the task expander. The database of refinement meth-

ods consists of alternative ways of expanding various types of tasks into subtasks.

The methods are arranged hierarchically by type where the hierarchical ordering

is in terms of the level of detail of the resulting subtasks. Refinement in FORBIN

usually proceeds through several levels of abstraction culminating in expansions in-
volving only primitive actions. Hierarchical refinement is used so that the temporal

database always contains a view of the whole future at some level of detail. Having

the whole future represented in the database provides the basis for the next level of

expansions and allows FORBIN to take into account important prerequisites of tasks

early in planning.

17

3.4 The Basic FORBIN Algorithm

The basic planning algorithm is easy to understand in terms of the task expander,
the temporal database, and the causal theory. The task expander selects an ab-
stract task from the database and looks up all appropriate refinement strategies
in the expansion library. It then asks the database which expansion strategies are
appropriate. If no strategies will work then the task cannot be expanded and the
planner must fail in its attempt to build a finished plan. If one or more strategies
will work, then the task expander chooses the "best". Using the best strategy found,
the chosen task is expanded, added to the temporal database, and the predictions
recorded in the database are updated in accordance with the causal theory. This cy-
cle of choosing a task to work on, picking the best expansion based on the expected
future and then updating the temporal database continues until either some task
cannot be expanded and failure occurs or all tasks have been reduced to primitive
actions and the plan is complete.

The previous paragraph describes the FORBIN planning algorithm in a fairly su-
perficial manner. In order to explain how FORBIN attempts to avoid backtracking, a
little more detai is required. FORBIN was designed to operate in complex domains
and cope with large numbers of tasks. It was generally assumed that the temporal
database would contain on the order of thousands of entries corresponding to tasks
at various levels in the abstraction hierarchy. These tasks would be partially ordered
and have a multitude of possible consequences. The task of accurately projecting
all of the consequences of these tasks was judged to be impossible'. Instead FORBIN

was designed to rely upon a projection algorithm that was incomplete (at least in
dealing with partially ordered events) but polynomial in the number of tasks in the
temporal database. The FORBIN procedures used in choosing an initial set of ex-
pansion strategies were not guaranteed to be correct, but they were guaranteed to
be fast (for details see 15]). To compensate for these incomplete procedures, FORBIN

employed an additional set of procedures for projecting consequences and reasoning

about partial orders. These procedures were able to score expansion strategies by
actually performing the expansions in a temporary database and then simulating

the resulting partial plans by considering various total orders consistent with the
current partially constructed plan. Scoring was handled using domain-specific util-

'The general problem of projecting the consequences of a partially ordered set of tasks using a
causal theory capable of representing actions whose effects depend upon the context in which they
occur is NP-hard [3].

18

ity functions encoded with the expansion strategies. By actually looking at total
orders, the simulation procedures were potentially able to make very accurate pre-
dictions concerning the potential value of a given expansion. In order to avoid the
possibility of doing an exponential amount of work in performing its evaluations,
the simulation routines employed a strong heuristic component (for details see 112)).
The hope was that we could come up with a theory that would allow us to apply the

simulation routines to a subset of those tasks contained in the temporal database.
Unfortunately, we never developed such a theory and FORBIN was forced to apply
the heuristic task scheduler, as the simulation routines were collectively called. to
the entire set of tasks. This oversight on our part prevented F'ORBIN from solving
any really complicated tasks. FORBIN relied upon the heuristic task scheduler for
performing the detailed reasoning required for handling travel time and continuously
changing quantit~es. It is our opinion that the knowledge necessary for restricting
the application of the heuristic task scheduler would be largely domain specific, as
our attempts to derive a purely domain- independent theory met with little success.

Choose a task

Find suitable methods by using
the results of limited projection

Choosth best method by
performing detailed projections

Expand method and add the
results of limited projection

Figure 4: FORBIN algorithm for task expansion

Ideally, the task expander would begin by consulting the entire temporal database

to determine a small set of possible expansion strategies. The algorithm would then
use the heuristic task scheduler to score the possible strategies by considering a set
of tasks considerably smaller than the entire temporal database. Finally, the task
expander would choose that strategy with the highest score and incorporate it into
the temporal database. The basic cycle of activity is sketched in Figure 4. It is this
method for exploring total orders and scoring expansions using domain-specific util-
ity functions that enables FORBIN to construct 'good" plans and avoid backtracking

in many situations.

3.5 The Basic FORBIN Architecture

Figre shwstharcictre Pofcteso RBI plan eorymlfe nodrt

emphasize w a sktrsigaotFRI.Tetmoa aaaemngri
resonsbleforseetiworak n edcin lmte rjcin cnenn h

stteofte arial cnsrutd la.Thask Han eims thegoih

Exan0 Ts

sketched in Figure 4. The heuristic task scheduler handles the detailed predictions
required for selecting among methods. In addition, FORBIN employs a task queue
manager (not shown in Figure 5) that keeps track of the tasks in the database that
still need further refinement and decides on the best order to make those refinements.

An important consideration when designing the FORBIN planning system was
that planning and execution might occur together. In particular, refinement should
concentrate on those tasks to be executed earliest so that their constituent primitive

actions can be "peeled off the front" of the plan and executed even while tasks later
in the plan are unexpanded. Also, new tasks should be allowed to be introduced by
the user at any time and should be incorporated into the growing and executing plan

with as little disruption as possible. The task queue manager handles both of these
duties in a uniform manner by giving priority for refinement to those tasks whose0

deadlines are approaching and by inserting user added tasks into the queue just like
subtasks spawned through expansion. The FORBIN goal of concurrent planning and

execution has been only partially fulfilled so far, but the need for a system with the
right properties has been a driving force behind its structure.

3.6 Sumnmary -

The description of the FORBIN planner given above partitions the system into two

major subcornponents: the domain knowledge in the causal theory and the expansion
library and the planning algorithm as embodied by the task expander, temporal
database and the task queue manager. The FORBIN plan language is used to describe
only the domain-specific knowledge, or that part of the planning system that can
change from problem to problem. The algorithmic part of the system is basically a
search mechanism with several built in domain- independent heuristics. Since these
heuristics are domain independent, they have been incorporated directly into the
code for various parts of the planner and are not represented explicitly in a language

of their own.

The next two sections of the paper describe the language used to encode tile

domain-specific knowledge of the FORBIN system. The domain knowledge appears

in two places, the causal theory and the task expansion library. Thle causal theory
represents all that is known about the way the world works. The causal theory is
used by the temporal database to figure out what facts will be true in the world at
all times in the future. The expansion library, on the other hand. represents all of

21

W f P - of %N.

the ways that the system knows how to do things. Expansions are used by the task

expander to generate detailed plans for accomplishing the high level abstract goals

given by the user.

22

~ , *~* '%~.*~***...*.*..*. .. - -. ~ V

4 The FORBIN Plan Language: Causal Theory

The FORBIN system gives the calculation of expected states of the world a central
role in plan construction. Each new task added to the plan is designed to have a
particular effect on the world but typically it will have that effect only if the world
is in an appropriate state to begin with. For example, putting down a cup will not
leave it on the kitchen table unless we are, at an absolute minimum, in the kitchen.
To ensure that planned actions achieve their intended effects, the task network must
be arranged so that each task is predicted to begin execution in the correct world
state. The FORBIN planner makes such arrangements in two ways: first, the initial
choice of how to expand a task takes into account the possible futures predicted
from the existing task network, and second, FORBIN continually adds constraints to
the task network in order to guarantee that existing tasks will have their intended
effects. Predicting the possible futures of a task network and checking that it is
compatible with all known constraints is called projection.

S..

What sort of knowledge representation is required to make FORBIN projection
successful? First, and probably most important, is a realistic notion of time. When
the success of a plan depends only upon the relative order of tasks, temporal in-
formation consisting of order alone is sufficient to calculate expected future world
states. However when tasks have completion deadlines and when facets of the world

can vary continuously through time, the duration and starting time for every action
in the plan must be known as well. Two tasks that start at the same time may
generate very different futures according to which takes longer. Proper projection
requires knowledge of the duration of each task in the task network, the starting
point of every change to the world state caused by a task, and the way that each :

change of state propagates forward in time.

The second factor that influences the success of FORBIN projection is the ex-
pressiveness of its state representation or causal theory. In keeping with a realistic%

underlying representation of time, the causal theory must contain enough infcrma-
tion to specify not just the effect each task in the plan has on the world, but also
how those effects evolve through time once the task is complete. In most previ-
ous planning systems, causal theories are composed of rules indexed by action and
specifying a list of assertions to add and a list of assertions to delete in order to
model the action being executed. The world state at any one time is seen as a set

of assertions like (ON A B) or (COLOR X RED). By applying the add and delete lists

23

W -_ W nW7 W W W M W WUW-W rn

from each action in the plan in turn, the expected world state at all times can be de-
termined. Projection rules employing simple add and delete lists are quite powerful
even in complex worlds but they fall short of dealing with actions that have context
dependent effects or actions that begin processes that change continuously on their
own. For example, the action (DEPOSIT $10) might have the effect of increasing
one's bank account by $10. No predetermined assertion can be made that reflects
the new account balance; it must be calculated from its previous value. Similarly,
the action (TURN-ON FAUCET) might start filling the sink with water but no set of
add and delete lists alone can predict when it will be filled. A planner must be
able to represent both the absolute effects handled by add and delete lists and the
relative effects whose changes to the world state depend on context.

4.1 Specifying the Causal Theory

The FORBIN plan language requires that all absolute and relative effect types be
declared before planning begins. These declarations specify every facet of the world
that will be needed for projection and how each facet will evolve through time.
These declarations along with descriptions of how each type of task is expected to
effect the world make up FORBIN's causal theory.

The causal theory comes in two parts: world physics declarations and taskc de-
scriptor8. The world physics contains the system's knowledge about how every facet
of the world should be modeled for projection. For example, FORBIN world physics
states that there are such things as lathes, that they can only be used to make one
thing at a time, that if one is turned off it will stay off unless acted upon explicitly
and so on. The world physics mentions all fact types to be used in projecting the
future, how these facts evolve through time once they become true and how different
facts interact with one another if they become true at the same time.

A task descriptor encodes the way that a task is expected to change the world
when it is executed. Task descriptors are analogous to the add and delete lists of
past planners but extend the idea to include statements about relative facts as well.
For example, the description of a (RUN-LATHE . . .)2 task might specify that a metal

2 In the FORBIN plan language, all tasks, facts and states are referred to irk terms of patterns,. A

pat, ri is a list with the first element representing the task, fact or state type. Remaining elements
in the pattern are arguments that modify the type. Arguments will often appear as variables in
the language but during planning all variables will be instantiated.

24

%

blank will be used up, some volume of shavings will be produced and a new product

will be brought into being. Task descriptors are the means by which knowledge of

the world physics is connected into the task network. All three things, the world

physics, the task descriptors and the task network, are required for projection of the

expected future.

4.2 World Physics

The world physics section of the FORBIN causal theory describes all facets of the

world state that will be modeled. There are two subsections to the world physics:

one to deal with absolute fact types and the other to deal with relative fact types.

Both types of fact are used in task descriptors to define task effects. Absolute fact

types are specified with the exact new state the task puts them into and relative fact

types are specified with the change that the task causes in their value. For example,

the task descriptor for (MOVE-TO WIDGET IN-BOX) might specify that the absolute
fact (LOCATION WIDGET IN-BOX) becomes true while the relative fact representing

the weight of the box will be increased; (BOX-WEIGHT + (WEIGHT-OF WIDGET)). More

generally, when a task descriptor gives the new state of an absolute fact, that state
will not depend on context and will persist until explicitly changed by another task.

Conversely, a task descriptor specifies a change to a relative fact and the new state

of the fact will depend on its value beforehand and once set in motion, that value

may continue the change without further intervention.

The distinction between absolute and relative effect types is not logically required

since absolute effects are just a subset of relative ones. However, the FORBIN system

separates the two for pragmatic reasons because different processing is done with

each during projection. The results of projecting absolute effect types make up the

temporal database and place constraints on the starting times of tasks in the task

network. The results of the more detailed projection of relative fact types are used

to ensure that new additions to the task network are compatible with commitments

already made and are not cached in the temporal database.

4.2.1 Absolute Fact Types

Absolute fact types represent facets of the world state that are made true and remain

true until explicitly changed. In the FORBIN system they are modeled as predicate

25

calculus assertions and defined with the form:

(DECLARE-FACT (<name> <var> <var2> ...

For example, many of the properties of a lathe are absolute in nature and might be

defined as:3

(DECLARE-FACT (SETUP-LATHE ?lathe ?type))

(DECLARE-FACT (BIT ?lathe ?type))

(DECLARE-FACT (STATUS ?machine ?status))

All static features of the world that are to be referred to by task descriptors must
be declared as absolute fact types in this way.

Once an absolute fact type has been defined, the projection machinery knows

that each time such a fact is generated by a task, it will remain true until specifically
altered. The traditional way of altering the truth of an absolute fact is to delete
it and then add a new fact reflecting the new state. However, the explicit deletion

of a fact is unnecessary in the FORBIN system because of clipping rules. Clipping

rules state that the beginning of one fact causes the end of another. For example,
in the machine shop asserting (STATUS LATHE-I RUNNING) causes the fact (STATUS
LATHE-1 IDLE) to stop being true. There is no need to explicitly delete (STATUS
LATHE-1 IDLE) as long as this rule is known. Clipping rules are specified with the

form:

(DECLARE-CLIP <fact 1> <fact 2> <condition fact>)

which states that whenever <fact 1> becomes true while the <condition fact>
is true, it causes <fact 2> to end (and it vice versa). For the example above one
might use:

(DECLARE-CLIP !STATUS ?machine ?statusl)
t4STATUS ?machine ?status2)

(NOT (- ?statusl ?status2)))

3 Variables are specified by prefacing their name with a ?'. This notation is drawn from the

DUCK programming language (11) used to implement much of the FORBIN system.

26

% N
UN _'

With clipping rules, task descriptors only have to assert those absolute facts they

make true. Those facts that they clip are taken care of automatically.

The FORBIN causal theory can also deal with interactions between absolute
fact types. The mechanism for interaction is the temporal forward chaining rule
and several types of rule are available. The two most important rule types are
DECLARE-OVERLAP and DECLARE-CAUSE. Both types of rule state that whenever a
certain set of absolute facts are found to overlap in time, a new fact should be as-
serted as true. The difference is that with DECLARE-OVERLAP the new fact extends
exactly over the interval of time that the initiating facts overlap while the new fact
spawned by DECLARE-CLAUSE persists indefinitely (unless clipped) once has begun.'
The basic temporal forward chaining rule syntax is:

(DECLARE-(OVERLAP I CAUSE] (AND <fact 1> <fact 2> ...)

<result fact>)

For example, to state that whenever the lathe and milling machine are running at
the same time it will be very noisy one might write:

(DECLARE-OVERLAP (AND (STATUS LATHE RUNNING)
(STATUS MILLING-MACHINE RUNNING))

(NOISE-LEVEL HIGH))

'II while stating that the same overlap of states will crack the window takes the form:

(DECLARE-CAUSE (AND (STATUS LATHE RUNNING)
(STATUS MILLING-MACHINE RUNNING))

(HEALTH WINDOW CRACKED))

A final special case of absolute fact t, ; the pool. A pool is a collection of

objects that are essentially interchangeable and which are referred to throughout the

plan language primarily by type rather than name. By referring to a pool, an object

of the appropriate type can be identified. Pools are managed by an interconnected

set of facts and clipping rules but a simpler syntax is adopted by FORBIN because

of their frequent use. A pool is initialized with the form:

(DECLARE-POOL <type> (<member 1> <member 2> ...)

"The Temporal Database Manager which manages the interaction of absolute facts actually

supports several more types of temporal chaining rules. However, rules other than these two were
used infrequently in our trials. For further discussion i~f temporal reasoning and the abilities of the

TDM see 151.

27

For example, a machine shop containing two identical lathes might have them rep-
resented as a pool from which either can be selected for a particular job:

(DECLARE-POOL LATHE (LATHE-I LATH-2))

The plan expansion language contains forms for reserving an object in a pool and
returning it when finished. Pools are used extensively throughout FORBIN example
problems to manage discrete resources.

Absolute fact types, clipping rules and temporal forward chaining rules give the
FORBIN planner a powerful way to model many facets of the world (see [5] for more

background on reasoning about absolute fact types). However, absolute fact types
are only good for describing task changes that can be determined before much of
the task context is known. To go further, we must introduce relative fact types as

well.

4.2.2 Relative Fact Types

Relative facts are used to represent those facets of the world that can best be modeled
as a single continuous quantity.5 Absolute facts change value instantaneously and
are always specified in terms of their new value. Relative facts on the other hand
are often specified in terms of some change to their value (and hence the new value

depends on the old) and once set in motion a relative fact may continue to change
over time without further intervention. In the FORBIN plan language, relative facts
are called states and are referred to by way of a pattern similar to those for absolute
facts and tasks; with the first symbol in tho pattern is the name of the fact type (or
state) and the second is the new value or change. During projection, new values for
states will be asserted by tasks in terms of such patterns.

The schema for a state is shown below and consists of four parts: a name and

three functions called MOVE, DELAY and UPDATE.

'The syntax given here for states is a simplified version of what is possible. A state can be
generalized from a scalar quantity to an arbitrary LISP object and can carry a great deal of internal
information around. The three state functions can then refer to this information in an arbitrary
manner. For such examples the patterns used to refer to the state in task expansions and descriptor
will have more arguments. See [121 for more background on the Heuristic Task Scheduler used to
reason about state representations.

28

- ..

(DECLARE-STATE <name>

(MOVE (lambda (<current-value> <change> <time>) ...))

(DELAY (lambda (<current-value> <change> <time>) ...))

(UPDATE (lambda (<current-value> <change> <time>) ...)))

Each of the functions takes three arguments, the current value of the state, the

change desired in the state value and the current time. During the projection, these

functions are called by the system to find out whether, and then how, a state can

be changed as specified by various tasks. The current value and time are filled in

by the system for the temporal interval of interest and the change value is filled in

with what appears in the task descriptor for the task being examined. The MOVE

function returns a boolean value that says whether the desired change is possible

and the DELAY function returns an estimation of the time that it will take to carry

that change out. The UPDATE function simply returns the new value of the state

after the change has been made. For example, the state for a robot's location might

be called POSITION with a current value of AT-LATHE-CHUCK. If a task has the effect

of changing the robot's location to AT-WORKBENCH then the MOVE function applied

to AT-LATHE-CHUCK, AT-WORKBENCH and the current time would return whether or ,

not the move from one to the other is possible, the DELAY function would return

how long it will take and the UPDATE function would return the new value of the

POSITION to be AT-WORKBENCH.

The three state functions are written by the causal theory builder to reflect

the various properties of different relative fact types. In the robot position example

above, the changes to POSITION that the plan language will specify are new locations

for the robot to be. However, it is just as easy to write state functions so that the

changes specified in the plan language are relative to the current value. For example,

the robot might have a store of plastic resin that is often taken from and occasionally

replenished. Such a state could be represented as shown in Figure 6.a. Notice that

in the PLASTIC-RESIN state functions, the change is treated in a relative way. In

the plan language such changes would be represented as (PLASTIC-RESIN +10) or

(PLASTIC-RESIN -10).

An important final aspect of state definitions is that the UPDATE function may"

generate action requests of the form: (ACTION <pattern>). The patterns in action

requests correspond to primitive tasks and become incorporated as part of the final

plan that FORBIN builds. During the planning process itself, however, action re-

29
N

i , :,;,. , .>,.,. % ,.....:...::. .:: -.... ...- :.:;.....;...:.:................ .,., ..-.-.

Example A.

(DECLARE-STATE PLASTIC-RESIN
(MOVE (lambda (old change time) (positive? (change old))))
(DELAY (lambda (old change time) 0))
(UPDATE (lambda (old change time) (+ change old))))

Example B.

(DECLARE-STATE POSITION
(MOVE (lambda (begin end time)

(and (member? begin *valid-locations*)
(member? end *valid-locations*)

(know-route-between? begin end))))
(DELAY (lambda (begin end time)

((distance-between begin end) *nominal-speed*)))
(UPDATE (lambda (begin end time)

(ACTION (move-primitive begin end))

end)))

Figure 6: Examples of State Declarations

quests are essentially ignored and play no part in decisions that influence the plan.
The reason for the existence of actions requests is to allow the task network to grow
without regard to certain necessary tasks and yet have those tasks added into the

network at the finish. The most common example of this is robot position. In the

FORBIN domain, the robot must travel around from work-station to work-station

and the final plan must contain a primitive task for each change of locale. How-
ever, the start and end position of each travel task cannot be determined until all

of the other parts of the plan have been ironed out and the planner knows where
the robot needs to be for every task. Thus, once the final task network has been

determined, a last run through it is made with the projection machinery; any action
requests produced are added to the plan. At all other times action requests become

NO-OP's. For example, the position state for the robot might be encoded as shown

30

*~~~~~~~~~~~~~ % %M % s~ ~~~~V%~\ aM ~"~.%I.
-.-o.

in Figure 6.b. This ability to add actions as required at projection time is used
extensively in FORBIN example problems to deal flexibly but effectively with travel

time.

4.3 Task Descriptors

The world physics describes the way that facets of the world state are expected to
change through time but it does not describe exactly how those facets are expected to

be changed by particular actions of the planner; the FORBIN causal theory captures

this information in task descriptors. Each type of task in the system has a task

descriptor that specifies every fact that will be altered by that task and the way%

that it will change. The task descriptor also gives the expected duration for its
task. An important aspect of FORBIN task descriptors is that they specify onlyr
the expected behavior of a task because there may be several different ways for the
task's expansion to be carried out. For example, given the task of making a widget

it may be possible to use either the drill press or the milling machine. Each of
these expansions will tie up a different machine and will alter a number of different

facets of the world. However, the (MAKE WIDGET) task must be incorporated into

the task network before an expansion can be chosen and its expected behavior must
be included. This behavior will be specified in the task descriptor for the (MAKE

WIDGET) task which must make some compromise between the facts that might be

changed by the drill press expansion and the facts that might be changed by the

milling machine expansion. In general, task descriptions give the expected behavior
of a task before knowing how the task will actually be carried out and thus can only .

be an estimation of the tasks actual effects. I:

(TASK-DESCRIPTOR <id>
(TASK <Pattern>)
(EXPECTED-DURATION <low> <high>)
(EXPECTED-STATES ...)

(EXPECTED-FACTS ...)

Figure 7: The Basic Form of a Task Descriptor

31

The schema for a task descriptor is given in Figure 7 and consists of four sections:
The TASK section of the descriptor identifies the task type to which this descriptor

applies, the EXPECTED -DURATION gives an estimation of how long this type of task
will take. The EXPECTED-STATES and EXPECTED-FACTS sections together specify the

effects that this type of task is.expected to have on the world, when executed.

4.3.1 Task Specifier

The task specification section of the descriptor takes the form of a list to be matched
against the task specifications given in the expansion methods described in the next

section. Whenever a task is added to the FORBIN task network, a task descriptor
with matching specification is taken from the causal theory and used to describe

the effects of that task to the projection machinery. Task descriptor specifications
may contain variables and hence it is possible for a task in the network to match
more than one descriptor. For this reason task descriptors are ordered (like prolog

clauses) and the first one to match a task is chosen. Tasks in the task network will
never have variables in their specifications so, after matching, all of the variables in
a task descriptor will be instantiated. Some example task specifications are:

(TASK (MAKE ?thing))
(TASK (SETUP-LATHE ?lathe WIDGET))

(TASK (SETUP-LATHE ?lathe ?type))

4.3.2 Expected Duration

The expected duration of each task in the task network is crucial when temporal

considerations are important to the success of a plan. Planning for deadlines requires
knowledge of how long execution of all tasks in the plan is expected to take. This

information is specified in the expected duration section of the task descriptor for
each type of task. A duration is given as an estimated interval with a lower and
upper bound. During projection these intervals are used to decide which facts will
be true when. Some sample duration specifications are:

(EXPECTED-DURATION 5.0 6.0)

(EXPECTED-DURATION (*3 (SIZE-OF ?thing)) (* 10 (SIZE-OF ?thing)))

32

Once an expansion is chosen for a task, its expected duration is replaced with the
composite durations of the subtasks in the expansion. Thus, as tasks are refined, so
are the estimates of how long they will take.

4.3.3 Expected Facts

The expected facts section of the task descriptor specifies those absolute effects that
are expected to be made true by the execution of this type of task. The specification%
is a simple list of facts like a traditional add list. It is assumed during projection that
each of these facts will be made true at sometime during the execution of the task.
No delete list is required because of the clipping rules specified in the world physics.
Each fact is specified as a pattern and must have been previously declared in the
world physics section of the causal theory. For example, the following expected
facts specification declares that executing this type of task will cause the lathe to
be ready, the lathe bit to be of the correct type, and for the robot to be positioned
at the lathe's chuck:

(EXPECTED-FACTS
(READY ?lathe ?type)
(BIT ?lathe (BIT ?type))
(LOCATION ROBOT CLOC-OF CHUCK ?lathe)))

4.3.4 Expected States

The final section of a task descriptor specifies expected states or relative effects.
Expected states are given as a list of patterns just like expected facts, but each is
augmented with an indication of where during the task the state will take on (or
be changed by) the value specified. An expected fact is assumed to become true
sometime during the task while an expected state may be specified to change at
the start, end, or sometime during the execution of the task. Thus an expected
state has the form (<when> <pattern>) where <when> can be one of: START, END
or DURING. It is most enlightening to think of expected states as specifying "'island
states" or places in time when particular changes to relative effects will take place.
For example, the following specification for the expected states of a (MOVE ?thing r
?locl ?loc2) task will put the robot's position at ?locl to start and ?loc2 at the
end:

(EXPECTED-STATES
(START (ROBOT-POSITION ?loc 1))
(END (ROBOT-POSITION ?loc2)))

33

As with the expected duration, after a task is expanded, its expected facts and

states are replaced with those of its composite subtasks.

4.3.5 An Example

To pull everything together, consider the complete task descriptor in Figure 8. This

descriptor specifies all of the causal information required for projection of the effects

of lathe setup tasks. It says that any lathe setup will be expected to take from 5.0
to 6.0 time units and will result in the lathe being set up for the correct type of

operation with the correct bit installed. Also, at the end of the task the robot will

be positioned at the lathe's chuck. Whenever a task of this type is added to the

task network, it will be annotated with all of this information and from then on the

projector will know how that task will change the world upon execution.

(TASK-DESCRIPTOR SETUP-T1
(TASK (SETUP-LATHE ?lathe ?type))
(EXPECTED-DURATION 5.0 6.0)
(EXPECTED-FACTS

(SETUP-FOR ?lathe ?type)
(BIT ?lathe (BIT ?type))
(LOCATION ROBOT (LOC-OF CHUCK ?lathe)))

(EXPECTED-STATES
(END (POSITION (LOC-OF CHUCK ?lathe)))))

Figure 8: Tl'-- Task Descriptor for a Lathe Setup Task

This task descriptor also illustrates an interesting point with respect to the
different processing of facts and states. Notice that there is both an expected fact

entry for the robot's location and an expected state entry for the robot's position;

obviously these two entries represent the same facet of the world and will take on the

same values. However, the location fact models the robot's location as an absolute

fact that can be changed at will while the position state models it as a continuous

quantity that requires action requests to change it. The results of projecting the two

together should be the same as projecting either one, except that the position state

34

) :

will have more temporal accuracy. The reason for using both is that the results of
projecting location facts will be cached and can be used for later temporal queries
while the position states will only preserve overall plan consistency. On the other
hand, the position state will add the action requests necessary to put actual robot
movement tasks into the final plan. Thus, the two complement each other with the
location used as a basis for flexible future plan choices and the position used to
add detail during consistency checking.

4.4 Summary

In summary, the causal theory is used by the FORBIN planner to search through
the task network being built and project the expected world state at any point in

time covered by the network. This projected future is used to ensure consistency in
the task network so far (i.e. the states required by all tasks in the network will be
true as expected) and as a basis for the choice of appropriate, detailed tasks to add
to that network. Projection requires that each task in the task network be tagged
with an expected duration and those facets of the world that the task is expected
to change. This information is contained in FORBIN task descriptors which specify
the expected behavior of each type of task even before a method for carrying out
that task is chosen. In addition to task descriptors, projection requires that the
evolution and interaction of the facts be specified for each task as well. That way
the values of each type of fact can be calculated between tasks even if they change
without being specifically acted upon. This information is captured in the FORBIN
world physics with its facts. states, clipping rules and temporal chaining rules.

Within the FORBIN system projection is carried out in two phases with the re-
sults of one cached for efficiency and the results of the other dropped to maintain
flexibility. The first phase of projection is the maintenance of a temporal database
based on absolute facts, clipping rules and temporal forward chaining rules. This
database contains those absolute facts that can be determined to be true given the
partial ordering of tasks in the current task network. In general many different fu-
tures are possible for a given task network corresponding to different total orderings
of the tasks. The database caches only those facts that are unambiguously true re-
gardless of possible orderings (with respect to absolute facts) and is thus incomplete

in terms of what will be true in detail in the future. Despite its incompleteness. this

database is used by FORBIN as its basis for further planning decisions.

35

The second phase of projection involves the exploration of total orderings of the

task network and the resulting evolution of any relative facts.'Since these facets of

the world often have values that depend on what state they were in before they were

changed they can only be projected when the order of all tasks have been determined
and each has a known predecessor. As long as a total ordering of the task network

can be found that allows each absolute and relative fact type to take on the values

desired of it at the correct time, then the plan developed so far is still consistent

and workable. In general the cached futures determined by projecting only absolute

fact types may seem consistent until the added information contained in the relative

fact types is included too. This check for detailed consistency is made whenever a

new task is to be added to the task network. Once the network has been deemed

consistent the ordering discovered in checking it is discarded because there may be

many such orders and the one discovered may not work once more task are added to
the network. These consistency projections are used in deciding whether a proposed
task expansion is reasonable or not.

In the FORBIN system projection is an active process. Many tasks in the task

network will carry assumptions, or expected world states, that must be satisfied
when the task is executed. To ensure that this is done, each task in the task network

is allowed to "float" in time and can be positioned by the projection machinery to

start when its assumptions are met. This floating is constrained by the orderings
and deadlines imposed in the task network. As new commitments are made and
new tasks added to the network, tasks already there may be moved with respect to

each other to keep their assumptions satisfied. Thus, FORBIN projection not only

keeps track of what is expected in the future as a basis for task expansion, it also

keeps task assumptions true by positioning each task in time. A central feature of

the task expansion algorithm described in Section 6 is that it tries very hard to

never make a commitment that would make it impossible to meet the assumptions
of an existing task. Should such a situation arise, the task network would no longer

represent a consistent, viable plan.

The causal theory and the projection mechanisms in the FORI3IN planner provide

a powerful means for predicting the future state of facts corresponding to the conse-

quences of tasks in the task network. These facts are used as a basis for expanding

the task network into more detail and thus building a plan. The next chapter of the

paper introduces the representation for task expansions and how they are used to

grow the network based on projected futures.

36

5 The FORBIN Plan Language: Expansion Library

The plan expansion library contains the methods that FORBIN has available to it

for accomplishing its tasks. The system cannot build a plan for a task that does not
have an explicit expansion in the library. Expansions can be parameterized however,

so that an expansion might apply to many tasks of the same type. For example, in%
the simple machine shop domain used by FORBIN one of the high level task types is%
(MAKE ?thing). Here, ?thing is a parameter meaning separate methods are not re-

quired for (MAKE WIDGET), (MAKE GIZMO) and so forth. This requirement of known

expansions for all task types is a general feature of hierarchical planners because the

hierarchy (embodied in the expansion strategies) must be defined in advance. Ear-

lier planners like STRIPS [81 were more general in that they derived a plan from the
causal theory by backward chaining on the effects defined by task descriptors. These

chaining planners did not need a plan library and could build a plan to achieve any

effect mentioned in their causal theory. On the other hand, chaining planners have

a much larger search space to explore because of the enormous (possibly infinite)

number of chains that can be built that don't lead to a final solution.

The expansion hierarchy used by the FORBIN system consists of a library of task

expansions. Each entry in the library describes one way of carrying out an abstract

task. When there is more than one way to carry out a task, then there is more than
one entry in the library. For example, it might be possible to build a new gizmo
with either the lathe or the milling machine. Since each one requires a different set

of bits and setup procedures, it would make sense to enter each one into the library

as a separate expansion. Each expansion entry is known as a method for expanding

its type of task.

This section of the paper describes the notation used to specify task expansion

methods.

5.1 The Expansion Method

A FORBIN task expansion method presents one possible way to carry out a task.

There may be many ways to accomplish a particular task in a given domain so there

will often be several expansion methods for the same task in the FORBIN library.

Each method consists of four sections as shown in Figure 9. The TASK section of the

method is used as an index and specifies the type of task that the method can be

37

used to accomplish. The ASSUMPTIONS section describes characteristics that must
be true of the world state before and during execution of this method to ensure that
it will perform the desired task correctly. The actual subtasks, and their order, are
detailed in the SUBTASKS section of the method, and the UTILITY section gives a
way of comparing this method with other methods that perform the same task. All
other things being equal, the highest utility method with satisfied assumptions is
the best one to choose.

(DEFINE-METHOD <identifier>
(TASK <pattern>)
(UTILITY <number>)
(ASSUMPTIONS <asaumptioni>

<assuuption2> ...)
(SUBTASKS (<tag> <pattern>

<reasoni> FOR <tag>
<reason2> FOR <tag> ...)

(<tag> <pattern>
<reasoni> FOR <tag>
<reason2> FOR <tag>) ...))

Figure 9: The Basic Form of a Task Expansion Method

The <identifier> of the plan descriptor is a unique symbol used to differentiate

one expansion method from another. It plays no role in the FORBIN algorithm. The
other elements are described in some detail below.

5.1.1 Task Type

The (TASK <pattern>) portion of the plan desciptor is used to identify what task
this method is an expansion for. The <pattern> portion may contain parameters
or constants depending on whether the method may be used as an expansion for
several tasks or just one. The TASK field serves an identical function in expansion
methods as it does in the task descriptors described in the previous section.

38

5.1.2 Utility

The (UTILITY <number>) portion of the plan descriptor is used to give relative
"goodness" ratings to the various methods of carrying out the task. When a task

has more than one plan descriptor, the one with the highest utility is given some

small degree of preference over the others by the Heuristic Task Scheduler (HTS)

when it is choosing the best plan to use. -

The utility value can either be a constant or a lambda expression. Thus the
utility for a particular expansion can vary depending on the exact task for which
the expansion is to be used. For example, consider:

(UTILITY (lambda () (cond ((= ?type widget) 4) %

((?type gizmo) 2))))

The method containing this statement has a higher utility if it is operating on

widgets than if it is being used for working on a gizmo.

5.1.3 Assumptions

The (ASSUMPTIONS ...) section in the plan descriptor details those things that

must be true before the plan can be used as a method for completing the task.

Each assumption is a predicate that must be true in the temporal database. All
of the assumptions together make up a conjunctive query to the database. A valid

assumption is any predicate that might be true in the temporal database, but for

the most part, the only predicates necessary are:

" (TT <begin> <end> <effect>) stating that the formulae <effect> must be

true throughout the time interval <begin> to <end>.

" (RESERVE <begin> <end> <pool> <thing> <tag>) stating that the object

<thing> from the pool <pool> must be available to be reserved by the task

<tag> throughout the time interval <begin> to <end>.

Throughout an expansion method, the special symbol *SELF* stands for the task
that is being expanded. For example, the assumptions necessary for the GENERATE
task in the FORBIN domain are:

(ASSUMPTIONS
(RESERVE (BEGIN *SELF*) (END *SELF*) LATHE ?LATHE (TAG -SELF)))"

39

--d mm mmmm utirl l l . . k . . *. -. 5 45

The assumptirn states that this method will only work if a LATHE can be reserved

for this task over the entire duration of the task. LATHE refers to a pool of lathes;

several machines, any of which would be suitable for performing the GENERATE task.

?LATHE will be bound to a particular machine in the lathe pool. For a more detailed

discussion of the RESERVE predicate see [5].

The MOVE method of Appendix B requires the TT assumption:

(ASSUMPTIONS
(TT (BEGIN *SELF*) (BEGIN *SELF*) (LOCATION ?THING ?START)))

This assumption demands that the fact (LOCATION ?THING ?START) be true during

the interval defined by the start of that MOVE expansion method. In other words,

that fact must be true at the start of the move task if this method of doing the move

is to be successful.

In most cases where there are alternative methods for accomplishing a task,

the assumptions will play an important role in choosing a particular method. The

assumptions for a particular method constrain the time and order in which that

particular method may be used in the overall plan. The HTS, using the assumptions,

picks the method that fits in "best" with the overall plan, as already developed.
Thus, different assumptions will cause different methods to be picked - causing an

overall different plan to be created.

5.1.4 Subtasks

The (SUBTASK ...) portion of the expansion method is used to define the piece of

the task network into which the task should expand. This portion of the method

includes some number of subtasks; each identified within the method by a <tag>.

Following the tag is some <pattern> which should match the TASK pattern of one or

more expansion methods in the task library. After each pattern is a list of <reason>s

why that subtask should be done. Reasons often will reference the tags, thereby

defining some partial order over the subtasks.

There are three geueral types of reasons for a subtask:

* (ACHIEVE <effect>): the purpose of the subtask is to create this effect. The

effect will be entered into the temporal database.

40

r

* (CREATE <pool> <object>): this subtask creates a new object <object> that

can be added to the group of objects specified by <pool>.

* (CONSUME <pool> <object>): the opposite of CREATE, this reason specifies

an object to be taken out of a pool.

The reasons for a subtask are connected to other subtasks with the FOR operator.

FOR indicates that the reason given is to satisfy a precondition for the execution of

the named subtask (referenced by its tag). These reasons, and the subtasks that they

are for are then loaded into the temporal database where the projection machinery

forms the appropriate partial order. Normally, all of the subtasks are constrained to

fall within the temporal bounds of the task being expanded (i.e. *SELF*). However,

the FOR operator has three other forms: <FOR, FOR>, and <FOR>; which indicate that

the indicated subtask may be positioned before, after, or on either side of the main

task for which it is in service. 6 For example, the INSTALL-I method has the two

subtasks shown in Figure 10. The first subtask takes the old bit out of the lathe

chuck so that the lathe chuck will be empty. By using the <FOR, the fact that the

lathe chuck is empty as a precondition for doing the second subtask is added into

the temporal database. The < indicates that the first subtask may be accomplished

any time prior to the second subtask, so long as the fact that the lathe chuck is

empty remains true till the second subtask is started.

J*

(SUBTASKS

(Ti (REMOVE-BIT ?OTHER-BIT ?LATHE)
(ACHIEVE (BIT ?LATHE NONE)) <FOR T2)

(T2 (PUT ?BIT (LOC-OF CHUCK ?LATHE))
(ACHIEVE (BIT ?LATHE ?BIT)))))

Figure 10: The Subtasks for the INSTALL-1 Method

The REMOVE-BIT method has a slightly different subtask scheme (see Figure 11).

The first subtask must be performed before the second and during the scope of
'The FORs may have associated with them metric intervals that specify exactly how close or far

two subtasks may be separated in time. These intervals have been left out of this paper to help

maintain clarity.

41 .5

sN r5 Ai J 2. 1%~'y% \CV .;.. .

the REMOVE-BIT task (as shown by the vanilla FOR). The second subtask may be

done any time after the first. The FOR> indicates it is not bound by the end of the

REMOVE-BIT task.

(SUBTASKS
(Ti (GET (BIT ?TYPE) (LOC-OF CHUCK ?LATHE))

(ACHIEVE (HAVE *ME* ?BIT)) FOR T2)
(T2 (PUT (BIT ?TYPE) (LOC-OF BIT-RACK ?TYPE)) FOR>)))

Figure 11: The Subtasks for the REMOVE-BIT Method

5.2 An Example Method

Now its time to put everything together and show off a full expansion method.

Figure 12 shows the expansion methods for the MAKE, GENERATE, and MOVE tasks.

From the preceeding discussion it should be fairly obvious how these methods work.

What may not be obvious is why they were done this way rather than some other

seemingly more simple way. The next section goes through an expansion in detail,

keeping track of what is being added into the temporal database. The reasons for

the detailed syntax should then become more apparent.

At this point, it seems appropriate to make some general comments about the

FORBIN plan language, and plan languages in general. Although able to represent

a wide variety of planning situations, the FORBIN language has one troubling char-

acteristic: detailed knowledge about other plans in the library is almost always

necessary when writing a new expansion method. We started with the hope that

separating the plan language from the causal theory would help make it easy to add

additional methods for task expansion because the temporal projection machinery

would take care of the details. However, FORBIN is intended to be a very flexible

planner, weaving steps from several methods into a coherent whole. To keep the

result consistent, appropriate labeling of facts and events must be maintained across

all methods - and therein lies the difficulty. Ensuring that subtasks have a hold

on consistent labels no matter which other subtasks they combine with becomes, at

times, a syntactic odyssey.

42

h
One should not construe the above comment to imply that the FORBIN plan

language is ill-conceived. Often we considered simplifying our domain to avoid

some particularly troublesome representation problem but we did not give in and

as a result, we developed a very powerful language able to express plans in domains

of considerable complexity; it is only working out the details of a full library of

plans for a new domain that causes us concern. This problem is even worse in most

other planning systems, but it is most apparent with FORBIN because the domain

we chose is more complex. Needing to know the details of other expansion methods

when constructing new ones is not a fatal flaw for automatic planners, but it is

a serious complication for those who contemplate building planners to operate in

non-trivial domains.

43.

'

'.

'5

43 '5

".

" , ", , . , . 5 , 5 5 5. S' o.. -. 5 ,. . . ,..° -. -. - . ,°, . S

(DEFINE-METHOD MAKE
(TASK (MAKE ?TYPE))
(UTILITY 1.0)
(ASSUMPTIONS nil)
(SUBTASKS

(T1 (GENERATE ?TYPE $NEW-THING)
(CREATE ?TYPE $NEW-THING) FOR T2)

(T2 (MOVE $NEW-THING (LOC-OF SHELF ?TYPE))

(ACHIEVE (LOCATION $NEW-THING (LOC-OF SHELF ?TYPE))))))

(DEFINE-METHOD GENERATE
(TASK (GENERATE ?TYPE ?THING))
(UTILITY 1.0)
(ASSUMPTIONS
(RESERVE (BEGIN *SELF*) (END *SELF*) LATHE ?LATHE (NAME *SELF*)))
(SUBTASKS

(Ti (SETUP-LATHE ?LATHE ?TYPE)

(ACHIEVE (READY ?LATHE ?TYPE)) FOR T2)
(T2 (RUN-LATHE ?LATHE ?TYPE)

(CREATE ?TYPE ?THING)
(ACHIEVE (LOCATION ?THING (LOC-OF HOPPER ?LATHE))))))

(DEFINE-METHOD MOVE

(TASK (MOVE ?THING ?FINISH))
(UTILITY 1.0)
(ASSUMPTIONS
(TT (BEGIN *SELF*) (BEGIN *SELF*) (LOCATION ?THING ?START)))
(SUBTASKS

(TI (GET ?THING ?START)
(ACHIEVE (HAVE *ME* ?THING)) FOR T2)

(T2 (PUT ?THING ?FINISH)

(ACHIEVE (LOCATION ?THING ?FINISH)))))

Figure 12: The Methods for MAKE

44

6 The FORBIN Planning Algorithm oil
.

Section 2 of this paper discusses the concept of representing plans as task networks

that might be constructed using various search techniques. Section 3 describes the

FORBIN system as a planner that builds its task network using a combination of

hierarchical expansion to add detail and temporal projection to ensure correctness.

Section 4 describes the causal reasoning methods used to project the expected effects

of a partially built task network and Section 5 describes the language used to write

expansion strategies for specific task types that might appear in the network. This

section of the paper gives a detailed description of the hierarchical search algorithm

at the heart of the FORBIN planner.

The FORBIN search algorithm is conceptually quite simple. At any point in the

search there is a partially elaborated plan represented by the current task network.

The object of the search is to expand each task in the network into more and more V,

detail until only primitive tasks remain. The final plan produced by the system is

the network of primitive tasks. S.,

Unfortunately this simple search algorithm is computationally much too expen-

sive to use directly so the FORBIN system makes use of many heuristics to limit the

number of partial task networks considered and the number of projected futures

calculated. The detailed discussion below attempts to make these heuristics explicit

and thus clarify exactly which planning problems FORBIN can solve and which it

cannot.

6.1 Introducing a New Task into the Task Network

Throughout the remainder of this section we will illustrate the FORBIN algorithm on

a single example in the FORBIN domain. The domain and task expansion METHODS

are contained in Appendix B for those interested in the details, while in the text,

portions of the task network will be displayed to help clarify the discussion. Initially

FORBIN is given the task (or more precisely, tasks) of constructing two items in its

factory: a gizmo and a widget. The system is given the further constraint that the

widget must be completed (i.e., constructed and properly shelved) by time 35. The

system is also given an implicit constraint to finish both projects as quickly as is

mechanically possible.

.45

Figure 13 shows the initial task network (the state of the temporal database)

after FORBIN has been given its task. The vertical line segments indicate the points

in time that the planner will actually deal with. Time flows from left to right.

The thin lines connect pieces of the network and represent ordering constraints, but

not any definite period of time. The labeled horizontal segments indicate time to

be spent doing whatever the label indicates; several activities may be going on in

parallel. The network illustrated indicates that at some time after time zero the

MAKE Widget task will be started. That task will continue on for a while but will

end by time 35. Meanwhile, some time after time zero (but not necessarily the

same "some time" as in the previous sentence) the MAKE Gizmo task will be started.

This task will also continue on for a while - but its end point is not presently

constrained.

MAKE Widget time=35

time=O

IMAKE Gizmo

Figure 13: The Initial Task Network for Constructing a Widget and Gizmo

The task network in Figure 13 includes some information from the TASK DE-

SCRIPTORS. The descriptors contain the initial estimates of how long the tasks will

take to execute.

Task expansion choices are based on more than the task network shown in the

diagram; they are based on the temporal database derived from the task network

and the task descriptors. There are many other things actually in the temporal

database that are not shown in the picture. It contains everything that is known

about the state of the world. The position of the robot, the bit currently in thle

lathe, and all other tasks known to the system, both past and future, are in the

database. However, for simplicity's sake, we will concentrate directly on the tasks

at hand and show only the network itself.

46

6.2 Selecting a Task to Expand

Whenever FORBIN has unexpanded non-primitive tasks in the task network it at-

tempts to expand them. Task expansions are done one at a time and the task to

expand is chosen based on several criteria, among them are:

" Since planning takes time, and some tasks have deadlines, tasks with approach-

ing deadlines are given some priority in expansion.

" Tasks that are very high in the abstraction hierarchy should be expanded to

sufficient detail that they may be placed in proper perspective in the task

network.

" Tasks that are heavily constrained should be expanded so that none of their '

constraints are accidentally violated.

FORBIN will not retreat on an expansion decision so the order that tasks are"0
expanded may be critical to the plan that eventually evolves. Decisions about how

a task should be expanded (i.e., what METHOD to use) are based on the facts in

the task network, and those depend on the level of expansion for the tasks in the

network. Since FORBIN will not retract an expansion decision the algorithm may
fail to find a successful plan where one exists. But the alternative is to commit

the system to an exponential, backtracking search that in unfriendly cases may be

unable to find a viable plan anyway.

6.3 Queries and Projections of Possible Expansions

Figure 14 shows the task network after both the MAKE Widget and MAKE Gizmo tasks

have gone through one expansion. These expansions are as easy to choose as any

performed by other planners like NOAH since there is only one way to expand the

MAKE task and it cannot interfere with other tasks in the network. Thus there really '

is no expansion decision to worry about. Unlike most previous systems, FORBIN's

decisions will not always be this easy.

The MAKE plan is very high level. The only details that come out from its ex-

pansion are that each MAKE requires two subtasks, the first generates the item, the

second involves moving the item to its proper storage place. Both of these subtasks.

47

time=35

MAKE izMe0
MA-TI G m .IKE-T2 G

Figure 14: The Task Network After One Round of Expansion

as defined by their FORs, are constrained within the original bounds of their super-

task. The unlabeled arrows between the subtasks indicate that the second subtask
must follow the first by some amount of time that is only indirectly constrained by

the starting constraint on the first subtask and the completion constraint on the

second.

The FORBIN algorithm continues cycling, and after a short while the task network

looks like that shown in Figure 15. The expansion has concentrated on the WIDGET

task because it is constrained by a deadline. The first subtask has been expanded

twice to the second's once because after the first expansion of the GENERATE an

ASSUMPTION that the lathe is reserved was added to the temporal databtise. No

conflicts with the assumption were detected, so expansion proceeded. The left and

right angle brackets linking items in the network (e.g., MAKE-T2 Widget and MOVE

Widget) indicate the passing on of exact constraints (i.e., MOVE Widget has exactly

the same constraints as the subtask it was expanded from).

After the series of expansions in Figure 15, the balance of choosing a task to

expand switches to the GIZMO task. The reason for this switch is that the MAKE

Gizmo is now at too high an abstraction level with respect to the expanded GENERATE

Widget.

As the first subtask of the MAKE Gizmo is expanded, a query is made using the

temporal database machinery. This query asks when the ASSUMPTION about lathe

reservation that goes with the GENERATE METHOD will be true. The query returns

48

AZ~k.k .. ~ * *

MAKE Widget time=35

RESERVE Lathe
MOVE Widget;

SG ENERATE EWidget

GEN-TI 1im GEN-T2/

MAKE Gizmo

MAKEITI Gizmo I MAKE-T2 G I

Figure 15: The Further Expansion of the MAKE Widget Task

a disjunctive ordering constraint; the GENCERATE Gizmo must occur either before

or after the GENERATE Widget. Thus the task network now contains two distinct

possible futures: one with the GIZMO made on the lathe before the WIDGET, and

an alternative view where the WIDGET is produced first (shown in Figure 16).

It should be noted that both of the orderings may not actually be feasible. First,

the tasks have not really been expanded to sufficient detail to know for sure if either

will actually lead to a feasible plan. Second, the FORBIN algorithm, during each

cycle, runs the task network through more detailed local projection, in order to spot

adverse interactions of relative effects. As long as one feasible ordering for the task

network can be found, it is left as is.

6.4 Comparing Possible Expansions

So far, in this discussion of the FORBIN algorithm, projection of the task network

has been accomplished almost exclusively by the temporal database manager. This

machinery has allowed the planner to spot possible trouble spots due to conflicts

arising from separate tasks (e.g., the need for a lathe by both MAKE tasks) and it has

49
-

MAEWidget time=35

> SERVE Lathe MOEWig

GENERAEN RidTetG

GEN-T1 GEN-T2

F rr EMAKE Gizmo
MAKE-T1 Gizmo -t- eMmAKE-T2

RESERVE Lathe

¢ ENERATE G~izmo

Figure 16: The Further Expansion of the MAKE Gizmo Task

automatically inserted disjunctive constraints to keep these potential conflicts from

becoming actual plan bugs. This alone is a more detailed form of plan critic than

has been previously implemented. However, it is not in itself sufficient when issues

of actual plan design appear.

For some tasks FORBIN has several different METHODs for expansion. The first

subtask of the GENERATE METHOD is to set-up the lathe. There is one METHOD for

expanding this task. It involves the FORBIN robot acquiring the correct lathe bit,

and then installing that bit into the lathe. There are multiple METHODs for how

to install the bit. This depends on whether there is a bit already in the lathe, and

what type of bit this is. Committing to a specific METHOD for installing the bit into

the lathe is committing the world to be in a particular state (or at least to having

certain facts be true) at the time when that METHOD is to be expanded. A partial

order may not be sufficient to guarantee this, and further constraints may have to

50

.. ~. -. .

be added. The database projection machinery can add the necessary constraints,

but it cannot decide on which constraint set to add (i.e., which METHOD to commit

to). So when FORBIN gets to the point of expanding the INSTALL task, all options

are loaded into the heuristic task scheduler for more detailed projection.

The HTS efficiently explores the space of total orderings, inserting relative effects

that will take place because of a specific ordering. As it explores these orderings it

may place any of the possible expansion METHODs into the schedule it is building.

When the HTS derives a feasible and efficient schedule it notices which expansion

METHOD was used in the schedule. This is the METHOD that is finally inserted into

the task network.

In the case of expanding the INSTALL Gizmo bit task, the ASSUMPTIONS can

be met for either of two expansion METHODs. The INSTALL-1 METHOD may be

used. The ASSUMPTIONS for this METHOD demand that the lathe already be setup,

but for the wrong type of product. Thus this METHOD includes steps for removing

the old bit and inserting the new one. These assumptions demand that the INSTALL

Gizmo bit take place after the lathe has been RESERVED for the GENERATE Gizmo

task and after the lathe has been set up for the GENERATE Widget task.

The INSTALL-2 METHOD can also have its ASSUMPTIONS met. It demands that

the lathe contain no bit. This condition also exists in the task network at a time

before either GENERATE task is done. Using this METHOD causes a schedule to be

created where the gizmo is produced first but the HTS projects that this will cause

a deadline violation for the MAKE Widget task (after all the travel tasks are added

in) and the schedule is deemed non-viable. Thus the HTS chooses the INSTALL-i

METHOD for expanding the INSTALL Gizmo bit task.

Once this choice is made, the temporal database inserts the necessary constraints

to maintain a temporally consistent task network. The resulting network is shown

in Figure 17.

It should be noted that the diagram also contains two tasks linked to their super-

tasks via the <FOR operator. The first subtask in the SETUP-LATHE Gizmo METHOD

has such a link. That subtask involves having the robot acquire the proper lathe

bit. That aquisition may be done at any time prior to the installation of the bit into

the lathe. The first subtask in the INSTALL-1 method is similarly linked but that

task (which involves removing the old bit from the lathe) is constrained by having

the lathe reserved.

51

:' t' ' , :: ",'C' ; ,: e :": :"",,: J:': .",-" '.5 ".:,.,. ,:.',',.:,:...-:+ "..:, ".:,... -:.."..,. ..--,::::

+ +, L+ I d ' t
,.

:+' +" % -. =, ". . _ + r _ " , . ,+ ,, "- ,, ":"5,

~MAKE Gizmo

MAKE-T1 Gizmo 2 -iRKE-T2.

iSETFP-RATE Gim

SETUP-LATHE-i SETUP-THE-2

1>INSTALL- 1

I INST-T\1INST-T2

Figure 17: Choosing the INSTALL-1 METHOD

6.5 Summary of FORBIN Algorithm and Solution

The FORBIN algorithm involves a cycle of operations that are performed on the task

network. These are:

1. Select a non-primitive task DESCRIPTOR from the network to expand. This

selection is based on several heuristics involving the constraints on the tasks

and the state of the network. Here the network acts as task queue.

2. From the library of expansion methods, extract all those whose pattern field

matches the task being expanded.

3. Using the temporal database projection machinery, query the task network

with the ASSUMPTIONS from each of the selected expansion METHODS. Elim-

inate those METHODS whose ASSUMPTIONS cannot be met. If all methods are

eliminated then FORBIN has failed to successfully find a plan for that set of

tasks.

52

4. Have the HTS try and create a viable schedule from the task network and its

choice of expansion METHOD. If the HTS is unable to find a viable schedule,

FORBIN fails in planning for that set of tasks. .

5. If the HTS finds a viable schedule insert its choice of METHOD into the task

network.

6. Insert into the task network the task DESCRIPTORS for each of the subtasks

in the METHOD just added.

7. Have the database machinery propagate effects through the network, and go

to step 1.

This algorithm quickly fails on impossible tasks - a useful quality in a planner
working in a highly exponential search space. When the algorithm is successful
(which is most of the time where success is possible), an efficient plan will result.

Efficiency is derived by the flexibility of least-commitment planning tempered by

noticing adverse relative effects early enough to plan around them. For the problem
of widget and gizmo construction discussed above, FORBIN's solution is shown in

Table 1.

.',

.-

I...

53
lop

Time

Task Place Travel Task Elapsed

(get (bit widget) handl) bit-rack 0 1 1

(put (bit widget) handl) lathe-chuck 3 1 5

(push (button widget) handi) lathe-control 1 1 7
(wait widget) - 0 11 -

(get (bit gizmo) handl) bit-rack 3 1 11

(get (bit widget) hand2) lathe-chuck 3 1 19a

(put (bit gizmo) handi) lathe-chuck 0 1 20

(push (button gizmo) hand 1) lathe-control 1 1 22
(wait gizmo) - 0 14 -

(get widget handl) lathe-hopper 3 1 26

(put widget hand1) (shelf widget) 5 1 326

(get gizmo handl) lathe-hopper 5 1 38C
(put (bit widget) hand2) bit-rack 3 1 42

(put gizmo hand1) (shelf gizmo) 3 1 46 d

aend (wait widget) at 18

'end (make widget)

.end (wait gizmo) at 36
dend (make gizmo)

Table 1: FORBIN's Solution to the Example Problem

54

% % -d %'j-. N

7 Contributions

This paper makes two basic types of contribution. First, FORBIN extends the state

of the art in terms of representational power (e.g., reasoning about space, time,
and continuously changing quantities), and methods for coping with complexity

(e.g., the two-stage process for handling temporal projection). The second type of

contribution made by this paper stems from our observations concerning the very

enterprise of designing hierarchical planners and what directions that enterprise

should be taking. In the following two subsections, we will consider each of the two
types of contribution in turn.

7.1 Extending the State of the Art in Hierarchical Planning

FORBIN employs a number of sophisticated methods for representing and reasoning
about application domains. The FORBIN plan language makes it possible to rea-

son about travel time, resource usage, and continuously changing quantities. The

language for expressing causal theories can encode rules about simultaneous events

and actions whose effects depend upon the context in which they are executed. Our

use of causal theories and plan libraries constitutes a significant improvement over

traditional operator languages. Causal theories and plan libraries serve to parti-
tion the planner's knowledge into knowledge about the consequences of acting and

knowledge about how to act. This partitioning makes it significantly simpler to

maintain a large knowledge base. The details concerning the representations used
in FORBIN are provided in Section 4 (causal theories) and Section 5 (plan libraries).

In addition to the representational advances, there are two technical innovations

that relate to dealing with complexity that should be reiterated. The first concerns

the two-stage decision process involving the use of the temporal database and the

heuristic task scheduler, and the second concerns the techniques used for supporting

hierarchical planning.

There are two primary components for performing inference in the FORBIN plan-

ner: the temporal database manager (specifically the query processing routines) and

the heuristic task scheduler (specifically the methods for searching through simu-

lations). Each of the two components assist in the decision process by restricting

the total number of hypotheses considered at particular points during planning.

The primary decisions made by the planner concern how to carry out certain tasks

(how to reduce a given nonprimitive task to subtasks) and how to schedule tasks
that the planner has already committed to. In order to provide useful assistance,

each of these components performs a certain amount of inference. Because of the

large amount of data involved and the complexity of the basic inference problems,
the answers provided by the temporal database are not guaranteed to be accurate.
The inference methods employed by the temporal database manager are incomplete
and, given the heuristics used, potentially unsound in certain cases. However, these

inference methods are reasonably fast (even in the present prototype implementa-
tion) and generally provide accurate answers. The task expander makes use of the
temporal database to initially narrow its search. The task expander asks the tem-
poral database a set of questions concerning the applicability of various methods for

carrying out the task it is currently working on. The temporal database manager
responds by indicating a small number of times during which those conditions are
met. The plans themselves encode information about how long the plan will take

and what resources are required, and this information is used to restrict attention
to particular intervals of times and methods appropriate for those intervals.

The heuristic task scheduler assists in the decision process by further narrow-
ing the set of possibilities and adding more details (scheduling constraints) to the

partially constructed plan. The heuristic task scheduler, like the temporal database

manager, works by inferring consequences and exploring the repercussions of certain
planning decisions. The heuristic task scheduler, howevt,', works on a smaller data

set, and hence it is able to make much more accurate predictions about a given
course of action. The inference problem is essentially the same for both the tem-

poral database manager and the heuristic task scheduler. The temporal database

manager works from a partially ordered set of events, and attempts to do the best it
can without considering total orders. The heuristic task scheduler works by actually
exploring total orders and by using fairly general heuristics to restrict its attention

to a small subset of the (potentially exponential) set of total orders. All of these
machinations are to no avail however, if the decisions that they guide fail to be ap-

propriate (i.e., they have to be reversed). In order to guard against reversal, FORBIN
is able to estimate, and thereby anticipate, the time required for executing a given

plan and the resources that might be consumed or produced during execution. This
ability to perform limited look ahead also appears in a second contribution of the

FORBIN planner.

A second technical innovation in FORBIN concerns a specific strategy for making

56

hierarchical planning work in the FORBIN domain. This strategy relies upon the

ability of the plan language to encode information concerning the projected duration

and resource usage of abstract actions. It is in general impossible to anticipate

whether or not a particular task reduction will succeed in a given context. If it

were possible to quickly make such determinations, then planning would be simple.

On the other hand, there are often questions that one can ask at different stages

in the process of expanding a task that will serve to rule out certain options. The

most obvious questions concern time and resource usage (e.g., you won't be able to

have a leisurely dinner on the way to the airport if your plane leaves in 20 minutes).

Quite often, you can ask appropriate questions well before the plan is specified in

any great detail (e.g., it doesn't matter if you take a cab, a bicycle, or a private

limousine you'll miss your plane if you stop for dinner on the way to the airport).
The FORBIN plan ianguage makes it possible to encode time and resource constraints

at different levels of abstraction allowing FORBIN to avoid making bad choices early

in the planning process. The resulting constraints are used to rule out impossible

plans.

7.2 Directions for Research in Planning

In order to understand the following, it is necessary to understand our motivations

for designing FORBIN. We are interested in building autonomous robots: robots

capable of interesting behavior in complex domains-, robots capable of operating

flexibly in some approxim-ttion of real time. At the time that we began working

on FORBIN we thought that hierarchical planning, as it was first characterized by

NOAH and subsequently refined by such programs as NONLIN, DEVISER, and SIPE,

was primarily concerned with the issues involved in building autonomous robots. It

seems, however, that the central issues of hierarchical planning are largely periph-

eral to building autonomous robots. To the extent that hierarchical planning can be

said to address a well-defined problem (i.e., a problem for which there exists a pre-

cise account of what suffices as a solution), hierarchical planning is concerned with

solving combinatorial problems. Combinatorial problems are essentially problems

with so little structure to exploit that they admit to no efficient solution; the best

known algorithms require an exponential amount of time in the worst case. A great

deal of effort has gone into solving special cases of the more general combinatorial%

problems or providing heuristics that work well for a large number of the cases that

57

rW6'=WWM ME MMAMA P-W F 4N7L7 L'KJ . VUW MW W MW Mggwvgvvvvvvuvwvqvupl pW -- W bs

S.i

occur in practice.

Of course, hierarchical planning isn't really concerned with solving particular
combinatorial problems; there is another branch of computer science dedicated to

that enterprise. Hierarchical planning is concerned with building general frame-

works for solving many interrelated combinatorial problems at once. FORBIN pro-

vides just such a general framework; it is particularly adept at reasoning about

deadlines, travel time, and complex resources. We knew what sorts of things we

wanted FORBIN to reason about, and we set about designing appropriate repre-

sentations. We ki,,aw that FORBIN would have to produce suboptimal solutions on

occasion. The problem was that we weren't clear on what occasions we would be

willing to accept such suboptimal solutions. When FORBIN slowed to a crawl in

attempting to solve relatively simple problems, we concluded that the slowdown

must be due to the complexity of our spatial and temporal reasoning routines, and 'U

we sought to improve those routines. The real problem, however, was that we never

really reconciled ourselves to having FORBIN be incomplete because we had no clear

characterization of what it meant for FORBIN to be a success and yet be incomplete.

FORBIN is a useful framework for investigating very complex combinatorial prob-

lems involving space, time, and resources; a framework and not a solution-the so-

lution to such problems must involve a great deal of domain specific knowledge as

well. However, the sort of problems that FORBIN is most suited to are not of primary Ie

importance in developing autonomous robots. FORBIN is a significant step in the

direction suggested by the evolution of planners over the last decade; it's just not a

step in the direction we want to go.

7.3 Where Do We Go From Here?
p'U

There are really two questions addressed in this subsection: "Given the direction

that FORBIN is heading, where do we go?" and "Given that we're interested in

autonomous robots, what do we do instead?" The answer to the first question is

fairly clear. We give up our preoccupation with generality and start looking at very

specific domains. The ISIS project [91 is a good example of this approach. We admit

to the difficulty of the problems we are looking at and attempt to characterize the

sort of incompleteness that we are willing to accept. The SIPE planner [17] is a %

good example of a research effort that has dealt directly with the tradeoffs between -%

generality and practicality.

58

, ,o,-- ...

F1UrW7UrKVXVIK ~t" WWWRX V~~rWWVW W V

The second question is a lot more difficult to answer. It is usually easier to
determine how to extend an existing paradigm than it is to determine what to do
when you abandon one. There are, however, certain issues that have not yet been

addressed in the hierarchical planning paradigm and will serve to focus work in the
coming years. The most important of these concerns a basic distinction between
tasks that involve the control of uncertain, changing processes (e.g., the coordination

of actions for catching a flying object [6]) and the predictable, static tasks that have
dominated planning for the last two decades. Given that most domains do not
allow making detailed predictions, recognizing and responding quickly to situations
is probably the most important issue determining the course of future research.

Already a number of researchers have begun to suggest approaches to dealing with
such control issues [1] [2] [13].

7.4 Final Word

Traditional hierarchical planning is not the solution to every problem. In particular,
hierarchical planning does not directly address the control issues that dominate in

designing autonomous robots. Traditional hierarchical planning is primarily con-
cerned with complex combinatorial problems and FORBIN constitutes a solution to
several of the representational problems that have limited its application in the past. %
In addition, FORBIN demonstrates how the prediction problem can be partitioned
in a reasonable way. In order to be useful, FORBIN requires a great deal of domain%
specific knowledge which is exactly what one would expect given the combinatorial

nature of the problems that FORBIN seeks to solve. It is our contention that any
further substantive extensions to the theory of hierarchical planning will involve
(i) considerable use of domain knowledge, (ii) an important heuristic component,
and (iii) a meaningful characterization of the incompleteness that results from using
the heuristics embedded in the system. FORBIN provides a useful framework for

exploring such extensions.

50N

V

p

I-

'a

.5

I,
'5

*5q

N

60 a

.C,.t - 'IPV 4 ,~s~J: .PJ***?.*....

References

1. Brooks, Rodney A., A Robust Layered Control System for a Mobile Robot,

A.I. Memo No. 864, MIT Al Laboratory, 1985.

2. Chapman, David, and Phil Agre, Abstract Reasoning as Emergent from Con-

crete Activity, in Georgeff, Michael P. and Lansky, Amy L. (Eds.), The 1986

Workshop on Reasoning about Actions and Plans, (Morgan-Kaufman 1987).

3. Chapman, David, Planning for Conjunctive Goals, Artificial Intelligence 33

(1987).

4. Cheeseman, Peter, A Representation of Time for Automatic Planning, Pro-

ceedings IEEE Int. Conf. on Robotics, IEEE, 1984.

5. Dean, Thomas, Temporal Imagery: An Approach to Reasoning about Time for

Planning and Problem Solving, Technical Report 433, Yale University Com-

puter Science Department, 1985.

6. Donner, Marc D. and David H. Jameson, A real-time juggling robot, IBM

Research Report RC 12111 (54549), 1986.

7. Ernst, G. and Allen Newell, GPS: A Case Study in Generality and Problem

Solving, (Academic Press, New York, 1969).

8. Fikes, Richard and Nils J. Nilsson, STRIPS: A new approach to the application

of theorem proving to problem solving, Artificial Intelligence 2 (1971) 189-208.

9. Fox, M.S., and Stephen Smith, ISIS: A Knowledge-Based System for Factory

Scheduling, Expert Systems 1 (1984) 25-49.

10. McDermott, Drew V., Flexibility and Efficiency in a Computer Program for

Designing Circuits, Technical Report 402, MIT Al Laboratory, 1977.

11. McDermott, Drew V., The DUCK Manual, Technical Report 399. Yale Uni-

versity Computer Science Department, 1985.

12. Miller, David P., Planning by Search Through Simulations, Technical Report

423, Yale University Computer Science Department, 1985.

13. Rosenschein, Stanley J. and Leslie Pack Kaelbling, The Synthesis of Digital

Machines with Provable Epistemic Properties, in Halpern, Joseph Y. (Ed.).

Theoretical Aspects of Reasoning about Knowledge, Proceedings of the 1986

Conference, (Morgan-Kaufman 1987). 1

61

'" - .-- 4'-"r -s.'. a. ,', a *n * , a- -" -" ," * *-....

14. Sacerdoti, Earl, A Structure for PLans and Behavior (American Elsevier Pub-

lishing Company, Inc., 1977).

15. Tate, Austin, Generating Project Networks, Proceedings IJCAI 5, Cambridge,

Ma., IJCAI, 1977.

16. Vere, Steven, Planning in Time: Windows and Durations for Activities and

Goals, IEEE Transactions on Pattern Analysis and Machine Intelligence 5

(1983) 246-267.

17. Wilkins, David E., Recovering from execution errors in SIPE, Computational

Intelligence, 1(1), (February 1985), 33-45.

62

1I

A The FORBIN Factory Domain

The FORBIN planner is a general purpose system, but for illustration we will present

examples from a small automated factory domain. The factory consists of an auto-

matic lathe, a storage area and a robot operator that builds widgets and gizmos and

places them in the storage area (see Figure 18). Making either a widget or gizmo

requires the robot to carry out the following steps:

1. Make sure the correct bit is in the lathe.

2. Start the lathe and let it run until finished (11 units of time for a gizmo and

14 units for a widget).

3. Remove the finished item from the lathe hopper.

4. Place the item on the correct shelf.

There are three primitive actions, get, put, push each taking one unit of time

to complete and requiring the use of one of the robot's hands. The robot has two

hands, each of which can carry one item or be used to operate a control. The robot

can travel throughout the factory at a fixed velocity and the travel times between

the various work stations are given in Table 2. A typical problem is to construct

a number of widgets and gizmos where some of each must be done within specific

deadlines. .-

This factory differs from typical job-shop factories like those handled by the Isis

program [9] in two important respects. First, a complete "job" does not travel from

workstation to workstation as a single entity (eg., not all of the widgets in an order

need to be turned on the lathe before any can be moved to the storage shelves) and
second, the travcl time of the robot from one place in the factory to another can be

a significant part of the overall factory production time.

This domain illustrates the importance of temporal representation and plan effi-

ciency issues that have not been adequately handled by previous planning systems.

63

L'

CnrlTool Area Gizmo

Figure 18: Layout of the Factory

_______Hopper Chuck Control Rack Widget Gizmo

Hopper 0 2 3 3 5 6

Chuck 2 0 1 3 5 5

Control 3 1 0 3 6 5

Rack 3 3 3 0 3 3

Widget 5 5 6 3 0 2

Gizmo 6 5 5 3 2 0

Table 2: Travel Times in the Factory

64 -

B The FORBIN Factory Task Expansion Library

This appendix contains all of the task expansion methods referenced in Section 6

of the text. These methods are supplied for the sake of completeness. The world

physics and task descriptors for this domain are supplied in appendix C.

*--(MAKE ?TYPE)--

(DEFINE-METHOD MAKE
(TASK (MAKE ?TYPE))
(UTILITY 1.0)
(ASSUMPTIONS nil)
(SUBTASKS

(TI (GENERATE ?TYPE SNEW-THING)

(CREATE ?TYPE $NEW-THING) FOR T2)
(T2 (MOVE $NEW-THING (LOC-OF SHELF ?TYPE))

(ACHIEVE (LOCATION $NEW-THING (LOC-OF SHELF ?TYPE))))))

(DEFINE-METHOD GENERATE
(TASK (GENERATE ?TYPE ?THING))
(UTILITY 1.0)
(ASSUMPTIONS

(RESERVE (BEGIN *SELF*) (END *SELF*) LATHE ?LATHE (NAME *SELF*)))
(SJBTASKS

(TI (SETUP-LATHE ?LATHE ?TYPE)
(ACHIEVE (READY ?LATHE ?TYPE)) FOR T2)

(T2 (RUN-LATHE ?LATHE ?TYPE)

(CREATE ?TYPE ?THING)
(ACHIEVE (LOCATION ?THING (LOC-OF HOPPER ?LATHE))))))

6S

65

(SETUP-LATHE ?LATHE ?TYPE)

(DEFINE-METHOD SETUP- LATHE

(TASK (SETUP-LATHE ?LATHE ?TYPE))

(UTILITY 1.0)

(ASSUMPTIONS

(TT (BEGIN *SELF*) (BEGIN *SELF*)
(LOCATION (BIT-FOR ?TYPE) ?LOCI)))

(SUBTASKS
(T1 (GET (BIT-FOR ?TYPE) ?LOCI)

(ACHIEVE (HAVE *ME* (BIT-FOR ?TYPE))) <FOR T2)

(T2 (INSTALL-BIT (BIT-FOR ?TYPE) ?LATHE)
(ACHIEVE (READY ?LATHE ?TYPE)))))

(RUN-LATHE ?LATHE ?TYPE) --

(DEFINE-METHOD RUN-LATHE
(TASK (RUN-LATHE ?LATHE ?TYPE))

(UTILITY 1.0)
(ASSUMPTIONS nil)
(SUBTASKS

(TI (PUSH (BUTTON ?TYPE) (LOC-OF CONTROL ?LATHE)) FOR T2)

(T2 (WAIT (TIME ?TYPE)))))

(INSTALL-BIT ?BIT ?LATHE) --

(DEFINE-METHOD INSTALL-i

(TASK (INSTALL-BIT ?BIT ?LATHE))
(UTILITY 2.0)
(ASSUMPTIONS

(TT (BEGIN *SELF*) (BEGIN *SELF*) (BIT ?LATHE ?OTHER-BIT))

:NOT ?OTHER-BIT BIT)

(NOT ?OTHER-BIT NONE))
(SUBTASKS

(Ti (REMOVE-BIT ?OTHER-BIT ?LATHE) "
(ACHIEVE (BIT ?LATHE NONE)) <FOR T2)

(T2 (PUT ?BIT (LOC-OF CHUCK ?LATHE))

(ACHIEVE (BIT ?LATHE ?BIT)))))

N

66°

"o,

* I. 4 - - - ---- - - .

(DEFINE-METHOD INSTALL-2

(TASK (INSTALL-BIT ?BIT ?LATHE))

(UTILITY 1.0)
(ASSUMPTIONS

(TT (BEGIN *SELF*) (BEGIN *SELF*) (BIT ?LATHE NONE)))

(SUBTASKS
(TI (PUT ?BIT (LOC-OF CHUCK ?LATHE))

(ACHIEVE (BIT ?LATHE ?BIT)))))

-- (REMOVE-BIT ?BIT ?LATHE) --

(DEFINE-METHOD REMOVE-BIT

(TASK (REMOVE-BIT (BIT-FOR ?TYPE) ?LATHE))

(UTILITY 1.0)

(ASSUMPTIONS nil)

(SUBTASKS
(Ti (GET (BIT-FOR ?TYPE) (LOC-OF CHUCK ?LATHE))

(ACHIEVE (HAVE *ME* ?BIT)) FOR T2)

(T2 (PUT (BIT-FOR ?TYPE) (LOC-OF BIT-RACK ?TYPE))
(ACHIEVE (LOCATION (BIT-FOR ?TYPE)

(LOC-OF BIT-RACK ?TYPE))) FOR>)))

- - (MOVE ?THING ?FINISH)

(DEFINE-METHOD MOVE

(TASK (MOVE ?THING ?FINISH))

(UTILITY 1.0)

(ASSUMPTIONS
(TT (BEGIN *SELF*) (BEGIN *SELF*) (LOCATION ?THING ?START)))

(SUBTASKS

(TI (GET ?THING ?START)

(ACHIEVE (HAVE *ME* ?THING)) FOR T2)

(T2 (PUT ?THING ?FINISH)

(ACHIEVE (LOCATION ?THING ?FINISH)))))

67

e , .p

68

.

C The FORBIN Factory Causal Theory

This appendix contains the causal theory declarations necessary to complete the

domain zpecific knowledge FORBIN uses in the factory domain.

; Fact declarations:

(DECLARE-FACT (BIT ?lathe ?bit))
(DECLARE-FACT (READY ?lathe ?type))
(DECLARE-FACT (LOCATION ?thing ?place))

(DECLARE-FACT (HAVE ?robot ?thing))

; CLipping rules:

(DECLARE-CLIP (BIT ?lathe ?bit) (BIT ?lathe ?other)
(NOT (- ?bit ?other)))

(DECLARE-CLIP (READY ?lather ?typel) (READY ?lathe ?type2)
(NOT (- ?typel ?type2)))

(DECLARE-CLIP (LOCATION ?thing ?placel) (LOCATION ?thing ?place2)
(NOT (- ?placel ?place2)))

(DECLARE-CLIP (HAVE ?robot ?thing) (LOCATION ?thing ?place)
(NOT (- ?robot ?place)))

; State declarations:

(DECLARE-STATE POSITION
(MOVE (LAMBDA (ORIG DEST TIME) T)) 1

(DELAY (LAMBDA (ORIG DEST TIME)
(LOOKUP-TRAVEL-TIME ORIG DEST)))

(UPDATE (LAMBDA (ORIG DEST TIME)
(ACTION (ROBOT-MOVE-TO DEST))
DEST)))

; Pools of objects to be referenced:

(DECLARE-POOL LATHE (LATHE-A LATHE-B))

(DECLARE-POOL WIDGET ()
(DECLARE-POOL GIZMO ()

69

...........

Task Descriptors:

(TASK-DESCRIPTOR

(TASK (MAKE ?TYPE))
(ESTIMATED-DURATION 21.0 37.0)
(EXPECTED-STATES

0)
(EXPECTED-FACTS

0))

(TASK-DESCRIPTOR
(TASK (GENERATE ?TYPE ?NAME))
(ESTIMATED-DURATION 17.0 31.0)
(EXPECTED- STATES

0)
(EXPECTED-FACTS

0))

(TASK-DESCRIPTOR
(TASK (SETUP-LATHE ?TYPE))
(ESTIMATED-DURATION 5.0 6.0)
(EXPECTED -STATES

(END (POSITION (CHUCK ?LATHE)
(EXPECTED-FACTS

(READY ?LATHE ?TYPE)

(BIT ?LATHE (BIT-FOR ?TYPE))

(LOCATION *ME* (LUC-OF CHUCK ?LATHE))))

(TASK-DESCRIPTOR

(TASK (INSTALL-BIT ?BIT ?LATHE))

(ESTIMATED-DURATION 1.0 2.0)

(EXPECTED -STATES

0)
(EXPECTED -FACTS

(BIT ?LATHE ?BIT)))

70

N~ www wwxWWUWWUU Wig WIWWt,.aU

(TASK-DESCRIPTOR

(TASK (REMOVE-BIT ?BIT ?LATHE))
(ESTIMATED-DURATION 1.0 2.0)

(EXPECTED-STATES

)
(EXPECTED-FACTS

0))

(TASK-DESCRIPTOR

(TASK (RUN-LATHE ?LATHE ?TYPE))
(ESTIMATED-DURATION 12.0 14.0)
(EXPECTED-STATES

(START (POSITION (CONTROL ?LATHE))))

(EXPECTED-FACTS

0))

(TASK-DESCRIPTOR
(TASK (MOVE ?THING ?FINISH))
(ESTIMATED-DURATION 7.0 8.0)

(EXPECTED-STATES

(START (POSITION (HOPPER ?LATHE)))
(END (POSITION (SHELF ?TYPE))))

(EXPECTED-FACTS

(LOCATION ?THING ?FINISH)
(LOCATION *ME* ?FINISH)))

; -- PRIMITIVES --

(TASK-DESCRIPTOR

(TASK-PRIMITIVE (GET ?THING ?PLACE))
(ESTIMATED-DURATION 1.0 1.0)

(EXPECTED-STATES
(START (POSITION ?PLACE)))

(EXPECTED-FACTS
(HAVE *ME* ?THING)
(LOCATION *ME* ?PLACE)))

71 '

r:

(TASK-DESCRIPTOR

(TASK-PRIMITIVE (PUT ?THING ?PLACE))

(ESTIMATED-DURATION 1.0 1.0)

(EXPECTED-STATES
(START (POSITION ?PLACE)))

(EXPECTED-FACTS
(LOCATION ?THING ?PLACE)

(LOCATION *ME* ?PLACE)))

(TASK-DESCRIPTOR

(TASK-PRIMITIVE (PUSH ?BUTTON ?PLACE))

(ESTIMATED-DURATION 1.0 1.0)
(EXPECTED-STATES

(START (POSITION ?PLACE))) ..

(EXPECTED-FACTS
(LOCATION *ME* ?PLACE)))

(TASK-DESCRIPTOR
(TASK-PRIMITIVE (WAIT ?TIME))

(ESTIMATED-DURATION ?TIME ?TIME)

(EXPECTED-STATES
))

(EXPECTED-FACTS
0))

72 'J

MS 4~ * 55. % . .

I

I

-I

