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ABSTRACT

The secondary electron emission from a Scanning Electron

Microscope (SEM) was used to determine that the pore spaces of

seven sandstones and four dolomites exhibited fractal behavior

over certain length scales. Data from the SEM measurements

produced log-log plots that not only verified the fractal nature of

the rocks, but also allowed for the determination of their fractal

dimensions.

To model the transport properties of fractal lattices, a two

dimensional model known as the Sierpinski Carpet was used as a

starting point. Results developed by Sharma and Gupta (1987) for

the petrophysical properties of such fractal lattices, such as

porosity, permeability, capillary pressure. etc. are presented here.

Although the results cannot be directly compared with

experiments, the) demonstrate a methodology that can be applied to

three dimensional lattices as well.

A variation of a three dimensional fractal structure known as

the Menger Sponge was used to model the pore spaces in rocks in an

attempt to determine transport properties of rocks from fractal "

data. The fractal data on the rock samples obtained from the SEM
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was combined with corresponding core analysis data to test the

model. It was determined that the simple Menger Sponge was an

inadequate model for fractal pore space within rocks as it estimated

porosity values much higher than those commonly encountered in

rock samples. However, a modified version of this model showed

potential for accurately representing the pore space of rocks as it

produced porosity values that were in the same range as those of the

rock samples.
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Chapter 1

Introduction

The conceptual ideas behind fractal geometry have been

known for quite some time. As early as the 1920's, mathematicians

such as Cantor, Peano and many others developed some of the

mathematical concepts that set the foundation for fractal theory

(Mandelbrot 1983). Many of these concepts were merely expanded

versions of old ideas; however, much of the thought was

completely revolutionary. It was not until 1975 that Mandelbrot

brought forth his idea of a fractal dimension. Since that time, the

popularity of fractals has increased significantly. The available

literature on the subject has grown exponentially through published

books, journals and other professional papers. It seems as if we are

just beginning to understand the concepts behind fractals and their

importance in almost every aspect of science and nature. In fact, it

is now apparent that fractal forms are much more common and

more useful that anyone had first anticipated.

Studies have recently shown that fractal forms occur quite

often in many engineering practices, and that they can be modeled %

and utilized to help explain many natural phenomena. For

example, Winslow (1985) conducted experiments with cement

pastes and discovered that the surfaces of these pastes are fractals.
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Furthermore, this fractal nature of cement paste explained many of

the anomalies observed in previous vapor sorption experiments.

This fractal property of cement may also have future implications

in the construction industry where it is often used in the

construction of buildings, walls, walkways, etc. There could

possibly be a relationship between the fractal dimension of the

cement surface and the strength and adhesive properties of the

cement.

Van Damme, Obrecht, Levitz, Gatineau and Laroche (1986)

conducted experiments with clay slurries and discovered that the

interface between injected water and clay slurries formed a fractal

boundary. This fractal interface may have some far reaching

implications in the Petroleum industry. Nearly all drilling fluids

used in drilling operations contain a mixture of clay and water.

The fractal boundary between these two substances may prove to be

significant in drilling operations. In addition, the filtrate from the

drilling mud usually invades the adjacent formation during drilling
_-p

operations causing a change in the formation petrophysical

properties near the wellbore. In formations containing high

percentages of clays, the filtrate from the drilling mud will most

likely come into contact with these clays. Since the water/clay

boundary has been shown to be a fractal, there may be a connection
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between the fractal nature of this boundary and the petrophysical

properties of the invaded zone.

Many others have also investigated the properties of fractals,

and the results are very interesting. Jacquin and Adler (1985)

discovered that the interface between the gas phase and the liquid

phase in a displacement process is of a fractal nature. This fact

could prove to be very significant in many of the enhanced oil

recovery processes that involve the displacement of oil and water

by a gas (i.e. steamfloods, carbon dioxide floods, etc.). Pentland

(1983) used the concepts fractals combined with computer graphic

techniques to create three dimensional models of structures

containing fractal surfaces.

These are only a few examples of the significance of fractal
Z.

figures in the areas of science and engineering. A more complete

discussion of applications of fractals is deferred to a later chapter.

This thesis will investigate the application of fractal concepts

to reservoir rocks. The first goal is to determine whether or not

some well known reservoir rocks exhibit fractal behavior. This

will be determined through appropriate measurements made on a

Scanning Electron Microscope (SEM). The second goal of this

thesis is to be able to accurately measure the fractal dimension of

these rocks (if they indeed are fractals) using the SENI

measurements. The final goal is to use this fractal property of

I
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rocks to obtain a better description of the rock in terms of its

petrophysical properties. The fractal models used here are the

Sierpinski Carpet (in two dimensions) and the Menger Sponge (in

three dimensions).
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Chapter 2

Definition of Fractal

The term "fractal" was coined by Benoit Mandelbrot in the

1970's to represent dimensions that are non-integers. Mandelbrot

(1983) defined a fractal as" a set for which the Hausdorff

Besicovitch dimension strictly exceeds the topological dimension".

Although this definition may be correct, it is not the easiest way to

understand the concept of fractals. There are man) ways to define

the "fractal dimension". The purely geometric interpretation of

fractals provides perhaps the best illustration. One method of

explaining fractal surfaces is to compare them with Euclidean

surfaces.

In conventional Euclidean geometry, forms can be grouped

into points, lines, surfaces and volumes, and each form has a

characteristic number of dimensions to describe it. For example, a

point has no dimensions, a line has one dimension, a plane has t\\o. 

and a volume has three (see Figure 2-1). These forms are also

considered to be smooth (everywhere differentiable) and of finite

length, area, etc. However, in reality, forms are not so simple.

Nearly all forms have some surface roughness, and when viewed at
5 i'
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SI

A point: zero dimensions

A line: one dimension

A plane: two dimensions

4

A sphere: three dimensions

Figure 2-1: Examples of Euclidean geometrical shapes.
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higher and higher magnifications, these surfaces may appear as a

series of" peaks and valleys".

Examine a piece of sanded wood for instance. Initially, it

may appear that the wood is smooth, but examination at a higher

magnification will reveal a very rough surface filled with these so

called peaks and valleys. If the magnification were continually

increased, it may be discovered that these peaks may themselves be

composed of even smaller peaks. If this process were to continue at

all levels of magnification. the surface would be discontinuous

everywhere and have infinite area!

In order to be classified as a self-similar fractal, the structure

and general appearance of these smaller peaks and valleys must

remain the same as the larger ones. Thus, a form must appear the

same or similar at high magnifications as it does at low

magnifications. For instance, a desert scene in the middle of Death

Valley, California may possess this characteristic. The basic

texture of the desert floor appears approximately the same from

30,000 feet in the air as it does from the ground. From the air, the

many dried up creekbeds and lakebeds appear very similar to the

smaller mudcracks observed by someone standing near the desert

floor. In addition, the desert floor most likely appears similar

when observed at even higher magnifications due to the properties

of the soil present. Thus, the desert landscape could possibly be a

p~~~~~ % % % %***%*******% ~..



fractal due to its repetitive nature at many different levels of

magnification. However, it would most likely be considered only

approximately self-similar, since the desert does not appear ctly

the same at all levels of magnification.

Not all irregular shapes possess this self-similar

characteristic. Some shapes may only exhibit this behavior over a

specific range of magnifications, and can therefore be considered

self-similar fractals for that range. For magnifications above or

below that range of magnifications, the shape can be considered

Euclidean in nature.

It is possible that a shape may be considered a fractal, but

still not possess the self-similarity previously described. Such

shapes are called random fractals. Random fractals are shapes that

still possess the fractal nature, but they do not have the self-

similarity trait that was just discussed. When these types of shapes

are observed at different magnifications, they appear generally the

same, except the peaks and valleys do not look exactly the same at

all magnifications. It may be possible that the characteristic shapes

observed at one magnification were formed in a probabilistic

manner. Hence, the minor difference in appearance. These types

of fractal surfaces are not as well studied as self-similar fractals.

Obviously, forms with fractal characteristics cannot be

adequately described by the concepts of Euclidean geometry alone.

h
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9

The concepts of fractal geometry allow for a quantitative

description of irregular forms that do not have smooth edges and

surfaces. The concepts of points, lines, surfaces and volumes in

one, two or three dimensions are still valid in fractal geometry;

however, they are allowed to have non-integer dimensions, and the

amount by which a fractal form's dimension exceeds its Euclidean

counterpart is a measure of its irregularity. For instance, a line

with a fractal dimension of 1.7 is more irregular than a line with a

fractal dimension of 1.3, and both are more irregular than the

Euclidean line of dimension 1.

A simple example in one dimension may help to clarify these

concepts. Consider the line in Figure 2-2(a). Clearly this line has a

dimension of one, if it assumed that it is perfectly straight between

the endpoints. In Figure 2-2(b) the line is made more irregular by

dividing it up into eight line segments, each of which is 1/4 the

original length of the line. Although the distance between the

endpoints has not changed, the total length of the line has increased

from a length of one to a length of 8 x (1/4) = 2. If the eight line

segments are again divided up in the exact same way, the individual

line segments get smaller, and the total length increases again (see
' i., .'

Figure 2-2(c)). If this process were continued indefinitely, the

length of the line segments would approach zero, and the total

length of the curve would approach infinity! A curve of this nature

.. . . I,_ Z;! z
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(a)

(b)

(C)

Figure 2-2: Example of a fractal line.
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would be considered a self-similar fractal, because its wiggles

repeat themselves at all levels of magnification. The relationship

between the total length, L(r), and the fractal dimension is

r = r(D-1) (2.1)

where D is the fractal dimension and r is the length of the line

segments used to measure the length of the curve. In Figure 2-2(b).

r=l/4, because the line was divided up into line segments that are

equal to 1/4 the length of the original line. A log-log plot of L(r) vs

r results in a straight line with slope equal to 1-D. Figure 2-3 is an

example of such a plot. For the curve shown in Figure (2-2),

D=1.5.

Numerous fractal curves, such as the curve in Figure 1, can

be constructed manually through the use of an "initiator" and a
"generator". An initiator may be any curve, surface, or volume

that is used to establish the general shape of the fractal form. The

generator, on the other hand, is the fractal portion of the curve

which is repeated at all magnifications. The initiator is combined

with the generator by replacing specific portions of the initiator

with the shape of the generator. For the fractal in Figure 1, the

straight line in Figure 2-2(a) is the initiator, because it is the shape

used to start, or initiate the curve. The shape in Figure 2-2(b) is the

.tn.'.,-,-. .,, .dc.'. .,','-'. .-. ,'-'.'.'.-k,' .-. , . f.-,'V. 5'.--'-, - ':'" ."-."-.". " .* ". -. -,_., . %."...",, :-
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Log (L) vs Log (r)

0.7'

m=-O.5

0.6- D=1.5

0.5-

0.4-

0.3'_
-1.4 -1.2 .1.0 -0.8 -0.6

log(r)

Figure 2-3: Log-log plot of L(r) vs r. Note that the slope

of the line is equal to 1-D.
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generator, because it is used to modify the initiator to form the

fractal curve. Figure 2-2(b) is an example of the line after the

generator is inserted in place of the original line. As this process is

repeated, each line segment of the curve must be replaced (in

proper proportion) with the shape of the generator. Thus, the

curve very quickly becomes a series of smaller and smaller line

segments combined to form a unique pattern. Figure 2-2(c) is an

example of the curve after this process has been repeated twice. As

stated earlier, the curve becomes a fractal as the process is

continuously repeated to all length scales.

The fractal dimension of a manually generated fractal is a

function of only N and r, where N is the number of segments of

length r replacing the original line segment. The actual formula is

log ND = log 1r (2.2)

which is equivalent to the previous equation relating total length, ."
-p

fractal dimension, and segment length at any magnification. %

However, with this formula, only the shapes of the initiator and

generator are required to obtain the fractal dimension. The total .

length and individual segment lengths do not need to be known at

every magnification, but they can be easily calculated if desired. -

The fractal curves and surfaces that can be formed in this

:N"
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manner are practically limitless. They can take many different

forms in one, two, or three dimensions. Mandelbrot gives many

examples of such curves in his book The Fractal Geometry of

Nature (1983).

Figure 2-4 is another example of a generated fractal surface

in which the initiator is an equilateral triangle of side length b (see

Figure 2-4(a)), and the generator is made up of four line segments,

each of length b/r as shown in Figure 2-4(b). Each side of the

triangle is replaced with the generator, and the resulting form is

shown in Figure 2-4(c). As before, the process is continued

indefinitely so that the curve becomes self-similar at all

magnifications. Using the formula from above, the fractal

dimension of this curve is

log N _ g 1.2618 (2.3)
D = log 1/r -log 3 .6(3

Note that N = 4 and r = 1/3 since each side of the triangle is replaced

with four line segments of length 1/3 (of original line segment).

This curve was originally constructed by Helge Von Koch, and it is

called a triadic Koch Island.

The line in Figure 2-1 and the Koch Island in Figure 2-4 are

both examples of irregular forms that can be characterized as

fractals. Both curves have fractal dimensions greater than one and

-No-
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Initial Triangle

%i.

After first generation

f,

After second generation

Figure 2.4: Triadic Koch Island
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less than two. This range of fractal dimensions implies that the

curves are more irregular than a Euclidean line of dimension one,

and that the curves fill less area than a Euclidean planar surface of

dimension two. As stated earlier, fractals represent distributions

containing fractional dimensions somewhere between the

dimensions of conventional Euclidean geometry.

Thus far, only linear type fractals have been considered; 1,

however, fractal distributions can pertain to an area or volume as

well as a length. In fact, the more irregular a line, the higher the

fractal dimension, and the closer D becomes to two. In other

words, highly irregular lines become space filling and approach

planar figures rather than linear curves. It may be easier to model

highly irregular curves as Euclidean planes with some area

removed, rather than a line with a high degree of irregularity.

A similar analogy can be made for surfaces with fractal V ,

dimensions between two and three. These types of surfaces can be %

modeled as either conventional planar surfaces with a degree of

irregularity, or they can be modeled as Euclidean volumes with

some specific volume removed. Examine a piece of paper for

instance. At first glance, the paper may seem to be a very good

approximation of a planar surface of dimension two. It has length

and width, but relatively little depth. However, further

examination of the paper surface under high magnifications will

q
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reveal the strands of wood fiber used to construct the paper. At

these magnifications, the fibrous material will not appear planar at

all; rather, it will appear three dimensional with peaks and valleys

between the individual strands. Thus, a simple piece of paper could

possibly be a fractal surface for some range of magnifications.

Fractal or not, the paper will most definitely appear highly

irregular and not planar. Obviously, the surface would have a '

characteristic dimension somewhere between two and three.

Thus, another way to think of fractals is that they can be

modeled as lines, surfaces and volumes that do not entirely fill

space. In Euclidean geometry, a line fills all the space between the

two endpoints and has a dimension of one. However, a fractal line

can be created that has a fractal dimension less than one by'

removing regular intervals of the line as shown in Figure 2-5. This

type of line is a special type of fractal, because it has a fractal

dimension less than one, and it is called a Cantor set. (Mandelbrot

1983). Similarly, a Euclidean plane is a surface with only length .

and width, and it has all of the area filled in between the boundaries.

On the other hand, some fractal surfaces can be modeled as planar

surfaces with some interval of area removed. These fractal

surfaces have fractal dimensions between one and two.

The Sierpinski Carpet in Figure 2-6 is an example of such a

surface. It is formed by dividing a square into b2 smaller squares *
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Figure 2-5: Cantor Set with fractal dimension 
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Figure 2-6: Sierpinski Carpet with b=8, c=4. and
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as shown. Then, by removing c2 of these squares, a surface is

formed that has some finite amount of area removed. This process

is continuously repeated so that the resulting surface is a fractal

with dimension

2 2p

D = log (b 2 -c 2 ) (2.4)log b

In the same manner, some fractal volumes can be modeled a,.

Euclidean volumes with some finite amount of space removed.

These volumes %ill have fractal dimensions between t.o and three

compared to Euclidean volumes of dimension three. One such

example is the Menger Sponge shovkn in Figure 2-7. It is formed in

a manner very similar to the Sierpinski carpet, except that it is three

dimensional rather than tv,'o dimensional. A cube is divided into a

series of smaller cubes each of side 1 'b and volume I '3. Then. as

in the Sierpinski carpet, some of the cubes are removed in some

regular pattern to form a void space within the structure. Thi,-

process is repeated indefinitely so that the volume becomes a fractal

lattice.

Although only squares and lines vxere used to create these

fractal forms, it is evident that any regular shape (triangles.

rectangles, circles. etc.) can be used. As stated earlier. fractals

can be thought of as either Euclidean figures (lines. planes. or

W, .or,,.", e,
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volumes) that become more irregular as the fractal dimension

increases, or they can be thought of as Euclidean figures that do not

completely fill space. Whichever model is used, the concepts of

fractals still remain the same and are characterized by a relation

between a number density, N, and a scale, r, in the form

N = rf(D) (2.5)

where f(D) is some function of the fractal dimension.

Thus far, only man-made fractal forms have been discussed.

The irregular line, the Koch Island, the Sierpinski carpet and the

Menger sponge are all exact fractal forms generated through the

principles of fractal geometry. However, fractal forms abound in

nature. Mountains, for example, are not cones formed in perfect

regular patterns. They are rugged, irregular surfaces that can vary

greatly in size and shape. These same mountains may also exhibit a

high degree of self-similarity when examined at different length

scales. In fact. most mountains are self-similar over some range

The surfaces of rocks tend to look the same when viewed from afar

or viewed closeup, and they will usually appear the same even when

observed at length scales over several orders of magnitude. It is

this characteristic of rocks that give mountains their fractal :

properties.

On a similar note, clouds are not perfect spheres, lightning

.:-9
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does not form regular patterns and coastlines are not straight lines.

Just a casual glance towards the sky will reveal the highly irregular

nature of clouds. The general shape of a cloud is usually not

circular, and the edges are usually very irregular. This fact implies P-NO

that a cloud is definitely not a regular form and may indeed be a

fractal for some range of length scale. Lightning and coastlines are

both similar to clouds in that they are irregular forms that may

very well exhibit fractal behavior. These are only a few of the %

natural forms that exhibit fractal behavior, but there are

undoubtedly many more. In fact, most of the forms in nature are

not regular and probably exhibit fractal behavior over some length

scale.

Although these surfaces do have characteristic fractal

dimensions to describe the degree of irregularity, these fractal

dimensions may be very difficult to measure. These figures have

no characteristic initiators and generators that can be used to

determine the fractal dimensions through mathematical formulas.

The only way to determine the fractal dimension of such figures is

to establish relationships between the lengths, areas or volumes

over various ranges and obtain a log-log plot of density vs scale.

The slope of this graph will be related to the fractal dimension in

some way depending on the type of fractal form and the type

measurements made. In the line of Figure 2-1, the slope of log L vs
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log r is equal to -(D-1) where D is the fractal dimension. The

relationship may be slightly different when measuring surface

areas or volumes. Thus, the fractal dimensions of manually

generated fractals can be determined through mathematical

formulas before the surface is generated, whereas the fractal

dimensions of naturally occurring fractals must be determined

through some type of density measurements made over a variety of

scale ranges.

N.
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Chapter 3

Measurement of Fractal Dimension

3.1 Manual Methods of Measurement

Since fractal shapes can take many forms (i.e. lines, surfaces,

volumes etc.), there are many different ways to measure their

fractal dimensions. As stated earlier, fractal dimensions are related

to some type of density measurements made over a range of length

scales. Hence, methods must be developed for observing fractal

forms at these different scales and for making the proper density

measurements. These methods can be quite different depending on

the type of fractal form involved. For example, the measurement

for a fractal line requires that the length of the line be measured /5',
using different length scales, while the measurement for a fractal

surface requires that the surface area be measured. In order to

observe these lengths and areas over more than one order of

magnitude, the figures must be observed at several magnifications.

So far many different methods have been developed for making the

required measurements.

One method of measuring fractal dimensions involves the use

of mathematical formulas based on the initiator/ generator model.

25
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This type of fractal figure has already been discussed in the

previous section. These formulas apply only to the fractals that are

generated through the use of an initiator and generator. The exact

shape of these types of figures is known at all levels of

magnifications, and the shape remains consistent over these ranges

as well. Hence, the formulas developed for these figures apply over

the entire range of self-similarity. For a line, the formula -

L(r) = r"(1 D) (3.1)

relates the fractal dimension to the selected values of L and r, which

were defined in Chapter 2. Since these values of L and r are pre-

selected before generating the fractal line, the fractal dimension is

actually predetermined for any particular figure and can be easily

changed by changing the values of L and r. .

In the above method, there were no experimental

measurements required to determine the fractal dimension of these

manually generated fractals. However, natural fractal forms ,,

require some kind of experimental measurements, because the

parameters L and r are not known. In addition, they may not be

exactly self-similar nor possess fractal properties over all length

scales. There are several kinds of measurements used to determine

L and r and the length scale over which the sample is a fractal.

The method of measuring the perimeter using line segments

A A
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of varying length scale can be applied to natural fractals. As an

example, it is desired to determine whether or not the coastline of

an island is a fractal. One could conceivably measure the length of

the coastline using different length scales. Start by using one mile

as the length scale and measure the length of the coastline in one ,1

mile increments. Obviously this length will not include the

numerous small features and irregularities that are smaller than one

mile. However, as the length scale is decreased to one half-mile,

one yard, one foot, one inch, etc., the resulting lengths of the

coastline will consistently increase as the smaller and smaller

irregularities (inlets, bays, estuaries, etc.) are included in the .,

measurements. A log-log plot of the total length vs the length scale

will result in a straight line if the coastline is a fractal. The slope of Z Z

this line will be related to the fractal dimension in a manner very

similar to the formula discussed previously. Theoretically, the

total length of the coastline would approach infinity as the length

scale used to measure it approached zero, provided the coastline

was a fractal over all length scales. In practice, there are definite

limitations on the length scales that can be used for making these

measurements (Mandelbrot 1983).

This same method can be applied to innumerable shapes and

figures that behave as fractals, provided that there is a means of
c. ... hmchanging the length scale and making the necessary measurements. ?.,
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Anything that has a fractal silhouette in two dimensional space can

be analyzed in this manner. For instance the pore space in a

reservoir rock appears to be a fractal when viewed in a thin section

Krohn (1987). The silhouette of a mountain or of a cloud also

appears to have this property Mandelbrot (1983). As long as the

magnification and the length scale can be changed, then the fractal -.6%-

dimension of these figures can be determined. Obviously the thin F-

section of a rock can be viewed at various magnifications. The

circumference of a pore space boundary can be measured at each

magnification by using some value of length to make the

measurements. As the magnification is continuously increased,

irregularities will appear that were not visible at lower

magnifications. Hence, the length of the pore space/ rock boundary

will increase with magnification due to the inclusion of these

irregularities. As before, a log-log plot of total length vs length

scale may result in a straight line from which the fractal dimension

can be determined. The technology currently exists to make these

types of measurements on very small outlines and boundaries as

well as on large ones. Thus, the fractal dimension of pore spaces

and mountains can be measured using basically the same method.

.;.,q
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3.2 Automated Methods of Measurement

Although it is possible to make all the necessary

measurements to determine the fractal dimension, it can be a very 4
cumbersome and tedious task to obtain the data manually.

However, computerized techniques have been developed to

automate the above procedure, thereby making the measurements

much easier to obtain. Many schemes have been developed to

computerize the process of counting lengths at various scales. Kaye

(1978) developed several computer-compatible strategies based on

image analysis software, and Flook (1978) developed another such

algorithm based on the use of a Quantimet 720 fitted with a 2D

Amender module. Kaye's methods were based on the process of

determining total length by counting the number of lengths r

required to complete the curve in question. However, Flook's

method was based on a slightly different approach in which r was

calculated by a method used by Cantor to "tame" non-differentiable

curves. In this method, the curve is considered a series of closely

spaced points. A series of overlapping circles of radius R is drawn

with their centers on each of the points of the curve as shown in

Figure 3-1. This series of circles describes a path of width 2R

around the length of the curve. The area of this curve divided by

S...,
.5..
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Figure 3-1: Example of Flook's Method.

o%.%

4



m,1

it's width gives an estimate of the total length of the curve. As R is

increased, the circles have a greater degree of overlap and obscure

more and more of the fine details of the curve so that the length

estimate of the curve will decrease. This process is very similar to

decreasing magnification so that the finer details of an object

become obscured, and only the larger details are observed. As with

the first method, a log-log plot of length vs R will result in a

straight line whose slope is related to the fractal dimension. This

entire process was computerized by Flook (1978) utilizing the 2D

Amender module to perform the dilation process that was just

described. The detector threshold was set for full detection of the

particle and the contiguity output from the detector was used as

input to the amender. The use of contiguity ensures that only the

common boundary points between detected and undetected video

are measured. The area of this dilated boundary was then measured

for increasing steps of dilation. Each dilated boundary area was

divided by the diameter of the dilation element to obtain the

perimeter estimate. The resulting values of the perimeter are used

to calculate the fractal dimension of the curve. Flook verified this

method by using it to determine the fractal dimension of some

known figures. First he used it to determine that the fractal

dimension of a Euclidean circle (which is everywhere

differentiable) is indeed unity. He also verified the fractal

Si
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dimension of the Triadic Koch Island and the Quadradic Koch

Island which are fractal curves of known fractal dimensions

(Mandelbrot 1983). -v

Schwarz and Exner (1980) also developed a computerized %

technique to measure fractal dimensions. This technique is based

on the use of a semi-automatic image analyzer combined with

digitizing tablets. It works by tracing the profile of the image

under investigation with a cursor, and then transferring the

coordinates of the profile points into a microprocessor. From these

coordinates, conventional software is used to transform these points

into characteristic parameters of the curve such as area, perimeter,

shape factor, etc. In addition, the computer can determine the

fractal dimension of this curve in a manner similar to that already

discussed. It automatically calculates the length of the curve for

any given value of length scale. Initially, a starting point is chosen

somewhere on the curve. The computer then determines the

coordinates of the point which is a distance equal to the length scale

from the starting point (see Figure 3-2). The next point is found in

a similar manner, and the process is continued until the starting

point is reached again. The total length of the curve is thenii

calculated by multiplying the number of points times the length

scale. As before, the length of the curve increases as the length

scale decreases, because the small irregularities begin to show up, %

.%
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Figure 3-2: Example of computerized technique.
Computer selects each point by locating the coordinates --

of the point which is a distance L from the previous
point.
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and a log-log plot of curve length vs length scale results in straight

line with the slope related to the fractal dimension.

Schwarz and Exner (1980) also verified this method by

measuring the fractal dimensions of some known curves and

comparing the results to results obtained by Flook (1978) and

Koch. This comparison showed that this automated method

accurately measures the fractal dimension of curves. It must be

pointed out that this method can only be used on curves that can be

traced by the computer and digitized into a set of coordinates.

Thus, the difficult part of this method may be finding a way to

digitize the curve. In addition, this method is only accurate for a

particular range of length scales, which is limited by the resolution

of the equipment.

3.3 X-Ray Scattering

It has also been found that small angle X-ray scattering can

be used to measure the fractal dimension of porous materials.

Winslow (1985) demonstrated the use of this method by measuring

the fractal dimension of cement pastes. When X-rays are passed

through porous materials, they are scattered at small angles that are

related to the intensity of the scattered radiation. Porod (1951)

demonstrated that intensity decreases with the negative third power I
~d' .N
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of the scattering angle (for a slit-collimated X-ray beam). It is

assumed that the material consists of two distinct phases, the solid

phase and the pore space. These two phases are assumed to be of

uniform electron density with sharp, abrupt interfaces.

However, it has been discovered that for some interfaces, the

intensity decreases at some power other than negative three.

Before the concept of fractals was introduced, it was thought that

these deviations from Porod's law were due to electron density

fluctuations and to the absence of a distinct interface. Since that

time, it has been shown that this deviation is expected if the

interface is a fractal. Furthermore, the amount of deviation can be

used to estimate the fractal dimension of the interface.

For small angle scattering, a transformed version of the

scattering angle is often used to describe the degree of scattering.

The transformed parameter, h, is defined as

47isin-
h - (3.2) ,

where X is the X-ray wavelength. Porod's law suggests that the

intensity, 1, should be proportional to h to the negative third

power. However, recent analysis of scattering from fractal

surfaces shows that the intensity is proportional to -(5-D), where

D is the fractal dimension of the surface. Thus, Porod's law is
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actually a simplified version of scattering where the surface is a

smooth Euclidean plane of dimension two. Therefore, this method

is used to measure the fractal dimension of surfaces with

dimensions between two and three. The other methods discussed

previously were only valid for curves with dimensions between one

and two.

.1 J

3.4 Adsorption of Molecules

Another method that has been developed for the
.5•5,i

measurement of fractal dimensions is the adsorption of molecules.

This method involves the adsorption of adsorbate molecules on the

surface of an adsorbent, thereby estimating the number of moles .

required to form a monolayer around the adsorbent. The surface

area of the adsorbent can be determined from this process, if the

molecular radius of the adsorbate molecules is known. Consider a

three dimensional surface with a surface area equal to A. Next,

consider a series of molecules of radius r packed tightly around this

surface, forming a monolayer. It has been shown by Pfeifer and

Avnir (1983) that the specific surface area (A) of the adsorbent is

given by

A a (2 "D/ 2) (3.3.
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where a is effective cross-sectional area of the adsorbate and D is

the fractal dimension. In order to experimentally obtain the fractal

dimension from this information, one must use a variety of '.

adsorbates (having different effective molecular cross-sectional

areas) to obtain a series of corresponding surface areas. This

process is equivalent to changing the length scale in the previous

methods, because each different adsorbate molecule will investigate

the surface with a different length scale. In the previous methods.

different total length values were obtained by altering the length

scale used to make the measurements. In this case, it is the effective

cross-sectional areas that are changed to obtain different total

surface areas. Figure 3-3 shows why the larger adsorbate

molecules result in a smaller surface area. Note how the larger -

molecules skip over the small irregularities in the curve, while the ,"

smaller molecules include these irregularities in the surface area

measurement. One important fact to note about this process is that
--.

each of the different adsorbate molecules used must be the same '

shape. These molecules do not have to be exactly spherical, but K

must be geometrically and chemically similar.

In a manner similar to the other methods, the fractal

dimension is obtained using a log-log plot of surface area, A, vs .,

effective cross-sectional area, a. This plot results in a straight line 4'

I4,
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Large adsorbate molecules of radius rl

,%..

Smaller adsorbate molecules of radius r2

Figure 3-3: Molecules of different sizes. Note how the
large molecules skip over the irregularities.
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relationship in which the slope of the line is equal to (2-D)/2. So

just as before, the slope of the characteristic log-log plot is related

to the fractal dimension.

Pfeifer and Avnir (1983) also showed that this process can be

used to determine the fractal dimension of a surface by changing

the grain size of the adsorbent and keeping the size of the adsorbate

molecules constant. Instead of probing a single surface with

yardsticks of varying size, he used a fixed yardstick to probe larger

and larger specimens of the same substrate. The theory is much the ..-

same as that for varying the size of the adsorbate molecules. If the

substance in question is considered to be a spheroid of radius R,

then it has been shown that

A o, RD ' 3  (3.4)

where A is the total surface area corresponding to a spheroid of

radius R. By increasing the size of the spheroid (and therefore

increasing R), one will obtain varying values of surface area.

Again, a log-log plot of surface area vs radius results in a straight

line whose slope is equal to D-3. As before, it is required that all of

the surfaces have essentially the same shape in order for the above

relationship to hold true (i.e. all adsorbent particles must be "-.

geometrically similar).
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Avnir, Farin and Pfeifer (1983) used the above method of

molecule adsorption to measure the fractal dimension of many

common substances such as carbon black, graphite, and crushed

glass. They found that this method seemed to be an accurate way to

measure the fractal dimension of such substances utilizing both the

concepts of varying adsorbate size and varying adsorbent size. It is

important to note that all of the tested materials had characteristic

surface areas that were large compared to the average reservoir

rock. Subsequent work by Gupta (1987) has shown that this

method is not very practical for the measurement of fractal

dimensions in common sandstones and carbonates, because the

surface areas of these rocks are not large enough show a clear

distinction between the areas obtained using different adsorbates.

I~
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3.5 Scanning Electron Microscope

Katz and Thompson (1985) developed a method for

measuring fractal dimensions which appears to be accurate for

measurements with reservoir rocks. They used the secondary

electron emission from a scanning electron microscope (SEM) to

identify surface features along a linear trace on the rock. They

found that there is a one-to-one correspondence between the

secondary electron intensity extrema and the edges of the surface --.

features that intersect the SEM trace. Thus, the number of surface

features is obtained by counting the number of peaks on the

secondary electron intensity output. Figure 3-4 is a sample of a

secondary electron intensity trace. Each of the jagged peaks

represents a surface feature on the rock surface

The fractal dimension is obtained by counting the number of
features at different magnifications and constructing a log-log plot

of the number of surface features vs the length scale. The length

scale is obtained by dividing the width of the SEM screen by the

magnification. The resulting number is the actual length of portion ..

of the rock currently visible on the SEM screen. Thus, the length

scale is different for each magnification. The log-log plot results in

A7 ,.
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Figure 3-4: Typical secondary electron intensity display
from an SEM. Each peak represents a surface feature.
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a straight line (if the rock is a fractal) for which the slope is equal to

2-D.

The important part of this procedure is obtaining a correct

count of the sur-ace features at each magnification. This task can be , ,,,

accomplished manually, but it requires good judgement to identify

which of the intensity peaks are caused by the presence of surface

features and which are caused by random noise. Some criteria must V.
be established in order to make this determination. To some extent.

this procedure is subjective, and the results may vary depending on

the individual making the measurements. However, as long as the

measurements are made consistently, the results are adequate to

determine the fractal dimension. 6 "

Krohn and Thompson (1986) automated this counting

process utilizing a digitizer and a low pass filter. The basic

procedure was the same with a couple of exceptions. First, the

SEM images for 18 to 20 different magnifications were digitized

using a digitizing system based on the Hewlett-Packard 9836C

computer. A digital low pass filter was then convolved with the

data in order to establish uniform resolution at all magnifications.

The number of features was automatically calculated, and a feature

histogram was created for each magnification. These histograms

were placed on log-log plots with the number of features plotted

against feature size. Just as in the manual method, the slope of the

1%,S. *'a
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resulting straight line was related to the fractal dimension. One

important fact about the automatic counting process was that the

computer distinguished between surface features and random noise

through the use of an amplitude threshold. This value was

programmed into the computer, so that the computer only selected

intensity values that exceeded this threshold value. This automated

technique allows for a much faster analysis of the SEM data. In the

experience of (1987), the automated technique does not provide a

significant advantage in terms of the measurement accuracy.
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Chapter 4

Experimental Procedure and Results

4.1 Summary

The Scanning Electron Microscope was used in this project

to make measurements on various reservoir rocks. Due to the lack

of necessary equipment for automated measurements, the manual

method previously described was used to make measurements on I

eleven different rocks. Measurements were made on seven

sandstone rocks, of which four were from the Frio formation in
',.

Louisiana, two were tight gas sandstones from the Travis Peak

formation in Texas, and one was a Berea sandstone from Ohio. The

other four samples were all dolomites from the San Andres

formation in West Texas. All but one of these samples was obtained

from the core repository at Balcones Research Center in Austin,

Texas.

4.2 Preparation of Rock Samples

IN
Before any measurements were made on the SEM, the

samples had to be properly prepared. Only a very small piece of

each sample (approximately I cubic cm) was required for the

45 .-
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measurements. Samples larger than this cannot be viewed on the

SEM. The samples were partially cut with a special saw and then

broken so that at least one of the faces of the rock was a fractured

surface. It was important that the measurements were made on the

fractured surface and not the cut surface, because the results of any

measurements made on the cut surface would not be representative

of the rock; rather, these results would identify properties of the

smooth and crushed grains. Once these samples were cut and

broken to the proper size, they were mounted to small aluminum

cylinders as shown in Figure 4-1. The samples were mounted with

a clear glue, similar to model glue.

In order for the samples to be observed in the SEM, the

surfaces of these samples had to be conductive. These samples were

made conductive by coating them with a thin layer of gold. This

layer of gold was deposited on the surface of the rock samples

through the ionization of gold particles inside a vacuum chamber.
This gold layer was thin enough (only a few angstroms) so that it

did not alter the surface features of the rock samples. Finally,

several stripes were painted down the side of each rock, from the

top surface to the point where the rock was connected to the

cylinder. A highly conductive, carbon based paint was used to

paint these stripes, and the purpose of the stripes was to insure good

electrical contact between the rock and the cylinder.

•PC I
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FRACTURED SURFACE

GLUE

ROCK SAMPLE

(zl1cubic cm)

ALUMINUM CYLINDER

CONDUCTIVE PAINT

Figure 4-1: Rock sample mounted to aluminum cylinder.
Note that the sample is I lcc and is not to scale.
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4.3 Intensity Measurements

After the samples had been prepared, as described above, they

were ready for observation in the SEM. Each sample was placed in

the SEM chamber and observed at a series of magnifications. The

actual visual image of the sample was observed as well as the

secondary electron emission intensity trace. As described in

Chapter 3, the number of surface features was determined at each

magnification by counting the number of peaks on the secondary

electron intensity emission trace. The number of surface features

and the corresponding length scales were recorded for each

magnification. Each sample was observed at approximately eleven A,

different magnifications ranging from approximately 25 - 30X to

as high as 21,OOOX, and the appropriate data was recorded each

time. This process was repeated at five different locations on each

sample to ensure that the "average" rock values were obtained. '

Care was always taken to ensure that the measured locations on the

surface of the samples were free of any large voids or irregularities

that could significantly alter the number of surface features on the

rock. In some cases, a set of photographs was taken of the visual

image of the rock overlain by the secondary electron emission

intensity trace (see photographs in Appendix A). A set of

%% 4 % F %" e "
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photographs consisted of a group of pictures taken at various
P

magnifications for one specific location on the sample.

Once the data was obtained, a log-log plot of the number of

features per centimeter vs. the length scale was plotted for each

rock using the combined data from all five locations. The best-fit

line was plotted through these points, and the fractal dimension of --

each sample was determined from the slopes of these lines.

.?,,

4.4 Results

Figures 4-2 through 4-12 at the end of this chapter are log- N.

log plots of surface features per centimeter vs length scale for the

eleven rock samples observed in the SEM. As seen from these
graphs, each set of data appears to have a straight line relationship %

over the length scales observed. As discussed in Chapter 3, the

straight line relationship indicates fractal behavior over the length

scale in question. Furthermore, the fractal dimension is related to

the slope of the line through the formula

m = 2-D (4.1)

where m is the slope of the line and D is the fractal dimension.

The least squares method of linear regression was used to

plot the best-fit straight line through the data points on the log-log

I,
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scale. In all samples, the regression was a good fit, indicating that

the data points do have a linear relationship when observed on a

log-log scale. Table 4-1 is a compilation of the results of the SEM

measurements along with the results of previous core analysis

obtained from Balcones Research Center in Austin, Texas. Table I

shows that the fractal dimension, D, varied from 2.58 to 2.75,

while the porosity and permeability of the samples varied from

6.8% to 28.5% and from .06 md to 2266 md respectively.

Two other plots, D vs porosity and D vs permeability, were

constructed in an attempt to find a simple correlation between the

fractal dimension and these two parameters. The results are shown

in Figures 4-13 and 4-14. These plots reveal the fact that there is no -

simple relationship between the fractal dimension and the other

parameters. The data points are highly scattered and there is no

pattern evident. This suggests that the relationship between the

fractal dimension and other petrophysical properties involves

additional parameters. The next chapter discusses what these

parameters might be.

% % e lop
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Table 4-1: Core Analysis Data

Porosity Permeability
Sample D Error (%) (md)

Berea SS 2.75 0.11 21 300 r.

Travis Peak SS 2.615 0.12 17.3 129
(7449.4 ft)'Si.

Travis Peak SS 2.58 0.13 6.9 0.06
(7456.3 ft)

Frio SS 2.72 0.107 28.5 2266
(9177.5 ft) 16.5
uncompacted

Frio SS 2.74 0.195 8.5 ---
(9177.5 ft) 11.2
compacted

Frio SS 2.70 0.089 21.7 1382
(9189.5 ft) 17.8
uncompacted

Frio SS 2.74 0.092 6.8 ----
(9189.5 ft) 8.5
compacted

San Andres dol. 2.61 0.092 17.6 302 (max)
(3350 ft)

San Andres dol. 2.64 0.089 12.3 0.09 (max)
(3414 ft)

San Andres dol. 2.66 0.121 14.9 56 (max)
(3464 ft)

San Andres dol. 2.64 0.114 15.6 3.0 (max)
(3492)

I.?

N'

Lakekze .5.
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4.5 Discussion

The results of the SEM measurements indicated that the rock

samples are fractals and that the range of fractal dimensions varied

between 2.58 and 2.75; however, these measurements did not

identify the upper and lower length scales, LI and L2, nor did they

indicate the percentage of fractal porosity in the pore space. In

addition, the measurement did not give any indication of the cause

of the fractal behavior exhibited by the rock samples. As

previously stated, the measurements made on the SEM could only

be used to verify the presence of fractal geometry and to

quantitatively measure the fractal dimension.

Additional work by others (Krohn and Thompson, 1986) has

shown that more data in addition to the SEM data is required to

obtain the upper and lower length scale limits of fractal geometry.

Katz and Thompson (1985) used optical correlation data along with

SEM data to estimate the value of L2 for various sedimentary

rocks. This method seemed to provide a fairly accurate value of L2

as it produced results consistent with known properties of the

rocks. They assumed a value of Li to be approximately 20

angstroms, which is the minimum size of a crystal nucleus in a pore

" "
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space. Knowing the values of L2 and LI, they calculated the

"fractal" porosity of the fractal pore space using the formula

A(L1/L2) 3 D (4.2)

where * is the fractal porosity , A= 1, and D is the fractal

dimension. The fractal porosity includes the contribution to the

pore volume from features with length scales between LI and L2.

Note that this fractal porosity may be different than the absolute

porosity of the rock, because most rocks are only fractals over a

limited length scale.

Krohn (1987a) verified that sedimentary rocks such as

sandstones contain two separate types of porosities, fractal porosity

and Euclidean porosity. She used both SEM data and thin section

data to verify that sandstones contained a pore volume distribution

with a short-length fractal regime and a long-length Euclidean

regime. The fractal pores were identified by a power-law

relationship in both types of measurements, while the Euclidean

pores demonstrated a lack of power-law behavior. Results showed

that two of the four rock samples were dominated by fractal

porosity and the other two were dominated by Euclidean porosity.

She concluded that diagenesis was at least partially responsible for

the fractal geometry in the rocks, because the rocks that were
,i

..,
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predominantly fractals contained many authigenic minerals and

pore filling clays.

Krohn (1987b) conducted further experiments on

sedimentary rocks and concluded that diagenesis was indeed a

major contributor to the presence of the fractal pore space. She

conducted the tests on a variety of rocks, including various

sandstones, cherts, carbonates and shales. In most cases, the

samples that contained mainly fractal pore space had also

undergone a significant amount of diagenesis, while those samples % %

that were mainly Euclidean in nature were relatively free of any

diagenetic material. Structures such as euhedral quartz

overgrowths, druse quartz, calcite, dolomite and clays dominated

the pore space of the fractal rocks. Although there may have been

traces of these structures in the Euclidean rocks, the amount was

relatively insignificant in comparison. She concluded that

understanding the distribution of fractal and Euclidean pores

within the samples may be important in determining their transport

properties.

Krohn's conclusions seem consistent with the results of this

project. First, all rock samples seem to contain fractal pore space

as verified by the SEM measurements; however, the extent of the

fractal pore space could not be determined from the SEM data

alone. Also, there appears to be no direct relationship between the

X%-
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fractal dimension of the samples and their corresponding values of

porosity and permeability. Finally, almost all samples showed

evidence of diagenesis. The photographs in Appendix A show a

variety of authigenic material within the pore space of the samples.

The photographs of the Frio sandstone show a great deal of

material in and around the pore spaces of the rock. There appears

to be large amounts of crystal growth as well as clay particles

interspersed within the matrix of the sand grains. Only one of the

photographs in the Travis Peak series shows the visual image of the

rock. The others show only the secondary electron emission trace.

In spite of this fact, the one photograph of the Travis Peak

sandstone shows that there was also a great deal of diagenetic

material in this foiniation. Although there are no photographs for

higher magnifications, observation of these samples in the SEM.

showed that the amount of diagenesis in this formation was .,..,

significant. There appears to be a large quantity of clay particles

and some crystal growth within the pore spaces of the rock sample.

In addition, observation of the San Andres dolomite photographs

shows the significant amount of dolomite crystal growth within and

around the pore spaces of the rock samples. The presence of

diagenetic materials in these samples and the verification of fractal

pore spaces is consistent with Krohn's theory.

. .n



56

Berea Sandstone
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Figure 4-2: Log-log plot for Berea sandstone.
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Frio Sandstone 9178.3 ft uncompacted

4-

IB M=-.72 D=2.72

3-1

-2

100p

sadtne 18. t

N N. % -N I- VVV.



58

3-3
Frio Sandstone 9177.5 compacted
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Figure 4-4: Log-log plot for compacted Frio sandstone,
9177.5 ft.
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Frio Sandstone 9189.5 ft uncompacted
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Figure 4-5: Log-log plot for uncompacted Frio.

sandstone, 9189.5 ft."---
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Frio Sandstone 9189.5 ft compacted
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Figure 4-6: Log-log plot for compacted Frio sandstone. ...
9189.5 ft....-.
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Travis Peak Sandstone 7449.4 ft
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Figure 4-7: Log-log plot for Travis Peak sandstone, ,.
7449.4 ft.
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Travis Peak Sandstone 7456.3 ft
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San Andres Dolomite 3350 ft
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San Andres Dolomite 3414 ft

4,-

U m=-.64 D=2.64
Um

3

2

I' I I

-4 -3 -2 10

Iog[length(cm)]

Figure 4-10: Log-log plot for San Andres dolomite. 3414
ft.
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San Andres Dolomite 3464 ft
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Figure 4-11: Log-log plot for San Andres dolomite, 3464
ft.
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San And res Dolomite 3492 ft
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Porosity vs. Fractal Dimension
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Figure 4-13: Porosity vs Fractal Dimension for all rock_
samples.

% ,,%

.- a. ...- a . a a . a ' -

a . ~ a ~ a ~ *C .p ~ a. -- L %'A ~ -a-*a - a.'



68

Permeability vs. Fractal Dimension
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Figure 4-14: Permeability vs Fractal Dimension for all
rock samples.
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Chapter 5

Fractals and Transport Properties of Rocks

5.1 Summary

As the concepts of fractals become more common and easier

to comprehend, more effort is being expended to find ways of

utilizing this property. Attempts have been made to relate the

fractal concept to phenomena such as two phase flow boundaries

(Jacquin and Adler, 1985), energy transfer in porous Vycor glass

(Schaefer, Bunker, and Wilcoxon, 1987), the formation of

aggregates, dendrites and crystals from small colloidal particles

(Skjeltorp, 1987) as well as other Diffusion Limited Aggregation

(DLA) processes. It appears that fractals play an important role in

many scientific phenomena that have been observed for many

years. One area that has received a great deal of attention lately is

that of fluid transport through rock and its relation to the fractal

dimension of the rock pore space. Many of the references cited

thus far in this paper provide very good support for the claim that S

the pore spaces of many porous rocks are fractal in nature;

however, the relationship between the fractal pore space and the

transport properties of the rock is still poorly understood.

Hewett (1986) attempted to relate the fractal properties of

distributions of permeability and porosity on oil recovery

69
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processes using simulation on a distributed field of properties with

a correlation structure matching that in field measurements. In this ON

paper, he discussed the geometric properties and spatial

correlation structure of fractal distributions as well as methods for

measuring the fractal character of log data. His approach holds

much promise for the modeling of heterogeneous reservoirs.

The approach above considers petrophysical property

distributions at large length scales (a few feet). The approach in

this thesis is to consider a microscopic description of homogeneous

rock. Rocks also exhibit fractal behavior at these length scales, not

because of porosity or permeability heterogeneity, but because of

pore surface features developed during diagenesis. It is at this

length scale that we hope to adequately represent the pore structure

by a fractal lattice.

5.2 Two Dimensional Model: The Sierpinski Carpet

As a starting point, Sharma and Gupta (1987) considered a

two dimensional fractal lattice called the Sierpinski Carpet that is

self-similar within the length scales Li and L2 to model the pore

space. As stated in Chapter 2, the Sierpinski Carpet is formed usi,,g 10

a square initiator and a square generator in which the initial squ: ,e

1,s subdivided into b2 subsquares and c2 of these subsquares are
'p

.p.

. (., ,
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removed. When this procedure is repeated indefinitely on each

daughter subsquare, the fractal dimension of the resulting lattice is 4.

log (b 2 -c 2 )= log b (.),

where 1 < D < 2.

The classical Sierpinski Carpet has a value of b 2 = 9, c2 = 1

and D=1.8928 (Mandelbrot 1983). Sharma and Gupta used a slight

variation of the Sierpinski Carpet in which the values of b2 and c2

could be varied to form an infinite number of fractal

configurations each with a unique fractal dimension. In addition,

the locations of the c2 removed subsquares could be varied.

Figures 5-1 and 5-2 show two versions of the Sierpinski Carpet

with identical fractal dimensions in which b2 = 36 and c2 = 4.

Obviously, the two lattices are not identical, and hence, it is 2'
necessary to obtain more than just the topological and fractal

dimensions to completely define a fractal. Other required

properties to define a fractal are:

(i) Order of ramification. This is a measure of the

smallest number of significant interactions which one

must cut in order to isolate an arbitrarily small

bounded set of points. Intuitively this is related to the

connectivity of the fractal network.

:,?.
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Figure 5-2 mirik Cape wit lo ln l .t:.
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(ii) Lacunarity. A fractal is said to be lacunar if its.-.10

gaps are large. Therefore, the fractal in Figure 5-1 is

more lacunar than the one in Figure 5-2. Lacunarity is

also a measure of the extent to which a fractal is

translationally invariant.

Sharma and Gupta used the Sierpinski Carpet as a model for L9\

a two dimensional cross section of porous media. The holes created

in the lattice from the removal of c2 subsquares during each

subdivision were regarded as pores through which flow occurred.

This model was extended to represent a three dimensional porous

structure by the extension of the holes to a series of parallel tubes

through which flow occurred. Obviously, this extension to three

dimensions was an oversimplification and has the same limitations

as any parallel capillary tube model.

They used the following nomenclature throughout their

experiment. The Sierpinski Carpet was considered to be self-

similar between length scales LI and L2. Each side of the square

initiator was divided into b segments to obtain b2 subsquares. c2 of

these subsquares were removed in each generation. Of the squares

removed, d squares were connected together. Thus, d was a ,

measure of lacunarity. The higher the value of d, the more lacunar

the fractal. Using this model, equations were developed for some

of the petrophysical properties of the fractal lattice.
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5.2.1 Porosity

Sharma and Gupta showed that the porosity of such a fractal

lattice is equal to

k [ 1-(1 --- -)n ] (5.2) .

b 2

where n= log(L2/L1)/ log b

and kl= a shape factor = (area of a pore equivalent size r) / r2

k1  1 for square pores.

This equation suggests that porosity is uniquely determined

by the fractal dimension for a fixed value of L2/L 1, and that it is

independent of lacunarity or the order of ramification. Figure 5-3

is an example of how porosity varies with fractal dimension for a e"

fixed value of L2/L1. Note that the porosity decreases from I to 0

as the fractal dimension varies from about 1.5 to 2.0.

"S.
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Sierpinski Carpet 1 -b
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Figure 5-3: Porosity vs D for varying lacunarity.
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5.2.2 Specific Surface Area -,

The specific surface area (S) can be written as

S =L- I I (5.3)L2 b2 -b-c 2 J

where k2 is a geometric constant that relates the surface area of a

single pore to the length of its side (Sharma and Gupta 1987). As

shown from the equation, S is a function of the fractal dimension,

lacunarity, and the limits of length scales of self similarity.

5.2.3 Pore Size Distribution

'he number pore size distribution consisted of a series of

delta functions that could be represented as

n
fpn = f(ri)5(r ri) (5.4)

i= 1 ;

where

ri = /d (L2/b i) (5.5)

1

...,.'

U. * ~ * * .-.. . . . . ~ ' ~ U... ' .
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(b2c2) i ' l

f p(rj) = ~ 2.c2)n.1 (5.6)
2 2i-

.% ."

fp(ri) for each generation of pores depend on the fractal

dimension but are independent of lacunarity; however, the radii of
"-4,.

pores in each generation depend on lacunarity. Figure 5-4 shows

pore size distribution for varying lacunarities. Note that the

distributions are identical except for a scaling factor related to d

(for the same fractal dimension).

It was also determined that the volume pore size distribution

could be written as .%

where.

c2'"

fp r) b 1(.c/2n (5.8).",'.?

.4-*444

"4-Z
[1.(J.. /

~pv = fpv~r)8(rr) (5.

where,

£(1c2,b 2ial (5.8
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and ri are given as before. The conclusions made about the number

size distribution are valid here as well.

5.2.4 Permeability

The flow rate in a single conduit of side r is given by

r4 Ap
r APql - k~L(5.9) -:.

where k3 =28.8 for a square conduit. Using this fact and a method

analagous to the capillary tube model, it was determined that the

permeability of the fractal lattice could be written as

cd[ [b-c"n 17:":
CL2 /)2 -<

k=j L2/b) 2  (5.10)
3 L(b 1-c /b )j

(Sharma and Gupta 1987). As seen from the equation, the

permeability shows a strong dependence on lacunarity, which

seems reasonable because lacunarity is a measure of the size of the

gaps. Figure 5-5 shows permeability as a function of both fractal

dimension and lacunarity.

%
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Pore Size DistributionV
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Figure 5-4: Pore size distribution for varying lacunarity.
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Sierpinski Carpet
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5.2.5 Capillary Pressure Curves

If the non-wetting phase is allowed to enter the largest pores

in accordance with capillarity, the capillary pressure curves can be

constructed

Pc k4 (5.11)

C r

where k4 is a constant that depends on the interfacial tensions and

geometry. Figure 5-6 shows some capillary pressure curves for

varying lacunarity. Note that these curves are identical except for a

scaling constant proportional to the lacunarity, d.

.1

4,

'.3

'-3.
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Capillary Pressure Curves
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* b=6, d=1, c2=4
* b=6, d=2, c2=4
U b=6, d=4, c2=4 Sw

Figure 5-6: Capillary pressure curves for vai'ing
lacunarity.
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5.2.6 Relative Permeability Curves

The relative permeability curves can be determined from the

following equation

Sw

krw - (5.12)

All Sierpinski Carpets with the same fractal dimension had the same

relative permeability curves irrespective of the lacunarity. This is

an interesting result considering the fact that the single phase

permeability and the pore size distribution both depend on

lacunarity. Figure 5-7 shows how the wetting phase relative

permeability curves vary with fractal dimension.
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Relative Permeability Curves
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* D-1 .9233, C2-25
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Figure 5-7: Relative permeability curves for varying
fractal dimension.
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5.2.7 Discussion

The theoretical results of this model could not be compared

directly with experimental data due to the two dimensional nature

of the fractal lattice. All Sierpinski Carpets created in this manner

had fractal dimensions between I and 2; however, the rock samples

that were measured on the SEM all had fractal dimensions between

2 and 3. Thus, it was not feasible to compare the core analysis data

from the rock samples with the theoretical results obtained from

the Sierpinski Carpet model.

5.3 Three Dimensional Model: The Menger Sponge

In this project an attempt was made to find a relationship

between the measured fractal dimensions of rock samples and their

transport properties using a model very similar to the Sierpinski

Carpet. Instead of a converted two dimensional Sierpinski Carpet,

the three dimensional version of the Sierpinski Carpet called the

Menger Sponge was used to model the pore space of the rock

samples. The goal of this project was to determine whether or not it

could be accurately used to predict the physical properties of the

rock samples.

L
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The Menger Sponge is a generated fractal volume which was

briefly described in Chapter two. The classic Menger Sponge is

formed by dividing a cube of unit volume (sides equal to one) into a

set of 27 smaller cubes as shown in Figure 2-7. The center cubes

from each face, and the cube in the center of the entire figure, are

removed to form some void space within the matrix of cubes.

Each remaining cube is then divided into 27 smaller cubes, and the

same cubes are removed from these smaller set of cubes. This

process is repeated indefinitely to form the fractal volume known

as the Menger Sponge.

In this project a slight variation of the Menger Sponge was used

to model the rock samples. In the Menger Sponge described above,

the original cube was initially divided into 27 (or 33) small cubes of , .

side length equal to 1/3. Note that there is a direct relationship

between the inverse of the side length and the total number of small

cubes. The relationship is

N= b3  (5.13) Z

where N is equal to the number of cubes resulting from the first

division and b is the inverse of the length of the side of the cube (see

Figure 5-8). In the example, b was equal to 3; however, in the

model, other values of b were also used in order to determine if

there were any values that gave reasonable results. The value of b

Il
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4/01

Figure 5-8: Original cube of side length 1 Is divided into -

b3 subcubes of side length 1/b. In this example, b=3 and
N =27 =number of subcubes.
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was varied between 3 and 200 and the corresponding fractal

dimensions and porosities were calculated through established

formulas.

Before these values could be determined, there were several

other parameters that required definition. In the example of the

Menger Sponge, the center square of each cube face was removed

(along with the center cube) during each division in order to create

the fractal volume. However, as the value of b was increased from

3, the size of the subdivided cubes became relatively smaller, since

the sides of the cubes were equal to I/b. Also, there was only a ON

"center" cube on each face when the value of b was odd. Otherwise,

there was no center cube to remove (see Figure 5-9). Obviously,

the same procedure could not be repeated for all values of b. Thus,

the number of cubes removed from the center of each side of the 4.
initial cube was varied depending on the value of b. Instead of

removing just one cube from each face to create the fractal volume,

the number of cubes removed was varied for each value of b. c2

was defined as the number of cubes removed from each face so that

c was equal to the number of consecutive cubes removed from any

one row (see figure 5-10). This process was very similar to that

used by Sharma and Gupta (1987) in their Sierpinski Carpet model,

only they did not require that all squares be removed from the

center only.

A,"+ W
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b= 3

When b is odd, there will always be an odd number of
rows and columns and a middle cube.

b= 4

When b is even, there will be an even number of rows and
columns and no middle cube.

Figure 5-9: Effects of changing the value of b.
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b= 6
c=200

4 1 1

21/8K

Figure 5-10: When b= 6and c=2, then the total number of
cubes removed from the center of each face is C2 or 4.
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In order to keep the cube symmetrical, the value of c was

always odd for odd values of b and even for even values of b. As

long as this rule was followed, the volume of space removed was

always located in the center of each cube face. For the purposes of

this model, only center volumes were removed. It is important to

note that not only were the small cubes on each large cube face

removed, but so were all of the cubes between each face, thereby

creating an empty pathway through the entire cube (see Figure 5-

11). This removal of cubes within the original cube lattice creates

the small pathways in which flow occurs. The pathways in the

Menger Sponge are no longer unidirectional, parallel tubes, but

rather form an intricate, intricate connected network of pores

which yields a perfectly isotropic medium.

As b was varied between 3 and 200, the value of c was

allowed to vary for each value of b. When b was an odd number,

then c was allowed to take upon the value of all odd numbers

between 1 and b-2. When b was an even number, c took upon all

even values between 2 and b-2. Note that c was never allowed to

be odd when the value of b was even, and vice-versa. The value of

c could never be larger than b-2, otherwise the volume removed

would either not be in the center of the original cube, or it would be

the entire cube! Either condition would be unsatisfactory.

9'
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Rear face
Front face

cubes removed between opposite faces

Figure 5-11: The cubes in between the faces are removed
as well as the cubes on the faces, thereby creating an

empty passageway between opposite faces. This example
only shows two of the faces, but the same holds true for

the other four faces as well.
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Aside from b and c, the final parameter required before the

porosity of the final volume could be determined was the ratio of

the limits of fractal geometry, L2/Ll, where L2 was the upper limit

and LI was the lower limit. As previously stated, most fractal

structures do not exhibit fractal behavior over all length scales;

rather, they usually exhibit fractal behavior over some upper and

lower limits, L2 and Li. The data obtained from the SEM was not

adequate to determine the values of L2 and LI. Katz and Thompson

(1985) estimated the value of LI to be approximately 20 Angstroms

for sandstones, and she used autocorrelation data from optical

measurements to determine L2 for both sandstones and carbonates.
For this model, various values of L2/Ll were applied over the

range 100 < L2/LI < 35000 which was the range determined by

Krohn for most reservoir rocks. Applicable formulas were used to

determine whether or not any of the values of L2/L1 in this range

resulted in accurate estimates of porosity.
With all of the various parameters defined, the formulas for

the fractal dimension and porosity could be determined. First, the

fractal dimension for a Menger Sponge for any value of b and c

defined above is

log[b3.(3 c2 b-2c 3

log b (5.14)

~.o'
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where D is the fractal dimension. The numerator represents the log

of the number of smaller cubes remaining after one generation, and

the denominator represents the log of the length scale. When the

generation process is repeated , the number of cubes remaining

from any particular cube is the same as above. The only difference

is in the fact that the cubes are smaller in each successive

generation. Thus, only the number of cubes remaining after one

generation is sufficient to determine the fractal dimension. When

b=3 and c=l, the resulting figure is the classical Menger Sponge

with D=2.7269. As the values of b and c are varied within the

limitations already described, the value of D will always vary

between 2 and 3. This fact should allow for a much better

comparison of field data and theoretical data, since we already

know that the fractal dimension of rock samples also lies within this .

range.

5.3.1 Porosity

Determination of porosity is a little more involved. First,

the number of generations must be determined before the porosity

can be calculated. Obviously, the more times the cubes are

subdivided, the more the volume removed from the original cube,

and the higher the porosity. Gupta (1987) determined that the

..i
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number of generations required for a sample is a function of

L2/LI, and is defined as

Iog(L2/L1) (5.15)
n- log b

where n is the number of generations. Hence, the larger the range

of fractal behavior, the larger L2/L1, and the larger the value of n.

Another parameter defined as the ratio of volume remaining after

one generation to the original volume is defined as

b 3 -(3c 2 b-2c 3 ) (r = b 3 (5.16) ..,

where r is the ratio. Gupta (1987) also determined that the porosity

of a Menger Sponge for any value of b and c is

= 1-r n  (5.17)

where 0 is the porosity and r and n are defined above.

These formulas were used in a Fortran program in which the-.

fractal dimension and the porosity were calculated for various

values of b, c and L2/L1. Since the fractal dimension of all samples

varied between 2.58 and 2.75, only the combinations of b, c and

L2/LI that resulted in values of D between 2.5 and 2.9 were

selected. The corresponding value of porosity was also recorded in

.%
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order to determine if the Menger Sponge model accurately

estimated the porosities of the rock samples. Note that porosity was

the only petrophysical property of the rock that was investigated

using this model. The complex nature of this model compared to

that of the Sierpinski Carpet severely limited the number of

properties that could be investigated. Obtaining similar formulas

for permeability, specific surface area, etc. was much more

complicated than in the case of the Sierpinski Carpet and was

attempted.

5.3.2 Results

Figures B-I through B-9 in Appendix B show the plots of

porosity vs fractal dimension for various combinations of b, c and

L2/Ll. The program was run for values of L2/L1 equal to 1000,

5000, 10000, 20000, 30000, and 35000 in order to provide

representative plots of the entire range of L2/L1 determined by

Krohn (198 7). For the three cases in which the values of L2/L1

were equal to 1000, 10000, and 35000, plots of porosity vs D were

constructed for values of b equal to 10, 100, and 200. These

graphs covered the entire spectrum of b values used in this project.

As previously stated, only the data points with 2.5 < D > 2.9

were included in the Figures, because this was the range of D values

A A.
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measured in the rock samples. The Figures all show the

corresponding porosity values for this range of fractal dimensions.

The range of c values was also shown on each graph in order to

show which values provided the proper fractal dimensions. Note

that in all cases, the porosity values were all greater than 50%!

Table 4-1 shows that the highest porosity in any of the rock samples

was around 28%. Obviously this model does not give adequate

estimates of porosity. Thus, it was concluded that this version of

the Menger Sponge cannot be used to predict the transport

properties of rocks from fractal data.

5.4 Modified Menger Sponge

A slightly different version of the Menger Sponge showed

some potential as it provided results more consistent with

experimental data. After seeing that the porosity values were not

feasible, it was determined that a slight modification of the model

may provide more reasonable results. Instead of starting with a

solid cube and removing subsquares, it was decided to start with an

empt cube and add subsquares during each division. This process

should result in a fractal volume with the same fractal dimension as

the first model; however, the porosity would be equal to one minus

the porosity of the first model, since the positions of pore space and

,€



09

solid space were interchanged. Figures 5-12 and 5-13 show plots of

porosity vs fractal dimension from the modified model for the

cases of L2/L1=1000, b=100 and L2/L1=35000, b=100. These

graphs show porosity values between 5% and 25% for the range of

fractal dimensions measured in the rock samples. This range of

porosity values is much more realistic than that determined for the

first model, and it appears that this modified version of the Menger

Sponge is a more appropriate model than the initial version.

5.5 Future Work

In this project, porosity was the only petrophysical property .

of the Menger Sponge that was calculated, because it was relatively

easy to determine. Obviously, the first first version of the Menger

Sponge does not seem to be an adequate model for the pore space of

rocks, but the modified version shows potential. More work is

required with this modified version to see if it accurately predicts

some of the other petrophysical properties of rock samples. The

other properties such as permeability, specific surface area, etc.

would be much more difficult to calculate for the Menger Sponge

model. Once these properties are determined, the results can be

compared with actual core analysis data to check the feasibility of

x u~
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b=100,L2/L1=1000
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Figure 5-12: Porosity vs D for b=100 and L2/LI=1000
for the modified model.
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b=100, L2/L1=35000

1.0-

.~' c=4

0.9-

0.8-

0.7-

c=80

0.6-..
2.5 2.6 2.7 2.8 2.9 3.0

Fractal Dimension

Figure 5-13: Porosity vs, D for b=100 and L2/L1=35000
for the modified model.



102

this model.

In addition, nobody has yet determined whether or not the

various methods of measuring fractal dimensions actually produce

the same results. Katz, Thompson and Krohn (1987) produced

identical results using both SEM data and thin section data;

however, these two techniques rely on the same theoretical analysis

and should produce consistent results. It would be interesting to

determine whether or not two independent methods such as X-ray

scattering and SEM data, or molecule adsorption and SEM data

produce the same value of fractal dimension in rock pore spaces. If

they do not, then the problem of finding a relationship between D

and the properties of rocks becomes even more complicated. If

they produce identical results, then we could confidently say that

our D values are correct and that the pore space is indeed a fractal

over some length scale.

1P
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Chapter 6

Conclusion

The results of the SEM measurements showed that the pore

spaces of these particular rock samples were indeed fractals. The

straight line relationship on log-log plots provided a method for the

determination of the fractal dimension, since D is related to the

slope of the line. Results showed that the fractal dimension of these

rocks varied between 2.58 and 2.75. In general, the dolomites

appeared to have values of D near the lower end of this range,

while the sandstones appeared generally at the higher end.

Sample calculations on a Sierpinski Carpet showed that in

principle the fractal property of lattices can be effectively utilized

to obtain useful petrophysical properties. It was shown that the

Menger Sponge was not an adequate model for the pore space of

rocks. The values of porosity determined by the Menger Sponge

model were much higher than those actually observed . A

modified version, however, produced much better results and

showed promise for accurately modeling the pore space of rocks.

Much more work is required with this modified version before an)

definite conclusions can be made.
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Figure A-1: Frio Sandstone, 9178.3 ft, x31, x53 .
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Figure A-2: Frio Sandstone, 9178.3 ft, x103, x260
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Figure A-3: Frio Sandstone, 9178.3 ft, x550, x1030
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Figure A-4: Frio Sandstone, 9178.3 ft, x2600, x4800
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Figue A5: rio andton, 918.3ftx930, x850
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Figure A-7: Travis Peak Sandstone, 7456.3 ft, x130,
x220
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Figure A-11: Frio Sandstone, 9189.5 ft, x29, x58 ",
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Figue A15: rioSandton, 989.5ftx510, x000
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Figure A-16: Frio Sandstone, 9189.5 ft, x18000

I~ %-
, ' ' .; . ;,, , ,.. ,,., , ... , .....-,-.,,...-. . .. .,..,.,, ., .. . ., ..., ., . ., .._......... ., .,'::".



122

L~

low

Figue A-7: an Adre Dolmit, 330ft x~l x5



123

.'4k.

.0

Vft

4t7-
Figue A-8: Sn AdresDoloite,335ft, 102,X24



M~nFIMJ Mn WM M MI"MM IMRP MRM^ Mn O k UTMUL AINIL MW".? MW-

124

7,.

AL A



125

. .

Figure A-20: San Andres Dolomite, 3350 ft, x990, x2500
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Figure A-21: San Andres0Dolomite, 3350fCt, x5200,
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Figure A-22: San Andres Dolomite, 3350ft, x17000
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Figure A-23: San Andres Dolomite, 3464ft, x27, x54
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Figure A-24: San Andres Dolomite, 3464ft, x102, x230 "
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Figure A-25: San Andres Dolomite, 3464ft, x510, x3
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Figure A-26: San Andres Dolomite, 3464ft, x1030,
x2400
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Figure A-27: San Andres Dolomite, 3464ft, x5100,
x10300
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MENGER SPONGE GRAPHS 
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b=1O, L2/LI=1000
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Fractal Dimension

Figure B-I: Porosity vs D for b=IO and L2/LI=IOOO.
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b=100, L2/L1=1000
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Figure B-2: Porosity vs D for b=100 and L2/LI=1000.
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b=200, L2/LI=1000
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Figure B-3: Porosity vs D for b--200 and L2/L1-IO00. "
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b=10, L2/LI=10000
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Figure B-4: Porosity vs D for b=10 and L2/LI=10000.
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b=100, L2/LI=10000

1.0 -

c=42*

,,.. ,,,

0.9 
F..

"+0.8-,,

0.7-.

0.88

'I
0.6

Figure B-5: Porosity vs D for b=100 and L2/LI=10000.
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b=200, L2/LI=10000
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Figure B-6: Porosity vs D for b=200 and L2/LI=10000. .
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b=10, L2/L1=35000

1.0-

c=4

0.9-

c=6

0.8-
2.5 2.6 2.7 2.8 2.9

Fractal Dimension

Figure B-7: Porosity vs D for b=10 and L2/LI=35000.
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Figure B-9: Porosity vs D for b=200 and L2/Ll=35000.
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