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SYNOPSIS

DSC and electrical conductivity measurements of PPO complexed

with Nal and KSCN are reported. In addition, 23Na NMR measurements

of PPOsNaI, both at ambient and elevated pressure (2.0 kbar) have

been performed. The DSC data clearly indicate that the salt preci-

pitates out of the complexes at about 850C for Nal and 600C for

KSCN. These effects are manifested by a dramatic departure of the

conductivity from VTF behaviour, and a relatively sharp drop in

mobile Na concentration deduced from NMR measurements at somewhat

elevated temperature (- 800C). High pressure NMR linewidth measu-

rements are consistent with a pressure-induced increase in glass

transition temperature.
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INTRODUCTION

Poly(propylene oxide) (PPO) is known to form amorphous ion con-
ducting complexes with alkali metal salts.-I-3  Previous studies of

PPO complexed with LiClO42 and NaClO 4
3 have shown that large scale

segmental motion of the polymer chains is principally responsible

for ionic transport, in general agreement with the results of a wide

array of recent investigations. The studies in our laboratories2 ,3

can be summarized briefly as follows. The electrical conductivity
temperature dependence is best described by a VTF-type relation4

0' = A T-1 / 2 exp[-Ea/k(T - To)) (1)

where Ea is the apparent activation energy and To is the temperature r
of "zero configurational entropy", about 40-50 K below the glass
transition temperature, Tg. The temperature dependence of the
electrical relaxation time associated with the -relaxation which

governs the glass to rubber transition in pure PPO can be described

in an analogous manner. It has been shown that the activation
energies for conductivity in the complexes and electrical relaxation

in pure PPO are the same when one takes into account the different
To values associated with each material. Similarly, activation
volumes for conductivity derived from variable pressure data in the

complexes and the -relaxation in PPO were shown to be the same in
a given temperature interval relative to To .

23Na NMR studies in PPO8NaClO 4 have shown that: (1) generation

of mobile ions is a weakly thermally activated process that accounts
for only a minor contribution to the overall conductivity; (2) NMR
signals associated with the mobile fraction of Na ions exhibit
motional line-narrowing beginning in a small temperature interval

above Tgo These results, taken together, demonstrate the importance
of polymer chain mobility to ion transport, in general agreement

with a wide array of recent investigations.

The present study concerns related work on PPO:NaI and PPO:KSCN
complexes. In particular, it is observed that these materials

. .IL '



exhibit behaviour similar to that of previously investigated PPO
complexes, however they become unstable at moderate temperatures

(<1000 C). As will be discussed, the instability is manifested
ultimately by the separation of the salt from the polymer.

We have performed differential scanning calorimetry (DSC),

electrical conductivity and 23Na nuclear magnetic resonance (NMR)

measurements on PPOsNaI. The NMR measurements were performed both at

ambient pressure and at applied hydrostatic pressure up to 2 kbar

(0.2 GPa). In addition, DSC and conductivity data for PPOsKSCN are

presented.

EXPERIMENTAL

The host material studied was Parel 58 (Hercules, Inc.)

elastomer which is a sulfur-vulcanizable copolymer of propylene

oxide and allyl glycidyl ether. As the primary constituent is

propylene oxide, the material will be referred to throughout this
paper as PPO. The samples were prepared by solution casting using

anhydrous methanol as the solvent and commercially obtained NaI,
which was heated at 100C in a vacuum oven overnight, as the salt.

All procedures including loading of the samples into the various
sample holders were carried out in a dry box; the sample for the NMR

measurements was sealed in a glass tube under dry nitrogen. For the

high pressure measurements, the sample was loaded into the rf coil

in a N2 glove bag and then immersed in the pressure transmitting

fluid (3M - Fluorinert) contained in the pressure cell. The details

regarding the DSC, electrical conductivity and NMR equipment and

techniques are given elsewhere.
2 ,3

RESULTS

The DSC results for PPOsNaI are shown in Fig. 1. Results for
uncomplexed PPO are included for comparison. It is clear that the

complexed material is highly amorphous in that it exhibits a strong
glass transition with a "central" Tg of about 60C. (The "onset" Tg

is about 0°C and the "end" is at about 120C.) Consequently, Tg is
about 680C higher than for the uncomplexed material for which the



"central" glass transition temperature is about -620C as shown in

Fig. 1c. An increase in Tg with the addition of salt to PPO is a

well known phenomenon

In addition, in the DSC studies for PPO8 NaI, a strong, sharp

endothermic event is observed at about 1000 C. In order to obtain

information concerning this feature, the material was annealed at

175 0 C, quenched to -140 0C as rapidly as possible in situ, and the

DSC studies repeated. Typical results for the quenched material -p

after annealing at temperatures above 140 0C are shown in Fig. lb. In p.

all cases, a strong glass transition typical of uncomplexed PPO is

observed. In addition, there is a high temperature exothermic event

followed by an endotherm. Similar behavior has been observed for

PPOaNaCIO4 where it was concluded that the high temperature

endotherm is due to the salt coming out of the polymer.3 The primary

evidence is that only the glass transition due to uncomplexed PPO is

observed after quenching from temperatures above that of the sharp

endotherm. Further, the material exhibits the original behavior

(Fig. la) after allowing the sample to sit at room temperature

overnight, i.e. the salt redissolves in the polymer. Salt

precipitation has been observed spectroscopically for PPO containing

NaSCN.
5

In order to gain further evidence for this effect, electrical

conductivity studies were performed. (It was not possible to perform

such studies for PPOaNaCIO4 as the salt precipitation temperature

was outside the range of the conductivity apparatus.) The results

are shown in Fig. 2. It is seen that the electrical conductivity

begins to deviate from its lower temperature behavior at about 850C.

In order demonstrate this more quantitatively, the data in the

temperature range 280-355 K were analyzed with equation (1) with the

adjustable parameters A, Ea, and To . A non-linear least squares fit

of eq. (1) to the data was carried out and the results are Ea -
0.093 eV, To - 199.3 K, and logl0A [$2-cm)-1 K1/2] - -1.1. The RMS

deviation in log100 was 0.008. These best-fit values are close to

these observed for other salts in PPO. However, they are not as

reliable due to the limited temperature range covered, and further,

the high temperature cut-off (where salt precipitation becomes

e5



important) is merely an estimate. In fact, the value for To  is

about 80 K lower than the "central" Tg, which is a larger difference

than expected.

A general feature of the 23Na NMR results is the coexistence of

two separate lineshape components with substantially different spin-

lattice relaxation times (T1) and linewidths. As in previous studies
of similar complexes, the long-T1 and broad component is attributed

to bound Na species while the short-T1 and narrow component arises

from mobile Na+ ions.3 The ratio of the narrow line to broad line
intensities as a function of reciprocal temperature is plotted in

Fig. 3. That the difference between the lowest temperature value and

the maximum value (occurring just above room temperature) is only
about a factor of ten is indicative of the relatively minor role
that "carrier generation" plays in the overall conductivity, which

changes by more than four orders of magnitude over the same

temperature range. The salt precipitation is manifested as a sharp

drop in mobile ion concentration above 800C.

Figure 4 is a plot of 23Na resonance linewidth (full width at

half maximum) as a function of temperature. The open symbols denote
partially saturated resonances which correspond to the mobile sodium

population. The solid symbols refer to the total (unsaturated)

linewidth. As in previous work3 , the linewidths of the mobile and
bound Na's are nearly indistinguishable below Tg, only their T,
values are distinct. It is clear from the data that motional

narrowing occurs above Tg, again in agreement with previous studies.

The increase in linewidth above - 600C is attributable to rapid
spin-lattice relaxation (T1 - 300 1us) which introduces a lifetime

broadening contributions to the linewidth.

The application of hydrostatic pressure (up to several kbar)

has been shown to result in a decrease in conductivity of PPO
complexes2'3 . In order to obtain a better understanding of the

mechanisms involved, we have performed some preliminary high

pressure NNR measurements. Figure 5 displays 23Na absorption
spectra (both lineshape components are present in each spectrum) at

- 400C, where motional narrowing effects are apparent. The bottom



spectrum corresponds to ambient pressure, while the top spectrum was'

acquired at 2.0 kbar (0.2 GPa). The effect of the applied pressure

is to broaden the resonance by about 25% to approximately the

linewidth of the sample at lower temperatures (below Tg). This

result is consistent with increases in To with pressure deduced from
conductivity measurements2 ,3.  It is not presently known whether

these phenomena simply reflect the pressure dependence of Tg, or are

indicative of more subtle ion-polymer interactions. High pressure
DSC measurements are currently underway in order to determine

directly the Tg pressure-dependence. Conductivity vs. pressure

studies, which may shed light on the salt precipitation process, are

also in progress.

Another example of this salt precipitation is evident upon
viewing the data for PPOsKSCN, shown in Figs. 6 and 7. For this

material, the salt comes out of the polymer at a lower temperature,

about 600C as seen by a sharp endotherm at about 600C in Fig. 6.

That the material was complexed is shown by the single glass

transition temperature at about -250 C. Once again, upon thermal

treatment, the glass transition disappears with the appearance of an

uncomplexed PPO glass transition. This material is interesting

because the melting endotherms for the salt are at relatively low

temperature as shown in Fig. 6a. As shown in Figs. 6b and 6c,

similar endotherms are observed in the polymer after heating above

600 C. Since the salt precipitation occurs at a relatively low

temperature, the effect on the electrical conductivity is quite

dramatic as shown in Fig. 7.

CONCLUSIONS

PPO complexed with NaI has been shown to exhibit the same

general ion-conducting properties as other PPO-salt complexes at

lower temperatures, whereas salt precipitation effects are observed

in the former above - 850 C. The salt precipitation is manifested by

(i) a. relatively sharp endothermic "event" in the DSC, and

subsequent observation of a pure PPO glass transition (after

quenching); (ii) departure of the electrical conductivity from VTF-
type behavior at elevated temperatures; (iii) a sharp drop in mobile

7



Na concentration, deduced from NMR measurements, above - 800C. PPO"

complexed with KSCN exhibits even more dramatic salt precipitation
effects, as evidenced by corresponding features in the DSC and

conductivity data occuring at a lower temperature (- 600C) as well
as observation of KSCN melting endotherms in the complex.

Preliminary NMR measurements on PPOsNaI at an applied hydrostatic
pressure of 2.0 kbar (0.2 GPa) are consistent with a pressure-

induced increase in Tg.
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FIGURE CAPTIONS

Figure 1. DSC plot for a) uncomplexed PPO, b) as prepared PPO8NaI,

and c) PPO8NaI after having been annealed at 175 0 C and

quenched, in situ, to -140 0 C. Scanning rate is 10 K/min.

Figure 2. Arrhenius plot of the electrical conductivity data for

PPO8NaI. The squares correspond to the data and the solid

line is the best fit VTF equation (equation 1).

Figure 3. Arrhenius plot of 23Na narrow to broad line intensity

ratios in PPOsNaI.

Figure 4. 23Na linewidth in PPOsNaI. The solid symbols denote the
8p

total linewidth while the open symbols refer to partially

saturated resonances, reflecting the presence of only the

mobile sodium population.

Figure 5. 23Na absorption spectrum in PPO 8NaI at 400 C. Bottom:

ambient pressure; Top: applied hydrostatic pressure of

2 kbar. (0.2 GPa) .

Figure 6. DSC plot for a) KSCN, b) PPO8KSCN, c) PPO 8KSCN after

having been annealed at 200 0 C and quenched, in situ, to

-140 0 C, d) uncomplexed PPO. Scanning rate is 10 K/min.

Figure 7. Arrhenius plot of the electrical conductivity data for

PPO8 KSCN. The solid line connects the data points.
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