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REACTIONS OF HBO: A THEORETICAL STUDY

Michael Page
Laboratory for Computational Physics

and Fluid Dynamics
Naval Research Laboratory

Washington, DC 20375

Detailed knowledge of the homogeneous gas phase combustion chemistry of boron is a
necessary, if not sufficient, prerequisite to developing predictive capabilities for the use of
boron as a fuel in air breathing propulsion systems. Unfortunately, the base of knowledge of
boron/hydrogen/oxygen chemistry is quite limited compared to that for hydrocarbon/oxygen
systems. Not only are the detailed rate coefficients unavailable, but little is known about the
basic thermochemistry of the intermediate species. Indeed not much is known about even the
identity of the intermediate species. The situation, including the need for more knowledge of
basic homogeneous chemistry, was summarized a few years ago by Faeth'.

More recently, a joint effort between Aerodyne Research, Inc. and Princeton University2

has given birth to a tentative model of the homogeneous combustion process. The immediate
goal of the Aerodyne/Princeton model is the identification, through sensitivity analysis, of
hypothetical key molecules, radicals and reaction rates for further detailed study. Improved
rate parameters can then be fed back into the model. This is of course an iterative process
which may or may not be rapidly convergent. Nevertheless, key reactions have been identified.
Prominent among these are reactions which produce BO from HBO:

M+HBO -. BO+H+M 1

H+HBO -. BO+H 2  2

OH + HBO - BO + HIO 3

O+HBO -. BO+OH. 4

The transient molecule HBO appears to be an important species. It has only recently
been experimentally identified3 . No experimental effort has yet been successful in its synthesis
and detection to the degree that its reactions can be monitored.

We describe here theoretical calculations directly pertinent to reactions 1 and 2 above
and indirectly pertinent to all of the above reactions. The quantitative results are tentative.
but it appears that some conclusions can be drawn:

A. the endothermicity of reaction 1 (i.e. the strength of the BH hond iii HBO) is at

least 10 kcal/mole greater than previous estimates
B. rephrasing A, the heat of formation of HBO is at least 10 kcal/niole lower than

previous estimates.
C. reaction 2 is endothermic, not exothermic.
D. the activation lr-rier for reaction 2 is fiurly substantial (i.e greater than 15

kcal/mok)
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E. as a consequense of conclusion B, The enthalpies of reaction for 3 and 4 are notably
different from previous estimates.

The calculations leading to these conclusions are now discussed in more detail. We begin
with a discussion of the heat of formation of HBO, and follow this with a discussion of the
compution of reaction energetics for reaction 2 including the transition state complex. Fi-
nally, we discuss future plans for the completely ab-initio determination of the temperature
dependent rate constants for the above reactions.

The heat of formation of HBO (AH"2s ) is listed in the JANAF tables as -20. ± 20.
kcal/mole'. The value used in reference 2 is -47.2. ± 3. We have calculated this quantity
using two different theoretical approaches. In the first approach, we optimized the geometrical
structures and computed the zero point vibrational energies of HBO and BO at the Hartree-
Fock level of theory using a double-zeta plus polarization' (DZP) basis set. Subsequently,
electronic energies were calculated using fourth order perturbation theory including all single,
double triple and quadruple excitations. From these results, we compute a BH bond energy
in HBO of 110.3 kcal/mole. It should be noted however that quantum chemistry calculations
of this sort consistently underestimate bond strengths, but do so in a way which can be
characterized by bond type and is fairly insensitive to the secondary chemical environment.
This suggests the use of a bond correction factor. We have calculated such a bond correction
for BH bonds in boron hydrides 7 and find that this bond strength is underestimated by about
2.5 - 3.0 kcal/mole at this level of theory. Applying this correction factor gives a BH bond
strength in HBO of about -113 kcal/mole and (assuming AH"5 (BO)=0.0 kcal/mole) a heat of
formation of about -61 kcal/mole. In a separate calculation using multireference configuration
interaction techniques and a DZP basis set, the enthalpy of reaction 2 was calculated to be 8.
kcal/mole. Assuming again a value of zero for the heat of formation of BO, we obtain a value
for AH"' of HBO, -60 kcal/mole, in good agreement with the perturbation theory value of
-61 kcal/mole.

The electronic structure methods leading to these two estimates for the heat of formation
of HBO are quite fifferent in their approach to the treatment of electron correlation. It is
true that both of these calculations use the same finite basis set, however they use distinct
approaches to reducing the liability of an incomplete basis set. For the perturbation theory
calculations, a bond correction factor, determined from BH bonds in boron hydrides was used.
For the configuration iihteraction calculations, only isogyric energy comparisons were made.
That is, comparisons were made only between species with the same number of electron pair
bonds. One is essentially then calculating a differential bond energy as opposed to an absolute
bond energy, with consequently smaller error.

Perturbation theory based electronic structure techniques such as those mentioned ahove
are only appropriate for treating molecules which are in the vicinity of their equilibriunI
structures. This is because the zero order level of the perturbation expansion is is aot capable
of properly describing chemical bonds being formed anud broken For these reactions, wV list,
techniques based on a multiconfiguration (MCSCF) formalism. In particular, activir electrons
and active molecular orbitals are chosen which are expected to undergo sibstantial chaniges
during the course of the reaction. Electron correlation is thei included inI this subspace In
consistent and well defined manner During the course of reaction 2 alove, the BH bMd is
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being broken, the HH bond is being formed, and the radical site is moving from the hydrogen
atom to the BO moiety. This suggests a three electron/three active orbital treatment. The
three orbitals at the reactant are the BH bonding and antibonding orbitals and the hydrogen
atomic orbital. At the product side, the three orbitals are the HH bonding and antibonding
orbitals and the BO radical orbital. The orbitals smoothly tratisform from the reactant set
to the product set during the course of the reaction. There are eight configurations in the
resulting MCSCF expansion.

Using analytical gradient techniques, the structures of the reactant, transition state and
product for reaction 2 have been fully optimized. The MCSCF/DZP structural parameters
are shown in Table 1. The reaction is a collinear absraction thus only bond lengths are shown.
Note that at the transition state, the HH bond is stretched by about 20% and the BH bond
is stretched by about 28% . This is consistent with the observation that the reaction is en-
dothermic, but not very endothermic. Final energetics are obtained by using the MCSCF
orbitals described above as reference orbitals in a large scale configuration interaction treat-
ment. A configuration expansion is generated by including each of the eight reference MCSCF
configurations and in addition including all configurations which result from either a single
or double electron replacement from an occupied orbital into one or two of the unoccupied
orbitals. This procedure generates 106,422 doublet configurations in the CI expansion. At
this multireference CI/DZP level, the barrier to the reaction is found to be 20 kcal/mole and
the endothermicity, 8 kcal/mole.

The calculated activation barrier of 20 kcal/mole for reaction 2 may be lowered somewhat
upon treatment with a more flexible basis set, but it is not expected to be lowered by more b

than, say, three or four kcal/mole. Barriers for the reactions H 2 + CN -. H + HCN s and
H, + C2 H - H + C2H2 ' calculated at a similar level of theory to that presented here were
found to be within about 2 kcal/mole of experimental activation energies. These are analogous
to the reverse of reaction 2.

We plan to improve the overall energetic predictions for reaction 2 by performing calcula-
tions with a triple-zeta plus polarization basis set. In addition, we plan to compute molecular
vibrational properties along the reaction pathway and use these for a canonical variational
transition state theory calculation of the temperature dependent rate constant. Calculations
of the activation parameters for reaction 3 are also currently underway. It is expected that in
the absense of experimental rate information, calculations such as these will prove inval alle
to modelling attempts. If experimental information is available over a limited tenwrature
range, then these predictions will serve to extrapolate rate constants to temperature regiuets
of interest in combustion.
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Table I

MCSCF structural parameters
for hydrogen atom abstraction from HBO

RHH(A) RBHl(A) RBo(A)

H + HBO 00 1.183 1.191
H - -H - -BO 0.905 1.519 1.191
H 2 + BO 0.756 0 1.192
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