AD-A183 3950

UNCLASSIFIED

THERHHL EXPBNSION OF COMPOSITES MITH SPHERI
SEARCH

CVLINDRICRL INCLUSIONS<U) NAVAL RE.
G KLEMENS 21 JUL 87 NRL-MR-3820

CAL AND
LAB MASHINGTON
F/6 11/4




R IO

Ay

RO
A0

SRS

-

Ig
m
m
P
6

= , m. _____
w 33 FEFFPPH

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A




Wy W
o' »
o ﬁ(‘\-“ N . | i

AR Bk Ll ) » 'y, 0 LU NI, 0. 89,05 0. Ve ¥ DA Balal 2

NRL Memorandum Report 5820

Thermal Expansion of Composites with Spherical
and Cylindrical Inclusions

P.G. KLEMENS

Composite Materials Branch
Material Science and Technology Division

July 21, 1987

DTIC

ELECTE
AUG 1 1 1967

C(,D

AD-A183 390

Approved for public release; distribution uniimited.

& 8 ‘ -

ARGt ORI A RS ST O U S A A TR S PR L Lo E
e @ SIS S A A Syt it I A AAS .{v:"\*._\._‘.‘



R NN P IPR R IR VI P R AN WU LR LN W U UNT U U ORI ORSURUNL U ROV RO VRN AN N K LRI X RO T

i
.'Q
‘..‘
5
)
o
[}
]
/7 1£2 295 7
TCURTTY CLASSIFICATION OF THTS PA e :
REPORT DOCUMENTATION PAGE g

- - i

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS :-.'
UNCLASSIFIED _ e
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT )

- Approved for public release; distribution .“;’
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited. k':
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) :

NRL Memorandum Report 5820 "..'
)
8.
63. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Naval R h Lab t (F applicable)
esearc aborator
y Code 6370 -
6¢c. ADDRESS (Gity, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) N
By
Washington, DC 20375-5000
i
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER i
ORGANIZATION (if applicable) -
Office of Naval Research )
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS “‘f
PROGRAM PROJECT TASK WORK UNIT g
Arlington, VA 22217 ELEMENT NO. [NO RRg22 NO. ACCESSION NO a
61153N 0441 DN980-017 N,
11 TITLE (Include Security Classification) A
Thermal Expansion of Composites with Spherical and Cylindrical Inclusions Q
12. PERSONAL AUTHOR(S) :"‘
Klemens, Paul G. )y
LY
13a, TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT K ‘,0
Final FROM TO 1987 July 21 17 )
16 SUPPLEMENTARY NOTATION
17 COsaTi CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) .:-
HELD GROUP SUB-GROUP »Thermal expansion, Composites ,
Analytical solutions Spherical and cylindrical Ry
N inclusions . ——
19 ABSFRAC  (Continue on reverse if recessary and identify by block number) v
fhe strain field about a spherical inclusion consists of a uniform dilation and a short-range field which has T
pure shear character. By minimizing the strain energy, these {ields are expressed in terms of the misfit of the s
inclusion. For a finite concentration of inclusions, the average properties of the material are used in place of '.-.:
those of the matrix. The thermal expansion of a composite containing spherical inclusions of different expan- \
sion coefficient is then obtained, again replacing the expansion coefficient of the matrix by that of the material b
as a whole. When the shear strain around the inclusion becomes large enough for plastic flow to occur, it suf- RS
fices 10 modify the shear modulus approximately, since most of the shear strain energy is concentrated at the )
matrix-inclusion interface. The strain field about an infinitely loqg ¢ylindrical l'm.lusion can also be resolved ‘>
into a uniform dilation and a short-range shear strain field, and expressions f6r the thermal expansion of a :v{‘
composite with long fiber inclusions, randomly oriented. are obtained in a similar manner. - Lo .";
)
N Yy
-
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION X .
(A unciassiFieounumMiTED [ SaME AS RPT. [ DTIC USERS UNCLASSIFIED '
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL >
T.A. Hahn (202) 767-3433 Code 6370 o
DD FORM 1473, 8a MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE b )
All other editions are obsalete ‘o
i -
)
R
\..
P LAY I U R I A N IR I L P e Dy ] AL G SR TN o S G P L N Pt A N
o SRR ARAS Y -,',b,.-.-\.fs .,‘.‘,3-.'\- I VAR /A P A S e e I
p >, sl WA, W



]
¥ CONTENTS
: L. INTRODUCGTION it eetette et e e sevst e es et s eeaaas e aresesaeaaeneaeeesessesesereneeersrasns 1
. II. ELASTIC FIELD AROUND A SPHERICAL INCLUSION ...ttt 2
L}
" III.  APPLICATION TO THERMAL EXPANSION ..o, 4
t,
~ IV, EFFECT OF PLASTICITY oottt ettt e e e e e e eeeeateeaeeeeasaseeeeteaeaessesaraeees 6
' V. ELASTIC FIELD AROUND AN INFINITE CYLINDER ....ccooeiieiieieeeeeeeee e eeeeeeeeeaaen, 7
]
h VI. VOLUME CHANGE AND THERMAL EXPANSION ... o 11
0}
X VIL. CONCLUSION .....oooiiiiiiiiiiittnieece ettt ae st b st es et ses s ens e eeees 13
0
REFERENCES .. ..ottt s e ettt e s et aeeeeseb e e s e eeeeso e e e e saesaeeeseeneeesaeseenaesneeseneaaes 13

1]
L
[
N
.I
\
D -
d Accesion For {
y | S—

NTIS CRA& N~
DTIC TAB 0
f Unannounced o)
K Justificeton ]
q BY o]

Dist ibution |
; A\::;mb.lily Codes

T T Avail and ] or -

Dist SL‘&'CiJ' [IKDTIJ

3 fl 4-
o
A4

4 A /j i N
1
&
]
¥

W2l

‘ ot " R B N T R R R R i SR AR R RV R R R R R R R LE
L} Y LY LA "' Nt L% . . ) e «
NN DN M AT R R N A T AR R T & . -



w““www e

THERMAL EXPANSION OF COMPOSITES WITH SPHERICAL
AND CYLINDRICAL INCLUSIONS

[.  INTRODUCTION

A composite which has inclusions of different thermal expansivity in a
matrix will develop internal stresses as the temperature is changed, The
overall coefficient of thermal expansion will therefore differ from the simple

volume average.

Previous treatments by Eshelby(l), by Wakashima et al.(2) and by
Kerner(3) used the stress balance at the interface to find the strain field in
terms of the misfit between inclusion and matrix, and are confined to linear
elasticity. The present treatment derives these relations by minimizing the
total strain energy. It uses an effective medium approximation, i.e. it
replaced the properties of the matrix by those of the material as a whole, hut

assumes that the short-range shear strain about each inclusion depends only

nn the shear modulus of the matrix. Also it expresses the result in terms of
bulk moduli and shear moduli, since this is convenient when separating the
strain field into dilation and shear components. This formulation facilitates
the extension of the theory into the plastic regime, The treatment is
confined to inclusions which are spherical or randomly oriented long

cylinders.,

Manuscript approved April 4, 1987,




II. ELASTIC FIELD AROUND A SPHERICAL INCLUSION
Consider a spherical hole of radius R cut out of the matrix, with a
spherical inclusion of radius R + ARy forced into the hole (if aARp > 0), or
placed into the hole with the surrounding matrix forced to join the inclusion
(if AR < 0)., The hole expands or contracts to a radius R + A R.
A point in the matrix, of distance r from the center, undergoes a
displacement u(r), which must be of the form
u(r) = Ar + B/r? (1)
and in particular
u(R) = AR (2)
The spherical inclusion changes its radius by ARy -AR; it changes its
volume, and there is an associated strain energy. If the fractional voiume of
inclusions is ¢, the energy of compression of the inclusions, per unit volume
nf material, is

Eincl =% Ki (AR2 - A R)2/R2 (3)

where Ky is the bulk modulus of the inclusion.
The term Ar in (1) corresponds to a uniform expansion of the matrix; the

strain energy per unit volume of material is

—

Fexp = 5 Kn 9A2 (1-c) (4)

where Ky is the bulk modulus of the matrix,
In addition, the matrix suffers shear because of the non-dilatational
displacement u = B/r2, The principal strains, which are along the radial

direction and any two mutually perpendicular directions normal to it are,

epp = 3u/3r = -28/r3 (5a)

eyy = €77 = u/r = B/r3 (5b)

' 'lw;c",;-f\"d"f N " X X X
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The shear strain energy density becomes :f
1 1 .
2 :
Wsh = ! 2uejj2 + 7 M c
N
= uBZ r-6 (4+1+1) = 6 uB2/ré (6) '
since the dilation A = eppteyy+ez; vanishes, Here u is the shear modulus of E
” ot
the matrix, A is the other Lame modulus. Integrating over the volume of the $
i )
matrix, i.e. from r = R to infinity P,
Eshear = | 4nr? Wgnh(r) dr = (4n/3) 6uB2/R3 <
R
= (4nR3/3) 6u(B/R3)2 (7) :
”
Expressing this per unit volume of material, where ¢ can be equated to 4aR3/3, ~d
Fshear = 6uc (B/R3)2 () .
44
The total strain energy per unit volume of material thus becomes e
'
E = (9/2) ¢ Kp (aRp - AR)2/RZ + (9/2)(1-c) Ky AZ + 6uc (BR/R3)2 (9) it
where
oy
= R (A + B/R3) (10) ‘)
r
Here K1, Ky are the bulk moduli of the inclusion and the matrix respectively, .
-
u is the shear modulus of the matrix, c¢ is the volume fraction occupied by [
]
inclusions, A and B/R3 are linear strain parameters and aRp is the linear ;|
I\
nisfit between inclusion and matrix. ]
o~
One can define two strain parameters -
8 = B/R3 (11) -
'.F
and .
_I
‘h
y = ARo/R (12) Ry
Now the condition of elastic stahility is that the total strain energy F "4
&
\
~
3 :';
0
..... . . 2
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should be a minimum; two stability conditions must be satisfied

3E/3A

0 (13a,
and

3E/aB (13b)

"
‘o

Since (ARp - AR)/R = y-A-B, equation (13a) yields

9¢ Ky (y-A-B) = 9(1-c) KMA (14a)
and (13b) yields

9¢ K1 (y-A-B) = 12 ucs (14b)

Eliminating the left-hand side of both equations
- gl
A—I-CBW (15)

Eliminating A from (14a and b)

B 4y 4uc -1
B =y [1+ KD 3Km(1-c)] (16)

an¢ eliminating 8 from (15) and (16)

_ c_ 4u 4y 4duc -1
A= 1-c 3KM [1+ 3K * 3KM(1-C)] (17)
IT11. APPLICATION TO THERMAL EXPANSION
The volume expansion comes from two sources: the A-field 1is a uniform
expansion of the matrix and the included cavities, while the g-field
represents an  additional expansion of the included cavities. This latter

field is non-dilational, and transmits that expansion to the outer boundaries,

since Vg = 4nr2B/r2 is independent of r. Therefore

8V/V = 3A + 3cB



Now let the matrix have a volumetric thermal expansion coefficient
daM/dT, and the inclusions a coefficient da(/dT, then the overall coefficient

of thermal expansion is

dA/dT = dAw/dT + %T (8V/V)
= daw/dT + (38 + 3c8) (19)

where A and B8 can be expressed in terms of y through (16) and (17).
Now for an isolated inclusion

3 dy/dT = dA(/dT - dap/dT (20)

but if ¢ is not small, dAM/dT should be replaced by the actual expansion of
the composite, which is da/dT. This takes account, to some degree, the
interaction between inclusions; in addition, Ky should be replaced by the

average bulk modulus of the material

= (1-c) Ky + ¢ K] (21)

On the other hand, the shear field B/r3 is short-range, and if the inclusions
do not touch too frequently, u should be taken as the shear modulus of the
matrix. Thus replacing (20) by

3dy/dT = da[/dT - da/dT [22)

equation (19) becomes, using (16) and (17)

dA/dT = dap/dT + 3¢ (dy/dT) F(u) (23)

Ising (22), one finally obtains
(14cF) da/dT = day/dT + cF day/dT (24)
where

1 + 4u/3(1-c)Km

Flu) =

1 + 4u/3K] + 4cu/3(1-c)Ky
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is a function of u. 1

w

To obtain the net dilation over a finite temperature interval, one has to

integrate (24) over tempecature, i.e.

o o e T

T
A(T) = f Qéill dT (26) %1
dT '
To .
‘ o
% It is relatively straight forward to take account of temperature dependences b“
| *'\
of ddy/dT and dap/dT. Similarly Ky and Ky can be regarded as temperature o
-
dependent, although usually only weakly so. *
b
e
The shear modulus p is defined by )
.’q
L Y
2u = doj/dej itj (27) »
23
v
where the stress and strain tensors ¢ and e are expressed in the contracted N
D
notation, Now u is not only a function of temperature, but in the plastic ;\
regime also a function of prior shear strain, Since the shear strain is a i;
function of radial distance r (see equations 5 and 6), u is also a function of :‘
r, and therefore the present treatment is strictly speaking invalid once the i&
plastic regime is reached. 3
o
“
)
IV, FFFECT OF PLASTICITY 2
Although u, which depends on prior shear strain, 1is different at ]
-"
different points of the matrix, since the shear strain is a function of S-
I.‘
position, one notes that most of the shear strain energy of (7) resides in the ﬁ:
immediate vicinity of the inclusion, where the shear strain is a maximum, and ;\
¢
is given in magnitude by B=B/R3., To a good approximation one may thus regard -
(
u of equation (24) to be only a function of B and T. i
o
\$
1‘*
‘-.
-
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In the absence of plasticity, from (16) and (22)

dg = f(u)~! dy (28)
where
flu) =1 +% E—I + (1—_%@) (29)
and where
dy = (1/3) (da(/dT - da/dT) dT (30)

In calculating A(T) from (24) one must check that g=[dg(T)dT is small enough
so that plastic effects do not occur. Once B and T are large enough so that
plasticity is significant, u(8,T) must be determined from the appropriate
model of plasticity. As T is increased by a finite step dT, the incremental
expansion dA must be determined from (24), and the increment in shear strain

then determined from

d8 = (1/3) (dag - da)/f(u) (31)

The new value of A, namely A+dA, and the new value of g, namely g+d3, are then
used to determine a new value of u, and this value is used in (24) and (31)
for the next temperature increment. This procedure seens suited for a

programmable computer,

V. ELASTIC FIFLD AROUND AN INFINITE CYLINDER

The displacement field wu(r,0,z) about an infinite cylinder oheys the

elastic equations

lo)

(3% + %) =0, 32u/3z2 = 0 (32)

-5

r

and the solution is of the form

ur = (Ar + B/r), uz = eqz (33)
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The principal strains are

€2z = €
err = 9u/3r = A - B/r2
€pp = U/f‘ = A+ B/FZ

and the dilation is

A=2A+e0

The principal stresses are

orpr = 2u{A - B/r2) +
ogo = 2uf{A + B/r2 +
Ozz = 2].1@0 + A

where X, p are the Lame moduli. The strain energy density is given by

=
—
-
~—
|

= 1/2 orreprp + 1/2 ogo €gp + 1/2 077827

u(A-B/r2)2 + u(A+B/r2)2 + peg? + 1/2 M2

1}

2uA? + 2uBZ/r% + ueg? + 1/2 A(2A+eg)?

Now consider a random assembly of cylinders, filling a fraction ¢
entire volume, Let the length of each cylinder experience the same frac
increase as any random line in the matrix, so that ey=A. The strain ene
the matrix is obtained by integrating the B-field energy density from
r=e, and adding to it the dilatational energy of the A-field, which

uniform expansion. Thus

Fg = 2uB2 [ 2nrr-% dr = 2n7uB2/R2
R

2u(B2/R%) (nR2)

(34a)
(34b)
(34c¢)

(36a)
(36b)
(36¢)

(37)

of the
tional
rgy of
r=R to

is a

(38)
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Note that wnR2 s the volume per unit Jlength of the inclusions, so that, per
¢ unit volume, EB=2u(BZ/R“)c. For the shear modulus of the matrix we take that
of the matrix material, assuming that since most of the strain energy is in
the immediate vicinity of the inclusion, the significant material is that of
the matrix. Now Km=(A+2u/3) is the bulk modulus of the matrix., The
N : dilational energy can thus also be written as 1/2 Ky(3A)2, and since the f

matrix occupies a fractional volume (1-c) only, this energy must be multiplied

- - o

by that factor (1l-c). Furthermore, Ky should really be the volume average of

the matrix and the inclusions, so that, per unit volume

CROWOR

Ep = 1/2 (1-¢)(3A)2 [(1-c) Ky + ¢ K] (39) !

where K1 is the bulk modulus of the inclusion material. The strain energy of

. , the matrix material, per unit volume becomes thus

Em = EA + Eg = 1/2 (1-c)Ky (3A)2 + 2cu,B2/R (40)

where Kg is the volume-averaged bulk modulus.

v Mow the strain field arises, in the first place, because each cylindrical
inclusion, when unstrained, occupies a different volume than the cvlindrical
cavity of the unstrained matrix. Let the original radius of the cylindircal

inclusion be R+ARp; it sits in a matrix cavity of radius R+AR, where

AR = AR + B/R [a1)

" -

Let us also assume that originally there is a longitudinal strain between the

unstrained matrix and the inclusion, of magnitude

ep = ARp/R (42) !
{
)
.l
+ 9 Y
'
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Thus the original length of the inclusion

1 +ep=1+ARy/R (427)
is changed to 1+A. The inclusion thus has the following principal strains:

AR2/R - AR/R (2 transverse components)

AR2/R - A (1 longitudinal component)
and a net dilation

A1 = 3ARp/R - 24R/R = A (43a)
and in view of (41)

A1 = 3AR2/R - 3A - 2B/R2 (43b)

This strain field, uniform within the inclusion, can be resolved into a
dilation A of (43b), and three principal strains of zero dilation, of
magnitude

-2B/R2, B/RZ and B/R?

so that, per unit volume of material, the strain energy within the inciusions
hecomes
F1 = 1/2 cK[a2 + 6cupB2/R" (44)

while the total strain energy per unit volume becomes

E=Em+ Ep = (9/2) Ky (1-c) A2 + 2cuy 82 +

+ hcup B2 + (9/2)c Ky (y-A-28/3)2 {45)
where 3=R/R? and y=aRy/R.,

The conditions of stability are that

9E/3A = 0 and 3E/38 = O (46)
which hecomes
9Ky (1-c)A = 9K ¢ (y-A-28/3) (47a)
4(umMt3ug)es = 6Ky ¢ (y-A-28/3) (47b)
10
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Eliminating y we obtain ﬁE
a

2 ¢ ' X

A= T T-c (uM+3uy) B/KM (48) B

Substituting (48) into (47b) we obtain EE
'-

ALY

. . 2
g =2y [1+EME3uL, € uwtdup (49) 3

2 K1 l1-c Ky >

Finally, from (48) and (49)

1

Ae Sy (D) [y wedur ey

for 30 P R o
.y - -

I-c KM K1 I-c Km

KL 1 &

C | - -
=1 Y [uM+§u1 + (Kw/Kp) + ¢/(1-¢)] (50) }:
e

Thus, given y, one can find A and B, ’
VI, VOLUME CHANGE AND THERMAL EXPANSINN Q
Y
The strain field just discussed causes a net dilation o
3
A = 3A + 2¢B8 (51) AN
The first term is a uniform expansion of the matrix and of the cylindrical ::,
J-
cavities which hold the inclusions; the second term is the additional fﬂ
ol

"

expansion which does not dilate the matrix but transmits the expansion of the Y
cylinders to the outside surface, This can be expressed in terms of the o
.".
misfit parameters y through (49) and (50). Writing Z:.
RS

( uMt3u] C_ uM+3ug :

f(uM,uy) = 1 + + [ 52

Msu1) Ky l-c K, (52) >

equation (51) becomes N
(.\

uMt3ug ::

- -1

A= 3cy [1+ (1-c)Kﬁ] f (53) :
il’*

3
In the special case when Ki=Ky and hence Ki=Ky , (53) becones simply 13;
4=3cy, so that the excess volume of the cylindrical inclusions, weighted by c, ;_
hecomes simply the net increase in volume: the compression of the inclusions t‘
)
g
1 >

t.
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by the matrix 1is compensated by the expansion of the matrix. In general,

XNLL P

however, the expansion is larger than 3cy if K[ > KM, and vice versa.

Suppose now that the misfit parameter y is caused by a difference in .ﬁ
thermal expansivity of matrix and inclusions, so that as in (20) i -:
3dv/dT = dap/dT - dap/dT (54) -
Writing M
b
Flumoup) = (1 + MESULy /¢ (55) 3
(1-c)Kp ¥
where f is given by (52), adding the thermal expansion of the matrix to that i
due to the misfit (equation 53) we obtain 5&
dA/dT = dAudT + 3cF dy/dT (56) -.
With the same self-consistency approximation as was made for spherical ;;
inclusions we replace dam/dT in (54) -but not in the first term of (56) -by g&
da/dT, and obtain, as in (24), that R
(14cF) da/dT = dap/dT + cF dap/dT (57) R
the only difference being that F, previously defined by (25), is now given by Sr
(55). RS
N
WJhen accounting for plasticity, we must remember that F is now a function Q\
of two shear moduli, uM and ug. We must still make the approximation, not as Ex
well justified for cylinders as for spheres, that uyM is just a function of 8 Ev'
and T, since the shear strain energy in the matrix resides mainly just near E
the interface, In the inclusions, however, the shear strain in uniform, so :é
that no approximation is incurred when treating uy as just a function of 8 and 3:
T. 0One can then proceed analogously to the case of spherical inclusions, v;
obtaining A(T) by numerical integration. g&
>
t)
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VII. CONCLUSION

By minimizing the strain energy and making use of the fact that the
strain field is composed of a uniform dilation of the matrix and a short-range
shear strain field, it 1is possible to obtain closed expressions for the
overall thermal expansion in the case of spherical inclusions and of randomly
oriented long cylindrical inclusions. A procedure was obtained for extending
the results to the case of plastic flow of the matrix about tne inclusion, if
plastic behavior can be expressed as an effective shear modulus as function of

temperature and shear strain.

Expressions were also obtained for the dilation of the matrix in terms of
the misfit between matrix and inclusion, and thus also in terms of the overall
expansion., These could be used to test the model by comparing dilatometry
with changes of the lattice spacing of the matrix. These results could also
be used in related problems, such as comparing the swelling due to radiation

damage to the corresponding changes of the lattice spacing of a material,
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