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THERMAL EXPANSION OF COMPOSITES WITH SPHERICAL
AND CYLINDRICAL INCLUSIONS

5%

I. INTRODUCTION •X
A composite which has inclusions of different thermal expansivity in a

matrix will develop internal stresses as the temperature is changed. The

overall coefficient of thermal expansion will therefore differ from the simple

volume average.

Previous treatments by Eshelby(1), by Wakashima et al.(2) and by

Kerner(3) used the stress balance at the interface to find the strain field in

terms of the misfit between inclusion and matrix, and are confined to linear

elasticity. The present treatment derives these relations by minimizing the

total strain energy. It uses an effective medium approximation, i.e. it

replaced the properties of the matrix by those of the material as a whole, but

assumes that the short-range shear strain about each inclusion depends only

on the shear modulus of the matrix. Also it expresses the result in terms of

bulk moduli and shear moduli, since this is convenient when separating the

strain field into dilation and shear components. This formulation facilitates

the extension of the theory into the plastic regime. The treatmqent is

confined to inclusions which are spherical or randomly oriented long "'

cylinders.
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I. ELASTIC FIELD AROUND A SPHERICAL INCLUSION

Consider a spherical hole of radius R cut out of the matrix, with a

spherical inclusion of radius R + AR2 forced into the hole (if AR2 > 0), or

placed into the hole with the surrounding matrix forced to join the inclusion

(if AR2 < 0). The hole expands or contracts to a radius R + A R.

A point in the matrix, of distance r from the center, undergoes a

displacement u(r), which must be of the form

u(r) = Ar + B/r2  (1)

and in particular

u(R) = AR (2)

The spherical inclusion changes its radius by AR2 -AR; it changes its

volume, and there is an associated strain energy. If the fractional volume of

inclusions is c, the energy of compression of the inclusions, per unit volume

of material, is

9
Eincl = c KI (AR2 - A R)2/R2  (3)

where KI is the bulk modulus of the inclusion.

The term Ar in (1) corresponds to a uniform expansion of the matrix; the

strain energy per unit volume of material is

-exp = Krl 9A 2 (1-c) (4)

where K,1 is the bulk modulus of the matrix.

In addition, the matrix suffers shear because of the non-dilatational

displacement u = B/r2 . The principal strains, which are along the radial

direction and any two mutually perpendicular directions normal to it are,

err = au/ar = -2B/r 3  (5a)

eyy = ezz = u/r B/r3  (5b)

2

MUM&



The shear strain energy density becomes1 2 1j2

Wsh = 2eij
2 +

= jiB2 r- 6 (4+1+1) = 6 uB2/r6  (6)

since the dilation A = err+eyy+ezz vanishes. Here w is the shear modulus of

the matrix, X is the other Lame modulus. Integrating over the volume of the

matrix, i.e. from r = R to infinity

cc 2Eshear = f 4wr Wsh(r) dr = (47/3) 6pB 2/R3

R

= (4R 3/3) 6p(B/R 3)2  (7)

Expressing this per unit volume of material, where c can be equated to 4iR 3/3, P.

Eshear = 6pc (B/R3)2  (R)

The total strain energy per unit volume of material thus becomes

E = (9/2) c KI (AR2 - AR)2/R2 + (9/2)(1-c) Ktj A2 + 6fjC (9/R3)2  ()^

where

AR = R (A + B/R3 ) (10)

Here KI, K1l are the bulk moduli of the inclusion and the matrix respectively,

w is the shear modulus of the matrix, c is the volume fraction occupied by

inclusions, A and B/R3 are linear strain parameters and AR2 i3 tne linear

misfit between inclusion and matrix.

One can define two strain parameters

BBIR 3

and

y AR?/R (1?)

Now the condition of elastic stability is that the total strain energy F

3
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should be a minimum; two stability conditions must be satisfied

3E/3A = 0 (13a,

and

3E/30 = 0 , (13b)

Since (AR2 - AR)/R = y-A-B, equation (13a) yields

9c KI (y-A-B) = 9(1-c) KMA (14a)

and (13b) yields

9c KI (y-A-0) = 12 ucB (14b)

Eliminating the left-hand side of both equations

A (15)

Eliminating A from (14a and b)

8 = y [I +.- + 3KM(I-c) (16) e,,

anO eliminating a from (15) and (16)

A c 4 i1 + 4p + 4c -1 (17)
1-c 3Ktj - 3K + 3K(1 -c7

Il1. APPLICATION TO THERMAL EXPANSION

The volume expansion comes from two sources: the A-field is a uniform

expansion of the matrix and the included cavities, while the a-field

represents an additional expansion of the included cavities. This latter

field is non-dilational, and transmits that expansion to the outer boundaries,

since VB = 47rr2B/r2 is independent of r. Therefore

6V/V 3A + 3ca (18)

4
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Now let the matrix have a volumetric thermal expansion coefficient

d&M/dT, and the inclusions a coefficient dAl/dT, then the overall coefficient

of thermal expansion is

dT

= dAM/dT + d (3A + 3cs) (19)

where A and a can be expressed in terms of y through (16) and (17).

Now for an isolated inclusion

3 dy/dT = dAi/dT - dAI/dT (20)

,,

but if c is not small, dAM/dT should be replaced by the actual expansion of

the composite, which is dA/dT. This takes account, to some degree, the

interaction between inclusions; in addition, KM should be replaced by the

average bulk modulus of the material

KM = (1-c) KM + c KI  (21)

On the other hand, the shear field B/r3 is short-range, and if the inclusions

do not touch too frequently, u should be taken as the shear modulus of the

matrix. Thus replacing (20) by

3dy/dT = dAl/dT - dA/dT 1,22)

equation (19) becomes, using (16) and (17)

dA/dT = dAIl/dT + 3c (dy/dT) F(p) (23)
*4

Using (22), one finally obtains

(1+cF) dA/dT : dAt 4/dT + cF dAj/dT (24)

where

F(P) = 1 + 4u/3(1-c)KM (25)
1 + 4P/3K I + 4cw/3(1-c)KM

5 5,
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is a function of P.

To obtain the net dilation over a finite temperature interval, one has to

integrate (24) over tempe.,ature, i.e.

A(T) = T dA(T) dT (26)To dT

It is relatively straight forward to take account of temperature dependences

of dapi/dT and dAl/dT. Similarly KI and 7M can be regarded as temperature

dependent, although usually only weakly so.

The shear modulus u is defined by

2v = dai/dej i*j (27)

where the stress and strain tensors a and e are expressed in the contracted

notation. Now w is not only a function of temperature, but in the plastic

regime also a function of prior shear strain. Since the shear strain is a

function of radial distance r (see equations 5 and 6), v is also a function of

r, and therefore the present treatment is strictly speaking invalid once the

plastic regime is reached. 7

IV. FFFECT OF PLASTICITY

Although p, which depends on prior shear strain, is different at

different points of the matrix, since the shear strain is a function of

position, one notes that most of the shear strain energy of (7) resides in the

immediate vicinity of the inclusion, where the shear strain is a maximum, and

is given in magnitude by B=8/R3 . To a good approximation one may thus regard

w of equation (24) to be only a function of a and T.

6 .
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In the absence of plasticity, from (16) and (22)

da = f(p)- 1 dy (28)

where

f (U) = 1 + .~ ~ + 11K (29)

and where

dy = (1/3) (dAI/dT- dA/dT) dT (30)

In calculating A(T) from (24) one must check that 8=fda(T)dT is small enough

so that plastic effects do not occur. Once 8 and T are large enough so that

plasticity is significant, 11(8,T) must be determined from the appropriate

model of plasticity. As T is increased by a finite step dT, the incremental

expansion dA must be determined from (24), and the increment in shear strain

then determined from

do = (1/3) (dAI  dA)/f() (31)

The new value of A, namely A+dA, and the new value of 8, namely 3+d3, are then

used to determine a new value of W, and this value is used in (?a) and (31)

for the next temperature increment. This procedure seems sj*te(i for a

programmable computer.

V. ELASTIC FIFLDF AROUND AN INFINITE CYLINnER

The displacement field u(r,o,z) ahout an infinite cylinder oheys the

elastic equations

- au"+ U) = 0, 32 u/aZ 2 : 0 (3?)
a r a r r

and the solution is of the form

ur = (Ar + B/r), uz : eoz (33)

7
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The principal strains are

ezz = eo  (34a)

err = u/ar = A - B/r2  (34b)

eeo = u/r = A + B/r2  (34c)

and the dilation is

A = 2A + e0  (35)

The principal stresses are

arr = 2p(A - B/r2 ) + XA (36a)

ooo = 2u(A + B/r2 + XA (36b)

azz = 2pe o + )A (36c)

where , j are the Lame moduli. The strain energy density is given by

W(r) = 1/2 arrerr + 1/2 00 eo0 + 1/2 azzezz

= P(A-B/r2 )2 + u(A+B/r2 )2 + ue0
2 + 1/2 X2

= 2pA 2 + 2wB 2/r4 + pe0
2 + 1/2 A(2A+eo) 2  (37)

Now consider a random assembly of cylinders, filling a fraction c of the

entire volume. Let the length of each cylinder experience the same fractional

increase as any random line in the matrix, so that eo=A. The strain energy of

the matrix is obtained by integrating the R-field energy density from r=R to

r=-, and adding to it the dilatational energy of the A-field, which is a

uniform expansion. Thus

EB = 2ujB 2 f 27rrr- dr = 2,JB2 /R2

R
(38)

: 2P(B 2 /R4) (nR2 )

8
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Note that wR2  is the volume per unit length of the inclusions, so that, per

unit volume, EB=21i(B 2/R4 )c. For the shear modulus of the matrix we take that

of the matrix material, assuming that since most of the strain energy is in

the immediate vicinity of the inclusion, the significant material is that of

the matrix. Now KM=(X+2p/3) is the bulk modulus of the matrix. The

dilational energy can thus also be written as 1/2 KM(3A)2 , and since the

matrix occupies a fractional volume (1-c) only, this energy must he multiplied

by that factor (1-c). Furthermore, KM should really be the volume average of

the matrix and the inclusions, so that, per unit volume

EA = 1/2 (1-c)(3A) 2 [(1-c) KM + c KI] (39)

where KI is the bulk modulus of the inclusion material. The strain energy of

the matrix material, per unit volume becomes thus

EM = EA + EB = 1/2 (1-c)K M (3A)2 + 2cpliB 2/R4 (40)

where KM  is the volume-averaged bulk modulus.

Now the strain field arises, in the first place, because each cylindrical

inclusion, when unstrained, occupies a different volume than the cylindrical

cavity of the unstrained matrix. Let the original radius of the cylindircal

inclusion be R+AR 2 ; it sits in a matrix cavity of radius R+AR, where

AR = AR + R/R (J11

Let us also assume that originally there is a longitudinal strain) between the

unstrained matrix and the inclusion, of magnitude

e2 = AR2/R (42)

9
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Thus the original length of the inclusion

1 + e2 = 1 + AR2 /R (42-)

is changed to 1+A. The inclusion thus has the following principal strains:

AR2/R - AR/R (2 transverse components)

AR2/R - A (1 longitudinal component)

and a net dilation

A I = 3AR 2 /R - ?AR/R - A (43a)

and in view of (41)

A I = 3AR 2/R - 3A - 2B/R 2  (43b)

This strain field, uniform within the inclusion, can be resolved into a

dilation A of (43b), and three principal strains of zero dilation, of

magni tude

-2B/R 2 , B/R2 and B/R2

so that, per unit volume of material, the strain energy within the inclusions

becomes

El = 1/2 cKIA 2 + 6cpIB 2/R4 (44)

while the total strain energy per unit volume becomes

E =EM + EI = (9/2) KM  (1-c) A2 + 2citrl a2 +

+ 6Cpl a2 + (9/2)c KI (y-A-2a/3)2  (45)

where 3=R/R 2 and y=AR 2/R.

The conditions of stability are that

aE/A = 0 and DE/a 0 (46)

which becomes

9K.1 (1-c)A = 9K I c (y-A-26/3) (47a)

4(uM+3=)C: 6KI c (y-A-2U/3) (47b)

10



Eliminating y we obtain

A 2 -c (uM+3pI) a/KM (48)

3 1-c 8K

Substituting (48) into (47b) we obtain

Y :_3y [i + PM+3yI + c  M + 3pl  (49)
2 KI  1-c KM

Finally, from (48) and (49)

A c 1 + pT + c. PM 'F
1-c KM

- Y  KM
1- LuMj3pl + (KM/KI) + c/(1-c)j -150J)

Thus, given y, one can find A and a.

VI. VOLUME CHANGE AND THERMAL EXPANSION

The strain field just discussed causes a net dilation .6

= 3A + 2cs (51)

The first term is a uniform expansion of the matrix and of the cylindrical

cavities which hold the inclusions; the second term is the additional p

expansion which does not dilate the matrix but transmits the expansion of the

cylinders to the outside surface. This can be expressed in ter.is of the

misfit parameters y through (49) and (50). Writing

f(M,li) I + KI + l-c K' (52)
M -

equation (51) becomes

IJM+ 311
A = 3cy [I + Ic)] f-I (53)

1-c)KMl

In the special case when KI=KM and hence KI=K M , (53) becomes simply

A=3cy, so that the excess volume of the cylindrical inclusions, weighted by c,

becomes simply the net increase in volume: the compression of the inclusions

II
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by the matrix is compensated by the expansion of the matrix. In general,

however, the expansion is larger than 3cy if KI > KM, and vice versa.

Suppose now that the misfit parameter y is caused by a difference in

thermal expansivity of matrix and inclusions, so that as in (20)

3dy/dT = dAi/dT - dA /dT (54)

Writing

F(IJM,pl) (1 + (1-c) )/f (35)(l-c)KM

where f is given by (52), adding the thermal expansion of the matrix to that

due to the misfit (equation 53) we obtain

dA/dT = dAMdT + 3cF dy/dT (56)

With the same self-consistency approximation as was made for spherical

inclusions we replace d&M/dT in (54) -but not in the first term of (56) -by

dA/dT, and obtain, as in (24), that

(1+cF) dA/dT = dAfl/dT + cF dAi/dT (57)

the only difference being that F, previously defined by (25), is now given by

(55).

When accounting for plasticity, we must remember that F is now a function '.
Nt,

of two shear moduli, wM and pl. We must still make the approximation, not as

well justified for cylinders as for spheres, that uM is just a function of .a

and T, since the shear strain energy in the matrix resides mainly just near

the interface. In the inclusions, however, the shear strain in uniform, so

that no approximation is incurred when treating pI as just a function of and

T. One can then proceed analogously to the case of spherical inclusions,

obtaining A(T) by numerical integration.

12



VII. CONCLUSION

By minimizing the strain energy and making use of the fact that the

strain field is composed of a uniform dilation of the matrix and a short-range

shear strain field, it is possible to obtain closed expressions for the

overall thermal expansion in the case of spherical inclusions and of randomly

oriented long cylindrical inclusions. A procedure was obtained for extending

the results to the case of plastic flow of the matrix about the inclusion, if

plastic behavior can be expressed as an effective shear modulus as function of

temperature and shear strain.

Expressions were also obtained for the dilation of the matrix in terms of

the misfit between matrix and inclusion, and thus also in terms of the overall

expansion. These could be used to test the model by comparing dilatometry

with changes of the lattice spacing of the matrix. These results could also

be used in related problems, such as comparing the swelling due to radiation

damage to the corresponding changes of the lattice spacing of a material.
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