| AD-A183 | 376 <sub>.</sub><br>IFIED | CUN<br>ESS<br>APP<br>USA | ULUS (<br>EN AND<br>LICATI<br>FETAC/ | LOUD (<br>HANN(<br>ONS CI<br>PR-87 | DIMENS<br>DVER(U<br>Enter<br>-001 | ION SI<br>) Air<br>Scott | ATIST<br>FORCE<br>AFB II | ICS FD<br>Envir<br>- R J | r neh<br>Onment<br>Barry | ORLEAN<br>AL TEO<br>JUN 1<br>F/G | NS<br>Chnicai<br>87<br>1/2 | 1/<br>NL | 1 |
|---------|---------------------------|--------------------------|--------------------------------------|------------------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|----------------------------|----------|---|
|         | 2                         | ÷,                       |                                      |                                    |                                   |                          |                          |                          |                          |                                  |                            |          |   |
|         |                           |                          |                                      |                                    |                                   |                          |                          |                          |                          |                                  |                            |          |   |
|         |                           |                          |                                      |                                    |                                   |                          |                          |                          |                          |                                  |                            |          |   |
|         |                           |                          |                                      |                                    |                                   | <b>din</b><br>ek.        | attin<br>htm.            | tu.                      |                          |                                  |                            |          |   |
|         |                           |                          | dil.                                 | urit.<br>Pita                      | <b></b>                           | e<br>Balan<br>Balan      | <b>ii</b> i              |                          | <u>E57</u><br>185        |                                  |                            |          |   |
|         |                           |                          |                                      |                                    |                                   |                          |                          |                          |                          |                                  |                            |          |   |
|         |                           | _                        | _                                    |                                    |                                   |                          |                          |                          |                          |                                  |                            |          |   |





### UNCLASSIFIED

### REPORT DOCUMENTATION PAGE

1a. Report Security Classification: UNCLASSIFIED

3. <u>Distribution/Availability of Report:</u> Approved for public release; distribution is unlimited.

4. Performing Organization Report Number: USAFETAC/PR-87/001

6a. Name of Performing Organization: USAFETAC

6b. Office Symbol: DNE

6c. Address: Scott AFB, IL 62225-5438

11. <u>Title:</u> Cumulus Cloud Dimension Statistics for New Orleans, Essen, and Hannover (Unclassified)

13a. Type of Report: Project Report

14. Date of Report: June 1987

15. Page Count: 67

17. COSATI Codes: Field--04, Group--02

18. <u>Subject Terms:</u> METEOROLOGY, METEOROLOGICAL PHENOMENA, CLOUD DIMENSIONS, CUMULUS CLOUDS, CUMULONIMBUS CLOUDS, CLOUD COVER, CLOUD BASE HEIGHTS, CLOUD TOP HEIGHTS, STATISTICS, STATISTICAL ANALYSIS, STATISTICAL DATA, FREQUENCY OF OCCURRENCE.

19. Abstract: Cumulus clouds at New Orleans, Louisiana, and at Essen and Hannover, West Germany, are analyzed for mean, maximum, and minimum cloud base heights, cloud top heights, and cloud cover amounts using 10 years of USAFETAC DATSAV data. Frequency of occurrence statistics are also calculated. Statistics are produced for each of three different cumulus types (cumulus humulis/fractus, cumulus mediocris/congestus, and cumulonimbus) in two categories: monthly, and hourly by season. Cloud tops are determined from a simple one-dimensional cumulus cloud model. All other cloud dimensions are obtained from surface weather observations. Methods used in determining the statistics are discussed and statistical limitations are noted.

20. Distribution/Availability of Abstract: Same as report

21. Abstract Security Classification: UNCLASSIFIED

22a. Name of Responsible Individual: Capt Randell J. Barry

22b. Telephone: 618 256-5211

22c. Office Symbol: USAFETAC/DNE

**DD FORM 1473** 

### UNCLASSIFIED

### PREFACE

This report was prepared for ASD/WE under USAFETAC Project Number 60706 to satisfy a request by ASD/ENSSA for a three-dimensional representation of cloud dimensions for use in support of the Infrared Tracking System. Using USAFETAC's surface and upper-air databases, cumulus clouds at Essen and Hannover, West Germany, and at New Orleans, Louisiana, were studied to produce statistical values for the specific dimensions of maximum, minimum, and mean cloud base height, cloud top height, and cloud amount. Frequency of occurrence statistics were also produced. Most of the data was derived from surface observations only and is therefore as accurate as the surface observations themselves. Cloud top information was obtained from a onedimensional cumulus cloud model; because of the inherent limitations of the model, the cloud top statistics so obtained should be used with caution, and as a "first guess" only. Detailed technical limitations on the statistics given in the appendices, and reasons therefore, are described in the report.

| Access | ion For        |
|--------|----------------|
| NTIS   | GRA&I          |
| DTIC T | ав 🗂           |
| Unanno | ounced 🗌       |
| Justii | lication       |
|        |                |
| By     | 12             |
| Distr  | ibution/       |
| Avai   | lability Codes |
|        | Avail and/or   |
| Dist   | Special        |
|        |                |
| 1      | 1              |
|        |                |
|        |                |

### CONTENTS

| INTRODUCTION1                                |
|----------------------------------------------|
| DATASETS USED1                               |
| STATISTICS FROM SURFACE OBSERVATIONS         |
| STATISTICS FROM A CUMULUS CONVECTION MODEL   |
| RESULTS                                      |
| BIBLIOGRAPHY                                 |
| APPENDIX ACloud Dimension Statistical Tables |
| APPENDIX BSelected Cloud Dimension Graphs    |

1.00 ğ 2222222555 STATE Drasees しんんんんくら 

CONTRACTOR OF

1.1

N NOADAD

Figure B-7. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Base for Cumulonumbus by Month..... Figure B-8. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus by Month..... Figure B-9. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulonimbus by Month..... Figure B-10. HANNOVER: Maximum, Minimum, and Mean Cloud Top for HANNOVER: Maximum, Minimum, and Mean Cloud Top for Figure B-11. Figure B-12. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Top for Figure B-13. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus by Month......40 Figure B-14. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Top for Cumulonimbus by Month......40 Figure B-15. ESSEN: Frequency of Cumulus Mediocris/Congestus by Month..... Figure B-16. ESSEN: Frequency of Cumulonimbus by Month......41 Figure B-17. HANNOVER: Frequency of Cumulus Mediocris/Congestus by Month..... . . . . . Figure B-19. NEW ORLEANS: Frequency of Cumulus Humulis/Fractus Figure B-20. NEW ORLEANS: Frequency of Cumulus Medicocris/Congestus Figure B-21. NEW ORLEANS: Frequency of Cumulonimbus by Month......44 Figure B-22. ESSEN: Maximum, Minimum, and Mean Cloud Base for Figure B-23. ESSEN: Maximum, Minimum, and Mean Cloud Base for Figure B-24. ESSEN: Maximum, Minimum, and Mean Cloud Base for Figure B-25. ESSEN: Maximum, Minimum, and Mean Cloud Base for Figure B-26. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Figure B-27. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Figure B-28. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Figure B-29. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Figure B-30. ESSEN: Maximum, Minimum, and Mean Cloud Top for Figure B-31. ESSEN: Maximum, Minimum, and Mean Cloud Top for Figure B-32. ESSEN: Maximum, Minimum, and Mean Cloud Top for Figure B-33. ESSEN: Maximum, Minimum, and Mean Cloud Top for Figure B-34. HANNOVER: Maximum, Minimum, and Mean Cloud Top for 

and the second structure and the second

Figure B-35. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Figure B-36. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Figure B-37. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Figure B-42. HANNOVER: Frequency of Cumulus Mediocris/Congestus--Figure B-43. HANNOVER: Frequency of Cumulus Mediocris/Congestus--Figure B-45. HANNOVER: Frequency of Cumulus Mediocris/Congestus--

20000000000

2.53 (**0.52**2.525**) (0.5**553) (0.5553) (0.55252) (0.5255) (0.5255)

### INTRODUCTION

In the past, considerable effort has been given to quantifying certain cloud dimensions such as height and width. Examples are works by Plank (1969), Lopez (1977), and Warner and Grumm (1984). Methods used in the study of cloud dimensions have included analyses of aircraft and satellite stereographic photos, use of radar echo data, and numerical simulation of growing clouds. This kind of research is important from a military perspective because of the effects clouds can have on remote sensing devices such as the Infrared Search and Tracking System.

With this in mind, USAFETAC developed a new and simple method to quantify selected cumulus cloud dimensions. Using a 10-year sample from the USAFETAC surface and upper-air databases, statistics for minimum, maximum, mean cloud base height, cloud top height, and cloud cover amount were produced for three locations: Essen and Hannover, West Germany, and New Orleans, Louisiana. Statistics were compiled for three different cumulus cloud types (cumulus humulis/fractus, cumulus mediocris/congestus, and cumulonimbus) in two categories: monthly, and hourly by season. The frequency and percent frequency occurrence of cumulus cloud types were also calculated. Most statistics were produced from surface observations, but cloud top statistics were obtained from a one-dimensional cumulus cloud model that uses both surface and upper-air data.

The intent of this project report, in addition to providing the statistical summaries produced (see Appendix A) is to document the methods used to obtain the statistics and discuss their limitations. Graphic illustrations of selected cloud dimensions appear as figures in Appendix B.  $\zeta$  ----

### DATASETS USED

| LOCATION    | LAT    | LON    | TYPE OF REPORT | PERIOD OF RECORD |
|-------------|--------|--------|----------------|------------------|
| New Orleans | 30.00N | 90.15W | Airways        | 1973 - 1983      |
| Essen       | 51.24N | 6.59E  | Synoptic       | 1973 - 1983      |
| Hannover    | 52.27N | 9.44E  | Synoptic       | 1973 - 1983      |

### STATISTICS FROM SURFACE OBSERVATIONS

### Surface Observation Elements Used; Description of Statistics.

Statistics obtained from 6-hourly airways and 3-hourly synoptic surface observations include the minimum, maximum, and mean cumulus cloud base height and sky cover amount; the frequency distribution of cloud base height and sky cover amount; and the frequency and percent frequency occurrence of cumulus clouds by type. Input elements of cloud type, cloud base height, and cloud cover amount were taken directly from 10 years of surface observations. After extracting these elements, the minimums, maximums, means, frequencies, and percent frequencies were determined. These statistics were derived for three types of cumulus clouds by month and by season/hour. Cumulus cloud types are defined in Federal Meteorological Handbook 1B (FMH-1B) as:

Cumulus humulis/fractus (CH), Low Cloud (CL = 1)

Cumulus mediocris/congestus (CC), CL = 2

Cumulonimbus (CB); CL = 3 or 9.

Seasons are defined as:

Winter: December through February Spring: March through May Summer: June through August Fall: September through November.

All times are Greenwich Mean Time (GMT). Cloud base heights are meters above ground level (AGL). Sky cover amounts are in eighths. The number of observations (#OBS) is the total number of times a particular cloud type was reported during the specified period (month or season/hour). The percent frequency (%FREQ) is the frequency divided by the total surface observations available during the specified time period (e.g., for New Orleans in January, CH occurred 22 times out of a total of 1,466 surface observations, or 1.5% of the time).

### Limitations.

There is always some degree of uncertainty in determining cloud base height and sky cover amount from the surface. Ceilometers make cloud base height measurements relatively accurate, but sky cover amount estimation is subjective.

Additional uncertainty is added when the cloud base height is encoded into USAFETAC's database. Because height observations are encoded for a particular range of heights (bins) rather than for a specific height, some accuracy is lost. Synoptic observation accuracy is better than airways because its bin resolution is 30 meters as opposed to 50 to 500 meters for airways. This difference in resolution can be seen when comparing the frequency distribution of cloud base heights for an airways station to the frequency distribution for a synoptic station. The encoding of cloud base heights in bins also creates an artificial representation of maximum and minimum values. For example, a maximum cloud base value may be given as 1750 m, but the actual value could fall anywhere in the bin represented by 1750 m.

The "percent frequency of occurrence" statistic is limited by the possibility that no continuous observation exists or is possible at a given location. If a large enough data set is available at regular intervals, however, inferences can be made as to the percent frequency occurrence of cloud types. Since the data used in this project is fairly complete (i.e., there were only a small number of missing observations), this statistic should closely approximate the percent of time cumulus clouds are actually present.

Statistics are also affected by reporting procedures and local reporting biases. As can be seen from the data, clouds are reported every 6 hours in airways code and every 3 hours in synoptic. This, especially with airways data, does not give us the resolution in time that we would like for examining diurnal changes.

Finally, there are reporting biases in the data. Although CH is not prevalent in Germany, the fact that it does not show up at all in this dataset is questionable. Its absence is most likely due to reporting bias on the part of German observers. When it does occur, CH is probably reported as stratocumulus (CL = 4 or 5).

### STATISTICS FROM A CUMULUS CONVECTION MODEL

### Procedure.

To obtain statistics on cloud tops, a numerical model of cumulus convection developed by Nordquist and Johnson (1970) was modified to use the USAFETAC surface and upper-air databases. In its original form, the model used upper-air data only. It was modified here to read surface data so that cloud top calculations would occur only when cumulus clouds were being reported. Surface temperature and dewpoint observations were also incorporated into the calculations. A brief discussion on how the model produces cloud top values follows.

The model first reads a surface observation. If a cumulus cloud is reported (CL = 1, 2, 3, or 9), the appropriate upper-air data is read. The upper-air data includes the pressure, height, temperature, and dewpoint at each reported level. To better represent the moisture available in the boundary layer at the time of convection, the dewpoint from the surface observation that contains the cloud report is used to update the surface dewpoint of the sounding.

The upper-air data is then interpolated at 50-meter height increments from the surface to the top of the sounding, usually to the tropopause level. This interpolation creates a pressure, height, temperature, and dewpoint value for each 50-meter level. Mixing ratios are then calculated at each level.

Next, the observed surface temperature at the time of cumulus convection replaces the rawinsonde surface temperature of the interpolated sounding. This is the convective temperature. The sounding is then adjusted dry adiabatically in the lower layers to account for the warming of the surface temperature.

The lifting condensation level (LCL) is now calculated using an algebraic approximation based on the observed surface pressure, temperature, and dewpoint. If a parcel of air being lifted dry adiabatically is positively buoyant at this LCL, this level is assumed to be the cloud base. If the parcel is not positively buoyant, the LCL is recalculated using the next level of incremented data. This process is repeated until a valid cloud base is found, or until the level being lifted is more than 1 km above the surface. If a cloud base is not obtained, calculations on that particular set of observations cease and the program processes a new set of observations. If a valid cloud base is determined, the parcel is given an initial updraft velocity and radius. These are assigned based on the type of cloud reported. If the cloud type was cumulus humulis/fractus, an updraft velocity of 2 m/s and an updraft radius of .35 km are used. For cumulus mediocris/congestus, values of 7 m/s and .5 km are entered. Cumulonimbus has initial values of 15 m/s and .75 km. These updraft radius values are based on one-half the observed visual radii as reported by Allen, Malick, and Serebreny (1984). Nordquist and Johnson suggested using one-half the visible cloud radius as a valid updraft radius. Initial updraft velocities were obtained from Scorer and Wexler (1967), "Cloud Studies in Colour."

Having given the model an initial updraft velocity and radius, an updraft velocity and radius are next calculated at subsequent data levels based on the buoyancy of the cloud parcel using a calculated cloud temperature, mixing ratio, liquid water content, and entrainment rate. This process continues until the updraft velocity goes to zero. At this point it is assumed that the cloud top has been reached.

The input of surface and upper-air data and the calculating of cloud top values continue until all data is processed. In addition to cloud top values, vertical cloud thickness is also determined. This is used as a check on cumulonimbus cloud top values. If a cumulonimbus is found to be less than 2 km thick the calculation is not used. All other cloud top calculations are retained.

### Description of Statistics.

Statistics calculated for the cloud top dataset include mean, maximum, and minimum values. The frequency distribution of cloud top values are also displayed for the three types of cumulus clouds, by month and diurnally by season. Cloud types and seasons are defined as before. Mean, maximum, and minimum values are in meters (AGL), while frequency distribution bins are in kilometers. All times are GMT. The frequency distribution was displayed to show how cloud top values are distributed across the range of values and should not be interpreted as information on how often a certain cloud type occurs.

### Limitations.

ANTING CONSTRUCTION AND AND ANTING

Error is introduced into cloud top calculations in various ways. Because this is a steady state, one-dimensional model, the upper-air data, except in the lower layers, does not change with time. Advective changes in moisture and temperature aloft are not accounted for. Therefore, the atmospheric profile used to make the cloud top calculation may not be representative of the actual atmospheric profile at the time of cumulus convection.

A second source of error is with the entrainment hypothesis. This model uses the 1/R entrainment hypothesis which simply states that the amount of entrainment is inversely proportional to the radius of the cloud. Because it is impossible to get an accurate initial radius for each cumulus cloud observed, the entrainment rate may not be totally representative. In addition to the uncertainty created by an inaccurate cloud radius, it has been shown that this entrainment hypothesis is not always valid, especially with strong vertical shear. The entrainment rate plays an important role in cloud growth

(the greater the entrainment, the greater the reduction in buoyancy); if entrainment rate is inaccurate, cloud top values will also be inaccurate.

Another uncertainty inherent in the model lies in the assumption that the pressure distribution at any point within the cloud is exactly equal to the hydrostatic environmental pressure at the same level. It has been shown, however, that there is a substantial pressure perturbation within the cloud. This perturbation pressure field acts to suppress the growth of clouds due to mixing with the environment; without its inclusion in this one-dimensional model, cloud top calculations are probably larger than actually observed.

The last potential error source is in the data itself. As mentioned earlier, most upper-air datasets end at the tropopause. With this model, all calculations cease at the top of the dataset whether the actual cloud top has been reached or not. Cumulonimbus clouds, therefore, which have been known to penetrate 3-4 km into the stratosphere, may have been truncated below their actual heights.

As can be seen from this discussion, cloud top calculations are meant to be approximate values only. To quote Nordquist and Johnson, "the basic model provides a 'ball park' estimate of the gross characteristics of isolated cumulus clouds." These limitations should always be considered when using such cloud top statistics.

### RESULTS

### Results From Surface Observations.

Statistics obtained from elements extracted directly from surface observations appear reasonable. As expected, cumulus clouds at all three locations have a maximum frequency of occurrence during summer and minimum during winter. Because of the frequency with which observations are taken (every 6 hours for airways and every 3 hours for synoptic) we were not able to be as precise as we would like when determining the diurnal trend for cumulus activity. For example, although New Orleans statistics (based on airways) show an 1800Z maximum, the actual maximum could be as early as 1500Z or as late as 2100Z. Since 3-hourly synoptic observations provide us with better time resolution, we were able to determine diurnal variations for the German stations more precisely.

The results of cloud base statistics can only be as accurate as the surface observations themselves. The surface observations used in this study seem reasonable. To summarize cloud base statistics: At New Orleans the mean cloud base of CH has a constant value of 800 meters through the year. CC goes from an average of 700 meters in winter to 1,000 meters in summer. Transition during spring and fall is gradual. CB cloud bases are, on average, 500 meters in winter and 800 meters in summer. There are very sharp transitions between these two values in early spring and late fall. In Germany, average cloud bases for both reported cumulus clouds (CCs and CBs), vary from about 500 meters in winter to 800 meters in summer. There is a gradual transition between these values during spring and fall.

As expected, the diurnal trend for cloud bases shows them to be generally higher during daytime heating and lower during nighttime cooling. The maximum and minimum values for cloud bases are somewhat more suspect because of the binning of values. For example, although statistics for Essen show that CC has a maximum cloud base of 1,800 meters from March to September, the actual maximum cloud base probably shows more variation during this period.

Statistics for cloud cover, as was the case with cloud bases, are only as good as the subjective abilities of the observer to determine cloud cover. The statistics seem reasonable, with cumulus coverage usually averaging two to three eighths and the general diurnal trend showing greater coverage during the day than at night. Nighttime values should be used with caution, however, because of the increased difficulty in evaluating cloud cover in darkness.

In general, the use of surface observations to determine statistics for cumulus cloud frequency, as well as for maximum, minimum, and mean cloud base and cloud cover, is valid. The limitations previously described do affect the dataset, but not so much as to make it unrepresentative.

### Results From a Cumulus Convective Model.

The results produced by the cumulus cloud model must be used with care because we are deriving the cloud top values numerically and not observing actual cloud tops from satellite or aircraft photos. Although cloud top values produced by the model seem generally reasonable, we have no way of verifying them on an individual basis. In some cases we were able to show significant differences when comparing our overall results with the results of other studies.

Examining our results, we see that CB at New Orleans generally has higher tops than CC (which has higher tops than CH), but there are exceptions. In February the mean value of CB tops is less than the value for CC. This is because only one CB top was calculated during that month. The reasons for that could include the lack of upper-air data when CBs were reported or the inability of the model to calculate a cloud top because of an inversion. (Note: If there is an inversion in the lower levels of the atmosphere, calculations could be stopped at the level of the inversion and this point would be taken as the cloud top. Because CBs less than 2 km thick are discarded from the dataset, these values are often not retained.)

Computed CB cloud tops are highly susceptible to the error of data truncation. Because cloud tops can only go as high as the upper-air reports, values are often produced that are probably less than what actually occurred. At New Orleans, for example, the maximum CB cloud top calculated was 13,905 m. Although this value appears to be realistic, the actual maximum cloud top for this location could have been different. By examining radar echo data, Kantor et. al. found that CBs have gone as high as 20 km at New Orleans. The conclusion is that maximum tops for CBs at all three study locations are probably invalid in most cases. <u>2220 © 2222220 © 22222240 PODEDZAO E CONCOMP</u>EDES 25500

The entrainment hypothesis used in the model also creates problems when calculating CB tops. This hypothesis was meant to be used for small, isolated cumulus clouds in an unsheared or weakly sheared environment (i.e., CH or smaller CC). If the pressure perturbation term is included in the model (the

model used in this study did not include the pressure perturbation term), then this entrainment hypothesis could be applied to larger CC. Because thunderstorms often occur in a highly sheared environment, using this entrainment scheme to calculate CB tops is at best a simple attempt to obtain an approximate cloud top value or, at worst, is totally invalid. As stated earlier, CB growth was stopped prematurely (as in the New Orleans example) producing erroneous results. Improper application of the entrainment hypothesis would cause this.

2

In summary, cloud top values produced for CH and CC should be marginally accurate because these were the types of cumulus that the original model (Nordquist and Johnson) was developed to simulate. CB cloud tops so computed, however, should be considered suspect.

### BIBLIOGRAPHY

- Plank, V. G., "The Size Distribution of Cumulus Clouds in Representative Florida Populations," *Journal of Applied Meteorology*, Vol 8, pp. 46-67, 1969.
- Lopez, R. E., "The Lognormal Distribution of Cumulus Cloud Populations," Monthly Weather Review, Vol 105, pp. 865-872, 1977.
- Warner, C., and R.H. Grumm, "Cloud Distributions in a Bay of Bengal Monsoon Depression," *Monthly Weather Review*, Vol 112, pp. 153-172, 1984.
- Federal Meteorological Handbook Surface Observations (FMH-1B), HQ Air Weather Service, Scott AFB, IL, 1 January 1980.
- USAFETAC DATSAV Database Handbook, USAFETAC/TN-77/002, USAF Environmental Technical Applications Center, Scott AFB, IL, December 1977.
- Nordquist, W. S., and N.L. Johnson, *One-Dimensional Quasi-time-dependent Numerical Model of Cumulus Cloud Activity*, Research and Development Technical Report ECOM-5350, December 1970.
- Allen, J. H., J.D. Malick, and S.M. Serebreny, *Modeling of the Vertical Distribution of Clouds*, SRI Project 7116, July 1984.

A CONTRACT AND A CONTRACT

- Scorer, R. S., and H. Wexler, *Cloud Studies in Colour*, Permagon Press, Oxford, New York, 1967.
- Simpson, J. S., "Cumulus Clouds: Numerical Models, Observations, and Entrainment," Mesoscale Meteorology--Theories, Observations, and Models, D. Reidel Publishing Co., pp. 413-445, 1983.
- Holton, J. R., "A One-Dimensional Cumulus Model Including Pressure Perturbations," *Monthly Weather Review*, Vol 101, pp. 201-205, 1973.
- Kantor, A. J., and D.P. Grantham, A Climatology of Very High Altitude Radar Precipitation Echoes, AFCRL-68-0630, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, MA, December 1968.

Cloud Dimension Statistical Tables

TABLE 4-1. ESSEN: CUMULUS CLOUD BASE HEIGHTS BY MONTH.

STATTON: ESSEN PLASTU: ESSEN PLASTU: 104100 LAT : 51-24 V LOU : 6-59 m FLEU : 129 4

| ICH AE                                  | ITA. TY        | 9E            |             |        |            |         | 2.9.7   | S YONALS | ISTELBUTI | ( W ) NO  |           |       |              |       |
|-----------------------------------------|----------------|---------------|-------------|--------|------------|---------|---------|----------|-----------|-----------|-----------|-------|--------------|-------|
| HINCH                                   | TYPE           | ( K ) 7 4 3 5 | ( ) ) > > > | (w)~Iw | 0-249      | 253-499 | 691-005 | 750-999  | 1000-1249 | 1250-1499 | 1500-1749 | 1750+ | <b>208</b> 2 | てろとうよ |
|                                         | 2              | 454.5         | 1203        | 120    | 56         | 230     | 135     | 36       |           | ſ         | •         | 0     | 458          | 17.3  |
|                                         | 80             | 446.7         | 603         | 270    | 0          | •       | -       | 0        | C         | c         | 0         | 0     | o            | 0.3   |
| F 13                                    | კ<br>კ         | 528.3         | 1203        | C E    | <b>8</b> 2 | 175     | 101     | 47       | •         | 0         | 0         | 0     | 355          | 14.6  |
| E:J                                     | 80             | C*00+         | 662         | 300    | 0          | -       | 0       | 0        | 0         | C         | 0         | 0     | ~            | 0.1   |
| 244                                     | ပ<br>ပ         | 8.002         | CC61        | 06     | 04         | 225     | 250     | 158      | 61        | ~         |           |       | 116          | 26.9  |
| 242                                     | 60             | 541.2         | 666         | 180    | ~          | 23      | 15      | •        | 0         | C         | 0         | 0     | 84           | 1.9   |
| × c v                                   | :;             | 124.1         | CC61        | 120    | 31         | 255     | 257     | 243      | 36        | 23        | 32        | o     | 946          | 36.6  |
| A C A                                   | 19<br>()       | 595.9         | C 6 2 1     | 240    |            | 35      | 28      | 13       | ~         | -         | 0         | 0     | 19           | 3.1   |
| 447                                     | ເ              | 843.9         | CCEI        | 09     | 34         | 173     | 213     | 336      | 120       | 24        | 49        | 32    | 101          | 30.0  |
| 447                                     | <b>6</b><br>10 | 183.1         | C061        | 303    | C          | 15      | 28      | 31       | ¢         | c         | ł         | ~     | 98           | 3.2   |
|                                         | 3              | 8 3 8 • 5     | CC61        | 63     | 25         | 215     | 290     | 352      | 147       | 39        | 94        | 16    | 8411         | 44.5  |
|                                         | 6              | 815.3         | CC61        | 30     | -          | 16      | 59      | 40       | •1        | 4         |           | -     | 104          | 0••   |
| ٦۲r                                     | 3              | 309.2         | 1933        | 123    | 16         | 102     | 316     | 396      | 123       | 39        | 62        | 20    | 1177         | 44.6  |
| יור                                     | 10             | 827.3         | 1500        | 69     | ~4         | r       | 61      | 4 4      | r         | _         | -         | 0     | 18           | 3.0   |
| AJG                                     | 2              | 847.7         | CCSI        | 150    | 61         | 151     | 224     | 336      | 119       | 38        | 52        | 22    | 940          | 35.3  |
|                                         | <b>8</b><br>   | 8°Ce1         | 1503        | 390    | 0          | Ś       | ,<br>16 | 26       | ~         | £         |           | 0     | 53           | C•2   |
| SEP                                     | ដ              | 726.7         | 0061        | 06     | 32         | 0 c 1   | \$02    | 100      | 69        | 25        | 11        | ~     | 837          | 32.5  |
| S : P                                   | 60<br>• • •    | C.072         | CC21        | 243    | -4         | •       | 13      | 12       | ~         | 0         | 0         | 0     | 36           | 1.5   |
| 3:1                                     | U<br>U         | 573.8         | 1352        | C 5    | 50         | 224     | 213     | 156      | •         | ~         | 0         | 0     | 564          | 24.9  |
| 1:0                                     | 6.1            | 577.8         | C 6 6       | 300    | 0          | 11      | Ð       | Ð        | 0         | ſ         | 0         | G     | 23           | 0.9   |
| 202                                     | 3              | 0.854         | 666         | 00     | 58         | 278     | 176     | 55       | C         | 0         | c         | 0     | 577          | 22.3  |
| VCV                                     | <b>.</b>       | 1.13.4        | 503         | 06     | -4         |         | •       | 0        | 0         | o         | 0         | 0     | +1           | 0.5   |
| 050                                     | 3              | 471.5         | 606         | 150    | 27         | 238     | 129     | 25       | 0         | 0         | 0         | 0     | 614          | 15.7  |
| 0EC                                     | <b>f</b> 0     | 445.0         | 665         | 150    |            | ~       | ~       | 0        | 0         | c         | 0         | 0     | ¢            | 0.2   |
| . 67:                                   |                |               |             |        |            |         |         |          |           |           |           |       |              |       |
| (101)                                   | ryaes-         |               |             |        |            |         |         |          |           |           |           |       |              |       |
|                                         |                | LUS AUMULT    | ~           |        |            |         |         |          |           |           |           |       |              |       |
| .;                                      |                | :JCIC3+ >rJ   | SECTIONCES  | itus   |            |         |         |          |           |           |           |       |              |       |
|                                         |                | LOVIVBUS      |             |        |            |         |         |          |           |           |           |       |              |       |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                | ロイビー ついこうざい   |             | •      |            |         |         |          |           |           |           |       |              |       |

|   | LEEE 3               |        | 7.1   | 19.2       | 31.7           | 36.9   | 14.5      | 6.9    | 5.1    | ~•0             | 2.0          | <b>6.</b> 0 | 0.7              | 1.0       | 5.5      | 15.6     | 43.4   | 1.01          | 69.7       | 46.6        | 12.3   | 5.5    | 1.0          | 0.3         | 7.0    | 4.5        | 8.3            | 6.1       | 1.1          | ••0       | 8.2        | 23.7        | 53.7       | 29.5       | 0*20       | 59.2     | [ • · ]  | <b>6</b> •0 | 1.1    | 0.3        | 0.7       | 0.4   | 4.9        | 7.5          | 0        | 19 <b>-</b> 0 |
|---|----------------------|--------|-------|------------|----------------|--------|-----------|--------|--------|-----------------|--------------|-------------|------------------|-----------|----------|----------|--------|---------------|------------|-------------|--------|--------|--------------|-------------|--------|------------|----------------|-----------|--------------|-----------|------------|-------------|------------|------------|------------|----------|----------|-------------|--------|------------|-----------|-------|------------|--------------|----------|---------------|
|   | 2 B C S              | 5      | 6.9   | 187        | 309            | 357    | 241       | 69     | 64     | ~               | ~            | •           | ~                | -4        | 54       | 164      | 431    | 595           | 693        | 463         | 121    | 54     |              | ~           | 2      | 94         | 82             | 19        | =            | •         | 00         | 234         | 165        | 160        | 019        | 583      | 997      | 59          | 11     | ~          | ~         | ç     | 63         | 2            | 62       | đ             |
|   | 1750.                |        | 0     | 0          | 0              | 0      | 0         | 0      | 0      | 0               | 0            | 0           | 0                | 0         | •        | 0        |        | []            | 24         | •           | 0      | c      | 0            | 0           | 0      | c          | -              |           | 0            | c         | -          | 0           | ~          | •          | 82         | 5        | 0        | 0           | ç      | 0          | 0         | c     | 0          | 1            | o        | o             |
|   | 1 200-1743           |        | • •   | 0          | 0              | 0      | 0         | 0      | 0      | 0               | 0            | 0           | 0                | 0         |          | 0        | ~      | 59            | 24         | 12          | ~      | 0      | 0            | 0           | 0      | •          | ~              | 0         | -            | 0         | 0          | ~           | •          | 40         | 10         | 39       | ~        | 0           | 0      | 0          | •         | 0     | Ł          |              | 0        | 0             |
| i | ( 7 )<br>1 260-1 400 | 0      | 0     | 0          | 0              | 0      | 0         | 0      | 0      | 0               | 0            | Ċ           | 0                | 0         | 0        | 0        | ~      | 61            | 62         | 16          | 0      | 0      | 0            | 0           | 0      | -          | 0              | 0         | 0            | 0         | 1          | ~           |            |            | <b>3</b> 0 | 27       | 0        |             | 0      | 0          | 0         | -     | ~          | Ð            | 0        | 0             |
|   | 51419011JA           | 0      | • 0   | 0          | ~              | ~      | 0         | 0      | 0      | 0               | 0            | 0           | 0                | 0         | 0        | •        | •      | 11            | 63         | 9           | 0      |        | 0            | o           | 0      |            | -              | •         | -            | 0         | •          | ~           | <b>6</b> 2 | 201        | 156        | 0        | [3       | ÷           | 7      | 0          | 0         | 2     | Ð          | •            | ~        | 0             |
|   |                      |        |       | •          | 74             | ÷5     | 1         | ~      | ÷      | n               | 0            | 0           | c                | 0         | ~        | 11       | 87     | 225           | 612        | 149         | 30     | 61     | 0            |             |        | •          | 21             | 17        | ~            | •         | 62         | ÷.          | 139        | 101        | 275        | 232      | 6 7      | []          | Ð      | ~          | r         | 1     | <b>9</b> 2 | 37           | 15       | 4             |
|   |                      | 11     | -     | 4          | 46             | 122    | 35        | 21     | 13     | n               | n            | •           | 0                | c         | 15       | <b>4</b> | C+1    | 192           | 158        | 125         | 43     | c I    | c            | n           | •      | C 2        | 25             | 61        | 2            |           | 25         | 09          | 197        | 172        | 145        | 118      | ÷.       | ٢2          | •      | 7          | ſ         | 61    | 15         | 1            | •        |               |
|   | 007-090              |        | ; ;   | 101        | 160            | 154    | 82        | 33     | 25     | -               | 2            | •           | ~                | -1        | 23       | 48       | 169    | 125           | 107        | <b>9 2</b>  | 37     | ٢2     | -4           | <b>~</b>    | •      | 15         | 29             | 61        | r            | n         | 20         | 8           | [ 4 ]      | 66         | 68         | ф.       | 8        | 61          |        | n          | ~         | s.    | r          | ~            | •        | -             |
|   | 9-26-6               |        |       | 62         | 62             | 54     | <b>C1</b> | •      | ŗ      |                 | •            | ſ           | ſ                | ſ         | ~        | 12       | 12     | 15            | 19         | 12          | ø      | -1     | ſ            | n           | ſ      | -          | C,             | ~         | ç            | •         | ~          | 11          | 17         | <b>~</b> . | <b>.</b>   | •        | ~        | ~           | ſ      | ſ          | ſ         | ſ     | ſ          |              |          | ~             |
|   | M1 M1 M1             | 1051   | 150   | 120        | 2              | 051    | 06        | 190    | 8      | 150             | 0            | 006         | 390              | 270       | 120      | 150      | 06     | 00            | <b>6</b> 2 | 150         | 150    | 210    | 450          | 390         | 273    | 190        | 270            | 061       | 001          | 990       | 210        | 150         | 120        | 150        | C 6 1      | 190      | 210      | 40          | 390    | 069        | 350       | 390   | 390        | 4 20         | 300      | 30            |
|   |                      |        | 190   | 006        | 1200           | 1200   | 006       | 906    | 990    | 300             | 084          | 690         | 084              | 270       | 1500     | 1203     | 1 4 00 | 1 8 00        | 1 8 00     | 0091        | 1500   | 1033   | <b>6 5 5</b> | C06         | 750    | Ce21       | 1800           | 0091      | 1 500        | C06       | 1800       | CO 5 1      | 0081       | 1800       | 0091       | 1 800    | 1 500    | 1320        | C021   | 780        | 046       | 1393  | 1500       | 1 8 00       | 1200     | 066           |
|   |                      |        | ֥C4+  | 425.7      | 475 <b>.</b> 3 | 513.5  | 478.7     | ¢\$3.5 | 443.7  | 225.3           | C*C8+        | 525.3       | 437.1            | C.C15     | 5.22.2   | 517.7    | 543.7  | 734.5         | 950.3      | C.177       | 589.5  | 585.3  | ¢ 20 * 0     | 587.2       | 540.0  | 514.3      | 519 <b>.</b> 3 | \$\$0.55  | <b>554.5</b> | 347.5     | \$31.6     | 585.2       | 542.2      | 953.5      | 168.3      | 992.4    | 714.7    | 535.5       | 764.4  | 150.0      | 132.9     | 726.7 | 943+3      | 1.506        | 757.2    | 547.3         |
|   |                      | 33     | 90    | <b>6</b> C | 12             | 15     | 18        | 21     | 80     | <b>\$</b> C     | 60           | 12          | 15               | 18        | 03       | 96       | 60     | 12            | 15         | 01          | 12     | CC     | <b>f</b> C   | <b>\$</b> C | e<br>c | 12         | 15             | 18        | 21           | CC        | <b>8</b> 0 | <b>\$</b> C | 60         | 21         | 5          | 60 ·     | 12       | 00          | 60     | <b>3</b> 5 | 60        | 12    | 15         | 40 -<br>++ ( | 12       | <b>C</b> C    |
| 5 | 1402                 | •      | 1.1   | ບູ         | ບ<br>ເ         | 2      | ы<br>С    | 8      | ч      | <b>6</b><br>( ) | <b>m</b><br> | 8           | <b>10</b><br>1 1 | <b>10</b> | H        | ដ        | 2      | კ             | ដូ         | 3           | с<br>Н | H      | ÷.           | 89<br>1 1   | 80     | <b>1</b> 0 | 10             | 19        | 10           | 60<br>. ' | ы<br>Н     | .,          |            |            |            | <b>.</b> | <b>.</b> | 3           | 10     | 60         | <b>10</b> | 8.    | 8.         | 10           |          | <b>10</b>     |
|   |                      | NULLER | 11154 | ALVIEN     | 251215         | 414162 | ALVIE2    | ALVEL  | 251N1P | 751N17          | 251212       | A INTER     | 2:1212           | RULNIN    | 222 [ 15 | 50214C   | 02124S | <b>?21545</b> | 52324S     | 5 P 2 1 4 6 | CNIEds | 323145 | 222143       | 541892      | 21145  | 32129S     | CNItds         | 5 2 1 1 0 | 5P214G       | 5P3143    | イビアヨつら     | ペッテティッ      | 212200     |            |            |          |          |             | インチョーン | インチャック     | オミナナつい    | ~===> | マシーナーン     | 204452       | 5 1445 A | マ・デドつい        |

TABLE 4-2. ESSEN: CUMULUS CLOUD BASE HEIGHTS BY SEASON AND HOUR.

γ,

4

S. S. S. S. S.

٠,

j

| 0 ~ 4 ~ ~ ~ 6 0 0 0 0 ~ ~ ~ ~ ~ 6 0 0 0 ~ ~ ~ ~                                               |                                                                      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                               |                                                                      |
|                                                                                               |                                                                      |
| 0                                                                                             |                                                                      |
| a-o4Facacaccocc                                                                               |                                                                      |
| 00 2 5 5 0 0 0 0 - 0 0                                                                        |                                                                      |
| N\$\\\$\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ |                                                                      |
|                                                                                               |                                                                      |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                        | n.<br>. N                                                            |
| ***********                                                                                   |                                                                      |
| 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120                            |                                                                      |
| 0051<br>0051<br>0051<br>005<br>005<br>005<br>005<br>005<br>005<br>0                           | = 5 TUS<br>3 S.                                                      |
|                                                                                               | FES<br>•44V<br>•44V<br>•405<br>•405<br>•405<br>•405<br>•405<br>•4616 |
| 00000000000000000000000000000000000000                                                        | ХФЛ<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч<br>Ч |
|                                                                                               | ・1000ドスト<br>モモモングログ<br>モモモングログ<br>そのそのこここので<br>エモアログト 4              |
|                                                                                               |                                                                      |

003-00

м

**ZFRED 2082** -6 **`** 8 00000--00000 -----AT MONTH. WCITUPIPISIC YOU P/T 8/2 8/2 8/2 PI 16 17 87 2-2-203 C ~ 6 s 20 2 2 02 , c p ٠ G N S a 5 5 9 \$ CLOUD SKY COVER 2-306 115 117 134 125 5 . s. --55 14 C 20 172 5 117 991 164 s. 145 147 o ¢ 115 95 **9**9 o 87 ~ F4EJENCY ( 2/9 3/9 6/ 31 109 73 3 2 1 57 75 56 2 0 115 111 199 220 230 200 167 1 187 155 \$ ۲, 611 113 ٠ ١r 2 C2 133 222 162 179 131 123 123 - 20 27 • • 3 51415 247 56 32 ÷ [] \* 6 \* 7 5 -----7 4 F ESSEN 3.3 HAY . AJER YE CLJJ) TYPES-JULA LYDE 1436E 4-3. J Tim 788778777777777487777700 688778777777778880000000 788778777777778800000077707 < É V :

5×1

**C.X.**  Fuel Connection

N. 1965 YESTONIA

A SOLAR STATES

TABLE 4-4. ESSEY: CJ4ULJS CLJJD SKY CDVER BY SFASDY AND 4312.

|           | 25252   | ÷.5    | 7.1         | 19.2       | 1.16           | 36.9   | 14.5   | 6.9         | 5.1    | 2.0         | 2.0    | 0.5       | 1.0      | 1.0        | 5.5        | 16.6       | 43.64  | 10.1  | 69.7   | 46.6       | 12.3           |          | 1.0   |            | 7.0        |          |        | 5.1   | 1.1        | •        | 8.2         | 23.7       | 53.7       | 78.5   | 82.0        | 59.2  | [].]          | 5.0        | 1.1        | 0.3         | 7.0            | 0.4    | 5.4    | 7.5         | 3.0      | 0.0    |
|-----------|---------|--------|-------------|------------|----------------|--------|--------|-------------|--------|-------------|--------|-----------|----------|------------|------------|------------|--------|-------|--------|------------|----------------|----------|-------|------------|------------|----------|--------|-------|------------|----------|-------------|------------|------------|--------|-------------|-------|---------------|------------|------------|-------------|----------------|--------|--------|-------------|----------|--------|
|           | SECE    | 5      | \$          | 107        | 6 C 6          | 357    | 241    | <b>ç</b> 9  | ;      | ~           | ~      | £         | *        | -          | 3          | 154        | 164    | 595   | 693    | <b>463</b> | 121            | -        |       | -          | • •        | 5.9      | 29     | 5     |            | •        | 5           | 234        | 531        | 783    | <b>C</b> 14 | 583   | 185           | 53         | 11         | ~           | ~              | ç      | 53     | 11          | ¢2       | Ð      |
|           | •••     | 0      | 0           | 0          | 0              | 0      | 0      | 0           | n      | 0           | C      | 0         | n        | 0          | 0          | ٥          | n      | 0     | 0      | 0          | ~              | 0        | -     | • 0        | • •        | a        | 0      |       | 0          | 0        | 0           | 0          | 0          | 0      | 0           | 0     | 0             | n          | 0          | 0           | 0              | C      |        | 0           | ~        |        |
| Ξ         | 7/0     |        | ~           | •          | 13             | []     | ~      | -4          | -      | C           | n      | ,         |          |            |            | n          |        | ~     | 0      | -          | -              | <u>;</u> | 10    | œ          | -1         |          |        | ~     | 0          | n        | •           | ~          | *          | m      | -           |       |               |            |            |             |                |        |        |             |          |        |
| 0113      | 5       | -      | •           | 15         | 20             | 37     | •      | ~           | ~      | 0           | C      | 0         | 0        | 0          | -          | o          | 5      | 4     | 9      | 15         | n              | ~        | a     | . 0        |            | • •0     | i un   | -     |            | 0        | -           | []         | 66         | 5      | 5           | 12    | •             | -          | -          | n           | 0              |        |        | 4           | •        | C      |
| TAL       | 2       | J      | ~           | \$2        | *              | 19     | 51     | 2           | *      | n           | 0      | -         | C        | 0          | 5          | 91         | 63     | 117   | 90     | 23         | •              |          | a     | 0          | ) C        | )        | •      | ~     | C          | 0        | •           | 91         | 52         | 124    | 33          | *     | ſ             | ~          | 0          | C           | 0              | -      | \$     | ~           | ~        | n      |
| 51C       | 5       | •      | 12          | *          | ~              | 51     | 22     | •           | •      | 0           | -      | 0         | n        | O          | ð          | \$2        | 53     | 133   | 501    | 9          |                | -        | n     | 0          | <b>)</b> – |          |        |       | -          | 0        | •           | 25         | 102        | 153    | 129         | 53    | 53            | 4          |            | n           | 0              | ~      | *      | •           | •        | -      |
|           | 2       | 2      | <b>9</b> 1  |            | \$0            | *      | •      | <b>\$</b> 2 | 51     | -4          | 0      | 0         | ~        | 0          | •          | 00         | \$0    | 110   | 142    | 00         |                | •        | -     | • 0        | • -        |          | 5      | •     | -          | 0        | []          | 39         | 5          | 174    | 193         | 101   | 34            | 12         | •          | -           | 0              | Ċ      | ~      | 11          | <b>^</b> | 0      |
| 46.20     | 1/2     | *      | -           | •          | 1.5            |        | •      | 1           | 21     | 0           | -4     | -         | ~        | 0          | •          | •~         | 4      | 110   | 143    | 001        | -              | -        | a     | ) <b>~</b> | • ~        | ' 7      | :2     | : 1   | ~          | 0        | <b>\$</b> 2 | ŝ          | •          | 123    | 66 T        | []]   | <b>8</b><br>J | 6.         |            | ٦           |                | 11     | 1      | 17          | ~        | C      |
|           | 1       | ~      | 12          |            | 63             | 69     | 23     | 01          | ~      | -           | 0      | ~         | -        | -4         | 1          | 50         | 201    | 133   | 162    | 158        | CE             |          | 0     | r -        | • ••       |          | : ~    | •     |            | -        | \$2         | <b>\$6</b> | 133        | 142    | 170         | 222   | 65            | 6          | 0          | ٦           | •              | \$     | 62     | 23          | •        | ~      |
|           | 7       | -      | -1          | ~          | -              | -1     | -      | -           |        | -           | ~      |           | -        |            | -          | ~          | -      | ~     | -      | -          | -              |          | . ~   | • -        | •          | • •      | • -4   | -     | ) <b>i</b> | -        |             |            | -          | -      | ~           | -4    | -             |            | ~          | -           |                | -      | -      |             | -        |        |
|           | 448     | ~      | ~           | ~          | *              | •      | •      | •           | ~      | ~           |        | ~         | 1        | -4         | •          | ~          | •      | ~     | 2      | ~          | •              | 1        | -     | • •        | L L        |          | -0     | - 10  | ~          | -        | ~           | -          | ~          | ~      | •           | •     | ~             | ~          | ~          | ~           | ~              | •0     | 60     | ~           | 10       | •      |
| 4         | 4643    | 2.3    |             |            | 3.4            | J. 4   | 3.0    | 3.1         | 3•0    | <b>0</b> •2 | 3•0    |           | 5.9      | 1.0        | 2.7        | \$.5       | 1.3    | 3.4   | 3.1    | 2.5        | 2.5            | 2.7      | 0.0   | ~ 1        |            |          | 2.5    | ÷ • 7 | 3.2        | 1.0      | 2.4         | 2.4        | 3.2        | 3.3    | <b>5.9</b>  | 2.3   | 2.4           | 2.3        | 4 • 4      | C•2         | 1.1            | 2.1    | 2.5    | 2.7         | 3.3      | 3.0    |
| 1CF - 54A | 4014(2) | 10     | <b>\$</b> C | <b>8</b> C | 12             | 13     | 91     | 16          | CC     | <b>\$</b> C | 6C     | 12        | 15       | • 1        | <b>f</b> c | <b>6</b> 0 | •0     | 12    | 15     | 16         | 2              | ä        |       | • •<br>•   | 2          | 2        | : 5    | 6     | 12         | <b>.</b> | 60          | 9 C        | <b>6</b> C | 12     | 15          | 18    | 12            | <b>c</b> c | ۲C         | <b>\$</b> C | <del>،</del> د | 12     | 15     | <b>6</b> 1  | ٦,       | 3      |
| 1.1       | TYPE    | .,     | 3           | ц<br>U     | . <b>.</b><br> | 8      | U<br>U | U<br>U      | 3      | •           | 8.7    | 80<br>. ' | 8.7      | <b>.</b>   | ر.<br>ن    | ;;         | 3      | :;    | 5      | ដ          | ) - 1<br>  • 1 |          |       |            | ) <b>(</b> | )<br>  1 |        |       |            |          | ບ<br>       | ()<br>()   | , J<br>, 7 | 0<br>0 | ;;          | .,    | <b>1</b> 3    | 3          | <b>1</b> 0 | <b>6</b>    | <b>F</b> .:    | 11<br> | 19     | 19          | 5        | •      |
| 34 5545   | 5E4534  | 4:1814 | 414152      | 451814     | 451814         | 451214 | 414152 | 251816      | 451814 | 414722      | RELATE | *:177*    | 41 N I K | 41 N L S S | 222145     | 202143     | 221492 | 21145 | 171745 | 24145      | 504142         | 171745   | 11145 | 171.05     | 202142     |          | 241425 | 11111 | 201143     | 502 41   | オジタタつび      | *===^5     | ~===~      | 234475 | インチャット      | インドラン | イドチャング        | インチャット     | というもいい     | 5.045×      | 2.4452         | ていまいい  | とこれっつい | 2 - 4 4 - V | 2:44:5   | やいままつら |

A. A.

| <b>FALL</b> | <b></b>          | 6           | \$•?        | ~ 1  | -     | 51  | 21  | •   | 23          | ~ ; | <b></b>    | - • | 0 | 4   |
|-------------|------------------|-------------|-------------|------|-------|-----|-----|-----|-------------|-----|------------|-----|---|-----|
| 717         | 3                | \$          | <b>S</b> •2 | -    | -     | ŝ   | •   | 21  |             | 2   | n          | -   | 0 |     |
| FALL        | :;               | 60          | 2.8         | ~    |       | 135 | 24  | 5   | 9           |     | <b>5</b> 2 | ~   | n | 325 |
| FALL        | 3                | 12          | 3.2         | •    | -     | 123 | 101 | 111 | 109         | 32  | *          | æ   | 0 | 595 |
| FALL        | 3                | 51          | 2.9         | ~    |       | 137 | 125 | 122 | 0<br>T      | *   | 4 F        | 11  | 0 | 573 |
| FALL        | с<br>С           | •           | 2.3         | 4    | -     | 106 | 53  | 53  | <b>\$</b> 2 | 81  | ~          | •   | 0 | 273 |
| FALL        | ပ<br>ပ           | 12          | 2.5         | ø    | -     | 5   | 23  | 17  | •           | ~   | ~          | n   | 0 | 5   |
| FALL        | U<br>L           | Ĉ           | 2.8         | •    |       | 16  | 15  | 12  | •           | 4   | •          | m   | n | ŝ   |
| FALL        | <b>م</b>         | <b>(</b> C  | 6.9         | ~    | ~     | 0   | 0   | 0   | 0           | -   | 0          | ~   | 0 | Ē   |
| F4LL        | <b>1</b>         | <b>\$</b> 0 | 3.7         | 'n   | ~     | n   | -   | -   | ¢           | C   |            | n   | 0 | ~   |
| FALL        | 1 <b>9</b><br>11 | 6C          | 2.3         | ÷    | -     | -   | -   | 0   | -           | n   | 0          | n   | 0 | Ê   |
| FALL        | <b>1</b> 9 ( )   | 12          | 2.3         | ۴    |       | ~   | ~   | m   | n           |     | n          | n   | 0 | î   |
| FALL        | 1                | 15          | 2.1         | ٥    | -     | 12  | r   | m   | ~           | G   | ~          | C   | 0 | 82  |
| FALL        | 10<br>()         | • -         | 2.5         | -    | -     | ۰,  | ~   | ł   | C           |     | -          | -   | 0 | 2   |
| FALL        | 6.5              | 12          | 3.3         | •    |       | ~   | n   | ~   | •           | 0   | -          | n   | 0 |     |
| 1941        | 9                | ĉ           | د.۶         | ~    | ~     | 0   | -   | n   | C           | n   | n          | -   | 0 | -   |
| (EV:        |                  |             |             |      |       |     |     |     |             |     |            |     |   |     |
| SEASONS     | -                |             |             |      |       |     |     |     |             |     |            |     |   |     |
| 1 1 1 1     | 1E2 =            | JE JAY      | • = E B     |      |       |     |     |     |             |     |            |     |   |     |
| 1245        |                  | 442.5AP     | . 44 .      |      |       |     |     |     |             |     |            |     |   |     |
| 5.44        | 1E 2 =           | JU1.JUL     | 504.        |      |       |     |     |     |             |     |            |     |   |     |
|             | ء<br>بر          | SEº. JCT    | 101.        |      |       |     |     |     |             |     |            |     |   |     |
| 1 ((())     | -Sick            |             |             |      |       |     |     |     |             |     |            |     |   |     |
|             | <b>UNU U U</b>   | PLE SUT     | יונא        |      |       |     |     |     |             |     |            |     |   |     |
| •           | טשר: י           | Car Sul     | 1 3 2 3 1 5 | NC:/ | 1235  | ŝ   |     |     |             |     | ,          |     |   |     |
| Ť,          |                  | LAVING J    | s           |      |       |     |     |     |             |     |            |     |   |     |
| SKY IOV     | 162 51           | ATTSTIC     | 5 436       | 1    | I SHT | нS. |     |     |             |     |            |     |   |     |
| r 14ë 15    | 7 11 9           | ירזי        |             |      |       |     |     |     |             |     |            |     |   |     |

ANG RATED

\*\*\*\*\*\*\*

14145

**.** 

المتحدي

and the subscription of th

### -LINCH AN SIME TO AD ANTA-749LE 1-5.

e.the

1.6 1.1

1.14

.

AEr: CLDJD TYPES-CLDJD TYPES-CL = CUMULUS MUULIS CC = CUMULUS MEDICRIS/CONGESTUS CC = CUMULDMING CB = CUMULDMINGUS CB = CUMULDMINGUS WEAV- MAXIMUM AND MINIMUM VALUES ARE IN METERS. FRF\_JEVCY 91VS ARE IN ALLOHETERS.

STATE CARE AND STATE AND A STATE AND A STATE

and the second states and the second

since.

a a the state of a second state we have been and a the state of sector the state of the state of

A BARADALANA BARADAN

..... 238.88

FABLE 4-6. ESSEN: CUMULUS CLOUD TOP HEIGHTS BY SFASON AND HOUR.

CLOSES CON

| • NCS445 A6 | 14Pc+ +3U2                                   |               |        |          | •               | 16391      | NCN BI     | 510        | 1813          | 113         | (; x ; ; |        | · · ·      |             |
|-------------|----------------------------------------------|---------------|--------|----------|-----------------|------------|------------|------------|---------------|-------------|----------|--------|------------|-------------|
|             | (7) YCDH                                     |               |        |          | -               | · · ·      |            | *<br>* C   | r<br>r c      | o<br>o c    | :<br>-   |        | > `<br>> c | • 0         |
|             | <b>,</b> , , , , , , , , , , , , , , , , , , | [**~]]        | 1962   |          |                 |            | •••        | c (        | <b>&gt;</b> 0 | 5 0         | - o      | 5 0    | <br>       | 50          |
|             | <b>n</b>                                     | 6.168         | 2042   | 205      | 2               | ~          | - ,        | 5 0        |               | 2 0         | 5 0      | 5 (    |            |             |
|             | <b>6</b> C                                   | 1018.3        | 4852   | 361      | 67              | 5          | ~ ;        | 0,         | - ,           | <b>.</b> .  | 0 (      | 0 0    |            |             |
|             | 21                                           | + • • • • • • | 2015   | 406      | <b>v</b> i<br>5 | 0          | 57         | <b>.</b>   | -             |             | 0        | 0 (    | -          |             |
|             | 15                                           | 1422.5        | 6361   | 405      | 5               | 60         | 27         | -          | -4 (          | 0           |          | 0      |            | 0           |
| ALVER CC    | P                                            | 1253.9        | 3111   | 405      | 22              | -          | <b>r</b> ( |            | 0             |             | 0        | 0 (    | -          | 0           |
| ALVER CC    | 21                                           | 1598.1        | 4211   | 552      | ~               | •          | <b>m</b> ( |            |               | 0           |          | 0      | -          | 0           |
| ALVER CC    | <b>0</b> C                                   | 1393.5        | 2702   | 195      | ► 1             | r          |            | 0          | c             | Ö           | <b>^</b> | 0      | -          | 0           |
| ALVIER CS   | 12                                           | 3236.7        | 4252   | 2704     | C               | c          | ~          | c          |               | c           | 0        | 0      | -          | 0           |
| ALVEN C3    | 15                                           | 2852.0        | 2852   | 2852     | c               | 0          | 1          | 0          | c             | c           | c        | 0      | -<br>-     | 0           |
| SPRING CC   | C 3                                          | 1292.4        | 2402   | 452      | ~               | ~          |            | c          | 0             | 0           | 0        | -<br>- | -<br>0     | 0           |
| SPRING CC   | <b>ç</b> 0                                   | 1345.3        | 2952   | 452      | r               | •          | ~          | c          | 0             | 0           | n        | с<br>0 | -          | 0           |
| SPRING CC   | 96                                           | 1435.8        | 5454   | 452      | 37              | 49         | ¢,         | 17         | ~             |             | 0        | 0      | -          | 0           |
| SPRING CC   | 12                                           | 2423.7        | 8104   | 354      | []              | <b>6</b> 5 | 53         | 22         | •             | r           | 5        |        | _          | 0           |
| SPAING CC   | 15                                           | 2334.5        | 7102   | 502      | •               | 59         | 19         | 31         | ~             | r           | 0        | -      | 0          | 0           |
| SPALNG CC   | <b>P</b> 1                                   | 2319.1        | 7102   | 752      | æ               | 35         | 53         | 15         | -             | c           | m        | -      | -          | 0           |
| SPRING CC   | 12                                           | 1939.1        | 1165   | 861      | ~               | ŕ          | -          |            | 0             | -1          | 0        | 0      | 0          | 0           |
| SPRING CC   | 00                                           | 6.7.11        | 1461   | 904      |                 | 4          | 0          | c          | 0             | 0           | 0        | 0      | -          | 0           |
| SPRING CB   | 12                                           | 4105.7        | 5452   | 2904     | 0               | С          | -          | <b></b>    | ç             | ~           | 0        | 0      | 0          | 0           |
| SPRING CB   | 15                                           | 3994.4        | 6911   | 2611     | 0               | 0          | ~          | 4          | ~             | ° C         | 2        | c      |            | 0           |
| 5P4[43 C3   | 18                                           | 5853.7        | 6052   | 5702     | c               | 0          | 0          | o          | 0             | ~           |          | 0      | -<br>-     | 0           |
| SPRING CB   | 21                                           | 2551.0        | 2661   | 2651     | 0               | c          | -          | 0          | 0             | C           | ſ        | 0      | 0          | 0           |
| SUMMER CC   | 60                                           | 2329.2        | 3252   | 1452     | C               | ٣          | C          |            | C             | 0           | c        | 0      | 0          | 0           |
| SJUNER CC   | 35                                           | 1527.4        | 3252   | 311      | Ł               | ~          | m          | <b></b>    | 0             | 0           | c        | 0      | O          | ç           |
| SUMMER CC   | 60                                           | 2345.0        | 746'1' | 201      | 16              | 61         | 60         | 35         | ~             | 0           | 0        | 3      | 0          | 0           |
| SUMMEN CC   | 12                                           | 2856.5        | 9352   | 632      | 11              | 60         | 54         | 51         | 20            | ŝ           | ŝ        | 5      | _          | ~           |
| SUMMER CC   | 15                                           | 2750.5        | 9352   | 661      | 1               | 55         | 60         | 49         | 2             | \$          | ŝ        |        | _          |             |
| SUMMER CC   | lð                                           | 2550.5        | 9102   | 602      | •               | 38         | 55         | 27         | ŝ             | r           | _        | 0      | _          | -           |
| SU44F2 CC   | 21                                           | 1893.1        | 3852   | 611      | ~               | ~          | ~          | ~          | 0             | 0           | 0        | 0      | 0          | 0           |
|             | C<br>C                                       | 2259.3        | 3261   | 1204     | o               | \$         | ~          | ~          | с             | ç           | ດ        | 0      | -<br>C     | c           |
| SUMMER CB   | 12                                           | 4647.0        | 7261   | 2802     | 5               | 0          | r,         | 0          | <b>∧</b> ∙    | -1          | c        | -      | ō          | <b>c</b>    |
| SJ4452 CB   | 15                                           | 5697.5        | 12052  | 2851     | 0               | C          | ~          | ~          |               | ~           | ດ        | •      | 0          | ~           |
| SUMMER CB   | 1 d                                          | 5650.1        | 10452  | 2092     | 0               | c          | -4         | ~          | -1            |             | -        | c      | c          | ~           |
| FALL CC     | <b>33</b>                                    | 1275.9        | 2952   | 504      | 4               | \$         |            | c          | c             | 0           | c        | 0      | -<br>0     | c           |
| FALL CC     | 36                                           | 0-1611        | 2454   | 452      | •               | ~          |            | 0          | 0             | c           | c        | 0      | 0          | 0           |
| FALL CC     | <b>۴</b> 0                                   | 1494.5        | 4602   | 352      | 35              | 36         | 14         | ~          | ~             | 0           | 0        | 0      | 0          | 0           |
| FALL CC     | 12                                           | 1941.1        | 7254   | 452      | 43              | 87         | 79         | 22         | ~             |             | t        | -      | -<br>-     | 0           |
| FALL CC     | 15                                           | 1913.5        | 1441   | 402      | 5               | 92         | 15         | ۲<br>۲     | t             | ~           |          | _      | -<br>-     | 0           |
| FALL CC     | 18                                           | 1548.2        | 3561   | 505      | 12              | 14         | <b>e</b> n | m          | o             | c           | c        | •      | 0          | c           |
| FALL CC     | 21                                           | 1445.7        | 2852   | 652      | ~               | <b>F</b> J | 2          | 0          | ç             | n           | 0        | •      | -<br>-     | ç           |
| FALL CC     | <b>C</b> C                                   | 1873.3        | 3051   | 206      | ~               | m          | ~          | -1         | ດ             | 0           | n        | 0      | 0          | 0           |
| FALL C3     | 12                                           | 4955.0        | 6352   | 3852     | o               | 0          | 0          | -1         | -1            | c           |          | c      | -<br>-     | ç           |
| FALL C9     | 15                                           | 3533.3        | 4352   | 2752     | с               | 0          | ~          | ~          | <b>^</b> '    | C           | 0        | o<br>o | -<br>-     | 0           |
|             |                                              |               |        |          |                 |            |            |            |               |             |          |        |            |             |
|             |                                              |               |        |          |                 |            |            |            |               |             |          |        |            |             |
|             | JE . LAV. FE                                 | ď             |        |          |                 |            |            | 21 10      |               |             |          |        |            |             |
| = 5N1805    | VA2. AP2. VA                                 |               |        |          |                 |            | 5 4        |            | 15/21         | 1165        | STUS     |        |            |             |
| 5 J44E2 =   |                                              |               |        |          |                 |            | 1641       |            | •             | 2           | ,<br>,   |        |            |             |
| FALL =      | 5 c - JCT + VD                               | 2             |        | - 24 3 A | IXY,            |            | 0 V V      |            | 375           | VALUE       | S AR     | EA I   |            | TERS        |
|             |                                              |               |        | FREDUE   |                 | SNIE       |            | . ×<br>. 7 | ILO4          | 11.1        |          | •      |            | ,<br>,<br>, |
|             |                                              |               |        | 3411     | I 2             | 2010       | ;<br>•     | •          | )             | :<br>•<br>• | ţ        |        |            |             |

101010000

| STATIJW: THNUVER         STATIJW: THNUVER         LAT       StatijW: THNUVER         LAT       StatijW: THNUVER         LAT       StatigW: THNUVER         STATIJW: TYPE       StatigWit         JAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ISTRIBUTION(M)<br>ISTRIBUTION(M)<br>1000-1249 1250-1499 1500-1749 1750+ 5095<br>12 0 0 0 369<br>10 2 0 0 0 269<br>10 2 0 0 0 12<br>74 13 25 57 14 911<br>11 4 8 8 91<br>11 4 10 2 0 0 109<br>11 4 11 4 10 1014                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3Y MUTH:       7.2.1       9.4.1       4.4.1       4.4.1       4.4.1       4.4.1         3Y MUTH:       7.5       9.4.1       4.4.1       4.4.1       4.4.1       4.4.1         3Y MUTH:       7.5       9.4.1       4.4.1       4.4.1       4.4.1       4.4.1         3Y MUTH:       7.5       9.5.5       1200       9.0       11       17.7       9.5         401       7.5       570.0       1300       10       11       11.7       13.7       13.7         4.4       7.6       570.0       1500       1500       14       7.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISTRIBUTION(M)<br>ISTRIBUTION(M)<br>IC2<br>IC2<br>IC2<br>IC2<br>IC2<br>IC2<br>IC2<br>IC2                                                                                                                                                                                                                                                                                       |
| 3Y MUTH. FYPE       VENUT. FYPE <th>ISTRIBUTION(M)<br/>IOOD-1249 1250-1499 1500-1749 1750+ 5095<br/>12 2 0 0 0 363<br/>10 2 0 0 0 259<br/>10 2 2 0 0 0 12<br/>74 10 2 91 0 690<br/>11 49 89 37 1014</th> | ISTRIBUTION(M)<br>IOOD-1249 1250-1499 1500-1749 1750+ 5095<br>12 2 0 0 0 363<br>10 2 0 0 0 259<br>10 2 2 0 0 0 12<br>74 10 2 91 0 690<br>11 49 89 37 1014                                                                                                                                                          |
| IAN       CG       572.5       770       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000-1249     1250-1499     1500-1769     1750-5095       12     0     0     0     10       12     0     0     0     20       12     0     0     0     20       10     0     0     0     253       10     0     0     0     253       11     0     0     0     12       12     10     0     0     12       11     11     11     11     11       11     11     11     11     11 |
| FEB       CG       570.0       150       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12     2     2     0     0     363       10     10     2     0     0     2       10     2     0     0     2     2       10     2     0     0     2     2       11     2     0     0     2     2       130     2     5     5     1       11     4     8     8     1       11     1     1     1     1       11     1     1     1     1                                           |
| FE       CC       570.0       150       10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10     20     0     20       10     2     0     0     253       10     2     0     0     12       74     10     3     0     12       2     0     0     0     12       2     0     0     0     12       2     0     0     0     690       130     25     57     14       11     48     89     11       211     48     89     10       11     48     89     10                   |
| FF3       C3       530.0       753       300       0       6       4       2         WAR       C3       617.7       114.0       1500       160       9       173       162       229         WAR       C3       617.7       114.0       1500       160       9       173       162       272         WAY       C3       637.0       1500       100       0       32       16       13         WAY       C3       637.0       1500       100       0       32       16       13         WAY       C4       635.0       1500       120       1900       120       16       13         WAY       C5       635.0       1500       120       1900       12       16       13         WAY       C5       835.0       1500       120       190       12       16       13         WAY       C5       835.0       1500       120       190       12       16       13         WAY       C6       835.0       1500       120       10       130       16       16       13         WAY       C6       8350.0       1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74     10     0     0     10     12       74     10     0     0     0     10       2     0     0     0     0     10       2     0     0     0     0     44       130     25     57     14     91       7     0     0     0     10       7     0     0     0     10       7     1     1     1     10       11     4     8     8     3     10                                    |
| MAR       CG       570.0       1500       9       173       192       273         MAR       CG       617.7       114.0       1500       1       12       12       12         MAR       CG       773.7       114.0       1500       1       12       12       12       12       13       14       12       13       14       12       13       14       12       13       14       12       13       14       12       13       16       13       16       13       16       13       16       13       16       13       16       13       16       13       16       13       16       13       16       13       16       13       16       16       13       17       16       13       16       16       13       16       16       13       16       16       13       16       16       16       13       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74     10     3     0     690       2     0     0     0     690       2     0     0     0     64       130     25     57     14     911       7     0     0     0     10       110     46     0     0     10       211     48     88     37     101       410     1     4     1     40                                                                                         |
| Max       CG       773.7       114.0       150       1       12       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     0     0     0     4       130     25     57     14     91       11     4     0     0     10       21     12     58     84     11       21     4     88     84     11       21     5     5     5     10       21     4     11     4     10                                                                                                                                |
| 100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130     25     57     14     911       7     3     3     10     109       211     48     89     37     1314       11     4     1     60     10                                                                                                                                                                                                                                 |
| 41       7       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |
| 4V       CB       B32.9       1500       0       9       16       37         JJV       CG       B36.8       1900       0       20       23       216       37         JJV       CG       B16.7       1500       300       0       21       22       50         JJV       CG       B46.7       1500       300       0       21       22       50         JJJL       CG       B46.7       1500       300       0       21       22       50         JJJL       CG       B46.7       1500       300       0       21       22       50         JJJL       CG       B46.7       1500       300       0       21       22       50         JJJL       CG       B56.7       1900       150       13       156       157       33         SEP       CG       77.9       1500       13       156       157       33       219         SEP       CG       855.0       1300       0       0       5       114       33         SEP       CG       855.0       1300       0       5       130       0       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |
| JJN       CC       356.8       1900       90       20       233       216       345         JJL       CC       346.7       1500       300       0       21       22       50         JJL       CC       346.7       1500       300       0       21       22       50         JJL       CC       346.7       1500       300       0       21       22       50         JJL       CC       346.7       1350       1300       150       134       159       332         JJL       CC       859.67       1950       150       13       156       157       333         SEP       CC       859.67       1500       300       0       6       167       33         SEP       CC       859.67       1500       30       0       157       33         SEP       CC       855.0       1500       13       156       157       33         UST       CC       545.0       1550       13       31       156       157       33         UST       CC       545.0       150       13       190       157       17       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                |
| JJL       CC       844.9       1303       309       0       21       22       50         JJL       CC       844.9       1303       150       159       232       439         JJL       CC       836.7       1303       150       199       232       439         JJL       CC       836.7       1303       307       0       9       16       14       33         SEP       CC       879.9       1303       307       0       9       16       14       33         SEP       CC       879.9       1303       90       0       7       17       17       18       33         JSF       CC       874.2       1500       13       156       157       306         JSF       CC       545.3       1500       0       7       17       17       18         JSF       CC       545.3       1560       13       190       157       18       219       219         JSF       CC       545.3       1550       12       190       157       219         JSF       CC       545.3       1550       12       190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 242 63 69 30 1188                                                                                                                                                                                                                                                                                                                                                              |
| 0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 5 1 0 126                                                                                                                                                                                                                                                                                                                                                                   |
| 10       13       13       13       14       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       16       15       16       15       16       15       16       15       16       15       16       15       16       15       16       15       16       15       16       15       16       17       17       17       17       10       17       17       17 <td< td=""><td>216 54 63 39 1261</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 216 54 63 39 1261                                                                                                                                                                                                                                                                                                                                                              |
| AJG       CB       859.9       1500       300'       0       6       14       33         SEP       CC       770.9       1900       0       7       17       17       18         SEP       CC       770.9       1900       0       7       17       17       18         SEP       CC       770.9       1900       0       7       17       18         DEC       CC       754.2       1500       300       0       7       17       18         DEC       CC       545.0       1350       150       13       190       152       219         DEC       CC       545.4       1050       360       0       7       18       2         DEC       CC       545.4       1250       120       19       155       114         DEC       CC       550.3       1050       240       2       13       8       2         DEC       CC       550.3       1050       240       2       13       8       2         DEC       CC       550.3       1050       240       2       13       3         DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 1 1 0 0 42<br>174 54 40 43 653                                                                                                                                                                                                                                                                                                                                              |
| SEP       CC       773.9       1970       90       13       156       157       306         SEP       CB       754.2       1500       300       0       7       17       18         UCF       CC       545.0       1350       150       13       190       152       219         UCF       CC       545.0       1350       150       13       190       152       219         UCF       CC       545.4       1050       360       0       5       10       7         VIV       CC       545.4       1550       120       19       233       155       114         VIV       CC       545.4       1200       240       2       13       8       2         DEC       CC       553.4       1200       00       18       186       146       53       2         DEC       CC       553.4       1200       00       18       186       146       53       3         DEC       CC       555.0       1050       300       0       9       7       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                |
| 057     057     1500     0     7     17     18       051     05     0545.0     1550     150     13     190     152     219       051     05     0545.4     1050     1550     150     13     190     152     219       051     05     545.4     1050     150     19     152     219       051     05     545.4     1050     120     19     233     155     114       052     05     537.7     1200     240     2     13     8     2       055     50     1200     240     2     13     8     2       055     55.0     1050     300     0     9     7     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 147 18 14 2 923                                                                                                                                                                                                                                                                                                                                                                |
| 0.7     0.3     0.4     0.5     0.4     0.5     0.4     0.5     0.4       0.7     0.3     540.4     1050     360     0     5     10     7       0.7     0.5     545.4     1050     360     0     5     10     7       0.7     0.7     545.4     1050     120     19     233     155     114       0.7     0.5     545.4     1200     240     2     13     8     2       0.5     57.4     1200     240     2     13     8     2       0.5     555.0     1050     300     0     9     7     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 0 1 0 50                                                                                                                                                                                                                                                                                                                                                                     |
| VJV       CC       545.8       1500       120       19       239       155       114         VJV       CB       507.7       1200       240       2       13       8       2         VDV       CB       507.7       1200       240       2       13       8       2         DEC       CC       523.4       1200       90       18       185       146       53         DFC       CB       555.0       1050       300       0       9       7       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                |
| NJV CB 537.7 1200 240 2 13 8 2<br>DEC CC 523.8 1200 90 18 185 146 53<br>DEC CB 555.0 1050 300 0 9 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |
| 2€C CC 523.48 1203 90 18 185 146 53<br>0€C CB 55543 1053 300 0 9 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e14 0 0 0 c s                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0 0 0 20                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>KEY:<br/>CLJJJ TYPES-<br/>CH = 5J4ULJS 4J4ULIS<br/>C2 = CJ4JLJS 4EJIJCRIS/SJNGESTUS</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |

- FLETELET FLETELET FLETELE FLETELET FLET

TARLE A-8. HANNOVER: CUMULUS CLOUD BASE HEIGHTS BY SEASON AND HOUR.

ļ

| <pre>w m m * / / * 0 m * 0 0 0 0 / * = 0<br/>0 * / * * * * * * * * * * * * * * * * *</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •<br>•<br>•                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4 m t t 0 0 t 1 m 4 m t 1 m 4 m t 1 m 4 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m t 1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ¢                                                                                |
| 0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                |
| 00000-000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                |
| 000 <u>0</u> 200000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                |
| 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | چې<br>۲                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v                                                                                |
| ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                                                |
| ~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>,                                                                           |
| ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |
| 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |
| 900<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a fa stus<br>taras<br>sonos<br>sonos                                             |
| 4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444<br>4444 4444<br>4444<br>4444<br>4444 4444<br>4444<br>4444<br>4444 4444<br>4444<br>4444<br>4444 4444<br>4444<br>4444 4444<br>4444 4444<br>4444<br>4444 4444<br>4444 4444<br>4444<br>4444 4444<br>4444 4444<br>44444 4444<br>4444 4444<br>4444 4444<br>4444 4444<br>4444 4444<br>4444 | FEB<br>F14<br>F15<br>F15<br>F15<br>F15<br>F15<br>F15<br>F15<br>F15<br>F15<br>F15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | уу<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма<br>ма |

5

Q

0

J

DALCA -

ì

يتنتخفنك

\*

NUMBER

1.1

## TABLE 1-7. HANNOVER: CUMULUS CLOUD SKY COVER BY MONTH.

|         | <b>KFREQ</b> | 13.6           | 0.7 | 10.7         | 3•5  | 25.5        | 1.7        | 35.7 | <b>6.</b> 4           | 38.5 | 3.0    | 49.44 | 4.9         | 48.7 | 3.2             | 36.4 | 2.9 | 31.9 | 1.9        | 23.3 | 0•9 | 21.2  | 1.0        | 15.7        | <b>0.</b> 8 |                          |
|---------|--------------|----------------|-----|--------------|------|-------------|------------|------|-----------------------|------|--------|-------|-------------|------|-----------------|------|-----|------|------------|------|-----|-------|------------|-------------|-------------|--------------------------|
|         | 309S         | 363            | 23  | 259          | 12   | 680         | 44         | 116  | 109                   | 1014 | 6<br>G | 1138  | 125         | 1261 | 32              | 953  | 11  | 823  | 5.0        | 617  | 23  | 542   | 25         | 418         | 23          |                          |
|         | 9/8          | 0              |     | 0            | C    | 0           | 0          | 0    | 0                     | 0    | N      | 0     | C           | 0    | 0               | 0    | -   | 0    |            | m    | C   | -     | 0          | 0           | 0           |                          |
| 2       | 1/8          | 0              | C   | 3            | 0    | t           | -1         | 11   |                       | Ŷ    | C      | \$    | ~           | n    | ~               | t    | 0   | r    |            | ¢    | 0   | 13    | -          | o           | 0           |                          |
| BULL    | 6/5          | 5              | n   | 14           | o    | 5.2         | 0          | 11   | m                     | 14   | ~      | 35    | m           | 15   | 1               | 33   | ~   | 27   |            | 14   | n   | 34    | ~          | 32          | c           |                          |
| 5 7 2 1 | 5/9          | 51             | -   | 32           | n    | 102         | <b>,</b> 1 | 127  | ~                     | 101  | -      | 135   | ŝ           | 131  | n               | 102  | m   | 17   |            | 57   | n   | 69    | o          | 57          | c           |                          |
| IC X    | 6/5          | <del>ر</del> ب | c   | 35           |      | 76          | ~          | 104  | ~                     | 132  | ŝ      | 130   | t           | 157  | ¢               | 102  | 0   | 99   |            | 66   | 0   | 59    | N          | 15.         | ~           |                          |
| UENC    | 3/9          | 74             | \$  | 5.2          |      | 150         | ŝ          | 190  | o                     | 182  | 11     | 251   | 12          | 287  | 12              | 215  | s   | 148  | œ          | 114  | -   | 102   | ~          | 06          | m           |                          |
|         | 5/5          | 74             | ŝ   | 5            | n    | 132         | 13         | 177  | <b>1</b> <del>5</del> | 214  | 22     | 243   | 41          | 239  | 23              | 197  | 22  | 135  | 15         | 147  | er, | 115   | ſ          | 77          | ŝ           |                          |
|         | 1/3          | 32             | m   | 74           | C1   | 164         | 21         | 162  | 15                    | 333  | 51     | 381   | 53          | 393  | 0<br>7          | 313  | 43  | 282  | 21         | 133  | 1\$ | c † I | 2          | 112         | ſ           |                          |
|         | ۸ ۱ ۲        |                |     | -4           | -    | 1           | -          | -    | -                     |      | 1      | -     |             | -    | ~               |      | -   | ~    |            | -    | -   | -     | -          | ~           |             |                          |
|         | XAY          | 2              | n   | 1            | .+   | 1           | 2          | 2    | ~                     | 2    | 9      | 2     | 1           | 1    | 2               | ~    | ю   | 2    | 8          | o)   | Ψ   | Ð     | 2          | 2           | t           |                          |
| Ч<br>В  | 15AV         | 3.1            | 2.3 | 2 <b>.</b> 3 | 1.5  | <b>.</b> .5 | ••         | 3.0  | 1.9                   | 2.6  | 2.1    | 2.6   | <b>C•</b> 2 | 2.7  | •               | 2.5  | 1.9 | 2.5  | 2.1        | 2.7  | 1.4 | 2.9   | 2.3        | <b>C</b> •E | 1.3         |                          |
| 14. 1   | TYPE >       | • •            | E)  | ()<br>()     | 60   | 3           | ei<br>C    | 3    | с.)<br>Г              | :;   | ť,     | 3     | 60          | 0    | <del>ر</del> اً | 3    | ť   | 0    | <b>.</b> , | 8    | 6   | 0     | <b>.</b> . | 3           | 60          |                          |
| ICH YE  | +1703        | 241            | 242 | FE3          | FE3- | ~ ~ .       | 443        | ξcΨ  | A J R                 | 447  | 747    | アファ   | *~~         | JL   | יור             | AJG  | ĴĹĂ | SEP  | SEP        | 1:0  | 110 | 707   | 102        | JE:         | 050         | <pre>&lt; E &lt; :</pre> |

CLJJJ TYPES-CH = CUMULJS HUMULIS CC = CUMULJS MEDIDCRIS/CDNGESTUS C2 = CUMULONIMBJS C3 = CUMULONIMBJS SKY CDVER STATISTICS ARE IN FIDHTHS.

TABLE 1-10. HANNOVER: CUMULUS CLOUD SAY COVER BY SEASON AND HOUR.

|          | <b>\$F</b> 3E3 | 4.5    | 5.7    | 1.9.1  | 32.5   | 29.6   | 8.0    | 5.9    | 3.7    | 2.0    | 0.8    | 9.6    | 2.3    | 4°C    | <b>0 • 5</b> | 0.3          |          | 15.8   | 51.3  | 73.4     | 70.9   | 39.2    | 3.6    | 3.6        | 0.3    | 9.3      | 7.0    | <b>6.0</b> | 9•5    | 5.3          | 1.2              | <b>0</b>      | 9.3    | 23•2   | 57.6     | 87.2         | 87.5        | 53.43      | 19•7     | 5.2      | 8°C | 2•5    | 1.1    | 5.1        | 3.6     | 9.1        | 2.9    | 1.5      |
|----------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|--------------|----------|--------|-------|----------|--------|---------|--------|------------|--------|----------|--------|------------|--------|--------------|------------------|---------------|--------|--------|----------|--------------|-------------|------------|----------|----------|-----|--------|--------|------------|---------|------------|--------|----------|
|          | \$60\$         | 45     | 55     | 174    | 318    | 273    | 17     | 52     | 35     | ~      | æ      | er     | 22     | 3      | in           | ~            | <b>.</b> | 155    | 504   | 722      | 565    | 382     | 82     | 35         | ~      | •        | •      | 53         | 9 ¢    | 51           | 12               | t             | 16     | 225    | 653      | 168          | 361         |            | 151      | 5.7      | ſ   | r      | 11     | 53         | 6       | 7.9        | 29     | [5       |
|          | 9/8            | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0            |              | n        | 0      | 0     | 0        | 0      | 0       | C      | 0          | C      | C        | 0      | 0          | 0      | 0            | -                |               | 0      | 0      | 0        |              | 0           | 0          | 5        | 0        | 0   | 0      | 0      | -          | 0       | 0          | C      | 0        |
| z        | 7/8            | C      | C      | 60     | 60     | 3      | n      | -      |        | 0      | 0      | C      | C      | C      | n            | C            | n        | ~      | ~     | 60       |        | -       | n      |            | n      | 0        | C      | C          | ~      | C            | C                | n             | n      | m      | <b>~</b> | <b>~</b>     | <b>~</b> (  | n ·        | -        | 0        | -   | C      | C      | C          | C       | -          |        | -        |
| כדט      | 5/8            | ŝ      | ~      | 11     | 29     | 91     | 0      | ~      | ~      | ດ      | 0      | n      | 0      | n      | 0            | 0            |          | 16     | 47    | 59       | 34     | ŝ       | ~      | p          | n      | 0        |        | -          | ~      | 0            | 0                | -             | ~      | ÷      | 5        | 22           | 28          | n (        | •        | 0        | n   | n      | 0      | 0          | <b></b> | ~          | ~      |          |
| T & I 3  | 5/8            | r      | 11     | \$     | Ç;     | 34     | 1      | ¢      | m      | n      | 0      | o      | -4     | n      | 0            | 0            | \$       | 16     | 97    | 123      | 11     | 24      | \$     | ŝ          | C      | C        | 0      | n          | ~      | C            | -                | o             | 11     | 61     | 120      | 112          | 5           | 91         |          | ~        | 0   | 0      | 0      | -          | ~       |            | ~      | ~        |
| 315      | 6/9            | 5      |        | 15     | 5      | ŝ      | 2      | t      | •0     | 0      | 0      | o      | n      | -1     | -            |              | 3        | o      | 57    | 102      | 101    | 29      | 7      | m          | C      | C        | 0      |            | Ś      | -            |                  | -1            | \$     | 14     | 6<br>6   | 621          | 104         | 16         |          | Ø        | C   |        | 0      | -          | ~       | -          |        | 0        |
| EVCY     | 3/8            | 13     | 1      | \$2    | 52     | 58     | 18     | 17     | o      | -      |        | m      | ~      | n      | 0            | 0            | 0        | 27     | 1     | 143      | 130    | 54      | 12     | s          | -      | 0        | m      | 9          | 11     | ÷            |                  | 0             | 2      | 55     | 125      | 227          | 662         |            | 2        | 12       | m   | -1     | -      | ŝ          | 11      | Ð          | ~      | 0        |
| A E OU   | 2/8            | 11     | 2      | 5      | 56     | 51     | 61     | 11     | Ŷ      | 0      | -      | -      | ~      | 0      | m            | 0            | Ś        | 29     | 26    | 136      | 146    | 6<br>93 | 27     | ۰ <b>۰</b> |        | 2        | -      | 23         | 24     | 20           | ÷                | -1            | 23     | 34     | 117      | 151          | 199         | <b>S</b> - | 1 t      | 12       | 2   | -      | ~      | 13         | 28      | 25         | 0      | ŝ        |
| Ľ        | 1/8            | 5      | 16     | 84     | 90     | 35     | 17     | 11     | ~      |        | ŝ      | \$     | 11     | ~      | -            | -            | 2        | 56     | 133   | 151      | 162    | 176     | 28     | 15         |        |          | ~      | 28         | 37     | 36           | \$               | 0             | 38     | 109    | 164      | 194          | 232         | 172        | 2        | 1        | ~   | ~      | 80     | 29         | 45      | 39         | 2      | •        |
|          | Z   5          | -      | -      | ••     | -      | -      | -1     | -      | ۲      | -      | -      | -      |        | -      | -            |              |          | -      | ~     | ~        | -4     | -       |        | ~          |        |          |        |            |        |              |                  | ~             | ~      |        |          | <b></b>      | <b>~</b>    | <b></b>    | <b></b>  | -        |     | -      |        | ~          | -       | -          |        | ~        |
|          | XVF            | ¢      | 0      | ~      | ~      | 1      | ŝ      | ~      | 2      | m      | ~      | m      | Ś      | .+     | \$           | æ            | •        | -      | 1     | ~        | 1      | 1       | ŋ      | ~          | ~      | ~        | Q      | ¢          | -      | - <b>†</b> - | ro               | 80            | ¢      | ~      | ~ 1      | ~ 1          | <b>~</b> .  | 01         | - 1      | ŝ        | •   | \$     | 'n     | 60         | ŝ       | ~          | ~      | -        |
| ~        | 4EA%           | 3.3    | 2.9    | 3.1    | 3.1    | 2.8    | 2.8    | 3•0    | 3.1    | C•2    | 1.4    | 1.9    | 1.3    | 1.8    | 2 • 2        | <b>(</b> ••) | 2.9      | 2.7    | 3.1   | 3.2      | 2.8    | 2.1     | 2.3    | 2•5        | د•۲    | 1.7      | 2.7    | 1.7        | 2.1    | 1.5          | 2.7              | 5.0           | 2.2    | 2•2    |          | <b>6 •</b> 7 | <b>ç•</b> 2 | ÷.         | 2.2      | 2•4      | 2.9 | 2•2    | 1 - 4  | L • 7      | 1.3     | 1.3        | 2•5    | 2.5      |
| ŕ        | (2)            |        |        | _      |        |        | _      |        | _      | _      | _      |        |        | _      |              | _            |          |        | -     |          |        | _       |        | _          | _      | -        | ~      |            |        |              |                  | _             | _      |        | _        |              | •           | _          |          | -        |     | _      | _      | <b>.</b> . |         | _          | _      | _        |
| , 7 P.E. |                | ĉ      | 50     | 6      | 12     | 5      | ĩ      | 2      | 8      | õ      | č      | 12     | -      | 16     | 2            | 8            | <u>.</u> | 0<br>7 | č     | 2        | -      | 2       | 2      | 8          | ີ່     | 9 C      | č      | -          |        | Ĩ            | ~                | 8             | 0      | õ      | ິ        |              | <b>-</b> .  |            |          | 6        | Ĉ   | ŝ      | ő      | 12         | 5       | -          | 2      | 6        |
| 1.10     | TVPE           | ບ<br>ເ | i<br>L | :J     | ы<br>С | 8      | с,     | <br>   | 3      | 19     | 80     | 80     | 80     | 60     | 60           | 90           | ដ        | ដ      | ដូ    | ដ        | ы<br>С | ပ<br>ပ  | ц<br>Н | 3          | 13     | 80<br>() | 80     | 19<br>17   | 60     | 60           | 1 <b>0</b><br>() | <b>6</b><br>1 | ບ      | с<br>С |          | .)<br>.) (   |             |            | ر<br>د د | <b>.</b> | 5   | 60     | 8<br>1 | 80         | ទ       | <b>e</b> . | 9.1    | <b>1</b> |
| BY SEAS  | SEASON         | ALVIES | 251717 | 20171r | 2517]z | 25171r | 25121r | VELNIR | アジュアード | ALVIER | 114152 | ALVIES | SEININ | AINTER | 231734       | ALVIER       | SP2ING   | SPRING | SPILS | 522 I 46 | SPRING | 52214G  | SPRING | 222214G    | SPIRGS | SPISGS   | SPIRGS | 971545     | SPILAS | 522143       | SVISAS           | SPIRAS        | 2:++75 | 204452 | ~        |              |             |            |          |          |     | イミオテつい | ベルオティッ | イニナテつい     | 5       | 204462     | マリアアつい | インチャック   |

1.2.2.2

No cont

10.00

1

| FALL                                             | ដូរ            | 63         | 2•8     | ~ '  |     | 23       | 5          | <b>8</b> 0 ( | ~          | •          | -          |            | 0          | 1<br>1           |
|--------------------------------------------------|----------------|------------|---------|------|-----|----------|------------|--------------|------------|------------|------------|------------|------------|------------------|
|                                                  | . ر<br>. ر     | 0          | 5.4     | -    |     | 5        | 29         | 22           | +          | •          | *          | m          | 0          | 133              |
| FALL                                             | 8              | 6<br>U     | 2.3     | 2    | يہ  | 125      | <b>9</b> 9 | 70           | 32         | <b>8</b> 4 | 25         | \$         | 0          | 374              |
| FALL                                             | 5              | 12         | 2.9     | 8    |     | 152      | 136        | 119          | 101        | 70         | 39         | •          | -          | 628              |
| FALL                                             | ບ              | 57         | 2.4     | ~    | -   | 171      | 129        | 103          | 53         | 36         | 87         | ~          | a          | 503              |
| FALL                                             | ()<br>()       | 18         | 2.3     | 2    | -4  | 2        | 8          | 20           | 10         | 1          |            | ~          | 0          | 153              |
| FALL                                             | 3              | 21         | 3•0     | ອ    | -4  | 61       | 20         | 14           | 60         | 4          | 5          | i d        | •          |                  |
| FALL                                             | 3              | 00         | 2.7     | 1    | 4   | 10       | 16         | 80           | -0         | -          | -          | •          | • 0        |                  |
| FALL                                             | 60             | 60         | 1.5     | ~1   |     | -        | -          | 0            | 0          | 0          | 0          | 0          | 0          |                  |
| Fall                                             | 60             | 9C         | C.2     | ł    | -   | N        | -          | a            | -          | 0          | G          |            | d          | <del>ل</del> ە 1 |
| FALL                                             | 6.7            | <b>6</b> C | 3.5     | Ð    | -   | 2        |            | 0            | 0          | 0          | 0          | ) -        | - •        | e ar             |
| FALL                                             | <b>6</b><br>17 | 21         | 2.3     | ~    |     | 4        | 01         | •            | -          | a          | 0          | •          | • 0        | 5                |
| FALL                                             | 60             | 15         | 1.7     | -0   | -   | 27       |            | •            | •          | ) -        | • ~        | • 0        | • c        | 2                |
| FALL                                             | 8.7            | 13         | 1.7     | -    | -   | •        | 4          | •            | • •        | • •        |            | <b>.</b> . | ) c        | + 4<br>+ -       |
| FALL                                             | 10<br>1 )      | 21         |         | -    | • ^ | c        | • •        | - ۱          | ) c        | <b>,</b> c | ) c        | ) r        | <b>,</b>   | 2 "              |
| FALL                                             | e di           | 10         | <br>    | • •  | J - | <b>`</b> | J #        | + -          | <b>)</b> ( | <b>,</b>   | <b>.</b> - | יר         | <b>)</b> ( | n ,              |
| )<br>)                                           | )              | )          |         | 0    | -   | J        | U          | •            | 2          | 2          | 4          | r          | 2          | ^                |
| EY:                                              |                |            |         |      |     |          |            |              |            |            |            |            |            |                  |
| EASON                                            | -              |            |         |      |     |          |            |              |            |            |            |            |            |                  |
| 1117                                             | rea =          | DEC. JA    | 4       |      |     |          |            |              |            |            |            |            |            |                  |
| 5021                                             | = SNJ          | 44.4P      | 2.447   |      |     |          |            |              |            |            |            |            |            |                  |
| , <del>,</del> , , , , , , , , , , , , , , , , , | 162 =          | 101.101    | 1.4.5   |      |     |          |            |              |            |            |            |            |            |                  |
| ¶∎ u                                             | ۔<br>ب         | SE0, 3C    | 1.404   |      |     |          |            |              |            |            |            |            |            |                  |
| ו כרכו                                           | -Sacy          |            |         |      |     |          |            |              |            |            |            |            |            |                  |
| "<br>+                                           | 1411           | 11:05 41   | , JL [S |      |     |          |            |              |            |            |            |            |            |                  |
| 3                                                | 140.1          | ILUS 4E    | SISCIC  | NET/ | EST | 20       | •          |              |            |            |            |            |            |                  |
| C                                                | יין יי         | JLONI4B.   | Sr      |      |     | •        |            | •            |            |            | ,          |            |            |                  |
| VCC XX                                           | 15 531         | ITSTI:     | 5 A 2 6 |      | THE | н S.     |            |              |            |            |            |            |            |                  |
| I'LE IS                                          | 2 11 2         | 111.       |         |      |     |          |            |              |            |            |            |            |            |                  |
|                                                  |                |            |         |      |     |          |            |              |            |            |            |            |            |                  |
|                                                  |                |            |         |      |     |          |            |              |            |            |            |            |            |                  |

18. ×. .

₹.

i con co

TARLE A-11. HANNOVER: CUMULUS CLOUD TOP HETGHTS BY MONTH.

1

| CK X6        | 1 I)                    | 405         |                                                     |         |          | F 2 E 3    | いてょう        | 10 2    | STRI       | 9.111 | NC NC | F   |       |   |
|--------------|-------------------------|-------------|-----------------------------------------------------|---------|----------|------------|-------------|---------|------------|-------|-------|-----|-------|---|
| - INCA       | 1.0.5                   | NE ALAI     | 14724                                               | 121717  | 1-0      | 2-1        | <b>C-</b> 2 | 3-4     | 4-5        | 5-6   | 6-7   | 8-1 | 8 - 9 | • |
|              | 3                       | 1425.3      | 4355                                                | 101     | 32       | ~ >        | 12          | ~       | ~          | 0     | 0     | 0   | 0     | 0 |
| 747          | , <b>m</b>              | 4635.3      | 4505                                                | 4505    | 0        | 0          | ¢           | C       |            | 0     | 0     | 0   | 0     | 0 |
| , С.).<br>Ч  | 5                       | 1.31.       | 5399                                                | 705     | 20       | 35         | []          | ~       | m          | 0     | -     | 0   | 0     | 0 |
| 6 1 <b>1</b> | 6                       | 2532.0      | 2502                                                | 2502    | 0        | 0          | ~           | 0       | 0          | 0     | 0     | 0   | 0     | 0 |
| 1 a k        | 3                       | 2121.2      | 6355                                                | 355     | Ю.:<br>С | 100        | 55          | 11      | 80         | ~     | •     | 0   | 0     | 0 |
| ~ ~ ,        | en<br>U                 | 4712.1      | 7055                                                | 2905    | 0        | 0          | -           | ~       | ~          | -     | -     | -   | 0     | 0 |
| ¥ c V        | ដ                       | 1.0712      | 5952                                                | 455     | 36       | 110        | 133         | 35      | 13         | •     | 0     | 0   | 0     | 0 |
| × 64         |                         | 4433.2      | 6352                                                | 2552    | 0        | 0          | ~           | ¢       | Ŷ          | ~     | 2     | 0   | 0     | 0 |
| YAM          | 3                       | 2593.3      | 9955                                                | 355     | 25       | <b>2</b> 6 | 137         | 5       | 15         | •     | ~     | Ð   | m     | m |
| 441          | 5                       | 5129.3      | 7805                                                | 3555    | C        | 0          | 0           | ~       | ~          |       |       |     | 0     | 0 |
| 1.1.         | 5                       | 2713.0      | 8 2 C C a                                           | 455     | 25       | 119        | 125         | ~<br>∎` | 55         | 14    | o     |     | £     | 0 |
|              | n<br>. J                | 7.116é      | 11055                                               | 3405    | 0        | 0          | 0           | ~       | Ś          | Ś     | ~     | 0   | 0     | ~ |
| יור          | U                       | 2555.3      | 1022                                                | 355     | 9:       | 103        | 154         | f       | 32         | ¢     | \$    | \$  |       | 0 |
| 11           | ۍ .<br>ر . ا            | 5934.7      | 13752                                               | 3305    | 0        | Ģ          | 0           | t       | m          | ~     | -     | 0   | t     | - |
| A.10         | 3                       | 2923.2      | 3452                                                | 555     | 13       | 9 s        | 101         | 72      | 28         | 11    | ~     | •   | m     | 0 |
| 215          | 60                      | 5315.3      | 11755                                               | 3105    | o        | 0          | 0           | \$      | ~          | -     | 1     | ~   |       | ~ |
| SEP          | 5                       | 24.35.5     | 5155                                                | 355     | 24       | 11         | 5           | \$0     | 13         | *     | ~     | 0   | 0     | 0 |
| 5E P         | 6.0                     | 0121.7      | 7455                                                | 4205    | o        | 0          | 0           | 0       | -          | 0     | -     | ~   | 0     | 0 |
| 100          | U<br>U                  | 1927.4      | 5555                                                | 305     | 36       | 96         | 56          | 22      | 4          | -     |       | 0   | 0     | 0 |
| 1:0          |                         | 2.014       | 5355                                                | 2005    | 0        | 0          | -4          | -       | -          |       | 0     | 0   | 0     | 0 |
| 202          | 20                      | 1441.44     | 2564                                                | 352     | 70       | 5          | 33          | •       | m          | 0     | 0     | 0   | 0     | 0 |
| ACA.         | ŗ                       | 6535eJ      | 5535                                                | 6205    | 0        | n          | 0           | 0       | C          | 0     | -     | 0   | 0     | 0 |
| DEC          | U<br>U                  | 1224.3      | 1055                                                | 355     | 44       | 2          | 15          | Ś       | <b>°</b> . | 0     | 0     | 0   | 0     | 0 |
|              |                         |             |                                                     | •       |          |            |             |         |            |       |       |     |       |   |
| CLCJJ        | TYPES                   | ,           |                                                     |         |          |            |             |         |            |       |       |     |       |   |
| та<br>Цэр    |                         |             | 15                                                  | 01100   |          |            |             |         |            |       |       |     |       |   |
| יאי ג<br>ג ג |                         | ULDVIVBJ5   |                                                     |         |          |            |             |         |            |       |       |     |       |   |
| 41.Y.3.      | 57.54<br>57.54<br>57.54 | 14 074 420  | JAJM VAL                                            | JES ARE | 5<br>7   | E T E K    | •           |         |            |       |       |     |       |   |
|              | ניברי יי                | 1 1) A'C 14 | > 1 L U - 1 C - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | ••••    |          |            |             |         |            |       |       |     |       |   |

Sec.

TABLE 4-12. HANDVERS CLUDS CLUD TOP HEIGHTS PY SEASON AND HOUR.

EC.

| JY SEASURE  | LLCE .JAY       |                 |                        |              | -          | 17 11 17 11<br>17 11 17 11 | V CN BI    | 21C         | Te [ 3     | UT L'UN | (, ,   |            |            |
|-------------|-----------------|-----------------|------------------------|--------------|------------|----------------------------|------------|-------------|------------|---------|--------|------------|------------|
| SEANON TYPE | (2) 2004        | (ア)ノイロア         | ( <del>M</del> ) × Y N | (ナンアルズ       | 1-1        | ~-1                        |            | +<br>+<br>+ | 5<br>5     | -9 -    |        | 0-<br>E    | •          |
| AINTEA CC   | , C             | 1143.0          | 3105                   | 615          | 3          | N                          | c          |             | 0          | c       | •      | 0          | c          |
| ALVER CC    | <b>5</b> 0      | 1195.0          | 2255                   | 505          | •          | ~ 1                        |            | 0           | 0          | C (     | 0      | C I        | <b>c</b> ( |
|             |                 | 1137.1          | 3355                   | 355          |            | •                          | 5          |             | <b>n</b> . | 0       | 0      | C          | <b>c</b> ' |
|             | 12              | [555.J          | 6363                   | 403          | 35         | 5                          | دم         | ¢           |            | 0       | •      | c          | 0          |
|             | ١,5<br>ا        | 1490.5          | 4 3 0 2                | 355          | 6~         | ~                          | 21         | ~           | •          | с ·     | 0      | c          | o          |
| ALVER CC    | 61              | 1355.3          | 1555                   | <b>535</b>   | ~          |                            | c          | ſ           | 0          | c       | 0      | o          | c          |
| JJ FEINT    | 21              | 1019.3          | 2052                   | \$0\$        | r          |                            |            | 0           | 0          | 0       | ۔<br>م | С          | c          |
|             | 00              | 1 35 * * *      | 2535                   | 455          | ¢          | ~                          | ~          | c           | c          | c       | 0      | C          | 0          |
| ALVER CO    | 15              | 3553.5          | 4505                   | 2592         | r          | o                          |            | C           |            | c       | 0      | 0          | c          |
| SPRING CC   | 51              | C.CFF           | 1505                   | 575          | -          |                            | c          | r           | 0          | `<br>c  | 0      | ſ          | o          |
| SPALNS CC   | 75              | 1314.5          | 2735                   | 455          | r          | J                          | J          | c           | c          | 0       | 0      | c          | n          |
| SPRING CC   | e c             | c.16CS          | 8305                   | 355          | 5          | 65                         | 63         | \$2         | •          | -       |        |            | c          |
| SPRING CC   | 12              | 1.0665          | 9955                   | 545          | •          | 105                        | 601        | 53          | 13         | ~       | ~      | ſ          |            |
| SPRING CC   | 15              | 5.455           | 9955                   | 775          | •          | 101                        | 112        | ŗ           | 41         | ť       | ~      | ^          |            |
| SPAING CC   | 13              | 2533.5          | 9355                   | 755          | æ          | ٤2                         | £3         | د2          | ~          | _       | -      | C          |            |
| SPRING CC   | 21              | 2321.7          | 6355                   | 655          | -          | -                          | 0          | c           | ç          | 0       | 0      | c          | n          |
| SPAING CC   | 30              | 1575.3          | 1505                   | 1505         | c          |                            | 0          | ç           | 0          | 0       | 0      | c          | 0          |
| SPRING CB   | 96              | 5355.3          | 5355                   | 5355         | 0          | 0                          | 0          | 0           | 0          | -       | 0      | c          | 0          |
| 80 0N1465   | 12              | 4853.7          | 7905                   | 3475         | c          | 0                          | c          | J           | ¢          | ~       | -      | C          | 0          |
| SPAING CB   | 15              | 2.6764          | 7355                   | 2652         | 0          | 0                          | ~          | ÷           |            |         | ~      | c          | c          |
| SPALNG CB   | 18              | 5413.7          | 6405                   | 4952         | 0          | 0                          | c          | c           | -          | 0       | 0      | 0          | 0          |
| SJ44EA CC   | 60              | C.5725          | 2502                   | 2532         | 0          | 0                          | -          | c           | С          | 0       | 0      | c          | 0          |
| SJ4452 CC   | <del>ر</del> در | 1345.3          | 4-21                   | 352          | 4          | r                          | ~          | ~           | -          | ç       | °<br>• | 0          | 0          |
| SUMMER CC   | 60              | c.2162          | 9055                   | 455          | د۲         | 77                         | <b>6 3</b> | 47          | ~          | -       | °<br>• |            | 0          |
| 23 4-1445   | 12              | 2971.55         | 8 2 5 5                | 615          | 11         | <b>9</b>                   | 671        | 69          | 0<br>7     | 12      | ~      | r          | 0          |
| SUMMER CC   | 15              | 5 9 5 1 • 9     | 3 9 C S                | 615          | C          | <b>6</b>                   | 122        | 83          | 35         |         |        | ~          | c          |
| 50 454405   | 18              | 2055.1          | 7305                   | 905          | ~          | 4                          | 59         | 33          | 15         | ~       |        | c          | Ô          |
| SJUNER CC   | ٩,              | 1542.5          | 2755                   | 1055         | c          | ~                          |            | ົ           | c          | 0       | د<br>د | c          | 0          |
| SJANES CC   | 2               | 1.1602          | 3255                   | 355          |            | -1                         | -          |             | c          | 0       | 0      | c          | 0          |
| 40 KUMPLS   | 6C              | 4495.3          | 0 5 C 2                | 3472         | Ċ          | 0                          | ¢          | ~           | 0          | ç       | ۲<br>۲ | c          | 0          |
| SJ44ER CB   | 12              | 5415.5          | 13752                  | 3105         | c          | n                          | c          | r           | ~          | •       | 0      | ~          | 7          |
| SJ44FA CB   | 15              | 2.2263          | 10955                  | 3325         | ſ          | 0                          | ſ          | t           | v          | 4       | -      | ^          | ~          |
| Sudded Co   | 16              | 591 <b>8.</b> 4 | 11755                  | 3452         | ¢          | C                          | 0          | 3           | •          | •1      |        | c          | ~          |
| FALL CC     | e c             | 657.3           | 1905                   | 352          | 11         | ~                          | с          | ſ           | c          | ç       | 0      | C          | 0          |
| FALL CC     | <b>°</b> C      | 1253.9          | 3155                   | 355          | •          | ~                          | ••         |             | c          | c       | 0      | 0          | o          |
| FALL CC     | 60              | 1613.9          | 5655                   | 325          | 27         | 33                         | 62         | []          | c          | ~       | c      | o          | 0          |
|             | 12              | 1.4.12          | 6755                   | 455          | t t        | 6                          | đĥ         | 31          | 2          | ÷       | •      | 0          | ç          |
|             | <u>.</u>        | 2.0.2           | 5,55                   | 572          | \$2        | 5                          | ~ '<br>\$  | <b>4</b> (  | r          | ~       | 0      | 0          | 0          |
|             | 10 ·            |                 | 2062                   | 515          |            | ~ `                        | ~ `        | Þ           | 0          | 0       |        | c          |            |
|             | 17              | 6.blcl          | 2062                   | 5.9          | •          |                            | <b>m</b> ( | 0           | <b>c</b> ( | 0       |        | C          | 0          |
|             | 2:              | 1 30.2          |                        | 5 5 5 F      | <b>~</b> ( | N (                        |            |             | 0 1        |         |        | <b>c</b> ( | 0 (        |
|             | 2               |                 | (4)                    | 5 5 5 C      |            | 0 (                        | <b>.</b> . | 0 (         |            | - (     |        |            | 0          |
|             | <u>-</u>        | 0.0000          |                        | <b>508</b> 7 |            | 0                          | -          | 0           | ~          |         |        | 0          |            |
| FALL CB     | 13              | C.2.1F          | 3772                   | 3772         | r          | r                          | c          |             | 0          | c       | 0      | C          | 0          |
| < = Y :     |                 |                 |                        |              |            |                            |            |             |            |         |        |            |            |
| SEASJNS-    |                 |                 |                        | LEAN.        | IXVn       | .,,,,                      | CNV        | 1211        | 101        | VALUE:  |        | 2          | FTERS      |
| #14TER =    | 360.Jav. E      | 6               |                        | 5 6 2 J 5    | 202        | SNIE                       | A 2 E      | × 7         | 1124       | ETERS.  |        | •          |            |
| = SN: Pc S  | 48.5P4.44       | *               |                        | T WE         | 2 2        | 2 11 2                     | •          |             |            | -<br>   |        |            |            |
| 5 J44E2 =   | Ju4+ JJL+ & J   | 0               |                        | כרויט        | ΥDĒ        |                            |            |             |            |         |        |            |            |
| בירןיב      | Sea. JCr. 40    | >               |                        | 5            | 3          | 1,1,1                      | 2 1 2      | 5176        |            |         |        |            |            |
|             |                 |                 |                        | 4 )<br>-     |            | י ירי,                     | 5          | 201         | -151       |         | 2      |            |            |
|             |                 |                 |                        | <b>.</b> ,   | 5          | , יוי                      | [ 6 7 ] 7  |             | •          | 4<br>   | ,      |            |            |

0.3.5.5.5.0

じんえんたんじ

5

TARLE 4-13. YEA UNCRAYS: CUMULUS CLOUD BASE HETGHTS AV MONTH.

|              | 2686 3                                | 5                 | 9.7   | 1.0     | 2.8          | ••     | [.]        | 4.1                     | 5.9    | 2.1        | 1.6   | 5.2      | • • •       | 12.2       | 10.3  | 4.7          | 9.1         | 13.7  | 17.2               | E.C.I     | 15.3  | 24.3 | 9.7   | 11.7    | 25.3  | ÷.5        | 11.1        | 14.3  | 1.9   | 5.7   | 2.5    | 5.2   | 2.9     | 2.7   | 1.5   | 1.5         | 1.1           |      |
|--------------|---------------------------------------|-------------------|-------|---------|--------------|--------|------------|-------------------------|--------|------------|-------|----------|-------------|------------|-------|--------------|-------------|-------|--------------------|-----------|-------|------|-------|---------|-------|------------|-------------|-------|-------|-------|--------|-------|---------|-------|-------|-------------|---------------|------|
|              | 2015                                  | ~~~               | 2     | 1       | 36           | 13     | 16         | 59                      | 9      | 30         | 121   | 69       | 25          | 173        | 146   | 57           | [6]         | [6]   | 239                | 146       | 221   | 330  | 124   | 156     | 374   | 112        | 146         | 541   | 16    | 7 L   | 25     | 69    | 11      | *     | 0     | °2          | *_            |      |
|              | 1750.                                 | 0                 | 0     | -       | 0            | 0      | o          | 0                       | n      |            | ~     | 0        | G           | ~          | Ł     |              | ÷           | -4    | ~                  | ł         | ٠     |      | -     | 0       | 0     | 0          | 0           | ~     | 0     | o     | G      | -1    | 0       | c     | c     | 0           | 0             |      |
|              | 1 500-1749                            |                   | 0     | 0       | 0            | ç      | 0          | c                       | •      | 0          | 0     | o        | 0           | 0          | 0     | c            | o           | o     | o                  | 0         | c     | 0    | c     | 0       | o     | 0          | o           | o     | c     | •     | 0      | o     | c       | 0     | o     | c           | c             |      |
|              | 2 ( M )<br>- 250 - 1 6 00             | 5 / 0 - 1 / 1 / 1 |       |         | •            | ~      | o          | <b>5</b> ]              | •      | ۴          | 4     | 17       |             | 44         | 63    | 61           | 40          | 57    | 63                 | 39        | 93    | 82   | 30    | 49      | 52    | 62         | 12          | 34    |       | ۶0    | ~      | []    | ÷       |       | 4     |             | -             |      |
|              | 51419U10                              |                   | r.    | o       | o            | 0      | 0          | ſ                       | n      | c          | n     | c        | c           | c          | c     | 0            | o           | 0     | c                  | c         | с     | C    | c     | c       | ſ     | o          | o           | n     | o     | ດ     | c      | c     | c       | n     | o     | o           | c             |      |
|              | - 7 20 - 000 - 1                      | •                 | ~     | ~       | 26           | 13     | 4          | 04                      | 27     | ¢          | 54    | 37       | œ           | <b>5</b> 6 | 70    | <b>6</b> 2   | 100         | 106   | [3]                | ~ 5       | 120   | 112  | 06    | +01     | 142   | <b>8</b> 4 | <b>1</b> C1 | 117   | 52    | 63    | 17     | 53    | 54      | œ     | *_    | 21          | •             |      |
|              |                                       |                   | 0     | n       | 0            | n      | 0          | 0                       | 0      | 0          | 0     | 0        | 0           | 0          | 0     | o            | 0           | 0     | <b>o</b><br>,      | c         | 0     | o    | 0     | 0       | n     | 0          | o           | 0     | 0     | 0     | 0      | 0     | 0       | 0     | 0     | 0           | 0             |      |
|              | 607-050                               | ,<br>,<br>,       |       | •       | •            | ~      | œ          | ~                       | £      | 11         | o     | 11       | 12          | 11         | 12    | 61           | <b>\$</b> 2 | 19    | 5                  | 52        | []    | 4 F  | E 1   | 11      | 50    | 15         | 20          | 34    | ~     | •     | •      | *     | 60      | 12    | ~     | ¢           | £             |      |
|              | C 63(-0                               |                   |       | -       | o            |        | ~          | -4                      | o      | *          |       | 0        | ~           | 0          | 0     |              | 0           |       | 5                  |           | 0     | ~    | 0     | ~       | ł     | 0          | -           | ~     | 0     | 0     | ~      | -     |         | ~     | 0     |             | Ł             |      |
|              | 121212                                | 450               | 150   | 52      | 450          | 150    | 75         | 150                     | C 5 2  | 150        | 13    | 250      | 150         | 282        | 250   | 150          | 257         | 150   | K                  | 153       | 453   | 153  | 453   | 150     | 150   | 252        | 150         | 150   | 250   | 450   | 150    | 150   | 150     | 150   | 450   | 25          | 4             |      |
|              |                                       |                   | 1250  | 1 * 5 7 | 1257         | 1251   | 3 )C       | 1251                    | 1253   | 1.57       | 1753  | 1257     | 1252        | 1,57       | 1753  | 1757         | 1 2 3       | 1753  | [ <sup>7</sup> 5 J | [15]      | 1753  | (5,1 | 1753  | 1252    | 1,53  | [25]       | 1253        | 1757  | 1227  | 1253  | 523    | ן 5 ז | 1257    | 1257  | 1257  | 1253        | 1257          |      |
| <del>,</del> | C                                     | 854.5             | 125.3 | 517.5   | 5-3-3        | [.5.]  | 1.61+      | 6 <b>3</b> 5 <b>a</b> ⊃ | 2.1.8  | (.,04      | 353.5 | 6.5.5    | C.642       | 5*656      | 5.679 | 917.2        | 322.5       | 424.1 | 849.5              | £ • 5 . ? | 6.626 | d71  | 873.d | 9-106   | 934.2 | 350.7      | 2-8-2       | 615.9 | 143.4 | de7.3 | 123.3  | 857.7 | 744.5   | 574.4 | 855.3 | 5-1-5       | 5.5.4         |      |
|              |                                       | ,<br>,<br>,       | 2     | 0<br>U  | Ĵ            | с<br>С | <b>P</b> U | t<br>.,                 | ງ<br>ບ | <b>1</b> 9 | t     | ()<br>() | <b>9</b> .' | Ţ          | 3     | <b>€</b> 1 ∪ | ŗ           | 3     |                    | 3         | 3     |      | Ţ     | ر.<br>۱ | 60    | Ţ          | ຽ           | 10    | t     | 5     | р<br>С | 5     | ر.<br>ن | £.    | Ţ     | :<br>:<br>: | <b>9</b><br>U |      |
| ר<br>ג<br>ג  | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                   |       |         | <b>و</b> ت ع | きじょ    | F c J      | * # 5                   | ¥ ¶ 7  | 242        | ¥ c ¥ | ¥ c 7    | ۲c          | ~ ~ 7      | ~~*   | ~~*          |             | 7.1 P |                    | יור       | יור   | 11:  | . ( 4 |         | . ( ۵ | S = P      | eu s        | 5: 2  |       | 1.5   | 1.0    | 202   |         | ACt   | 040   | 0EC         | 350           | (ÉY: |

CLJJJ TYPES-

CM = CJMULUS HUMULIS CC = CUMULUS MENIDCAIS/CDVSFSTUS C3 = CUMULUNIMULI C3 = CUMULUNIMULI CLDUD MASE STATISTICS AND IN METERS.

| EASJY AND 405R. | FREQJENCY DISTRIBUTION(M) |
|-----------------|---------------------------|
| s ev se         |                           |
| 4E1341          |                           |
| 3 845F          |                           |
| כרסוכ א         |                           |
|                 |                           |
|                 | č                         |
|                 |                           |
| а.<br>Р         | TYPE                      |
| ÷1-4            | • N C S M •               |
| 1.4.5           | 34 75                     |

**CANNON**CHOR

C SHORE SHORE

3836

| ~            |                | 1        |         |            |          | FRES<br>1100 | JENCY JE         | 573 [ BUT [ DN | ( W )<br>1 260-1 1 00 |            | . 760. |             |      |
|--------------|----------------|----------|---------|------------|----------|--------------|------------------|----------------|-----------------------|------------|--------|-------------|------|
|              | Ēg             | E        |         |            |          |              |                  |                |                       |            |        |             |      |
|              |                |          | 250     | <b>،</b> د | ) C      | . 0          | • ೧              | • •            | <b>,</b> -            | <b>,</b> a | • •    | •           | 0.2  |
| 1250         | 9              |          | 011     | · ~        | *        | 0            | 4                | 0              | • •                   | 0          | c      |             | 1.01 |
| 1.7 1240     | <b>\$</b> 0    |          | 450     | ſ          | •        | 0            | •                | 0              | Ð                     | 0          | n      | 2           | 3.5  |
| 0.0 800      | 00             |          | 300     | c          | 0        | c            |                  | Ø              | 0                     | 0          | 0      | -           | 2.0  |
| 5.0 75       | 15             |          | 15      | -          | ç        | ŗ            | C                | 0              | 0                     | 0          | 0      |             | ~•0  |
| 1250         | 50             |          | 150     | ~          | r        | •            | 17               | 0              |                       | •          | 0      | 2           | 5.2  |
| 9.7 1250 4   | 50             | •        | 50      | ſ          | •        | ņ            | 50               | 0              | •                     | 0          | 0      | <b>\$1</b>  | 3.1  |
| 9.2 450      | 50             |          | 75      | ٠          | ¢        | c            | c                | 0              | 0                     | 0          | 0      | 11          | 2.2  |
| 7.3 1250 7   | ۲<br>۵         | -        | \$      | £          | ~        | ſ            | 1                | 0              |                       | 0          | •      | =           | 2.9  |
| 7.7 1253 15  | 5.0 15         | 5        | 0       | ~          | ~        | 0            | ~                | 0              | -                     | 0          | 0      | •           | 1.6  |
| 7.7 1750 15  | 50 15          | Š        | 0       | ł          | <b>P</b> | c            | ٠                | c              | 0                     | 0          | -      | 1           | 2.5  |
| 7.3 1250 150 | 50 15          |          | ~       | ~          | ••       | ſ            | J                | 0              | ~                     | 0          | •      | •           | •••  |
| 7.5 1750 250 | 50 250         | \$       | _       | -          | 12       | ŗ            | 71               | 0              | •                     | 0          |        | 32          | 5.4  |
| 3.5 1750 75  | 50 75          | 5        | _       |            | r        | o            | 115              | 0              | 62                    | 0          | ~      | - 8 -       | 24.9 |
| 9.1 1750 450 | 50 450         | 450      |         | ſ          | •        | c            | 63               | 0              | 55                    | 0          | ~      | [2]         | 13.0 |
| 5.7 800 253  | 00 253         | 250      |         | -          | Ð        | c            |                  | 0              | 0                     | 0          | Ø      | ~           | ••0  |
| 5.7 803 250  | 03 250         | 250      |         | ~          | *        | r            | 41               | 0              | c                     | 0          | 0      | ٢2          | 9.6  |
| 2.5 1750 250 | 50 250         | 250      |         |            | Ł        | c            | 19               | 0              | 4.5                   | 0          | ~      | 134         | 17.7 |
| 7.7 1750 450 | 50 450         | 450      |         | ſ          | 12       | n            | C 4              | 0              | [ 4                   | 0          |        | <b>9</b> 2  | 0.41 |
| 1.7 1750 1-0 | 50 1.0         | 1,0      |         | ſ          | ¢        | 0            | r                | 0              | 0                     | 0          | -      | 2           | 3.7  |
| 1.5 1250 150 | 50 [5(         | Ĕ        | ~       | ď          | 13       | ¢            | •                | 0              | ~                     | 0          | 0      | <b>\$</b> ? | * *  |
| 4.4 1250 150 | 50 150         | 15.0     | _       | Ł          | r        | 0            | 15               | 0              | ø                     | 0          | 0      | Ξ           | 1.,  |
| 2-1 1750 150 | <b>50 15</b> 0 | -        | _       | •          | e        | ſ            | 61               | 0              | 17                    | 0          |        | r.,         | 6.9  |
| 2.2 1755 25  | 5.U 25         | ~        | 0       | ~          | 4        | 0            | 52               | 0              | t                     | 0          | -      | \$          | 12.3 |
| 1.5 1250 15  | 50 15          | <b>~</b> | 0       | -          | 4 4      | ſ            | 52               | 0              | 2                     | 0          | Ċ      | 181         | 1.12 |
| 2.3 1750 45  | 50 45          | S.       | 0       | ç          |          | 0            | c11              | 0              | 56                    | 0          | ~      | 173         | 19.2 |
| 5.1 1750 45  | 50 45          | 5        | 0       | ſ          | ~        | ſ            | 52               | 0              | <b>9</b> 9            | 0          | •      | 125         | 15.5 |
| 5.2 1750 45  | 52 45          | 5<br>1   | n       | c          |          | ſ            | 11               | 0              | 0                     | 0          |        | 2           | 4.5  |
| 2.4 1750 150 | 50 150         | 5        | ~       | J          | 32       | c            | 46               | 0              | 4                     | 0          | -      | 125         | 20.1 |
| 9.5 1250 45  | 50 45          | 4        | 0       | 0          | r        | 0            | 157              | 0              | 113                   | 0          | 0      | 275         | 31.1 |
| 7.4 1750 45  | 50 45          | ţ        | 0       | ſ          | •        | 0            | 84               | 0              | 56                    | •          | Ł      | 167         | 21.0 |
| 3.0 1250     | 50             |          | ٠,<br>۲ | r          | Ŧ        | ſ            | 5 <del>6</del> 2 | c              | œ                     | 0          | ç      | 8           | 15.4 |
| 3.5 1253 1   | 1 CS           | -        | 0<br>¥  | ~          | <b>5</b> | c            | 125              | 0              | Ð                     | 0          | 0      | 195         | 31.6 |
| 1 011 6.0    | 50 1           | -        | 0¥      | •          | 27       | Ċ            | 229              | 0              | 74                    | n          | -      | 335         | 39.2 |
| 1 0.71 0.9   | 1 05           | -        | C ¥     | •          | 1 1      | c            | 205              | 0              | 132                   | 0          | ~      | 351         | 45.4 |

0.000

| 2.3                |            |               |          |            |        |              | 3 • 4 1      |            |           | 2011      | 12.5     | 19.9           |              |            |                 |       |        |       |          |                                              |         |             |         |  |
|--------------------|------------|---------------|----------|------------|--------|--------------|--------------|------------|-----------|-----------|----------|----------------|--------------|------------|-----------------|-------|--------|-------|----------|----------------------------------------------|---------|-------------|---------|--|
| •                  | • •        | - 7           |          |            |        | 7.6          |              |            |           |           | 20       | 101            |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| <b>C</b> (         | n (        | <u>- c</u>    | - c      | - <b>-</b> |        | יר           | ~ c          |            |           | - (       | 0        | ~              |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| 0                  | 00         | - C           | <b>.</b> | 5 6        | 5 0    | > c          | > c          | <b>,</b>   | <b>.</b>  |           | D        | c              |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| ~                  | c          |               |          | e c        | 5 4    | ' -          | • •          | 3 0        | - 6       |           | 12       | <b>\$</b> 2    |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| 0 (                | - C        | 00            | • c      |            | о с    | , c          | ) C          | • c        | o c       |           | 5        | 0              |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| s r                | • c        | 611           |          |            | · •    |              |              | Į -        |           |           | 7 .<br>7 | 5 <del>5</del> |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| <b>c</b> (         | ` <b>`</b> | 'n            | ſ        | c          | ſ      |              | · C          | c          | c         |           | - (      | n              |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| •                  |            | 2             | ~        | , <b></b>  | el     | , ~          | ~            | ~          | 16        |           | 4        | •              |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| r: -               |            | -             | ſ        | •          | ~      | •            | ۲            | •          | ŗ         | 4         | •        | r              |              |            |                 |       |        |       |          |                                              |         |             |         |  |
|                    | 150        | C <b>3</b> ~  | , v 4    | ر ۲۹       | 151    |              | 0 <b>v</b> 1 | 250        | 150       | 5         |          | 0-1            |              |            |                 |       |        |       |          |                                              |         |             |         |  |
| 1251               | ) ()<br>   | 1743          | 1253     | 0.5        | 1240   | 1250         | C \$ 7 1     | 5 70       | 1253      | 0571      |          |                |              |            |                 |       |        |       |          |                                              |         | ICTERS.     |         |  |
|                    |            | 3.1CC         | 1.416    | 5.162      | 5.0.5  | 945.9        | 4 <u>C</u> 6 | 5.565      | 5.7.3     | 7 . 2 . 7 | 2.5      |                |              | 5 J        |                 | 5.4   | 202    |       | ירוצ     | INC 1 VI KOL                                 |         | S ARE TV +  |         |  |
| °2                 | 1          | <b>1</b><br>1 | с<br>С   | •••        | 12     | 61           | 5            | <b>د</b> ر | 12        | f I       |          | •              |              | PEC . JAK. | . 5 4 8 . 5 4 9 |       |        |       | UP - 2 U | 10 an Sr.                                    | 2262120 | ATISTIC     | 1.1.    |  |
| т.<br>С.           | ŗ          |               | <b>T</b> | 5          | ر<br>ن | <b>.</b><br> | 3            | <b>19</b>  | <b>19</b> | 10        | 1        |                | •            |            | ۔<br>ر          |       | ر<br>۳ | -5-61 | וייני    | <b>, , ,</b> , , , , , , , , , , , , , , , , | י.      | ASE 51      | 1 4 2 - |  |
| רי ר<br>ה ר<br>א א | r & L      | 1 <b>1</b> 1  | FALL     | FALL       | raut   | 59.5         | ŕ 4 L L      | 5266       | ا م<br>ا  | FALL      | FALL     | 3<br>3<br>1    | <br>212 24 3 | <u> </u>   | 1405            | , , , | JA 5   | 577.  |          | <br>                                         |         | <pre></pre> |         |  |

|      | S &FRE  |              | · • 0 0 | •          |              |        | • 1 •    | • •          | ~~ 0   | - ~ 0    | .6 1  | 9 5.    | · · · · · · · · · · · · · · · · · · · | .21 6  | 6 13.        |        | 1.61 6      | 13 13.       | 9 17.    | 1.01 0     | 1 10.  |             | •            | · 11 · •       | 4 26.    | - 8<br>~ | -11 -    | 1 4.        |        |        | -~ ~   | 5        |        | . 2.               |              | · · · · · · · · · · · · · · · · · · · | •                |   |       |   |
|------|---------|--------------|---------|------------|--------------|--------|----------|--------------|--------|----------|-------|---------|---------------------------------------|--------|--------------|--------|-------------|--------------|----------|------------|--------|-------------|--------------|----------------|----------|----------|----------|-------------|--------|--------|--------|----------|--------|--------------------|--------------|---------------------------------------|------------------|---|-------|---|
|      | 806 -   | ~ ~ ~        | -       | -          | -            | -      | - 0      | •            | •      | -        | 1 6   | 4 ~     | ~ ~                                   | ۲<br>۲ | 1 14         | *      | • •         | • •          | 5        | *          | ~~ ~   | 5           | ~1 c         | 61 1           | 7 37     | :<br>;   | 0 14     | • - •       | •      | •      | ۲<br>ح | ¢<br>0   | -      | <b>~</b>           | ~<br>~       | ~ ~                                   |                  |   |       |   |
| ,    | 1.      | 0            | c       | -1         | Ð            |        |          | 0            | -      | يند<br>س | ~     | •,      | 0                                     | Ð      | -            | ~      | 0           | _            | •        | 0          |        |             | ŗ            | -              | ົ        | -        | ŗ        | J           | ç      | c      | o      | 0        |        | ~                  | ç            | ~                                     | •••              |   |       |   |
|      | 5.8     | -            | ~       | ~          |              | -      | -        | -            | 01     | ~        | ~     |         | -                                     | -      | £            | ¢      | ~           | 11           | 53       | c          | J      | <b>6</b> 2  | n            | ¢              | c ]      | c        | ¢        | 41          |        | w      | ~      | ~        | r      | •                  | o            | ~                                     | c                |   |       |   |
|      |         | -            | •       | •,         | r            | -      | -        | r            |        | •        | C     | *       | ×                                     | ~      | 17           | 14     | £           | 5            | ٢2       | •          | ¢.1    | ະ           | •            | C1             | ;        | -        | •        | 54          | •      | •      | r      | ~        | ~      | ~                  | ç            | ſ                                     | •                |   |       |   |
| いという | €/3 f   | -            | 0<br>0  | с<br>0     |              | -      | 0        | ~ 9          | ~ 9    |          | •     | *       | <b>,</b>                              | •      | 5 17         | F<br>, | •           | 5            | 4 13     | 3          | ÷      | ¢ 13        | ب<br>۲       | •              | <b>1</b> | F +      | ۰<br>ج   | C1 6        | د د    | ۳<br>۲ | ¢.     | •        | ~ ~    | ~                  | с<br>1       | ~ *                                   | с<br>~           |   |       |   |
|      | 1 /     | J            | •       | -          | ſ            | •      | c        | e 1          | •      | L        | 34    | ۲<br>۲  | -                                     | ) (c   | ~            | •<br>4 | j4 l        | 5 <b>a</b> 2 | 14 2     | 4.5        | 2 L P  | 32 4        | 10 1         | , <sup>1</sup> | []       | ŗ        | -        | <b>ι</b> 1  | • •    | []     | -      | <u>ح</u> | ſ      | •                  | ;<br>1       | •                                     | ſ                |   |       |   |
|      | č • / 1 | Ŧ            | ~       |            | 5 1          |        | <b>`</b> | •.~          | ſ      | -        | * *   | •       | <b>^</b>                              | 95     | 11           | 1      | <b>51</b> 1 | ۲)           | 13       | 63         | 75     | 11          | 13           | 5              | 1 32     | 6        | r 4      |             | s<br>5 | د>     | •      | 25       | r      | ~                  | ~            | v                                     | -                |   |       |   |
|      | アニフ     | -1           |         |            |              |        | ~        |              |        |          |       |         | ~                                     | -4     | -1           | -      | -           |              |          |            | ~1     |             |              |                | -        | -        | -1       | 4           |        | -4     | -      | ~*       |        | .4                 | -1           | -                                     | -                |   |       |   |
|      | 447     | 0            | . 19    | T          | 19           | 10     | 10       | 0            | 10     | 70       | ~     | 10      | 70                                    | n      | T            | 10     | ^           | ~            | ~        | ŝ          | ~      | 10          | ~            | 10             | 10       | ~        | ð        | ۴           | 0      | ٥      | n      | ø        | æ      | Ю                  | -            | ۲                                     | ъ                |   |       | T |
| 7 26 | Y F A V | ¢•2          |         | 5.6        | <b>9</b> • • |        | 5.4      | 2.2          | •••    |          |       | 3.5     | 5.2                                   |        | <b>b•</b> ~~ | 1.3    | \$•}        | 3 • 2        | <b>.</b> | 1.5        | 2.2    | <b>5</b> •2 | <b>S</b> • 1 | ۲.۷            | 2.5      | ۲.5<br>ا | <b>.</b> | <b>6•</b> 2 | · · 1  | •••    |        |          |        | د .<br>۲           | 1.5          | 7 - 1                                 | 5.1              |   | 1     |   |
|      | TYPE    | <b>.</b>     | U<br>U  | <i>ر</i> ، | 1,           | ں<br>ر | ۳,       | ۳,           | U<br>U |          | T     | .,<br>, | ۴,                                    | t      | 3            | ٢,     | <b>1</b> ,  | 5            | e, J     | <b>T</b> , | ы<br>С | 5           | <b>T</b> ,   | .,<br>.,       | ۴,       | Т<br>. , | .,       | er,         | Ť      | 3      | رە     | ۳,       | с<br>Ч | <del>ار</del><br>ب | 5            | ر.<br>ر                               | <del>ا</del> ر ، |   | TVPC  |   |
|      | イントロト   | , <b>4</b> 1 | 1.4.    |            | F E J        | 613    | ₽ 3 3    | 4 <b>4 4</b> | ***    | * 4 2    | ¥ c ₹ | ¥ c ₹   | ¥ 2 ¥                                 |        | 745          | 147    | •. ( 1      | 277          | ~~~      | יור        | ノフ     | יור         | تا د         |                |          | 562      | 5.5      | Sea         | 1:1    | 1.1    | 110    | ~~~      |        |                    | <u>, 7</u> 0 | ר<br>ג'                               | υ <u></u> ε.     | : | ניניי | • |

÷.

1.11.

1.1.1

ADALASADATA.

NOT CHENCH

Contraction and a contract of a contract

£,

|               |                | £3232                 | ~•0        | 2.0         |     |        | ~•0         | ~• c   | ~ ~ |        | 2.2         | <b>.</b> | 1.5       | 5.0        | 8.1     | 4 . 2    | 24.9   | 1.0         | <b>9 ° C</b> | 3.9      | 17.7               | 14.0   | 3.7        | 4.4        | 4.1         | 5.9         | 12.3         | 21.1       | 19.2     | 15.5        | 4.5    | 1.02   | 31.1       | C.15     | 15.4          | 31.5        | 39.2        | 45.4     | 2•3    | 5.9      | 2.0      | 21.2   | 10.9 | 2.3        | <b>9 -</b> 5 | 2°e1       | 14.5     | 3.1        | 2.11               | 12.5          | 19.9      |
|---------------|----------------|-----------------------|------------|-------------|-----|--------|-------------|--------|-----|--------|-------------|----------|-----------|------------|---------|----------|--------|-------------|--------------|----------|--------------------|--------|------------|------------|-------------|-------------|--------------|------------|----------|-------------|--------|--------|------------|----------|---------------|-------------|-------------|----------|--------|----------|----------|--------|------|------------|--------------|------------|----------|------------|--------------------|---------------|-----------|
| • 21 . 1      |                | 2965                  | -          | !           | 5   | -      |             |        |     | 2      | 11          | =        | •         | -          | •       | Ň        | c 0 1  | 123         | •            | 21       | 134                | 50     | 5          | \$2        | 16          | 4.7         | 35           | 111        | [1]      | 125         | 1      | 125    | 275        | 157      | <b>F</b><br>5 | <b>66</b> I | 339         | 151      | Ŧ      | 5        | **       | 174    | 5    | <b>a</b> . | ÿ            | 125        | 78       | =          | 5                  | ~6            | 1.17      |
| 01.4          |                | e / e                 |            | 0           | o   | 0      | <b>o</b> ·  | -      |     | ~      | Ð           | Ð        | ~         | r          | 0       | C        | 0      | 0           | 0            | 0        | J                  | ~      | ~          | 01         | •           | 4           | 0            | 0          | 0        | 0           | 0      |        | n          | n        | -             | -           | 12          | -        | C      | 0        | 0        | 0      | 0    |            | -            | 0          | -        |            | in i               | •             | ~         |
| 1051          | 2              | 7/8                   | 0          |             | ſ   |        | 0           |        | ~   |        | n           | ſ        | ~         | ſ          | 0       | n        | o      | ~           | 0            | 0        |                    | ~      | n          | ~          | n           | ~           | n            | C          | 0        | C           | o      |        | ~          | 0        | ი             | -           | \$          | n        | 0      | n        | C        |        | Ċ    | C          | 0            | n          |          | n          | (                  | <b>~</b>      | 0         |
| , SE          | 1.06           | 6/9                   | 0          | n           | 4   | n ·    | 0           | 0      | •   | ~      | 0           |          | C         | 2          | 0       | O        | ~      | -           | 0            | <b>^</b> | 20                 | •      | ~          | -          | *           | •           | 0            | 0          | ~        | 0           | -      | ~      | 61         | 0        | ^             | œ           | 37          | ¢ _      | O      | c        | C        | ¢      | 0    | 2          | ~            | 2          | •        | ~          | 4                  | •             | ¢         |
| 4<br>14<br>14 | 5 7 2 1        | 5.4                   | c          | 0           |     |        | 0           |        | •   |        | -           | -        | <b>^</b>  | Ċ          | c       |          | -      | -           | <u> </u>     | ~        | 1                  | •      | *          | •          | •           | •           | ~            | 0          | •        | ~           | ~      | -      | -          | •        | •             | •           | 24 9        | 5        | •      | <b>·</b> | د<br>-   | r      | ~    | -          | ×.           | 22         | <b>^</b> | ~          | -                  | <u> </u>      | •         |
| r,            |                | /                     | 0          | -<br>-      | ~   | ~      |             |        | -   | ~      | 0           |          | ·)        | -          | ~       | <b>9</b> | ~ ~    | *           |              | -        | ~ 6                | ~      | ن<br>~     | ~          | -           |             | ~            | 0          |          | ~           | 0      | ~      | 1 25       | ۰<br>۰   | ~             | ~           | 5           |          | -<br>- | 0        | -        | •      | •    | -          |              | 5          | •        | 0          | _                  | ۰<br>۹        | ۳<br>۳    |
| 3             | 1.14           | 1                     | °          |             |     |        | 0           | 0<br>0 | ~   |        | <br>0       | 0        |           | ~          | ~       | -        | ~ 1    |             |              | ~        | ~                  | j<br>j | -          | _          | 0           | -           | •            | _          | ~<br>~   | ŕ           | •      | -      | ہ<br>م     | 2<br>2   | ~             |             | ě<br>O      | 3 24     | ~      |          | 0        | •      |      | ~          | ~            | ~ (        | <b>v</b> | ~          | \$                 |               | j<br>j    |
| רר זיז        | 1<br>7<br>1    | 1/~ 8                 | õ          |             | -   | °<br>O |             | 0      | ~   |        | ~           | 0        | 0         | 0          | t       | -        | •      | 3<br>5<br>6 | <i>.</i>     | •        | 2 2                | ř<br>O | -          | ~          | ~           | -<br>-<br>E | -            | -          | ٠<br>•   | ÷<br>۵      | t      | • •    | 5 13       | <b>ک</b> | 1             | \$<br>\$    | č1 7        | 2 1 2    | •      | ŝ        | 0        | ē<br>t | 7    |            | ~            | 9          | ~        | ~          |                    | ~ ~           | ٠<br>٣    |
| ŝ             |                | 1                     | •          |             | ۲ ، | -      |             | 10     | -   |        | _           | ~        | ~1        | <b>.</b> . |         | , , ,    | 1      | بر<br>م     | ~            | 1        | ~*                 | -      |            | -4         | -           | ~           | ب            | ہ<br>~     | •        | •           | ~      | 1      | ا<br>د     | 1        | ~,<br>_,      | 1 1         |             | 1 15     |        | 2        | ~        | •      | -    | -4         |              |            | <u>_</u> |            | ~ 1                | - •           | _         |
| <b>T</b>      |                | *                     | ъ          |             | ^   | ,      | -           | 10     | 10  | •      | 10          | Ŧ        | Ð         | Ŧ          | .1      | \$       | 0      | <b>p</b> .  | ~            | ¢        | 70                 | 6      | 8          | 6          | 10          | 8           | Ś            | •          | \$       | ŕ           | r      | Ð      | ~          | ş        | T             | n           | 60          | Ð        |        | ~        | <b>`</b> |        | s    | r          | 10           | ç          | ŝ        | Ŧ          | <b>~~,</b> ,       | -Th           | 'n        |
| 2             |                | -                     | ņ          | 2           | •   | •      | 2           | 0      | 2   | 7      | ŝ           | ~        | -4        | n          | J       |          | •      | ~           | ŝ            | 0        | 7                  | •      | •          | ŝ          | F.          | \$          | Ċ            |            | •        | 3           | 0      | \$     | 8          | 80       | Ś             | •           | Ś           |          | Ś      |          | ç        | •      | Ś    |            | 4            | ~          | ŗ        | 8          | 8                  | <b></b> .     | ŝ         |
| و د ک         | ĩ              | , <b>1</b> , <b>1</b> | T          |             | ~   | -      | <b>.</b> .  | •      | \$  | -      |             | ė        | ;         | •          | ~       | -        | ri     | -           | ~            | ~        | ;                  | ~      | ~<br>~     | \$         | 3           |             | -            |            |          | -           | ~      | -      | ~          | -        | ~             | -           | ۰.<br>۲     | ~        | -      |          | ŕ        | -      | -    | ;          | r <b>u</b>   | -          | ~        | ~          | ~                  |               | ~         |
| 2 m 3 k       | T . u d        | CIALL                 | e<br>C     | 71          | 8   | ĉ      | <b>9</b>    | ~ 1    | •   | ĉ      | ŝ           | 71       | 61        | 2          | 9       | 2:       | 10     | с<br>с      | ¢ſ           | 12       | 10                 | ç      | 90         | 12         | 1 d         | ĉ           | - <b>5</b> C | 12         | F I      | С,          | 00     | 12     | <b>F</b> 1 | ĉ        | <del>ر</del>  | 12          | 81          | S        | ٩,     | 12       | <u>.</u> | 10     | 30   | Ĵ          | 12           | <b>T</b> 1 | о<br>́   | ĉ          | 2 ]                | 80 ·          | Ĵ         |
| !             |                | - 37 -                | •          | 5           | ţ   | 1      | ບ<br>ບ      | ີ<br>ບ | 0   | ر.     | 10          | <b>9</b> | <b>10</b> | 80         | t       | S        | 5      | 5           | 0            | 3        | <b>ر</b> .<br>ن    | 5      | <b>£</b> ] | <b>9</b> 0 | 5           | 0           | t            | 5          | <b>.</b> | 5           | 5      | J<br>J | 0<br>0     | с)<br>С  | 6<br>19       | ю<br>U      | <b>F</b> ., | <b>9</b> | ţ      | Ľ        | 5        | 5      | 5    | ບ          | 3            | U<br>U     | ц<br>U   | <b>£</b> 0 | 80                 | <b>9</b><br>0 | <b>19</b> |
| TA965 3-      | (1 × 2 × 1 × 1 | 564574 8              | *: * * * * | * = 1 7 ] * | *:  |        | * 3 1 7 1 7 |        |     | 291917 | 7 : 1 N ] P | 251X1P   | インシアーマ    | インレアーマ     | er: 4.5 | 24240    | 981285 | 24142       | 222 242      | UN Lens  | <b>())</b> ] 2 2 5 |        | 2015       | 571595     | 2 2 2 1 4 2 | 221592      | * 3 * * ^ *  | 5 - 44 - 2 | 5.4452   | * - * * ^ / | オルチョフレ | オニアアつい | ではままつい     | マルデアつい   | オーチャーン        | アンドアン       | とっちゃつく      | インチョーン   | FALL   | FALL     | FALL     | FALL   | FALL | F4LL       | FALL         | FALL       | FALL     | FALL       | . ال<br>الم<br>الم | 5             | - 1 - 1   |

AUX: SEAS Jase A Larea - Jen, Jaza Fra a Larea - Jen, Jaza Fra valare - 422, - 102, - 101 v Jaze - 102, - 102, - 102, - 102, - CLOUD TYPES-TH # CUMULUS MUMULIS CC # CUMULUS MEDIDATS/CONGESTUS CC # CUMULUS MEDIDATS/CONGESTUS CC # CUMULUS MEDIDATS/CONGESTUS SKT CUMPLUS MEDICS ARE TH ETGMTHS. TIME IS TH ZULU-

# TARLE 4-17. VEN PALEANS: CUMULUS CLOUD TOP HEIGHTS BY MONTH.

ዸዀዸዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ

|              | 1 1            | 2 c J             |        |       |             | Fier | 1 = 1      | 2   | [572] | 11LE | 2) Y C | Ŧ   |     |     |
|--------------|----------------|-------------------|--------|-------|-------------|------|------------|-----|-------|------|--------|-----|-----|-----|
| イントント        | 1,26           | (コ)フィュア           | (オ)メイナ | 12711 | <b>1</b> -0 | 1-2  | {-7        | 3-4 | 5-1   | 5-6  | 6-7    | 9-1 | 6-9 | ò   |
| 747          | <b>T</b>       | 5-2127            | 4575   | 1301  | 0           | 10   | •          | 0   | -     | 0    | 0      | 0   | 0   | 0   |
|              | .)<br>.)       | 2.1656            | 1225   | 1021  | 0           | -    | <b>-</b> , | ~   | ~     | -    | 0      | 0   | 0   | 0   |
|              | <del>د</del> . | 7455.7            | 2355   | 5155  | 0           | 0    | 0          | 0   | n     |      | 0      | 0   | 0   | -   |
| FE3          | •              | 1725.5            | 5675   | 106   | ~           | 13   | -          | 0   | n     | 4    | 0      | 0   | 0   | 0   |
| E E E        | 5              | 5942.7            | 1644   | 155   | ~           | 1    |            | *   | -     | n    | 0      | 0   | 0   | 0   |
| 5:3          | ศ.<br>เว       | C.1625            | 1092   | 1052  | 0           | 0    | -          | 0   | 0     | 0    | 0      | 0   | 0   | 0   |
| 542          | 5              | 1-53.7            | 5:05   | 104   | Ś           | 18   |            | ~   |       | ~    | 0      | 0   | 0   | 0   |
| 7 <b>7</b> 7 | ;;             | c. 1975           | 1,06   | 1221  | с<br>О      | Ð    | 11         | \$  |       | 0    | 0      | n   | 0   | -   |
| 245          | <b>6</b> .)    | 0233.5            | 1995   | 5501  | Ċ           | 0    | 0          | 0   | 0     |      | 0      | 0   | 0   | ~   |
| 4 c 4        | 1              | 1.1E11            | 1995   | 755   |             | 33   | 14         | 0   | 0     | o    | ى      | 0   | 0   | 0   |
| ۲c           | U<br>L         | 6.0106            | 1:68   | 1501  | C           | 14   | 1          | Ð   | ~     | ~    | -      | 0   | ~   | 0   |
| ۲cЧ          | ſ,             | c.[9]c            | lite   | 1516  | 0           | 0    | n          |     |       | ~    | 0      | 0   | 0   | ~   |
| M A Y        | 3              | 534.7             | \$135  | 106   | 2           | 40   | 0          | 10  | -     |      | 0      | 0   | 0   | 0   |
| 7 A P        | ပ<br>ပ         | 1978.3            | 17255  | 951   | -           | •    | <b>2</b> 3 | 0   | 12    | 1    | m      | r   | \$  | \$  |
| 795          | e<br>ر         | 206761            | 11051  | 3055  | 0           | 0    | 0          | ~   | ~     | ~    | -      | 0   | ~   | 1   |
| アファ          | •              | 2345.5            | 1209   | 751   | t           | 52   | <b>6</b> 2 | 11  | ~     | 0    | ~      | 0   | 0   | 0   |
| アニコ          | ( )<br>( )     | 5122.7            | 12455  | 1651  | 0           | ~    | 12         | 17  | 81    | 12   | 12     | 10  |     | ~   |
| • / •        | 5              | 5937.4            | 12921  | 3151  | 0           | 0    | 0          | ~   |       |      | ŕ      | ~   | ~   | 57  |
| יור          | 5              | 2,24.5            | 5251   | 105   | -           | 11   | 1          | 1   | Ð     | ~    | 0      | 0   | 0   | 0   |
| JL           | 3              | 5.53.5            | 10811  | 2551  | 0           | n    | -          | •   | 61    | 27   | 22     | 15  | ŝ   | 11  |
| יור          | ۳<br>.)        | 13783.2           | 13975  | 1026  | 0           | 0    | 0          | ~   |       | ~    | ~      | 4   | ł   | 5   |
| 514          | 5              | 2939.7            | 1649   | 1011  | 0           | ~    | 91         | 13  | ~     | -    | 1      | 0   | 0   | 0   |
|              | 5              | 545J <b>.</b> 3   | 11051  | 1321  | n           | ~    |            | \$  | 80    | 12   | 17     | 01  | ~   | 1   |
|              | α.<br>,        | e.14011           | 13875  | LOIS  | 0           | 0    | 0          | -   | ~     |      | ~      | ~   | \$  | 106 |
| 255          | <b>Т</b> ,     | 2453.3            | 5451   | 651   |             | 18   | 22         | Ð   | Ŷ     | -    | 0      | 0   | 0   | 0   |
| <b>5</b> F J | 3              | 4925.3            | 12051  | 555   | -           | ŝ    | 2          | 60  | 11    | 1    | 16     | r   | 0   | 4   |
| ςΞS          | е.<br>С        | 10303.7           | 13675  | 2755  | 0           | 0    |            | 0   | ~     | ~    | ~      |     | 0   | 39  |
| 0.1          | Ţ              | 235.7             | 5005   | 1151  | 0           | 25   | <b>*</b>   | ~   | 0     | c    |        | 0   | 0   | 0   |
| 1:1          | ;;             | 4135.2            | 10105  | 1091  | c           | -    | c          | 11  | r     | 4    | ~      | 0   | ~   | ~   |
| ů:T          | 5              | e'22.3            | 11475  | 3501  | 0           | 0    | 0          |     |       | 0    | 0      | 0   | 0   | •   |
| Ģ            | 5              | 1, 95.7           | 3055   | 155   | ~           | 18   | =          | ~   | 0     | 0    | 0      | 0   | •   | 0   |
| ACP.         | ບ<br>ບ         | 35 9 <b>7 .</b> 3 | 9516   | 1351  | •           | ~    | ŝ          | ¢   | -     | ~    | 4      | 0   | 0   |     |
| 20           | 6.)            | 3255.1            | 1-355  | 1042  | 0           | 0    |            | 0   |       |      | 0      | 0   | 0   | 60  |
| .)<br>1<br>0 | 3              | 1713.3            | 2755   | 1001  | 0           | 60   | ÷          | 0   | 0     | 0    | 0      | 0   | 0   | 0   |
| 0.50         | 0              | 4435 <b>°</b> 2   | 10801  | 1002  | 0           | 0    | 3          | -   | -1    |      | 0      | -1  | 0   |     |
| ÚFC<br>ÚFC   | د<br>ر         | 1254.5            | 12001  | 1016  | 0           | 0    | 0          | -   | 0     |      | 0      | 0   | 0   | ~   |
| 4 E Y :      |                |                   |        |       |             |      |            |     |       |      |        |     |     |     |
|              |                |                   |        |       |             |      |            |     |       |      |        |     |     |     |

CLJJJ TYPES-CH = CJMULJS HJMULIS CG = CJMULJS MEDIJCAIS/CJNGFSTUS CG = CJMULJS MEDIJCAIS/CJNGFSTUS C3 = CJMULJNIMBJS HEA14 MAXIMUM AND MENUMBLERS. FAGUJENCY BIYS ARE IN KILQMETERS.

Karana waxaabada ah

| 5                               |
|---------------------------------|
| 2                               |
| 5                               |
| 1                               |
|                                 |
| 0                               |
| -                               |
|                                 |
| -                               |
|                                 |
| -                               |
| ÷.                              |
| · -                             |
| ~                               |
| -                               |
| LU U                            |
|                                 |
|                                 |
|                                 |
| >                               |
| 60                              |
| _                               |
|                                 |
| ~                               |
| •                               |
| τ                               |
|                                 |
| 2                               |
|                                 |
| u                               |
| Ť                               |
| -                               |
| -                               |
| e.                              |
| C )                             |
| -                               |
| -                               |
| -                               |
| 0                               |
|                                 |
| ō                               |
| <u> </u>                        |
| _                               |
| $\circ$                         |
|                                 |
|                                 |
|                                 |
| ŝ                               |
| ŝ                               |
| 5.15                            |
| 1:15                            |
| 11-15                           |
| 14 15-15                        |
| <b>311 JU PC</b>                |
| SUUL NC D                       |
| SUPLED                          |
| CUM JUNS                        |
| SUUCHUS                         |
| : כשויניים                      |
| SUDUMDERS                       |
| VS: CJUJENS                     |
| SUJUMO : SN                     |
| AVS: CUMULUS                    |
| SUJUNCO :SNAD                   |
| LEANS: CUMULUS                  |
| REANS: CUMJUIS                  |
| SUDUMO: CUMULUS                 |
| SULLAUS: CUMULUS                |
| 346548: 6347578                 |
| A JALEAVS: CUMJUUS              |
| SUJALS: CJAJUJS                 |
| HEN DALEANS: CUMULUS            |
| VEN JALEANS: CUMJUUS            |
| VEN JALEAVS: CUMJUJS            |
| SUJU SALEANS: CUMJUJS           |
| • YEM JALEANS: CUMJUJS          |
| 3. YEM JALEANS: CUMJUJS         |
| 3. YEM JALEANS: CJ4JL'JS        |
| 13. YEM JALEANS: CUMJUUS        |
| -13. YEM JALEANS: CUMJUUS       |
| SULLA VEN JALEANS: CUMULUS      |
| A-13. YEM JALEANS: CUMJUUS      |
| A-13. YEM JALEANS: CUMJUJS      |
| E 4-13. YEM JALEANS: CUMJUJS    |
| LE A-TA. YEM JALEANS: CUMJUUS   |
| 945 4-13. YEM JALEANS: CUMJUUS  |
| ARLE A-13. YEM JALEANS: CUMJUUS |
| A945 A-13. YEM J2454NS: CJ4JUJS |

Sec. G

.

.

| VCSASe VE        | • TYPE. HJL         | 2             |              |           | 4 | 1635 | UE NC          | IC .  | 5 T C [    | -11LE | **)*0 | 5  |       |     |
|------------------|---------------------|---------------|--------------|-----------|---|------|----------------|-------|------------|-------|-------|----|-------|-----|
| SEASON FY        | (2) ALOH 29         | (こ)とうじょ       | ( m) X M M   | . (1)711  |   | ~    | -              | 3-4-5 | ŝ          | 9-9   | 6-7 7 |    | 6 - 6 | •   |
| U 701717         | ۲<br>۲              | 1872.5        | 5905         | 108       | ~ | 23   | •              | o     | -1         |       | 0     | 0  | 0     | 0   |
| D RELAIR         | сс н                | 1453.0        | 1 405        | 1011      | 0 | ¢    | 0              | C     | 0          | c     | 0     | 0  | 0     | 0   |
| し インコアコス         | í 18                | 3744.2        | 10801        | 855       |   | 1    | ¢              | r     | ~          | •••   | ç     |    | 0     |     |
| J 751814         | ر <u>م</u> ا        | 2441.8        | 4451         | 1501      | o |      | ~              |       |            | 0     | 0     | c  | c     | 0   |
|                  | Э <b>35</b>         | C.1016        | 1076         | 3771      | C | c    | 0              |       | c          | c     | c     | ç  | 0     | 0   |
| こう イー・レット        | 51 F                | 5573.4        | 10051        | 2501      | c | o    |                | n     | 0          | ~     | •     | 0  | 0     | ~   |
| 0 701717         | 50 ف                | 0951.J        | 9851         | 9851      | 0 | 0    | 0              | с     | 0          | 0     | 0     | ຕ່ | 0     |     |
| 5 24 143 2       | н 15                | 2348.5        | 5505         | 106       | ~ | 49   | \$             | 01    | ~          | ~     | 0     | 0  | 0     | 0   |
| SPRING C         | <u>сс</u> н         | 1733.8        | 5055         | 161       | s | ŝ    | 75             | ~     | 0          | -     | 0     | 0  | 0     | 0   |
| S 24140 C        | C 12                | 2251.5        | 1005         | 1051      | c | t    | ~              |       | 0          |       | o     | o  | c     | 0   |
| C SVISS          | 10                  | 3859.2        | 10255        | 1011      | r | 61   | 32             | 50    | 2          | æ     | -1    | r  | r     | ¢   |
| SPALNG C         | 0000                | 1357.7        | 8951         | 128       |   | 11   | 17             | 11    | r          |       | ~     | 0  |       | 0   |
| 5 LU1502         | с<br>С              | C•1566        | 1506         | 1500      | с | o    | c              | c     | 0          | c     | 0     | 0  | 0     | -   |
| C ON Eds         | 3 12                | 5875.3        | 9701         | 4051      | 0 | n    | 0              | c     |            | 0     | n     | 0  | 0     |     |
| 5 28143 3        | 91 E                | 7776.9        | 11:005       | 3055      | 0 | c    | C              |       | c          | r     | 0     | 0  |       | ~   |
| C DAIRS          | 6 J.                | 7322.7        | 11651        | 3151      | ſ | 0    | n              | ~     | ~          | ~     |       | c  | -     | ¢   |
| し、ペニチアつく         | + 12                | 1823.8        | 1009         | 109       | r | Ŷ    | -              | 0     | <b>س</b> م | c     | -     | 0  | o     | 0   |
| D REPARS         | н 18                | 2845.7        | 1649         | 1451      | 0 | 21   | 47             | ŝ     | æ          | m     | ~     | 0  | 0     | 0   |
| こ そうちゃっち         | сс н                | 2343.J        | 4551         | 1001      | с | 1    | 52             | -     | ~          | c     | 0     | 0  | 0     | 0   |
| 5 4452 0         | C 12                | 5492.7        | 1556         | 4451      | 0 | c    | C              | c     |            |       | ~     | 0  | -     |     |
| 5 45450          | c lê                | 5132.2        | 10801        | 1091      | c | ~    | œ              | 5     | 27         | 52    | 39    | 30 | ~     | 25  |
| SUK452           | с <u>3</u> 3        | 5334.5        | 11901        | 1061      | o |      | ¢              | 5     | 1          | 17    | C1    | r  | 0     | r   |
| こう イビチメット        | 9 IZ                | 11456.5       | 10951        | 10051     | c | с    | c              | c     | c          | 0     | c     | 0  | c     | ្ឋ  |
| 5 20405          | - 1 E               | 10778.3       | 1 3935       | 1016      | ċ | c    | C              | 4     | ~          | m     | -     | œ  | 0     | 195 |
| 2 458875         | CC و                | E2233.5       | 10161        | 1026      | 0 | ю    | c              | ~     |            |       | \$    | ~  | ¢     | 53  |
| FALL C           | H 12                | 1539.5        | 1961         | 651       | - | ~    | c              | 0     | 0          | c     | C     | 0  | C     | 0   |
| FALL C           | н 15                | C.11CS        | 1067         | 2001      | ç | o    |                | n     | c          | c     | 0     | 0  | c     | 0   |
| FALL C           | ы 18                | 2143.3        | 6006         | 651       | - | 56   | <del>6</del> 3 | 0     | r          | 0     |       | o  | c     | 0   |
| FALL C           | СС <b>т</b>         | 2578.8        | 5451         | 1221      | o | ~    | ~              | ~     | 0          |       | •     | 0  | 0     | 0   |
| FALL C           | C 12                | 4051.7        | 1569         | 555       | - | 0    | 0              | -     | c          | ~     | ~     | c  | 0     | 0   |
| FALL C           | C 18                | 4555.0        | 10135        | 1351      | ſ | œ    | ŝ              | 23    | 5          | 5     | 14    | ŝ  |       | ~   |
|                  | c 00                | 4313.1        | <b>3705</b>  | 1501      | 0 | -    | t              | t     |            | ~     | m     | 0  | -     | c   |
| FA.L C           | <b>ё</b> Э <b>6</b> | <b>R351.0</b> | 13951        | 5751      | c | n    | c              | c     | С          | -     | c     | c  | c     | -   |
| FALL C           | 8 12                | 10334.3       | 12301        | 1083      | o | С    | 0              | 0     | c          | c     |       | 0  | o     | ~   |
| FALL             | B 1ð                | 10043.0       | 13505        | 1042      | n | c    | -              | -     | ~          | -     | 0     |    | o     | 38  |
| FALL C           | CO 6                | 9126.6        | 12701        | 2955      | 0 | •    | -              | o     |            | -     | -     | •  | 0     | 0   |
| 4 ⊢ X :          |                     |               |              |           |   |      |                |       |            |       |       |    |       |     |
| 5 6 4 5 3 4 S -  |                     |               |              |           |   |      |                |       |            |       |       |    |       |     |
| 414163           | = JEC.JAY.          | 513           |              |           |   |      |                |       |            |       |       |    |       |     |
| CN12aS           | - 4AC, APC.         | 742           |              |           |   |      |                |       |            |       |       |    |       |     |
| らりりょう            | - JUN.JJL.          | 504           |              |           |   |      |                |       |            |       |       |    |       |     |
| L ALL            | = \$£°,3CT,         | 107           |              |           |   |      |                |       |            |       |       |    |       |     |
| CL3JJ 170        | <u>e</u> S -        |               |              |           |   |      |                |       |            |       |       |    |       |     |
| 0<br>8<br>7<br>0 | <b>JAULJS HUM</b>   | JL I S        |              |           |   |      |                |       |            |       |       |    |       |     |
| 0<br>8<br>0<br>0 | LEAN SUINAN         | IDCO/SIEDLI   | ESTUS        |           |   |      |                |       |            |       |       |    |       |     |
|                  |                     |               |              |           |   |      |                |       |            |       |       |    |       |     |
|                  |                     |               | JES ARE T    | N METERS. |   |      |                |       |            |       |       |    |       |     |
|                  | JIVS ACE            | N KILJARIE.   | <b>* ?</b> • |           |   |      |                |       |            |       |       |    |       |     |
| 11"E> 3AC        | 13 777)•            |               |              |           |   |      |                |       |            |       |       |    |       |     |

ir de

0.0

### APPENDIX B

Selected Cloud Dimension Graphs

1.



Figure B-1. ESSEN: Maximum, Minimum, and Mean Cloud Bases for Cumulus Mediocris/Congestus by Month.



Figure B-2. ESSEN: Maximum, Minimum, and Mean Cloud Bases for Cumulonimbus by Month.

こうちゃ したい ひとんかん ちょうちょう



\$9\_6\*\$\_6\*\$`\$\*\$\_\$\*6\*6\*5\*6\*5\*6\*5\*5\*6\*5\*6\*

C. DOD XXXXX

Figure B-3. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus by Month.



Figure B-4. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Cumuloninbus by Month.



Figure B-5. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Base for Cumulus Humulis/Fractus by Month.



Figure B-6. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus by Month.



jacacacael

DOTA 52220

えんとくとくる

XXXXXXXX

55.01 D200000 (15532020-10) 2000-2000 (0) 20000055

Figure B-7. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Base for Cumulonumbus by Month.



Figure B-8. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus by Month.



Figure B-9. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulonimbus by Month.



Figure B-10. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus by Month.



Figure B-11. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Cumulonimbus by Month.

Caracter of the second s



Figure B-12. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Top for Cumulus Humulis/Fractus by Month.



Figure B-13. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus by Month.



Figure B-14. NEW ORLEANS: Maximum, Minimum, and Mean Cloud Top for Cumulonimbus by Month.







Figure B-16. ESSEN: Frequency of Cumulonimbus by Month.

![](_page_49_Figure_0.jpeg)

![](_page_49_Figure_1.jpeg)

![](_page_49_Figure_2.jpeg)

Figure B-18. HANNOVER: Frequency of Cumulonimbus by Month.

![](_page_50_Figure_0.jpeg)

Figure B-19. NEW ORLEANS: Frequency of Cumulus Humulis/Fractus by Month.

![](_page_50_Figure_2.jpeg)

Figure B-20. NEW ORLEANS: Frequency of Cumulus Medicocris/Congestus by Month.

![](_page_51_Figure_0.jpeg)

Figure B-21. NEW ORLEANS: Frequency of Cumulonimbus by Month.

![](_page_51_Figure_2.jpeg)

Figure B-22. ESSEN: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Spring, by Hour.

![](_page_52_Figure_0.jpeg)

Figure B-23. ESSEN: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Summer, by Hour.

![](_page_52_Figure_2.jpeg)

Figure B-24. ESSEN: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Fall, by Hour.

![](_page_53_Figure_0.jpeg)

Figure B-25. ESSEN: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Winter, by Hour.

![](_page_53_Figure_2.jpeg)

Figure B-26. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Spring, by Hour.

![](_page_54_Figure_0.jpeg)

Figure B-27. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Summer, by Hour.

![](_page_54_Figure_2.jpeg)

555555410 54 01755555

Figure B-28. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Fall, by Hour.

![](_page_55_Figure_0.jpeg)

Figure B-29. HANNOVER: Maximum, Minimum, and Mean Cloud Base for Cumulus Mediocris/Congestus--Winter, by Hour.

![](_page_55_Figure_2.jpeg)

Figure B-30. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Spring, by Hour.

![](_page_56_Figure_0.jpeg)

Figure B-31. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Summer, by Hour.

![](_page_56_Figure_2.jpeg)

Figure B-32. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Fall, by Hour.

![](_page_57_Figure_0.jpeg)

Figure B-33. ESSEN: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Winter, by Hour.

![](_page_57_Figure_2.jpeg)

Figure B-34. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Spring, by Hour.

![](_page_58_Figure_0.jpeg)

Figure B-35. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Summer, by Hour.

![](_page_58_Figure_2.jpeg)

Figure B-36. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Fall, by Hour.

![](_page_59_Figure_0.jpeg)

TURNED PLANCOR ANALYTY ARALLAN

Kocsu

Figure B-37. HANNOVER: Maximum, Minimum, and Mean Cloud Top for Cumulus Mediocris/Congestus--Winter, by Hour.

![](_page_59_Figure_2.jpeg)

Figure B-38. ESSEN: Frequency of Cumulus Mediocris/Congestus--Spring, by Hour.

![](_page_60_Figure_0.jpeg)

מנננגנ

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

Figure B-40. ESSEN: Frequency of Cumulus Mediocris/Congestus--Fall, by Hour.

![](_page_61_Figure_0.jpeg)

Figure B-41. ESSEN: Frequency of Cumulus Mediocris/Congestus--Winter, by Hour.

![](_page_61_Figure_2.jpeg)

Figure B-42. HANNOVER: Frequency of Cumulus Mediocris/Congestus--Spring, by Hour.

![](_page_62_Figure_0.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

Figure B-44. HANNOVER: Frequency of Cumulus Mediocris/Congestus--Fall, by Hour.

![](_page_63_Figure_0.jpeg)

Figure B-45. HANNOVER: Frequency of Cumulus Mediocris/Congestus--Winter, by Hour.

### DISTRIBUTION

| AWS/DN, Scott AFB, IL 62225-50081                                          |
|----------------------------------------------------------------------------|
| AWS/DO, Scott AFB, IL 62225-50081                                          |
| OL A, HQ AWS, Buckley ANG Base, Aurora, CO 80011-9599                      |
| 00-B. HQ AWS. Langley AFB. VA 23665-50001                                  |
| SD/YDA, PO Box 92960, Worldway Postal Ctr. Los Angeles, CA 90009-29601     |
| OL-G. HO AWS. NHC Rm 631, 1320 S Dixie Hwy. Coral Gables. FL 33146-29761   |
| OL-H. HO AWS (ATSI-CD-CS-SWO). Ft Huachuca, AZ 85613-7000                  |
| OL-I. HO AWS (ATDO-WE). Ft Monroe. VA 23651-50001                          |
| 01-1. HO AWS, Keesler AFB, MS 39534-5000                                   |
| Det 1 HO AWS, Pentagon, Washington DC 20330-6560                           |
| Det 2 HO AWS Pentagon Washington DC 20330-5054                             |
| AFSCE/WE = PO Box 3430 Supprvale AFS CA 94088-3430 1                       |
| 1WW/DN Hickam AFR HI 96853-5000                                            |
| 2WW/DN APO New York 09012-5000 2                                           |
| 2WW/DN Offutt AFR NE 68112-5000 2                                          |
| AWW/DN Deterson AFR (0.90911-5000                                          |
| 2WS/DN And now AFR MD 20224-5000                                           |
| EWU/DN Langlov AER VA 22665-5000                                           |
| ARCHC/CDCL OFFWH+ ARD NE 60112-6000                                        |
| AFUNC/SUSE, UTTULL AFD, NE UOIIS-SUUU                                      |
| $U_{3}$ AFE (AC, SCULL AFD, IL 02220-0400                                  |
| /WW/UN, SUUL AFD, IL 02223-3008                                            |
| ASU/WE, WEIGHL-Patterson Arb, UH 45433-0503                                |
| JSUL/Wedlifer, P.U. BOX /UZ39, FORL Bragg, NL 2830/-5000                   |
| 3350 IECH 16/1160-W, Stop 62, Unanute AFB, 1L 61868-5000                   |
| AF11/LIR, Wright-Patterson AFB, UH 45433-6583                              |
| AFGL LIDPARY, Attn: SULLR, Stop 29, Hanscom AFB, MA U1/31-5000             |
| Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002-55011 |
| U.S. Army Missile Command, A.IN: AMSMI-RD-IE-I, Redstone Arsenal, AL       |
| 35898-5250                                                                 |
| Technical Library, Dugway Proving Ground, Dugway, UT 84022-5000            |
| NCDC Library (D542X2), Federal Building, Asheville, NC 28801-27231         |
| DTIC-FDAB, Cameron Station, Alexandria, VA 22304-61452                     |
| NBS Pubs Production, Rm A-536, Admin Bldg, Gaithersburg, MD 208991         |
| AUL/LSE, Maxwell AFB, AL 36112-55641                                       |
| AWSTL, Scott AFB, IL 62225-5438                                            |

22.J (122.22.22.21.0.00 (122.0.00 ) 25552333 (120.0.00) S555533 (122.0.000 S255554 (255.52.00) P00.000 (255.00) (25

![](_page_65_Picture_0.jpeg)