
-18RI3 373 A CLRSS OF OPTIMAL DECENTRR.IZED COMMIT PROTOCOLS(U) LI
MARYLAND UNIY COLLEGE PARK DEPT OF COMPUTER SCIENCE
A K AGRANALA ET AL. JUL 67 CS-TR-1673 NSSSI4-8?-K-1124

UNCLASSIFIED F/O 25/5S N

S _w -- W -. - m w- w

* q! q N

M c

UMIACS-TR-87-31 July, 1987
CS-TR-1873

A Class of Optimal Decentralized
Commit Protocols

Shyan-Ming Yuan
Department of Computer Science

A. K. Agrawala
Department of Computer Science and

Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

a

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

OTIC
S, ZLECTE 0

AU 14US

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

87 8

UMIACS-TR-87-31 July, 1987
CS-TR-1873

A Clam of Optimal Decentrailsed

Commit Protocols

Shyan-Ming Yuan

Department of Computer Science

A. K. Agrawala
Department of Computer Science and

Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

ABSTRACT

Thi paper studies the mesage complexity of decentra4zed commit protocols. It
shows that e(kNN /b) msages e necessary only if k rounds of message interchanges
are allowed. It also shows that e(NInN) i a mmage lower bound for any decentralized
commit protocol. Finally, a claus of decentralized commit protocols are proposed which
need kNN'/) messages and use k rounds of meage interchanges. If we let k=lnN
then we can get a decentralized commit protocol which needs e(NInN) mesages only.

DTIC
SELECTEIIAU 1 4 VOID !

S--D'--'DP

UNCLASSIFIED fAI37SECURITY CLASSIFICATION OF THIS PAGE t$/3 1
REPORT DOCUMENTATION PAGE

Is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIPTED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY Of REPORT

N/A approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

N/JA
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

CS-TR- 1873; UMIACS-TR-87-3 1

6.NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
University of Maryland I Npkak Office of Naval Research

I N/A
k. ADDRESS (City. State, &Wd Z*Cod) ?b ADDRESS (City, State, and ZIP Code)

Department of Computer Science 800 North Quincy Street
University of Maryland Arlington, VA 22217-5000
Col-le1ePark.M_20742 _____________________________

Be. NAME OF FUNDING /SPONSORING 1 b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
*GAIZAION Of AAk" N00014-87-K-O1 24

k- ADDRESS (City. Stat. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROiECT TASK WORK UNIT
ELEMENT NO NO0 NO ACCESSION NO

11 TITLE OnhAlle Security Clesiabillin)

A Class of Optimal Decentralized Commit Protocols

12 PERSONAL. AUTHOR(S)
Shyan-Min Lun shk AMrW-Ala

II& TYPE OF REPOT Ilib TIM E COVERED 14DATE OF REPORT (Year. Wontb Day)l S' PAGE COUNT
Technical I ROM _ ___TO _____I uly IQR7 I21

iG SUPPLEMENTARY NOTATION

17 COSATI CODES I$ SUBJECT TERMS (Continu on nieverw of necessary and identnfy by biock nufflber)
FIELD GO"J SU-GROUP

1 ABSTRACT (Conftmau an rowrie of neceawy and Kdenltfy 6V MOwk number)

This paper studies the message complexity of decentralized commit protocols. It shows
that 6(kNNI/k) messages are necessary only if k rounds of message interchanges are
allowed. It also shows that B(NlnN) is a message lower bound for any decentralized
coit protocol. Finally, a class of decentralized commit protocols are proposed
which need *(kNNIfk) messages and use k rounds of message interchanges. If we let
k-InN then we can get a decentralized commit protocol which needs e(NlnN) messages
only.

20 D4STRI8UTsON /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT QOTC USE RS UNCLASSIFIED

22a NAME :f REIISPONSIBLE IN0IVIDUAL E2 TEEPHONE (Include Area Code) I22c OFFICE SYMBOL

00 FORM 1473. 84 MA 63 APR edition may be used wntil1 exhiausted SECURITY CLAStiFICATION OF THIS PAGE
All other edition% are obsolete UNLASS IF IED

% *.* ** ~ ~j ~ , *% *%**

1 Introduction

Decentralized commit protocols are characterized by successive rounds of message inter-

changes. Protocols in [1, 2] which require a site to communicate with every other site at

each step need N(N - 1) and 2N(N - 1) messages for each round, respectively. N is the

number of sites in the system. Protocols in [4] need k2NNl1k and 2k 2NN1/k messages for

blocking and nonblocking protocols, respectively. Where k is a parameter dependent on the

number of rounds of message exchange. In this paper, we define a logical communication

structure develop a family of blocking and nonblocking commit protocols. The protocols

need only kNNI/& and 2kNNI/' messages, where k is the same integer parameter of [4].

This communication scheme can also be used for decentralized consensus protocols [5] with

the same message complexity.

In section 2, we describe the formal model for our commit protocols. In section 3, we

describe the decentralized versions of two-phase blocking and nonblocking protocols. In

section 4, we show that the message complexity of decentralized commit protocol. We

present a class of message optimal commit protocols in section 5. We also extend this i (ea

to some decentralized consensus protocols in section 6.

NT: CRA&I

k i ' I

2

-. -~p r ,p V *' - - - ~ . *** -

2 Formal Model for Commit Protocols

Transaction execution at each site is modeled by a finite state automation (FSA) [3]. The

network serves as a common I/O medium for all the FSA's. A local state transition at site i

involves the reading of a nonempty string of messages addressed to site i, writing a string of

messages, and moving to the next local state. State transitions at one site are asynchronous

with respect to transitions at other sites. The final states of the FSA's are partitioned into

two sets: the abort and the commit states. A site cannot make transitions to nonabort

states from abort states. Similarly, a site cannot make transitions from commit states to

noncommit states.

A local state is called commitable if occupancy of that state by any site implies that all

sites have agreed to commit the transaction. All other states are said to be noncommitable.

The global state of a distributed transaction can be represented by a global state vector

consisting of the local states of all FSAs and the outstanding messages in the network. The

set of all global states reachable from the initial global state can be represented by a global

reachable graph. Using this global reachable graph, it is posible to find out the set of local

states that may concurrently be occupied by other FSAs when a FSA at site i is in some

known state Si. This set of states that can concurrently be occupied by FSAs at other sites

is called the concurrency set of Si.

3

- ., ~ *~**.U *V VU " Uv

3 Blocking and Nonblocking Commit Protocols

The FSA for the decentralized two phase commit protocol is shown in figure 1. We assume

that each site has already received a transaction in the initial state (state q). If a site decides

to commit the transaction, it sends 'yes' messages to all the other N - 1 sites and moves to

state w. If a site decides to abort the transaction it sends 'no' messages and moves to state

a. In state w, if 'yes' musages are received from all other sites the transaction is commited

(state c) otherwise the transaction is aborted, since the concurrency set of state w contains

e and a. Skin [2] has shown that a protocol Is nonblocking if and only if:

1. there exists no local state whose concurrency set contains both commit and abort

states.

2. there exists no noncommittable state whose concurrency set contains a commit state.

q

yes no

no

w a

yes

Transition: all 'yes' messages' ,
c must be received but one 'no'

message is sufficient

Figure 1: Blocking Protocol

4

V~ ~~~~~ .V' .. e.*... y..

Therefore the protocol is a blocking protocol. Figure 2 illustrates the decentralized non-

blocking commit protocol described in [2]. This protocol has a buffer state p and an extra

round of messages to make it conform the requirements of Skeen's nonblocking theorem.

(q

yes

prepare

prepare

Transition: all 'yes' and 'prepare'
c messages must be received but

one 'no' message is sufficient

Figure 2: Nonblocking Protocol

51

4 The Message Complexity of Decentralized Commit Pro-

tocols

THEOREM 4.1 For all decentralized commit protocols, if there are only k rounds of message

interchanges allowed then e(kNNI/k) messages are necessary.

PROOF: Assume each round of message interchange, each site can only write p messages

out. Therefore, after round 1, there are at most (p+ 1) sites having the knowledge about the

local decision of site 1. After round 2, there are at most (p+ 1)2 sites having the knowledge

about the local decision of site 1. Therefore, after round k, there are at most (p + 1)k sites

having the knowledge- about the local decision of site 1. Since only k rounds of message

interchanges are allowed, (p + 1)k should be at least N. Otherwise, these N sites can not

enter a common final state. Because during each round, each site writes p messages out,

total messages generated are Npk.

(p+1)k > N

(P + 1) > N1 / "

p 2_ N 1 1 -1 (1)

Npk > kN(N Il k -1)

Npk = O(kNNI/k) (2)

.0

THI OREM 4.2 For all decentralized commit protocols, O(N In N) messages are necessary.

PROOF: All decentralized commit protocols, which need k rounds of message interchanges,

require e(kNNi/k) messages. Therefore, minimizing kNNl/k will get a lower bound for

all decentralized commit protocols.

d(kNNi/k) -k 0dk

N N 1/ + kN(IN)N 1 / k = 0

6

NNI1k -
k

k = lnN (3)

min(kNN1 /") = NI/(hN)N In N

= eNlnN (4)

min(e(kNN'/k)) - e(Nin N) (5)

So, e(N In N) messages are necessary for any decentralized commit protocol. 03

7

5 Families of Commit Protocols

In this section two families of decentralized commit protocols are presented. Assume that N

and k are such that Ni l k is an integer (later we consider the case when it is not an integer).

The N sites can be treated as N positions of a k-dimensional array such that a site x can

be numbered by a k-tuple (Xj, X2,..., Xk), where 0 < X 1 , X 2 ,..., X; :_ (N 1/k - 1) and

k
Vz, 0 x < _ N - 1,x = • *

(k- j)/k

j=1

5.1 Protocol Schema 1

The FSA for schema 1 is shown in figure 3. The actions in each state are listed below. For

all site x, x = 0,1,..., N - 1, x can be numbered as k-tuple (X 1 ,X 2 ,.. ,Xk).

1. State q: On receiving a transaction, unilaterally decide to commit or abort the trans-

action. If a 'no' message is received, decide to abort the transaction. If an abort

decision is made, send 'no' messages and move to state a,. If a commit decision is

made, send 'yes 1 ' messages and move to state wl. All messages are sent to sites

numbered as k-tuple (*,X 2 ,... , Xk), where '' means any number between 0 and

Ni k - 1.

2. State wi, 1 < i < (k - 1): If all 'yesj" messages are received from sites numbered

as k-tuple (X,,..., Xi-1 , *, Xi,. . ., Xk). Then, send 'yes'+' messages and move to

state wi+. If a 'no' message is received , send 'no' messages and move to state ai+i.

All messages are sent to sites numbered as k-tuple (X,,... Xi, *., Xi+ 2 ,.., X).

3. State wk: If all tyesk ' messages are received from sites numbered as (X,.. ., Xk _,),

commit the transaction. If a 'no' message is received, abort the transaction.

4. State c: Commit state.

5. State a1 , 1 < i < (k - 1): Send 'no' message to sites (X,.. ., X, *, X4 2 ,... , Xk) and

move to state ai+i.

6. State ak: Abort state.

8

" I

noo

noWk k
yes k

Figure 3: Protocol Schema 1

The following theorems establish the properties of protocol schema 1.

LEMMA 5.1 If a site is in one of a states, it will eventually abort.

PROOF: Since the only transition in a states is to send 'no' message and move to the next

a state. Hence, if a site is in one of a states, it will eventually move to state ak (abort

state). 0

THEOREM 5.1 If a site decides to abort, all sites will eventually abort.

PROOF: Assume that site x decides to abort in State q, where x can be numbered as k-tuple

(X 1,X 2 ,... , Xk). Then all sites will abort after kth round of message exchange. We will

prove this by induction.

INDUCTIVE HYPOTHESIS: If site x decides to abort. After ith round of message exchange,

where 1 <_ i < k, all sites numbered as (,,Xi+,,. . .,X) have received 'no' message

i-bits
and will abort. (The '.V' in any position indicates that the element in that position can take

any value between 0 and Ni1/k - 1.)

1. Base case: When i is equal to 1. Since site x decides to abort in State q. It sends

'no' messages to sites which are numbered as (*, X 2, ... , Xk). Therefore, after the 1st

round of message exchange all sites numbered as (*, X 2,... , Xk) have received 'no'

messages and will move to state a2. By Lemma 4.1, They will abort eventually.

2. Inductive case: Assume that the hypothesis is true for i = I - 1, where I < k. After

(1 - 1)th round of message exchange, all sites numbered as (, X,... , Xk) have
(i-1)bits

received 'no' message. Therefore, they will move to a states and send 'no' message to

all sites numbered as (* ,X+ 1 ,. . . , Xk). Such that after lth round of message

i-bits

exchange, all sites numbered as (, X1+1,. .. ,Xk) have received 'no' message.
l-bits

By lemma 4.1, They will abort eventually. So the inductive hypothesis is true for all

i, where 1< i < k.

10

fi

Therefore, If a site z decides to abort, after kth round of message exchange all sites numbered

as , will abort. So if a site decides to abort, all sites will eventually abort. 13

k-bits

THEOREM 5.2 If no site decides to abort the transaction, all sites will eventually commit.

Paoor: If no sites aborts the transaction, all sites will send 'yea1 ' and move to state w1 .

Since all messages are eventually delivered, each site will receive all 'yea1 ' messages needed,

then send 'yes2' message and move to state w2. Similarly, for all other 'yes' messages.

Finally, all 'yesk ' messages will be delivered causing sites to move to the commit state. 0

THEOREM 5.3 Protocol 1 is a blocking protocol.

PROOF: It is obvious that the concurrency set of state wk contains both abort and commit

states. Hence, protocol 1 violates the nonblocking conditions states in section 3. 0

5.2 Protocol Schema 2

The FSA for schema 2 is shown in figure 4. The actions in each state are listed below. For

all site z, z = 0,1,..., N - 1, x can be numbered as k-tuple (XI,X 2,..., Xk).

1. State q: On receiving a transaction, unilaterally decide to commit or abort the trans-

action. If a 'no'.message is received, decide to abort the transaction. If an abort

decision is made, send 'no' messages and move to state a,. If a commit decision is

made, send 'yea1' messages and move to state wl. All messages are sent to sites

numbered as k-tuple (*,X2,...,Xk), where '' means any number between 0 and

N11k - 1.

2. State wi, 1 < i < (k - 1) : If all 'yes i" messages are received from sites numbered

as k-tuple (XI,... , Xi- 1, *, Xi+1 ,..., Xk). Then, send 'yesl+l' messages and move to

state wi+,. If a 'no' message is received, send 'no' messages and move to state ai+l.

All messages are sent to sites numbered as k-tuple (X,,..., Xi, *, Xi+2,. •., X,).

11

noo

W1 12

3. State wta: If all 'yesk' message@ are received from sites (X,. ., X&.-., s), send 'prepare'

messages to sites numbered as k-tuple (*, X 2,. . . ,Xk) and move to state pl. If a 'no'

message is received, move to state a, (abort state).

4. State pi, 1 < i < (k - i): 'f all 'prepare" are received from sites numbered as

(X,.. ,X,- 1 , *,Xj+,..., X). Then, send 'preparei + 19 mesasages to sites numbered

as (X 1 , ... Xi,., Xi+2,. . ., X) and move to state p,+l.

5. State pk: If all 'preparek' are received from sites (XI,. . .,X-, s), commit the trans-

action.

6. State c: Commit state.

7. State aj, 1 < i < (k - 1): Send 'no' messages to sites which are numbered as k-tuple

(X 1 ,. ., Xi, *, X+ 2,. . ., Xk) and move to state a,+1 .

8. State ag: Abort state.

The following theorems establish the properties of protocol schema 2.

THEOREM 5.4 If a site decides to abort, all sites will eventually abort.

PRoor: Similar to proof of theorem 4.1.

THEOREM 5.5 If no site aborts the transaction, all sites will eventually commit.

PROOF: Similar to proof of theorem 4.2.

LEMMA 5.2 If a site is in state c, all sites have sent 'prepare' ' messages.

PRoor: We would like to show it by contradiction. Assume that site x is in state c and

site y has not sent 'prepare1 ' yet. Where x is numbered as (X,,..., Xk) and y is numbered

as (Y,,..., Yk). Since y has not sent 'prepare", all sites numbered as (., Y2,... Yk) have

not received all needed "preparep messages. They should have not sent 'prepare 2" Yet.

Therefore, all sites numbered as (*,,Y 3,. .. ,Y) should have not sent 'prepare3' yet. In

general, for all j, 1 < j _< k, if sites (. , Y) have not sent 'prepareJ' then all

sites (Y, . .. ,Yp+1,...,Y,) should have not received all needed 'prepareP and have not

1

13 •

'I U

at 'prepsrei4+. Thereore, by induction, all sites (....,1,) have not sent 'preparek'

yet. So x should have not received tpreparek' from site (X1 ,...,X5..1 ,Yk). That means x

will have not entered state c yet. It is contradictory to the assumption. Therefore, If a site

is iz state c, all sites hav, sent 'prepare"' messges. 0

Tu WLitm 5.6 Protocol 2 is G nonbkwkung protocol.

1. By lem~ma 4.2, if a site is in commit state all other sites have to be in one of the p

states. The abort state is not reachable from the p states. Therefore, no local state

has both commit and abort state in its concurirenicy set.

2. The zoncommitable, states are state q, w stats ad a states. Again, by lemma 4.2.

when a site is in one of these stas so other site can be in commit state. Hence. there

is no sncommitable state whose concurrency set coatains commit state.

Therefore, the isonbiocking conditions are satisfied.

5.3 The Complexity of Meesage Exchange

Assume that N and k are such that NV11" is an integer. Since the number of messagesi

sent in each round by a site is (NI/kb - I). The total number of messages needed bs

the blocking protocol is kN(N'11 - 1) and for nonbiocking protocol is 2kN N'1I/ - 11

If N'I* is not an integer, we can add sufficient virtual sites to the system The Ol%L

difference betweeni real sites and virtual sates is that virtual sites do not decide to abort the

transaction by themself or the virtual sites have value 0 initially. The number of v.irtual

sites needed is (M - N), where Mltk is equal to [.V'/61 Now the total number of message"

needed would be 1)lkk fih for blocking protocol and ronsensus prolocol- anti

2k fN''
5]5 (r fi/hl - 1) for the nonblocking protocol. Therefore, the order of rornpl.it% Ar

.,11 0(kNNIIk). If we ignore the ceiling operator and consider k to he real, Ihe~ liuib.r *ot

mesbage is minimum for k =In N and the corre~ponding mreqaFr cornileXIa.N 1 4-0i %

14

Obviosly, tbes. two ftmilles of commit protocols are optimal with respective to message.

flees.. we have shown that for any decentralized commit protocol, which has k rounds

of ina iatercimamps, requires 0(kNNI/*) messages. And the message lower bound is

e(Nla N) fo aay deceatralised commit protocol.

L A~k a.-drLL f o

6 Decentralized Consensus Protocols

The communication scheme used in section 5 can be simplified to apply on solving the

following problems efficiently. Figure 5. is the simplified schema.

q

101 perform computation
send

own

value

send result

W02 perform computation

k perform computation

f

Figure 5: Consensus Protocol Schema

6.1 Decentralise4 Finding Maxima and Minima

Given N distinct values distributed across the sites of a distributed system, such that each

site contains one value. The problem is to find the extreme (maximum or minimum) of

these values and to make this extrema known to all sites in the system. The actions of each

site is modeled as a FSA shown in figure 5. Assume NI/k is an integer then the actions in

site z, which has binary representation (zl.,. Z), are as follows

1. State q: Send own value to sites numbered as (., X,..... k) and move to state w.

16

2. State wt, 1 < i < (k - 1): Upon receiving values from sites numbered as

(X ,...,X.-,*, X,+,... , X), compute the extrema (maxima or minima) of these

values received and the computed result of the previous state. Send the result to all

sites numbered as (Xi,..., XA, *, Xi+2,..., Xk) and move to state wi+,.

3. State wk: Upon receiving values from all sites numbered as (XI,..., Xk-1, *), compute

the extrema (maxima or minima) of the values received and the computed result of

previous state. Move to state f.

4. State f: Final state.

The following theorem establishes correctness of the protocol.

THEORIEM 6.1 If a site is in final state f then it contains the eztrema (maxima or minima)

of the values initially present.

PRoor: Assume the extrema of the values initially present to be the value at site x, say V.

Then all sites will contain V. when they are in state f. We will show this by induction.

INDUCTIVE HYPOTHESIS: After ith round of message exchange, where 1 < i < k, all sites

numbered as (*, X,+,.,... , X,,) have received V.
i-bita

1. Base case: i is equal to 1: Site x has V, in state q. It sends V, to sites (, X2 ,..., Xk).

Therefore, after the 1st round of message exchange, all sites (*, X 2,... , Xk) have the

extrema V..

2. Inductive case: Assume that the hypothesis ib true for i = 1 - 1, where I < k: After the

(I - 1)th round of message exchange, all sites (, , X1,..., Xk) have the extrema

V,. They will send V, to all sites (9,9,X1 +1 ,..., X,). So after lth round of
I-b.'.

message exchange, all sites (1..... .,Xg+ 1 ,. ., Xk) contain the extrema V and move
I-b".e

to state f. Therefore, the inductive hypothesis is true for all i, where 1 < i < k.

The only case a site is in state f is that it already goes through k rounds of message

exchange, therefore it should contain the extrema. After kth round of message exchange

17

all sites (contain extrema. So, If a site is in state f it contains the extrema of the

valum initially pr nt. U

6.2 Computation of Sum Function

Given N values distributed across the sites of a distributed system, such that each site

contains one value, the problem is to And the sum of these values and to make the sum

known to all sites in the system. As before, the protocol in figure 5. can be used. We can

again assume Ni/k is integer and site number x can be representation as binary expansion

(XI,..., X). The actions in each state at a site x are explained below.

1. State q: Send own value to sites numbered as (*, X2,. . , X) and move to state wt.

2. State uo/, 1 < i < (k - 1): Upon receiving values from sites numbered as

(X,. . .,Xi-,*, i+l,.. .,Xk), compute the sum of these values received and the

computed result of the previous state. Send the result to all sites numbered as

(XI,..., X, *, Xi+ 2 ,..., X1) and move to state wi+,.

3. State wk: Upon receiving values from all sites numbered as (X ,..., Xk- 1 , *), compute

the sum of the values received and the computed result of the previous state. Move

to state f.

4. State f: Final state.

The following theorem establishes correctness of the protocol.

THEOREM 6.2 If a.site is in state f then it contains the sum of the values initially present.

PaooF: We will show it by induction. Assume any site x has value V 0 (z) initially.

INDUCTIVE HYPOTHESIS: After ith round of message exchange, where 1 < i < k site x will

have value Vi(x). Where

= Zv°(, ,..., *,Xi+,.. .,Xk) (6)
i-bits

18

1. Base case: When i = 1, after the lit round of message exchange, site z has received

values from sites

(sX2,..., X). These sites have values V 0 (*,X 2,. . .,X,,) initially, therefore, site z

will contain sum of V°(., X 2 -, Xk).

2. Inductive case: Assume for i = I - 1, where I < k, the inductive hypothesis is true.

After the (I- l)th round of message exchange, site z would have value V- 1 (z) which

is sum of V(., Xl,..., Xj). After the Ith round of message exchange site z

would receive values from sites (X. .. , X.-..., *, X1+ 1 ,. . ., Xk) which have values

Vl-(X 1 ,..., X- 1, *,X Xi+ 19 ... , Xk), therefore V'(z) would be

Nilk-1
V1(Z) = .q

6=0

N-/htI

- V(*,. .,a, X1+ 1, .,Xk)
40

= ~2 (., .,X 4 1 , X~)(7)

So the inductive hypothesis is true for all i, I < i < k.

The only case a site z is in state f is that it already goes through k rounds of message

exchange, therefore it should contain the value Vk(z). Vk(z) = V(*,.....) is the sum
k-bkt.

of all values initially present, so if a site is in state f, it contains the sum of all values

initially present. C

I
19h

7 Conclusions

We have defined a communication structure for decentralized commit protocols which allows

us to derive a family of decentralized commit protocols and also obtain a tradeoff between

number of messages and the number of rounds of message exchange. The protocols are

symmetric and need only E(kNNlk) messages for k rounds of message interchanges. It

has been shown that for any decentralized commit protocol that uses k rounds of message

interchange needs 0(kNN /k) messages. Therefore, we have found a class of message

optimal decentralized commit protocols. This communication structure can be used to

derived decentralized consensus protocols with the same message complexity.

20

8 References

1. J. N. Gray, Notes on Database Operating Systems, in Operating Systems: An

Advanced Course, Springer-Verlag, Berlin, 1979.

2. D. Skeen, Nonblocking Commit Protocols, Proc. ACM SIGMOD Int. Conf. on

Management of Data, pp. 133-142, 1981.

3. D. Skeen and M. Stonebraker, A Formal Model of Crash Recovery in a Dis-

tributed System, IEEE Trans. on Software Eng., Vol. SE-9, pp. 219- 228, May

1983.

4. T.V. Lakshman and A. K. Agrawala, Communication Structure of Decentral-

ized Commit Protocols, Computer Science Technical Report TR-1489, University

of Maryland, College Park, Apr. 1985.

5. T.V. Lakshman and A.K. Agrawala, Efficient Decentralized Consensus Proto-

cols, IEEE trans. on Software Eng., Vol. SE-12, No. 5, pp. 600-607, May 1986.

2

9.

9..9

21

'

moo'

