" Ap-R183 373

A CLASS OF DPTIHRL DECE=;Rh IZ;D COHHIT PROTOCOLSCU>

HﬂRVLﬂND UNIY COLLEGE
K AGRAWALA ET AL. JUL 87 CS-TR- 19?3

OMPUTER SCIENCE
...14-37-K-li24
F/G 23/%

t
'0 3
1,'

.'1 ‘1 \"
' o’ 1‘

i\.e'

l

s'b'

‘i.\

s
::z > b ﬁ.o. .0

Q"

1.‘ e

XX
nl’ ‘C".‘.“

A‘;'::

g

FRRREE g

"3‘.\

: .s“.o"il i , "";‘
.?I' Sy 0%y ‘::.:\. .':" |

\'A.

s"
K 'l.‘....‘

“.

\

c".t

OO

v ' .. "..

::-"«

" UIE;BLE @

Capy

UMIACS-TR-87-31 July, 1987
CS-TR-1873

 AD-A183 373

A Class of Optimal Decentralized
. Commit Protocols
Shyan-Ming Yuan
“ Department of Computer Science

A. K. Agrawala

Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
g-LECTE
AUB 1 4 %87

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

- DEAR ToT ST &

wwed hn public rai xivg
wdon Uolmitvd |

~em L L e

PRSI

e e T U -

UMIACS-TR-87-31 July, 1987
CS-TR-1873

A Class of Optimal Decentralised
Commit Protocols

Shyan-Ming Yuan
Department of Computer Science

A. K. Agrawala

Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

ABSTRACT

This paper studlu the message complexity of decentraiized commit protocols. It
shows that ©(kNN'/*) messages are nocessary only if & rounds of message interchanges
are allowed. It also shows that &(/NIn/N) is s measage lower bound for any decentralized
commit protocol. Finally, a class of decentralized commit protocols are proposed which
need ©(kNN'/?) messages and use k rounds of measage interchanges. If we let k=InN
then we can get a decentralized commit protocol which needs &(Nin/N) messages only.

DTIC

ELECTE
g AUG 1 4 1987

I D'x_-:_-;:-.;_t_f_,_?.

Approvd fr g
Dutnbu‘ on L

v T
v

T R T A Y

UNCLASSIFIED
] HI

4 (]

AMB3373

REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS
N/A

URITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
CS-TR-1873; UMIACS-TR-87-31

3 DISTRIBUTION/AVAILABILITY OF REPORT

approved for public release;
distribution unlimited

5 MONITORING ORGANIZATION REPORT NUMBER(S)

62. NAME OF PERFORMING ORGANIZATION
University of Maryland

6b OFFICE SYMBOL
(i applicable)
N/A

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research

6¢c. ADORESS (City, State, and 2 Code)

Department of Computer Science
University of Maryland

76 ADDRESS (City, State, and 2P Code)

800 North Quincy Street
Arlington, VA 22217-5000

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
f applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N0OOO14-87-K-0124

8. ADORESS (City, State, and 2)P Code)

10 SOURCE OF FUNDING NUMBERS

TASK
NO

WORK UNIT

PROGRAM PROJECT
NO ACCESSION NO

ELEMENT NO

rn TITLE Onciude Securtty Classification)

A Class of Optimal Decentralized Commit Protocols

12 PERSONAL AUTHONR(S)

Shyan-M
132 TYPE OF REPORY 13b TIME COVERED
c FROM TO
o e

14 DATE OF REPORT (Year. Month, Day) S PAGE COUNT

16 SUPPLEMENTARY NOTATION

|__July 1987 21

COSATI CODES
GROUP SUS-GROUP

! [

18 SUBIECT TERMS (Continue on reverse if necessary and dentify by block number)

This paper studies the message complexity of
that @(kNN!/k) messages are
allowed.
commit protocol,

k=1nN then we can get a decentralized commit
only.

ABSTRACT (Continue on reverse if necessary and dentify by block number)

necessary only if k rounds of message interchanges are
It also shows that @(NInN) is a message lower bound for any decentralized

Finally, a class of decentralized commit protocols are proposed
vhich need O(kNN”k) messages and use k rounds of message interchanges.

decentralized commit protocols. It shows

If we let
protocol which needs ©(NInN) messages

20 DISTRIBUTION / AVAILABILITY OF ABSTRALY

QOuncLassisicounumited [SaMe as et DTIC USERS

27 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

228 NAME C5 RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Areas Code) | 22¢ OFFICE SYMBOL

DD FORM 1473, saman

3 APR edition may be used until exhausted
Al other edit:ions are obsolete

AT I R A R A
. ¥ .

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

e et e NN NN AN NN
L} ¥) R a8 3)

VT T BT T e Yy W

1 Introduction

Decentralized commit protocols are characterized by successive rounds of message inter-
changes. Protocols in (1, 2] which require a site to communicate with every other site at
each step need N(N — 1) and 2N(N - 1) messages for each round, respectively. N is the
number of sites in the system. Protocols in [4] need k2N N1/* and 2k3N N1/* messages for
blocking and nonblocking protocols, respectively. Where k is a parameter dependent on the
number of rounds of message exchange. In this paper, we define a logical communication
structure develop a family of blocking and nonblocking commit protocols. The protocols
need only kNN'/* and 2kN N'/* messages, where k is the same integer parameter of [4).
This communication scheme can also be used for decentralized consensus protocols 5] with

the same message complexity.

In section 2, we describe the formal model for our commit protocols. In section 3, we
describe the decentralized versions of two-phase blocking and nonblocking protocols. In
section 4, we show that the message complexity of decentralized commit protocol. We
present a class of message optimal commit protocols in section 5. We also extend this idea

to some decentralized consensus protocols in section 6.

——— e e —— -
ArLe i bor]
r_r\TTf - CRA&I ‘{‘

o TAQ i)

Jrairo eed T '
1

2 Formal Model for Commit Protocols

Transaction execution at each site is modeled by a finite state automation (FSA) [3]. The
network serves as a common I/O medium for all the FSA's. A local state transition at site i
involves the reading of a nonempty string of messages addressed to site i, writing a string of
messages, and moving to the next local state. State transitions at one site are asynchronous
with respect to transitions at other sites. The final states of the FSA's are partitioned into
two sets: the abort and the commit states. A site cannot make transitions to nonabort
states from abort states. Similarly, a site cannot make transitions from commit states to

noncommit states.

A local state is called commitable if occupancy of that state by any site implies that all
sites have agreed to commit the transaction. All other states are said to be noncommitable.
The global state of a distributed transaction can be represented by a global state vector
consisting of the local states of all FSAs and the outstanding messages in the network. The
set of all global states reachable from the initial global state can be represented by a global
reachable graph. Using this global reachable graph, it is possible to find out the set of local
states that may concurrently be occupied by other FSAs when a FSA at site i is in some

known state Si. This set of states that can concurrently be occupied by FSAs at other sites

is called the concurrency set of Si.

3 Blocking and Nonblocking Commit Protocols

The FSA for the decentralized two phase commit protocol is shown in figure 1. We assume
that each site has already received a transaction in the initial state (state ¢). If a site decides
to commit the transaction, it sends 'yes’ messages to all the other N — 1 sites and moves to
state w. If a site decides to abort the transaction it sends 'no’ messages and moves to state
a. In state w, if 'yes’ messages are received from all other sites the transaction is commited
(state c) otherwise the transaction is aborted, since the concurrency set of state w contains

c and a. Skeen [2] has shown that a protocol is nonblocking if and only if:

1. there exists no local state whose concurrency set contains both commit and abort

states.

2. there exists no noncommittable state whose concurrency set contains a commit state.

Transition: all 'yes' messages
must be received but one 'no’
message is sufficient

Figure 1: Blocking Protocol

S ATIR)

3 vy 30

A
D)
.
»
.

Therefore the protocol is a blocking protocol. Figure 2 illustrates the decentralized non-

blocking commit protocol described in [2]). This protocol has a buffer state p and an extra

round of messages to make it conform the requirements of Skeen’s nonblocking theorem.

yes

prepare

Transition: all ’yes’ and ’prepare’
messages must be received but
one 'no’ message is sufficient

Figure 2: Nonblocking Protocol

4 The Message Complexity of Decentralized Commit Pro-
tocols

THEOREM 4.1 For all decentralized commit protocols, if there are only k rounds of message
interchanges allowed then ©(kN N/*) messages are necessary.

PROOF: Assume each round of message interchange, each site can only write p messages
out. Therefore, after round 1, there are at most (p+1) sites having the knowledge about the
local decision of site 1. After round 2, there are at most (p+ 1)? sites having the knowledge
about the local decision of site 1. Therefore, after round k, there are at most (p + 1) sites
having the knowledge about the local decision of site 1. Since only k rounds of message
interchanges are allowed, (p + 1)* should be at least N. Otherwise, these N sites can not
enter a common final state. Because during each round, each site writes p messages out,

total messages generated are Npk.

(p+1)* 2 N
(P+1) > NV
p > NYF-1 (1)
Npk > kN(NY*_1)
Npk = O(kNNk) (2)

THEOREM 4.2 For all decentralized commit protocols, ©(N In N) messages are necessary.

PROOF: All decentralized commit protocols, which need k rounds of message interchanges,

require ©(kN N1/%) messages. Therefore, minimizing kN N1/* will get a lower bound for

all decentralized commit protocols.

d(kN N1/ky 0
dk -
-InN
NN‘/"+kN(T)N1/* =0
6

DANOUNGACAMAGAINCNIAS R IR AR DN o0 NP

NNYE = NN‘/“(lnk—N)

k = InN

min(kNNY* = NY@N)ypp N
= eNInN

min(6(kNN/*)) = ©(NInN)

So, O(N In N) messages are necessary for any decentralized commit protocol.

(3)

)

(5)

B

- - -

5 Families of Commit Protocols

In this section two families of decentralized commit protocols are presented. Assume that N
and k are such that N/* is an integer (later we consider the case when it is not an integer).
The N sites can be treated as N positions of a k-dimensional array such that a site x can .

be numbered by a k-tuple (X, X3,..., Xk), where 0 < X3, X3,..., Xx < (NV/¥ - 1) and

k
Vz,0<z < N—l,zzzxj*N("-j)/"

Jj=1 \
5.1 Protocol Schema 1 ;

The FSA for schema 1 is shown in figure 3. The actions in each state are listed below. For

“% K

all site z, z = 0,1,...,N — 1, z can be numbered as k-tuple (X3, Xa,..., Xk).

1. State ¢: On receiving a transaction, unilaterally decide to commit or abort the trans-
action. If a 'no’ message is received, decide to abort the transaction. If an abort
decision is made, send 'no’ messages and move to state a;. If a commit decision is

made, send ’yes!’ messages and move to state w;. All messages are sent to sites

-

numbered as k-tuple (*,X3,...,Xk), where '+’ means any number between 0 and
Nk 1.

. State w;, 1 < i < (k- 1): If all "yes'’ messages are received from sites numbered
as k-tuple (X},...,Xi_1,*, Xi41,..., Xk). Then, send ’yes*+’ messages and move to
state wi41. If a 'no’ message is received , send 'no’ messages and move to state a;4;.

All messages are sent to sites numbered as k-tuple (X1ye ooy Xiy 2, Xigay ..oy Xi).

3. State wy: If all *yes*’ messages are received from sites numbered as (X3, ..., Xi_1, *),

commit the transaction. If a 'no’ message is received, abort the transaction.

4. State ¢: Commit state. p

5. Statea;, 1 <i < (k—1): Send 'no’ message to sites (X1y..., Xiy*, Xig2,...,Xk) and

move to state a;4;.

6. State ax: Abort state.

O
.o~
A

»

ST ALt w T T AT S Al e e ml e m T al At e T oA s DTSRRI VAT NNCURT RNL ST VASE Wil Wl S Wl Wl TR St Wl Wl Pl W Wl
e N e N T et S N et ST e T e R T R e N R s AT RN Sy e

bt a WA i e 8 gt e et

Figure 3: Protocol Schema 1

S 0 Ve W VR W B W RGN N AT TN

<y N Y)) N %
¢ “\f'.\f‘li.‘gic‘ﬂ..\”‘g‘. X '!'n’!‘l’! DA X W LM AN i'!‘l AT T WP A

The following theorems establish the properties of protocol schema 1.

LEMMA 5.1 If a site is in one of a states, it will eventually abort.

PROOF: Since the only transition in a states is to send 'no’ message and move to the next
a state. Hence, if a site is in one of a states, it will eventually move to state ax (abort

state). o

THEOREM 5.1 If a site decides to abort, all sites will eventually abort.

PROOF: Assume that site x decides to abort in State ¢, where x can be numbered as k-tuple

(X1,X2,...,Xk). Then all sites will abort after kth round of message exchange. We will

prove this by induction.

INDUCTIVE HYPOTHESIS: If site z decides to abort. After ith round of message ezchange,

where 1 < 1 < k, all sites numbered as (»,...,%, Xi41,...,Xk) have received 'no’ message
T
s—bits
and will abort. (The ’«’ in any position indicates that the element in that position can take

any value between 0 and NV/* - 1,)

1. Base case: When 1 is equal to 1. Since site x decides to abort in State q. It sends
'no’ messages to sites which are numbered as (¥, X3, ..., Xk). Therefore, after the 1st
round of message exchange all sites numbered as (¥, Xs,..., X) have received ’no’

messages and will move to state a;. By Lemma 4.1, They will abort eventually.

2. Inductive case: Assume that the hypothesis is true for ¢ = [— 1, where [< k. After

(I - 1)th round of message exchange, all sites numbered as (*,...,*, X|,..., X)) have
N e
(1-1)bits

received 'no’ message. Therefore, they will move to a states and send 'no’ message to

all sites numbered as (*,...,%*,X41,...,Xk). Such that after /th round of message

|
1-bits
exchange, all sites numbered as (*,...,*, Xi41,...,Xk) have received 'no’ message.
e, e’

1—bits
By lemma 4.1, They will abort eventually. So the inductive hypothesis is true for all

i, where 1 < i< k.

10

» WO T S A VA,

~ iy O ..
LI OO NIRRT i N W 0 Tt X - R MO X S X

o <A
2 D X v

-

-
N}

Therefore, If a site z decides to abort, after kth round of message exchange all sites numbered

as (»,...,*) will abort. So if a site decides to abort, all sites will eventually abort. o
k=-bits

THEOREM 5.2 If no site decides to abort the transaction, all sites will eventually commit.

PRrooOF: If no sites aborts the transaction, all sites will send 'yes!’ and move to state w;.
Since all messages are eventually delivered, each site will receive all ’yes!’ messages needed,
then send ’yes®’ message and move to state w;. Similarly, for all other ’yes’ messages.

Finally, all *yes*’ messages will be delivered causing sites to move to the commit state. 0O

THEOREM 5.3 Protocol 1 is a blocking protocol.

ProoF: It is obvious that the concurrency set of state wj contains both abort and commit

states. Hence, protocol 1 violates the nonblocking conditions states in section 3. 0

5.2 Protocol Schema 2

The FSA for schema 2 is shown in figure 4. The actions in each state are listed below. For

all site z,z = 0,1,...,N - 1, z can be numbered as k-tuple (X, X2,..., X).

1. State ¢: On receiving a transaction, unilaterally decide to commit or abort the trans-
action. If a 'no’ message is received, decide to abort the transaction. If an abort
decision is made, send 'no’ messages and move to state a¢;. If a commit decision is
made, send ’yes'’ messages and move to state w;. All messages are sent to sites

numbered as k-tuple (*, X3,..., X)), where '+’ means any number between 0 and
NVk_1,

2. State w;, 1 < i < (k—1) : If all "yes'’ messages are received from sites numbered
as k-tuple (Xy,...,Xi—1,%*, Xi+1,..., Xi). Then, send 'yesitl’ messages and move to
state w;4;. If a 'no’ message is received, send 'no’ messages and move to state a;4;.

All messages are sent to sites numbered as k-tuple (X,,..., X, *, Xit2,..., Xk).

11

0

J Figure 4: Protocol Schema 2

12

3. State w,: If all 'yes*’ messages are received from sites (X}, ..., Xi-1, +), send 'prepare!’
messages to sites numbered as k-tuple (+, X3,..., X;) and move to state p,. If a 'no’
message is received, move to state a, (abort state).

4. State p;, 1 < § < (k—1): ¢ all 'prepare’’ are received from sites numbered as
(X1,..., Xi=1, %, Xi41,- - -» X&). Then, send ’prepare’*!’ messsages to sites numbered

as (X,,.... Xi,%, Xi42,...,Xi) and move to state p;;,.

5. State p,: If all ’prcpare"’ are received from sites (X),..., X}-1, *), commit the trans-

action.
6. State ¢: Commit state.

7. State a,, 1 < i < (k — 1): Send 'no’ messages to sites which are numbered as k-tuple

(X1y.-., Xiy*, Xi42, ..., Xz) and move to state a,,;.

8. State a;: Abort state.
The following theorems establish the properties of protocol schema 2.
THEOREM 5.4 If a site decides to abort, all sites will eventually abort.
PROOF: Similar to proof of theorem 4.1.
THEOREM 5.5 If no site aborts the transaction, all sites will eventually commit.
ProoF: Similar to proof of theorem 4.2.
LEMMA 5.2 If a site is in state c, all sites have sent ‘prepare!’ messages.

Proor: We would like to show it by contradiction. Assume that site x is in state ¢ and
site y has not sent "prepare!’ yet. Where x is numbered as (X;,..., X) and y is numbered
as (Y1,...,Y%). Since y has not sent 'prepare!’, all sites numbered as (+.Y3,....Y:) have
not received all needed ’prepare!’ messages. They should have not sent ‘prepare?’ yet.
Therefore, all sites numbered as (+,+,Y3,...,Y,) should have not sent 'prepare®’ vet. In
general, for all j, 1 < j < k, if sites (»,...,».Y,,...,Yi) have not sent 'prepare’’ then all

sites (»,...,*,Y;41,...,Yk) should have not received all needed 'prepare’’ and have not

13

:
N
%
A
(
‘_:
;
A
H
)

sent 'prepare’+!’. Therefore, by induction, all sites (s,...,+,Y,) have not sent 'prepare*’
yet. So x should have not received 'prepare*’ from site (X;,..., Xi-1,Ys). That means x
will have not entered state ¢ yet. It is contradictory to the assumption. Therefore, If a site
is in state ¢, all sites have sent 'prepare!’ messages. 0

TueoREM 5.6 Protocol 2 is a nonblocking protocol.
Proor:

1. By lemma 4.2, if a site is in commit state all other sites have to be in one of the p
states. The abort state is not reachable from the p states. Therefore, no local state

has both commit and abort state in its concurrency set.

2. The noncommitable states are state ¢, w states and a states. Again. by lemma 4.2.
when a site is in one of these states no other site can be in commit state. Hence. there

is o noncommitable state whose concurrency set coataias commit state.

Therefore, the nonblocking conditions are satisfied.

0

3.3 The Complexity of Message Exchange

Assume that N and k are such that N'/* is an integer. Since the number of messages
sent in each round by a site is (.V!'/* — |). The total number of messages needed by
the blocking protocol is kN(N'/* — 1) and for nonblocking protocol is 2k N(N'/* _ |,
If N'/* is not an integer, we can add sufficient virtual sites to the system The only
difference between real sites and virtual sites is that virtual sites do not decide to abort the
transaction by themself or the virtual sites have value 0 initially The number of virtual
sites needed is (M — N), where M /¥ ig equal to [N'/*] Now the total number of messages
needed would be k[.N'/*1*([V}/¥] _)) for blocking protocol and consensus protocols and
2k[NY/*15([N'/*] — 1) for the nonblocking protocol. Therefore. the order of complexity are
4!l O(kN NV/¥) If we ignore the ceiling operator and consider k to be real. the number of

message is minimum for k = In N and the corresponding message complexity 18 00V [\

14

Obviously, these two families of commit protocols are optimal with respective to message.
Because we have shown that for any decentralized commit protocol, which has k rounds

of message interchanges, requires @(kN N1/¥) messages. And the message lower bound is
O(N la N) for any decentralised commit protocol.

6 Decentralized Consensus Protocols

The communication scheme used in section 5 can be simplified to apply on solving the

following problems efficiently. Figure 5. is the simplified schema.

send own value

@ perform computation

a perform computation
()

Figure 5: Consensus Protocol Schema

6.1 Decentralized Finding Maxima and Minima

Given N distinct values distributed across the sites of a distributed system, such that each
site contains one value. The problem is to find the extreme (maximum or minimum) of
these values and to make this extrema known to all sites in the system. The actions of each
site is modeled as a FSA shown in figure 5. Assume N'/* is an integer then the actions in

site z, which has binary representation (z,....,z,), are as follows :

1. State ¢: Send own value to sites numbered as (+. X;,..., X;) and move to state w;.

2. State w;, 1 < ¢ < (k—1): Upon receiving values from sites numbered as
(X1,..., Xi-1,*,Xi41,..., Xk), compute the extrema (maxima or minima) of these
values received and the computed result of the previous state. Send the result to all

sites numbered as (X},...,X;, », Xi42,..., Xi) and move to state w;,;.

3. State wi: Upon receiving values from all sites numbered as (X, ..., Xz-1,*), compute
the extrema (maxima or minima) of the values received and the computed result of

previous state. Move to state f.
4. State f: Final state.
The following theorem establishes correctness of the protocol.

THEOREM 6.1 If a site is in final state f then it contains the extrema (mazima or minima)

of the values initially present.

PROOF: Assume the extrema of the values initially present to be the value at site x, say V..

Then all sites will contain V; when they are in state f. We will show this by induction.

INDUCTIVE HYPOTRESIS: After ith round of message exchange, where 1 < i < k, all sites
numbered as (*,...,*, Xiy1,..., Xs) have received V..
N e’
i—-bits
1. Base case: i is equal to 1: Site z has V; in state q. It sends V; to sites (*, X5,..., Xi).
Therefore, after the 1st round of message exchange, all sites (¥, X3,..., X)) have the

extrema V;.

2. Inductive case: Assume that the hypothesis is true for i = [-1, where [< k: After the

(I = 1)th round of message exchange, all sites (»,...,+, X|,..., X&) have the extrema

(1-1)bits
Ve. They will send V; to all sites (e,...,» Xi41,...,Xs). So after Ith round of
e, s’

1—bits
message exchange, all sites (»,...,+, X;;;,..., Xi) contain the extrema V; and move

1-bste
to state f. Therefore, the inductive hypothesis is true for all i, where 1 < i < k.

The only case a site is in state f is that it already goes through k rounds of message

exchange, therefore it should contain the extrema. After kth round of message exchange

17

all sites (¢,...,) contain extrema. So, If a site is in state f it contains the extrema of the

d—bits
values initially present. 8]

6.2 Computation of Sum Function

Given N values distributed across the sites of a distributed system, such that each site
contains one value, the problem is to find the sum of these values and to make the sum
known to all sites in the system. As before, the protocol in figure 5. can be used. We can
again assume N'/¥ i integer and site number x can be representation as binary expansion

(X1,...,Xx). The actions in each state at a site x are explained below.
1. State ¢: Send own value to sites numbered as (s, X3, ..., Xs) and move to state w,.

2. State w;, 1 <i < (k- 1): Upon receiving values from sites numbered as
(X1y-. .9 Xi-1, %, Xi41,- . -, X&), compute the sum of these values received and the
computed result of the previous state. Send the result to all sites numbered as

(X1,.., Xis %, Xig2, - - -, Xi) and move to state w,;.

3. State wy: Upon receiving values from all sites numbered as (X3, ..., X4, *), compute
the sum of the values received and the computed result of the previous state. Move

to state f.
4. State f: Final state.
The following theorem establishes correctness of the protocol.
THEOREM 6.2 If a site is in state f then it contains the sum of the values initially present.
PRroOOF: We will show it by induction. Assume any site x has value VO(z) initially.

INDUCTIVE HYPOTHESIS: After ith round of message exchange, where 1 < i < k site r will
have value Vi(z). Where

Viz) =Y VOos,...,% Xit1,. .., Xi) (6)

i—bits

18

D
, . TN L PN A% ' i Ay oy Oy Wy " AT aAta
R W n‘! N).i‘l‘. D B ’ R X LY AV N A .‘ N Wa o SR KN X A f ‘. (A 'Y) () W .V (N

) Ll

1. Base case: When i = 1, after the 1st round of message exchange, site z has received
values from sites
(*,X3,...,Xx). These sites have values V(», X;, ..., X;) initially, therefore, site z
will contain sum of V(s, X3, ..., X4).

2. Inductive case: Assume for i = [— 1, where [< k, the inductive hypothesis is true.
After the (/ — 1)th round of message exchange, site z would have value V/~'(z) which

is sum of VO(s,...,s,X,...,Xs). After the Ith round of message exchange site z

(1-1)bits
would receive values from sites (X,,..., X;—1,*, Xi41,..., Xs) which have values

V"‘(Xl, ve oy Xi-1,%, X141y - . ., X&), therefore V‘(z) would be

Nk _y
Viz) = 3 VY Xy, X 6 X0 XE)
e=0

NSy
= Z ZVo(t,...,o,a,X4+1,...,X1.)
em0 \—\’—’
({—1)bits
= 2V°(o,...,o,X,“,...,Xo,) (7)
e

1-bite

So the inductive hypothesis is true for all i, 1 <i < k.

The only case a site r is in state f is that it already goes through k rounds of message

exchange, therefore it should contain the value V¥(z). V¥(z) = £ VO(s,...,) is the sum
N’

k—bite
of all values initially present, so if a site is in state f, it contains the sum of all values

initially present. c

7 Conclusions

We have defined a communication structure for decentralized commit protocols which allows
us to derive a family of decentralized commit protocols and also obtain a tradeoff between
number of messages and the number of rounds of message exchange. The protocols are
symmetric and need only ©(kN N'/¥) messages for k rounds of message interchanges. It
has been shown that for any decentralized commit protocol that uses k rounds of message
interchange needs ©(kN N'/*¥) messages. Therefore, we have found a class of message
optimal decentralized commit protocols. This communication structure can be used to

derived decentralized consensus protocols with the same message complexity.

20

. &> @

P AR

[N L I S T N T N O R O O Y YO rORyOrvon

8 References

1. J. N. Gray, Notes on Database Operating Systems, in Operating Systems: An
Advanced Course, Springer-Verlag, Berlin, 1979.

2. D. Skeen, Nonblocking Commit Protocols, Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 133-142, 1981.

3. D. Skeen and M. Stonebraker, A Formal Model of Crash Recovery in a Dis-

tributed System, IEEE Trans. on Software Eng., Vol. SE-9, pp. 219- 228, May
1983.

4. T.V. Lakshman and A. K. Agrawala, Communication Structure of Decentral- .
ized Commit Protocols, Computer Science Technical Report TR-1489, University A
of Maryland, College Park, Apr. 1985.

5. T.V. Lakshman and A.K. Agrawala, Efficient Decentralized Consensus Proto-
cols, IEEE trans. on Software Eng., Vol. SE-12, No. 5, pp. 600-607, May 1986.

i
.
%

21

O T A YD

