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ABSTRACT
The paper addresses the problem of the implementation of nonhomogeneous

essential Dirichlet type boundary conditions in the p-version of the finite

element method.
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1. INTRODUCTION
- A recent addition to the field of finite element analysis has been the
development of the p and h~-p versions of the finite element method. For two-

dimensional problems the p and h-p versions have been implemented in the

commercial system PROBE by Noep;q Tech., St. Louis with a first release in

e

1985 and the second in 1986‘6T3?f The three-dimensional commercial finite
element code FIESTA having some p-version capabilities had been developed at
ISMES (Institute Sperimentali Modelli e Strutture) in Bergamo, Italy, and has
been available since 1980 in the United States. An implementation of the

three-dimensional p and h-p versions for the Cray computers is presently being

—

done at the Aeronautical Research Institute of Sweden {Flygtekniska

Forsoksanstalten-FFA) [1] énd by Noetic Tecg:A B B AR

The p and h=p versions are being used very successfully today in
industry. See, for example [8]. A survey of today's state of the art may be
found in [3] where pertinent references are given. For basic theoretical
results we refer to [4], (5], (6], {10], [11]). For some implementational and
engineering aspects, we refer, for example, to [8), [i14], [15].

An important part of any code in finite element analysis is the problem
of imposing nonhomogeneous essential boundary conditions of Dirichlet type.
We addressed this question, among others, in [5] for the two dimensional
problem. Ouwr technique was implemented in PROBE - Release 2, and tested very
successfully. In (5] we assumed that the nonhomogeneous boundary conditions
had slightly higher smoothness than the minimal possible one, namely we
assumed that the boundary data belongs to H.(T), k > 1 (instead of

minimally k > % ). With this assumption we obtained an optimal error

estimate. There are some indications that for Z < k <1 the method proposed




in [5] could lead to a loss in the convergence rate and that for
k < 3/4 there exist boundary conditions for which convergence may not be
achieved at all.

This paper proposes an implementation which guarantees convergence for

all k > % . We get the almost optimal estimate

- (k-%) v
Ju - u | < Cp log% fu] ..., -
Py (a) H< % q)

In addition, we discuss some other possible methods for imposing the
nonhomogeneocus boundary conditions of Dirichlet type. 1In a forthcoming paper
we will discuss general boundary conditions with partial constraihts for
systems of equations. Such conditions are important in the theory of

elasticity, for example.
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2. PRELIMINARIES

2.1. NOTATION

Let RZ denote the usual EBuclidean space with x = (x1.x2) € RZ. By
Qc R2 we denote a dbounded Lipschitzian domain with piecewiﬁe smooth
boundary 3Q = T = S T, where ry are smooth (open) arcs. The end

i
i =1
points Ai’ i=1,...,n of T, will be called the veriices of Q. For

i
fixing the ideas we will restrict ourselves to simply connected Lipschitzian
domains although our results hold in general. We will also consider Q C
R, i.e., 2 =1=(a,b).

Let Ly(Q) = HO(Q). Hk(Q), HS(Q), k 2 0 denote the usual Sobolev

spaces. For u € H(Q) we denote by |ul o and |ul the usual norm

() H¥(Q)
and seminorm, respectively. For k > 0 not an integer, we define H(Q) and

|-|Hk by the K-method of the theory of interpolation ([9], [12])
(2)
w8y - wtca), #¥ca)g

0<B<t, L +0 =%, L integer.

The norm is defined accordingly, i.e., with

(2.1a) K(u,t) = inf (vl L U] PR
ver () wen* () B (R H . ()
Vv +tw=y
we define
3 l
2 dt
(2.1b) l4] - U %K (u,t) )
H**€(q) 0

Analogously we define HS(Q) - (H%(Q).Hé"(n))e > (k a noninteger) with the

norm luIHhe

o ()

e N Lt T AT T A e S AL e RGNS
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We will be especially interested in the one dimensional case.

| by
H(1) u'(;( 13

(2.1b) for k a noninteger. For k # integer + Y%, we have for wu ¢ HS(I)

Let Q@ =1I = (~1,1). Then we define Juj and Ju

(2.2) jul = Jul
HS (D) H(1)

where by = we denote the equivalency of norms.
For k = integer + % we have

2

T ghy 2
W% (1)

2
(2:3) lul ax* #0(1)

+3 ( IUl
™ (D

+ [(~x®)
. : uf‘é

This space is often denoted by HOO (I) in the literature and we will use this

notation as well. Analogous results are true for general Q.

Now let H be the space of 2m-periodic functions. For u € H we will

write

(2.4) u(g) = § aj cos J g+
=0

2 bj sin j &.
J -1

J

Then we define HX and il « by (2.1a) and (2.1b) as before. We have then
" g

k = Y
2052y« 1 p204H ]
-1 :

(2.5) Jul -« [1 a
H* J

j=0 3 3

Moreover, if ay, bJ are such that the right hand side of (2.5) is finite,
then u € HX and the norm |ul  1s defined by (2.5).
H
For I an open interval or straight line segment, we denote by s the
iength parameter. Then we define HX(I), HS(I). jul vl as
k ¥
H (1) HO(I)
before with respect to s.

So far we considered only spaces of scalars. We define now (HK(a))m




with u € (Hk(n))m, ue (“1""'“m)' uy € HK(Q) and

la.]?. ) and analogously |-| , etc.

|u'(1-1“(:1))"‘ ) 1)51 i) (H ()"

By c(k)(n). respectively C(k)(ﬁ). we denote the space of all
functions with continuous derivatives of order k 2 0 (k integer) on @,
respectively Q.

The set of all algebraic polynomials of degree (total) less than or
equal to p on 9 will be denoted by P;(Q). By Pg(a) we will denote the
set of all polynomials of degree less than or equal to p 1in each variable
on Q. For TC R a straight segment, we define Pp(r) as the set of
polynomials on T of degree less than or equal to p in s and by Pg(r)
we denote the set of polynomials vanishing at the end points of T.

Let I = (-1,1). Then we will deal with two different polynomial bases
on I:

a) The Chebyshev polynomials T, (x) = cos(k cos('?)(x)). kK =

0,1,2,....

b) The integrals of Legendre polynomials P, (x),

X
B0 = (2K-1) L Peeq (8)AE = P (x) = P _o(x), Kk = 2,3,...

Obviously the set {T .}, k =0,1,...,p is a basis of Pp(I) and (W}, k =

2,...,p 1s a basis of Pg(I).

2.2. THE MODEL PROBLEM
Let H = (H?(Q))m. Hy = (H%(Q))m, and let B(u,v), u = (up,...,up) €

H, v = (V1-"'-Vm) € H be a continuous symmetric bilinear form on H x H

satisfying

N N e ) W N T T S N S T = ST
~ NV :‘?¢\ N N NPT Ry, RLNEAR A AT R A T TR
A . . A . A A " A A N [} ()
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X '-r”f\fkr
D #

o nl Hf

(2.6) B(u,u) 2 Y|u|21 , Y>o0
H.(2)

for any u € Hy. Further, let F be a continuous linear functional on H.
Let on Ti the matrices A (s) = {a&}i(s)}, kK, = ?....,m. i=
1,...,n of smooth functions be given. We shall assume that the matrices A-1
are nonsingular. Further, let g[i] = {gﬁi]}, K =1,ee.,m, i =1,...,n be
a function defined on T;. We will say that g = {g[i]} € (HZ (r)® if there

isa U € (H'(2)® such that g = Ul pe
Let now h = {h[i]}, i=1,...,n be such that with g£1] =
AI?(S)h[il. g = {g[iJ} € (H%(r))m. Then our problem is:

Find uy € (H'(2)® such that

a) Aiuolri = h[i] . Aig[i]

(2.7)

B)  Blup,w) = F(v), Vv eH = (H(a)™

0

Because of the assumptions, the problem has a unique solution.

Remark 2.1. We could obviously transform a) into u0|r. = A;?h[i] -
g[i], i =1,...,n and assume that Ai is a unit matrix. ;evertheless, our
formulation is more general and computationally natural. For example, in
elasticity theory, although we formulate the problem in displacement
components u, v (in directions of the axes X4 x2), we prescribe the
conditions for displacement in the direction of the normal and the tangent to
the boundary.

From the general theory of interpolated spaces and our assumptions
about Ai' we obviously have h[1] € H‘/2 (Pi).

So far we have assumed that the Dirichlet boundary conditions are given

g ¥, o
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K on the entire boundary. Nevertheless our theory can be easily generalized

when on one part of the boundary u, is not constrained.

% 2.3. THE p-VERSION OF THE FINITE ELEMENT METHOD

; Let us assume that domain @ has been partitioned into curved
rectangles and triangles (see Fig. 2.1).

A Let = U 2 where Qi are (open) curved quadrilaterals or

: triangles callestllements of the partition of Q. The vertices of Qi are

called the nodes of the partition. We will assume that the vertices of

& are nodes of the partition.

o 8 8 B AN

a2l A Atl]

»’ ‘b~‘

Fig. 2.1. The scheme of the partitioned domain.

| O

By S=(-1,10% and T = {n ]| 0<n< (E+s1) V3, -1 CECO; O<n

L

L}

< (1=g)Y3, 0 < € <1} (see Fig. 2.2), we denote the standard square and

L] ~¢'1 - a” v..- '..-" LA .." ’ ,~, ,( f ,\’."\I" '). "'..‘..-'.j".;’. " .’-'I.‘_N...-"' - ’\.. ’ ‘ * *'.f

)
L)
hY
K]

M)




standard triangle. ’ :

Assume that the mappings FJ := (xEJ] - xEJ](E.n). i=12), J=

o ey <

1,...,9 map S on ﬁj ir 2; isa quadrilateral and T on ﬁj if @5 is

a triangle. Let Fj. FE‘ be smooth one—-to-=one mappings. Then we can speak :

about the vertices and sides of Qj in an obvious way.

AT
Az A A7

myY

S - T | :
1 : ~N - .
2 2 :

Fig. 2.2. The scheme of S and T. Y

We will assume the following i

i) The intersection ‘ﬁi n §J is either empty or is the single common
vertex of Qi and QJ or the single entire side of Qi and Qj.

1) If B, A8y =1y 4 and PETy 5, P=Fi(P) = Fi(Py), P; € ]

AkA.kH, PJ eAﬁAk+1 then d(Py,A.) -d(PJ,Al) or d(PJ.,Azﬂ), where we

denote by d(Pi.Aj) the Euclidean distance between P; and Aj. Hence we f

: * * * X
can also identify ri.J with I = ( 1.1) and the map Fi = Fj = Fi.j of A

o T I N e e e
4, o » \d Dol L

T A P VLTS NV Wy T TS e
ARESS. a2

v ¥



I onto rl'j, where the relation between Fi and FI.J is obvious (realizing

that the sides of T and S have length 2).
Let now P (@) = fu € KR | uF{ (xquxp)) € PIT) tr 9, isa
curvilinear triangle, u(F;?(xl.xz)) € PS(S) if Q; is a quadrilaterall.

Further, we denote

Pﬁ(a) - (PP(Q))m and u. = ( yT

p Up qsecesl

p,m

Let up € Pg(n), then up'k(F'?(x1,x2)), Kk = ?,2,....m. is obviously a

polynomial of degree p on every side of T, respectively S. We will
identify the sides of T, respectively S, with I = (~1,1) in the obvious

way. Assume now that a projection mapping ﬁ is given which maps Hk(I).

p

k >% onto Pp(I) with (spu)(t1) =u(t1) and Pu=u if uce Pp(I). We

p
remark that HK(I) <c(I) for k > % and hence u(%1) is well defined.

The p~version of the finite element method for solving our model problem

consists of finding u_ € Pg(n) such that

p

4]
a) up = Ppg on T,

(2.8)
m 1 m
) B(up,v) = F(v), Y veE Pp(Q) n (HO(Q)) .

Obviously the method strongly depends on the choice of the projection Pp.
This choice can be influenced by various factors like accuracy, implementa-
tion, the type of problems to be solved, their formulation, etc. For example,
the matrices A1 in the model formulation in Section 2.2 can be used in

(2.8)a instead. The main part of this paper consists of analyzing some

choices of this projection.




3. THE PROJECTIONS ﬁp

)
3.1. THE PROJECTION ﬁg AND ITS BASIC PROPERTIES
1
In this section we will introduce projection operator ﬁp, respectively
1
WA
ﬁé . of HX(I), respectively (HK(I))™, onto Po(I), respectively Pg(I).

We prove first

Lemma 3.1. Let I = (-1,1) and I = (0,m) = F1(I) where F(£) =
cos §, £ € I. For u{x), x ¢ I, let G(g), € ¢ I be such that u(cos g) =

-

G(E). Then for any u € Hk(I), k 2%, we have

(3.1) c,fub,, . ¢ i < c lul,, .

: T AT HA( 1) 27 5 T
(3.2) Jul > cfaf , .
. H( 1) H( 1)

where 0 < C; < C, and C(k) are independent of u.

Proof. iet Sy = {z = x+iy | |x| £1, 0y <1} and Q= {g =¢£ + in

| cos ¢ € Sy}. (See Fig. 3.1).

z plane G plane

So ' z=cos { Q

i, Ao. al’y ‘o "8,

+|

[
L
Y
O
Ly
o
\

Fig. 3.1. The rectangle S0 and its image Q.
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Let u € HAI). Tnen there exists U € H'(S,) such that

fui < Clul ., and Ul; = u. Let V(g) = U(cos §). Then
(s,) A1)
v - |u
Mo = lH‘(so)
and also
IVI 1 .<. C'Ul 1 *
(Q) H.(S,)

Hence, by the imbedding theorem we have with v = V\E,

IGI Y = lV' y a2 S
H( 1) H*(I) H.(Q) H.(So) H3(I)

where C 1is independent of u. The inequality

luf < C|‘:| R
AZ(I) HZ(I)

can be proven analogously by changing the role of S0 and Q. Hence (3.1) is

proven.

Let us prove (3.2) for k = 1. We have

4042 T oduy2 N oauyd /T3
=, . = j (57) 9¢ = f‘ (=) //l—x dx
de! 0 3 ) EE 1, tax

+ 2
du
< () axc . 2 I
T oL & a0y
Hence
2 da 2 .2
TR IR 1
H (D H (1) H (1)
du ~,2
< l .t Clul,, .
SR HA(T)
X "-‘- " ll e ' y .0. (X} % uu 'l.'l ' " " ".' ':'.':"';'. :'I\. ."-.‘ o "“"'* RS AP,
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< Ju

2 2
+ Cluj < Cluj .
) HA(D) !

2
L
H. H. (1)

(

In the same way we prove the inequality for k > 1, k integer. For
k 2 % nonintegral the inequality follows from the standard interpolation

theorenm. o

Let u € HY(I), k > % . Then

+1
) 1 2
—1 u"dx ( =
-1 (1-.x2)4
and we can write -
(3.3) u(x) = ¥ a,T.(x)
j50 37

where TJ(x) are Chebyshev polynomials.
We define

1) for u €HX(I), k2%

P
Y
(3.4a) Piu = JEO ayT;(x) € Py(I)

1i) for u € HY(I), k> Y

By - Phued
(3.4b) Pp u Pp u+u
where u is linear on I and (5% u) (1) = u(sl).

Theorem 3.2. Let u € HX(I). Then for k 2 %

1)

(3.5a) fu - P24 Y < C(k)p-(k-z)lul .
P THA1) H(I)

and for k > Y%

T AR TR REEAR A At KD SO




% Ve .,

- - -

(3.5b) b - 8% u|H.4( s ctp” KBy ‘
I) H (1) '
L4

(3.5¢) Ju - § uf Z < Ck)p~ - (k= Z)logép Iu .
(I) K (1) )
]
The constant C in (3.5a,b,c) is independent of u and p but depends on i

K.

Proof. Let U(E£) = u(cos €). Then @ € H is an even 2w-periodic

function and

(3.6a) ag) - Z .uy cos 2§
L=0 :
S Ve E '
(3.6b) g = (PFu) - L, ug cos L& 3

This immediately yields (using (3.2) and (2.5))

[ 1
-, =~ 2 2 4 ,
(3.7 Ja-d T ' R C R Y 3
Pl 1) pr Y ;
< (pﬂ]a(k-‘é) 7 |u1|2(“,_2)k < 2(k l/)H
Lep+tl : H( D)
-2(k~‘4) .
< [l - C
H(D) 8
Using (3.1) we get (3.5a). f
For k > % :
. . X _k '
(3.8) [@ae| ¢ I ful ¢ I ju (143220152 2 3
J=p+1 Jeper 3 ;
- % @ - % IR »
¢ (1 IulPaa® 7 01T aa®™)7 ¢ ey '
J=p ' j=p+ H(T)
. 1Y
hY
N
N
N
&

Y \‘ ‘s.‘\ N;‘\‘ \‘.\.‘ \' \."‘\‘x \Y

13,4 » LI %] '] ) Ca AN m e R~
409,600 8V 0N 0 R NPT & ‘. '\,. \ Y'\s \\ .

(L e}




and hence

b - % ul, < cp~ kB |

(1)

H(1)
and (3.5b) is proven.

Let. us prove now (3.5¢) for k > % using (2.3). We have to show that

i Y 2012y N ] - (k=%);
(3.10) ([ -BE w2a-x)"lax] < oo % @ioghp Jul
. b : H (I)

which is equivalent to showing

LY PR 1 (Lt )
(3.1 [f (u-ﬁéru) (sin £)7'ag]" < cp” (7% 10g%p |ul K
0 H (1)
Let us first observe that
P e, [ ]

(3-?2) (u-ﬁ% u) = ) uzj(coszjc-?)

+ ) u2J+1(cos(23*1)E ~ cos &)

where by [a) we denote the integral part of a. Hence

T —

. - ® 2
f (u~§% wisin &)7'ag g 2ff ( 1 upy(cos 235’?)) sln g 9
T ® 2
) g ( Z,, upge (c08(2§*1)Ecos )] gy dE]
J'[Egﬁl
[J’I ( t 2 1
$ 8 z “‘ZJ sin J&) dg
sin ¢
O 3]
N N S TR A A R A ST DU Y (NN OG0 OV, 06 SO N R OO A
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T - 2 1
+ I ( 3 U441 sin(3J+1)€ sin JE) sin € dc
o ey O '
j=C 2.]
. - €, (€) €,(8) 2-¢, (£)-€, (&)
- j 2
scfll & |u2J|(1+JZ)k/2 (J8) - (j(=-€)) lE%gjn jel ]
ARG (1+5%)
. k €, (€) e,(8) 2-¢, (B)-e,(6)
(3 1 |u21+1|(1*j2)2 (j€) (j(m=£)) [ixn jE| 1] Si; - a
+ " -
J"[E'z"'] ' (1+12)2
2e, (§) 2e,(g) 2(g, (E)+e,(§))
1 2 1 2
: —2(k-Y) (" E_. _(wE) p__| 2
< Cp ( . ag]ful
1 g sin g Hk(I)

for 0 ¢ €(8) < Z%:L = 2e.

Choose

€,(E) = € on [o, %]. = 0 otherwise

eZ(E) = ¢ on{n - %, w], =0 otherwise.

Then we obtain

4 “ 1
= =

P ooee p - v -
¢ cp 2k P20 27N qe o [ 7 (sin g)Nag ¢ p°F[  (r-0)°C 1.d£]|u|ik( )
0 1 I

1
— “— —
p p
- -l
: H (1)
This proves (3.11). (3.5¢) follows from (3.5b) and (2.3). o

i 1
! Remark 3.1. The necessity of the term 1034p in (3.5¢c) is an open

question.

L4 P S T LT AL AP LA I A P P R N D PR I DN - L T L e et v
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Remark 3.2. For u € Hk(I) with k > % , we may prove (analogously to \
—_ Y
(3.7)) :
- - 4
(3.13) [a- . ¢ o 2% VP, %S L <k, :
H™(I) H(I) )
¥
Theorem 3.3. Let u€P_(I), wu(#1) = 0. Assume that Ju], S A, !
P H2( 1)
jul $ A.  Then \
(n .
}
2 b
(3.14) lui y $ CA log” p. .
HOO(I)
Proof. As before we have
) =)
a = } bZJ(c032J£-1) ) b21,1(cos(2j+1)£~cos £)
§=0 : §=0 ) :
and [
E b§(1+32)"= < A -
J=0 '
To prove (3.14) we have to show that
T .2 2
]sinEdESClogpA. : \

0

We have analogously as before for €, = € on fo, %J. = 0 otherwise, €5 =

e on [w - %. x], = 0 otherwise, €c>0

1
w 2 - -
J p 2 2¢ 1 Y
J < clf, P agul®, . al’, . ]
o sin & % sin £ CO(I 2¢ H%(I)
§ Clogop AZ. 0

1
Let us generalize the operator Pé. Assume that for x € I,

» - - .

[ - aw ®» smw PRIV A - LI T I T - P - A
AR |. W NG, . AR €y FARRT AT .'-' AT N ',..\_n _.-',’ NATATN 'b-'\.".._\"\.“\ S ~.. N 5..\..\ AL,
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!

NTADNDVE

Yy
ALY

0 <3 alx) 3 <o Let ue HY(D, k2% Then we cefine PHC,

1
respectively ﬁé'“. as follows:

for k2 Y%:

(3.15a) PAaP% % u) = Phlau),
for k > % :

(3'15b) g’é'a u - Pl/z'a u L 3 G

- %G
where u is linear and (ﬁp' u)(£1) = u(z1).

t 1
We will show that (3.15a) and (3.15b) uniquely define Pé'“ and ﬁé'a.

Let
u(x) = Z u,;T,(x)
§=0 3%
a(x) = ) a,T,(x)
j=0 33
and
Y @ -
J=0
Then using (3.6) we have
(3.17a) ag) = 1} uj cos Je,
J=0
(3.17p) ag) - } ay cos JE,
J=0
- -d
(3.170) up(g) - P;"aa - E DJ cos JE
J=0
.. 4\4\ A d‘ A .r .r\'.- '.- I '-f;&,d\'-l'-’_'é':d' s

19
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where {bJ} are determined from the system of p + 1 linear equations

Ty - - -

+ N
(3.18) | [( Z a, cos jE]( E b, cos 3€) Jeos L€ dE r
x g
.i
+0 L » :
- f (1 «, cos je}J( I u, cos jE)cos g dg, £ =0,1,...,p- )
-n  j=0 J J=0 J !
We have f
(3.19) ( Z ay cos JE)( Z ug cos JE) = Z ¢y cos J&
j.o »
where "

cg = % logug * k-z-o LI

.
»
[ ] L) “
c
T 18 A R A
@ 3-k"% koo KKl k-3 k v
By (3.15), (3.17c) and (3.18) we see that ﬂp(E) is such that
(3.20) P4 - P%au ;
3. P aup P au. -‘
Let u = fulT, o= 1glT, b=1(537, ¢= (T, k=0,1,.0. .Let 1,
2 7.2 | ¢
= {a = {ak}T. k =0,1,..., Jafy - ) a < =}. Since & {is bounded, for .
| 2 0 )
any u € 22 we have ¢ ¢ 12 and we can write
(3.21) c = Aladu
:
where A(a) 1is the infinite matrix with coefficients stemming from (3.19). .
Matrix A(a) is then a mapping of 22 into 22. For any integer p 2 0 we f
N
denote by Ap(u) the (p+1) = (p+1) principal submatrix of A(a). By .
: -
(3.17¢) @, can be identified by a (p+1) dimensional vector b ¢ RP*1 with N
N
N
=

T g ¥o T Ay

WA "a"! (R W WL o )




ot
] $
21 "
\
. o
X
(using 3.18) '
¢
]
(3.22) Ay(a)d = lelpy
.
where .
I
[c]p+1 bt {CJ}T. .j = 0----.9- ‘
We will now show that for any d ¢ P X
3
- fat
aT(a(@a) 2 (et :
which guarantees' unique solvability of (3.22) and hence the existence of )
A
1 !
4 ‘
Pp .
Lemma 3.4. Let u = {u..,}T € £5,. Then ;
3
ul(ataly) 2 GgluTu) = Eolgli . E
2
Proof. Let u € £,. Then = [ uj cos J§ € Ly(D, (I = (=m,m)
J=0 .
and .
T 2 N
I (adjdadg = f ai%de —0r| -
- i L, (D) ty
Using this with (3.21), we get :;
w . a "
(3.23) wTatwu = L f aGmag 2> 2 Ja)® . y
T T La(I)
(
"
[
which yields the Lemma. o -
[y
Corollary 3.5. Let a, € RP*'.  Then :
3p : .
v
'.
aT(Ap(u)a) = al(a(a)a,) > &,(al y
= 2p Zp 2 0l2p 3p)- o
-
~N
Y
Y
~
~
u
N
R R T B T T e T S Y T e S AN S e NI e AT D T ST T T T 0
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- - -
Corollary 3.5. shows that Pg'a u exists and is unique when 1 € LZ(I) and

that

(3.21) lap 1 0. - < Cla

with C independent of .

' We now note that

)) (-jbj)sin jg
Jj=0

‘ (1) _ gu
) a at

_, Gn(M . L@En | f (-je)sin JE.
; de 5 3

Defining the matrix A(?) and the vectors EF?), gf1) by

we see that

j (3.25a) @y = -s@y - -sawy - My
(3.25b) al .. 3 (5(1,))1 sin jE
j=0
) = 1), st
(3.25¢) (ad) ‘! 10 e ")y sin Jg
so that
T
(3.26) @NTaMw = L1 aMEaMae
-n
y2
Let |a(1)(x)| £ M on I. Then for Cy > ¢ + ;f » € >0, it may be
a
0

easily verified that

W AL
A

..........

e T S A T T S S O A A e vl
L 'S o » Rl b - v m

-
1)
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T T 2
[ aM@mMae + ¢y [ a@mae > claf’, |
- ~-n H (I)

with C > 0 independent of d. Using (3.23), (3.26), this shows that
WINHTAMDY « cowTeaw) 2 ct™ TN « Ty},

For u = a,¢€ RP*1, this gives

(1)yT( (1) T (1)yT, (1) , .T
(3.27) (gp ) (Ap gp) + Co(gp)(Apgp) > C{(gp ) a, 3, gp}.

Using the relations (3.21), (3.22) together with (3.25) and (3.27), we

obtain

(3.28) la_} < claf , _ .

Combining (3.24), (3.28) we get the following theorem by a standard

interpolation argument

Theorem 3.6. Let 0 < @y < a(x) < @y < =, le{M )| ¢ My,

. . _
o € H*I), %> %. Then ir uy = Pé’" u, for 0 < k < min(1,%),

&, . < corfa]l, _ .
PHR(T) H(T)
Theorem 3.7. Let u € HX(I), k B 0 <oy S alx) By <=,
|a(?)(x)| $ My. Then for k 2 Y% '
1 -t}
(3.29a) - Pe%ul, < ockp KR,
H*(I) H (I)

and for k > Y%

(-} - . )
(3.295) Ju - pé’“ wl, < ctop MR 5
H*(1) H(I)
A S e L T Sl St s ST o s S B P Ly At o gt P it d GV o 2O St N



(with u(41) = (ﬁ;ﬁ"* u)(£1))

(3.29¢) ju - g%,a ul

)}
4
Hyp( 1)

Proof. Let

1
A
Pg u € Pp(I). we have

1 1
AN PR
Pp’ (sz U)

and we see that

By Theorem 3.6 with k = %, we have

tapl o, _ clal 5, .
P H4(T) H4(T)
which gives
N I

Ca - p% ul y oo cla - ph uj ., _
PP Ty P TuA(T)

so that by the triangle inequality and (3.1), we obtain

- ),
P H%( 1)
(3.5a) now yields (3.29a).

Now let k > %. Then we see that using (3.8), (3.15a), for

min(k,1),
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<)
(3.30) |@a-aa ) ()| = |(@@a) - pé(a(a .)))(8) ] ;
3
- -l
< cpm (% Ya@-a )],
P (D ;
-( gt !
< cp R Ja-a ),
Piu™(D )
~( 91 (e
¢ cp(FR pm ko) gy
H(I) \
using (3.13). From this, (3.29b) follows. (3.29¢) will be proven analogously 3
as before. We have )
N P [
1
a- 3&'“ u = ) dzJ(cos 2j€ - 1) + 2 d2J+1(cos(23+1)g-cos £) '
j=0 j=0 ,
with .
(3.31a) 2 dj(1+j ) < Cp 2(k"")l | k>2 0<2 <1
WD) - ‘
and ;
et 3
/,0. -1 =) .
(3.31p) la -8 ul < p”® ) puf, . \
H (D) <
. K~Y% 1 Y% 3
Let L = min{zs + —53 1)y > 3 €= 5. Then analogously as before we get Ny
w Ld l——
p2 e
[7 @Bsew? 2ae < o P iog p pi?, 3
1 T (D) 3
2 <
p N
using (3.31b). Further
i 1 3
2 ~2 .
T ——
T @B4e w2 g ¢ o2tk i (z ;g% ) 2
0 P sin £ 2.2 ag juj Kk
0 0 (1+j7) H (I)
O T A i O i e N G N A R A R A A A L AR



o e e

-2(k=-2) - 2 -( 2k~ 2
< cp 2(k Z)p e lul - Cp (2k ?)lul

H(1) # (1)
L
An analogous expression holds for I 1" dt£. This proves (3.29¢c). a
™2
o)
Let on I the equation
(3.32) au = f

be given with (5) € H(D), k2%, alx)> ag > 0, and Iu(1)(x)| <

M;. Obviously now u = f/a and u¢€ HK(I). Our aim is to find ug € Pb(I),

p
(3.33) u. = )y a.T.(x)
P joo 3
so that
-(x~%)

(3.34a) fu = u | < Cp jul | .

P (1) H(1)
respectively

- =1 1

(3.34p) fu - u_| Cp (k 4)log/"p {ul K

P ngo(n - H (1)

1
We have seen that (3.34a,b) can be achieved so that up = Pé(f/a),

1
respectively u_ = Pé'“ (£/a). The coefficients aj in (3.33) are then

P

determined from the conditions

+1 +
(3.35a) I‘ ! uy TJ dx = J? L % TJ dx, J=0,1,...,p
A e |
respectively . .
1 1
(3.35b) J' ! uup TJ dx = _l__ f Tj dx, j=0,V,...,D,
A AR

and (3.3%a) is achieved for k 2 % . For k > % we achieve {3.34b) so that

" \‘.“-‘\ - .".1.'..wl-. "."’.".ﬁ-'uk. Ay LI AR A LR S LN AL P DS S S e ) - "w
Ki M ..J s L - ' ’e """"" Tl J. G -"'f' f.(‘ '.‘-'\(\*l"’ ( J. o

< . n

=

I Y
»

e
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we can then subtract a linear function. We have used here the expansion

(3.33). Of course, we can interpret (3.35) as a projection and use any basis
functions which are proper for implementation. For example, we can write

g

u = b, ¥,
k ¥k

P k=0

where Y5 = 1, ¥ =X, and wk, k 2 2 are as defined in Section 2.1. Then
condition (3.35a) gets the form
+1

+1
I ——1—— upwk dx = f
P1 Jﬁ*xz , - 1-x°

dx, k’0.1,----P

from which coefficients b, may be determined. (3.35b) leads to an analogous

form. Instead of (3.35a), (3.35b) we can also use the transformed form

+1 +

(3.36a) f‘ ﬂp cos jg df = f % cos jE dg, J=0,1,...,p
-1 -T Q i

respectively
+% ' L .

(3.36b) | au, cos jgdg = [ f cos jE dg, = 0,1,...,p
- =T

where

b
G = § a,; cos j&.
p j=0 J

Fast Fourier transform techniques may now be used on (3.36). ' ¢
)
The mapping Pé'“ can be generalized easily. Let A{x) = {ai J(x)} be
’
a positive definite n x n matrix (not necessarily symmetric). LetL u = X

K m 1 .
{u1....,um} € (H°(I))", k 2 %. Then we define up {up,l""'“p,m}'

up,j € Pp(I), j - j,...,m, so that

{
L
»

A e L A T S S S A S T



P4 P;/l’Aup) - PhAu)

A y Y m oy, A
where P; us= (Pé u1,...,P3 Uy, € Pp(I). Pé is defined analogously.

Theorem 3.7 immediately generalizes to

Theorem 3.8.° Let |a§})(x)| S My. Assume further that y Ay > uolyl2
2
I

. m
ag >0, for any y = (yq,...,yy) € R", |y]® = 1 yf. Then for k 2 %
. i=1

1
%A

(3.37a) ju - P

< ctp |y

(3 1))D (H(1))®

and for k > %

(3.370) Ju - BA y) _ < clapT Ry |

(WA 1)) (H<(1))®

(with u(1) = (ﬁ’g-" u)(21)) '

o (et )
(3.37¢) Ju - PZ"A ul < C(k)p (k /*)1og/’p lul

Y m k m’
(Hab(I)) (H (1))

As before, we are interested in finding u " so that it is an

p
approximation to the solution of

(3.38) Au = f.

Theorem 3.8 gives a constructive way for the determination of up and

provides an estimate of the accuracy obtained.
We have assumed in Theorem 3.8 that A {s positive definite (although
not symmetric). If A is not positive definite but becomes positive

definite after permuting columns, than such an approximation having the

1

%A
desired properties also exists. It is sufficient to use P; instead

. !
of Pé'A s where A' is the permuted, positive definite matrix .

e Al 3 3 NN WO A e ) YN Ve Y N y Mo Y "~ N e
.‘.lﬂ (LA "’.C"ﬁ a'.-‘.l.... R IR ST ., 4 .nw'-‘n. WU ..

&
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The positive definitness of A 13 only a sufficient condition for
existence of the approximation satisfying (3.37) as can be seen from the
following example. Let a4 and Y be constants and Q1835 ~ Q2031 =W

>wg >0 on I. Then (3.38) gets the form

(3-393) 011 (X)UT + 012(X)u2 - f«‘

(3-39b) 321'-[1 + 322u2 = f2

and hence (because a4 and a,, are constants) we get
%

(3.“0) 021up'-‘ + szup'.z - Pp fz.

Since both aq and a,, cannot be zero, we may assume that Ao > 0. Then

\ 1 1
(3.41) U2 = g (PR 5 - apup )
22 ) X
and hence
) 1 1

(3.42) PA (ayqup,q) * PE (ayu, ) = PET
so that

1 a a 1 1 3

% 122 R B 4 Y

Pg ((ay, o )“p,1) 35 Pg (a4oP3 f5) + Pp £y,

Using the fact

a a w
- -%3—33 >4y 2 50,
22 %2 %

we see that u having the desired properties exists by Theorem 3.7. By

P,

(3.41), we see that up, 2 also has the desired properties.

y . Y y ¥y y Y AN ALY Y ¥ ¥ - A M L . o -I.- o . . Y e - - . . L] - - L PO SV R R L
AN RN T W N N AN D N A S AR A N N O NN A AN Ay
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1
3.2. NUMERICAL ASPECTS OF Pé

Let us consider the problem (3.38) with m =2 on I = (-1,1)

G1qug Y apup v I

Al " Uy <t I

Assume that f, and f, are selected so that u; = (x[l‘7 and u, =

cosh x |x|1°7. We will now consider coefficients ay of varjious smoothness

v J
I) a;; = sin x, o = COS X

Ay = TCOS X, Qyy = sin x

11 a%?l - x3*2 for x <0
xa*? for x20
r
a{g] = (x + Z)q'z for x < =%
(x + %' for x> ~Y%
r
aé?} - (x - %patt for x < Y%
(x - 92 ror x 3 Y
afgj - -xa for x <0
-xq’2 for x 20
I11) g, = 1 for -1 < x g -Y%
0 for -% <x <0
1 for 0 < x <Y

) 0 for . % < x < i




'y

v,

i !

R

[ ]

a4 = 0 for -? <x§-Y% ¥
1 for -%<xg0 '

. P

0 for 0 < x $ Y% ’

L

)

1 for Y% < x <1 .

o,

a = 0 for '? < x < - 374 :
)

2 for - 3/4 (. xgKO R

0 for 0 < xS ¥% A

2 for Y < x <1 ::

a22 - _? for "? <x s ‘14 ::
“

0 for Y% <x €O o

=1 for 0 < x<$Y% p

A

0 for Y < x < 1. f

(0) = Ju, - P2u] I l :
We compute ¢;{(p) = ju, - P?2u.}, and n_(p) = fu;, - u, 1 , 1 =1,2 S

1 p 1 H/Z(I) 1 1 1,p H/Z(I)

1
where ug D is the ith component of Pé“Au. Obviously, €5 £ ng. The

purpose of the computation is to see the effect of the matrix A on the error

of the approximation, especially in dependence on the smoothness of the >
coefficients aij' Table 3.1 shows somé of the results. We see that the {
. -~

influence of the smoothness on the performance is small, as expected. ;2
',

Moreover, we see that the asymptotic rate of convergence from Theorem 3.8 is

already observed for small p.




TABLE 3.1

The errors € and ng .

p C1 n-| 52 n2
CASE 1
4 2.2683-2 2.2718-2 2.1070-2 2.1150-2
8 8.2301-3 8.2586-3 7.8898-3 7.9168-3
16 2.78u41-3 2.7910-3 2.7534-3 2.7601-3
32 9.1103-4 9.1242-4 9.0843-4 9.0977-4
CASE 1II, q =3
] 2.2683-2 2.3788-2 2.1070-2 2.4886-2
8 8.2301-3 8.6852-3 7.8898-3 8.9047-3
16 2.7841-3 2.9217-3 2.7534-3 3.1241-3
32 9.1098-4 9.4950-4 9.0843-4 9.9006-4
CASE II, q =0
4 2.2683-2 2.3117-2 2.1070-2 2.3632-2
8 8.2301-3 8.3735-3 7.8898-3 8.7462-3
16 2.7841-3 2.8326-3 2.7534-3 2.9975-3
32 9.1098-4 9.2162-4 9.0849-4 9.5976-4
CASE III

4 2.2683-2 2.2763-2 2.1070-2 2.1459-2
8 8.2302-3 8.2438-3 7.8898-3 8.1540-3
16 2.7841-3 2.8078-2 2.7534-3 2.9632-3
32 9.1104-4 9.2687-4 9.0843~4 1.0191-3
-\, -‘)\\ Y \’v\. %N \‘\' \;_\.,\'.\‘ N~ -.'-.J._- LS \~..,-.\....-;\.; R

,‘n’.'-'. 8. ..l " ' L l" 4\ :‘ ‘

, ._-,-l..~'\’
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3.3. THE PROJECTIONS ?; AND ﬁg AND THEIR PROPERTIES
1
In the previous section we have been interested in the projection ﬁé. A
We can introduce the 5; projection as follows. Let wu € Hé(l). then f
P Rt
(3.43) i’*;u - 1 a0 :
k'2 '
where wk(x) were defined i1n Section 2 and the coefficients a, in (32.43) :
are determined from the conditions 2
2
+] +1
1
\ Al 1] - L] 1]
(3.u8) L (B W vj dx L u'y) dx :
.
+1 )
LY
- —I uy" dx, J=2,...,p 9
J
-1
:.
(where the span of {03} is the set of all polynomials of degree p - 2). R
LY
(3.44) may be used to define $;u for u € HO(I) as well. .
If u ¢ HI(I). then we define analogously as before ¥
Y
“
(3.45) Plu = v« Bl(u-v) 0
. P P 1
~
where
: v
voe 3 xeDul=1) e 3 Gehun) ;
;'
]
and hence P; is well defined for all u € HX(D), «x > %. Ir [5] we have >
.
proven -
N
Theorem 3.9. Let u€ H(I), k > 1. Then N
~
-y =1 -
(3.46) Ju -°Ppu| y < Cp (& /’)lul T -
Hoo ¢ 1) H (1) *
h)
\
We see that this theorem (3 analogous to Theorem 3.2 (in fact, it gives a .'
"
L 4
’
~
-, L S P T Y - ~°

sty

o,

Y

'{_'I'I'.‘,'I'.’ ..'_.:{._.-’ PEATE P e
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slightly better estimate). Nevertheless, Theorem 3.9 assumes that k > 1. We

conjecture that for % < k <1

| (=X
1 ()
| (3.47) sup T Ju - °p;u, y > Cp (k /’)p 2 "
3 K H?(1)
uEHO(I) 1(1)
In (2], (7] we have proven
Theorem 3.10
i
sup Ju ﬁ;ul 0 > Cph,
0 H (1)

ju - Blu] < Cp% ul o
P O 1)
From Theorem 3.10 we get
)
(3.48) lu - Blul < cp* ul .
]
0(I) HOO(I)

but not necessarily (3.47). Nevertheless, numerical experimentation suggesis
rhat (3.47) nolds for Kk = Y%.

To show it let for a > O

100
(3.49) u (x) = L dye(x)
i
with
d - e i

Select a = and compute

L - NTN)

- - . R S

> -‘l_'} ..f:-[.\;':i'\;'rf;}:f:frill‘ -f-a'-'q‘.-’_:n‘.'(..g' M e  a e FRPPEPEN TEPE N PR RIS VSIS
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and

PN

Table 3.2 shows the values of np(a). a = g which clearly indicate our

) .
i conjecture
:
. TABLE 3.2
9,
" 2

The values of np(a). a = D
l.
. p np p np
o 1 371 1 .645
b 2 .479 12 L647
. 3 .539 13 .6u7
En y .576 14 .648
X 5 .600 15 .648
’ 6 .616 16 .6u8
s 7 .626 17 .668

8 .634 18 .6u8
) 9 .639 19 .648
. 10 .643 20 .647
f .
- So far we considered the projection Pp. Let. us briefly also consider
oy the projection 58, which is given once more by (3.43) but with (3.u44)
" replaced by
u

+1 o +1
N (3.50) [ Bwe;0ax = [ uw,Goax.
\ =1 =1
)
z Using the results from [2], (7] it is possible to prove
‘ Theorem 3.11
2
¥ ] 1
o sup T Ju - ﬁg ul . 2 Cp*
' weH (D H (D) H (D)

0 0

1
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la - Bul < cofful, .
HO(I) HO(I)

This theorem suggest that (3.47) holds also for the projection ﬁg.

o‘/z 21 o0
3.4. COMPARISON OF THE PROJECTIONS Pp' Pp and Pp

We are mainly interested in the approximation properties with respect to

the norm The previous resulis show that seemingly the most robust

|‘| 1 .
%
HOO(I) .

projection is the projection gp which leads to the error

1

o - -1 1
(3.51) - Bouly, < ctop  Piog% pu

k
2
HOO(I) H (I)
1
for all % < k. (We conjecture that the term log4 p 1is not needed.)

The projection P! 1leads to (3.51) also (in fact, without the term

p
1
log4 p) but only for k > i, For % <k < % the possibility exists that the
1
projection 5; may not converge at a)l. 1In addition, the projection ﬁé can
1 1
easily be generalized to 3é’A . This indicates that the projection ﬁé is

preferable, nevertheless the projection 3; i1s almost as good. On the other
¢

hand, in context of the implementation in a finite element code using shape

functions based on wj(x) as in the code PROBE, the projection 51 is

P
p0

slightly preferable. The projection P

seems to have no advantages.

- Py >~ . N et ot - p " e "0t ar - R M R L S I I A L R P PO O I T R T A e S
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N, THE p-VERSION OF THE FINITE ELEMENT METHOD

Let us consider here the convergence of the p~version cf the finite

element method when Dirichlet boundary conditions are prescribed as in (2.7),

>3
(2.8). We shall prove the following theorem :
3.
»
¢
Theorem 4.1. Let the p-version of the finite element method be based on
the projection ﬁp (see (2.8)) such that :\
R
[i] (k=1), (1] N
(1) uy - o Y o< CtIEe,idp "1 oy, . N
(H2 (T.)) (H™ *(r.))y
00" i i >
”
and let the exact solution wuy € (H*(2))™, k > 1. Then n
(k=1) % (k~=1) ¢
-(k- -(K~ ~
(4.2) fug - u ) < ocop T maxle(p,i), log” plp ol - WV
(H (Q)) i (H(2))

Proof. For simplicity of notation, we let m=1. Let Q=T or 3.

Let Ui(E.n) be defined on Q so that Ui(E.n) = uo(Fi(E.n)). Because F,

,,
NN S

is assumed to be smooth, U; € Hk(Q). Hence as in [5] there exists U; o €
P;(T), respectively Pg(S), such that .
>
u . . . . = . -
(4.3a) UI(AJ) Ui,p(AJ) ’
4
where {AJ} are the vertices of Q Y
(k=1) 3
u. Y - - - v
(4.3b) fu, Ui'pl . < Cp LU o
H (Q) H™(Q)
< o Y Qugl :
H (Q) g
_.-F
.
=1 k..." ) %-
(4.3c) ju, -u. | ,_. < ¢cp° funl . N
R ) O (a) 3
»
f:'
A
A
P4
L4
» ‘- ii' ',l' ..‘ =L --’ v‘.v ;d‘ﬁl l'.‘. '\'&'N'\(- \ - \.._’.".‘ ‘.;.\*\ ~ ;..“ .:.-;_.'.‘.;"-;’s: O 4 - .' .' \',~.'_.‘(:. :. :.‘\"N
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'1 - -1 - - - s
On every Ty 4 £r, Ui'p(Fi_(x.y)) Uj'p(Fj (x,y)) =uy n-uy o=@y 5, #0
and (see Section 2.3 for notation) °i,J.p(E) =®i,5,p (F¥(g)), g €1 isa :
\ polynomial of degree p in one variable with °i j p(tI) = 0.By the imbedding
P theorem
-(k=1) !
(u.4) le. . 1. Cp MEUR « Ju.l ] 3
SR ELACS)) Q) I Q)
< o pugl ]
h H(Q) i

Using Theorem 3.3, (4.3c) and (4.4) yield

-(k-1) y
_— < Cp log® Ju.f . -
AL NG 3 OTH (a)

(4.5) |e

Applying now Lemma 4.7 of [6] there is a Vi.j € P;(T). respectively

Pg (S), such that

Vi,j *° Vi'J(F;?(x,y)) = ¢1,5,p ©ON ri'j,

Vi,j = 0 on BQi - ri.j :

and . -
-(x-1), % y

vy j' ) $ |¢i 3 p| y < Cp 102 Iuol . N

'Y H (Qi) i H&b(l) H'(Q)

Let now Ty C 3@ =T and let Ty < 3Q,.. Denote ggzl € Pp(rl) such that

;:ﬁgg” = ;’:zg[”. Then on Ty, _
8p “Yr,p U0 T Ur,p "By T 8
and hence
le, - e oby < % Vieghp £(p. 2y, | é
HZ (T ) ()
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and ¢r.p(5) - (gp-ur.p)(F:(E)) satisfies ®p,p € Pp(I). ¢r,p(*1) = 0 as
before. Hence, in the same way as before, by Lemma 4.7 of [6] we can

construct A3 such that Veoo T gp - “r,p on Ty, Vhog ™ 0 on anr -

ry and |vr'2| < s -

u, |, .
1 p r,p' A
H (ar) Hoo(rz)

Defining &, € P,(2) N H'(Q) by

(u-6) Gplni = ui - Z vi.j'
J
we get
- - 1
(4.7) Juy - il < C(k)p (k 1)maxflog/2 p+ £(p, )yl
H (Q) i H(Q)

and

up = gp on T.

This leads immediately to (4.2). In fact, by (2.8)

Blup,v) = Blug,v), Yveé P(R) N Hy(®)
and hence
.= . o= ¢ 1
B(up up.v) B(ug up,v). Vv Pp(ﬂ) 0 Hy(Q)
where i, is defined by (4.6). Because uj ~ &, € P () 0 HY(R), let v =
up - Gp. Using (2.6), we get immediately
fu_ - a5 < Clu, -6}
piygl 2
p H'(Q) 0 p H‘(Q)
and hence also
fuy = u_| < Ju. - oA t ju, - af
O Py PPl o Pl
< Cclu, - af .
O Pl

’
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This gives (4.2). a
Theorem 4.1 leads to the following corollary

Corollary 4.2. Let ug € Hk(n), k > 1, be the solution of the problem ;

(2.7), uolri = gEi], i=1,...,n. Let the p-version of the finite element

OZ Ox/21 i

be used with Pp = Pp or Pp = Pp where i are positive definite

matrices with C coefficients on Ty (see (2.7), (2.8)). Then

(k= 1
p {k 1)108/213 Iuol ’

fu, = wl n $ ¢ 0
(H (Q)) (H°(Q))

P 0

Remark 4.1. A similar estimate follows from Theorem 4.1 for the projec-

tion P;. In fact, for this case, the following result, proved in [5], is
true.
Let ug € H*(Q), Kk > 3/2 be the solution of the problem (2.7), ugl .
i

=g , i =1,...,n. Let the p-version of the finite element be used with

Then

U ‘- u < C - {k=1) u ]
l | p
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