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ABSRACT

The paper addresses the problem of the implementation of nonhoazogeneous

essential Dirichiet type boundary conditions in the p-version or the finite

element method.

mom~
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1. RODUCTION

A recent addition to the field of finite element analysis has been the

development of the p and h-p versions of the finite element method. For two-

dimensional problems the p and h-p versions have been implemented in the

commercial system PROBE by Noetic Tech., St. Louis with a first release in

1985 and the second in 1986'[-I3j. The three-dimensional commercial finite

element code FIESTA having some p-version capabilities had been developed at

ISMES (Institute Sperimentali Modelli e Strutture) in Bergamo, Italy, and has

been available since 1980 in the United States. An implementation of the

three-dimensional p and h-p versions for the Cray computers is presently being

done at the Aeronautical Research Institute of Sweden IFlygtekniska

Forsoksanstalten-FFA) £11 and by Noetic Tech.... - 3? --

The p and h-p versions are being used very successfully today in

industry. See, for example (8). A survey of today's state of the art may be

found in £3) where pertinent references are given. For basic theoretical

results we refer to [4], [5), [6), [10), £11). For some implementational and

engineering aspects, we refer, for example, to £8), r14), [15).

An important part of any code in finite element analysis is the problem

of imposing nonhomogeneous essential boundary conditions of Dirichlet type.

We addressed this question, among others, in (5) for the two dimensional

problem. Our technique was implemented in PROBE - Release 2, and tested very

successfully. In [5) we assumed that the nonhomogeneous boundary conditions

had slightly higher smoothness than the minimal possible one, namely we

assumed that the boundary data belongs to Hk(r), k > 1 (instead of

minimally k > % ). With this assumption we obtained an optimal error

estimate. There are some indications that for '/ < k < 1 the method proposed
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in [5] could lead to a loss in the convergence rate and that for

k < 3/4 there exist boundary conditions for which convergence may not be

achieved at all.

This paper proposes an implementation which guarantees convergence ror

all k > 14 . We get the almost optimal estimate

Iu - ul_ i _ cp(k -/) log2p lul k+ -
H. (2) H a()

In addition, we discuss some other possible methods for imposing the

nonhomogeneous boundary conditions of Dirichlet type. In a forthcoming paper

we will discuss general boundary conditions with partial constraints for

systems of equations. Such conditions are important in the theory of

elasticity, for example.

~ ~ ~. '? I
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2. PLIMARIES

2.1. NOTATION

Let R2  denote the usual Euclidean space with x - (xl,x 2 ) ( R2 . By

R C R2 we denote a bounded Lipschitzian domain with piecewise smooth
n 

boundary a - r a U ri where r. are smooth (open) arcs. The end

points Ai, i a 1,..., of or Pi will be called the vertices of Q. For

tixing the ideas we will restrict ourselves to simply connected Lipschitzian

domains although our results hold in general. We will also consider 9 c

RI  i.e. = I- (a,b).

Let L2 (Q) - HO(Q), , HB(Q), k > 0 denote the usual Sobolev

spaces. For u E Hk(O) we denote by lulk(0) and lulHk(,) the usual norm

and seminorm, respectively. For k > 0 not an integer, we detine HC(Q) and

k( by the K-method of the theory of interpolation ([9), [121)

H")(0) - (HP(Q), Hl+ 1 (Q)) 0 ,2

0 < 0 < I, Z + e - k, I integer.

The norm is detined accordingly, i.e., with

(2.1a) K(u,t) - int (Ivli + t Iwl ,
vEH (Q),wEH ) AM)

V + Wa,

we define
I' (.1b)bl~ie (  =(f t-9K(u, t) 2 dt) 2.

H2.b) 0l T

Analogously we define Hk(Q) - ( (k a noninteger) with the

norm lul .+eo •
H0  (Q)

Sor If R w,- -
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We will be especially interested in the one dimensional case.

Let 0 - I - (-1,1). Then we define Jul and Jul by
H k(I) H _(I)0

(2.1b) for k a noninteger. For k integer + ', we have for u E Hk(I)

(2.2) Jul H lulHjJ(H0k(I)()

where by - we denote the equivalency of norms.

For k - integer + '4 we have

2 2 2 1 i 2
(2.3) Jul ft (Jul + •(I-x ) I .

(l (I) (I) dx H(I)

This space is often denoted by HO0 (I) in the literature and we will use this

notation as well. Analogous results are true for general o.

Now let W be the space of 2w-periodic functions. For u E H we will

write

(2.4i) u(E) " O aj cos j + bj sin J.
i-a j=1

Then we define Hk and I k by (2.1a) and (2.1b) as before. We have then
H

k2k
(2.5) IuI k [ I a ( ) + I b 2 (l+j2 ) k iH k -0 

J-1

Moreover, if aj, bj are such that the right hand side of (2.5) is finite,

then u E Hk and the norm Jul , is defined by (2.5).
H

For I an open Interval or straight line segment, we denote by s the

length parameter. Then we define Hk(I), 4(I), Jul k juj as
H k(M' H k( I)

before with respect to s. 0

So far we considered only spaces of scalars. We define now (Hk(I)) m
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with U E (Hk()) m , u - (u 1 ,...,um), ui E Hk(a) and

m 14

lul ck )m - (. I ll and analogously I m' etc.
(Tm, ini H (ai) (H

By c(k)(g), respectively C(k)(5), we denote the space of all

functions with continuous derivatives of order k 0 (k integer) on 0,

respectively 2.

The set of all algebraic polynomials of degree (total) less than or
equal to p on fl will be denoted by p1 (Q). By p2(g) we will denote the

set of all polynomials of degree less than or equal to p in each variable

on 2. For r c R2  a straight segment, we define P (r) as the set of

polynomials on r of degree less than or equal to p in s and by PO(r)
p

we denote the set of polynomials vanishing at the end points of r.

Let I = (-1,1). Then we will deal with two different polynomial bases

on I:

a) The Chebyshev polynomials Tk(x) - cos(k cos (-I )(x)), k -

0,1,2, ....

b) The integrals of Legendre polynomials Pk(X),X

*k(x) - (2k-i) f Pk.l(t)dt - Pk(x) - Pk_ 2 (x), k - 2,3 ....
-1

Obviously the set {Tkl, k = 0,1,...,p is a basis of P p(I) and {*k}, k -

2....,p is a basis of PO(I).
p

2.2. THE MODEL PROBLEM

Let H - (Hl(Q))m, H0 - (HlCQ))m, and let B(u,v), !I - Cu1  u ) E

H, v - (vi ... ,vm) E H be a continuous symmetric bilinear form on H x H

satisfying

~ 9' 5'. -- ~ : .* ~ -* * .,-- .
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(2.6) B(u,u) l (,)' Y >0
H. (a2)

for any u E HO. Further, let F be a continuous linear functional on H.

Let on T the matrices A1(s) -{1(), k,1 - it ....M, I

1,...,n of smooth functions be given. We shall assume that the matrices A.

are nonsingular. Further, let gEi] = fgEi]}, k - I....m, i - I,...,n be

a function defined on ri. We will say that g - {g[i] E (H4% (r))m if there

is a U E (H(Q))m such that g - UIr-

Let now h - {hli/l, i = 1,...,n be such that with gJ =

Aij( ] g - {g i)} E (H4(r))m. Then our problem is:

Find u0 E (Hl(Q))m such that

a) Aiuo r. - h - gI]
(2.7)

8) B(uoV) - F(v), Vv E H0  (H(n))m.

Because of the assumptions, the problem has a unique solution.

Remark 2.1. We could obviously transform a) into u01r. A 1 h

9[]r i - 1,...,n and assume that Ai is a unit matrix. Nevertheless, our

formulation is more general and computationally natural. For example, in

elasticity theory, although we formulate the problem in displacement

components u, v (in directions of the axes x1 , x2), we prescribe the

conditions for displacement In the direction of the normal and the tangent to

the boundary.

From the general theory of interpolated spaces and our assumptions

about A, we obviously have hi] E H4 (r).

So far we have assumed that the Diriehlet boundary conditions are given

p2
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on the entire boundary. Nevertheless our theory can be easily generalized

when on one part of the boundary u0  is not constrained.

2.3. THE p-VERSION OF THE FINITE ELEMENT METHOD

Let us assume that domain Q has been partitioned into curved

rectangles and triangles (see Fig. 2.1).
q_

Let £ = U 2i where Qi are (open) curved quadrilaterals or
i-I

triangles called elements of the partition of Q. The vertices of i are

called the nodes of the partition. We will assume that the vertices of Q

are nodes of the partition.

-An r2 / a2

Fig. 2.1. The scheme of the partitioned domain.

By S = (-1,1)2 and T = 1, I 0 < v ( (n+1) <3, -1 < 0 < 0; 0 < n

< ( )/3, 0 E < 1) (see Fig. 2.2), we denote the standard square and

r -. , ,. , -,. - -. , .,:.. ; .I .:.. -. -.,. -,...-..-.. ., , , .Eo'-- , .?. * ., .. ,$1,.: .:
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standard triangle.

Assume that the mappings Fj :M (x J ] - x.J](A,n), I - 1,2), j -

1,...,q map S on 9 if Q is a quadrilateral and T on 2 it' aj is

a triangle. Let Fj, F l be smooth one-to-one mappings. Then we can speak

about the vertices and sides of Ql in an obvious way.

A3  A2  17
A2

2 (0,0)- 2

S T

A41'  VIA, A3I (0,0) 1A,
:2 2

Fig. 2.2. The scheme of S and T.

We will assume the following

i) The intersection i n 5j is either empty or is the single common

vertex of Q, and 0 or the single entire side of i and 9J.

ii) If 5i n 0 = ri, j  and P E rt,, P - Fi(P i) - Fj(Pj), Pi E

AkAk, Pj I AEAl+ then d(PI,Ak) - d(PjA9) or d(PiAl+1 ), where we

denote by d(P,Aj) the Euclidean distance between Pi and A . Hence we

can also identify r with I (-1,1) and the map F - - , of
ij F 1, of
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I onto rjj , where the relation between F1  and Fi is obvious (realizing

that the sides of T and S have length 2).

Let now Pp(0) - [u E H1 (a) I u(F (x x2 )) ( if is a

curvlinear triangle, u(F 1i(x 1 , x2 )) E p2 (S) if is a quadrilateral).

Further, we denote

PmQ) (P (M)m and u (pm(Q) p Up U, 1 ... ,. Up,m)

Let up E pm(Q), then up,k(F-(x 1 9 x2 )), k = 1,2,...,m, is obviously a

polynomial of degree p on every side of T, respectively S. We will

identify the sides of T, respectively S, with I - (-1,1) in the obvious

way. Assume now that a projection mapping Pp is given which maps Hk(1),

k > /2 onto Pp () with (p u)(±l) = u(±1) and PpU - u if u ( Pp(). We

remark that Hk(I) C.C(l) for k > 1/2 and hence u(±1) is well defined.

The p-version of the finite element method for solving our model problem

consists of finding up E P;(Q) such that

0p p
a) u P g on ri

(2.8)

B) B(uV) = F(v), V vE p (a) n (HI(a))m.

Obviously the method strongly depends on the choice of the projection P.

This choice can be influenced by various factors like accuracy, implementa-

tion, the type of problems tO be solved, their formulation, etc. For example,

the matrices Ai in the model formulation in Section 2.2 can be used in

(2.8)a instead. The main part of this paper consists of analyzing some

choices of this projection.
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3. THE PROJECTIOM Pp

3.1. THE PROJECTION A AND ITS BASIC PROPERTIES
p

0*4
In this section we will introduce projection operator P,, respectively

Pp A of Hk(I), respectively (Hk(I))m, onto Pp(I), respectively pm(I).

p

We prove first

Lemma 3.1. Let I = (-1,1) and I (0,w) M F(I) where F() =

cos E, 5 E I. For u(x), x E I, let i(f), & E I be such that u(cos 6) =

u( ). Then for any u E Hk(I), k k 4 , we have

< lul < C1,
(3.1) CI 4 a 1 Y.2 1) 2

H MI H(I H 2(1)

(3.2) I'.iI > C(k)1u1 k

where 0 < C1 < C2 and C(k) are independent of u.

Proof. Let So - [z - x+iy I IxI 1 1, 0 S y < 11 and Q - - i nrt

I cos E Sol. (See Fig. 3.1).

i i

z plane plane

s o  z=cos Q .

S0  ZO 7 Q
-i 3 h ro

Fig. 3.1. The rectangle SO and its image Q.

,.

*~ *~W~*/! S h, . ~ ~ 5 % ~ ~ .'-S .* 5
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Let u EH(I). Then there exists U E H1 (So) such that

lul Cluj I and U1, - u. Let V( )- U(cos t). Then

H (so) H 2 I) 0IVI HI Q) -lul HI(% )

and also

H. (Q) H. (S o )

Hence, by the imbedding theorem we have with v - VI.,

lu' Iz, 1/i C, I C 1 < Cluj
bI ) HI(I) H.(Q) H.(S 0 )  H'/(I)

where C is independent of u. The inequality

lul Cluj- I '

can be proven analogously by changing the role of So  and Q. Hence (3.1) is

proven.

Let us prove (3.2) for k = 1. We have

d. 2 .2  - + du 2 /- 7

l f "d d& x dxH() 0 -1

+1 2 du 2

- x ( ) " lHO( I)

Hence

.2 d 2 + A2

00.

Id u 2  cIlu2

H 0 (I) H2(I)

pe
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< II 2 cll 2  < 1H(I) A (I) H' c l l ( I)

In the same way we prove the inequality for k > 1, k integer. For

k 4 nonintegral the inequality follows from the standard interpolation

theorem. 0

Let u E Hk(I), k '4. Then

+1j. ... L..1dx <

and we can write

(3.3) u(x) - ajTj(x)

J.0~

where TW(x) are Chebyshev polynomials.

We define

i) for u EHk(I), k '

(3.4a) P/u U I ajTj(x) E pPM

ii) for u E Hk(j), k >

(3.14b) P u = P u +
p p

where u is linear on I and ( 4 u)(±1) - u(±1).
p.

Theorem 3.2. Let u EHk(I). Then for k '/

(3.5a) IU P4 2"11 < C(k)p -  lulk(I
a H(o) H M

and for k > /1
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(3.5b) lu - H4 (I) I C(k)p-(k-4)lul kc()

(3.5c) Iu - A4I U 1 C(k)p-(k'6') 1 og lUlk •

The constant C in (3.5a,b,c) is Independent of u and p but depends on

k.

Proof. Let i(&) - u(cos F). Then a E H is an even 2w-periodic

function and

(3.6a) QC() - cos t
LWO

(3.6b) p - (P4 u) - cos LE.
pL-O0'

This immediately yields (using (3.2) and (2.5))

, 2 (1+2)%
(3.7) Iu 1 I . t1u %

pp4+

C( 1 )2(k-4) j Iu, 1
2 (1+ 2)k < Cp- 2 (k- )IaI2

" Lap+1 H k()

< p c-2(k-14) lu1 2

Using (3.1) we get (3.5a).

For k > 4
k k

(3.8) V(i)p)() J u ul(l+ 2(1+j2 2

u 0 +j) [ 2 k (+j2) k ) < C(k)p-(k-%) IHk
J-p 1 j-p+1 H (I)

h.

~ \* ~ ~ '. %~ - V *~ hV i
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and hence

- 4 ( ) $ c(k)p-k- Iu k(j

and (3.5b) is proven.

Let us prove now (3.5c) for k > '4 using (2.3). We have to show that

(3.10) [+ (u.- 4 u) 2 (1-x 2 r-dx] cp-k")log4p Iul k
-1 p H (I)

which is equivalent to showing

(3.11) [o (u-A4 u)2(sin t-dt cp-(k-4) log'p lul k
0 pl (I

Let us first observe that

(3.12) (u-A4u) u2 (cos2JE-1)

+ X u 2 j+ 1 (cos(2j+l){ - cos t)

2,

where by [a] we denote the integral part of a. Hence

*1 2
f (u-Au)2 (sin )-d < 2[f ( u(cos 2J,-1)) 2jdE
0 0 j_.p.2] __sin E

2

+ " Ir Z ~ (cos (2j +l)&- oos &)) 2 d---
f [Pju1  sin E

2

o J.p+2j sib t
2

.0 N'
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+ J( X U2j 1 sin(j 1 ) sin JE) - dE]
0 J.[_p_

S( Q) e2(E ) Isin j2-c ()- 2( )
. cM[( Iu2j1(1+2)k2 k/2

0 J_[ 2 ] 0I-j2)
2

k CI( W E 2 W 2-c(1 ()-C 2() 2

+ X !u l I+(1+i ) (j&) (j(O-)) Isin --I
+ 2j+11 k sin+

1 2J2 (F,) 2(REP+)+ 2(2))

2k-2

for 0 < i(&) < k--- 2c.

Choose

cl(E) - c on [0, -], - 0 otherwise

2(F) c c on [w - w,], = 0 otherwise.

Then we obtain

i 1

Cp-2(k-'4) [p2cj
p {2 c-1d{ (i E + p 2{ 2E-1 d 2

P P

SCp-2(k-14) log p lul 2k
H (I)

This proves (3.11). (3.5c) follows from (3.5b) and (2.3). 0

Remark 3.1. The necessity of the term logIp in (3.5c) is an open

question.

IW . ~ p* w~* * % ~ 5r ~ . * 0** .** * ~0 0 - 0 - -. . *~ *
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Remark 3.2. For u EHk(I) with k > , we may prove (analogously to

(3.7))

(3.13) a - < CP 2 (k-t)lul 2k K4 < k.
H H k(I)

Theorem 3.3. Let uE Pp(I), u(±1) - 0. Assume that Jul H, A,

lulo(I) A. Then

(3-14) lulHoH% S CA log'4 P-

Proof. As before we have

C2 2*
Q I X b2j(cos2jg-1) + I b2j 1(eos(2j+l)E-cos )

and 2

i-d b21j) S~ A.
J.0 

i

To prove (3.14) we have to show that

u d& C log p A2 .
0 sin

We have analogously as before for c, - c on [0, -], 1 0 otherwise, £2 -

pc2
c on Is - p, r], - 0 otherwise, c > 0

-2 -1

ir 2

U" s'n c[,lJ p  dE_ 1j 2
0  •p 2 C 1 ]

6 - sinl C(I) p2 H(I1

C log p A2 . o

Let us generalize the operator P14 . Assume that for x E I,
p
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0 < Oa(x) S < -. Let u EHk(I), k 2 '. Then we define P490
p.

respectively , as follows:

for k >Z

(3.15a) P4 (P 4' u) - P"(au),
p p p

for k >

(3.15b) 2 au . P4'2 u aU+
p p

where u is linear and (0,1C u)(±l) - u(:ll).
p

We will show that (3.15a) and (3.15b) uniquely define Pp and P2
p p

Let

u(x) - X ujTj(x)
j-o

a(x) - ajTj(x)
j-0

and

(3.16) Up(x) P U b T .
J1-0

Then using (3.6) we have

(3.17a) ( - 0 uj Cos JE,

j -0
(3.17b) (E) 0 CL ,'jCos J E,

(3.17c) ip( ) bj CosJ,Pp " b cos jF,

j-O

V, '.. .
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where (ba} are determined trom the system of p + 1 linear equations

+1

(3.18) 1 ( X Cos j)( I b cos jE)]cos I& d
- JO J -0

- ~ ( jCos JidC u C0 osJ&)CO8 ZE d&, I 0,1,...,p.

We have

(3.19) a X cos j&)( u u cos id - Ic cos J&
i-o i-a j-o 1

where

CO0  " '4au0 + ' akuk)
k-O

C 2 [ %J.kuk + k0 J+kUk + k-j k-iUk

By (3.15), (3.17c) and (3.18) we see that %p(4) is such that

(3.20) P4 CUp - P4 Mu.
p p p

Let u U)T ' la)T b - (bk)T, c- )T'I k - 0.1......Let t2
-,w

.(a - [ak)T  k - 0,1,..., I1 2. a 2 C}. Since 6 is bounded, for
k ~2 0k

any u E {2 we have c E L2 and we can write

(3.21) c - A(a)u

where A(m) is the infinite matrix with coefficients stemming from (3.19).

Matrix A(a) is then a mapping of L2 into L2" For any integer p k 0 we

denote by Ap (a) the (p+1) , (p+1) principal submatrix of A(a). By

(3.17c) £ip can be identified by a (p+1) dimensional vector b E Rp +  with

pT"

S.
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(using 3.18)

(3.22) Ap(C)b- [e-p+ 1

where

[CIp+1  - {eJIT ,  j 0c11-o ,p

We will now show that for any d E Rp + "

dIT(Ap(aX)d) 2 9(dTd) '

which guarantees unique solvability of (3.22) and hence the existence of

p.

Lemma 3.4. Let u - {uijT E E2 " Then

-2
U TA(aLu) k &=uu & !1

12

Proof. Let u E L2 . Then G = _ uj cos J& E L2 (I), (I - (-ir))
J-0

and it +Ir

r d)d f M2 2& a '
-i L2 (I)

Using this with (3.21), we get

(3.23) uTA(a)u I 1. 12
-W f(aU)d L2(I)

which yields the Lemma.

Corollary 3.5. Let a E RP "'. Then

aT A( (a) - aT(A(a)a 2 rx(g T )

.

a 0-

-PN
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Corollary 3.5. shows that a a exists and is unique when U E L2 (I) and
p

that

(3.24) a IIH0 tlal H0 )

with C independent of a.

We now note that

)am dQ (-jb )sin jE
-0

On)o (-Jc1 )sin JE.

Defining the matrix A(') and the vectors u(1) , c(l) by

(A('))j. - -j (A)j£ (u )j - -Jbj , (CO(I) jc itc

we see that

(3.25a) (c_( I) )j - -(.) (Au)j (A ( ) u ) j

(3.25b) ill') " (u)) 1 sin j
J-0

(3.25c) (Mo)(1) - i (c(m)) sin JE
J-0

so that

(3.26) (u(1))T(A(1)u) - L f a(' ()()d-

M 2

Let Ia(1)(x)I M1  on I. Then for C0  > c + c > 0, it may be

easily verified that

-. - - -2 1 2 - - -
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K i

fT 1)(a()(1)6c + CO I 3(5C1)d& > Cl l2
-,-.,. ( H

with C > 0 independent of G. Using (3.23), (3.26), this shows that

(uC)IT(A(1)u) + Co(u)T(Au) C{(u(C))Tu(I) + uTu}'

For u ap E Rp I ,  this gives

(3.27) (ap~)TA() ) +C (T)(A~~ a Cf(a~~lY 1'a (1) +T a
.z Pp;-p =p --p

Using the relations (3.21), (3.22) together with (3.25) and (3.27), we

obtain

(3.28) I aPI 1 ) C 1,11 HIPH1(I) - HI()

Combining (3.24), (3.28) we get the following theorem by a standard

interpolation argument

Theorem 3.6. Let 0 < 30 a x(x) -1 < ", I( 1)(x)l m M1,

Q E HLM, t . Then If = p 2 u, for 0 k min(1,t),
p

a Pi H k < C(k)1i3 -
l~ lHk(I) - Hk(I)0

Theorem 3.7. Let u E Hk(I), k > 12, 0 < E0 a(x) a, < 
,

I0(1)(X)l < M1 . Then for k >

(3.29a) I U p/1' Ul C(k)p.-( ) lUI
P H2(I) H kI)

and for k > '2

(3.29b) lu - P'a Ul' u C(k)p (k-2)JuI
H2(I) H k(I)

I ,~*. *.*V U?* I~ -. . I Nj N
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(with U(±1) u)(±1))

(3.29c) lu - 4'a ul < C(k)p- (k'4) 0og% lul
p H1I) ,k( I)

Proof. Let

Up p2 ,au

Oa == U " P2 u

p , p

Since P u E P (I), wehavep p

p/4.CL(P24 U) -p2u
p p p

and we see that

Wp - u -P 2 u.
p p p

By Theorem 3.6 with k U 4, we have

I ia- 1 < C P~
H 2 I) 112(j)

which gives

j -P u, < Cla ;- p24 U1P P H/(I) P H4()

so that by the triangle inequality and (3.1), we obtain

u~lHV=(I) - P2 U1H4I

(3.5a) now yields (3.29a).

Now let k > '4. Then we see that using (3.8), (3.15a), for '4 < < <

min(k,1),
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(3.30) I(aa-aa )(E)i - I(a(,l-,l ) - PAa((i' )))(&)I

cp-(-) la(a- p) IH g

cp- ( ')  lia-ap I (b)

cp-(E -'4) p-(k-Z) julk(I) k

using (3.13). From this, (3.29b) follows. (3.29c) will be proven analogously

as before. We have

)u = d2 (cos 2j+- ) d2j+1 (cos(2j+1)&-cos &)

j0 2j J-o

with

0

(3.31a) I d cl-+j 2 ) ' < cp-2(k-E) l2 k > ., 0 L 2 1
J-0

and

(3.31b) - Pp ( ) k

Let t min(O- '1 ) > , = 1- . Then analogously as before we get
2 2 2

'2 P4

f d & -.-_._d < Cp-(2k- log p lulk
1 pH(I)
2
p

using (3.31b). Further

11
, 1 cp-2(k-1) p _ d l

(aP29 U) dC- dEC Ju 22. l

0 0 0 (I+j) H(1)
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Scp-2(k-)p -4c lul 2 k cp-(2k-I)iui 2

H (I) Hk(I)'

IT

An analogous expression holds for f I * d&. This proves (3.29c). a
2
p

Let on I the equation

(3.32) au - f

be given with (f) E Hk(1), k 2 1/, a(x) 2 -rO > 0, and ja(I1)x)la

M1 . Obviously now u - f/a and u E Hk(I). Our aim is to find u p EP(I

p
(3.33) up I a.T.Cx)

so that

(3.34a) lu - up I, Cp (!(i)
H 2(I1)H()

respectively

(3-34b) lu - ul < p- k-14)log12p lulk
H /(I) H (I)

We have seen that (3.34a,b) can be achieved so that u = P(f/a),p

respectively up P20 Cf/a). The coefficients aj in (3.33) are then
p

determined from the conditions

+I +I

(3.35a) f 1 u T dx - I f T dx, j -0,1,...,p

respectively

(3.35b) f. 1 au T. dx f f T. dx, j
-I -1 / 2_x2

and (3.34a) is achieved for k 2 '/ For k > 14 we achieve (3.34b) so that

' ? ? h ";';:; ;:/i ' ;?' ? i," :" ' ,";";'; " < < <<" '' ; °: ' ; :', ',>.d:'
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we can then subtract a linear function. We have used here the expansion

(3.33). Of course, we can interpret (3.35) as a projection and use any basis

functions which are proper for implementation. For example, we can write

up = k ! bk~ k

k=,O

where 00 1 1, go - x, and *k, k k 2 are as defined in Section 2.1. Then

condition (3.35a) gets the form

*~1 +I

f. 1 f f ,d k - 0 ....,pZ.1 ,/ x 2  up  k  dx V7":1" a k .

from which coefficients bk may be determined. (3.35b) leads to an analogous

form. Instead of (3.35a), (3.35b) we can also use the transformed form

+r +r f
(3.36a) cos j d& f - cos j d&, j O,1,...,p

-I1 -ito

respectively

+1 1

(3.36b) f &!p cos j& d& = f f cos j& d&, j 0

where
b

ap - jX aj cos J&.
j-O0

Fast Fourier transform techniques may now be used on (3.36).

The mapping Pp can be generalized easily. Let A(x) - fa. .(x)} bep 1,j

a positive definite n x n matrix (not necessarily symmetric). Let u -

{uI....,um E (ik(1))m, k Z '/. Then we define up - {up, .... p,m ,

Up,j I Pp(I), j-...,m, so that
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P4(A P u,Aup) - p4(Au)

where P p uI , . ., p ( P (I). 4, A is defined analogously.

Theorem 3.7 immediately generalizes to

Theorem 3.8.' Let jafi)(x)J S M" Assume further that yTAy 2 aOlyl 2 ,
a0 > 0, for any y - ( ....ym) E R"m' ly2 . m 2.=y I " Yi" Then fork>

i-1

(3.37a) lu - pA -C(k)p(k m- u k ) Ckp(-)luI
0P( m I) (H H()m

and for k > V 2

(3.37b) lu - oy2'A u I C(k)p - ( - 2 lulI

(with u(+1) - (p4,A u)(+1))

(3.37c) lu - p/,A ul ( (I)) .< C(k)p (kl')og 2p lul(Hk(I))m a

As before, we are interested in finding up so that it is an

approximation to the solution of

(3.38) Au - f,

Theorem 3.8 gives a constructive way for the determination of u p and

provides an estimate of the accuracy obtained.

We have assumed in Theorem 3.8 that A is positive definite (although

not symmetric). If A is not positive definite but becomes positive

definite after permuting columns, than such an approximation having the

desired properties also exists. It is sufficient to use P 2,A' instead
p

of p14,A , where A' is the permuted, positive definite matrix

&Z"
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The positive definitness of A is only a sufficient condition for

existence of the approximation satisfying (3.37) as can be seen from the

following example. Let oL21 and 02 2  be constants and ' - a1 2 2 1 
= w

> w0 > 0 on I. Then (3.38) gets the form

(3.39a) l1 t(X)Ui + a1 2(x)u2  - fi

(3.39b) '2 1 '1 + a 2 2u2  - f2

and hence (because a°2 and (22 are constants) we get

(3.40) 42 1Up,1 + a22Up,2  P f2 "

Since both 21 and a22 cannot be zero, we may assume that a22 > 0. Then

(341 % P,

and hence

(3 .42) P (aUp1 ) P (a1 2Up, 2 ) + - f

so that

P ((al - 2)1 - P" (a p2 f2 )

22 22

Using the fact

°1°2> > -- > o,

0I 022 a22 a22

we see that up,1  having the desired properties exists by Theorem 3.7. By

(3.41), we see that Up, 2 also has the desired properties.

Vs=
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3.2. NUMERICAL ASPECTS OF P/2
p

Let us consider the problem (3.38) with m -2 on I - (-1,1)

(xl1 ul + (1 2u2  -fI

aI 1  " a2 2 u2  -f

Assume that f, and f2  are selected so that u, 1xj1 7  and u,

cash x jxjI 7. We will now consider coefficients aij of various smoothness

V) (Il sin X, Il2 - Cos x

~~~21~~ = O ,~ -sin x

II) -Co x.r x 22

11) L~q] xq+2for x <0

- xq+1 q+ far x<Z 0

(x + )q+2 for x < L

rqi
OLW ( x - +2 q f or x < '

Cx - I)q+2 f or x

a2 ~ for x < 0

-xq+2for x O

III I for -1 < x-

0 for < 4xo

I for 0O<x/

0 for.< x <

p~~~ Q * - 10;*pg
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012  "0 for -1 <x -

1 for -< x o

0 for 0 < x /1
,a

for 1 < x <1

a21  0 for -1 < x < -3/4 .0

2 for - 3/4 < x 0

0 for 0 < x

2 for 4 < x <1

a2 2  - for -1 < x -.

0 for -< x 0"

-.I for 0 < x.

0 for < x <1.

-u 2u and ni(p) =Jut-u ,£-,2"

We compute ci(p) 2 ui - UiaHd(p)  - U.

where ui, p  is the ith component of Pl4Au. Obviously, Ei  ni . The

purpose of the computation is to see the effect of the matrix A on the error

of the approximation, especially in dependence on the smoothness of the

coefficients aij .  Table 3.1 shows some of the results. We see that the

influence of the smoothness on the performance is small, as expected.

Moreover, we see that the asymptotic rate of convergence from Theorem 3.8 is

already observed for small p.

.,...~ . .;..ii
, ~ s t t . .- . .. ~ ~ ' *'* * * * pp. - f 5** -~. **.* .**. -5-."*
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TABLE 3.1

The error3 c, and nI.

p c 1  nI 2  n2

CASE I

4 2.2683-2 2.2718-2 2.1070-2 2.1150-2

8 8.2301-3 8.2586-3 7.8898-3 7.9168-3
16 2.7841-3 2.7910+'3 2.7534-3 2.7601-3
32 9.1103-4 9.1242-4 9.0843-4 9.0977-4

CASE 11, q- 3

4 2.2683-2 2.3788-2 2.1070-2 2.14886-2
8 8.2301-3 8.6852-3 7.8898-3 8.9047-3

16 2.7841-3 2.9217-3 2.7534-3 3.1241-3
32 9.1098-4 9.14950-4 9.0843-4 9.9006-4

CASE II, q " 0

4 2.2683-2 2.3117-2 2.1070-2 2.3632-2
8 8.2301-3 8.3735-3 7.8898-3 8.7462-3

16 2.7841-3 2.8326-3 2.7534-3 2.9975-3
32 9.1098-4 9.2162-4 9.0849-4 9.5976-4

CASE III

4 2.2683-2 2.2763-2 2.1070-2 2.11459-2
8 8.2302-3 8.2438-3 7.8898-3 8.1540-3
16 2.7841-3 2.8078-2 2.7534-3 2.9632-3
32 9.1104-4 9.2687-4 9.0843-4 1.0191-3
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3.3. THE PROJECTIONS AND P AND THEIR PROPERTIESp p

In the previous section we have been interested in the projection p.
P,

We can introduce the p projection as follows. Let u E Ho(I), then

pp

(3.43) Ppu I I ak k(X)
k-2 k

where $k(x) were defined in Section 2 and the coefficienLS a. in (3.43)

are determined from the conditions

+1 +1

(3.414) J1 ( u)'03 dx f u'lJ dx
p j

f u*! dx, 2,...,p
-1

(where the span of is the set of all polynomials of degree p - 2).

(3.44) may be used to define Ppu for u E H(I) as well.
p

If u H I(1), then we define analogously as before

(3.145) VU * V + * Uv
p p

'wnere

1 1 "
v - I-x, i)u(-l) + (x+l)u(l) -

2 2

and hence P. is well defined for all u E Hk(I), k > '. In [5] we have
p

proven

k %-

Theorem 3.9. Let ti( H'(1), k > I. Then •

(346 1-PpU1 cp 1u1 1%
H4 (I) H(I)
00

We see that this theorem is analogous to Theorem 3.2 (in fact, it, gives a %

Z

. I ~ . . W
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slightly better estimate). Nevertheless, Theorem 3.9 assumes that k > 1. We

conjecture that for 14 < k < 1

-k

(3.47) Sip -I) Iul > i ( k - /(k',) 2

uE H k(I) FAI(I) A )

In '2], [7] we have proven

Theorem 3.10

s p lu- ulo 2 Cp' 2,

UEH I(I) H () H (1)
0

lu - A I cp 4% l .I

H° , ) HO(!)

From Theorem 3.10 we get

*o I

(3.48) u- Plui Cp luI
% 0 (I0 (I)

but not necessarily (3.47). Nevertheless, numerical experimentation s gges;s

that (3.147) nilds for k - I/.

To snow it let for a > 0

1 00

(3.49) ua(x) = Z di*i(x)
Ii

with

d1  - e

Select -- and compute
p
a,

-- -. . . . . . . . *".

y * ' s*. *-aw,;-.; -'.-'.'-" .. *- .*: '" ";* ". ""... """ ".', . , , ". ". ". :'. " V ', ;-- "°
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XP() - lua - PpuaIH,( I

and

np CO - TXp(a).
p

2
Table 3.2 shows the values of n (a), a - which clearly indicaLe our

p p

conjecture

TABLE 3.2

The values of n (a), a -2
pp

p np p p

1 .371 11 .645
2 .479 12 .647
3 .539 13 .647
4 .576 114 .648
5 .600 15 .648
6 .616 16 .648
7 .626 17 .668
8 .634 18 .648
9 .639 19 .648
10 .643 20 .647

So far we considered the projection Pp. Let us briefly also consider

the projection PO, which is given once more by (3.43) but with (3.44)
p

replaced by

+1 +I
(3.50) f (pU)4, (x)dx - f u,(x)dx.

-1 p 1 -1

Using the results from [2], [7] it is possible to prove

Theorem 3.11

sup Plu - § 1

UEH (I) HI(I) H ( )

I0

" % %.11% % **. ~ ~ ~ %~ S ~
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l- PpUI (1)u
H0 (I6 l( I)

This theorem suggest that (3.47) holds also for the projection P0.

o1 o 1 0o
3.4. COMPARISON OF THE PROJECTIONS Pp, P p and P0

We are mainly interested in the approximation properties with respect to

the norm 1.I M The previous results show that seemingly the most robust
HOO ()
00 1v

projection is the projection P which leads to the error
p

(3.51) -u - u- <.log

H2 (I) H (I)00

for all 14 < k. (We conjecture that the term log14 p is not needed.)

The projection P leads to (3.51) also (in fact, without the term
p

log% p) but only for k > 1. For < < k < the possibility exists that the24

projection P may not converge at a1. In addition, the projection P4  can
p p

easily be generalized to . This indicates that the projection 2 is
p p

preferable, nevertheless the projection P1  is almost as good. On the other

hand, in context of the implementation in a finite element code using shape

functions based on j(x) as in the code PROBE, the projection P1  is
p

slightly preferable. The projection A0 seems to have no advantages.
p

Ir~dX*-
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4. THE p-VERSION OF THE FINITE ELEMENT METHOD

Let us consider here the convergence of the p-version of the finite

element method when Dirichlet boundary conditions are prescribed as in (2.7),

(2.8). We shall prove the following theorem

Theorem 4.1. Let the p-version of the finite element method be based on

the projection P (see (2.8)) such that
P

_ g t il < C(k)f(pi)p-(k-1) Igi]l k-(

(H2 r. (H /(r .

and let the exact solution u0 E (Hk(Q))
m , k > 1. Then

(4.2) u - u m < C(k)p(kl)max[f(p,i), log PI )lUo ,Sp (H! (a)) m  lo-pp u (Hk(a)) m" ;

Proof. For simplicity of notation, we let m 1. Let Q - T or S.

Let Ui(&,n) be defined on Q so that Ui(E,n) - uo(Fi(E,n)). Because Fi

is assumed to be smooth, Ui E Hk(Q). Hence as in [5] there exists U. E

P (T), respectively P2 (S), such that

(4.3a) U (A) - U1  (AJ)

where (A j are the vertices of Q :e

(4.3b) IUi - UiPH(Q) Cp H k(Q )

1. 'Cp ((Q)) H(Q)

< cp- ( k - 1  1 01H ()

( .3c) I - U i'p 'C - lul .( )

".,

U,

,'

',2 U.> : ' ' - " ;, ,"," ",-., ,*-; . ," ,,. -- " '%'.-',':'-' _.- .. -.-. ,-" .".. -" .- ,. -'.. V :'*'" '." '. :: ;.A *
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On every ri j € r, U1 ,p(Fil(x,y)) - Uj,p (F 1(x,y)) - ui, p - Uj,p , (0D1 j, p  # 0

and (see Section 2.3 for notation) itjW,p() "(P,j,p (F*(&)), & E I is a

polynomial of degree p in one variable with -() - O.By the imbedding

theorem

(4.4)-(k-1)[lU l +( • U l(4.4 i~tJ'Pl In' ) - " i HkQ) iH k (Q)

<Cp--) lU01Hk~a

Using Theorem 3.3, (4.3c) and (4.4) yield

(4. 5) ..4, < cp- N -1) log(/p )i,j,p k
lJPH2 (I1) H (Q)0,0

Applying now Lemma 4.7 of [6] there is a Vi, E p (T), respectively

p2 (S), such that
p

vi,j - Vij (Fi (x ,y)) = (P,j,p on rl,j,

vi,j - 0 on af i - ri, j

and

Ivi t 11ij,pl p ( - ) VvijH ( Qi )  H;0I H (11 )

Let now ri c - r and let rc r" Denote g E] p(r) such thaL,- i] . POAtp
P p p g Then on FE,

9p - Urp = u 0 - Urp gp - g

and hence

Ig- I Cp-(-) [log '42 p + f(p,%)]juj

I - I - - " * .fl-'
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and r( W (gp-ur)(F ( )) satisfies Prp E Pp(I). Pr,p(±1) - 0 as

before. Hence, in the same way as before, by Lemma 4.7 of [6] we can

construct vrL such that Vr,j = gp -Ur,p on I' vr, - 0 on ar-

r, and Ivr,Z I r _ g - UrpI )
H (a ) o H 2 (r)

r 0

Defining Gp E Pp () n HI(Q) by

(4.6) apla,- ui - Z j ,

we get

(4.7) Ju - sr'' 1 C(k)p(k-) max~log p + f(pi)]Iu01 k
H4 () i HUS)

and

up . g p on r.

This leads immediately to (4.2). In fact, by (2.8)

B(upv) = B(uo,V), Vv E Pp(a) n H'(R)

and hence
B(Up -ipv) BNu - GpV), Vv E Pp(a) n H'(Q)

p p 0~0 fi 3 )

where rp is defined by (4.6). Because up - up E Pp(f) n HO(W), let v

U- %p . Using (2.6), we get immediately

Iup - ip HI( ) ( C lu0  - P H 1( )

and hence also

IU D - UplH1( ) 1 up - pl 1( f) + l u°  - pli' 1 ( )

< CIuo -J aiH 1(Q)

NI
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This gives (4.2).

Theorem 4.1 leads to the following corollary

Corollary 4.2. Let u0 E Hk(Q), k > 1, be the solution of the problem

(27), UOIr gi], i - 1,...,n. Let the p-version of the finite element

be used with P - P or Pp = pp where i" are positive definite

matrices with C1  coefficients on ri  (see (2.7), (2.8)). Then

Iup - (H1  < cpk m ) C,

( 1 (H ))m - (H k( ))

Remark 4.1. A similar estimate follows from Theorem 4.1 for the projec-

tion P1  In fact, for this case, the following result, proved in [5], isio Pp.

true.

Let u0 E Hk(Q), k > 3/2 be the solution of the problem (2.7), Uolri

=g~ , i - 1,...,n. Let the p-version of the finite element be used with

Pp S Pp. Then

u P- uo l(H-(.))- Cp- - )ol(H k(,))m -

%-!
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