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1. INTRODUCTION AND SUMMARY.

Consider a system of independent components labeled 1 through m. We assume that the system

forms a coherent structure, which we denote by 0. In particular the system and each component are

in either a functioning state or a failed state, and the state of the system depends only on the states

of the components; see Barlow and Proechan (1981, Chapters 1 and 2) for definitions and basic facts

relating to coherent systems.

Suppose that we have a sample of n independent systems, each with the same structure 0. Each

system is continuously observed until it fails. For every component in each system, either a failure

time or a censoring time is recorded. A failure time is recorded if the component fails before or at the

time of system failure. A censoring time is recorded if the component is still functioning at the time of

system failure. From these failure times and censoring times we wish to estimate F, the distribution

of the system lifelength.

Let

T= = lifelength of system i.

We note that F may be estimated by the empirical estimator

n

where I(A) is the indicator of the set A. However, is unsatisfactory in that it does not fully

utilize the information contained in the sample. Specifically, it does not use the identity of the

components still functioning at system failure time, nor the failure times of the components failing

before system failure time.

The purpose of this paper is two-fold. First, we present an estimator P of F that does use all the

information contained in the sample. Second, we apply (in Section 2) the statistical theory of counting

processes initiated by Aalen (1978) to obtain the asymptotic distribution of P in the observational

scheme described above, and show (in Section 6) how this theory can be used to study several -ther

problems involving related observational schemes.

To construct our estimator P we first obtain estimators of the distributions of the component

lifelengths, and then combine these in a suitable way. To describe P fully we introduce some notation:

X,, is the lifelength of component j in system i;



F in the distribution of the lifelength of component j (Thus, X 1jX 2 ,... , X," are i.i.d. - Fi);

=q min(X,,,T);

Hj is the common distribution of the independent random variables Zj,..., Z,.

Here and throughout the paper the letter i indexes systems and j indexes components; i ranges

over 1,...,n, and j over 1,.. .,m. For each j, let Z(i)j 5 Z(2) -.. Z(,D" be the ordered values

of Zj, i, .., Z,n .Define

1 if Z ()$ corresponds to an uncensored lifetime (1.2)
0 if Z(j). corresponds to a censored lifetime.

(When an uncensored and a censored observation are tied, the uncensored observation is considered

to have occurred first.) Let . denote the Kaplan-Meier estimator of F.:

n - ) 6s~j(1.3)
n-i-i I1

The definition above differs from the usual definition of the Kaplan-Meier estimator in that P. (t) is

not arbitrarily defined to be 1 for t > Z(,.

For each coherent sturcture , of independent components, there corresponds a function h,, called

the reliability function, such that

(For a distribution function G, O(t) denotes 1 - G(t).) A more detailed description of reliability

functions is provided in Chapter 2 of Barlow and Proschan (1981). The estimator P is defined by

P h. (t) -(0 if t< T,,n)(1s
1 if t > T(,)

Here, T(.) = max(T1 , T2 ,... T,,). The estimator P has obvious intuitive appeal.

The properties of the Kaplan-Meier estimator have been studied extensively by various authors.

Under the assumption that the censoring variables and the lifelengths are independent, the Kaplan-

Meier estimator is the maximum likelihood estimator (Kaplan and Meier, 1958; Johansen, 1978).

Regarded as a stochastic process, it is strongly uniformly consistent (F5ldes, Rejt6, and Winter,

1980) and when normalized converges weakly to a Gaussian process (Breslow and Crowley, 1974,

Aalen, 1976, and Gill, 1983).
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The main results of this paper can now be stated. Let D[0, Tj be the space of all real valued

functions defined on 10, TI that are right continuous and have left limits, with the Skorohod metric

topology. D' 10, Tj denotes the product metric space.

THEOREM 1 Suppose F1 ,F2 ,. .. ,Fm are continuous, and let T be such that Fj(T) < 1 forj=

1, 2,. .. ,mr. Then as n --- oo

*(P -FiP 2 -F2 9-.9,- F) -(W,W2 ,...,Wn)

weakly in D7m [O,TI, where W,...,W. are independent mean 0 Gaussian processes. The covariance

structure of W, is given by

Coy (W,(t 1),W(t 2)) = P,(tl)Fi(t2 ) J L dFi u) for 0 <t 5 t2 :5T. (1.6)
Tj (U Pi R

Since in general the dependence among the IPis may be complex, Theorem 1 is not a trivial extension

of the corresponding result for the individual Kaplan-Meier estimators P,.

Theorem 1 together with an application of the delta method yields weak convergence of the

estimator P. Let%

I,(t W ~(U 1 , -.. "M) Iv U i (g),j= W (1.7)

THE RM21 Suppose F1, F2 ,. .,F,,, are continuous, and suppose T is such that F,(T) < 1 for

j=1, 2..-,min Then as n - oo
IP

ni( F) -~ W weakly in D[0, TI,

where W is a mean 0 Gaussian process with covariance structure given by

COV(W(ta),W(92 )) = F j(t 1 )Ij(t 2 )Fj(tI)Pj(t2 ) j< dFia for 0 t2 <!5T. (1.8)
j=1 f fl (Us) P,(Us)

The commonly used estimate of the variance of the Kaplan-Me ier estimate is given by Greenwood's
formula (see Chapter 3 of Miller, 1981). Since this estimate is known to be consistent (see Hall and

Wellner, 1980), it follows that for fixed t, the variance of P(t) given in Theorem 2 can be consistently

estimated. This enabies the construction of confidence intervals for F(t) in large samples.

The competing risks model corresponds to a series system. Aalen (1976) showed that for this

model, the vector of Kaplan-Meier estimates (,Pi ..... ,m), when normalized, converges to a multi-

dimensional Gaussian process, whose components are independent. This result corresponds to our

Theorem 1 for the case of a series structure. %
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We note that (assuming F,..., Fm to be continuous) the data from the competing rika model

is the death time of the system a.nd the identity of the component causing the death of the system.

Meilijson (1981) expanded this to the case of a coherent system in an autopsy model : at system

death time T, an autopsy is performed which reveals the set D of dead components (the identity of

the component causing system death is not given by the autopsy). This model yields less information

than does ours. Meilijson considered the identifiability question of when does the distribution of

(T, D) determine Fi,..., F.

The present paper is organized as follows. In Section 2 we prove Theorems 1 and 2. In Section 3

we give an application of our results to system design methods. In Section 4 we discuss the efficiency

of our estimator vs. the empirical estimator (1.1). In Section 5 we present results for a parametric

formulation of our model. In Section 6 we discuss Meilijson's model as well as other models where the

data can yield more information than just Tl,...,Tm. The appendix gives a proof of a result used in

Sections 2 and S.

2. WEAK CONVERGENCE RESULTS.

2.1. Random censoring and preliminaries.

Corresponding to a generic system, we define generic random variables Xi, Zi, 6, and T, such

that the random vector (X., Z., 6,, T) has the same distribution as (X,,, Zj., 6.j, T) for i = 1, 2,..., n,

andj -- 1,2,...,m.

In Section 1 it is noted that the strong consistency and weak convergence results for the Kaplan-

Meier estimator are valid under the assumption that the lifelengths and the censoring random variables

are independent. In our model, for each j, X, is censored by T, and for a coherent structure these

two random variables are dependent. However, it is possible to redefine the censoring variables to

circumvent this difficulty. This is best explained in terms of a simple example. Consider the structure

shown diagrammatically in Figure 2.1.

Figure 2.1.
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In the example T = X, A (X 2 V Xs), where z A y = min(z, y)and z V y = max(z, y). Consider now

component 1. Clearly X, is censored by Y, = X 2 V X 3 , which is independent of X 1 . Similarly, X2 is

censored by Y2 = XI, and X3 by Y3 
= X,.

A central result of this paper, shown in the appendix, is that this construction can always be

made: in general, for each = 1,... ,m, there is a random variable 1. such that

(Zi, 6y) = (Xi A Yi,,I(X i <_ 4.)), (2.1)

and

Xj and 4. are independent. (2.2)

Roughly speaking, 4 is the lifelength of the system if Xy is replaced by oo. Proposition A.1 states

that to determine whether or not component j's lifelength has been censored by time t, it is enough to

know the history of the other components (or of Y.) up to time t. We will refer to Y. as the censoring

variable of Xy.

In order to describe the distribution of Y we introduce some notation. For y = (yj,... , y.) E

0,11", a e 0, 1I, and = 1 , let

(a -, ) = (Y,.,P' , +I...,I YM).- (2.3)

Let ,(t) - (F1 (t),... ,Fm(t)) and recall that H, is the distribution of Z,. In the appendix it is shown

that
P(Y,. > t) = ,1,(},(2.4)

where h# is reliability function (see (1.4)). Thus,

l',.(t) - P,(t)h,(1 ., (t)). (2.5)

We now review some terminology from reliability theory (see e.g. Barlow and Proschan, 1981)

to be used in the proofs of consistency and weak convergence of P. For a coherent system of m

components, the states of the components correspond to a vector U = (U,...,Uin), where U, = I

(component j is in a functioning state). The structure function is defined by O(U) = I (system

functions when U describes the stated of the components) for U c Am, where Am = {0, 1}m. It is

well-known (and easy to see) that for p = (pi,...,pn) C [0, 1 m ,
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h# (p) =j~ (Iu I-[)I-j(26
UeA ji=l

where 00 - 1 by definition.

The Kaplan-Meier estimates F. given by (1.3) will be denoted Py' when we want to emphasize

the dependence on n; similarly for the estimate P of system life distribution. Also P. will denote tOe

vector (11 . pn).

The following lemma is needed in the proof of strong uniform consistency and of weak convergence

of F.

LEMMA For any structure of m independent components, the corresponding reliability function

h# is twice continuously differentiable over [0, 11m , and the first and second partial derivatives are

bounded in absolute value by 1 uniformly over [0, 1].

Proof: For p= (pj,...,p-,) e [0,I]- and k= 1,2,...,n, we have by (2.6),

ah - h,(lk,p) - h,(Ok,p). (2.7)

From (2.7) we have
8h 1  = 0, (2.8)

and for t 3 k,
6p2 h#, - {h,(l, le, p) - h0(l, Oe, p)} - {h,(0Okle, p) - h(Ok, 0e, p)}, (2.9)

in an obvious extension of the notation (2.3). By (2.6) h# is continuous over 10, ]M . This fact

together with (2.7), (2.8), and (2.9) imply that the first and second partial derivatives are contin-

uous on [0, 1rn; hence, by Theorem 6.18 of Apostol (1964), h# is twice continuously differentiable

on [0, 11'. Equation (2.7) implies that the first partials are bounded in absolute value by 1. Since

each of the two quantities inside the braces on the right side of (2.9) is between 0 and 1, it follows

that the second partials are also bounded in absolute value by 1. The lemma follows since p is arbitrary.

We now establish the strong uniform consistency of F and give the rate of convergence.

PROPOSITION 2.1. Let T > 0 be such that for j = 1,...,m,min(F,(T),Pj(T)) > 0. Then

() P sup P(t)- F(t) - ----
0<t<T nd,
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(b) If F,..., Fm are continuous, the rate

0(ellI may be replaced byo0( eFt n lfl)

Proof: The convergence results for the individual Pi's given in F61des, Rejt6, and Winter (1980) and

F6ldes and Rejt6 (1981), respectively, together with Lemma 2.1 yield Parts (a) and (b), respectively.

2.2 Proofs of Theorems 1 and 2.

A review of the counting process and martingale theory used below is given in the survey paper

of Andersen and Borgan (1985). Throughout, we adopt the convention that 0 = 0. The index n

defining a process is suppressed whenever possible.

To prove Theorem 1, we will show that for any T > 0 satisfying max<,<m F(T) < 1, that

[#,- F, FM - Fm) (W, . W,), (2.10)

where Wl',... ,W, are independent mean zero Gaussian processes with covariance given by

*02) t dFj(u) "

Cov(Wj(t),W;(t 2)) = f (tU ) for (U) t, _< t2 <T . (2.11)

(Now and henceforth, the symbol d signifies weak convergence in D'[0, T.) Theorem I is a easy

consequence of (2.10) and Theorem 5.1 of Billingsley (1968).

We prove (2.10) by a general method introduced by Aalen (1978) and later refined by Gill (1980).

We define the stopped process F," on [0,oo),j = 1,2,... ,m, by

F*(t) = F,(t A Z(.),), and F'(t) = 1 - F;(t), (2.12)

and show that F, /, - Fie . :,:
S"" )(w ... ,.w), (2.13)

This is enough to prove (2.10), as it is easy to see that the difference between the left side of (2.10)

and the left side of (2.13) converges to 0 in probability in D"I0, TI.

To show (2.13) we first establish that for each n,

ni Fj(2.14)

7
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... ... +W M... T . . .

are orthogonal square integrable martingales with respect to an appropriate family of a- fields. Weak

convergence in (2.13) then follows from a multivariate version of a martingale central limit theorem

due to Rebolledo (1980). The orthogonality allows a simple extension to the multidimensional case

of the proof of weak convergence given by Gill (1983) for the one dimensional case.

To show that the processes in (2.14) are orthogonal martingales, we will need to be careful about

the families of a-fields that we use.

We define the following processes on [0, o); these correspond to the situation where we imagine

that no censoring occurs.

N 3(t) = I(X,, t); (2.15)

Ny(t) = N,(t); (2.16)

y(t) = I(X,, > t); (2.17)

V(t) = Z ii (t); (2.18)

,(() dFy(j); (2.19)
f~It

A,(,) f= (2-,20))
j=1

M,((t) = AN(t) - AZq(t); (2.21)

=ItMj(t) = N(t) -Aj(t) (= EMij(t))" (2.22)

We further define the following filtration:

At = completion of a(Nj(-); 1 < i< n, 1 < j:5 m, a< t). (2.23)

In Section 6 we will consider censoring schemes that are more complicated than the ones involved

in Theorem 1. Therefore, we wish to give a proof of the fact that the processes in (2.14) are orthog-

onal martingales that can apply to more general censoring mechanisms. Thus, corresponding to an

arbitrary censoring mechanism for component j of system i, let

C1j(t) = I(Xj, is under observation at time t). (2.24)

In the present situation,

c,( = I(Y, > t), (2.25)

8



where Yi, is defined by (A.2).

We define the following entities; these correspond to (2.15)-(2.23) for the case of censoring.

Ni.c(t) = Cii(s)dN(,); (2.26)

n

NV'(t) = i ~N (t); (2.27)

t11

I (t) = ZV ,(a); (2.29)
i= 1

jj (t) -- f' (t)- f(t); (2.32)

n
A1o(t) = N(t) A A(t) (2.33)

r,%= completion of =(Nj,(s); 1<i<n, 1<j <m .9<t). (2.34)

We further define

A (t) = I(, ) > 0). (2.35)

The following proposition (Theorem 3.1 of Aalen and Johanseni, 1978 and equation (3.2.12) of

Gill, 1980) is fundamental in establishing that the processes in (2.14) are orthogonal martingales.

PROPOSITION 2.2. Suppose Fl,..., F, are continuous and t > 0 is such that maxlj<mr Fj (t) < 1.

Then for each j and for all n,

M___(t) _._(t) 0 N.[J() .dM((s), (2.36)

Our plan is to show that M(t),j 1are orthogonal martingales with respect to either

Ittc [0,T) or {; t 1 [0,T. Then we will use Proposition 2.2 to obtain the same conclusion for

the processes in (2.14).

The following general lemma, which is well-known (see, e.g. Andersen et al., 1982), is an essential 

part of our proof that the processes in (2.14) are orthogonal nartingales.

9
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Lemma 2 Let M,.(t),Cii.(t),and M(t) be defined by (2.21), (2.24), and (2.32), respectively. Let

T satisfy F,(T) < 1 for each j, and Let {At; t c [0, TJ} be a filtration such that

(i) Ci.(.) is At-predictable

(ii) {(Mq (t), At); t c [0, TJ} is a square integrable martingale. Then,

{(M-(t), At);t e [,TJ} is a square integrable martingale.

Proof: From (2.32), (2.26), (2.30), (2.28), (2.21) and (2.19) it follows that

.tMiyW= foCi () i ()2.7

Since the integrand in (2.37) is At-predictable and Mi . is square integrable on [0, T (in fact uniformly

bounded), the Stieltjes integral in (2.37) is a stochastic integral and is a square integrable martingale

(see Aalen, 1978, p. 703 for a discussion).

Let us see how Lemma 2.2 applies to the present situation, where Ci.(t) = I(Yj 2! t), with Y,

defined by A.2. Part (ii) of Proposition A.1 (in the appendix) asserts that this censoring process is

.j-predictable, where Xt is defined by (2.23). Now it is well-known that if

t(i = completion of a(Nij(a); a < t)

then (Mi, (t), jrt.j)) is a (bounded) martingale (on [0,T]); see e.g. Davis (1983, pp. 136-7).

Since Xii,i = 1,...,n, j = 1,...,m are independent, this implies that (Mii(t),4) is a martingale

on [0,T]. Lemma 2.2 therefore asserts that {(Mic.(t),.r);t c [0,T]} is a martingale. It is easy to

check that M .(t) c 7t with 3r' defined by (2.34). Using the fact that t C 7t it is easy to see that

{(Ma.(t), ctc);te [0,TJ} is also martingale. Since the sum of martingales is a martingale, this gives

that

{(M,(t), ; t e [0, TI} and {(M'(t),It);t c [0, TJ} are square integrable martingales, (2.38)

with
{A (t)ifjs =j2

<M ,,Mc, >(t)= {A (t) if i I = 2 (2.39)

the orthogonality in (2.39) resulting from the fact that the counting processes Nf(t),..., N (t) have

no common jump points with probability one (see, e.g., Theorem 2.3.1 of Gill, 1980).
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Let us now apply Proposition 2.2. It is easy to see that for each j, the left continuous processes

i(s)(-), and V1.(s) are adapted to either {I) or {7r'}. Therefore, the integrand on the right

side of (2.36) is predictable with respect to either {Y,} or {I"}. Since this integrand is also bounded

and since the square integrable martingale Mil is of bounded variation, the integral in (2.36) is a

square integrable martingale, with covariation process

(n l PYI ) I Pho))
n .'()~~e ph V, (a)h d < Mi,,M > (s.(2.40)

Equations (2.39) imply that this quantity is 0 if 31 #j2, and that for each j = 1,...,m, t C [0,TI,

Knt< ),ni Q} t) = n V F()
2 I

=n dF,(a). (2.41)

The proof of the weak convergence result for each individual 01 (PF - Fi) is now the same

as the proof of Theorem 1.1 in Gill (1983), which uses Theorem V.1 of Rebolledo (1980). The joint

weak convergence in (2.13) follows from the orthogonality result in (2.39) and (2.40), and a simple

multivariate extension of Rebolledo's (1980) Theorem V.1.

We now prove Theorem 2. The uniform bound for the first two partial derivatives of h, given by

Lemma 2.1 together with Taylor's Theorem imply that for each t [0, TJ,

,nllt F (t)- E Ii(t) (Pi (t) - F,,(t))I

j= 1

S= h=1 !<<T O<t<T

The right side of (2.42) converges to 0 a.s. by the results of F6ldes and Rejt6 (1981). We use the

fact that convergence in sup norm implies convergence in the Skorohod topology (see page 111 of

Billingsley, 1968) to conclude that the process
m

,,iP(t) - F(t) - j .,(t) (.,(t) -. ', ,-jI r 0 a.s. in D[0, TI.
j= 1

11



Thus, the proof follows by showing that

In x I(t) (Py(t) - Fy (t)) _d+ W,j= 1

which is a consequence of Theorem 5.1 of Billingsley (1968) and Theorem 1.

To construct confidence intervals for F(t), we define the following functions and processes on

[0, 00).

G(t) tdF2(a) .

G (,2(f)) t d (- t) 6(o),
(t t) Jon.-F,.s n-f)n-)I

n , :Z (n-+

where

E = I(Z > t).
= 1

Also define

(t) -- h l ... (2.43)

The quantity !LW is called Greenwood's estimator of the variance of A (t).

LEMMA 2.3. Suppose Fl,...,Fn are continuous and T > 0 is such that maxl<j<m F-(T) < 1.

Then '1 )(t)di(t) is a strongly consistent estimator of 12 (t)G,(t).

We note that in view of (1.8), Theorem 2 and Lemma 2.3 enable the formation of asymptotic

confidence intervals for F(t), t c [0, T.

Proof : Part (a) of the proposition in Section 2 of Hall and Wellner (1980) together with the conver-

gence results of F6ldes and Rejt6 (1981) imply that di(t) is a strongly consistent estimator of G,(t).

Lemma 2.1 implies that the partial derivatives of h# are continuous. Thus, it follows from Proposition

2.2 that i (t) is a strongly consistent estimator of 1j (t). The proof follows.

3. ESTIMATION OF THE RELIABILITY IMPORTANCE OF COMPONENTS.

The quantity Ii(t) defined by (1.7) is called the reliability importance of component j at time t.

Its natural estimate is li(t) given by (2.42). Let Ci,... ,em be small numbers. Note that

h(PI(t)+ +m,...,Pm(t)+Cm),- )r(i(t),..., (t)) CijI(t).

12



Thus, the reliability importance of components may be used to evaluate the effect of an improvement

in component reliability on system reliability, and can therefore by very useful in system analysis in

determining those components on which additional research can be most profitably expended. For

details, see pages 26-28 of Barlow and Proschan (1981), and the review by Natvig (1984).

PROPOSITION 3.1. Suppose Fl,..., Fm are continuous and T > 0 is such that F(T) <1, j

1,2,...,m. Then
1/ ,,.. .. r) (YI,...Y,,),

where (Y1 ,..., Ym) is a vector of mean zero Gaussian processes whose covariance structure is given

by

COV (Yj,(t 1), Yh(t 2)) = E( 42h I U=Tt1) a2 h3j I £=(t )
k=1 (uj uka

k (t 1) Ak 02) t dk()_,for 0 < tj <5 t2 <5 T and l,j2 = 1 .

As before, the covariance terms in (3.1) can be estimated consistently, enabling the construction of

confidence intervals for I-(t).

The proof of Proposition 3.1 is similar to that of Theorem 2 and is omitted.

4. EFFICIENCY OF F vs. THE NAIVE ESTIMATOR F emP.

Define the asymptotic relation efficiency of F vs PerP (see (1.1)) at time t to be the ratio of the

asymptotic variance of Femp (t) to that of F(t)

ARE(t) = F(t)p(t) 1(t). ,(t) dF(u) (4.1)/ = ,,, 0 fj)f

We assume implicitly that Fl,..., Fm are continuous. In (4.1) we assume that t is such that the

denominator is not 0. The condition Fy (t) c (0, 1) for all j is sufficient (but not necessary) to insure

this. Let r. = sup~t; Fj(t) < 1}, and let r = maxi r.. Thus, r c (0, oo]. It is difFcult to study ARE(.)

since this quantity depends on the system as well as on Fl,..., Fm and on t. We shall consider in

some detail the cases of series and parallel systems, since these are often considered extreme cases

in coherent structure theory. Indeed, in our situation series systems give rise to maximum possible

censoring, while parallel systems give minimum possible censoring (i.e. no censoring at all). Thus, a

study of these special cases will give insight on the behavior of ARE(.).

13



For series systems,

(4.2)

The validity of (4.2) for a series system of two components is well known (cf. the argument leading to

equation (2.6) of Efron, 1981) and the extension to general series systems presents no difficulty. Thus,

there is no added advantage gained by considering the component failure times when estimating the

life distribution of a series system.

We now consider parallel systems. The reliability function is

h~,,.,p,)=1 'I(1-p;,0 < Pi _1 (4.3)
i-1

and since there is no censoring, Sj(u) = P,(u). Thus, from (1.8) the asymptotic variance of P(t) is

A. VarP(t) , ~(fl F,,2(t) ) Fjt) Py(t). (4.4)
j=1 hoj

This formula can also be obtained directly since the absence of censoring makes Theorems I and 2

trivial. The restriction of t to the interval 10,T] where T satisfies Fj(T) < 1 for all j is superfluous.

From (4.4) we see that

ARE(t) = EM P(t)/F(t) (4.5)

PROPOSITION 4.1. For parallel systems,

(i) ARE(t) > 1 (4.6)

for all t such that Fj(t) > 0 and t < r; the inequality is strict if there are at least two

values of j such that F,(t) < I (i.e. at time t, we do effectively have a system of at least 2

components).

(ii) Lim,/, ARE(t) = 1.

(iii) Assume that Fj(t) > 0 for all t > 0 and alI j. Then

lir ARE(t) =o.t-0

Proof of (i) By (4.5), we see that (4.6) is equivalent to

. _ _ r -1. 
(4.7)
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We prove (4.7) by an induction argument on m. For m - 1, (4.7) holds trivially. Assume (4.7) for

m - 1, and consider the fxpression

We use the induction hypothesis on the second sum in (4.8) to obtain that

B > 1M 1 (4.9)-F[,. Flt) F,"&-I HJF, (t) ,

The right side of (4.9) is equal to

.) (t) (4.10)
FjFm(t)

".

which is nonnegative. Thi establishes the induction step, and consequently (4.7). If there are two

values of j such that F,(t) < 1, then without loss of generality assume that one of these is = .

Then, (4.10) is strictly positive, and hence ARE(t) > 1.

Proof (ii) From (4.5) we see that

(1 - I', F,(t))/F(t)
ARE(t) =j(t)/F(t)

Let e > 0, and let 6 > 0 be such that if t (r- 6,r), then ,(t) < r, for j 1,...,m.Now let

t 1 (r - 6,r), and consider first the expression

ARE(t) = 1 - H(41 F,((2).E,. F,(t) 1.2
,=PW

Substituting 1 - F, (t) for F,(t) in the product on the right side of (4.12) and expanding this product,

we see that

RE (t) I + S (4.13)

where S is a sum of termi of the form

PhW Ph W, ), M > 2. (4.14) .

Each of the terms in (4.14) is less than c. The result now follows from the fact that

ARE(t)(I - c) !5 ARE(t) ARE(t)( (

15
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Part (iii) is a special case of Proposition 4.2 below, which states that the efficiency of the naive estima-

tor P"(t) can be arbitrarily low for systems where all the components are inesential: p,(0, 1) = 1

for all j; i.e. failure of any particular component does not necessarily cause system failure. Examples

of such systems include k out of m systems for k < m - 1. We will assume that Fj(t) > 0 for all t

and all j; this is to avoid problems involving division by 0.

PROPOSITION 4.2. If all components are inessential, then

lir ARE(t) - oo.t-O

Proof: It is more convenient to work with (ARE(t))-. From (4.1) we have

(ARE(t))-' = F 1.(,,,2 (,,} (4.15)F () P (t)

Let c > 0, and let 6 > 0 be such that if t 1 (0, 6), then fl.(t) > 1 - e for all ". Then, we also have

P(t) > 1 - c and Pj(t) > 1 - e for allj.

Consider the expression (t)) =(t
FA)) (4.16)

It is easy to see that for t c (0, 6),

At)(1 _ C)2 < (ARE(t))-' < A(t)(1 - )-. (4.17).

Thus, we will work with the simpler expression A(t). Let

ri (t) Fi(t)
,. . (4.18)

We will show that for each j,Aj(t) -+ 0 as t -0 0. We now consider A,(t), and to ease the notation,

assume without loss of generality that j = 1. Using (2.7) and (2.6) we have

A{(t) = {U _ Am- (P(1, U) - j(0, U))O(U; t)} F, (t) (4.19)
A (- UA._(I - V(1,U))O(U;t)FI(t)} + {MUA_ -(1 - jo(O,U)),k(U;t)F(t)}'

where FM

tJ(U;t) I P (t)U JF(t)1-u,. (4.20)
j=2

In (4.19) and (4.20), U is in A -,.- and the vector (a, u) is in A,,,, for a = 0 or 1. Let C =

(U A.-.;p(l,U) = I and p(0,U) = 0}. Then, clearly, the numerator of (4.19) ranges only over

16



U i C. Since deleting the sum inside the first set of braces in the denominator of (4.19) increases the

ratio (4.19), we obtain that

A,(t) o _ - (p(0,U)).U;t) (4.21)

Note that if U e C, then j$o, U) = 0; therefore, from (4.21) we have

A& (t) < M Cf(u; t) )2  (422
-u ,C (U; t) (4.22)

Let U e C, and consider now 4i(U; t). Note that since component 1 is an inessential component,the con-

dition ip(0, U) - 0 implies that there exists a j 1 {2,..., m} such that U . - 0. Therefore, Y(U; t) < C.

This fact, together with (4.22) implies that Ai (t) is bounded above by c times the cardinality of C.

Since c was arbitrary, this completes the proof. g

Let us consider the implications of Proposition 4.2. Suppose that the life testing experiment

is carried out over limited time span. If the system is made highly reliable through a great deal of

redundancy, then even though we will see many component failures, we will see very few actual system

failures over the time span of the experiment. Thus, information from component failures becomes

important. In this case the cost of designing and running an experiment which permits continuous

monitoring of component failures may be far outweighed by the greater accuracy gained by using the

estimator P.

Since, as was mentioned earlier, series and parallel systems are considered extreme cases in relia-

bility theory, we are led to conjecture that for arbitrary coherent systems:

(i) Let I C (0,oo) be the set of all t such that the denominator of (4.1) is nonzero. Then

ARE(t) >_ 1 for all t c 1, with equality for all t t I only for series systems.

(ii) Limt/.pupARE(t) = 1.

(iii) ARE(.) is monotonically decreasing.

The estimator P may be thought of as the nonparamnetric maximum likelihood estimator

(NPMLE) of F. Informally, this is because of the well known result that the Kaplan-Meier esti-

mate is the NPMLE of a distribution function when the data are right censored. Thus for eachy, ,

is the NPMLE of F,; an extension of this is that P x ... x P, in the NPMLE of F, x ... xFm (the

x denotes product measure). The invariance principle for maximum likelihood estimates implies that

17



(4(P,...,P ) is the NPMLE of 14(Pi,..., Am). Of course, this by itself does not in any way imply

any asymptotic optimality result.

5. PARAMETRIC MODELS.

In this section we consider a parametric formulation of our problem. We assume that F(t) =

Fj(t; D) in absolutely continuous, with density f.(t;D), where 0 = (0,,...,D,) belongs to an open

subset ej of RP-", for j - 1,... ,m. The distributions F.(t;*j.) are not assumed to come from the

same parametric family. Denote

, SO {(Z11, 6,),... ,(ZjS;)} (5.1)

and let

Li(E) = fi f,( 8A') P,(Z,,; 6j) (5.2)
im I

Let j, be the value of 0., maximizing L,(Sj). The main results of this section are that under certain

regularity conditions on the parametric families Fj(t; 0j), the estimators j, are individually asymptot-

ically normal and furthermore asymptotically independent. The results follow from the development

of Section 2 and the results of Borgan (19841.

Frequently in reliability it is possible to specify, for certain indices j,... , j, a relationship among

F,,..., Fj,, for example F, = ... = F,. In such situations it may be possible to estimate 0.,, from

the combined data (Zj,,6.,),...,, (Z,,,6,). This is the case for example for parallel systems of

identically distributed components. We do not assume any known relationships among the F'. It

is also possible to specify parametric models for certain F's but not for others. We do not consider

this either. The techniques used below will, however, indicate how such problems may be addressed.

Let C,(Di, .... ,,) be the (full) likelihood of (Z,,6.). By the random censorship established by

(2.1) and (2.2), we have

= L,9,),(e,. .. ,9,,)(5 3)

where

j,(0 1, ..) =l h# ),,,(l4j; 0 ),... .&;.)'"',,I

{ [ .( A),a(Z,;91).... 1 , (Z,,;0.)] (5 4)

with g,(I,,(t)) given by (2.4). Since we do not assume any known relationships arnong the

F$(t;9,)'s, it follows that L, does not depend on 0!. Thus, the only important part of the likelihood
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is L,(j). (The condition that 4, not depend on Oi is referred to in the literature an "noninformative

censoring" .If Ly, does depend on 0., then Ly is viewed as a "partial likelihood" ; see Chapter 5 of

Kableisch and Prentice, 1980).

Letting aj(t;Oj) = f,(t;Oj)/1P(t;O9) denote the hazard rate, (5.2) may be rewritten as

L ((u;90)du)}. (5.5)

By (2.27) and (2.29), we have

log Ly (0i) =f log -my (u; Oy) dNj (u) - f %y,(u; y) Vic (u) du.(56

Let

UA (t; 0j) =j (u 0j i u j dN'* (us) - f j (us; 0j) Vc(u)dus,

forj=1,...,m, k--1,...,p,. (5.7)

Thus, differentiating under the integral sign in (5.6) (we will impose regularity conditions later) we

obtain

log L(EJ RA Uij.(00; 0j) (58

Referring to equations (2.31) and (2.33), we have

Borgan (1984) shown that for fixed j, under certain regularity conditions (see below) if we assume

only that

(M, (t),Y~~i a locally square integrable martingale with < MXc.,M(-) > (t) = A'(t), (5.10)

then with probability tending to 1, the equations

U,(0;9 =0, k = 1,(11)

have exactly one consistent solution (call it dj), which i a local maximum of L,( ,). Furthermore,

this solution is asymptotically normal. In our setup L, (0)) is proportional to the likelihood of (Z,, 6)).

19
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However, it is important to notice that the results concerning ij are valid whether or not this is the
cue.

Consider now Assumptions A-D of Borganr (1984) (with i = 1). Assume that these hold for every

" - 1,... ,m, with Y.(u) and v,(s) in his paper given in our paper by V17(u) and A.(u), respectively.

Also make the notational change that t ranges over the positive axis instead of over 10,11.

IHEQREMtL Under the above assumptions,

(i) With probability tending to 1, for each j the likelihood equations (5.11) have exactly one

consistent solution I, nad )i is a local maximum of L.(O,).

(ii) /(J, - 00, - 00) is asymptotically normal, with mean 0 and covariance matrix

0 ... 0
(o... 0

.1.

0 0 ...

where 1 is the inverse of the pi x pi matrix whose k, I-th element is

-S -ay ( ; jo) a ; *) R S ( ) d .ay:

Furthermore, ', may be consistently estimated by the matrix whose k, -th element is

1 a2;- - log L(0) II..,

Proof % Our (somewhat sketchy) proof relies heavily on Theorems 1 and 2 of Borgan (1984). As was

mentioned ealier, the starting point of Borgan's proof is the assumption that (5.10) above is valid.

That this is the case follows by (2.38) and (2.39). Part (i) follows directly from Theorem 1 of Borgan

(1984).

To obtain the distributional result of Part (ii) we proceed as in the proof of Theorem 2 of Borgan

(1964), noting in addition that the orthogonality relationships given by (2.39) imply, via (5.9), that for

21 #22, k- = 1,...,p,,, k2 = 1,...,ph, the locally square integrable martingales U,,k(. ;OI and

Uhh,(. ;*A) are orthogonal. The distributional result follows by the argument in Billingsley (1961,

Theorems 2.2 and 10.1). The consistency of the variance estimate follows directly from Theorem 2 of

lorgan (1964).
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6. RELATED OBSERVATIONAL SCHEMES.

In Theorem 1 (and also in Theorem 3) we assumed that the component lifelengths are censored

by system lifelength. The fact that the censoring process Cj.(t) = I(Yj 2! t) is predictable was key

to the development of our results. It is therefore clear that our treatment can be used to approach

other problems which involve predictable censoring of Xj.

Examples of predictable censoring include experiment termination after a prespecified time, cen-

soring of the lifelengths of certain components by independent outside causes, experiment termination

after a prespecified number of observed failures of component j, etc. An especially interesting class

of examples is given by systems in which the failure of a subsystem prevents further monitoring of

any of the components comprising the subsystem. For component j in system i, let T(J) denote the

lifelength of the subsystem whose failure would prevent further monitoring of component j. Then

Xij. is censored by T A Ty}. The proof that for each j the censoring process is It-predictable is only

notationally different from the proof of Part (ii) of Proposition A.1. The processes corresponding

to (2.14) are still orthogonal martingales with respect to {I}. The weak convergence result is the

same except for the calculation of the S'j's. Formulas for Ay can be readily obtained by using the

concept of a modular decomposition of a coherent system (see pp. 16-17 of Barlow and Proschan,

1981). These formulas are, however, notationally rather messy since in general a component may be a

* member of several subsystems and one therefore has to specify for each j the subsystem whose failure

would prevent further monitoring of component j. It should be kept in mind that precise formulas

for the asymptotic distribution are not necessary for the construction of confidence intervals: these

are obtained through Greenwood's formula (cf. Lemma 2.3).

Consider now Meilijson's (1981) model. Let Di be the set of components that are found dead at

the autopsy of system i. The data is then {(T,Di);i = 1,... ,n). The censoring of X,. by T, is now

quite complex: there is not only both right censoring (j X D,) and left censoring (5 e D), but ifj e Di

we do not know if Xj, < T or if Xj, = T (component j caused system death). The distributions

Fl,..., F,& are not necessarily identifiable from the distribution of (T, D,). For example, for parallel

systems, D, is always (1,... ,m}; it is clear that F,... ,F,. cannot be identified from 11', F., the

distribution of T1. Meilijson gave conditions on the system and on F,..., F,n for identifiability.

The problem of estimating F from the data is very interesting, but does not seem amenable to our

approach.
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APPENDIX: RANDOM CENSORSHIP,

In Section 2 we assumed the existence of a censoring random variable Yj that satisfies (2.1), (2.2),

and (2.4). Here we define Y1, formally prove that it satisfies (2.1), (2.2), and (2.4), and prove that

censoring is h-predictable, where 7, is defined by (2.23). Define the binary function 4', by

ul,. .. ,u,)-= 4'(li,,...,Um), Ui- -- 0,1, k = 1,2,. .. ,m, (Al)

where 0' is the structure function. (See the paragraph preceding equation (2.6).) The censoring

random variable Yj is defined as follows:

Yi, =sup{t; O,(I(X, 1 > t),...,I(X ,,m > t)) = 1}. (A2)

PROPOSITION A.1.

(i) For each j, Y 1j,Y 2j,..., are i.i.d. random variables satisfying (2.1), (2.2), and (2.4).

(ii) The censoring process defined by

Ci(t) = I(Yi, _ t) is t-predictable.

Proof of (i)_: It follows from (A2) that Yj. is afunction of the vector (1j,I(Xji > t),...,I(Xjm > t)).

Thus it follows that Y 1j,Yy,..., are i.i.d. and that Yj satisfies (2.2).

We proceed to prove (2.4). The structure function 0 is increasing in its arguments (see Definition

2.1, page 6 of Barlow and Proechan, 1981) and hence a fortiori 4'. is increasing in its arguments. Thus

{Y4" > t} {O'Y(I(Xit > t),...,I(Xim > t)) = 1} (A3)

and so
P(Yii > t) =P(4Oi(1(Xjt > t),...,I(Xj,, > t)) -- 1). (AM)

It is easy to see that the right side of (A3) is equal to h.,(1.,,E(t)) and so Yj. satisfies (2.4). To prov !

that Yi, satisfies (2.1), we consider two cases: 6j = 1 and 6 , = 0. We first prove (2.1) for the case

6, = 1. Since 0 is increasing in its arguments,

sup{t; M(I(XI > t),... ,I(Xm > t)) = 1}

< sup{t; 4*j(I(Xji > t),. .. ,(Xjm > t)) = 1}. (AS)
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It in clear that the left side of (AS) equals T and the right side of (AS) equals Y,. Hence

T :< Y,. (A)

Since 4i = 1,
i :i- (A7

It is immediate from (A) and (A7) that X,. _5 1Yi, which implies that (2.1) holds for this case. We

now prove that (2.1) is satisfied if 5., = 0. Since 6'j = 0, it follows that X,, > T = Zi. Hence

0 = O.(I(Xil > Zi1 ),..., I(Xiim > Z,')). Thus it follows from (A2) that

It is easy to see that (A6) hold for this case. Thus Y,, = Z,., which implies that (2.1) is satisfied for

this case.

Proof of (ii) From (A3) we see that

{Y" > t} e At, and this implies that {Y _ t} c F.-

The left continuity of Ci now gives the 3-predictability. ".5.
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