

MICROCOPY RESOLUTION TEST CHARI NATIONAL BUREAU OF STANDARDS 1963-A

8c ADDRESS (City, State, and ZIP Code)				10. SOURCE OF FUNDING NUMBERS			
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Inc.	ude Security C	lassification)		L			
. Phonom	Shifts and	Strains in St	rain-Layered (G	a _{1-x} In _x)As	•		•
BURNS, (Gerald; WI	E, Chu-Ryang;	DACOL, Frank H.	; PETIT, G.D	.; WOODALL	. J.M.	
13a. TYPE OF Technica	REPORT al report	136. TIME CO FROM <u>8/1/</u>	VERED 86 TO <u>7/31/8</u> 7	14. DATE OF REPO	1987	th, Day) 15. PA	ge count
16. SUPPLEME	NTARY NOTAT	ION					
17	COSATI	CODES	18 CURIECT TERMS	Continue on reven	a if occursor	od identify by I	Nock number)
FIELD	GROUP	SUB-GROUP					
			Semiconduc	tors			
			and the settle has block a	<u>.</u>			
(3. MB31 (MG)		reverse in necessary i					
Wa	h			Demen techni		L	
rocking	nave measu	ured the phono bhique) in (Ga	n frequencies (on GaAs (10	que) and t 0) substra	ne strains tes – Films	(X-ray with
various	x-values	and various th	icknesses were	studied. Th	e films ra	nge from pe	rfect
epitaxia	al ones to	those that ha	we relaxed by d	ifferent amo	unts. Usi	ng both of	these
measure	nents, all	of the films	gives internal	agreement, w	hich indic	ates that	•
the Rama	an techniq	ue can be used	tor in situ mo	nitering of	the growth	process.	
•							
-					•		
20. DISTRIBU	TION / AVAILAB	UTY OF ABSTRACT		21. ABSTRACT SI	ECURITY CLASSI	FICATION	
	SIFIED/UNLIMIT	ED 🖸 SAME AS R	IPT. 🗖 OTIC USERS	I			

OFFICE OF NAVAL RESEARCH

Contract N00014-86-K-0622

Technical Report No. 8

Phonon Shifts and Strains in Strain-Layered $(Ga_{1-x}In_x)As$

Ъy

Ş

1 - A

	Accesion For					
G.D. Petit, \mathbf{C}' and J.M. Woodall \mathbf{C}'						
Prepared for Publication in the	NTIS CRA&I DTIC TAB Unannour cod Justification					
	Rv					
Applied Physics Letters Distribution/						
	Availability Codes					
(a) IBM T.J. Watson Research Center Yorktown Heights, NY 10598	Dist Avail bird for Dist Special					
(b) State University of New York at Buffalo Dept. of Electrical and Computer Engineering Bonner Hall, Buffalo, NY 14260	A-1					
July, 1987	DTIC ROPY INSPECTED 6					
Reproduction in whole or in part is permitted for any purpose of the United State Government						
*This document has been approved for public release and sale; its distribution is unlimited						
1						

PHONON SHIFTS AND STRAINS IN STRAIN-LAYERED $(Ga_{1-x}In_x)As$

Gerald Burns,^(a) C. R. Wie,^(b) F. H. Dacol (a) G. D. Petit,^(a) and J. M. Woodall.^(a)

(a) IBM T. J. Watson Research Center Yorktown Heights, NY 10598, USA

(b) Dept. of Elect. and Computer Eng., SUNY at Buffalo, Amherst, NY 14260

Abstract

We have measured the phonon frequencies (Raman technique) and the strains (x-ray rocking curve technique) in $(Ga_{1-x}In_x)As$ films on GaAs (100) substraites. Films with various x-values and various thicknesses were studied. The films range from perfect epitaxial ones to those that have relaxed by different amounts. Using both of these measurements, all of the films gives internal agreement, which indicates that thte Raman technique can be used for in situ monitering of the growth process.

1

There is a great deal of interest in non-lattice matched heterostructures¹ where, for example, a film of one cubic semiconductor of a given lattice constant is grown on a substrate of another cubic semiconductor with a different lattice constant². For most device applications it is important that the non-lattice matched epi-layers are commensurate (or pseudomorphic) with respect to substrate and to avoid any lattice relaxation which leads to either interface misfit dislocations or a high density of threading dislocations³. Lattice relaxation⁴ during epitaxy will occur when the layer thickness exceeds some critical value h_e due to excessive strain energy¹. At present RHEED is the only practical in-situ method for characterizing lattice constants during growth under high vacuum conditions³. Unfortunately the e-beam energies used in RHEED adversely affects the surface properties and hence subsequent interface properties of the grown layers. Therefore, it is desirable to have an alternative method for in-situ characterization which operates at low energy and power densities, and which can be used under any pressure conditions. Raman spectroscopy is one possible candidate which meets these criteria.

We report measurements in thin $(Ga_{1-x}In_x)As$ films grown on GaAs substrates. Principally we have looked at samples in the range $0 \le x \le 0.2$ and measure the optic phonons (by the Raman technique) and the parallel and perpendicular strains in the film (by the x-ray rocking curve technique)⁶. For a given value of x, we measure films of various thickness, so that they are strained by various amounts.

The films, similar to those reported previously², are grown by MBE on (100) oriented GaAs faces. The x-ray rocking curve measurement were carried out using the Fe K α , radiation in a non-dispersive double crystal geometry⁴. To measure the lattice constants of the film, the 400 reflection was used to obtain the lattice constant normal to the sample surface, and the 422 reflection, with a large angle of incidence, to obtain the in-plane constant. The angular separation of the rocking curve peaks due to the misorientation of the film has been cancelled out by taking an average of the two rocking curves differing by 180 degrees in angle with respect to the sample normal. The Raman measurements were performed using a 5145 A laser with a standard double monochrometer.

Because the GaAs substrate is massive compared to the film, the substrate is assumed to retain its normal internuclear distances, with a lattice constant given as a_x . For the film we use the term parallel to denote lattice constants in the film parallel to the (100) plane of the substrate; thus a_{r_i} is the parallel lattice constant of the film. Similarly, a_{r_i} is the perpendicular lattice constant of the film.

The seven single crystal films of $(Ga_{1-x}In_x)As$ on (100) GaAs substrates that were studied are listed in Table 1, where the value of x and nominal film thickness is given. Consider the three films of composition X=0.10 as an example. For this composition we have grown one film with thickness less than the critical thickness, h_c and two with thickness thicker than h_c . The critical thickness is defined as the maximum thickness the film can be grown in perfect epitaxy for a given substrate and composition of the film. For each film we measure the relative unit cell size of the film with respect to the substrate and obtain what is often called x-ray strain. For example, $\epsilon_{\parallel}^{xr} = (a_{11} - a_s)/a_s$. These results are listed in the table. For perfect epitaxy $\epsilon_{\parallel}^{y} = 0$, and this is found for the 1500 Å film. We also list the measured position of the LO phonon of this film; as the film become thicker this value decreases. The

measured frequencies are plotted in Fig. 1 as solid circles. For example, for x=0.1 there are are solid circles corresponding to the frequency measured from each of these three films. These phonon frequency values make physical sense; the film with perfect epitaxy is under the largest compressive stresses. Since we know that compressive stresses shift the phonons to high energies, these films will have the largest frequency shift, as observed.

In order to calculate the phonon frequency shifts due to the strains in the film, we must determine the elastic strains. Clearly these are related to the measured x-ray strains. Physically we know that the largest negative in-plane elastic strain (ϵ_{xx}) will be required to produce a perfect epitaxial film (i.e., a film with $\epsilon_{\parallel}^{x} = 0$). Similarly, a perfect epitaxial film will have the largest elastic strain perpendicular to the plane (ϵ_{xx}) . From the x-ray strain, and with the help of elasticity theory, ϵ_{xx} and ϵ_{xz} can be calculated. For the case discussed here, for a two dimensional stress in the xy-plane, from elasticity theory $\epsilon_{xx}/\epsilon_{xx} = 2\nu/(1-\nu)$, where ν is Poisson's ratio. Since $\nu \approx 1/3$, we have $\epsilon_{xx} \approx -\epsilon_{xx}$, and the deviations from this result shown in Table 1 are due to the fact that Poisson's ratio is not 1/3 exactly and varies slightly with x.

i

Parana Analasana Internet

Given the elastic strains it remains for us to calculate the frequencies of the optic modes in the presence of the strains. Assuming the threefold degeneracy of the k=0 optical phonons in a material with the diamond structure, in the presence of strain the frequencies of the optic modes are given by the following secular equation^{7.8}.

$$\begin{array}{cccc} p \,\epsilon_{xx} + q(\epsilon_{yy} + \epsilon_{zz}) - \lambda & 2r \,\epsilon_{xy} & 2r \,\epsilon_{xz} \\ 2r \,\epsilon_{xy} & p \,\epsilon_{yy} + q(\,\epsilon_{zz} + \epsilon_{xx}) - \lambda & 2r \,\epsilon_{yz} \\ 2r \,\epsilon_{xz} & 2r \,\epsilon_{yz} & p \,\epsilon_{zz} + q(\,\epsilon_{xx} + \epsilon_{yy}) - \lambda \end{array}$$

The eigenvalue $\lambda = \Omega^2 - \omega_0^2$ where ω_0 is frequency with zero strain and Ω is the strain dependent frequency. The phonon deformation constants, p, q and r describe the change of the spring constants with strain⁹. Since the frequency shift due to strain is small, $\Omega \approx \omega_0 + \lambda/2\omega_0$. In III-V semiconductors with the zinc blend structure, the long range coulomb forces split the LO and TO modes at small k. This splitting is small and is essentially independent of strain; so the strain dependent frequency shifts are obtained by adding the LO-TO splitting to the frequencies obtained from Eq. 1.

The phonon deformation constants have been measured by applying uniaxial stresses to single crystal samples with various orientations^{7,8,10}. Hence, in subsequent experimental papers¹¹ the shifts are expressed in terms of stress. However, since here we directly measure the strains, we can ignore the stress (which is applied to the film by the substrate). Then the eigenvalue of Eq. 1 for the LO phonon that we measure from (100) oriented faces is given by

:f.lambda =
$$p\epsilon_{zz} + q(\epsilon_{xx} + \epsilon_{yy})$$
:ef.

where $\epsilon_{xx} = \epsilon_{yy}$ for our geometry. Given the phonon deformation constants p and q, and using our measured strain (listed in Table 1), the frequency shift $\Omega - \omega_0$, is obtained and given in the last column in Table 1.

We measure Ω , calculate λ (using the measured x-ray strain), hence can determine ω_0 , which is the equivalent bulk frequency for the phonon. These results are plotted in Fig. 1 as crosses. For each data point (solid circles) we obtain a cross; as can be seen, these bulk equivalent frequencies are in good agreement with each other. For ;f.x nearly 0.15, we find that h_c is between 1500 A and 2500 A; this is in reasonable agreement with published data¹²

We have shown that Raman spectroscopy appears to be a suitable method for characterizing strain in strained layer epitaxial systems. Since it is an optical technique of lower power density than RHEED, it should be ideal as a damage-free, insitu tool to characterize the state of an epitaxial layer during growth by MBE, MOCVD,, of other techniques.

Acknowledgement C. R. Wie was supported in part by NSF under grant no. ECS-8707111 and by SDIO/IST managed by ONR under contract no. N0001486K0622.

References

- 1. F.C. Frank and J. van der Merwe, Proc. Roy. Soc. (London) A198, 210 (1949).
- 2. J. W. Matthews, S. Mader, T. B. Light, J. Appl. Phys. 41, 3800 (1970).
- 3. J. M. Woodall, G. D. Pettit, T. N. Jackson, C. Lanza, Phys. Rev. Lett. 51, 1783, (1983).
- 4. A.T. Flory, J.C. Bean, L.C. Feldman, and I.K. Robinson, Appl. Phys. Lett., 56, 1227 (1984).
- 5. For example, see H. Munekata, L. L. Chang, S. C. Woronick, Y. H. Kao, J. Crystal Growth 81, 237 (1987).
- See, for example, C.R. Wie, T. A. Tombrello, and T. Vreeland, Jr., J. Appl. Phys. 59, 3743 (1986) and V. Spertosu, J. Appl. Phys. 52, 6094 (1981).
- 7. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, Solid State Commun. 8, 133 (1970).
- 8. F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B5, 580 (1972).
- 9. S. Ganesan, A. A. Maraudin, and J. Oitman, Ann. Phys. (N.Y.) 56, 556 (1970).
- 10. Cardona, et al REVISITED GB
- 11. For example, see B. Jusserand, P. Voisin, M. Voos, L. L. Chang, E. E. Mendez, and L. Esaki, Appl. Phys. Lett., 46, 678 (1985).

Figure Captions

:

Fig. 1. The solid circles are the measured frequencies for the samples listed in Table 1. For each sample, a bulk equivalent frequency (cross) is calculated from the Raman measured frequency and the x-ray measured strain, as described in the text. Table 1 Various properties of our films. The first three colurns list the sample number, the composition in $(Ga_{1-1}In_{1})\Lambda s$, and h is the film thickness. The next three colurns are the measured x-ray strains and LO is the measured frequency of the LO mode in the film. The last three columns are calculated quantities: the elastic strain parallel (ϵ_{11}), and perpendicular (ϵ_{11}) to the sample surface, and the frequency shift.

Sample	×	4	¢,"	εå	1,0	e _{ss}	e _{zz}	Freq. Shift
#1	0.07	1000A	0.00	1.21%	291.8cm ⁻¹	-0.63%	0.58%	2.03cm ⁻¹
#2	0.07	lμm	0.42%	0.71%	289.9cin ⁻¹	-0.15%	0.14%	0.49cm ⁻¹
#3	0.15	lµm	0.61%	0.91%	288.3cm ⁻¹	-0.16%	0.14%	0.50cm^{-1}
387	0.10	1500A	. 00.0	1.30%	291.3cm ⁻¹	-().67%	0.63%	2.17cm ⁻¹
389	0.10	2500A	0.32%	0.98%	290.0cm ⁻¹	-0.34%	0.32%	1.03cm ⁻¹
388	0.10	1µm	0.46%	0.79%	288.9cm ⁻¹	-0.17%	0.16%	0.55cm ⁻¹
390	0.20	400A	0.00	2.46%	291.6cm ⁻¹	-1.25%	1.21%	4.06cm ⁻¹

1

1 k .

.

DL/1113/87/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

)

	No. Copies		No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27.53	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1

