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On finding the vertex connectivity of graphs1

I Milind Girkar s

Milind Sohoni3I
Abahwt

U An implementation of the fastest known algorithm to find the vertez connectivity of grapl

with reduced space requirement ie presented. ,

11..
I.L Introduction

Let G(V,E) be a finite undirected graph with no self-loops and no parallel edges. A set of

vertices, S, is called an (e,b) vertex separator if (,b)rV-S and every path connecting 4 and b

passes through at least one vertex of S. Clearly if a and b are connected by an edge, no (ab)

vertex separator exists. We define No(,b) to be IVI-I if (s,b)CZ, else it is the least cardinality of

an (a,b) vertex separator. The vertex connectivity of G, ko is defined to be mln.,serNI(e,b).

When k. is small, there are well-known linear time algorithms to determine connectivity

3 (ko>o), biconnectivity (ka>l) (se e.g., [41) and triconnectivity (ko>2) [8,111. There is an O(IVr)

algorithm [91 to check four-connectivity (k,>3); others 13,5,71 are of O(IVIIED. For a fixed k,

there are some randomised algorithms (1,101 for testing h-connectivity.

In this paper we consider the question of determining ho, when k0 is large. For this prob-

g lem, the only known deterministic methods to find it depend on solving maximum flow problems

in unit networks '5,71. (A unit network has the property that the capacity of each edge is one
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and every vertex other than the source or sink has either only one edge emanating from it *or one

edge entering it.) Of these, the most efficient one is Galil's [7] with a running time of

O(max(h,,IVr)k,IIjV) with a apace requirement of O((k,0+IVDIED. We improve upon this

result by presenting an algorithm that has the same running time as Gauil's but with a space

requirement of only O(IVIIED.

2. Even's Algorithm

In [31 Even solves the simpler problem (denoted by P...) of finding whether k0 !k, for a

given C and k. Even's algorithm is as follows:

Let V=(Vj, - -...,* and let L 1-(9 1,92, -.. j-j.. Define 6, to be the graph constructed in the

following way. 6, contains all the vertices and edges of 0; in addition it includes a new vertex.a

connected by an edge to each vertex in L,.

(1) For every i and j such that 15i<i~k, check whether N6(vY,,)2:k. If for some s and j this

test fails then halt; k < k.

(2) For every .i such that k+1 iSIVL form d, and check whether N '(s,r 1 ) !k. If for somej

this test falls then halt; ko<k.

(3) Halt; k, h.

Whether N(a,b)>k can be round out by checking that the value of the maximum flow in the

corresponding network is at least k. This involves finding k flow augmenting paths (f.ap.'s) in

the network using the Ford and Fulkerson 1'61 algorithm. A f.ap. can be found in O(180 time

and since k f.Lp.'s need to be found in a ot&.Ifflwproblems, the complexity of Even's

algorithm is O(k'j8k+kIVII9r).
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I
In [7] Gall observes that Even's algorithm can be used to find ka by progressively solving

I PG1 , P62, * * * until Pa.+, yields a negative answer; then ko-k. By using Dinic's algorithm [2] to

find augmenting paths and modifying Even's algorithm, Galil shows that this can be done in

O(max(k.,IVr')k0IV D using o((kG+IVDIED memory. Using an approach similar to Calil's we

I get a reduced space bound.

8. The Algorithm

First we simplify Even's algorithm as follows:

In the first step instead of checking whether NG(9.,v,) k, we do some additional work and

find Na(v,,Y,) and then trivially check whether this is greater than or equal to k. It will turn out

that the extra work will not change the time complexity of the algorithm.

The outline of the algorithm is as follows.

(1) Initialize k to 1, MEN to IV-i.

(2) For every i such that 1<i~k-1, find N0 (Y,,vk).

(3) Use the results of step 2 to update MIN to min(minS<i<._ING(vA),MIN)

(4) If MJN<k then halt; ko-MIN.

(5) For every j such that k+1<i:JVL, check whether N '(s,vi) k. If this test fails for any j,

then halt; ko-k-1.

(6) Increment k by one, go to step 2.

The correctness of the above algorithm follows from the results in Even [31. We now

analyze the time and space requirement of the algorithm. We store the graphs di (2-j- IVD

I along with the current flow values in the corresponding networks. In each iteration the computa-

i tionally intensive steps are clearly 2 and 5. In the k a iteration, we solve k-1 maximum flow

B a



problems in step 2 and using the flow values computed'in the k-i 'h iteration for the networks

corresponding to 6,we check whether N '(s,t') !k in step 5 by finding at most one f.ap. in each

of the corresponding networks. Using Dinic's algorithm [2] step 2 can be done in 0 (k IS 11 VI") time

and step 5 in o(IVIIED time since an fLap. can be found in linear time. Thus the running time of

5 the algorithm is 0(kGjEIIVl+koIV1ED - 0((k02+Vr")k 0IElV4 ) - 0(maz(k 0IV")koIBIIVI) which

is the same as Galil's algorithm. However, the space requirement is only 0(IVIIED because the

flow values for at most lvi maximum flow problems have to be stored and each requires 0(1.80

space.
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