
A-Ai83 315 ON FINDING THE VERTEX
CONNECTIVITY OF GRAPHSCI)

/1
ILLINOIS UNIV AT URBANA APPLIED COMPUTATION THEORY
GROUP M GIRKAR ET AL MAY 87 ACT-77 N86014-84-C-0i49

UNCLASSIF lED F/6 12/2 NLEE7hh

LII

II

JI1125 11111 14 f11 .6

MICROCOPY RESOLUTION TEST CHART

t ATNAL BUREAU OF STANARIS-1963-A

' I'm"mrw

I May 1987 UILU-ENG-87-2232
W-" ACT-77
(V)

tv COORDINATED SCIENCE LABORATORY
(0 CoUege of Egineering

,, uIC FILE COPY

ON FINDING
THE VERTEX.
CONNECTIVITY
OF GRAPHS

Milind Girkar
Milind Sohoni

-A

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Relsas Disribution Unlimited.

UNCLASSI1FIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION IIb. RESTRICTIVE MARKINGS

Unclassified None.
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILMUJLTY OF REPORT

N/A Approved for public release;
2b. DECIASSIFICATIONIOWNGRADING SCHEDULE distribution unlimited

N/A__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. PERFORMING ORGANIIZATION REPORT NUMBERCS) S. MONITORING ORGANIZATION REPOPT NUMBER(S

UILU-ENG-87-2232 (ACT-77) N/A
64. NAME OF PERFORMING ORGANIZATION 6ob. OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (WU&" Office of Naval Research
University of Illinois N/A_______________________

fc. ADORESS (City, $tato. and ZIP Code) 7b. ADDRESS (CRtY, State, Wnd ZI C010uj

1101 W. Springfield Ave. 800 N. Quincy St.,
Urbana, IL 61801 Arlington, VA 22217

Ba. NAME OF FUNDING /SPONSORING Bab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Joint Services Of jpidc.k)

Electronics Program N/A NOO0l-84-C-0149
&C. ADDRESS (CIty. State &Wd ZIP Co*e) 10. SOURCE OF FUNDING NUMBERS

800 N. Quincy St. PROGRAM PROJECT TASK WO0RK UNI
Arlington, VA 22217 ELEMENT NO. NO. NO. CSSION NO.

N/A N/A N/A N/A
11. TITLE (nclude Security Claication)

On Funding the Vertex Connectvity of Graphs

12. PEIKONAI. AUXIORLS) Girkar, Nilind and Sohoni, Milind

13a. TYPE OF REPORT 1131b. TIME COVERED fI.DATE Of REP01rT 0bW, Aft.~ Day PGECON
Technical IFROM _____To I Iv 1987 1 5

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 1im. SUBJECT TERM (nw on rewu N aseay &,d i4mneE* by 6lo00 A~mb
FIELD IGROUP ISUB-GROUP

I I
I Vertex conr

ectivity, Graph algorithm~,
Network flows

An implementation of the fastest knowvn algrithmn to find the vertexc# bWoftr# y Of 4
graphs with reduced space requirement is presented.

rtr

20. OeSTRWITION I AVALABILTY OF ABSTKRACr 1 ABSTRACT SECUETY C.ASSIIPICAl d

U. MOAN~ OF WSPONEI WdOIVKWO.22 ITLEPHOhh ftho Am CMI 2 OFFOc sMot-

00 FORM 1473. &4 MMn 63 AP on m a" be WWd uin N&OWNt JI CLAM11"No. OF nT-M PAM
AN saw edmo. is ~UNCLASS IF IED

On finding the vertex connectivity of graphs1

I Milind Girkar s

Milind Sohoni3I
Abahwt

U An implementation of the fastest known algorithm to find the vertez connectivity of grapl

with reduced space requirement ie presented. ,

11..
I.L Introduction

Let G(V,E) be a finite undirected graph with no self-loops and no parallel edges. A set of

vertices, S, is called an (e,b) vertex separator if (,b)rV-S and every path connecting 4 and b

passes through at least one vertex of S. Clearly if a and b are connected by an edge, no (ab)

vertex separator exists. We define No(,b) to be IVI-I if (s,b)CZ, else it is the least cardinality of

an (a,b) vertex separator. The vertex connectivity of G, ko is defined to be mln.,serNI(e,b).

When k. is small, there are well-known linear time algorithms to determine connectivity

3 (ko>o), biconnectivity (ka>l) (se e.g., [41) and triconnectivity (ko>2) [8,111. There is an O(IVr)

algorithm [91 to check four-connectivity (k,>3); others 13,5,71 are of O(IVIIED. For a fixed k,

there are some randomised algorithms (1,101 for testing h-connectivity.

In this paper we consider the question of determining ho, when k0 is large. For this prob-

g lem, the only known deterministic methods to find it depend on solving maximum flow problems

in unit networks '5,71. (A unit network has the property that the capacity of each edge is one

'Tbu own wa mppemted to pat by %M Jesat Swvnw mm a1e. Ptegrm madw Grat M. .4001-i4-C-4144

Cann ee Urar mtup Jmpuati Rmwh and Dsepemt. Umwvmty d DUkeias Urban&-Ciampoa.. Utbanm IL 61011 TheSwir of 4i0 aSe&er WO .sppwtod to pert by the .Maomaea SOON* Ve.dauam eade Greeto .e W DCU-1SII5 med NI
DC28e-45001. Lbe U 2 Depent of I4ma sad. Gemt Me DOa DS-46E40 t Mad l IUMd Dsoamea

Dmpaerlta emat Cemfeba lam.., Uawvuy of Mina, mA Utbema-Cbsmpaig. Ur, bn. IL 41801

I
-I

and every vertex other than the source or sink has either only one edge emanating from it *or one

edge entering it.) Of these, the most efficient one is Galil's [7] with a running time of

O(max(h,,IVr)k,IIjV) with a apace requirement of O((k,0+IVDIED. We improve upon this

result by presenting an algorithm that has the same running time as Gauil's but with a space

requirement of only O(IVIIED.

2. Even's Algorithm

In [31 Even solves the simpler problem (denoted by P...) of finding whether k0 !k, for a

given C and k. Even's algorithm is as follows:

Let V=(Vj, - -...,* and let L 1-(9 1,92, -.. j-j.. Define 6, to be the graph constructed in the

following way. 6, contains all the vertices and edges of 0; in addition it includes a new vertex.a

connected by an edge to each vertex in L,.

(1) For every i and j such that 15i<i~k, check whether N6(vY,,)2:k. If for some s and j this

test fails then halt; k < k.

(2) For every .i such that k+1 iSIVL form d, and check whether N '(s,r 1) !k. If for somej

this test falls then halt; ko<k.

(3) Halt; k, h.

Whether N(a,b)>k can be round out by checking that the value of the maximum flow in the

corresponding network is at least k. This involves finding k flow augmenting paths (f.ap.'s) in

the network using the Ford and Fulkerson 1'61 algorithm. A f.ap. can be found in O(180 time

and since k f.Lp.'s need to be found in a ot&.Ifflwproblems, the complexity of Even's

algorithm is O(k'j8k+kIVII9r).

-2 -

I
In [7] Gall observes that Even's algorithm can be used to find ka by progressively solving

I PG1 , P62, * * * until Pa.+, yields a negative answer; then ko-k. By using Dinic's algorithm [2] to

find augmenting paths and modifying Even's algorithm, Galil shows that this can be done in

O(max(k.,IVr')k0IV D using o((kG+IVDIED memory. Using an approach similar to Calil's we

I get a reduced space bound.

8. The Algorithm

First we simplify Even's algorithm as follows:

In the first step instead of checking whether NG(9.,v,) k, we do some additional work and

find Na(v,,Y,) and then trivially check whether this is greater than or equal to k. It will turn out

that the extra work will not change the time complexity of the algorithm.

The outline of the algorithm is as follows.

(1) Initialize k to 1, MEN to IV-i.

(2) For every i such that 1<i~k-1, find N0 (Y,,vk).

(3) Use the results of step 2 to update MIN to min(minS<i<._ING(vA),MIN)

(4) If MJN<k then halt; ko-MIN.

(5) For every j such that k+1<i:JVL, check whether N '(s,vi) k. If this test fails for any j,

then halt; ko-k-1.

(6) Increment k by one, go to step 2.

The correctness of the above algorithm follows from the results in Even [31. We now

analyze the time and space requirement of the algorithm. We store the graphs di (2-j- IVD

I along with the current flow values in the corresponding networks. In each iteration the computa-

i tionally intensive steps are clearly 2 and 5. In the k a iteration, we solve k-1 maximum flow

B a

problems in step 2 and using the flow values computed'in the k-i 'h iteration for the networks

corresponding to 6,we check whether N '(s,t') !k in step 5 by finding at most one f.ap. in each

of the corresponding networks. Using Dinic's algorithm [2] step 2 can be done in 0 (k IS 11 VI") time

and step 5 in o(IVIIED time since an fLap. can be found in linear time. Thus the running time of

5 the algorithm is 0(kGjEIIVl+koIV1ED - 0((k02+Vr")k 0IElV4) - 0(maz(k 0IV")koIBIIVI) which

is the same as Galil's algorithm. However, the space requirement is only 0(IVIIED because the

flow values for at most lvi maximum flow problems have to be stored and each requires 0(1.80

space.

Acknowledgment. The authors wish to thank V. Ramachandran for introducing us to the

problem in a course on graph algorithms and for her many helpful suggestions during the

preparation of this report.

REFERENCES

1. Becker, M. et. &L. A proba bilisetic algorithm for vertex connnectivity of graph.

Inform. Proc. L~tt. (1982) vol. 15, pp. 135-136.

2. Dinic, E. A. Algorithm for solution of a problem of maximum flow in a network with

power estimation. Soviet Math. DokI. (1970) vol. 11, pp. 1277-1280.

3. Even, S. An algorithm for determining whethter the connectivliV of a graph Is at least k.

SIAM Journal of Computing (1975) vol. 4, pp. 393-3g6.

4. -. Graph Algorithms. Computer Science Press, Rockville, M~D, 1979.

5. Even, S. and R. E. Tarjan. N~etwork flow and testing graph connectitgl. SIAM Jour-

nal oftCompu lng (1975) vol. 4, pp. 507-5 18.

6. Ford, L. R. and D. R. Fulkerson. Flows in Networks. Princeton Press, Princeton,

I NJ, 1962.

3 7. Ga&l, Z. Finding the vertez connectivity of graph*. SIAM Journal of Computing

(February 1980) vol. 9, pp. 197-199.

8. Hopcroft, J. E. and R. E. Tarjan. Dividing a graph into triconnected components.

SIAM Journal of Computing (1973) pp. 135-158.

9. Kanevsky, A. and V. Ramachandran. "Improved algorithms for graph four-

connectivity", Working Paper 87-14, Coordinated Science Labaratory, University

I of Illinois at Urbana-Champaign, Urbana, IL, 1987.

10. Linial, N., L. Lovasz and A. Wigderson. A physical interpretation of graph connec-

tivity, and its algorithmic applications. Proc. 28th IEEE Ann. Symp. on

Foundations of Comp. ScL (1985) pp. 464-467.

11. Miller, G. L. and V. Ramachandran. A new graph triconnectivity algorithm and its

3 paralelization. Proe. of the 19th Annual ACM Symposium on Theory of

Computing (May 1987).

I
C 6

Ep

|W

