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On finding the vertex connectivity of graphs!

Milind Girkar?
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Abstrect

An implementation of the fastest known algorithm to find the vertez connectivity of graphs
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- [
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1. Introduetion

Let G(V,B) be a finite undirected graph with no self-loops and no paralle! edges. A set of
vertices, 5, is called an (s,b) vertez separator if (6,0} V-5 and every path connecting « and §
passes through at least one vertex of S. Clearly if ¢« and b are connected by an edge, no (a,b)
vertex separator exists. We define N%(a,b) to be |VI-1 if (a,d)eE, else it is the least cardinality of
an (e,b) vertex separator. The vertex connectivity of G, k, is defined to be mh.'.eyNa(c,b).

When &; is small, there are well-known linear time algorithms to determine connectivity
(kg >0), biconnectivity (k;>1) (see e.g., [4]) and triconnectivity (k;>2) [8,11]. There is an O(|V/)
algorithm (9] to check four—connectivity (k;>3); others [3,5,7] are of O(|V||E]). For a fixed &,

there are some randomised algorithms [1,10| for testing k-connectivity.

In this paper we consider the question of determining k;, when &, is large. For this prob-
lem, the only known deterministic methods to find it depend on solving maximum flow problems

in unit networks '5,7]. (A unit network has the property that the capacity of each edge is one
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and every vertex other than the source or sink has either only one edge emanating from it or one
edge entering it.) Of these, the moet efficient one is Galil’s 7] with a running time of
O(mu(ka,lVr')kalEllVl‘) with a space requirement of 0((k;+|VDlE[). We improve upon this
result by presenting an algorithm that has the same running time as Galil’s but with a space

requirement of only O(|V||E]).

3. Even’'s Algorithm

In (3] Even solves the simpler problem (denoted by P;,) of finding whether k,>k, for a

given G and k. Even's algorithm is as follows:

Let Va{v 0, - ,0,} and let L,={v,,v,, - - -,v;_,}. Define G, to be the graph constructed in the
following way. d, contains all the vertices and edges of G; in addition it includes a new vertex s

connected by an edge to each vertex in L,.

(1) For every i and j such that 1<i<j<k, check whether Na(v,..-,.)Zk. If for some i and ; this

test fails then halt; kg <.

a
(2) For every ; such that k+1<;<|V] form G, and check whether N '(s,9;)2k. If for some ;

this test fails then halt; k;<k.
(3) Halt; g2k,

Whether N(a,0)>k can be found out by checking that the value of the maximum flow in the
corresponding network is at least . This invoives finding ¢ flow augmenting paths (f.a.p.’s) in
the network using the Ford and Fulkerson (8] algorithm. A f.a.p. can be found in O(|E|) time

and since & {.a.p.'s need to be found in at most t’+|V| flow problems, the complexity of Even's

algorithm is O(k'|E |+ |V |IB).




‘s o
-

In (7] Galil observes that Even’s algorithm can be used to find k, by progressively solving
Pgyy Pgg ¢ - until Py, , yields a negative answer; then k,=k. By using Dinic’s algorithm [2] to
find augmenting paths and modifying Even’s algcrithm, Galil shows that this can be done in
O(mu(ka,lVf‘)kalVf‘IED using O((k;+|VD[ED memory. Using an approach similar to Galil's we

get a reduced space bound.
8. The Algorithm

First we simplify Even’s algorithm as follows:

In the first step instead of checking whether N° (%,9;)>k, we do some additional work and
find Na(v,,o,.) and then trivially check whether this is greater than or equal to k. It will turn out

that the extra work will not change the time complexity of the algorithm.
The outline of the algorithm is as follows.

(1) Initialize k to 1, MIN to |V}-1.

(2) For every i such that 1<i<k—1, find N%(s,,9,).

(3) Use the results of step 2 to update MIN to min(min,¢;,_,N°(v;,v,),MIN)

(4) If MIN<k then halt; k;=MIN.

(5) For every j such that ¢+1<;<|V| check whether Nd’:(c,v,.)Zk. If this test fails for any j,
then halt; ky=k~1. |

(6) Increment k by one, go to step 2.

The correctness of the above algorithm follows from the results in Even [3]. We now
analyze the time and space requirement of the algorithm. We store the graphs ('?,- (2<i<IVD
along with the current flow values in the corresponding networks. In each iteration the computa-

tionally intensive steps are clearly 2 and 5. In the k™ iteration, we solve k-1 maximum flow




problems in step 2 and using the flow values computed in the k—1" iteration for the networks

corresponding to 0,, we check whether No’(a,v, )2k in step 5 by finding at most one f.a.p. in each
of the corresponding networks. Using Dinic’s algorithm [2] step 2 can be done in O(k IE|[V(*) time
and step 5 in O(|V]|E]) time since an f.a.p. can be found in linear time. Thus the running time of
the algorithm is O(k3IEIIV[*+kg|VIIED = O((kg+IV[)ko IENV") = O(max(kg [V[*)kg IENIVI') which
is the same as Galil’s algorithm. However, the space requirement is only O(|V||E]) because the
flow values for at most |V| maximum flow problems have to be stored and each requires O(}E)
space.
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