
JD-A±03 275 APR (TRADE NAME) COMPILER VALIDATION SUMMARY REPORT Lo
TELESOFT TELEGEN 2 AD.. (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER U-P RFD OH ADA YRLI. 19 MAR 9?

UNCLASSIFIED F/ 125 ML

SIMONEN.EEE

EIhhIhE EE

!III~ v"'

L=25. 4, .6

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)9M FIE C P

-REPORT DOCUMENTATION PAGE BEFOU coKPIZTErmaFORK
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSublde) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 19 MAR 1987 to 19 MR 1988
Telesoft TeleGen 2 Ada Compiler, Release 3.13
Sun-2 Workstation 6. PERFORMING ORG. REPORT NUMBER

7. AUTHORN1 8. CONTRACT OR GRANT NUNBER(s)

0. PERFORMINUG ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS
ASD/SIOL
Wright-Patterson AFB OH 45433-6503
It. CONTROLLING OFFICE NAME AND APDRESS 12. REPORT DATE
Ada Joint Program Office 19 MAR 1987
United States Department of Defense NUk Pi5

Washington, DC 20 01-3O8lASD/SIOL 30

14. MONITORING AGENCY NAME II ADDRESS(W different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright -Patterson UNCLASSIFIED

Ila. R~hJF1ICATION/DOWNGRADING

_____________________________________N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

In
pwf Approved for public release; distribution unlimited.

N

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report) D I C
SUNCLASSIFIED ELECT

AUG 1 21987

19. KEYWORDS (Continue on reverse side if necessary and identify by block number) SE
Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
l8l5A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO 1"' 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6801 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada® Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Compiler, Release 3.13

Host: Sun-3 Workstation under Target: Sun-3 Workstation under
Sun UNIX 4.2, Release 3.0 Sun UNIX 4.2, Release 3.0

Testing Completed 19 March 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Validation Organization
Dr. John F. Kramer Accession For
Institute for Defense Analyses
Alexandria VA I TIS GA&I

DTIC TAB

Unannounced
Justification

By
Ada W~nt Program Office Distribution/
Virginia L. Castor Availability Codes
Director 4'Azii and/or
Department of Defense Dist f Special

Washington DC

6

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

AVF Control Number: AVF-VSR-65.087

87-01-21-TEL

PR

Ada® COMPILER
VALIDATION SUMMARY REPORT:

TeleSoft
TeleGen2 Ada Compiler, Release 3.13

Sun-3 Workstation

Completion of On-Site Testing:
19 March 1987

Prepared By:
Ada Validation Facility

ASD/SOOL
Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

.q . .- S .~V

. +

+ Place NTIS form here +
+ +

44 4+ + 4+ +4+ + + + +4+ +4 + +4. + 4

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the TeleGen2 Ada Compiler, Release 3.13,
using Version 1.8 of the Ada ® Compiler Validation Capaoility (ACVC). The
TeleGen2 Ada Compiler is hosted on a Sun-3 Workstation operating under Sun
UNIX 4.2, Release 3.0. Programs processed by this compiler may be executed
on a Sun-3 Workstation operating under Sun UNIX 4.2, Release 3.0.

On-site testing was performed 15 March "387 through 19 March 1987 at
TeleSoft in San Diego CA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2210 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 170 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2210 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 51 of the processed tests determined to be inapplicable. The
remaining 2159 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 243 161 97 136 262 107 32 217 216 2159

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 4 0 0 3 0 23 0 1 17 221

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conforzity to
ANSI/MIL-STD-1815A Ada.

eAda is a registered trademark of the United States Government
(Ada Joint Program Office).

nj4

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALUDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES1-3

1.4 DEFINITION OF TERMS 1-3

1.5 ACVC TEST CLASS3ES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TFSTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULSBY CLASS 3-1
3.3 SIM RY OF TEST RESULTS BY CHAPTER 3-2
3.14 WITHDRAWN TESTS3.-2
3.5 INAPPALITETSL.. T.E.3-2
3.6 SPLIT TESTS 3-4

3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4

3.7.2 Test Method 3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION4 OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

MANL

CHATER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it - and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the

maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of

particular operating system, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
aretgiven in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the AdaN tandad by testing that the compiler properly
implements legal language Nnstructs and that it identifies and rejects
illegal language constructs. Tqtesting also identifies behavior that is

implementation dependent but perm tted by the Ada Standard. Six classes of
tests are used. These tests are desip.ed to perform checks at compile
time, at link time, and during executit.

1-1

I I rIr iu '' ;''-"; . jv ''

S .'TR-DUZ ::Xi3

1.1 PURPOSE OF THIS VALIDATION SUL1AIARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any unsupported language constructs
required by the Ada Standard

• To determine that the implementation-dependent behavior 's allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was c.nducted from
15 March 1987 through 19 March 1987 at TeleSoft in San Diego CA.

1.2 USE OF THIS VALIDATION SU 4MARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and cmpiler versions identified in this report.

The organizations represented on the sigature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformIties
to 'the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Hm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validati n Organization
Enstitute for Defense Analyses
1601 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that- evaluates the conformity of a compiler to the Ada
language specification, ANSI/tCL-STD- 1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
t-e AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. in the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

inapplicable A test that uses featu~res of the langua-e that a com.-iler is
test not required to support or may Legitimately support in~ a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler' s conformity regarding a
particular feature or features to the Ada Standard. inl the
context of this report, the term is used to designate a
s~n gle test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L.. The first letter of a test name identifies
the class to which it belongs. Class A, C, D), and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests areexpected to produce link errors.

Class A tests check that legal. Ada programs can be successfully compiled
and-. executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test Is passed if every
illegal construct that 'It contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABL.E message indicating the result when 'It is
executed.

Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

permitted in a compilation or the nuber of units inl a library--a canpiler
may refuse to compile a Class D test and still be a conforming comptier.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. if a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when It is compiled and executed. However, the Ada
Standard permits an implementation to reject programs contain.ing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if It is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package R~EPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modificati~on. For
example, the test. make use of only the basic set of 55 characters, contain
lines with a maxlmun length of 72 characters, use small nu~meric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given f or the test or by showing that the test 'i inapplicable to
the implementation. Any test that wn~ determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TeleGen2 Ada Compiler, Release 3.13

ACVC Version: 1.8

Certificate Expiration Date: 2 April 1988

Host Computer:

Machine: Sun-3 Workstation

Operating System: Sun UNIX 4.2, Release 3.0

Memory Size: 8 megabytes

Target Canputer:

Machine: Sun-3 Workstation

Operating System: Sun UNIX 4.2, Release 3.0

Memory Size: 8 megabytes

2-1

-i.. -

2.2 1MPLEMFN TAT:0N CHARACTERISTICS

One of the purposes of validating compilers is to dete.ne the behavior of
a compiler in those areas of the Ada Standard that permit implementatios
to differ. Class D and E tests specifically check for such Implementatlon
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:II"Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

• Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
D4AOO4B.)

• Predefined types.

This implementation supports the additional predefined types
LONG INTEGER and LONGFLOAT in the package STANDARD. (See tests
B860T0C and B86001D.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during copilation, or it may raise
NUMERICERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test
E24101A.)

" Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER' LAST and/or SYSTEM.MAXINT.

2-2

* ~ ~ * '

Ir-,!

.DNF.

No exception is raised by this implementation for a packed BOOLEAN
array having a 'LENGTH exceeding INTEGER'LAST. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTFGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds :NTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declpration. However, lengths must match in array
slice assignments. No exception is raised by this implementation.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, the order in
which choices are evaluated and index subtype checks are made
appears to depend upon the aggregate itself. (See tests C43207A
and C43207B.)

in the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTFRROR Is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

o.

', , ;' ' W ;

Functior..

An implemert t.ion may allow the ec -ration of a parameterqess
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the func'lon declaration.
if it accepts the function declaration, tne use of the enuneration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasks and
'SMALL clauses. It rejects 'STORAGE SIZE for collections.
Enumeration representation clauses, including those that specify
noncontiguous values, appear not to be supported. (See tests
C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

" Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

" Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT FILE mode and can be
created in both OUTFILE and INFILE modes. (See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5
tests).)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..F
(6 tests).)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107A..F (6
tests).)

2-4

Temporary sequen~tial. filles are given a n~ame. Temporary cairezt-
files are giver, a name. Temorary files giver.rnames are not
deleted when they are closed. (See tests CF21Q3A and CF.2108C.)

Generics.

Generic subprogram declarations arid bodies can~not be compiled in

separate compilations. (See test CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-5

so

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the TeleGen2 Ada Caipiler was performed, 19 tests had been withdrawa. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 221 tests were inapplicable to this implementation, and
that the 2159 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUNIPRY OF TEST RESULTS BY CLASS

RESLLT TEST CLASS TOTAL
A B C D E L

Passed 67 862 1171 17 11 31 2159

Failed 0 0 0 0 0 0 0

Inapplicable 2 5 197 0 2 15 221

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

3.3 SMAARY OF TEST RF30S-TZ BY CiiP R

RESULT CHAPTFR TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 22 334 243 161 97 136 262 107 32 217 216 2159

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 4 0 0 3 0 23 0 1 17 221

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 93 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn fromn ACYC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B BC3204C
B33203C B45116A C87BSOA
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use o'f features
that a compiler Is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 221 tests were inapplicable for
the reasons indicated:

* C34001D, B52004E, 955BO9D, and C55B07B use SHORT -NTEGER which is
not supported by this compiler.

* C34001F and C35702A use SHORT-FLOAT which is not supported by this

compiler.

*C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

3-2

I Emma.

5 386001D -euires a predefired numeric type other tnar. tnoae
defined by the Ada language in package STANDARD. There is r.c saz:
type for this implementation.

C86001F redefines package SYSTEM, but TEXT 10 is mace obsolete by
this new definition In this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT :0.

C87362B uses the length claise 'STORAGE SIZE for access types
which is not supported by this compiler. The length clause is
rejected during compilation.

" BA1011C, CA1012A, CA2009C, CA2009F, LA5008A..H (8 tests), LA5008J,
LA5008M, LA5008N, and BC3205D compile generic specifications and
bodies in separate compilations which is not supported by this
compiler.

" CA3OO4E, EA3004C, and tA3004A use INLINE pragna for procedures
which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use INLINE prapma for functions
which is not supported by this compiler.

" LA5008I and LA5008K are inapplicable because, In this
implementation, a generic unit is made obsolete by the
recompilation of a unit on which the generic body (but not the
specification) depends. Since this implementation does not
support separate compilation of generic unit specifications and
bodies, a generic specification must be considered obsolete
whenever the body is found to be obsolete. These tests should
report at link tire that the body of a genc ic unit is obsolete.
However, a compile-time error message reports that the generic
unit is obsolete.

* AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types whica is not
supported by this compiler.

" AE2101E and CE2401D use an instantiation of packagL DIRECT 10 with
unconstrained array types which is not supported by this compiler.

" CE2107B..E (4 tests), CE2110B, CE2111D, CE2111H, CE3111B..E (4
tests), and CE3114B are inapplicable because multiple internal
files cannot be associated with the same external file except when
the internal files are open for reading. The proper except'lon Is
raised when multiple access is attempted.

" The following 170 tests require a floating-point accL-racy tha:
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35708L..Y (14 tests) C45421L..Y (14 tests)
C35705L..Y (14 tests) C35802L..Y (14 tests) C,44?4L..Y (14 te-ts)

3-3

3;?Oo...Y (14 tests) C?241L..Y (s4 tests) C.4r21L..Z Ir tests;
Z35707L..Y (14 tests) C45321L..Y (14 tests) C45621L..1Z (15 tests)

3.6 SPLIT TESTS

If one or more errc:-s do not appear to have been detected in a Cla!,s B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that carn be
processed.

Splits were required for six Class B tests:

BA3006A BA30O7B BA3008B
BA3006B BA3008A BA3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to valication, a set of test results for ACVC Version 1.8 produced by
the TelsGe2 Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the'expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TeleGen2 Ada Compiler using ACVC Version 1.8 was conducted
on-site by a validation tem from the AVF. The configuration consisted of
a Sun-3 Workstation operating under Sun UNIX 4.2, Release 3.0.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-ste by the
validation team for processing. Tests that make use of
Implementation-speci.fic values were customized before being written to the
magnetic tape. Tests requi-ing splits during the prevalidation testing
were included in their split form on the magnet~c tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled, linked, and executed as appropriate on the Sun-3 Workstat'--.
Results were printed from the Sun-3 Workstation.

3-4

The ct.'2er was tested using command scri pts proVided uy T eleSof' anz

rev±eaed Dy the valtdatior team.

Test output, compilation listings, and joo logs were captured on magetfc
tape and archived at the AVF. The listings examined on-site oy the

validation team were also archived.

3.7.3 Test Site

The validation team arrived at TeleSo.t in San Diego CA on 15 March 1987,
and departed after testing was completed on 19 March 1987.

3-5~

. .- Rid**t *

APPENDIX A

DECLAP 'TION OF CONFORMANCE

TeleSoft has submitted the following declaration of
conformance concerning the Teleen2 Ada Compiler.

A-i

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft, Inc.
Ada!Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: TeleGen2 Ada Compiler Version: Release 3.13
Host Architecture ISA: Sun-3 Workstation OS&VER #: Sun UNIX 4.2,

Release 3.0
Target Architecture ISA: Sun-3 Workstation OS&VER 0: Sun UNIX 4.2,

Release 3.0

Implementor' s Declaration

I, the undersigned, representing TeleSoft, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler listed in this declaration. I declare that Sun Microsystems
is the owner of record of the Ada language compiler listed above and, as
such, is responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler liste 4n this declaration shall be made only in the owner's

_ _ _ - __t_ Date : _ _ _ _ _ _ _ _ _

TeleSoft, Inc.
Raymond A. Parra, Director, Contracts/Legal

Owner' s Declaration

I, the undersigned, representing Sun Mirosystems, take full responsibility
for implementation and maintenance of the Ada compiler listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-s815A. I have
reviewed the Validation Summary Report for the compiler ar: concuir with the
contents.

I k _A cl 4, d Date: __ _ __ _ __ _
Sun Microsystems/Sun Feceral Systems '
Lawrence M. Baron, Product Mar'Keting Manager

eAda is a registered trademark of the United States Government
(Ada Joint Program Office).

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent praynas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The Implementation-dependent characteristics of
the TeleGen2 Ada Compiler, Release 3.13, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ASI/tIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range -1.93428E+25 .. 1.93428E+25;
type LONG FLOAT is digits 15 range -2.57110087081438E+61

2.57110087081438E+61;

type DURATION is delta 2.OE-14 range -86 400.0 .. 86 400.0;

0..

end STANDARD;

B-i

APPENDIX F

I. Implementation Dependent Pragmas

There is one implernentation-defined pragma. CON.MENT.
It has the form:

pragma CO1MMENT(<string_literal>);

It may only appear within a compilation unit and has
the effect of embedding the given sequence of characters
in the object code of the compilation unit.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

PACKAGE System IS

TYPE Address is Access Integer;
TYPE SubprogramValue is PRIVATE;

TYPE Name IS (TeleGen2);

SystemName : CONSTANT name :- TeleGen2;

StorageUnit : CONSTANT :- 8;
Memory Size : CONSTANT:= (2 ** 31) -1;

-- System-Dependent Named Numbers:

Min lnt CONSTANT :- -(2 '* 31);
Max Int : CONSTANT : (2 * 31) - 1;
Max-_Digits CONSTANT :- 15;
MaxMantissa: CONSTANT:= 31;
Fine -Delta : CONSTANT := 1.0 / (2 ** (MaxMantissa - 1));
Tick CONSTANT :- 10.OE-3;

B-2

'.9.

APPENDIX F, Cont.

-- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0. 63;

Max _Object Size :CONSTANT:=- Max Int;
Max Record Count CONSTANT := Max Int;
Max Text lo Count CONSTANT Max -nt-I;
MaxTextJoField :CONSTANT:= 1000;

PRIVATE
TYPE Subprogram Value IS
RECORD

Proc addr : Address;
Static link : Address;
Global frame : Address;

END RECORD;

END System;

4. Restrictions on Representation Clauses

The Compiler supports the following representation clauses:

-Length Clauses: for tasks 'STORAGE SIZE (LRM 13.2(c))
Length Clauses: for the attribute 'SIZE (LRM 13.2(a))
Address Clauses: for objects and entries (LRM 13.5)
Length clauses: for the 'SMALL attribute for fixed point types

(LRM13.2(d))

This compiler does NOT support the following representation
clauses:

Length clauses: for the 'STORAGESIZE attritube for access types
(LRM13.2(b))

Enumeration reprsentation clauses (LRM 13.3):

-- record representation clauses (LRM 13.4)
-- address clauses for subprograms, packages, and tasks (LRM 13.5)

5. Implementation dependent naming conventions

There are no implemenrtat ion-generated names denoting
implementation dependent components.

B-3

'C| I' - vr 5 ,q%. | * != * * ,P P, % I*-: = J ! ' - r =

APPENDIX F. Cont.

6. Expre.-sions that appear in address specifications are interpreted
as the first storage unit of tibe object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between variables of types (or
subtypes) TI and T2 provided that: 1) they have the same static
size, 2) they are not unconstrained array types, and 3) they are
not private.

8. I/0 Package Characteristics

Instantiations of DIRECT_10 and SEQUENTIALJO are supported with

the following exceptions:

* Unconstrained array types.

* Unconstrainted types with discriminants without default

values.

* Multiple internal flies opened to the same external file may

only be opened for reading.

* In DIRECT 10 the type COUNT is defined as follow:

type COUNT is range 0..2_147483647;

* In TEXTI0 the type COUNT is defined as follows:

type COUNT is range 0..2_147483645;

* In TEXT_10 the sL ,type FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

B-4

1111 -1 1 .IIK I .- M ll*

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is rum. The values used for this validation are given
below.

Name and Meaning Value

$BIG ID1 (1..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (1.199 => 'A', 200 => '2')
.Identifier the size of the

maximum input line length with
varying last character.

$BIG ID3 (1..100 I 102..200 => 'A',
Identifier the size of the 101 => '3')
maximum input line length with
varying middle character.

$BIG ID4 (1..100 I 102.200 => 'A',
-dentifier the size of the 101 :> 'L')
maximum input line length with
varyii~g middle character.

$BIG INT LIT (1..197 => '0', 198.200 => "298")
In integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TE.T PAAM-.T"FRS

Name r.d Meaning Value

$BIG REAL LIT (l..194 => '0', 195..200 =>
A r-eal literal that can be "b9.OE1")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..180 => '
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT LAST 2_147_483_645
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "!$%?[\]'{}"
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 1000
A universal integer literal
whose value is TEXTIO.F'ELD'LAST.

$FILE NAME WITH BAD CHARS
An illegal- external file name
,that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILENAME WITH WILD CARD CiAR "XYZ*"
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 100 000.0
A universal real value that lies
between DUR.TION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of

DURATION.

$GREATERTHAN DURATION BASE LAST 10_000_000.0
The universal real-value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

Name and Meanirng V al ue

$ILLEGAL EXTERNAL FILENAME1 "BAD-CHARACTER*'/%"
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 "BBB*BBB"
An illegal external file name
that is different Trcm
$ILLEGAL EXTERNALFILENAE.I.

$INTEGER_FIRST -21 47483 648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST 2_1-47483_647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESSTHAN DURATION -100 000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHAN DURATION BASE FIRST -10 000 000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 15
'The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 200
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAX INT 2_147 483 647
The universal integer literal
whose value is SYSTEM.MAX INT.

C-3

i vr, ii, ,[, - ,% --,rV,, ,t , ,,.. ;,,,,. .,, ,, , ,, , Lij

TFST PARA. F RS

Name and Meanlng Value

$NAME LONG LONG :NTFGER
A name of a predefined numeric
type other than FLOAT, !NTFEGR,
SHORT FLOAT, SHORT TINTEGER,
LONG FLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASF.D INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MkX _NT.

$NON ASCII CHAR TYPE (NONNULL)
An eniuerasted type definition
for a character type whose
lite ral. are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C

I

'

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

" C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

" C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

" B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

" C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

" B45116A: ARRPRIBL1 and ARRPRTBL2 are initialized with a value of'
the wrong type--PRIBOOLTYPE instead of ARRPR MOOLTYPE--at line
41.

" C48008A: The assumption that evaluation of default initial values
occurs when an exception Is raised by an allocator is incorrect
according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line .2.

B4AO10C: The object declaration in line 18 f.ilows a subprogram
body of the same declarative part.

D-1

7 I? 1u1: The Degir at itne o ca-_ep a zec-arat.ve ;ar t t. I
treated as a sequence of statements.

* C7BSOA: The call of "/=" at line 31 requires a use clause for
package A.

" C9200 A: The "/=" for type PACK.BIG 7NT at ltne 4(O is not v!' !Die
without a use clause for the package PACK.

" C940ACA: The assumption that allocatej task TT wil ru. prlor to
the main program, and thus assign SPYNUMB the value checked for Zy
tne main program, is erroneous.

" CA3005A..D (4 tests)z No valid elaboration order exists for these
tests.

* BC3204C: The body of BC3204C0 is missing.

D-2

%'w V .V ~V\V

000.

21IMPW I IA SAAimi

