

ŧ

i.

.

•

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

NATIONAL BUREAU OF STANDARDS-1963-A

C FILE COPY

AD-A183 273

NWC TM 6007

900-90

Kevlar Photochemical Degradation Mechanisms

by Madeline S. Toy, Ph.D. Science Applications International Corp. for the Aerosystems Department

APRIL 1987

Approved for public release; distribution is unlimited.

008

NAVAL WEAPONS CENTER China Lake, CA 93555-6001

UNCLASSIFIED				2		
SECURITY CLASSIFICATION OF THIS PAG	E RFP		TILA 18	5275 PAGE		
14 REPORT SECURITY CLASSIFICATION			16 RESTRICTIVE	MARKINGS		
UNCLASSIFIED						
2a SECURITY CLASSIFICATION AUTHORI	TY		3 DISTRIBUTION	AVAILABILITY OF	REPO	RT
26 DECLASSIFICATION / DOWNGRADING	SCHEDULE		Approved for p	oublic release; dis	stributi	on is unlimited.
4 PERFORMING ORGANIZATION REPOR	T NUMBER(S)		5. MONITORING	ORGANIZATION R	EPORT	NUMBER(S)
NWC TM 6007						
6a. NAME OF PERFORMING ORGANIZAT	ION 6b O	FFICE SYMBOL	7a. NAME OF MC	ONITORING ORGA	NIZATIO	N.
Science Applications International	· · "	ι αμμπταυτές				
6c ADDRESS (City, State, and ZIP Code)			7b. ADDRESS (Cit	y, State, and ZIP ((ode)	
Sunnyvale, CA 94089						
			0.0000000000000000000000000000000000000		-	
Sa. NAME OF FUNDING/SPONSORING ORGANIZATION	85. O (If	applicable)	9 PROCUREMENT	INSTRUMENT ID	ENTIFIC	ATION NUMBER
Naval Weapons Center						•
BC ADDRESS (City, State, and Zir Code)			PROGRAM	PROJECT	TASK	WORK UN'T
China Lake, CA 93555-6001			ELEMENT NO	NO	NO	NO
11 1111 (Include Security Classification)			I	L	_
Kevlar Photochemical Degradation	Mechanisms					
12 PERSONAL AUTHOR(S) Madeline S. Toy, Ph.D.			· · · · ·			
13a. TYPE OF REPORT 13b Final	TIME COVERED	70 30 Apt 8	14 DATE OF REPO	RT (Year, Month,	Day)	15 PAGE COUNT
16 SUPPLEMENTARY NOTATION			1707, April			
1/ COSATI CODES	18 5	UBJECT TERMS (C	ontinue on reverse	e if necessary and	lidenti	ify by block number)
FIELD GROUP SUB-GR	OUP Ke	vlar-29, Kevla	r-49, polv(p-ber	zamide), polv(p-phe	nvlene
07 05	ter	ephthalamide,	moiety, aramid	, photochemica	i degr	adation (over)
19 ABSTRACT (Continue on reverse if n	ecessary and id	entify by block n	umber)	1		
The objective of	$f_{i} = O X U$	n was to inv	vestigate and	determine Key	lar's	nhotochemical
degradation mechanism	s, rate consta	nts, and activa	tion energies in	air. The unde	rlying	reason was to
understand the oxidativ	e photodegrad	dation processes	s, which would	help to provide	e servi	ice life forecast
The first significan	itions and to t accomplishi	and effective m	oiect was the n	ent against its ew and novel	pnoto analvi	tical approach.
which demonstrated the	e rate constan	t and activatio	n energy detern	ninations of Ke	vlar's	photooxidative
processes. The 0.2 atm	of oxygen-18-	labeled environ	ment in a solar	chamber simul	ates t	he air exposure
fiber surface toward th	e fiber cente	ique also allow: r. The data fro	s the radial "O om the accelera	-aistribution m ited experimen	easure tal.co	nditions in the
solar chamber in an ¹⁸	$\overline{\mathcal{O}}_{2}$ -atmospher	re are different	iated from the	similar ambie	nt day	vlight_exposure
effects.						(OVCT)
20 DISTRIBUTION / AVAILABILITY OF AP	STRACT		1 ARSTRACT CC	CURITY CLASSICIC	A TION:	
	ME AS RPT		LI MOJINALI SE	UNCLASSIE	ED	
Ca NAME OF RESPONSIBLE INDIVIDUA Richard Tubis			226 TELEPHONE ((619) 939-2	Include Area Code) 220	OFFICE SYMBOL 6414

83 APR edition may be used until exhausted All other editions are obsolete

DD FORM 1473, 84 MAR

5.5

N11175

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

18. SUBJECT TERMS (Contd.)

mechanisms, oxidative photodegradation process, photooxidative degradation, tensile strength, tensile modulus, breaking strain, moisture region, critical oxygen index, chemical resistance, light wavelength, polymer degradation, energy level, absorption spectrum, ultraviolet, aromatic amides, benzanilide, amide bonds, oxygen molecules, peroxide intermediates, carboxylic acid, nitroso compounds, infrared spectroscopy, potentiometric titration, anionic polyelectrolyte, dialkylamide-LiCl, cationic polyelectrolyte, lithium cation-amide, dialkylamide solvent, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), crystalline solvates, polymer solutes, anisotropic, photolysis chamber, Pyrex conical pipe, quartz sleeve, ¹HNMR, deuterated, vacuo, Nicolet spectrometer, decarboxylation, gas chromatography, GC-mass spectrometer, ¹³CNMR, macromolecule, reactant, radial distribution.

19. ABSTRACT (Contd.) Carbon dioxide

The second significant accomplishment was the recognition of a thermal decomposition pattern of Kevlar in concentrated sulfuric acid at 196°C to give the same two types of decarboxylations: one yields one mole of CO_2 per $+C_7H_5NO_7$ moiety and the other gives two moles of CO_2 per $+C_7H_5NO_7$ moiety and the other gives two moles of CO_2 per $+C_7H_5NO_7$ moiety. The half life of the former is 4 to 12 hours and appears to originate from the amide linkages' carbonyl groups. The latter's half life is 660 hours and is from two of the six carbons of its aromatic rings.

The third significant accomplishment was the analytical methodology applied to deduce the four photooxidative processes. The data on the total CO₂ evolved from the samples were measured by gas chromatography and the isotopic CO₂ (⁴⁶CO₂ and ⁴⁸CO₂) data by GC/mass spectroscopy. The rate constants of the two major photooxidative degradation processes at 25 °C were deduced from 1/2 ¹⁸O₂ per $+C_7H_5NO+$ (i.e., to produce ⁴⁶CO₂ product, $t_{1/2} = 42$ hours) at 196 °C and the other from ¹⁸O₂ per $+C_7H_5NO+$ (i.e., to produce ⁴⁸CO₂ product, $t_{1/2} = 8$ minutes) at 196 °C. The rate constants of the former process was estimated as 1.10×10^{-8} 1 mole⁻¹ second⁻¹ and the latter as 1.03×10^{-12} 1 mole⁻¹ second⁻¹. The activation energies of these two processes were deduced as 10.8 kcal/mole for the latter.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

Introduction	3
Theoretical Studies Photodegradations Kevlar Solution Structures	3 3 5
Mechanical Design	7
Theory of Operation Photooxidative Study by ¹ HNMR Analytical Study of Photodegraded Kevlar in ¹⁸ O ₂ Atmosphere	9 9 9
Experimental I Reagents I Fabric Cleaning I Photolysis Procedure I Sample Preparation for NMR Analysis I Preparation of Soluble Sample for Decarboxylation I Analytical Instruments for Carbon Dioxide Analyses I	12 12 12 13 13
Results and Discussion NMR Studies Oxidation in ¹⁸ O ₂ Atmosphere	14 14 17
Conclusion	25
Recommendation	28
Appendix	31
References	33
Figures: 1. Overlap of Absorption of Kevlar With Solar Spectrum	5

Schematic Longitudinal Section of Photolysis Chamber
 ³ ¹HNMR Spectra of Benzanilide in CDCl₃ (a) and With D₂O added (b)
 Weight of the Photodegraded Kevlar Moieties Versus Photolysis
 Time at 52.0 ± 1.5 °C

いたやいろう

Contents (Contd.)	
5. A Representative Plot of ⁴⁴ CO ₀ Concentration Versus	
Decarboxylation Time for the Two Types of Pseudo First Order	
Decarboxylation Reactions at 196°C	19
6. An Example of ⁴⁶ CO ₂ Concentration Versus Decarboxylation	
Time for Pseudo First Order Reaction at 196°C	21
7. An Example Plot of ⁴⁸ CO ₂ Concentration Versus Decarboxylation	
Time for Pseudo First Order Reaction at 196°C	22
8. The Average Radial ¹⁸ O-Distribution, Which Contributed to ⁴⁶ CO ₂	
(a) and ⁴⁸ CO ₂ (b) Measurements for the Two Major Oxidative Processes	23
9. Plots of Oxygen-18 Concentration Versus Photolysis Time of Pseudo First	
Order Decarboxylations at 196°C for 20 minutes from the Top Surface Layer	27
Tables:	
1. Properties of Kevlar Fibers	4
2. Decarboxylation Data of Photodegraded Kevlar	18
3. Summary Data on Decarboxylation of Kevlar and its Radial	
Distribution of Oxygen	24
4. Photooxidation Rates at 100°C of Pseudo First Order Decarboxylations	26

Accession For NTIS GRA&I DTIC TAB Unnnnounced Justification DTIC By____ Distribution/ COPY PECTED Availability Codes 1 Avail and/or Dist Special

INTRODUCTION

Kevlar is du Pont's trade name for poly(p-benzamide) and poly(p-phenylene terephthalamide) (II):

The Kevlar moiety in this report is addressed as (C_7H_5NO) , because II expressed by its repeating units is $(C_{14}H_{10}N_2O_2)$, which is (C_7H_5NO) to be simplified as (C_7H_5NO) , where x = 2m. Kevlar belongs to the aramid family of high modulus fiberforming organic polymers. The aramids are a series of isomeric fully aromatic polyamides that can withstand service-life stress at high temperature without deformation and degradation (References 1 and 2). The aramids' inherent flame resistance, high thermal and chemical stablity, and high modulus fulfill a new source for engineering materials.

Kevlar fibers were supplied by du Pont as Kevlar-29 and -49. The former is characterized by high tensile strength and the latter by high initial modulus (Reference 3). Table 1 summarizes some of the properties of Kevlar fibers (Reference 4). Some common Kevlar-29 end uses are in ropes and cables, which are as strong as steel at one-fifth the weight, and in ballistic vests. Some Kevlar-49 end uses are in reinforcing resins and composites for aerospace structures, boat hulls, and sport equipment.

Since many of Kevlar applications such as fabrics, cords, webbings, threads, and cables result in sunlight exposure, which degrades the material, this work aimed to investigate and determine Kevlar's photochemical degradation mechanisms, rate constants, and activation energies in air. The underlying reason was to understand its oxidative photodegradation processes, which can help to provide its service-life forecast under sunlight conditions and to develop an effective method to prevent the photodecomposition.

THEORETICAL STUDIES

PHOTODEGRADATIONS

Before certain light wavelength can cause polymer degradation, two conditions must be met: (1) the polymer must absorb at that particular wavelength and (2) the polymer must

Property	Value	Units
Density	1.45	g cm ^{- 3}
Ultimate tensile strength	23.3	q dtex ⁻¹
Tensile modulus	2.70	Gra .
(Kevlar-29)	556 62	q dtex ^{- 1} GPa
(Kevlar-49)	1166 130	g dtex ^{- 1} GPa
Breaking strain		
(Kevlar-29)	3.6	%
(Kevlar-49)	2.1	%
Moisture region	1.5	%
Continuous use	240	С
Critical oxygen index	0. 29	%
Chemical resistance ^a		

TABLE 1. Properties of Kevlar Fibers.

^a Resistance to organic solvents, fuels, lubricants, strong acids and bases, and hydraulic fluids.

absorb a wavelength of light of sufficient energy level to break their chemical bonds. Figure 1 shows the absorption spectrum of Kevlar and the light spectrum from the sun at the earth's surface (Reference 5). The sensitive wavelengths for the outdoor use of Kevlar are the overlap area of these two curves; that is, the wavelengths between 300 to 450 nanometers (nm).

Although only small amounts of this near ultraviolet and part of the visible light region are present under ordinary fluorescent lamps or in sunlight filtered by windows, the fresh Kevlar yarn with its normal yellow color ordinarily darkens under the exposure. The effect of ultraviolet light varies with the thickness of the Kevlar item exposed. Kevlar is described as self-screening by du Pont, because only the fibers at the surface are subject to photochemical degradation (Reference 6). However, our work herein has provided new evidence by exposing Kevlar fabric in an oxygen-18-labeled atmosphere in a simulated solar chamber. We found that the ¹⁸O-containing Kevlar species were also present at the fiber center above the natural background level.

Aromatic amides (i.e., benzanilide) were reported to photodegrade in the presence of oxygen to give carboxylic acids (e.g., benzoic acid) as the major products (Reference 7). Carlsson, Gan, and Wiles also reported the photodegradation mechanism of poly(p-benzamide) in air by homolytic cleavages of its amide bonds, insertions of oxygen molecules before the radical paired recombinations, and rearrangements of the peroxide intermediates to give carboxylic acid and nitroso end groups. However, the latter formation is based on the presumptive evidence due to the labile nature of the nitroso compounds, which are unlikely to

FIGURE 1. Overlap of Absorption of Kevlar With Solar Spectrum.

accumulate during the photooxidative conditions; whereas the carboxylic acids are determined by infrared spectroscopy and potentiometric titration (Reference 8). In other words, after the photooxidative degradation of Kevlar fibers, the oxidized polymeric fragments contain mostly two types of terminal groups, a carboxylic acid end and another labile nitroso end.

KEVLAR SOLUTION STRUCTURES

The solution structure of Kevlar has been reported to form anionic polyelectrolyte in dialkylamide-LiCl solutions (Reference 9) and cationic polyelectrolyte in concentrated sulfuric acid (Reference 10). According to Panar and Beste (Reference 9), the N-H groups in dialkylamide-LiCl solutions are associated with chloride anions to form the negatively charged polyelectrolyte, which is solvated by weak positively charged lithium cation-amide complexes.

The neutral entity is then soluble in dialkylamide solvent. The role of dialkylamide solvent [e.g., N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF)] is shown below:

Where R is CH_3 for DMAc and H for DMF.

Gardner states in Reference 10 that the two aramids, poly(p-phenylene terephthalamide) (II) and poly(p-benzamide) (I), form crystalline solvates with sulfuric acid and their amide groups are protonated. The structure consists of hydrogen bonded sheets containing the polymer alternating with sulfuric acid molecules. The sheets are close-packed. The crystalline structure of the oligomer/sulfuric acid complex is suggested below:

The N-H groups are associated with the protons to form the positively charged polyelectrolyte, which is solvated by negatively charged mobile hydrogen sulfate anions.

The solutions of Kevlar derive the crystalline rod-like configuration from their rigid repeating units, bond direction, and solvent association (Reference 11). They are different from the crystalline solutions of poly-(γ -benzyl-L-glutamate), which derives its rod-like character from the helix formation in selected solvents (Reference 12). The extended rigid chain structure of Kevlar polymer solute is produced by the para-linked benzene ring and the partial double bond character of the carbon-nitrogen bond in predominantly the trans amide linkages (Reference 13). The rod-like crystalline (anisotropic) polymer solutes have been reported in the literature as being undetectable by high resolution ¹HNMR due to their very large intramolecular nuclear dipolar interactions (References 9 and 14). However, in principle, when the rod-like polymer solute is in the degraded state and in high dilution, this problem should disappear or be greatly reduced. We had some success with the photodegraded Kevlar solutions but not without problems (see the section "NMR Studies" later in this report).

MECHANICAL DESIGN

A simulated solar photolysis chamber (Figure 2) was designed and built to study Kevlar fabric at several temperatures and photolysis times. The photolysis chamber consists of a Pyrex conical pipe outside and a quartz sleeve inside. The top and bottom aluminum annular end plates enclose the area between the Pyrex (7.6 cm id) and quartz (4.5 cm od) tubes into an annular chamber 21.5 cm high with gas inlet and outlet and valves attached. The photolysis chamber's short arc lamp, which is vertically suspended at the center of the quartz sleeve, passes its irradiance through the quartz wall onto the Kevlar-29 fabric in a confined atmosphere (e.g., atmospheric air, oxygen at 0.2 atm, or oxygen-18-labeled gas at 0.2 atm) at specified temperature and time.

A high-pressure ozone-free mercury-xenon arc lamp at 200 watts was purchased from UVP (San Gabriel, Calif.). Its irradiance is estimated at 125 times that of the sun by comparing its spectral power output with the solar spectral irradiance at air mass 2 (Reference 15). A typical air mass 2 (terrestrial at a 30-degree altitude) sun produces 749 W/m². Thus, an exposure of 1/2 hour is equivalent to 62.5 hours under the sun (at 749 W/m²). The ozone-free bulb cuts off the ultraviolet irradiance below 300 nm for closer resemblance to the solar spectrum.

This apparatus provides the means to investigate Kevlar's photochemical degradation rate constants, activation energies, and mechanisms in air. For atmospheric air runs, the presence of some ozone is anticipated, since oxygen generates ozone under photolytic conditions (References 16 through 18).

It was found essential to remove the surface lubricants (about 1 to 3% by weight) from the as-received Kevlar-29 fabric by using a solvent extraction method prior to the solar exposure tests (see section entitled "Experimental"). These lubricants interfered with the photodegradation processes and the sample analyses (Reference 15).

FIGURE 2. Schematic Longitudinal Section of Photolysis Chamber.

THEORY OF OPERATION

PHOTOOXIDATIVE STUDY BY ¹HNMR

The dialkylamides were used as solvents to separate the photodegraded fabric surface molecules for analyses. The solutions were analyzed by ¹HNMR in deuterated N,N-dimethylacetamide (DMA- d_9), deuterated N,N-dimethylformamide (DMF- d_7) or deuterated sulfuric acid (D_2SO_4).

NEW CONTRACTORS DEVICED A RECEIPTING TO SERVICE A RECEIPTING TO S

Ó UNUM (RESERVE) ESSERVEL - ZERVEN AV UNA

Figure 3 shows the ¹HNMR spectra of benzanilide solutions in $CDCl_3$ (a) and with D_2O added (b). The H-chemical shift of the amide proton of III is at 7.8 ppm from TMS (tetramethylsilane) using an internal standard CF_2ClCH_2Cl at 4.02 ppm from TMS. With the addition of a small amount of D_2O to the solution, the NH-proton of benzanilide (III) becomes deuterated (Equation 1):

Thus, the ¹H-signal of III at 7.8 ppm disappears for IV.

Although the ¹HNMR spectrum of the structural model (i.e., benzanilide) shows a proton resonance at 7.8 ppm, the ¹HNMR spectra of the photodegraded Kevlar are broad at 7.8 ppm in deuterated dimethylacetamide, or deuterated dimethylformamide and deuterated sulfuric acid. The photodegraded Kevlar surface molecules apparently exhibit a gradient of molecular weights. The higher molecular weight fragments show rod-like character and cause solvent association and alignment in the magnetic field. These characteristics interfere with the ¹HNMR resonance by broadening the sample signal. This problem can be reduced by further degrading the rod-like fragments in the solution, which then becomes resolvable by ¹HNMR.

AN ANALYTICAL STUDY OF PHOTODEGRADATED KEVLAR IN ¹⁸O₂ ATMOSPHERE

The oxidatively degraded products are concentrated on the fabric surface with an increase in the total terminal carboxylic acid end groups. This increase is caused by splitting of the amide linkages in the polymer chains on the surface layers. In the presence of oxygen-18labeled atmosphere, each newly cleaved amide link generates one new carboxylic acid group containing one oxygen-18-labeled atom.

States and a process set of the state

aaraa saaaada baraasa kaalaada kaannaa koosaada

The following reaction sequence (Equations 2 through 5) describes the photooxidative degradation mechanism of Kevlar in oxygen-18-labeled atmosphere:

The photodegradation process is initiated by the homolytic cleavages of the amide bond (Equation 2) (References 19 and 20), where ${}^{18}O_2$ -insertion occurs before radical paired recombination (Equation 3). During the photooxidation, the type of oxygen-atom exchange, which was previously reported by Srinivasan and Noyes (Reference 21), occurring between ${}^{18}O_2$ and the carbonyl oxygen, may also occur here (Equation 3). This may be one possible path that explains the presence of CO₂ at mass 48 (Equation 5). The peroxide intermediate (Equation 3) rearranges to give an oxygen-18-labeled COOH and an oxygen-18-labeled nitroso end group. The latter is based on presumptive evidence caused by the labile nature of the nitroso compounds. The carboxylic acid groups are confirmed by infrared spectrophotometry. Decarboxylation occurs at 25°C (Equation 5). The total carbon dioxide content is measured by GC with a reference standard and the isotope ratio of CO₂ at mass 48, 46, and 44 by GC-mass spectroscopy. With these experimental data versus photolysis times and temperatures, the rate constant and activation energy can be calculated.

EXPERIMENTAL

REAGENTS

High purity air (ultra zero grade), oxygen (99.98%), and helium (99.99%) were purchased from Matheson; oxygen-18-labeled gas (99%) was purchased from ICON; a gaseous mixture of 100 ppm ethane in helium was purchased from Alltech; concentrated sulfuric acid (Ultrex) was purchased from J. T. Baker; 1,2-dichloro-1,1-difluoroethane was purchased from PCR; N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and chloroform was purchased from Aldrich; and deuterated chloroform and fully deuterated DMF and DMAc was purchased from Stohler. The reagents were checked by infrared spectroscopy and used asreceived unless otherwise specified.

FABRIC CLEANING

The Kevlar-29 woven fabric was obtained through the courtesy of the Naval Weapons Center. The Kevlar-29 woven fabric is composed of 200-denier yellow yarn (Type 964) containing 134 zero twist filaments (each at a diameter slightly under 0.0013 cm) with a nominal yarn diameter of 0.2 mm assuming 70% packing factor (Reference 6). A special pair of serrated shears for cutting the fabric was purchased from Technology Associates. The fabric $(2/5 \text{ cm} \times 18 \text{ cm})$ was placed in a Soxhlet thimble and extracted by 100 ml of chloroform for 24 hours to remove its surface lubricants (about 3% by weight). The fabric was then removed from the thimble and agitated in 20 ml of hot distilled DMAc for 15 minutes before it was placed back into the thimble and extracted for another 8 hours using fresh chloroform solvent. The solvent-cleaned fabric was dried in vacuo at room temperature.

PHOTOLYSIS PROCEDURE

The solvent-cleaned Kevlar-29 fabric swatch (2.5 cm \times 18 cm) was placed around the outside quartz tube inside the photolysis chamber, which was subsequently evacuated, before ¹⁸O₂ (99%) was introduced to 0.2 atm (the partial pressure of oxygen in the atmosphere). The

photolysis chamber (Figure 2) was preheated to the specified photooxidation temperature before the Hg-Xe lamp was turned on. The temperature, which was held constant in the chamber by adjusting the airflow around the lamp, was monitored by a thermocouple placed next to the fabric sample inside the chamber. After the photooxidation had continued for the specified time period, the lamp was turned off and the photolysis chamber was evacuated and cooled to ambient temperature. Room air was let in and the photolysis chamber was opened to remove the oxidatively photodegraded fabric swatch. This procedure was repeated on different swatches at several temperatures versus photolysis times.

للكككيكيك

SAMPLE PREPARATION FOR NMR ANALYSIS

After the solvent-cleaned fabric (about 3.5 cm \times 18 cm or 400 mg) was photolyzed in air (i.e., O₂ at 0.2 atm), the degraded products on the fabric surface were dissolved in N,N-dimethylacetamide solvent (about 30 ml of distilled DMAc at 160 °C). The DMAc solution was then dried in vacuo. The solid residue was dissolved in deuterated solvent (e.g., DMAc-d₉, N,N-dimethylformamide-d₇, or D₂SO₄) for ¹HNMR analyses. The ¹HNMR spectral data were obtained from a Nicolet spectrometer operating at 300 MHz and 35 °C.

The ¹³CNMR analyses consisted of dissolving 0.1 g of surface-cleaned fabric in 10 ml of concentrated sulfuric acid in a 22 mm od and 203 mm length ¹³CNMR tube and measured from a Nicolet spectrometer operating at 75.5 MHz and 35°C. The extended degradation sample consisted of heating at 200°C for 3 hours to obtain a sulfuric acid solution of the sample.

PREPARATION OF SOLUBLE SAMPLE FOR DECARBOXYLATION

The fabric surface was removed with a solvent. The photolyzed fabric swatch was placed in 20 ml of distilled DMSc at 110°C for 5 minutes. The DMAc solution was filtered to remove any insoluble fibrous material from the decarboxylation flask (a round 30 ml two-neck Pyrex flask with a protruded bottom well) and dried in vacuo with the temperature kept below 50°C leaving a residual film on one side of the flask.

The purified sulfuric acid (i.e., preheated the commercial ultrapure grade H_2SO_4 at 200°C for 24 hours under vacuo to remove its decarboxylating contaminants and subsequently cooled to ambient temperature), 0.5 ml. was added to the bottom well of the decarboxylation flask and subsequently placed under vacuo. A known amount of a GC-standard (640 mm of 100 ppm C_2H_6 in He) was introduced into the flask for the total CO₂ determination. The acid was then allowed to dissolve the photodegraded residual film on the side of the flask by tilting. The acid solution was left standing for 20 minutes at room temperature.

ANALYTICAL INSTRUMENTS FOR CARBON DIOXIDE ANALYSES

A gas chromatography (Carle Series 100) and GC-mass spectrometer (LKB9000) were used with identical GC-columns (2 mm id and 6 m length), which were purchased from Alltech and packed with 80% Porapak Q 80/100 and 20% Porapak N 80/100. The six-port mini-switching valve was purchased from Hach and used to trap the total carbon dioxide evolved and the C_2H_6 standard from the decarboxylation flask into its collection injection loop at liquid

nitrogen temperature. This cold loop was warmed to ambient temperature and its trapped contents were vaporized. The collected vapor mixture in the loop was swept into the GC's helium stream (2 atm pressure) and into the column, and then into the thermister detector when the valve was turned to injection mode. The sample was analyzed for the total CO_2 content and the C_2H_6 standard. After the CO_2 had passed through the GC's detector, the vapor mixture was then collected in a portable gas cell, which consisted of a six-port mini-switching valve and a collection/injection loop, again chilled to liquid nitrogen temperature.

The collected sample at -196 °C was isolated from the flow of the GC's helium gas stream and then the loop was warmed to ambient temperature for GC-mass spectroscopic analyses. The gas cell, which contained the isotopic CO₂ and the C₂H₆ standard in helium at 1 atm, was placed in the injection helium flow of the GC-mass spectrometer for 10 minutes before the mini-switching valve was turned to inject the vapor contents into the instrument. After 3 minutes, the CO₂ peak eluted. The superimposed peaks were sampled ten times during their elution and the relative isotopic quantities of ${}^{45}CO_2$, ${}^{46}CO_2$, ${}^{47}CO_2$ and ${}^{46}CO_2$ were determined.

RESULTS AND DISCUSSION

NMR STUDIES

The ¹HNMR spectrum of the structural model (i.e., benzanilide in $CDCl_3$ in the absence of D_2O) shows a sharp proton resonance at 7.8 ppm from TMS indicating the NH-group; whereas in the presence of D_2O the 7.8 ppm peak disappears due to the deuterium exchange of the amide proton (in the section entitled "Photooxidative Study by HNMR" and Figure 3). Although the ¹HNMR at 7.8 ppm of the oxidatively photodegraded Kevlar sample in the deuterated solvent was broadened when compared to the model compound, an approximation was still feasible.

The data are described below. Figure 4 shows the weight loss data of Kevlar, which were deduced from the relative areas of ¹HNMR at 7.8 ppm versus photolysis times. The initial rate was determined as 1.6×10^{-5} g/solar-hour/g-Kevlar and after 625 solar hours as 3.8×10^{-7} g/solar-hour/g-Kevlar. In this experiment, the photolysis chamber temperature was calculated from P-V-T measurements, assuming ideal gas behavior. The other data and estimations are as follows:

Volume of NMR sample = 0.5 ml = 0.5/1000 liter

Amount of standard CF_2ClCH_2Cl added = 0.0208 mole/liter (An equivalent of hydrogen-content in standard as 2 = 0.0416 mole/liter)

The relative area of the ¹HNMR resonance of the standard at 4.02 ppm = 4.8

Mole weight of the molety $+C_{-}H_{5}NO + = 119$ g/mole

The relative area of the ¹HNMR resonance for photodegraded Kevlar at 7.8 ppm.

10-20-00-00

122222222

いいとく

Lessered Parazzara

Photolysis Time (nr)

FIGURE 4. Weight of the Photodegraded Keylar Moieties Versus Photolysis Time at 52.0 ± 1.5 C

10

FARATA 74 14

After 1 hour (i.e., 125 solar hours at air mass 2) = 0.9

After 5 hours (i.e., 625 solar hours at air mass 2) = 1.2

The calculated weight loss of Kevlar after 125 solar hours

$$= \frac{0.9}{4.8} \times 0.0416 \text{ mole}/1 \times 119 \text{ g/mole} \times \frac{0.5}{1000} 1$$

= 4.70×10^{-4} g (equivalent to four monolayers of Kevlar fabric)

The calculated weight loss of Kevlar after 625 solar hours

$$= \frac{1.2}{4.8} \times 0.0416 \times 119 \times \frac{0.5}{1000}$$

= 6.19×10^{-4} g (equivalent to six monolayers of Kevlar fabric)

From Figure 4, the initial rate (i.e., 125 solar hours at air mass 2)

of 0.5 g Kevlar-29 fabric sample = $\frac{1.0 \times 10^{-3} \text{ g}}{125 \text{ solar hours}}$

= 8×10^{-6} g/solar-hour

of 1.0 g Kevlar-29 fabric sample = 1.6×10^{-5} g/solar-hour

From Figure 4, the rate after 5 hours (i.e., 625 solar hours at air mass 2)

of 0.5 g Kevlar-29 fabric sample = $\frac{(0.619 - 0.5 \times 10^{-3} \text{ g})}{625 \text{ solar hours}}$ = $1.9 \times 10^{-7} \text{ g/solar-hour}$

of 1.0 g Kevlar-29 fabric sample = 3.8×10^{-7} g/solar-hour

In conclusion, the photodegradation rate

after 625 solar hours = $\frac{3.8 \times 10^{-7} \times 100}{1.6 \times 10^{-5}}$ = 2% the initial rate (or 1/50th the initial rate)

The activation energy was estimated at 2.3 kcal/mole from weight loss of Kevlar fabric versus photolysis time of 5 hours (625 solar hours) at 52 °C and 130 °C runs.

The extended degradation sample consisted of adding 10 ml of concentrated sulfuric acid to 0.1 g of the Kevlar fabric and then heating the mixture to 200 °C for 3 hours to obtain the

sulfuric acid solution. The five carbon resonances were observed at 126, 130.5, 133, 134.5 and 193 ppm from TMS and assigned to

$$\begin{array}{cccc} H & O & O \\ i_{a} & i_{b} & i_{c} & | & i_{d} & i_{e} \\ 2 = C - H, 2 = C - H, = C^{c} - N - , + C^{d} - C - and - C - \end{array}$$

at the area ratio of 2:2:1:1:1, respectively, for the seven carbon atom structure:

The ¹³CNMR spectrum differentiates the carbon atoms and is an improvement over the broad absorption of ¹HNMR at 7.8 ppm. Its disadvantage is the large sample size requirement.

OXIDATION IN 180, ATMOSPHERE

The oxidation under daylight exposures is a continuous ongoing process that influences the Kevlar sample. The use of ${}^{16}O_2$ atmosphere allows the differentiation between the accelerated experimental photooxidation conditions and its usual room exposure effects. This paper determines the rates of photooxidations of Kevlar-29 fabric based on the oxygen-18-labeled carbon dioxide (i.e., ${}^{46}CO_2$ and ${}^{46}CO_2$ isotopes) decarboxylated from the Kevlar sample. In other words, the oxygen-18-labeled atoms, which are inserted in the Kevlar macromolecules, are being analyzed to determine the photodegradation processes.

The photodegraded Kevlar macromolecules in an ${}^{16}O_2$ atmosphere were removed by a solvent, then dried in vacuo to a solid film, and decarboxylated in concentrated sulfuric acid at 25 °C and 196 °C. The data on the total CO₂ evolved and the isotopic CO₂ ratios provide the information on the extent of the degradation, the distribution of the oxygen-18-labeled Kevlar moieties, and the types of the photooxidative degradation.

At 25 °C, the Kevlar macromolecule retains its polymeric structure in concentrated sulfuric acid solvent. The rapid decarboxylation observed at 25 °C in Table 2 appears to originate from the oxidized terminal groups of the macromolecules (References 8 and 22). In contrast, the acid decarboxylation at 196 °C appears to break down the Kevlar macromolecules completely. A thermal degradation pattern has been recognized for the decarboxylation of Kevlar in sulfunc acid at 196 °C, whether the fabric was exposed to photolysis in the chamber or not. This thermal decomposition pattern is used as a decarboxylation model, which constitutes the same two types of decarboxylation reactions at 196 °C (e.g., R1 and R2 in Table 2): one yields 1

	Decarboxylation ^a at					
CO ₂ Isotope	25°	С	196°C			
	Moles of total CO ₂ evolved	Rate of CO ₂ evolution, t _{1/2} , min	Moles of total CO2 evolved ^b	Rate of CO ₂ evolution, ^t 1/2		
44CO2	1.6×10^{-4}	1 to 10	6.98×10^{-3} 3.49 × 10 ⁻³	Two types of reactions ^c : (R1) 660 hr (R2) 4 to 12 hr		
46 _{CO2}	1.9×10^{-9}	1 to 10	4.0×10^{-7}	42 hr ^d		
48CO2	7.0×10^{-11}	1 to 10	4.3×10^{-9}	8 min		

TABLE 2. Decarboxylation Data of Photodegraded Kevlar (Exposed for 7 Minutes at 100°C in 0.2 atm 18O2 in the Photolysis Chamber).

⁴ The total carbon available for decarboxylation from 0.415 g Kevlar fabric sample [expressed as $+C_7H_5NO+$ moieties in moles; i.e., 3.49×10^{-3} moles] = $3 \times 3.49 \times 10^{-3}$ = 1.05×10^{-4} moles, where 3 designates three carbon atoms from a $+C_7H_5NO+$ moiety of 7 carbons eliminating as CO_2 .

^b includes extrapolated data.

^c There are consistently two types of decarboxylation reactions that occur at 196°C (R1 and R2) of a given Kevlar sample [expressed as $+C_7H_5NO+$ moieties in moles], whether it was exposed or not exposed to photolysis: one yields one mole of CO₂ per $+C_7H_5NO+$ moiety and the other gives two moles of CO₂ per $+C_7H_5NO+$ moiety (e.g., Figure 5).

^d Two rates (a fast and a slow) may be involved.

mole of CO₂ per $+C_7H_5NO+$ moiety and the other gives 2 moles of CO₂ per $+C_7H_5NO+$ moiety. The half life of the former is 4 to 12 hours and appears to originate from the amide linkages' carbonyl groups. The latter's half life is 660 hours and is from two of the six carbons of its aromatic rings.

Figure 5 shows the types of decarboxylation (R1 and R2) as the pseudo first order reactions. Since the bimolecular second order process (decarboxylation of Kevlar in concentrated H_2SO_4) contains one of the reactants (concentrated H_2SO_4) in great excess to the other reactant (the solvated surface layer). Figure 5 also illustrates the changes in concentrations with times of R1 and R2. The R2 intercept is 32×10^{-6} moles, i.e., the initial concentration at R2 at about 11×10^{-6} and the initial concentration of R1 at about 21×10^{-6} moles. The ratio of R1 and R2 reactions is about 2^{-1} , which conforms with all the decarboxylation reactions (e.g., Table 2) at 196 C, whether the Kevlar sample was or was not exposed to photolysis chamber conditions. Consistently, three moles of CO_2 evolved per $+C_7H_5NO$ molety of seven carbons eliminating as one mole CO_2 at $t_{1,2}$ of 4 to 12 hours (R2) and two moles CO_2 at $t_{1,2}$ of 660 hours (R1).

Table 2 also shows that the main component of the total CO_2 evolved, which is determined by GC, is the regular ${}^{44}CO_2$, and the total of the other CO_2 isotopes (e.g., ${}^{46}CO_2$ and ${}^{48}CO_2$) is about 10^{-4} of CO_2 . The low concentrations of the isotopic ${}^{46}CO_2$ and ${}^{48}CO_2$ are

FIGURE 5. A Representative Plot of ⁴⁴CO₂ Concentration Versus Decarboxylation Time for the Two Types of Pseudo First Order Decarboxylation Reactions at 196°C. The ratio R2 intercept over R1 intercept is 1:2.

still, however, an easily measurable quantity by GC-mass spectrometer. The ${}^{45}CO_2$ is used as the standard, because the measurement of ${}^{45}CO_2$ relates directly to the quantity of the abundant ${}^{44}CO_2$. Its low concentration levels help to improve the measuring accuracy of the other CO_2 isotopes, which are also in low concentration. The moles of the total CO_2 from the GC determination is used for the calculation of the moles of ${}^{45}CO_2$ as follows:

Moles of the total $CO_2 \times 0.01108 =$ moles of ${}^{45}CO_2$

where 0.01108 is the fraction of ¹³C in carbon at mass 12. The presence of ⁴⁶CO₂ and ⁴⁸CO₂ are measured from their respective peak areas compared to that of ⁴⁵CO₂. The moles of ⁴⁶CO₂ and ⁴⁸CO₂ are then corrected by subtracting the ⁴⁶CO₂ and ⁴⁸CO₂ occurring naturally in the CO₂ sample. Some of the possible photooxidized sites of the Kevlar macromolecules before decarboxylation are illustrated below (Equations 6 and 7).

These ${}^{18}O_2$ -inserted macromolecules can be differentiated from the ongoing ${}^{16}O_2$ -oxidized macromolecules by GC-mass spectrometer.

When a sample of the same Kevlar-29 fabric was identically treated in ${}^{18}O_2$ atmosphere except in the absence of photolysis (in the dark) for 24 hours, the results of CO_2 evolved at 25° and 196°C from the GAC-analysis were the same as the samples under photolysis (i.e., Table 2). However, the gross difference was in the analyses of the GC-mass spectroscopic data, where no oxygen-18-labeled CO_2 isotopes evolved (i.e., there was no ${}^{46}CO_2$ or ${}^{48}CO_2$ above the natural background levels).

Figures 6 and 7 illustrate the pseudo first order decarboxylation reactions of ${}^{46}\text{CO}_2$ (the slow reaction with $t_{1/2} = 42$ hours) and ${}^{48}\text{CO}_2$ (the fast reaction with $t_{1/2} = 8$ minutes). The photodegraded sample was exposed for 7 minutes at 100 °C in 0.2 atm ${}^{18}\text{O}_2$. The concentration of ${}^{18}\text{O}$ -Kevlar is expressed as $+\text{C}_7\text{H}_5\text{NO}$ in moles and is equal to the total ${}^{46}\text{CO}_2$ minus evolved ${}^{48}\text{CO}_2$ in moles for Figure 6 and ${}^{48}\text{CO}_2$ minus evolved ${}^{48}\text{CO}_2$ in moles for Figure 7.

Figure 8 shows the radial ¹⁸O-distribution from the fiber surface toward the fiber center (0.00065 cm). The area under the curves are the total mole ratios ${}^{46}CO_2/{-}C_7H_5NO+$ at 1.15 \times 10⁻⁴ for curve (a) and ⁴⁸CO₂/+C₇H₅NO+ at 1.23 \times 10⁻⁵ for curve (b). Most of the ⁴⁸CO₂ (95%) was evolved during the first 30 minutes. Successive surface layers, which were then dissolved separately in distilled DMAc solvent and decarboxylated in concentrated sulfuric acid, were analyzed for ⁴⁶CO₂ and ⁴⁸CO₂. Although the most severely photodegraded part of the fiber occurred at the light exposed surface, it appeared that the ¹⁸O-distributions were present throughout the fiber. Table 3 summarizes the decarboxylation data of Kevlar and its radial distribution of oxygen as a constituent in ${}^{44}CO_2$, ${}^{46}CO_2$, and ${}^{48}CO_2$. The data were obtained from 0.415 g Kevlar-29 fabric, which was expressed as $+C_7H_5NO+$ in moles (3.49 \times 10⁻³ moles) and was exposed for 7 minutes at 100 °C in 0.2 atm ¹⁸O₂ in the photolysis chamber. The isotopic ⁴⁶CO₂ decarboxylation reactions at 196°C and 25°C diminished toward the fiber center. The concentration of ${}^{46}CO_2$ per $+C_7H_5NO+$ moiety was highest near the outer fiber surface. The isotopic ⁴⁸CO₂ was found only in the outermost surface for the rapid decarboxylation reaction at 25°C, but at 196°C the concentration of ${}^{48}CO_9$ per $+C_7H_8NO_{+}$ moiety was also present throughout the fiber. By using the radial ¹⁸O-distribution data in Table 3, the other photodegraded sample at different photolysis times and temperatures can be estimated from the surface analyses alone by assuming similar ¹⁸O-distributions. Further work and verification in this area are recommended.

21

FIGURE 7. An Example Plot of ⁴⁸CO₂ Concentration Versus Decarboxylation Time for Pseudo First Order Reaction at 196°C.

NAME

Self-Self-Self-

JANGAN 2020 NA 202000 DEPEND STRAM STRAM DEPEND DEPEND NO. 2020 STATE STATE DEPEND

FIGURE 8. The Average Radial ¹⁸O-Distribution, Which Contributed to ${}^{46}CO_2$ (a) and ${}^{48}CO_2$ (b) Measurements for the Two Major Oxidative Processes.

CO ₂ species	Decarboxylation temp, °C	Half life, ^t 1/2	Radial distribution in Kevlar fiber, area under the curve = CO_2 species/mole $+C_7H_5NO+$			
⁴⁴ CO ₂	196	(R2) 4 to 12 hr	AREA = 1			
	25	1 to 10 min	$E = RATI = 2^{2} + C_{TH}$			
	196	(R1) 660 hr	$\begin{bmatrix} 0 \\ 0 \\ 3 \\ 0 \end{bmatrix}$ AREA = 1.8×10^{-3}			
⁴⁶ CO ₂	196	42 hr	9 + 6^{+} 6 + 0 1 0 + 0 1 × 3 + 3 + 0 1 × 3 + 1.15 × 10 ⁻⁴			
	25	1 to 10 min	$AREA = 5.3 \times 10^{-7}$			
⁴⁸ CO ₂	196	8 min	$\begin{array}{c} 2 \\ & & \\ &$			
	25	1 to 10 min	$AREA = 2.0 \times 10^{-8}$			

TABLE 3. Summary Data on Decarboxylation of Kevlar and its Radial Distribution of Oxygen (as a Constituent in ⁴⁴CO₂, ⁴⁶CO₂ and ⁴⁸CO₂).

Ì

AND CONSTRUCTION OF A

Table 4 lists the photooxidation rates, which were deduced from four pseudo first order decarboxylations of ${}^{46}CO_2$ at 196°C and 25°C and ${}^{48}CO_2$ at 196°C and 25°C. The initial concentrations of ${}^{+}C_7H_5NO_n$ to produce 1/2 mole ${}^{18}O_2$ (i.e., to produce ${}^{46}CO_2$ product) is 6.1 mole/1 and to produce 1 mole ${}^{18}O_2$ (i.e., to produce ${}^{48}CO_2$ product) is 12.2 mole/1 using the density of Kevlar at 1.45 g/cc. The ${}^{18}O_2$ is assumed as an ideal gas at 100°C and 0.2 atm. The 0.415 g Kevlar-29 fabric expressed as ${}^{+}C_7H_5NO_{-}$ moieties in moles is 3.49×10^{-3} moles.

Figure 9 shows the plots of the two major photooxidation processes versus photolysis time and temperature. Table 5 summarizes the two major photooxidative degradation rate constants and activation energies.

CONCLUSIONS

The ¹HNMR study of the photodegraded Kevlar solutions has problems even in the high dilutions. Only broad resonance signals are observed, thus this is not a useful method to pursue further.

The preferred method is to carry out the photodegradation in an ${}^{18}O_2$ atmosphere. The new and novel method to study the photochemical degradation of Kevlar-29 fabric in air divides into four steps:

- 1. Fabric cleaning
- 2. Photolysis at specified temperature and time in 0.2 atm ${}^{18}O_2$
- 3. Preparation of the degraded (DMAc-solute) sample surface for decarboxylation at 25°C and 196°C in the concentrated sulfuric acid
- 4. The total carbon dioxide analysis by gas chromatography and isotope carbon dioxide (⁴⁶CO₂ and ⁴⁸CO₂) ratios by GC-mass spectroscopy

The first significant accomplishment of this project was the new and novel analytical approach, which demonstrated the rate constant and activation energy determinations of Kevlar's photooxidative processes. The 0.2 atm of oxygen-18-labeled environment in a solar chamber simulates the air exposure under sunlight conditions. The technique also allows the radial ¹⁸O-distribution measurement from the fiber surface toward the fiber center. The data from the accelerated experimental conditions in the solar chamber in an ¹⁸O₂-atmosphere are differentiated from the similar ambient daylight exposure effects.

The second significant accomplishment was the recognition of a thermal decomposition pattern of Kevlar in concentrated sulfuric acid at 196°C to give the same two types of decarboxylations: one yields one mole of CO_2 per $+C_7H_5NO$ moiety and the other gives two moles of CO_2 per $+C_7H_5NO$ moiety. The half life of the former is 4 to 12 hours and appears to originate from the amide linkages' carbonyl groups. The latter's half life is 660 hours and is from two of the six carbons of its aromatic rings.

The third significant accomplishment was the analytical methodology applied to deduce the four photooxidative processes. The data on the total CO_2 evolved from the samples were measured by gas chromatography and the isotopic CO_2 (${}^{46}CO_2$ and ${}^{48}CO_2$) data by GC-mass

48 P.8 3.8 5.8 S.

TABLE 4. Photooxidation Rates at 100°C of Pseudo First Order Decarboxylations.

 a 'A' designates decarboxylation temperature at 196 $^{\circ}\mathrm{C}$ and 'B' at 25 $^{\circ}\mathrm{C}$

^b Photolysis rates are expressed as moles of $+C_7H_5NO+$ /photolysis times (sec).

^C Solar rates are photolysis rates/125.

^d The initial concentrations of $+C_7H_5NO+_n$ to produce 1/2 ¹⁸O₂ (i.e., to produce ⁴⁶O₂ product) is 6.1 mole 1^{-1} and to produce ¹⁸O₂ (i.e., to produce ⁴⁸CO₂ product) is 12.2 mole 1^{-1} using the density of Kevlar at 1.45 g cm³. The ¹⁸O₂ is assumed as an ideal gas at 100°C and 0.2 atm. the 0.415 g Kevlar-29 fabric expressed as $+C_7H_5NO+$ moleties in moles is 3.49 × 10⁻³ moles.

See the Appendix for calculation.

NWC TM 6007

Contraction of

FIGURE 9. Plots of Oxygen-18 Concentration Versus Photolysis Time of Pseudo First Order. Decarboxylations at 198°C for 20 Minutes From the Top Surface Laver.

TABLE 5 Summa	y Data on the Two Major Photooxidative	
Degradation Ra	e Constants and Activation Energies ⁴	

Temperatures		atures	Photolysis	Solar rates, ^c	Rate constants,d	Activation energies,	
°C		1000- °K	male sec 1	mole sec = 1	1 mole * 1 mc * 1	kcal mole "T	
1	From	plots of 1/2	2 ¹⁸ Og (i.e., ⁴⁶ CC)g) concentrations	versus photolyms time	s (Figure 5 LEFT)	
25	398	3.356			1.10×10^{-h}		
100	373	2.661	1 65 × 10 ⁻⁹	1.32 × 10 ⁻¹¹	4.18 × 10 ^{-N}		
125	398	2.513	7.76×10^{-9}	6.21 × 10 ⁻¹¹	1.96 × 10		
150	423	2.364	9.669 × 10 ⁻⁹	7.75×10^{-11}	2.36 × 10	10 N	
	L. I Froe	n plots of ¹	L ^R Og (i.e., ⁴⁸ COg) concentrations ve	rsus photolysis times	(Figure 5 RIGHT)	

35	398	3.356			1 03 × 10 - 12	
100	373	2.661	582 × 10 - 12	4 66 × 10 ⁻¹⁴	2.0 × 10 ⁻¹⁰	
125	396	2.513	9.69 × 10 - 12	7 75 × 10 - 14	2.37 × 10 ⁻¹⁰	
150	423	2.364	9 69 × 10 ⁻¹¹	7.75×10^{-13}	2.43 × 10 ⁻⁹	15 7

^d Data are deduced from pseudo first order decarboxylations at 198°C for 20 min from the top surface layer of the photolyzed Kevlar

b.c.d Same as footnotes b. c. d of Table 4

⁴ Activation energies are calculated from photolysis runs at 100° and 150 using calculated rate constants (column 4) at the two temperatures by $\Delta E = (RT_1T_2/T_2 - T_1) \ln (k_2/k_1)$

spectroscopy. The rate constants of the two major photooxidative degradation processes at 25 °C were deduced from 1/2 ¹⁸O₂ per $+C_7H_5NO+$ (i.e., to produce ⁴⁸CO₂ product, $t_{1,2} =$ 42 hours at 196 °C and the other from ¹⁸O₂ per $+C_7H_5NO+$ (i.e., to produce ⁴⁸CO₂ product, $t_{1,2} =$ 8 minutes) at 196 °C. The rate constants of the former process was estimated as 1.10×10^{-16} 1 mole ⁻¹ second ⁻¹ and the latter as 1.03×10^{-12} 1 mole ⁻¹ second ⁻¹. The activation energies of these two processes were deduced as 10.8 kcal/mole for the former and 15.7 kcal/mole for the latter.

RECOMMENDATION

A SAMANA SASANA STORES

Further research by the solution sample approach of the ¹HNMR method for the photodegraded Kevlar study is not recommended. Carrying out the photodegradation in an ¹⁶O₂ atmosphere is the preferred analytical approach. This novel approach was conceived during the course of this project study and this new technique was developed to a stage where the oxidative degradation process of Kevlar-29 fabric in air under the sun were characterized. Because limited time and effort was available toward the end of this project, the rate constants and activation energy numbers should be confirmed with more data. In the area of radial ¹⁸O-distribution in the Kevlar fiber, an assumption was made that this distribution is similar at the different photolysis temperatures and times. This assumption should be supported with experimental data.

Future work is recommended to apply this technique of photochemical degradation in simulated air under the sun to other fabric and polymer film studies. The investigation on photodegradation of Kevlar-29 fabric in a vacuum is warranted especially for future space applications.

Appendix A SAMPLE CALCULATIONS FOR KEVLAR MECHANISM'S RATE CONSTANTS

The photooxidation of Kevlar in ${}^{18}O_2$ is a second order reaction represented by equation

$$Kevlar + {}^{18}O_2 \longrightarrow Products$$
(A-1)

The rate constant k_2 of this bimolecular reaction (Equation A-1) becomes

$$k_2 = \frac{\frac{|\text{Kevlar}||^{18}O_j|}{|\text{Kevlar}_j||^{18}O_j|}}{\frac{18}{18}C_j}$$

where [Kevlar₀] and $[{}^{16}O_2$] are the initial concentrations of Kevlar and ${}^{16}O_2$ in mole 1^{-1} , respectively.

$$[Kevlar] = \frac{1450 \text{ g}\cdot 1}{46_{CO_1}} = -6.1 \text{ mole} 1$$

$$[\text{Kevlar}_{0}]_{\frac{48}{CO_{2}}} = \frac{1450 \text{ g}(1)}{119 \text{ g mole}} = 12.2 \text{ mole}(1)$$

where $[\text{Kevlar}_0]_{46_{\text{CO}_2}}$ and $[\text{Kevlar}_0]_{46_{\text{CO}_2}}$ are the initial concentrations of Kevlar to produce ${}^{46}\text{CO}_2$ and ${}^{46}\text{CO}_2$ products respectively. The consumption of one mole ${}^{16}\text{O}_2$ requires two moles of + C₇H₅NO + moleties to produce two moles of ${}^{46}\text{CO}_2$. The density of Kevlar is 1450 g l (1.45 g cm³) (Reference 4). When the Kevlar fabric was exposed to 100 °C in 0.2 atm ${}^{16}\text{O}_2$ condition, the ${}^{16}\text{O}_2$ is assumed as an ideal gas to calculate $[{}^{16}\text{O}_2]$ in mole 1 - 1 at 100 °C and 0.2 atm:

$$[{}^{16}O_{j}] = \frac{1 \mod i + 0.2 \text{ atm}}{373 \text{ K} + 273 \text{ K} + 22.41 + 1 \text{ atm}} = 6.3 + 10^{-3} \text{ mole}(1)$$

After 30 minutes (1800 seconds) at 100 °C in 0.2 atm ${}^{18}O_2$, the concentrations of ${}^{18}O_2$ and $+C_7H_5NO+$ moieties to produce ${}^{46}CO_2$ are $[{}^{18}O_2]_{46}CO_2$ and $[Kevlar]_{46}CO_2$, respectively:

$$[^{18}O_2]_{46_{CO_2}} = 6.53 \times 10^{-3} - 3.49 \times 10^{-3} \times 8.5 \times 10^{-4}$$

= 6.527 × 10⁻³ mole/1

where the $+C_7H_5NO+$ moieties in moles is 3.49×10^{-3} and the mole ratio $[{}^{45}CO_2]/$ [$+C_7H_5NO+$] at 30 minutes is 8.5×10^{-4} (Table 4, top figure), which is equivalent to the mole ratio of ${}^{18}O_2$ to $+C_7H_5NO+$ at 30 minutes for the photooxidation of Kevlar.

$$|\text{Kevlarl}_{46_{CO_2}} = 6.1 - \frac{3.49 \times 10^{-3}}{2} \times 8.5 \times 10^{-4} = 6.0999985 \text{ mole/l}$$

$$k_{2(46_{CO_2})} = \frac{\ln \frac{6.0999985}{6.1} \times \frac{6.53 \times 10^{-3}}{6.527 \times 10^{-3}}}{1800(6.1 - 6.53 \times 10^{-3})} = 4.18 \times 10^{-8} \text{ l/sec/mole}$$

where $k_{2(46_{CO_2})}$ is the rate constant of the photooxidation of Kevlar in ¹⁸O₂ atmosphere to produce ⁴⁶CO₂ product.

After 30 minutes in 0.2 atm ${}^{18}O_2$, the concentrations of ${}^{18}O_2$ and $(-C_7H_5NO)$ moieties to produce ${}^{48}CO_2$ are $[{}^{18}O_2]_{48}CO_2$ [Kevlar]₄₈CO₂, respectively:

$$[{}_{18}O_2]_{48}O_2 = 6.53 \times 10^{-3} - 3.49 \times 10^{-3} \times 3.0 \times 10^{-6}$$

= 6.5299853 × 10⁻³ mole/1

where $(-C_7H_5NO)$ moieties in moles is 3.49×10^{-3} and the mole ratio $[{}^{48}CO_2]/$ $[(+C_7H_5NO)]$ at 30 minutes is 3.0×10^{-6} (Table 3's third figure), which is equivalent to the mole ratio of ${}^{18}O_2$ to $(-C_7H_5NO)$ at 30 minutes for the photooxidation of Kevlar.

 $[\text{Kevlar}]_{48_{\text{CO}_2}} = 12.2 - 3.49 \times 10^{-3} \times 3.0 \times 10^{-6} = 12.1999999895 \text{ mole/1}$

$$k_{2(48_{CO_{2}})} = \frac{\ln \frac{12.1999999895}{12.2} \times \frac{6.53 \times 10^{-3}}{6.5299853 \times 10^{-3}}}{1800(6.1 - 6.53 \times 10^{-3})} = 2.01 \times 10^{-10} \text{ //sec/mole}$$

where $k_{2(48_{CO_2})}$ is the rate constant of the photooxidation of Kevlar in ${}^{18}O_2$ atmosphere to produce ${}^{48}CO_2$ product.

REFERENCES

- 1. A. H. Frazer. High Temperature Resistant Polymers. New York, John Wiley & Sons, Inc., 1968.
- 2. John Idris Jones. "High-Temperature Resistant Organic Polymers," Chem. Brit., Vol. 6, No. 6 (1970), pp. 251-59.
- 3. T. T. Chiao and D. L. Moore. "Organic-Fiber/Epoxide Composites," Composites, Vol. 4, No. 1 (1973), pp. 31-33.
- 4. E. I. du Pont de Nemours & Co. Information Bulletins No. 5, 6, and 7. Wilmington, Del., du Pont, April 1974.
- 5. _____. Information Bulletin No. C-29. Wilmington, Del., du Pont, August 1977.
- 6. _____. Information Memo No. 375. Wilmington, Del., du Pont, September 28, 1976.
- 7. D. J. Carlsson, L. H. Gan, and D. M. Miles. "Photolyses of Fully Aromatic Amides," Can. J. Chem., Vol. 53, No. 15 (1975), pp. 2337-40.
- 8. D. J. Carlsson, L. H. Gan, and D. M. Miles. "Photodegradation of Aramids. II Irradiation in Air," J. Polym. Sci., Polym. Chem. Ed., Vol. 16, No. 9 (1978), pp. 2365-76.
- 9. M. Panar and L. F. Beste. "Structure of Poly(1,4-Benzamide) Solutions," Am. Chem. Soc. Polymer Preprints, Vol. 17, No. 1 (April 1976), pp. 65-67.
- 10. K. H. Gardner. "The Structure of 2 Aramid Sulfuric Acid Solvates," Am. Chem. Soc. Polymeric Matls. Sci. and Engr. Preprint, Vol. 51, No. 2 (1984), p. 192.
- 11. P. W. Morgan. "Snythesis and Properties of Aromatic and Extended-Chain Polyamides," Am. Chem. Soc. Polymer Preprints, Vol. 17, No. 1 (April 1976), pp. 47-49.
- Jan Hermans, Jr. "The Viscosity of Concentrated Solutions of Rigid Rodlike Molecules (Poly-γ-Benzyl-L-Glutamate in m-Cresol)," J. Colloid. Sci., Vol. 17, No. 7 (September 1962), pp. 638-648.
- 13. S. L. Kwolek, P. W. Morgan, J. R. Schaefgen, and L. W. Gulrich. "Poly (1,4-Benzamide)—Syntheses, Anisotropic Solutions and Fibers," Am. Chem. Soc. Polymer Preprint, Vol. 17, No. 1 (April 1976), pp. 53-58.

- 14. M. Panar and W. D. Phillips. "Magnetic Ordering of Poly-γ-benzyl-L-glutamate Solutions," J. Am. Chem. Soc., Vol. 90, No. 14 (July 3, 1968), pp. 3880-82.
- 15. Madeline S. Toy and Roger S. Stringham. "Proton NMR Studies on Photodegradation of Kevlar-29," Polym. Matl. Sci. Eng. Preprints, Vol. 51 (1984), pp. 146-48.
- D. H. Volman. "Photochemical Gas Phase Reactions in the Hydrogen-Oxygen System," in Advances in Photochemistry, ed. by W. A. Noyes, G. S. Hammond, and J. N. Pitts. New York, Interscience Publishers, 1963. Vol. 1, p. 43.
- J. R. McNesby and H. Okabe. "Vacuum Ultraviolet Photochemistry," in Advances in Photochemistry, ed. by W. A. Noyes, G. S. Hammond, and J. N. Pitts. New York, Interscience Publishers, 1964. Vol. III, p. 157.
- J. G. Calvert and J. N. Pitts. Photochemistry. New York, John Wiley & Sons, Inc., 1966, p. 206.
- D. J. Carlsson, L. H. Gan, and D. M. Miles. "Photodegradation of Aramids. I. Irradiation in the Absence of Oxygen," J. Polym. Sci.: Polym. Chem. Ed., Vol. 16, No. 9 (September 1978), pp. 2353-63.
- 20. J. R. Holsten, Jack Preston, and M. R. Lilyquist. "Fiber of an All-Para-Oriented Ordered Aromatic Copolyamide," Appl. Polym. Symp., Vol. 9 (1969), pp. 63-74.
- R. Srinivasan and W. Albert Noyes, Jr. "Photochemical Production of Acetone-O¹⁸ in the System Acetone: O¹⁸₂ at 3130 Å," J. Am. Chem. Soc., Vol. 82 (1960), pp. 5591-93.
- Madeline S. Toy and Roger S. Stringham. "Photooxidative Degradation Studies of Kevlar-29 Fabric," Am. Chem. Soc. Polym. Matls. Sci. Engr. Preprint, Vol. 54 (1986), pp. 312-15.

INITIAL DISTRIBUTION

8 Naval Air Systems Command

AIR-5004 (2)

AIR-531 (4)

AIR-933B (2)

1 Chief of Naval Operations (OP-50C)

2 Naval Sea Systems Command (SEA-09B312)

2 Marine Corps Development and Education Command, Quantico

2 Naval Academy, Annapolis (Director of Research)

4 Naval Air Development Center, Warminster (Code 6032)

1 Naval Air Technical Training Center, Lakehurst

1 Naval Air Test Center, Patuxent River (Code SY-70)

1 Naval War College, Newport

1 Pacific Missile Test Center, Point Mugu (Code 1131)

2 Army Troop Support and Aviation Materiel Readiness Command, St. Louis

4 Army Research and Development Laboratories, Natick (DRDNA-UAS)

2 Air Force Aeronautical Systems Division, Wright-Patterson Air Force Base ASD/AEL (1)

ASD/ENECA (1)

5 Air Force Flight Test Center, Edwards Air Force Base (6520th Test Group, TEEF)

1 Air Force Intelligence Service, Bolling Air Force Base (AFIS/INTAW, Maj. R. Lecklider)

1 San Antonio Air Logistics Center, Kelly Air Force Base (SA-ALC/MMIRC)

2 Defense Technical Information Center, Alexandria

1 Federal Aviation Administration (Standards Division, M/S 110)

