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1. Introduction

in recent years, AI researchers have developed a number of systems that

operate in the domain of scientific discovery. For instance, BACON [4] discov-

ea numerical laws (e.g., the ideal gas law) and postulates intrinsic properties

of object classes (e.g., atomic weight). ABACUS [2] is similar to BACON,

but employs an improved search mechanism to find numeric laws in a more

efficient manner. It also improves upon BACON by identifying qualitative pre-

conditions on quantitative laws. GLAUBERC [6] addresses a different aspect of

empirical discovery - the formation of qualitative laws and object taxonomies.

Although each of these systems is successful at its task, each addresses only

part of the overll problem of empirical discovery [5]. We are developing an in-

tegrated discovery system (MDS) that deals with a variety of empirical discovery

tasks, including the formation of qualitative and numeric laws. Historically,

qualitative discoveries have tended to lay the foundation for quantitative dis-

coveries, but the latter can in turn lead to higher level qualitative discoveries.

Out system operates in the same basic manner, first finding qualitative laws

and then using them to aid in discovering quantitative relations.

EDS operates in a simulated world of simple physics and chemistry, thus

ovecmn one deficiency of previous discovery system. Previous systems

were provided with data* and could not perform their own experiments. In

*Leanat's AM [71 is an exception, since it collected its own data and designs

its own experiments. But the mathematical domain of AM allowed methods

not easily extendable to "real world" domains.



I

contrast, DS interacts with the simulated world through a set of effectors and

sensors. Using an efector, the system can actively alter certain attributes of

an object, e.g., by changing its location or heating it. Sensors let the program

inspect certain attributes, such as the temperature and mass of an object. To

carry out an experiment, the system applies electors to a set of objects and

uses its sensors to observe the manner in which those objects change over time.

In the following section, we introduce the representation that IDS employs

to state qualitative laws. After this, we examine the mechanisms by which the

system discovers qualitative laws and then consider how it uses the resulting

schemas to aid its discovery of numeric laws. We close with some proposals

for extending the system.

2. Repmentng Qualitative Schemes

Before one can discover qualitative knowledge about the world, one must

first have some way to represent that knowledge. Let us consider an example

from the domain of heat phenomena. We might begin with a simple view of

what happens when we hest an object, e.g., we expect the temperature of the

object to increase. If we actually heat a solid, we will see that this occurs, but

after some time we may also observe the appearance of a new liquid object. At

this point the temperature increase stops and the mass of the liquid increases sion FOr

GRAAI
while the mass of the solid decreases. When the solid has disappeared, the TAB

temperature of the liquid begins to increase. This process continues until a 'cati

new gaseous object appears. As before the mass of the gas increases while the

mass of the liquid decreases, the temperature of both objects remains constant button/
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dudi" this period. Finally, the liquid vanishes and the temperature of the gas

increases, but so does its pressure.

MDS represents qualitative knowledge of this type in quaktie schemaa.

Outr repr esentation has been inluvenced by Forbus' (3] poialiec process (QP)

theory, with qualitative schemas corresponding to envisionments in QP theory.

The sichiiea can be viewed as fiite state diagrams that describe the behavior

of objects over time. States correspond to intervals of time during which

objects exhibit sam constant behavior. Links specify connections between

states, along with the conditions that must be satisfied to enter a successor

state.

MDS represents eaich staite as a frame with three slots. The description slot

indludes asm or manecaslaim of the objects present in the state (e.g., solid

or ecid). This s"o also includes structural descriptions (e.g, heater & touches

object e, cotier a is connected to container b). The qmtitr-cenitin

sltcontains statemients about attributes of the objects in the state. These

statements awe expressed as equalities or inequalities betwee the quantities

of attributes ad inuit-peiusts (see below). The process slog is a list of serio or

ame chiamg. that ane occurring during the state. Like Forbus, we express a

change in terms of the derivative of the changing attribute. For example, an

increase in mass of object a is denoted Amss(i) > 0.

A state ends only if the proess reaches a limit-point, such as the melting-

point, or if the agent intervenes, e.g., by turning of the heat. Limit-points are

important because they are used in the quantity-conditions, and also because

3
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descriptions description: description:
sold(s) V liqud(s) sald(b). I~umd(c) psd)
quant.cond.: Vqaid(b),gSe(c) qusnt .cond.:

tamp (s) < Ci qumnt.cond.: mae(d) = C2
uri(s) > 0 temp.(b) = Ci process:
ma,,()-=Cs uau)> o Atmp.(d)>O0
proces: uma(b)<C Apmure(d)> 0
Atmp(,) > o uass(c) > 0

= (=(C) < C

proeese:
awA(b) < o

AWM(c) > 0

Figure 1: Qualitstive schema for heating an object

they form the bssis for quantitative discoveries. Figure 1 presents a graph-

ical illustration of a heat schems with the object description, the quantity-

conditions, and the process for each state.

Although qualitative schemas are structurally similar to the envisionments

of De Kleer [11 and Forbus, there is a major difference. Envisionments are

deduced from structural or process descriptions, while qualitative schems are

induced from observations. In the following section we describe this discovery

process.

4



3. Inducing Qualitative Schemnas

IDS begins with a simple qualitative schema for each of its effectors. For

ithe initial shema of the heat effctor onsists of two states: sO, with

one object and no active process, and ol, with an object touched by a heater

and with the temperature of the object increasing. This represents IDS' initial

knowledge of the results of applying the heat effector to an object.

The system carries out experiments to improve its schemas, which can

be refined in several ways. First, if IDS encounters unfamiliar behavior, it

adds a new state to the schema along with a link connecting it to the existing

states. Second, the system may discover that an existing state can follow

another known state; in this case it simply adds a new link connecting the

states. Furthermore, any time new limit-points are found, the system adds

quantity-conditions to the states.

Consider again the heat example and the initial heat schema. IDS experi-

ments by applying the heat efector to a block of ice. At first, the temperature

of the ice increases, satisfying all conditions of state .l. Eventually, a new

object (liquid water) appears; after this point the mass of this new object

increases, while the mass of the ice decreases. IDS' heat schema does not yet

contain a state for this behavior, so the system creates a new state (.2) and

adds it to the schema. This state has a heater and two objects, b and c. The

process slot describes the qualitative behavior of the system - that the mass of

object b decreases and the mass of object c increases. Since a new limit-point

has been found, quantity-conditions are added to states s1 and s.2. These con-

5
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ditions specify that the temperature of the object in state .1 is less than some

limit-point 01 and that the temperatures of the objects in state Of are equal

to C1 .

After the ice disappears, state .l again accurately describes the current

behavior. When the temperature of the liquid reaches the limit-point C1 , state

so adequately describes the current behavior, so the system does not change

the schema at this point. When the liquid disappears, IDS encounters unseen

behavior; not only does the temperature of the object increase, but so does its

pressure. Thus the system creates a new state (aS) and adds it to the schema.

After further experimentation using different objects, IDS discovers that the

object in a3 is always a gas, while the object in al is either a solid or a liquid.

The object description for sa is found in a similar way. This information is

added, giving the final schema shown in Figure 1.

One can think of this schema-building process as a data-driven search

through the space of possible schemas. In these terms, adding states and

Lrinks make schemas more general, while augmenting the state description and

adding quantity-conditions makes them more specific.

4. Discovering Quantitative Laws

Once IDS has formulated a qualitative schema, it uses that knowledge to

constrain the search for numeric laws.** Returning to our heat example, the

system would use the schema in Figure 1 to run different experiments. The

•* In addition, schemas provide a context for numeric laws. They describe not

only the applicability of laws but also specify their pre- and post-conditions.

'Il



schema was discovered using a block of ice, so one experiment would examine

the effect of varying the initial mass of the ice. Other experiments would vary

the class of object used; for instance, IDS might am if the schema still holds

when the heated object is hydrogen chloride or some other acid.

Most of the data used in discovering numeric laws are not directly ob-

servable, but ae gathered in the form of limit-points and state durations.

This information is recorded as attribute-value pain during the matching of

a schema to an experimental run. Thus, the system records the values of

the limit-point C1 for different objects and uses these attribute-value pairs as

data in its search for numeric laws. Like BACON, the system formulates a

quantitative law upon finding some numeric term with a constant value.

IDS discovers two basically different forms of numeric laws. First it finds

numeric terms that are constant for all objects of a given class. Langley et al.

[4] have called such terms intrinsic properties. For example, the system notices

that all instances of the class of ice have the same value for the limit-point

C1. Thus it stores an intrinsic value for the property C1 and associates this

value with the ice class. In fact, this value corresponds to the melting point of

water. IDS also discovers that the zero mass is a critical value for all objects,

since this is the point when object appear and disappear. This can be viewed

as an intrinsic value associated with all objects.

IDS also discovers numeric laws that relate the attributes of different ob-

jects within the same instance of a schema. For example, the system notices

that the masses of the solid, the liquid, and the gas within the same instance

7



of the heat schema are always equal. Based on this regularity, it postulates

a conservation law stating that the mass of an object remains constant as it

goes through a phase change.

5. Concluding Remarks

In this paper we have described IDS, a system that integrates the process of

qualitative and quantitative discovery. We have focused on a single example -

involving heat phenomena - to illustrate the acquisition of qualitative schemas

and their role in discovering numeric laws. However, the qualitative schema

representation and IDS' discovery methods are general enough to cover a wide

range of physical and chemical phenomena. For instance, the system has also

induced a schema that describes simple chemical reactions and another that

describes Black's law of specific heat. We have also used qualitative schemas

to represent the fluid-flow of two connected containers filled with liquids [31

and the osmosis of two liquids with different concentrations [8], though IDS

has not yet generated this knowledge itself.

We are extending the discovery system on several fronts. Our next step is

to incorporate a more robust search mechanism, such as those used in BACON

and ABACUS, to support the discovery of more complex numeric laws. In ad-

dition, we must currently supply the system with a concept hierarchy, and are

actively extending the system to construct taxonomies on its own initiative. In

forming these taxonomies, the next version of IDS will use symbolic attributes,

numeric attributes, and information derived from qualitative schemas. As the

capabilities of IDS grow, so will the need for an improved agenda mechanism

M



[6] that directs not only the discovery process but also the design of experi-

ments. Even though the IDS project is still in an early phase, it has already

led to promising results that have improved our understanding of the complex

process of scientific discovery.
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