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The p-version of the finite element method
<\\ for constraint boundary conditions
D This

Abstract. “The paper addresses the implementation of general

constraint boundary conditions for a system of equations by the

p-version of the finite element method. By constraint boundary
ﬂ\e G,\ﬂ}ohf

conditions we mean conditions where some relation between the

components is prescribed at the boundary. Optimal error bounds
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1. Introduction.

There is a large variety of boundary conditions for systems
of differential equations of elliptic type. Some physically natu-
ral conditions may be formulated by a variational approach through
constraint conditions. For example, the two dimensional elastici-
ty problem can be formulated as the minimization of a guadratic

functional PF(u), u = (ul,uz) over a set H satisfying

(H3(@))% < mc (wten?.

‘Selections of H then characterize the boundary conditions.
Obviously the choice H = (Hj(2))? induces the (essential)
Dirichlet conditions, i.e., the displacement is given on 30,
while H = (Hl(o))2 induces the (natural) Neumann éonditions,
i.e., the tractions are prescribed on 38Q. In addition to these
classical conditions other types are important in applications.

One of these conditions is characterized by

(1.1)  H= ((u,u,) e (ﬂ‘(o))2|u1¢1(s) + up,(8) =0 on 80)

where ° and 9, are given functions defined on 38Q. These con-
ditions are in the most simple case the symmetry conditions and:in
general traction free constraints at the boundary.

So far we have only mentioned homogeneous boundary conditions.
Nonhomogeneous conditions are defined in the usual way, when the 1
minimization of F is over a hyperplane Hv = {(u + v|] ue€H,
ve (mtan?y.

The constraint boundary condition we mentioned above is a type

of essential condition. Hence when solving such problems by the

finite element method in general and by the p or h-p versions
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in particular, we face the problem of implementing the nonhomogen-
neous boundary conditions (which are outside the finite element
space).

The p and h-p versions are recent developments, where p,
the degree of the elements used is not fixed but is increasing.
This is in contrast to the classical h-version, where the degree
P is kept fixed. The tirst.conncrcial programs available are
PROBE (Noetic Tech., St. Louis) and FIESTA (ISMES, Bergamo, Italy).

The implementation of Dirichlet boundary conditions for the
p-version of the finite element method has been addressed by us in
(2) and (4]. A general survey on the state of the art of the p
and h-p versions may be found in {11].

‘ In this paper we will address the implementation of the con-
straint conditions (1.1) 3n a simplified setting (to avoid nota-
tional difficulties). Section 2 deals with preliminaries and
notation. 1In Section 3 we formulate an abstract approach and
based on it prove that the suggested finite element formulation of
the constraint boundary condition leads to‘tho optimal rate of

convergence of the p-version. Section 4 addresses some imple-

mentational aspects.
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2. The basic notation and preliminaries.

2.1. The Sobolev_spaces

Let Rz be the two dimensional Euclidean space, x = (xl,x

2

2)

2, be a bounded Lipschitzian domain with the boun-

€ R Let Q c R
dary I = 8Q. We will assume that I 1is a Jordan curve, T =

m
v fi where Pi are smooth open arcs with parametric description
i=1

i'l,...,n.

Denoting I = (-1,1), I‘1 is obviously the image of I by the map¥
ping Pi = (xi,l'xi,z)' i.e., Fi - ri(I). If u(s) 1is defined
on I‘1 then by U(¢) = u(ri(t)) we denote its transform on 1I.
The ends of ri_ will be called vertices and denoted by Ai =
(xi,l(-l)’ xi.z(-l))' 81 = (xi,l(l)'xi.z(l))' We will further
assume that Bi = A1+1, B. = AI' i=1,...,a. By this, the orien-
tation of l'1 is established. In general we will denote the ver-

tices by A; (= By ,), i=1,...,m. The scheme of the domain and

the pertinent notation is shown in Figure 2.1.

BuA,

Figure 2.1. Scheme of the domain and notation.
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Remark 2.1. We assumed that the domain ©Q is simply connected.

This assumption has been made only for notational simplicity.

Remark 2.2. We assumed that the domain is Lipschitzian. Once
more, our results are valid (with proper modification) in the case
when, for example, some arcs coincide (as in the case of the slit

domain).

Remark 2.3. We have assumed that the arcs ri are sufficiently
smooth. For the sake of simplicity we assume that they are c®

Y

arcs (i.e., the functions i 1,...,m, J =1,2 are ¢C

x1'j'
functions).

By Hk(Q), k 2 0 integer we denote the usual Sobolev space

of functions with square inteérable derivatives on Q. The norm

will be denoted by ! i . If €< q < £+1, £ > 0 integer,
H¥ ()

then we define H3(0) = (8(@) 8™ (@)),, 6 = q-¢ where by
(-,-)e we denote the usual interpolated space using the K-method
(see (5]). The scalar product (+,°*) and the norm .

e H9(0)
are defined accordingly.

By Ck(5), k 2 0 integer, we denote the space ;f all func-
tions with k continuous derivatives on Q. It is possible to
show that Hk(o) oy CO(S) for k > 1, where by <— we denote
continuous imbedding. On the other hand, o) « ¢2§).

For I = (-1,1), Hk(I), k2 0 is defined analogously as
before. If k > 1/2 then HS(I) «— c%(I) but (1) @ (1)
for k s 1/2.

So far we have defined Hk(I), k2 0. We will also be inter-

ested in Hk(I).,k < 0. We define for k =2 0

s




& 1
I uvdx
-1
‘ flalt = sup g .
: 1 %(1) ve 0 1% (1)
veH® (1)

: {Let us remark that sometimes (see e.g. [8]) our space H-k(I) is

- |
denoted by (Hk(I)Y whereas H k(I) is used to denote the dual
space of Hg(I)).

If u 1is defined on Fi then we define

H(r,) = (ulu(F (£)) = U(z) e B(1))

tul =10k
H(r,) H (1)

So far we have considered only scalar functions on Q@ and 1I.
The spaces of vector functions are defined by Cartesian products,
2g*0) = (mK(0))2.
Let now
Q= ((x ., x) 1%, 1 <1, Ix,] < 1)

Q. - -
7 “*1'*2"'“1' <1, X, 1}

Q will be called the standard square and r?, 1 =1,2,3,4 |its
sides (7?. i = 2,3,4 are defined analogously to 7? in an

obvious way). Let

T = ((xl.xz)llxll <1, 0 <x, < (14x,) Y3 for x, < O,

2 1

0 < x. < (1-x1)/3 for x

2 > 0}

1

T
[N =
!1 - ((xl,xz),.xlg < 1, x2 0}).

T will be called the standard triangle and rf. {=1,2,3 1its

sides.

e A OO AT S W T A




" Let us remark that the sides of T and Q are each of length

2. Later we will often not distinguish between 7y and I.

‘\4, 7§£i, l\s A ?
2 Q Q T T r
T4 72 73 Y2
T 9

A 7 Az A o7t A2 d

and standard triangle.

Figure 2.2. The scheme of the standard square ?
We now define :

P:(Q) = (ulu 1is a polynomial of degree <. p \

in each variable x1 and x2 over Q}.
?;(T) = {uju is a polynomial of (total) degree s p on T}. "

PP(I) = {(uju 1is a polynomial of degree < p on 1I}.

We have then

1,.Q Q 1, T )
Lemma 2.1. Let v € Ho(rl) n ?p(rl) (respectively v € Ho(zl) N nu
'l
?p(r})) such that ' $
-(1-t) )
vl o Q. ¥ P A, t =0,1 b

H™ (7))




respectively

| IVl . o s p 1M, t=o0,1.
| . H'(7])
?
Then there exists u € ?S(Q) (respectively ?;(T)) such that
u| = v (respectively u] = v), u = 0 (respectively
7Q 7T GQ-rQ
1 1 1
u| ¢ = 0) and
ar—71
lab < cp~/2
H™(Q)
respectively
tai s cp /2.

H(T)

For the proof see (2] or [3].

2.2. The model problem
Let

’Hé(o) c x(Q) < *wl(a)

where ¥(Q) 1is closed in 2HI(Q). X(Q) will be called the con-
straint space. Assume that there is given a continuous bilinear
form B(u,v) on 2Hl(Q) x 2HI(Q), u = (“1'u2)’ v = (V1'Vé) such
chat

2

(2.1) . B(u,u) 2 riul,
H

L)' » >0 for any u e *H}(0).

Then obviously for any 61 € (X(Q))’, there is a unique ug € ¥(Q)
such that

B(uo,v) = Gl(v)
holds for any v € ¥(Q). We also have

Huoﬂzn ) s CiG H(ZHI(Q))’

. . e cn e LS S W WY
SN ‘li.ﬁ" n .““5!“\-.‘ Q‘l s.l‘ n'd,\" .'I.. ‘0\'1‘.'-’.- (A () (LY .q (X "K X ALK "".l." ol Q...l.. [ AJLSSN ' ’ L@ ‘.' () 1. ".!



Denote X (0) = (u < 2ul(Q), u-p € X(Q)}. X,(2) will be
called the p-hyperplane. Then our model problem is given by:

Find uo € Xp(Q) such that

(2.2) B(uo,v) = Gl(v), Vve X(Q).
We have then

(2.3) la

i

ol 1Gg
zﬁ < C[,,p..2 1 + 1G, 1 ].

0"241(q) al(o) 1 2ut(ay)

1

If p =0 then we will speak about a homogeneous constraint
problem while for p =~ 0 we will speak about a nonhomogeneous
constraint problem. We call these constraint problems because
x(Q) » 2nl(0).

There are many constraint problems in applications. We will

consider the one when

. 2
= 2.1 (3) _ - -
@) = (tuyuy) < THh@)| Dafl w0 k=12, 321w
e=1 J
where o.j = {aéj}} are matrices of ;mooth functions on Fj (say

Cw(fj)). Additional assumptions on {aijz} will be imposed
later.

Obviously when o« 1, T e = 0 for Lk w £ we get Diri-

K,k
chlet boundary conditions (in general we get Dirichlet conditions

when aJ -have rank 2 for all x e T If (aéj}) = 0 there

i
is no constraint and we have the Neumann problem.
If aj has rank 1 then we can write the constraint on T

3

as

which will be written in the form




(2.4a) a”)u1 + B(j)uz = 0.

Obviously if p = (pl,pz) then the nonhomogeneous constraint

problem is characterized on Fj by

(2.4b) cr.(j)u1 + 3(j)u2 = a(j)pl + 3(j)p

2°
Problems of this type are common, for example, in the theory
of elasticity. For simplicity of the exposition and notation we
will restrict ourselves to the model problem where
Blu.v) = J [éul avl aul avl 8u2 6v2 6u2
Q

A’
. + + Tt me— a——
dx1 dx1 8x2 6x2 dx1 g%, dx2 ax

(2.5)

+ ulv1 + uzvz}dxldx2

and

£y = 25%a).

2)

Gl(v) = [ (flv1 + f2v2)dx1dx2, f = (f1

Q
Although we restrict ourselves to this special case, our results
hold in general, e.g., for elasticity problems, etc.
We will assume thaé aé?} = Cm{Fj). In practice we have the

nonhomogenous constraint problem defined so that

i) 1f (aéjz} has rank 2 on Fj then the constraint is

(37,

where (gij),g2 are defined on Fj‘ Hence obviously we can

transform the above constraint equation to

u =937
(2.6) -03)
u2=g2 .

10
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(3) “(J3)

Because ak £ are assumed to be smooth, we see that {gi Y, 1=
1,2 have the same smoothness as {ggj)).

ii) 1f {aéJZ} has rank 1 then the constraint equation is

(3)

a u

L ,.,(J)uz = gld),

We add the condition
Q) L L,

on [

i
This enables us to transform the constraint equation to

(2.7) al Py w3y 2 g e o) 4 503 oy

As formulated above, a(j) are defined separately on each

Fj' We will assume that 5(3) satisfy consistency conditions,

namely that there exists p = (pl,pZ) £ 2HI(Q) such that
Ry
respectively
(2.8b) (‘(j) pllr +’g(j)p2|r_ =§(j).

J J

These conditions have to be imposed especially at the vertices cf

Q.

The sides Fj where the constraint (2.6) is imposed will bte
called total constraint sides, while Fj where the constraint
(2.7) is imposed will be called partial constraint sides: We will
enumerate the total constraint sides as Fij, ] = 1,...,m1 and

the partial constraint sides as Fi 3 o= m1+1,...,m.
J

2.3. The p-version of the finite element method

Assume that the domain Q has been partitioned into a finite




numper of subdomains Q

n
i i.e., Q= U 51. We shall assume that

Qi is the curvilinear gquadrilateral

Q; = 7,(Q)
or curvilinear triangle

Q

1= 7yt
where Q and T are the standard square and triangle, respective-

ly. The domains Qi will be called elements. We will assume that
7;1 is a smooth one to one mapping of Qi onto Q, respectively

T. It is obvious what the vertices and sides of @, correspond

to. If ; 1s a side of Qi then Ti induces mapping Fj of I

onto ; (realizing that all the sides of the standard square and
triangle have the same length as 1I).
We shall assume the following about the partition and tHe

mappings Fiz

a) If Qi " Qj = Ri,j = 3 then Ri,j is either a common

i and Qj'

R1 j =7y j then we will assume that the mappings F

vertex or a side of both @
3) If
of I onto 7y j induced by the mappings ¥ and ¥ are iden-

i 3

tical. We denote F by F This implies the following. Let

i.3°
A,B the vertices of -Qi and Qj be the end points of - 3
Assume that (al‘bl) and (a2,b2) are the end points of the sides

,Q T = - = 7 =
Yk °r 7; such that ?i(al) 7j(a2) = A, Ti(bl) = j(b2) = B,

Then if C ¢ 7111, and C = Ti(cl) = ?j(cz), a,c, = a,c and

1 272

cl‘S1 = czﬁé.
Since we assumed that Ti are smooth mappings, the vertices

of Q necessarily have tc coincide with some of the vertices of

Qi' We will further assume that fcor any T there is an element

J
12

Y-

P
[
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Q such that one of its sides coincides with I ,. This assump-

1 3

tion is made without any loss of generality.

Denote now

is a quadri-

1 - - 1 < 2
Ppl@) = {u = H(Q) uloi(q(f)) < P (Q) 1f @

1

lateral and u|Q (Fy(£)) = P (T) if @ is a triangle},
i P

i
2p - (! 2.
p(0) { PP(Q))

2
vp(/) = {u “j';‘Fi“” 3 'Pp(I), j o= 1,2).

Here ; = r1 or any side of an element. Let us define the con-

straint space w?p(Q) = 2'PP(Q) as follows.

i) 1f£ T is a total constraint side with end points

J
- X = =
Aj’Aj+1 and ? & Pp(Q), then ui(Aj) ui(AJ+1) =0, i 1,2,
and
g = 1 =
uiuids = 0, for all By E rp_z(rj), i 1,2,
T
J
ii) 1t rj is a partial constraint side then
(a(j)ul + ,3(J)u2)(Ak) = 0, k = j,j+1
and

(3) 2(3) As = .2
[ (@ " 'u, + 3 u,)vds = 0, for all v < ?p_z(r
"

The p hyperplane p'?p(Q) is defined analogously. Let g

3

be defined in terms of p by (2.8). Then on rj we impose

u ) =gl 1 e 12, k= g0

respectively

oAy PrsTh A s v U R A R, T, WAL T, Ay P sty



and
(2.9a) I u,v» . ds = l g(J)v ds, i = 1,2
' 173 i i !
Ty 3
respectively
(2.9b) l (a('“u1 + B(J)uz)vds = J g(j)vds.
T Fs

The p-version is then defined analogously as before. Find up =

) §
prp(o) such that

P 4
(2.10) B(up,v) = Gl(v) Vve ?p(Q).

Remark. Constraints of the type considered are typical in elasti-

city theory. Here u, and u, are the displacements in the

directions x and x respectively. Assume now that the dis-

1 2
placement is constrained in the normal direction only (and is
friction free in the tangential direction). Then on the boundary,
oS ? + u, sin ¢ = 0 where
¢ is the angle of the outer normal with the axis x

we obtain the partial constraint u

1

14
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3. The convergence of the p-versjon of the finjte element method.

3.1. An abstract result
We will first describe an abstract framework which will be

the basis for the forthcoming analysis.

-

Let X and W be Hilbert spaces and xp < X, ﬁp W, p=

1,2,... be one parameter families of finite-dimensional subspaces.

xp < X, Wp < W will denote corresponding families of hyperplanes

such that (u-v) € ip whenever u,v € xp and (o-w) € wp when-
ever o.,v € W_.
P
Let a{u,v), u,ve X be a continuous bilinear form on X X
and b{v,») be a continuous bilinear form on X-W such that

b{v,e) s cuvﬂxﬂvﬂw.

Let uo € X, ¢° € W and up € xp, op € wp be such that
(3.1a) a(uo,v) + b(v,oo) = rl(v) V ve xp
(3.1b) b(uo,v) = lz(v) Vpe wp
and
(3.2a) a(up,v) + b(v"p) = '1(v) Vve xp
{(3.2b) . b(up,v) - !2(9) V ype wp.

Define Zp s (v e ip. b(v,y) = OV p € ﬁp) c X Then we

P’
have

Theorem 3.1. Let a(u,u) 2 rﬂu": , 7y >0, for any. u € zp. Then

1 - " it - j it -
(3.3) quo up‘x s C{ int ) fug "p“x + int .¢° xp w]
b(u.~-w ,9)=0 VyeW cW
( 0™"p ) ° ve P lp b
- ¢x
o™ "p
{i.e., u ~w €Z
( P P P)
18
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Proof. for arbitrary wp € xp and !p € wp we have

(3.4a) a(u_-w_,v) + b(v,¢ =¥ ) = a(uo-wp,v) + b(v,po-zp) Vwve X

PP PP o]
(3.4b) b(up-up,v) = b(uo—up.v) Ve wp
Por v € zp (3.4a) yields
(3.5) a(up-up,v) = a(uo-up.v) + b(V.Oo-Ip) }

Suppose now that wp is such that

b r) = u., v € W_. '
(wp r) b( o v) v P ‘
Then by (3.4Db)
- , - v ﬁ
b(up wp ¥) 0 p € P
and hence 2

up - wp € zp.

Now using v = uy, - W, in (3.5) we get

a(u_-w_,u -w_ ) ¢« Cliu. -w_ !up-w Wy *

p P P P o "p x px*t Potplw Y

n""p x!

and hence by coercivity of a(°,°) on Zp, ‘ g
Uup-wphx s C[%uo-wpﬂx + "vo-xpﬂwl

and hence also

" - N - i}
A "pJX 3 C[.uo wpﬂ +

0 x * Po Y w!

from which (3.3) follows. -

3.2. The convergence of_ the _p-versjon ‘

1.1
Let “0 - ‘“o,z'“o,z’ € H (Q) be the solution of our con-

) € ¢ (Q) be

»u
p.2 P

strained problem (2.2), (2.5) and up = (up N

the approximation given by (2.10).

16




2
We will assume that u, € uk(o), k > 3/2. Hence 5n €
zl"(l‘i). {=1,2,....a, Let the constraints on l‘J be as in sec-

tion 2.2, with !‘1 r J=1,....,m
b

+41,...,m the partial constraint sides. Then it

1 being the total constraint sides

and I'1 r J=nm
b
can be verified that for any v ¢ al!l(o),

b

1
du au
) 0,1 0,2
l(uo,v) - Z l [ a v1 + —E'rT_'vz]d.
. J=1 l‘1
b)
(3.6)
2 1, 1 duy ,  duy
- Z [ (a v1+.8 vz) -aF—+—a-n—-ds-Gl(v)
jem +1 r‘
J
1y . WU
where we have assumed a + 3 = }]. Moreover, for ®.9,.9, and
p as in (2.8) - (2.9),
™ n . y
z l (“p.l'l + “p,z’z"' + z l (a "’up'1 + 73 Jup'z)vds
J=1 °T Jem _+1 °T
11 ' 1 11
" n . ;
(3.7) = Z ] (“0,1'1"“0,_2'2”. + Z ] (a 5“0,1” juo'z)vdl
J=1 °T Jem +1 °T
11 1 ij
" a . ’
b b
= z ] “’1’1*"2’2"‘ + Z J (a plﬂ pz)vd-
j=1 °T Jem +1 T
1, 1 11
and

(3.8a) “p,kuj) = “o,kuj) - pk(AJ). =081, k= 1,2,

Y 4
-11' 4

"




? 4 7 4 L 2 4
(a up,l)(AJ) + (8 up,z)(AJ) = (a uo,l)(AJ) + (B “O,Z"AJ)
24 N4
(3.8b) ' = (a pl)(AJ) + (B pz)(AJ)
J = L, L+, 1-1.1*1,...,1..

(We remark that u, 1(Aj). i =1,2 has meaning because we assumed

that u. « ‘8%(Q), k > 3/2).

0
We now define

X = 2nt(0), ieu, m uen
X 2H1(0)

and for any &6 = (61.82) € X,

2
X = (u= (u,,u,)) € ’p(Q). uk(AJ) = Gk(AJ). k=1,2

P.b

4 4

J=tte1, L= g,,..., n

4 4 .
(@B ) Ag) ¢ (T A, S Ll ey el

We then take in our abstract framework

where o satisfies (2.68) - (2.8). Moreover, let

1 n

We g ’H 1/2(ri - no'H 1/2(ri )

3=1 B L PO 3

with the norm
™ ©om ]1/2
. N he 2
?O!‘" = [Z!'Jlln-lll’(r | + Z "J‘l“-l/?(r )j
=1 1J j-1+1 1j

¥e see then that oo « W where (see (3.6))




. 'm.

- 1uy-1/2 a1 -
H (rij) ?p-z(rj). b n1+1,...,m.

Let a(°,°) and b(¢,°) be bilinear forms defined respec-

tively on XxX and XxW by

a(u,v) = B(u,v)

"1 n : )
b(u,p) = Z ] (U0, + u,w,)ds + z [ (a Ju1 + 3 3u2)» ds.
J.i ri J.-1+1 l"i
J J

It may be seen that the right hand side of (3.7) defines a linear
functional G2 on Wp. Then (3.6) - (3.8) show that (uo,oo)
satisfy (3.1) with rk = Gk' k= 1,2. Moreover, if we can find a
unigque pair (up.op) oitilfying (3.2), then up will be precise-
ly our finite element solution satisfying (2.10). We will now
verify that the mixed method defined above satisfies the assump-
tions of Theorem 3.1. This in turn will lead to the existence and
uniqueness of the solution (up,op) of (3.2) and an estimate of

the rate of convergence of u to u.

Obviocusly, a(u,v) satisfies the desired continuity and
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coercivity conditions. Por J = 1,2,....,m we have

ur dol s Cu L

Ilr ml/z(ri ) “-1/2(ri )
i b) b
J

from which the continuity of b(-,*) may be deduced. Hence

Theorem 3.1 is applicable. Let us now estimate inf P T ' we
<W
= p
_ ok=3/2,.
First, let m1+1 s J + m. We assumed that °4 g - H (‘i Y, koo
' J
, - . yk-3/2 PR (1
3/2. Hence oo'j(FiJ(c)) ®(r) = H (I). Let o = Ip_2
be such that
(3.9) Jap ar = [ & A, Vp < ‘wp_z(r).
I I
Then, with q = ¢ - v, we have
(3.10) T, cp™ (K=3/2) 4 k=32, "
H(I) H (1)
Now, for arbitrary v = HI(I), we have by (3.9)
qv dar . q{v-o, )ar q V=0
j‘I . jx ! e SRS A6 S RUNBNES!
v 1 v. 1 * -V 1 = LP HO(I)
H(I) H(I) H™(I)

where T, is a polynomial of degree p - 2 satisfying

-1
‘v -0 - Cp v .
! w1y wl(1)

This yields
(3.11) a _,  eop MV

H "(I) H (1)
Interpolating (3.10), (3.11) and using the fact that Fi is a

3

smooth mapping, we obtain




h -(k-1)
int e -x s Cp e o .
PJipP 11 ij
We get similar estimates for Fi . 3 = 1,...,m1, so that
]
-(k-1)
(3.12) inf jle, - x ', s Cp fa,ll .
) p'wW 0"2,.k
W H(Q
xpe P (Q)
We now estimate inf ﬂuo - wp”x' Using the results from [2], there
exist zi € 1?p(Q), i =1,2 such that
-(k-t)
(3.13a) fa -z, s Cp fua i P 1 =1,2, t=0,1
0,1 71 Ht(Q) 0,1 Hk(Q)
(3.13b) u, 1(N) = zi(N) for each node N of the mesh
(3.13¢) luy ,-z,! . < Cp-(k-l/z-t)!luo e st=o0,1,4=1,2
' H (FJ) T HT(Q)
j=1,2,...,m
1J . ij
Let m1+1 < J s m. Let us denote » = a (uo';-zl) + 3 (uo'z-zz).
Then we have «(A, ) = x(A, ) = 0. Let x(£) = x(F(x)) and let
j J+1

T(F(£)) = T(¢) € ‘rp(x) satisfy 7(:1) = 0 and

[ TV d¢ = J v d, Vuve ‘rp_z(r)
I I

Because of (3.13b) we can write

|

and hence by Lemma 3.2 of (2]

T'W df = [ Yo' df, V w € ‘?p(x), w(x1) =0

I I

W - T $ Cp-(k-llz-t)ﬂu

t=20,1.
B (1)

il ,
0 2Hk(o)

Using (3.13c), this gives

21

vy

DN PN 1 al . - M
AL APEE AP ",‘z LW «"ls"t'~'!'s“"!n'* A \'i'. “-'i‘g’l‘: I'.‘l..'l.u l‘n‘l o u'd...- A 0‘.':"'- ‘J. .l» .& ‘u"t' A)

- O B

P



hTy s cp  FT1/278)yy

t =o0,1.
(1) 03y

k)’

Now using Lemma 2.1 it follows that there is a w e« 1Pp(Q) such

that w=0 on Q - Q where @ is the element with the side

l‘1 , W=T oOn Fi s, W=0 on 3Q -~ Fi and
J J J
(3.14) Wi s Cp'“"“uuose2 :
H™(Q) H™(Q)
Letting wy = (w,w) € 2HI(Q), we see that wi will satis-
J J
fy (3.14) with HY(Q) replaced by 2m!(0).
Let now w_= 2 + w = (2,,2,) + (w,w). Using (3.13b) and
o) ij 1°.72

the fact that w(Al) = 0, wWe obtain

1y 1
(a (uo,l-wp,l) + B (uo,z-wp'z))(Ae) =0, ¢ j’ij+1'

(]
[

1
Moreover, for v € ?p-z(ri ),

J
ij ij
[ (o (“0,1‘“p.1) + 8 (“o,z'wp,z))” ds
ri
J
1y, .1
= J {(x - {(a + 83 YIw)yp ds = J (x-wlp ds = Q
r r
1 13
Yy,
where we have used a + 8 = 1. We may construct w, as

J

above for all partial constraint sides. An analogous construction

can be carried out for total constraint sides as well. Then if

we see that

22




‘e

- e X
Yo T Y5 %
b -w_,») =0, V s W
(uo wp ) L p
and
m
, . , , ~-(k~-1),
\ - | \ - i i i i
.luo wp!.x s g z!!x + Z.!wi .IX < Cp .!uo.!2 Kk .
j=1 J H™(Q)

This provides a bound for the first term in the right hand side of

(3.3). Hence we have proven
Theorem 3.2. Let u, < 2Hk(Q), k > 3/2. Then
Huo—u I 1 < Cp-(k_l)ﬁu i Kk
P 2ut(a) H (Q)

where uo .is the exact solution and up is the finite element
solution of the constrained problem, provided that u, and up
exist.o

The next theorem deals with the question of existence and

unigqueness of (uo,¢o) and Kup,¢p).

Theorem 3.3. The (exact) solution (uo,¢o) of the constrained

problem exists. The fiﬁite element solution (u_,9_) exists and

is unique.

Proof. 1In Section 2.2 we have shown that u, exists and hence

(uo,wo) exists, too. The finite element solution (u ) is

p'?p
determined by the solution of a linear system of equations with
square matrix. Hence the existence follows from the uniqueness.

Assume therefore that there is a solution (up,¢p) of the trivial

problem. Obviously u =¢ = 0 is also a solution of this problem.

Hence up = 0 because of Theorem 3.1. We have to show therefore

that
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bl
PR )

»
-~

2

> r :«
= i

} (av, + Bv,)p  df = 0 3

I «

implies «pp = 0. Because o + 3 =1 we also have I v<pp de =0 :;:
I ;'i

L

1 1 t

for all v e 'P _(I) n H.(I) while «le I). This leads t :
«pp = 0 which leads to the desired result. z "
0

\)

Remark. We have dealt only with a model problem. It is obvious ';ﬁ
d

that the theorem holds in general, as for example, for the theory .:
4

of elasticity. )
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4. Some aspects of implementation.

Here we will make some comments about the implementation in
the framework of the code PROBE* (see [6]). The shape functions
are defined as usual on the standard square or triangle. There are

three types:

a) the model shape functions which are linear on every side

-k poamry
- K Y S

of Q, respectively T;

- e

“e»
g

b) the side functions which are zero at the vertices of Q,

respectively T and on » are of the form

X

£y = J 1ej(z)dx, j=1,2,...

where CJ is the Legendre polymonial of degree j. ¢
is then a polynomial of degree J+1;

¢} The internal shape functions which are zero on 8Q

(respectively 8T).

The stiffness matrices are first computed in the standard way
without constraints. Then the constraints .are imposed at the ver-
tices AJ. This only involves thf amplitudes for the nodal shape
functions. Then the conditions (2.9 a,b) only involve amplitudes
for the side shape functions. The functions ¢ in (2.9 a,b) are
computed as derivatives of the Legendre polynomials from the-usual

recurrence formula and the integration is made using numerical

quadrature,

The condition (2.9a) is especially simple because u1 =

chiti. Integrating by parts and exploiting orthogonality of the

[ 3
The code PROBE is the code of Noetic Tech., St. Louis. g




Legendre polynomjials we get the amplitudes for the side shape

| functions on the total constraint sides directly.
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