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FINAL REPORT
“Computational and Experimental Fluid Dynamics"
ONR Grant for the period June 1984 through September 1985

Funds were used for two major categories: support for
released time for the principal investigator and salary for a
programmer. The former allowed the principal investigator to
visit both Los Alamos National Laboratory and the Mathematics
Research Center at the University of Wisconsin during the winter
and spring of 1985, as well as providing 50X released time during
the fall of 1984. This facilitated the research, especially with
regard to collaboration with W. G. Pritchard, who was visiting
the Mathematics Research Center during that time. Research on
both internal and free-surface flows related to experimental
situations was continued. Part of this research was based on
using a low-order code developed previously, jointly by Pritchard
and Scott. Funds for the programmer allowed two substantial new
programming projects to be initiated during this time. One
concerned investigation of techniques for implementing a quartic
finite element method for viscous, incompressible, two-dimensional
flows. The other involved a streamline-diffusion finite element
method for inviscid flows.

The collaboration with Pritchard during this time period
focused on two experimental situations. One involves internal
flow in a complicated geometry (see Figure 1, which iacludes an
indication of a typical mesh used in computations) that models the
critical part of a so-called "stress meter” for determining
rheological properties of non-Newtonian fluids. Experimental work
on this was done by Pritchard and Arthur Lodge of the University
of Wisconsin. A pleasant result of this part of the research
during this period was that we diacovered a manufacturing flaw in
a new meter by using the numerical code to predict a particular
stress difference. A second result of this research is a series
of comparisons of different numerical methods, done jointly by
David Malkus and John S8trikwerda of the University of Wisconsin
together with Pritchard and Scott. It is hoped that this will
help to establish the “stress meter” model problea as a benchmark
with a firmer physical foundation than the frequently-used "driven
cavity” problea.

The typical quantity of interest in the problem depicted in
Figure 1 is the normal stress difference between the bottom of the
slot, or hole, in the middle of the figure and the top of the
channel above the hole. This differnce is szero for Reynolds
number equal to sero, and it is plotted as a function of Reynolds
number in Figures la and 1b for different hole depths (Figure 1}
depicts a hole depth of 1.0). Note that the stress difference
Aervasseacs mAnrtApnirallyv,. aa a funrcrtinn nf Aaprth, fAr depthe Anwn
to 0.75. however, for a depth ~f 0.5 it suddenly jumps up. This
needs to be studied in more detail.
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Page 2

The other experimental phenomena under study during this
period involved free-surface flow. Pritchard had recently
completed a series of experiments at the University of Essex, and
work was begun to modify the code in order to allow for a free
surface. Figure 2 shows a typical plot of the experimental data; |,
note the complexity of the free asurface, even though this is a
relatively low Reynolds number. Our goal will then be to compare
the new codes predictions with the results of the physical e
experiments and then to study various free-surface phenomena.

The above work is being written up for pudblication in a
series of papers. Tentative titles for these are as follows:

W. G. Pritchard, Y. Renardy and L. R. Scott, "Tests of a
- . numerical method for viscous, incompressible flows. 1I:
Fixed-domain probleams,” (in preparation).

W. G. Pritchaid. Y. Renardy and L. R. Scott, "Tests of a
numerical method for viscous, incompressible flows. II:
Free-surface problems,” (in preparation).

A third publication is planned jointly by Malkus, Pritchard, Scott
and Strikwerda, but a title has not yet been chosen.

Although the codes developed by Pritchard and Scott will
solve a wide range of problems, it was also desired to develop
entirely new codes implementing new numerical techniques. Two
independent directions were pursued during this period. One
involved higher-order spatial accuracy and better representation
of the incompressibility constraint in the numerical
discretization based on implementing a quartic finite element
method that has been studied theoretically by Scott and Michael
Vogelius (of the University of Maryland). The other addressed
temporal discretization, especially with regard to
high-Reynolds-number flows, based on a streamline-diffusion
finite-element technique developed by Claes Johnson of the
University of Gothenberg when he was visiting the University of
Michigan. To achieve these goals most cost-effectively, it was
decided to hire a professional programmer rather than rely solely
on Pritchard and Scott (and other collaborators) for the coding,
as had been done in the past. This approach is quite standard in
governmental and industrial laboratories, but it is somewhat
unusual in acadeamic circles. Although this approach was
complicated, primarily due to its novelty in a university setting,
it was successful and would be recommended for future projects
under appropriate circumstances. (The availability of an \
appropriate person is critical; our programmer left the university
at the end of this project to work at an industrial laboratory at -
a 50X increase in salary and would not be enticed back to the '
academic setting easily. Moreover, the demand for such people in
industry far exceeds the supply.)

The numerical studies with the quartic finite-element method
for viscous, incompreseible, two-dimensional flows were based on »
modification of the IMSL code TWODEPEP. Twr appreoaches were
followed. The first, which involved a straightforward use of the
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code, tested the standard penalty method for imposing the
incompressibility constraint. Typical results of this study are
given in Tables 1 and 2. A preliminary description of them was
given by Scott in the conference paper "Spatial discretisation
technigues for the Navier-8tokes equations: theoretical and
computational results,” which appeared in the proceedings entitled
COMPUTING METHODS IN APPLIED SCIENCES AND ENGINEERING VI (R.
Glowinski and J.-L. Lioans, eds., Amsterdam: MNorth-Holland, .198¢,
481-470). Note that the resaults in Table 1 indicate the high
order of accuracy of the method, at least in the L1 nora. (The
poblem being solved, as shown in Figures da and 3b, is not
sufficiently regular to prove optimal-order accuracy, due to the
lack of smoothness of the boundary.) The data in Table 1}
indicates only 4th order convergence in the L2 norm, and not the
best-possible 5th order convergence that approximation theory
would allow. However, the Ll convergence order is about 4.5 at
the last mesh-halving. Also note that the pressure accuracy is
disappointing, as would be expected froam the penalty method.
Table 2 indicates that reasonable accuracy is retained even for
moderately high Reynolds numbers and a small number of variables.

The second approach involved a modified penalty method,
which holds the promise of yielding exact satisfaction of the
incompressibility constraint as well as more accurate pressure
approximations. Implementing the modified penalty method,
together with Newton'’s method for treating the nonlinear term,
required a substantial reworking of the TWODEPEP code.
Convergence of the latter approach had been cast in doudbt in a
remark in the book AUGMENTED LAGRANGIAN METHODS by Fortin and
Glowinski, and our investigations, as indicated in Table 1, tended
to support this ocbservation. Thus further investigation is needed
to determine a method to link the modified penalty approach with
efficient techniques for resolving the nonlinear terms.

The implementation of the streamline-diffusion, finite-
element method for inviscid flows required starting a code from
scratch. The first step was to devalop a solver for a linear,
hyperbolic equation using the streamline-diffusion, finite-
element method. This is later to be coupled with an elliptic
solver (e.g., Randy Bank’s multi-grid code) to implement a full
nonlinear Ruler equation solver. However, the critical new
component is the streamline-diffusion technique for temporal
integration of an advection equation, so this was addressed first.
Numerical tests were performed on this technique with the code.

It appears that the code is very effective in limiting cross-wind
diffusion for diascontinuous solutions (aee Figure 4), and thus
shows promise as a component in a high-Reynolds-number code.

Tests were also performed on problems with smooth data, cf.

Figure 5. Coavergence test for this problem indicate second-order
convergence, and the L-2 error for the time t = 0.8 shown in
Pigure § was 0.012 . What remains to be done is the linking of
the elliptic solver as described previously together with
development of efficient techniques for solving some implicit
egquations that are inherent to the method at each time step.




TABLE 1

Coavergence teats of the gquartic finite element method on
Jeffery-Hamel flow as ahown in Figure 3. All runs with the
sams Reynolds number: Rave = 6.85, Rmax = 9.89.

# tri- velocity velocity velocity pressure See
angles L1 error L2 error Max error Max error Key
used (relative) (relative) (relative) (relative) below
7 0.762K-2 0.131k-1 0.273k-1 n/a A
7 0.871k-2 0.143k-1 0.288E-1 n/a B
i 0.871E-2 0.1438-1 0.288E-1 0.200E0 C
28 0.676E-~3 0.158K-2 0.453k-2 0.108K0 A
28 0.769%-3 0.177R-2 0.508k-2 0.122K0 Cc
112 0.342K-4 0.117K-3 0.565K-3 0.720E-1 A

Key to Methoda Used

A straight penalty, epsilon = 1K-68, 3 stage continuation, 3
extra iterations with full nonlinearity

B straight penalty, epsilon = 1K-68, 3 stage continuation,
iterated with full nonlinearity until "convergence"”

C pressure only relaxed (by 1.2%%-n at the n-th iteration)
penalty iteration, epsilon = 1E-6, 3 stage continuation,
iterated with full nonlinearity until "convergence”
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TABLE 2

Errors for the quartic finite element method calculating
Jeffery-Hamel flow for various Reynolds numbers, using only
seven triangles, as shown in Figure 3a.

Reynolds number (Rave) 8.9 18 85 222

Relative L2 velocity error 0.13E-1 0.27E-1 0.69K-1 O0.15E0

s W S R D R ED AP S D G S EE WD Gk SR D D D NP G GD Eh Sk R WP R P AR D EP G W SE P EP T G R Th AR G D D T WL G R P Y W W o




1 3N
0G'1-

‘e W e o2

| | | _

—
——

d1_|_4

NN

AR

cgAeuwi) aanssaad ajoy

&

L

L 3% WY kl*.' . .



T
| O
| ©
Q.
O
7]
| X <
~~
Q,
©
5
s
| 5 :
(ap] - O
o 2
X z
~ 2
L 0
n T
L; = )
o~ =
7y
o)
~ R oz
3
o d
@ 0 u el
- O ]
m .
~
- WY
o v
© 1 | | 1 o 3
Ye) - =
& 3 = = S S
@ o o o o c T
[eadaju] Juifesaay puz —-— sa0U3aJIdYIQ SS8IIS

A0 m:ﬁb}};}l}liﬁfw.'p'!.'."}n"rl\'r.‘.’-:.'-L\L\LNL\'N.M'L\i



v _ > 4 I 0

G10

|

B v/ O o
mm%&maabxmn eX)1 mmmzx G % GL'T mﬁg%

G00

010

020

[eAlaju] Fuifedaay puUZ —— Sa0UlI3YI([J S$S3J1S

Gec'0.




* - - ‘2 _3YN914
i . 5994°0 GALISOOSIA‘*? %640 :HLJAA

o SIXV X
08 01 037 Oc 0
~ _ : i ‘ I G 0-

g QIuwoy)

SIXV A

e 68200 = vno.~n. ¥ Rdalh (4
. T 507 -2
L e O AAT YT AICTIATTAICY IV




/

|

~

]
N
b Y
~
' ~
~
N N

k.\;‘\ NN -

NN

><

0

pra 2R

LI

n o a——

e cpamm—m—— e+ e e eeiesns

o WO S AL S MR DOl DA EAA AR




.
~
~
~
-
~
~
~
~

~
Y
~
Y
~
~
~

1

- e
- -

0

>

e e e .



TIME =

0.050 SLAB =

2

1

0

o Bl it 5
PR R L . Y

Procic ot




S22
\\\\QQ\\\\\\\‘.'

NSNS
\\\\&s

- TIME = 0.400 SLRB = 8







