

*

ł

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Bolling AFB DC 20332-6448 6]; 02F 2304 A1 11. TITLE (include Security Classification) Parallel Image Processing and Image Understanding 12. PERSONAL AUTHOR(5) Azriel Rogenfeld 13a. TYPE OF REPORT FROM 4/85 TO 3/86 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper "Holes and Genus of 3D Digital Images", it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cavities) do not determine the topology (in the sense of connectivity) of the image refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", sever	ý	JR ALASIDET CA	DIFI	PAGE			៣	K	EILE.	COPE
REPORT SECURITY CLASSFEATION AUTHORITY IL RESTRICTIVE MARKNOSS SECURITY CLASSFEATION AUTHORITY ELECTE DECLASSFEATION AUTHORITY ELECTE SEMINITY CLASSFEATION AUTHORITY ELECTE DECLASSFEATION AUTHORITY ELECTE ADDET ENDITION AUTHORITY DECLASSFEATION MERRY MARE OF FUNDING ORGANIZATION BL. OFFICE SYMBOL ADDETS SC(07, Stee, and ZP Code) ADDETS CODE ADDETS SC(07, Stee, and ZP Code) NN ADDETS SC(07, Stee, and ZP Code) NN ADDETS CODE SC(07, Stee, and ZP Code) NN PAGE20-83-K-0009 NN PA	N N	UTITICOMICITY								
DECLASSIFICATION / DOWINGRADIG CHEEDULE 3 0 1987 ERFORMING ORGANIZATION REPORT NEERS SIGNATION REPORT NUMBERS ERFORMING ORGANIZATION REPORT NUMBERS AFOSR - TR - 8 7 - 0 9 5 5 NAME OF PERFORMING ORGANIZATION 100 OFFICE SYMBOL (# applicable) 12. NAME OF MONITORING ORGANIZATION NAME OF PERFORMING ORGANIZATION 100 OFFICE SYMBOL (# applicable) 12. NAME OF MONITORING ORGANIZATION NAME OF PERFORMING ORGANIZATION 100 OFFICE SYMBOL (# applicable) 12. NAME OF MONITORING ORGANIZATION NAME OF FUNDING /SPONSORING 18. OFFICE SYMBOL (# applicable) 12. NAME OF FUNDING /SPONSORING Sa. NAME OF FUNDING /SPONSORING 18. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER APOSEX APOSEX TO SUBJECT TERMS (CONTENT INSTRUMENT IDENTIFICATION NUMBER (# applicable) 10. SOURCE OF FUNDING NUMBERS PROCEMENT INSTRUMENT IDENTIFICATION NUMBERS APOSEX APOSEX/SMM 10. SOURCE OF FUNDING NUMBERS PROCEMENT REPORT (TRAC MORES) 10. SOURCE OF REPORT (RepORT (REPO		REPORT SECURITY CLASSIFICATION DTIC			1b. RESTRICTIVE MARKINGS					
DECLASSIFICATION / DOWINGRADIG CHEEDULE 3 0 1987 ERFORMING ORGANIZATION REPORT NEERS SIGNATION REPORT NUMBERS ERFORMING ORGANIZATION REPORT NUMBERS AFOSR - TR - 8 7 - 0 9 5 5 NAME OF PERFORMING ORGANIZATION 100 OFFICE SYMBOL (# applicable) 12. NAME OF MONITORING ORGANIZATION NAME OF PERFORMING ORGANIZATION 100 OFFICE SYMBOL (# applicable) 12. NAME OF MONITORING ORGANIZATION NAME OF PERFORMING ORGANIZATION 100 OFFICE SYMBOL (# applicable) 12. NAME OF MONITORING ORGANIZATION NAME OF FUNDING /SPONSORING 18. OFFICE SYMBOL (# applicable) 12. NAME OF FUNDING /SPONSORING Sa. NAME OF FUNDING /SPONSORING 18. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER APOSEX APOSEX TO SUBJECT TERMS (CONTENT INSTRUMENT IDENTIFICATION NUMBER (# applicable) 10. SOURCE OF FUNDING NUMBERS PROCEMENT INSTRUMENT IDENTIFICATION NUMBERS APOSEX APOSEX/SMM 10. SOURCE OF FUNDING NUMBERS PROCEMENT REPORT (TRAC MORES) 10. SOURCE OF REPORT (RepORT (REPO	Ó	SECURITY CLASSIFICAT	TION AUT	HORITY	ECTE					
ENDORMING ORGANIZATION REPORT WEEKS S. MONITORING ORGANIZATION REPORT WUMBERS AFOSR THE SOT WUMBERSS ADDRESS (CR), State, and 21P Code) College Park, Md. 20742 Sature of Maryland ADDRESS (CR), State, and 21P Code) College Park, Md. 20742 Sature of Maryland ADDRESS (CR), State, and 21P Code) College Park, Md. 20742 Sature of Maryland ADDRESS (CR), State, and 21P Code) Sature of Maryland ADDRESS (CR), State, and 21P Code) Sature of Maryland Sature of FUNDING (SDONSORING Sature of Maryland Sature of Maryland Sature of FUNDING (SDONSORING Sature of Maryland S		DECLASSIFICATION / D	OWNGRAI		I E	Approved for public release; distribution unlimited.				
(If applicable) APOSE/INI APOSE/INI APOSE/INI College Park, Md. 20742 SanAME OF FUNDING/SPONSORING OB OFFICE SYMBOL ORGANIZATION APOSE FUNDING/SPONSORING ORGANIZATION APOSE FUNDING/SPONSORING ORGANIZATION PADOESS (CIV, State, and ZP Code) NM F49620-835-K-0009 To SUMEE OF FUNDING NUMBERS PADOESS (CIV, State, and ZP Code) NM F49620-835-K-0009 To SUMEE F6000 F1000 (SumExtern) To SUMEE F6000 F1000 (SumExtern) To SUMEE F6000 F1000 (SumExtern) The SUMEE F6000 F100 REPORT (Year, Month, Day) TATE REPORT FF000		ERFORMING ORGANIZ	ATION RE	5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR - TR - 87 - 0955						
ADDRESS (Ghy, State, and 20° Code) 7b #000000000000000000000000000000000000	1	NAME OF PERFORMIN	IG ORGAN	IZATION		7a. NAMÉ OF M	ONITORING ORGA	NIZATI	ION	
College Park, Md. 20742 Bolling AFB DC 20332-6448 Sa. NAME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F49620-85-K-0009 AFDSR F49620-85-K-0009 F49620-85-K-0009 Sc. ADDRESS (Chy, State, and ZIP Code) AFDSR/JM PROCEMENT INSTRUMENT IDENTIFICATION NUMBER F49620-85-K-0009 Jag 410 ID SOURCE OF FUNDING NUMBERS AFDIG ATB DC 20332-8448 WORK UNIT ACCESSION NC Bolling AFB DC 20332-8448 11 TILE (include Security Classification) Parallel Image Processing and Image Understanding NO. AL 12. PERSONAL AUTHOR(S) Arriel Rogenfeld 13b. TIME COVERED Final 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 13b. TIME COVERED FINAL 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing. It was shown that certain geometric invariants of a digital image (number of Digital Images), it was shown that certain geometric invariants of a digital image (number of Digital Images), it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cevities) do not determine the topology (in the sense of conne					L					
ORGANIZATION (# applicable) F49620-85-K-0009 APOSR NM F49620-85-K-0009 APOSRS(7K) State, and 20° Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROGRAM PROGRAM Bolling AFB DC 20332-8448 61) 02F 2304 11. TITLE (include Security Classification) PROGRAM PROGRAM PROGRAM Parallel Image Proceesing and Image Understanding 12. PERSONAL AUTHOR(S) Azriel Rosenfeld 13. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Final FROM 4/85 TO 3/86 3/31/86 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 12. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. SUPPLEMENTARY NOTATION 13. TYPE OF REPORT 13. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 14. DATE OF REPORT This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based technical reports were produced which will also appear as published papers in journals. In the paper filoles and Genus of 3D Digital Imagee® 1, it was shown that certain geometric invariants of a digital image (number of components, number of holes, and number of cavities) do not determine the topology (in th	C	• • •		-		0				
BC ADDRESS (City, State, and ZIP Code) APOSR/RM Bidg 410 Bolling AZB DC 20332-6448 10.SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO TASK NO.ECT NO. WORK UNIT ACCESSION NC 6) 02F 11. TITLE (Include Security Classification) Parallel Image Frocessing and Image Understanding No. All 12. PERSONAL AUTHOR(S) Azzriel Rogenfeld 13. TIME COVERED FROM 4/85 14. DATE OF REPORT (vear, Month, Day) 15. PAGE COUNT FROM 4/85 15. SUPPLEMENTARY NOTATION 13. TIME COVERED FROM 4/85 14. DATE OF REPORT (vear, Month, Day) 15. PAGE COUNT FROM 4/85 15. PAGE COUNT 3/31/86 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. NSTRACT (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper 'Holes and Genus of 3D Digital Images', it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cavities) do not determine the topology (in the sense of connectivity) of the imag refuting the commonly believed assumption that they do. This sreearch lays the groundwork for research on digital and computational geometry of 3D images. In the paper 'Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Par	8a					9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
AFOSR/NM PROJECT TASK WORK UNIT Bidg 410 Bidg 410 NO. NO. Al Bolling AFB DC 20332-6448 [] UPE 2304 Al 11. TITLE (include security Classification) Parallel Image Processing and Image Understanding Image Understanding 12. PERSONAL AUTHOR(S) Azriel Rosenfeld Image Understanding Image Understanding 13. TYPE OF REPORT IB. TIME COVERED Image Understanding Image Understanding Image Understanding 16. SUPPLEMENTARY NOTATION Image Understanding Understanding Image Understanding Image Understanding Image Understanding 17. COSATI CODES IB. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Image Understanding understanding, and modeling image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper Tholes and Genus of 3D Digital Images, it was shown that certain geometric invariants of a digital image (number of components, number of holes, and number of cavitles) do not determine the topology (in the sense of connectively) of holes, and restore aspects of Mesh-Connected SIMD Parallel Processors, sever methods of Blough transform computation are studied in term			F49620-85-K-0009							
Bidg 410 ELEMENT NO. NO. ACCESSION NO. Bolling AFB DC 20332-6448 6]/ 02F 2304 A1 II. THIE (mickude Security Classification) Parallel Image Processing and Image Understanding 12. PERSONAL AUTHOR(S) Azziel Rosenfeld 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Final FROM 4/B5 TO_3/86	80									
11. TITLE (include Security Classification) Parallel Image Processing and Image Understanding 12. PERSONAL AUTHOR(S) Azriel Rogenfeld 13a. TYPE OF REPORT 13b. TIME COVERED FIGU 13b. TIME COVERED 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FELD GROUP 19. MSTRACT (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper Woles and Genus of 3D Digital Images, it was shown that certain geometric invariants of a digital image (number of components, number of holes, and number of cavities) do not determine the topology (in the sense of connectivity) of the imag refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", sever methods of Bough transform computation as studied in terms of suitability for implementati on a parallel processor, providing a valuable tool for straight-line detection. 20. DSTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY		B1dg 410		•		ELEMENT NO.	NO.			ACCESSION NO.
Parallel Image Processing and Image Understanding 12. PERSONAL AUTHOR(S) Azriel Rogenfeld 13a. TYPE OF REPORT 13b. TIME COVERED Final 13b. TIME COVERED 16. SUPPLEMENTARY NOTATION 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FELD GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper Holes and Genus of 3D Digital Images, it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cavities) do not determine the topology (in the sense of connectivity) of the imag refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", sev	1 1					6]/ 02F	2304	A .	1	
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Pinal FROM 4/85 TO_3/86_ 3/31/86 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. MSTRACT (Continue on reverse if necessary and identify by block number) 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. MSTRACT (Continue on reverse if necessary and identify by block number) 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. MSTRACT (Continue on reverse if necessary and identify by block number) 14. Date of image processing. It focused 19. MSTRACT (Continue on reverse if necessary and identify by block number) 15. Frequencies 19. MSTRACT (Continue on reverse if necessary and identify by block number) 16. Subject number) 19. MSTRACT (Continue on reverse if necessary and identify by block number) 16. Subject number) 19. MSTRACT (Continue on reverse if necessary and identify by block number) 16. Subject number) 19. MSTRACT (Continue on reverse if necessary and identify by block number) 16. Subject number) 19. MSTRACT (Continue on reverse if necessary and identify by bl	12									
Pinal FROM 4/85 TO 3/86 3/31/86 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based technical reports were produced which will also appear as published papers in journals. In the paper "Holes and Genus of 3D Digital Images", it was shown that certain geometric invariants of a digital image (number of components, number of holes, and number of cavities) do not determine the topology (in the sense of connectivity) of the imag refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", sever methods of Hough transform computation are studied in terms of suitability for implementati on a parallel processor, providing a valuable tool for straight-line detection. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 21. ABME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL 21. ABME OF COVERY e 220 TOFT-5025 22c OFFICE SYMBOL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL NM<										
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP FIELD GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based technical reports were produced which will also appear as published papers in journals. In the paper *Holes and Genus of 3D Digital Images*, it was shown that certain geometric invariants of a digital image (number of components, number of holes, and number of cavities) do not determine the topology (in the sense of connectivity) of the image refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper *Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors*, sever methods of Hough transform computation are studied in terms of suitability for implementati on a parallel processor, providing a valuable tool for straight-line detection. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL NM 22b. TORM 1473, 44 MAR B3 APR edition may be used until exhausted SECURITY CLASSIFICATION										
This research was conducted to obtain better methods for image processing. It focused on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper "Holes and Genus of 3D Digital Images", it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cavities) do not determine the topology (in the sense of connectivity) of the imag refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", sever methods of Hough transform computation are studied in terms of suitability for implementati on a parallel processor, providing a valuable tool for straight-line detection. 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 	17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)									
on several aspects of this problem, including parallel algorithms for image processing, knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper "Holes and Genus of 3D Digital Images", it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cavities) do not determine the topology (in the sense of connectivity) of the imag refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", sever methods of Hough transform computation are studied in terms of suitability for implementati on a parallel processor, providing a valuable tool for straight-line detection. 20 DISTRUEUTION/AVAILABILITY OF ABSTRACT [UNCLASSIFIED/UNLIMITED] SAME AS RPT] DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL Mai. James Crowley ¢ DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OFTHIS PAGE	19	ABSTRACT (Continue	on reverse	if necessary	and identify by block	number)				
UNCLASSIFIEDAUNLIMITED SAME AS RPT DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Ma1. James Crowley C (202) 767-5025 NM DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION: OF THIS PAGE	knowledge-based techniques for image understanding, and modeling images using shape and texture. Eighteen technical reports were produced which will also appear as published papers in journals. In the paper "Holes and Genus of 3D Digital Images", it was shown that certain geometric invariants of a digital image (number of components, number of holes, and numberof cavities) do not determine the topology (in the sense of connectivity) of the image refuting the commonly believed assumption that they do. This research lays the groundwork for research on digital and computational geometry of 3D images. In the paper "Hough Transform Algorithms for Mesh-Connected for Mesh-Connected SIMD Parallel Processors", several methods of Hough transform computation are studied in terms of suitability for implementation on a parallel processor, providing a valuable tool for straight-line detection.									
Mail James Crowley e (202) 767-5025 NM DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE	20						CURITY CLASSIFIC	ATION	1	
DD FORM 1473, 64 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE						22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL (202) 767-5025 NM				
SELURITY LEASAIRE ATION OF THIS PAGE					PR edition may be used u			میلی مراجع		
	_				•		SECURITY	LLAS	UTLATION !	UT TIMIS PAGE

0.05

2

ALOTA

UNIVERSITY OF MARYLAND

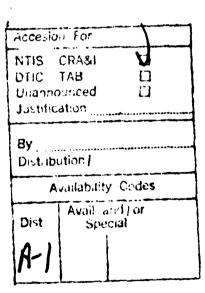
COLLEGE PARK 20742

CENTER FOR AUTOMATION RESEARCH

TEL. (301) 454-4526

AFOSR . TR. 87-0955

FINAL REPORT on Contract F49620-85-K-0009


for research on Parallel Image Processing and Image Understanding

Submitted to: U.S. Air Force Office of Scientific Research **Bolling Air Force Base** Washington, DC 20332

Submitted by: Center for Automation Research/ University of Maryland College Park, MD 20742

Principal Investigator: Azriel Rosenfeld

March 31, 1986

This report summarizes the research conducted under Contract F49620-85-K-0009 during the period April 1985 – March 1986. Eighteen technical reports were issued under the contract during that period. Most of these reports have resulted in, or are expected to result in, published papers. Abstracts of the reports are given below in chronological order. (Numbers in brackets refer to these abstracts.) The reports deal with the following topics:

- a) Parallel algorithms for processing images [18], geometric data structures
 [4,12], and graphs [1,5,7,9].
- b) Knowledge-based image understanding [6,17].

c) Image modeling: digitization [10,11,15], texture [13,16], and shape [2,3,8,14]. Research will continue in all of these areas under a successor contract.

ABSTRACTS OF TECHNICAL REPORTS

1. Shaunak Pawagi and I. V. Ramakrishnan, "On Using Inverted Trees for Updating Graph Properties." CAR-TR-117, CS-TR-1492, May 1985.

ABSTRACT: Fast parallel algorithms are presented for updating connected components and bridges of an undirected graph when a minor change has been made to the graph, such as addition or deletion of vertices and edges. The machine model used is a parallel random access machine which allows simultaneous reads but prohibits simultaneous writes into the same memory location. The algorithms described in this paper require $O(\log n)$ time and use $O(n^2)$ processors. These algorithms are efficient when compared to previously known algorithms for finding connected components and bridges that require $O(\log^2 n)$ time and use $O(n^2)$ processors. The previous solution is maintained using an inverted tree (a rooted tree where a node points towards its parent) and after a minor change the new solution is rapidly computed from this tree.

2. David M. Mount, "On Finding Shortest Paths on Convex Polyhedra." CAR-TR-120, CS-TR-1495, May 1985.

ABSTRACT: Applications in robotics and autonomous navigation have motivated the study of motion planning and obstacle avoidance algorithms. The special case considered here is that of moving a point (the object) along the surface of a convex polyhedron (the obstacle) with n vertices. Sharir and Schorr have developed an algorithm that, given a source point on the surface of a convex polyhedron, determines the shortest path from the source to any point on the polyhedron in linear time after $O(n^{3}\log n)$ preprocessing time. The preprocessed output requires $O(n^{2})$ space. By using known algorithms for fast planar point location, the shortest path query time for Sharir and Schorr's algorithm is shown to be $O(k + \log n)$ where k is the number of faces traversed by the path. We give an improved preprocessing algorithm that runs in $O(n^{2}\log n)$ time requiring the same query time and space. We also show how to store the output of the preprocessing algorithm in $O(n \log n)$ space while maintaining the same query time.

3. David M. Mount, "Voronoi Diagrams on the Surface of a Polyhedron." CAR-TR-121, CS-TR-1496, May 1985.

BETTER STATE

ABSTRACT: We present an algorithm that computes the Voronoi diagram of a set of points lying on the surface of a possibly nonconvex polyhedron. Distances are measured in the Euclidean metric along the surface of the polyhedron. The algorithm runs in $O(n^2\log n)$ time and requires $O(n^2)$ space to store the final data structure, where n is the maximum of the number of edges and source points on the polyhedron. This algorithm generalizes or improves the running times of a number of shortest path problems both on polyhedra and in the plane

<u>ᡣᢧᡷ᠔ᡷᡗ᠕ᡷᡘᠼᡭᠼᡘ᠕ᡘᡷᡚᡕ᠘ᡪ᠘ᡪ᠘ᠵ᠘ᠵ᠘ᢣ᠘ᢣ᠘ᢣ᠘ᡷ᠘ᡷ᠘ᡷ᠘</u>

amidst polygonal obstacles. By applying standard algorithms for point location, we can determine the distance from a query point to the nearest source in $O(\log n)$ time and can list the shortest path in $O(k + \log n)$ time, where k is the number of faces traversed by the path. The algorithm achieves its efficiency by a novel method of searching the polyhedron's surface.

4. Angela Y. Wu, S.K. Bhaskar and Azriel Rosenfeld, "Computation of Geometric Properties from the Medial Axis Transform." CAR-TR-122, CS-TR-1497, June 1985.

ABSTRACT: The digital medial axis transform (MAT) represents an image subset S as the union of maximal upright squares contained in S. Brute-force algorithms for computing geometric properties of S from its MAT require time $O(n^2)$, where n is the number of squares. Over the past few years, however, algorithms have been developed that compute properties for a union of upright rectangles in time $O(n \log n)$, which makes the use of the MAT much more attractive. We review these algorithms and also present efficient algorithms for computing union-of-rectangle representations of derived sets (union, intersection, complement) and for conversion between the union of rectangles and other representations of a subset.

5. Shaunak Pawagi and I. V. Ramakrishnan, "On Using Multiple Inverted Trees for Parallel Updating of Graph Properties." CAR-TR-124, CS-TR-1502, May 1985. ABSTRACT: Fast parallel algorithms are presented for updating the distance matrix, shortest paths for all pairs and biconnected components for an undirected graph and the topological ordering of vertices of a directed acyclic graph when an incremental change has been made to the graph. The kinds of changes that are considered here include insertion of a vertex or insertion and deletion of an edge or a change in the weight of an edge. The machine model used is a parallel random access machine which allows simultaneous reads but prohibits simultaneous writes into the same memory location. The algorithms described in this paper require $O(\log n)$ time and use $O(n^3)$ processors. These algorithms are efficient when compared to previously known $O(\log^2 n)$ time start-over algorithms for initial computation of the above mentioned properties of graphs. The previous solution is maintained in multiple inverted trees (a rooted tree where a child node points towards its parent) and after a minor change the new solution is rapidly recomputed from these trees.

 Vincent Shang-Shouq Hwang, Larry S. Davis and Takashi Matsuyama, "Hypothesis Integration in Image Understanding Systems." CAR-TR-130, CS-TR-1513, June 1985.

ABSTRACT: The goal of this research is to develop a robust control strategy for constructing image understanding systems (IUS). This paper proposes a general framework based on the integration of "related" hypotheses. Hypotheses are regarded as predictions of the occurrences of objects in the image. Related hypotheses are clustered together. A "composite hypothesis" is computed for each cluster. The goal of the IUS is to verify the hypotheses. We constructed an image understanding system, SIGMA, based on this framework and demonstrated its performance on an aerial image of a suburban housing development.

N-00000

7775555A

Population and and the second of the second and the

7. Azriel Rosenfeld, "Arc Colorings, Partial Path Groups, and Parallel Graph Contractions." CAR-TR-132, CS-TR-1524, July 1985.

ABSTRACT: We define an algebraic structure on the paths in a graph based on a coloring of the arcs. Using this structure, basic classes of graphs (trees, hypercubes, arrays, cliques, etc.) are characterized by simple algebraic properties. The structure provides a framework for defining parallel contraction operations on a graph, in which many pairs of nodes are simultaneously collapsed into single nodes, but the degree of the graph does not increase. Such operations are useful in defining systematic strategies for simulating large networks of processors by smaller ones, or in building "pyramids" of networks.

8. T.Y. Kong, David M. Mount and Michael Werman, "The Decomposition of a Square into Rectangles of Minimal Perimeter." CAR-TR-137, CS-TR-1535, July 1985.

ABSTRACT: This paper solves the problem of subdividing a unit square into p rectangles of area 1/p in such a way that the maximal perimeter of a rectangle is as small as possible. The correctness of the solution is proved using the well-known theorems of Menger and Dilworth.

9. Shaunak Pawagi and I. V. Ramakrishnan, "Updating Properties of Directed Acyclic Graphs on a Parallel Random Access Machine." CAR-TR-148, CS-TR-1551, September 1985.

ABSTRACT: Fast parallel algorithms are presented for updating the transitive closure, the dominator tree, and a topological ordering of a directed acyclic graph (DAG) when an incremental change has been made to it. The kinds of changes that are considered here include insertion of a vertex or insertion and deletion of an edge. The machine model used is a parallel random access machine which allows simultaneous reads but prohibits simultaneous writes into the same memory location. The algorithms described in this paper require $O(\log n)$ time and use $O(n^3)$ processors. These algorithms are efficient when compared to previously known $O(\log^2 n)$ time algorithms for initial computation of the above mentioned properties of DAGs. We also describe a new algorithm for initial computation of the dominator tree of a DAG. Our algorithm improves the processor complexity of a previously known algorithm [14] by a factor of n, but does not affect the time complexity, which remains $O(\log^2 n)$.

10. Michael Werman, Angela Y. Wu and Robert A. Melter, "Recognition and Characterization of Digital Curves." CAR-TR-152, CS-TR-1560, September 1985.

ABSTRACT: We consider the graphs of functions representable in the form $h(x) = \sum_{\substack{j=1 \\ j=1}}^{n} a_j f_j(x)$ where the f_j constitute a linearly independent set of functions over R. These graphs are digitized by the set of lattice points $(i, \lfloor h(i) \rfloor)$. An algorithm is presented to determine if a given set of lattice points is part of such a digitization. By use of this algorithm we are able to supply simple proofs of previously known theorems for straight lines.

We also study the digitization of polynomials. An important tool used is the set of differences of the y-coordinates (digital derivatives). For example, if h(x) is a polynomial of degree n, then its n the digital derivative is cyclic and its n+1-st digital derivative has a bound which depends only on n.

11. Chung-Nim Lee and Azriel Rosenfeld, "Continuous Representations of Digital Images." CAR-TR-158, CS-TR-1569, October 1985.

ABSTRACT: A 2D digital image S is represented conventionally by the union of grid squares containing pixels of S which we denote by F(S). This gives the correct topology for S with 8-adjacency, and with a little imagination, 4-adjacency can also be properly handled. However, one encounters difficulty in extending basic 2D results to 3D digital images. The last few years have seen the need for better methods which give a closer link with well developed continuous topology, especially with the advent of digital surface theory [11]. We define a new continuous model $\tilde{F}(S)$ by refining F(S). We show that this gives a better bridge between the two subjects, digital and continuous topologies. We also show how this space $\tilde{F}(S)$ is related to two other continuous models [4] [7]. Although we concentrate only on 2D images in this paper, the concepts and general ideas extend to 3D images. A 3D version of this paper is in preparation. 0.2021/12020 Notice of the second of the second se 12. Angela A. Wu, S.K. Bhaskar and Azriel Rosenfeld, "Parallel Processing of Region Boundaries." CAR-TR-159, CS-TR-1573, November 1985.

ABSTRACT: A region may be represented by specifying the curves that bound it. When p processors are available, typical operations on regions so represented can be performed much faster than using a single processor. This paper presents parallel algorithms to determine properties of regions, such as area; to perform operations on regions, such as union and intersection; to determine if a point lies inside a region; and to determine whether a given digital curve could be the boundary of a region. Some of the algorithms involve sorting, the time complexity of which depends on the particular model of parallel computation used.

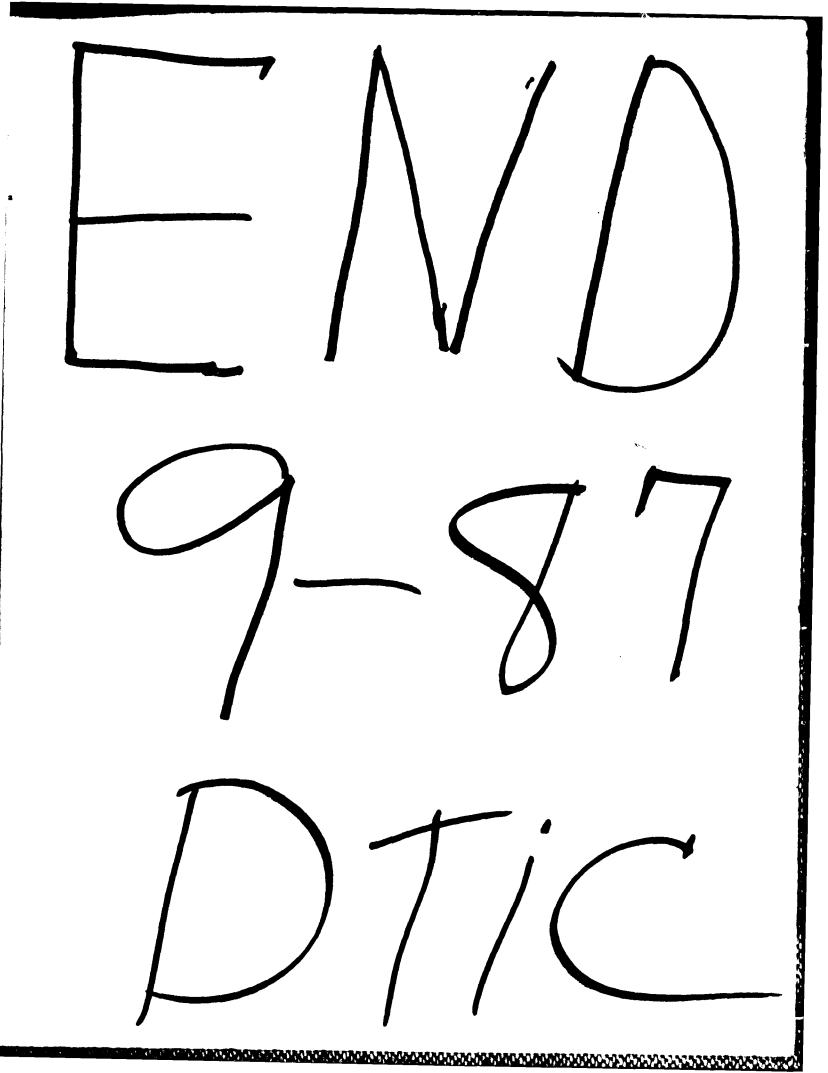
13. Millu Rosenblatt-Roth, "Random Field Identification from A Sample: I. The Independent Case." CAR-TR-166, CS-TR-1583, November 1985. A STATE OF A

ABSTRACT: Given a random field belonging to some specific class, and given a data sample generated by the random field, we consider the problem of finding a field of the given class that approximates the field that generated the sample. This paper derives a solution to this problem for the simple case of a field consisting of independent random variables. Subsequent papers will treat other types of fields, e.g., having Markov dependencies. Numerical examples are given, showing that good approximations can be obtained based on relatively small sample sizes. In particular, this approach can be used to find random field models that generate given samples of image texture, and so can be applied to texture classification or segmentation.

 T.Y. Kong, David M. Mount and A.W. Roscoe, "The Decomposition of a Rectangle into Rectangles of Minimal Perimeter." CAR-TR-169, CS-TR-1595, December 1985.

ABSTRACT: This paper solves the problem of decomposing a rectangle into p rectangles of equal area so that the maximum rectangle perimeter is as small as possible. The problem is considered both as a continuous geometric problem and also as a discrete problem on an integer grid. This problem arises in a number of flexible object packing and allocation applications. We give a solution to the continuous case that is optimal and requires only a constant number of arithmetic operations $+, -, *, /, \leq, \lfloor \rfloor$ and integer square root to characterize the structure of the decomposition and linear time to print the decomposition. We give an approximation to the continuous solution. We provide three algorithms that compute this approximation on a grid, providing tradeoffs between the quality of the approximation and the running time of the algorithm.

15. Chung-Nim Lee and Azriel Rosenfeld, "Holes and Genus of 3D Digital Images." CAR-TR-170, CS-TR-1598, December 1985.


ABSTRACT: Fo. a 3D digital image S with direct or indirect adjacency, denote by o(S) the number of components, by c(S) the number of cavities, and by h(S) the number of holes of S. We define Betti numbers $b_i(S)$ (i = 0, 1, 2). We prove that $o(S) = b_0(S)$, $c(S) = b_2(S)$, and $h(S) = b_1(S)$, and as a corollary that h(S) = 0 if and only if S is simply connected. Using examples from ordinary (continuous) 3D topology, we show that the geometric invariants o(S), c(S), h(S) do not determine the topology (in the sense of connectivity) of S, thereby refuting the generally accepted assumption that they do. Besides these concrete results, much of our work is devoted to explanations of relevant concepts, and careful definitions of terminology which will be necessary for further research on the digital (as well as computational) geometry of 3D images.

16. Millu Rosenblatt-Roth, "Random Field Identification from a Sample: II. The Simple Markov Case." CAR-TR-171, CS-TR-1599, January 1986. ABSTRACT: Given a random field belonging to some specific class, and given a data sample generated by the random field, we consider the problem of finding a field of the given class that approximates the field that generated the sample. This paper derives a solution to this problem for the case of a first-order Markov process (i.e., a one-dimensional random field, or stochastic process, in which each random variable is dependent on the preceding one). A numerical example is given showing that good approximations can be obtained based on reasonable sample sizes. In particular, this approach can be used to find random field models that generate given samples of image texture, and so can be applied to texture classification or segmentation.

17. Miao-Liang Zhu and Pen-Shu Yeh, "Automatic Road Network Detection on Aerial Photographs." CAR-TR-177, CS-TR-1605, January 1986.

ABSTRACT: This paper describes an image understanding program that combines image processing techniques with artificial intelligence methodology. It is concerned with road network detection on aerial photographs. The implementation makes use of production system techniques to generate symbolic descriptions of road pieces. Azriel Rosenfeld, John Ornelas Jr. and Yubin Hung, "Hough Transform Algorithms for Mesh-Connected SIMD Parallel Processors." CAR-TR-178, CS-TR-1608, February 1986.

ABSTRACT: Hough transform techniques for straight line detection play a key role in the road following algorithms developed by the University of Maryland for the DARPA Autonomous Land Vehicle Project. This report compares several methods of Hough transform computation suitable for implementation on a mesh-connected SIMD parallel processor, such as Goddard Space Flight Center's Massively Parallel Processor (MPP) or Martin Marietta Corp.'s Geometric Arithmetic Parallel Processor (GAPP).

