‘MD-A183 202 ACCESSING A FUNCTIONAL DATABASE VIA CODASYL-DML
TRANSACT IONS (L) NAVAL POSTGRADURTE SCHOOL HONTEREY CA

-
r

Ry ‘-er-.:w"- R

‘-:‘4"'?’.;%?‘"»" St e -.,» ,.t.

&\l A
? "'-‘," "5'- ‘ 'Q “‘ S. ‘).l‘ ..‘!"‘ ~'.‘_.'
-.A.l,ﬁ

NAVAL POSTGRADUATE SCGHOOL

; Monterey, Galifornia
. DIC_EiLE._Copy

4

< ~

THESIS

ACCESSING A FUNCTIONAL DATABASE
VIA Ny
CODASYL-DML TRANSACTIONS A%

AD-A183 202

VIS
i

by
Harry Coker, Jr.
June 1987

Thesis Advisor: D. K. Hsiao

7 B

o+

5]
Ty
o~

s
:4.

Approved for public release; distribution is unlimited.

4 _DTIC

ELECTE
AUB 1 71887

E

A,

‘fsvigi

o
‘as

L4
4

|

| R

Al

memm-n:w;f:tzx.:ecﬁ:-:ac:ﬁ:*;;tiﬁ-:&b:*,;t-i14.3:‘ X

unclassified
vty CLasSIFICATION Ch Ay

Al832ol

REPORT DOCUMENTATION PAGE

1o REPORY SECURITY CLASS L CATION
unclassified

b RESTAICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHOR!

Ty)} OISTRIBUTION/ AVAILABILITY OF REPORT

0 DECLAYSHICATION ' DOWNGAADING

s Approved for public relcase;
distribution is unlimited.

1 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUNMBER(S)

Naval Postgraduate Sc

60 NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL Ta NAME OF MONITORING ORGANIZATION

(1 spplicable)

hool 5> Naval Postgraduate School

6¢c ADORESS (City State. and 21P Code)

Monterey, California

> ADORESS (City. State. and 2iP Code)

93943-5000 Monterey, California 93943-5000

B8a NAME OF FUNDING / SPONSORING
JRGANIZATION

80 OF+ICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTFICATION MNUMBER
(tf spplicable)

8¢ ADORESS (City. State. and 2iP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROECT rasx« WORK JNIT
ELEMENT NO NO NO ACCESSON NO

TUOLTLE (Include Secunty Classification)

TRANSACTIONS

ACCESSING A FUNCTIONAL DATABASE VIA CODASYL-DML

To O PERSONAL AUTHOR(Y)

Coker, Harry Jr.

“la fvdr OF REPORL.] 3
Master ¥ %%es:s >

seom T0 1987 June 74

Mg COVERED 14 DATE OF REPORT (Year Month Day) ['S PACE COUNT

‘6 SULPALENENTARY NOTATION

o (OsSAT CODES

) GROUP SUB-GROUP MLDS, Multi-lingual Database System; MEDS, Multi

18 SUBIECT TER!AS (Continue on reverse f necetssry and dent.ty by biock number)

Backend Database System; Functional Data Model;
Network Data Model, CODASYI-DMI. Duplex

‘9 ABSTRACT (Continue on reverse if nec

thus restricting the dat

stored in_ a particuiar

Database Svstem (MMDS).

Conventional ar-roaches to the desi%r and imglementation of database systems have
been based upon t!.: premise of a single dat

and written in @ specific data language. This traditional approach has drastically
hindere? the widespread interaction of database systems based on ‘various aalta models
and languages. As an alternative to this traditional and less effective approach to
database systems, the multi-lingual database system (MLDS) has evolved, NLDS has
allowed the user to access and interact with numerous databases in various data models
via their corresponding data languages.

This thesis imrplements a methodology for accessing and manipulating databases

specifically, a functional database is accessed via CODASYL-DML transactions. Thas
interface is the initial move toward extending MLDS to a thoroughly Multi-Model

essary ond dentify by biock number)

a model with its model-based data.language
abase system to transactions based solely on a specific mo e

data model via transactions of a separate data modei;

D DSTRIUTON AVAILARILITY OF AQSTRACT
EX nCass e unemrEn O same as apr Oorec users unclassificd

2V ABSTRACT SECURITY CLASSHIWCATION

t—

272 “AE OF RESPONSIBLE AD'VIDUAL
Prof. D. K. Hsiao

220 TELEPHONE (Incluge Ares Code) | 22¢ OFF CE STMBUL
{108) 0406-2253 Code 521

DD FORM 1473, 8a man

8] APR ea 1.0n may be used unt:l @ehpusted
Al othgr @d:2.0M §cg ODLOIRtE

1

SECURITY CLASS FCATON OF "=i§ PACE
unclassificd

-
N

=
-

P

L L

E
-

LA

PPN

-
o J

s

Y
o

d
~

ﬁ————_——‘

Approved for public release; distribution is un mited.

Accessing a Fusg:tional Database
ia
CODASYL-DML Transactions !

by 9

Harry Coker, Jr.
Lieutenant , United States Navy
B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author:

H rry Colghr, T
K / \ N
Approved by: L’{ZW/CK ‘ ()}/:7)“/(/

D. K. Hswo, Thesis Advisor

V. Lum, Chdiefian,
Department of Computer Science

Goaaly T, Mamlad

cale 1. Marsha] e _

Dean of Information and Policy Sciences -

2

. O
SR O

.

R . ,:nlrs‘r

P . S Yy s NI S
[T MR

) . .';, L . s_‘-"»‘

: ABSTRACT
N

\,‘ Conventional approaches to the design and implementation of database svstems

have been based upon the premise of a single data model with its model-based data '.“v{'.‘(*f
.. . . (AW

language, thus restricting the database systemn to transactions based solely on a specific '\'.'.‘,;q"u,
. . - \ . ¢

model and written in a specific data language. This traditional approach has drastically ".ﬁ"‘\'

hindered the widespread interaction of database systems based on various data models
and languages. As an alternative to this traditional and less effective approach to
database svstems, the multi-lingual database system (MLDS) has evolved. MLDS has
allowed the user to access and interact with numerous databases in various data
models via their corresponding data languages.

This thesis implements a methodology for accessing and manipulating databases
stored in a particular data model via transactions of a separate data model; specifically,
a functional database is accessed via CODASYL-DML rtransactions. This interface is

the initial move toward extending MLDS to a thoroughly Multi-Model Database
System (MMDS). =

Accession Ft_»_r
NTIS GRA&I
DTIC TAB

Unannounced O
Justification

Distrisation,

Availability Codes
Avail éhd./o;ﬁ—_—
Dist Special

A-/

- '
T L L e y ¢

T A T s e
"‘.’v KESCLNEMeI NS DO OLON

E

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made, '
within the time available, to ensure that the programs are free of computational and
jogic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.

IL.

.

- 4 NT $
gyttt g 20 e e d e 8 W
S ael af e T et AP %

W

TABLE OF CONTENTS

INTRODUCTION . ..o i e e e 10
A, MOTIVATION ..o e e i e 10
B. SYSTEM ORGANIZATIONottt 11
1. The Multi-Lingual Database System 11
2. The Multi-Backend Database System 12
C. THESISOVERVIEW ittt 14
THE DATA MODELS i i i e 15
A. THE FUNCTIONAL DATA MODEL AND DAPLEX 15
1. TheDataModel it 5
2. TheDatalanguage iiiiiiiiiiinann. 15
B. THE NETWORK DATA MODEL AND CODASYL-DML 16
1. TheDataModel0 ciiiiiiiiiiii i 16
2. TheDatalLlanguageccoiiiiiinvunnennnnnnn. 19
C. THE ATTRIBUTE-BASED DATA MODEL AND ABDL 20
. TheDataModel 20
2. TheDatalanguage PO 21
DATABASE MAPPINGS 22
A. BACKGROUND MATERIAL 23
B. MAPPING THE FUNCTIONAL(DAPLEX)

MODEL(LANGUAGE) TO THE NETWORK(CODASYL-

DML) MODEL(LANGUAGE) 0023
1. Available Strategies o023
2. The Selected Mapping Strategy 24
DATA-MODEL TRANSFORMATIONS REFERENCED

INTHISTHESIS 24
1. The Functional to ABDM Mapping 2§
2. Functional to Network Mapping, 26

\]

v S

<

L.\:-_-.n LAY BRSPS VT TN RO

Iv.

VI

THE DATA STRUCTURES i
A. DATASHAREDBYALLUSERS......... ...t
1. Data Shared by All Users of a Network Database
2. Data Shared by All Users of a Functional Database..........
B. DATASPECIFICTOEACHUSER

FUNCTIONAL TO NETWORK TRANSFORMATION

ALGORITHMS ... e
A, ENTITYTYPES ...
B. ENTITYSUB-TYPESo
C. NON-ENTITYTYPES ...t
D. UNIQUENESS CONSTRAINTS oo
E. OVERLAPPING CONSTRAINTS ...t
F. SET TYPES ... i e s

TRANSLATION OF CODASYL-DML STATEMENTS TO
ABDL REQUESTS ...ttt ettt

A. OVERVIEWOFTHEDESIGN i
B. MAPPING CODASYL-DML FIND STATEMENTS
l. The FIND ANY Statementccivu. ..
The FIND CURRENT Statement
The FIND DUPLICATE WITHIN Statement
The Find FIRST/LAST/NEXT,PRIOR Statements
The FIND OWNER Statement
The FIND WITHIN CURRENT Statement
C. MAPPING CODASYL-DML GET STATEMENTS
1. The GET Statement.......... ... iiitiiiniinninnnn..
2. The GET record_type Statement
3. The GET item_l1, ..., item_n Statement
D. MAPPING CODASYL-DML CONNECT STATEMENTS
1. Sets Representing an ISA Relationship

AN

0_(11

2. Sets Representing Daplex Functions

E. MAPPING CODASYL-DML DISCONNECT
STATEMENTS .. s

F. MAPPING CODASYL-DML MODIFY STATEMENT

et e BB axE W A N ANAARABRRE N T T WV A YR AT u‘#

63
65

G. MAPPING CODASYL-DML STORE STATEMENTS 65

H. MAPPING CODASYL-DML ERASE STATEMENTS 66

1. TheERASEOption.......... ...t 67

2. The ERASEALLOptionccoiiiiiiiiiinennenn.. 68

VIL CONCLUSIONS i i e e e e e e e e 69
A. AREVIEWOFOURWORK..........cooiiiiiiiiiiien.. 69

B. FUTURERESEARCH i, 70

LISTOF REFERENCES .. . i ittt et st et et i 71
INITIAL DISTRIBUTION LIST ... it e i eiae e 73

7

1.1
1.2
1.3
2.1
2.2
2.3
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

LIS™ OF FIGURES

The Multi-Lingual Database System (MLDS) 12
Multiple Language Interfaces for KDSiiiiiiininnnn. .. 13
MBDS Architectureottt ittt i i i e 14
The University Database Schema 17
Graphical Representation of Univ Schema 19
Attribute-Based Data Model Recordo.uvninennenenennenn... 21
MLDS Mapping of the Network and Functional Data Models 22
Direct Language Interface Approach iivvun .. 25
The AB(functional) University Database Schema 27
The dbid_node Data Structure i ... 28
The net_dbid_node Data Structurecoviiieiieneninennnann 29
The nset_node Data Structurec.ouiiiiiiieniiiiannnnn.. 30
The set_select_node Data Structure, 30
The nrec_node Data Structurec..cuiiiiiniinnnninenn... 31
The nattr_node Data Structure.co i iininnnenn... 31
The fun_dbid_node Data Structure oo, 32
The ent_node Data Structure, e 33
The gsn_sub_node Data Structurecovviiruniinnnnn. ... 34
The ent_non_node Data Structurecooviiniiiinen... 35
The sub_non_node Data Structurecooitiviunn e ennn .. 33
The der_non_node Data Structure coiiiiin.... 36
The overlap_node Data Structure, 36
The function_node Data Structurec. iiiiiiiininennan.. 37
The ent_node_list Data Structure, 37
The sub_node_list Data Structurecciveiriennnnennn... 37
The ent_value Data Structuret iiin i, 38
The user_info Data Structure 338
The li_info Data Structure ..ottt e, 39
8

A e 3N e B B

- - m s

- e e e s - W e e

. S s AT I A0S R A TS LY S BT LA A Pl P L S A A/ DA ATttt

4.20
4.21
5.1

5.2
5.3
54
5.8

The dml_info Data Structure e e 39
The dap_info Data Structure e e 40
The Functional Schema of the University Database Transformed to a

Network Schema e e e 43
Entity Type Declaration e e 46
A functional entity type and its network representation 48
Entity Subtype Declaration......... e e e 49
A functional entity subtype and its network representation 50

N A
PN

o~

[B e L L e

L INTRODUCTION

A. MOTIVATION

Traditionally database systems have been limited to a single data model along
with its respective model-based data language. This conventional approach to
Database Management System (DBMS) development has resulted in the evoluticn of a
DBMS that has restricted the user to transactions on a single data model and its
corresponding data language.

Ideally, an effective and practical DBMS should be able to access and interact
with numerous databases based on various data models via their respective data
languages. Thus, the motivation behind Multi-Lingual Database System (MLDS) is to
have one DBMS that is able to support numerous databases that may be structured in
various data models by executing transactions written in their model-based data
languages [Ref 1], MLDS is a modern approach to DBMS development that is
attacking the problems of the older, conventional. homogencous database system
designs that are currentlv in abundance. More precisely, MLDS allows the user to
access a DBMS that is comprised of a hierarchical’ DL/I interface, a relational SQL
interface, a network CODASYL-DML interface, a functional DAPLEX interface, and
an attribute-based ABDL interface; the svstem functions as if it were a hererogeneous
collection of database systems. '

The primary advantages to be gained from MLDS are (1) reusability of Jdatabase
transactions developed on existing systems, (2) more economical and efficient hardware
upgrades by spreading the upgrade benefit to each of the data models rather than a
single model, and (3) an ability to support a variety of databases built around any of the
major data models.

Up to this point MLDS has permitted the user to access and interact with several
databases in the five major data models via their corresponding data ianguages. This
thesis implements a design methodology, [Ref. 2], for accessing and manipulating
databases stored in a particular data model via transactions of a separate data model;
specifically a functional database is accessed via CODASYL-DML transactions. This
interface is the initial move toward extending the MLDS to a thoroughly Multi-Model
Database System (MMDS).

B. SYSTEM ORGANIZATION

In order to meet the aforementioned capabilities, MLDS is supported by an
underlyving database system that is fast, efficient, and effective, therefore necessitating a
powerful kernel data model and kernel data language, as well as a high-performance,
high-capacity database sysiem [Ref. 3: page 12].

The kernel data model and the kernel data language are the underlying model and
language for MLDS. The attribute-based data model and the attribute-based data
language were chosen as the kernel data model and the kernel data language for
reasons that will be explicitly cited and analyzed in the following chapter. The software
multiple-backend approach is used to provide the required high-performance and high-
capacity underlying database system that MLDS requires. This system, known as the
Muilti-Backend Database System (MBDS), will be examined later in this chapter.

1. The Multi-Lingual Database System
The system structure of MLDS is depicted in Figure 1.1. The language
interface layer (LIL) supports user interaction with the system via a user-selected data
model (LDM) with transactions written in a corresponding user data language (LCDL).
The user’s transaction is routed to the kernel mapping subsystem (KMS) by LIL, where
KMS performs one of two possible tasks. It either transforms the UDM-database

A S A

definition into an equivalent kernel data model (KDM) database definition; or it

translates a UDL transaction into an equivalent kernel-data-language (KDL)

- ww
- -

SR

transaction.

The first of the two possible tasks of KMS occurs if the user indicates that a
new database is to be created. KMS forwards the KDM-database definition to the
kernel controller subsystem (KCS), where the KDM-database definition is then sent to

-
-

-

the kernel database system (KDS). Upon completion, the user is notified by LIL, via
KDS and KCS, that the database definition has been processed and that the loading of

o

the database may continue.

The second of the possible tasks of KMS occurs if the user chooses to process
an existing database. KMS sends the KDL transaction to KCS, which in turn
forwards the KDL transaction to KDS for execution. When KDS has linished
executing the transactions, the results, in KDM format, are sent back to KCS, where
they are routed to the kernel formatting subsystem (KFS). KFS reformats the results
into UDM format and displays them , via L1L, to the user.

IR 8, T e N Ca M aF S m e T\ L e a8 W W M Ny W T N w\'r.' \f\d‘\ ‘
o .c'. 'l’ I ,. .' IR ~ o g '-"'* T L e Y v W ’

@ - @
LiL KC KDS
KF$
UDM: User Data Model -~ - . Information Flow
UDL: User Data Language
LiL: Language Interface Layer = Data Exchange
KMS: Kernel Mapping System
KC: Kernel Controller O Data Model
KFS: Kernel Formatting System
KDM: Kernel Data Model Data Language
KDL: Kernel Data Language
KDS: Kernel Database System D Module

Figure 1.1 The Multi-Lingual Database System (MLDS).

LIL, KMS, KCS, and KFS make up a language interface of MLDS. [lour
language interfaces exist, one for each of the respective UDM/UDL combinations.
This thesis modifies the network/CODASYL-DML language interface in order to allow
the accessing and manipulation of a f{unctional database via CODASYL-DML
transactions. KDS, on the other hand, is a single and major component that is
accessed by all of the languages interfaces, as shown in Figure 1.2.

2. The Multi-Backend Database System

The traditional approach to a DBMS is to have the databasc-system sofiware
running as an application pregram on a mainframe computer system. This requires the
DBMS to share the use and control of the resources with the other applications of the
mainframe system. It is obvious that, with the traditional approach. as the workload
of the DBMS increases, the performance of the DBMS degrades. [Ref. 4: page 14]

The software single-backend approach, developed by Bell Laboratories [Ref. §),
offloaded the database-system software from the mainframe computer to a scparate

dedicated computer and partially solved the problems of performance degradation and
resource and control sharing.

12

=\

/ / @
—
- KMs1 KC2 A wos
uDM /
]
KDL
UL KC1 /
vou
KFS1

Figure 1.2 Multiple Language Interfaces for KDS.

The Multi-Backend Database System (MBDS) uses a software multiple-
backend approach to overcome the performance problems that remained in the single-
software backend approach by utilizing multiplc backends connected in parallel. The
backends have identical software and their own disks. There is a backend controller,
the master, which supervises the execution of the database transactions and the
interfacing of hosts and users. The backend controller is connccted to the individual
backends by a communication bus. The backends, or slaves, perform the database
operations with the database stored on the dedicated disk system of each backend.
Users access MBDS through cither the host or directly through the backend controller.
Figure 1.3 shows the architectural configuration of MBDS.

MBDS realized performance gains over the single-software backend systent in
two significant areas. First, by increasing the number of backends, while maintaining
the size of the database and the size of the responses to the transactions at a constant
level, MBDS vields a nearly reciprocal decrease in the response times of the user
transactions. The number of backends corresponds directly to performance gains in
terms of reduction in response-time. Secondly, by increasing the number of backends

. proportionally with an increase in the size of the database and in the size of responses
to user transactions, MBDS produces invariant response-times for the user
transactions. This rclates the number of backends to the capacity growth of MBDS in
terms of response-time invariance. [Ref. 6: page 11]

=4

13

PPRN
LA

 » » »
1

Dl

h T ML E Y Marm e TE I mEm_————m—m—m— e o

Backend
Storage

Backend
Processor 1
Backend
Processor 2

Backend
Processor N

Communications
Bus

To Host
Computer

Backend
Controller

[gure 1.3 MBDS Architecture.

C. THESIS OVERVIEW

This thesis implenients the initial step, as described by Rodeck [Ref. 2], in a move
toward the Multi-Model Database System (MMDS). Fundamental to this work are
the Multi-Lingual Database Svstem and the Multi-Backend Database System as .
described carlier in this chapter. Additional background material is provided in
Chapter II, where the functional, nctwork, and attribute-based data models are
discussed along with their respective model-based data languages. Chapter Il presents
the possible mapping strategies for translornung a functicnal database into a network
database and the generalized translation of CODASYL-DML statements into
attributc-based data language requests. Of the three approaches discussed in the
chapter, the best solution is chosen and described in greater detail. '

Contained in Chapter IV are the various data structures required for this
implementation. Each of the data structurcs is depicted and described along with it's
use in the system,

The actual mapping methodology is given in Chapters V and VI. Chapter V

discusses the transformation of functional structurcs into network structures; cach
structure is described in detail. The translation of CODASYL-DML statements into
attribute-based dJata language requests is specificd in Chapter V1. [Finally, the
conclusions are presented in Chapter VII.

14

3 EEE A A VIR T B

5%
s

-~

MMMﬂ} AT dena T A

«

T T e e T ey oy
R N "‘i ‘.,3R [RAERN ;',l"w KR
IR

A TV I P AT - i
‘ AR UGN I I SO g
o ‘,, ‘;'2‘..7 il ‘-"’ oy

II. THE DATA MODELS

This chapter provides material that will enable the user to become familiar with
each of the three data models whose terminologies are needed in this thewss, the
Sunctional model, the network model, and the artribute-based data mode!l.

A. THE FUNCTIONAL DATA MODEL AND DAPLEX
1. The Data Model

Siblev and Kershberg [Ref. 7] first introduced the notion of a functional data
model while Shipman [Ref. 8] completed the final demign of the data model. The
functional data model is primarily a logical database model that provides a somewhat
natural view of the real world based on entities and relationships, [Ref. 9: page 9|. The
model is based on sets and relationships and maintains a high degrce of data
independencs.

An entity can be considered a distinctly identifiable “thing”, while a
relationship, or function, is an association among these things. Entites of simular
structure are collected into enriry sets. A set of functions will be afliliated with each
entity, while the role of an entity in a relationship is the function that it performs in
the relationship {Ref. 9: page 11]. A property is a picce of information that lescribes
an entity, while an association is a many-to-many relaticnship ameng entittes, [Ref. 10).
A weak entitv, or subtype is an enuty whose existence 1s dependent on another entiy,

it's supertype or ancestor, in a wayv that the subtype cannot exist 1f 1t's supertvpe does

not also exist. A subtype exists such that entity tvpe A ts a subtvpe of entity tipe Bl

and only if every type A is necessarily of tvpe B. Subtiping estabiishes an [SA

relationship among entities and implies value inheritance. Subtypes also have a set of

functions associated with them.

Functions can be either single-valued or multi-valued and those that are delined
over entities (tvpes or subtypes) can return scalar vaiues, entities, or set of entities.
Scalar values are atomic values which have a literal representation.

2. The Data Language

Whercas a data definition language (DDL) provides for the definition or
description of databases, a data mampuiation language (D ML) supports the uccessing
or processing of the databases. Daplex i1s the DDL and the DML for the functiona:

—
‘I

e A e - S

- S ——— e - —

A oWy g g s e

1‘.“"“.7,‘...‘(4‘-',": AN I'n.!'l "

gk - e . ,\“' ;"'1."1‘\ g
IS

LN sy Y \
RO UEAED ' e

data model. Most of the concepts on which Daplex is based come from previous work
in database management; however, Daplex managed to integrate them into a single
tramework, the functional data model, and provided a straightforward and almost
natural syntax.

It was intended for Daplex 0 model real-world situations in a manner that 1s
verv similar to the conceptual constructs that a person mught use when focusing on
those same situations: it's goal is “to provide a ‘conceptually natural’ Jdatabase inrertface
language” [Ref. 8] and a database svstem interface which permuts the user to more
directly model the way he she attacks the database manipulations. This conceptuat
naturalness simpiifies the use of Daplex since the transi-tion between the user s logical
model and mode!l's physical representation in the svntax of Daplex is fairly direct.

The fundamental data definition constructs of Daplex are the enuity and the
function, with the function mapping a given enuty into a set of target entines. The
University database schema defined by Shipman and referenced throughout this thesis,

1s presented in Figure 2.1 and a graphical representation of the database i1s shown in
Figure 2.2.

B. THE NETWORK DATA MODEL AND CODASYL-DML

The retwork data model 1s one of the oidest of the data models and nmav he
thought of as an extended form of the hierarchical data model. [Ref. 10 page *421 It
was Jeveloped 1n the iate 1960's by the Conference on Data Svstem Languages.
Dazabase Task Group. (CODASYL DBTG) which vielded gquite a comprehensive
specification, {Ref 11).

. The Data Model

A network schema s about a coliection of records and sets. The «chema 1 o
logical view of the database tha: defines everv record field and relationshup ot tie
databeee. [he schema contains onlv the data description; physwcai construcis are
avoided, thus the number ol pathological connections to the datubase arciitecrure are
reduced [Ref. 12 page 336).

A data-item 1s simply a field or an autnhute, whereas a record “ype s
coilection of these Jdata-items. A set is a one-tc-manv relattonship hetween recor
tvpes and each set tyvpe involves an ewnaer record tvpe and o member record tpe ihe
owrer recerd tvpes are the parents of the member record tines, wnih can he
corsidered the chiddren g one-to-mary relationship A set s delined by speatying

its name and wdentitving the owner record tvpe and the member recerd tvpera N

16

N
Ty tety
't;'.“ul_"k','l N

20u IR A AN B S

)
7]

Ky

SN |

-‘-
L

v

P]
P

Ls'.\'. O

aculty;
> student:

ASE university IS
\p s¢t):'r‘n lovee:
z uppon stafF;

R NS
\ uraduatc
Y

E ['YPE tindergraduate;
course;
dcpartmcnt
enrollment;
rank name IS (assis ta{n associate, lul!);

semester name fal ng, summer
. gade’ oA 104 RA%s T |
rsqn) |
ame Rl\G (l 5 |
ssn_: 9y 7= "000000000"; |
END EN 1'!
SURTYPE lovee IS
. E__}l,ngmp cvee IS person
| nqQme address : STRl\G (g 50y,
- STRIN);

!

, oflice : ‘
. phones : SE OF STRI\G .. i

salary ¢ FLOA l
‘ mpc’:dems : l\T GER RANGE 0 .. 10; |

. l END ENTITY;, ‘

' SU ET\ P_F support staff IS emplovee

upervisor : lowee WlTH\L LL;

§"Ft me B LEA

END ENTITY,
! SU lBT)rrI: faculty IS employee
rank = : rank name:
teaching @ S T (0] 3 course
Lunure : BOOLEA FALSE:
dept depanmcm
ENDENTITY!
SU BI'_P*_: student [S person
ENTITY

adviser : faculty WITHNULL;

ma;or . dJepartment.
cnrollme ts : SET OF enrollment;
END ENTITY,

St ETH’_F graduate [S student

advisory commuttee - SET OF faculty:
E\D ENTITY;

SLP{H{F undergraduate [S student

affr : j’““‘&i‘ﬁ‘ l'u\(,{ 1. I
. END EN lT\

Figure 2.1 The Universits Database Schema

l-

TYPE course 1S
E-\"flTY
utle : STRING (1.
deptmt department
semester ° semester name;

gf%ui béw SET OFRfacult\

TYE\E_ 1c_ile artment IS
name STRING (I_l)LL'

head : fdculn Wl
END EN

) clasds ourﬁe
rade :_grade point;
ENTHYS P

UNIQUE ssn \\'wh} I\ person;
UNIQUE name dc artment;
UNIQUE utle, semest;r ‘WITHIN course;

OVERLAP graduate WITH faculty;

END universuty;

set.

mav be members.

Figure 2.1 . (cont'd)

The set characteristics are summarized as follows:

A set1s a collection of records.

Thierc are an arbitrary number of sets in the Jatabase.

can have one and onlv one record type as owner, however, more than one record tvpe

Additionally, a member record can belong to only one instance of 2

Lack set has one owner record tvpe and one or more member record tpes

Each owner record occurrence defines a set occurrence.

There are an arbitrarv number of member recerd occurrences 11 one set

occurrence.

A record may be a member of more than one set.

A record mayv not be a member of two occurrences of the same set.

A record mav be a member and an owner of the same set.

PR

e !
name X
nn

ey 4 {
srwieves — !
N ;
homesder i l
offtxe |
salory)

dependents 54 1A
- phones l
[E—)
Syt '
I |
5A UDerVISOr 1A !
I
J
maner_naft tasuity)
full_ume rank |
/ tenure 1
‘; .
head ! |
reaching dopt | major enrolls |
T i

| m
pure gocghmgnt '
Lile name grade
wmester |
. credhis _]
closs

Figure 2.2 Graphical Repiesentation of Umiv Schema.

2. The Data Languape
CODASYL-DML s a procedural language based upon the concept of
currency. A currency indicator defines the current position with in a file by maintaiming
a value of either (1) null, which means that it currently docs not ident/v a recerd or (2)
the address of a record 1n the database [Ret 10 page S83] A rum-wnit 1 essentaal to
this notion of currency and s Jdelined as the execution of a program on hehall ot a
user. The currency indicator, then, serves as a database pointer by wdentiiving
® the current record of the run unit
e the current record ot each record type
e the current record of each set tape
This thesis will hnut atself to a subset of the CODASYL-DML opcrationg,
. which were implemented as part of the CODASY L-DMIL language interface i MILDS

[Refs. 3.13). These major operations are histed below

— T

¢ FIND identifies a record to be manipulated and marks it as the current of the
run unit.

o GET retrieves the current of the run unit.
e MODIFY updates the current of the run-unit.

e CONNECT attaches the current of the run-unit to the current occurrence cf .
the stated set.

e DISCONNECT detaches the current of the run-unit.
e FRASE deletes the current of the run-unit.

¢ STORE creates a new record occurrence and marks it as the current of the
run-unit.

CODASYL-DML tasks are generally executed in two phases. First a FIND command
identifies a record to be manipulated and then a second DML command 1s 1ssued to
perform an operation. Most importantly, it is the FIND commands that updated the
currency indicators.

C. THE ATTRIBUTE-BASED DATA MODEL AND ABDL
The attribute-based data model (ABDM) was onginally proposed by Hsiao
[Ref 14], extended bv Wong (Ref. 13], and examined by Rothme {Ref. 16]. It was
‘ chosen as the native model of the MLDS because of it's excellent combination of
simplicity and pewer. The fundamentals of the ABDM are basic, vet the model is
capable of representing diverse data models without loss of information.
|. The Data Model

ABDM is based on the areribute-value pair or keyword. These attnibute-vaiue
pairs are fermed from a cartesion product ot the attnibute names and the domains of
the vaiues sor the attributes. This allows for the representation of any and all logical
concepts. |l order to more fully understand the attnibute-value pair we must first
Jetine several cther terms.

A file >t the database contains groups of records, cach of which represents a
lowical coneept. A record 1s compnised of at most one kevword ter each attnbute
Jefincd :n the Jatabase and a textual portion, allowing tor a verkal description of the
record or concept. bigure 2.3 shews the general tormat of an ABDM recerd.

Kevword predicates are empleved bv ABDM to access the Jdatubuse and

dentufv "he specitic records. A Keyweord predicate 1s a Y-tupic o! the lonm (direvton

attribute relationai operator, attnibute-vdiucr. A guery of the database is then tne

combination, in Lis unctive normal form, o kevword predicates

20

i

|

(<attribute_l1, value_1 >, <attribute_2, value_2>, <attribute_3, value 3>,
< atinibute_T, value n>, (text})

L] [i

. Figure 2.3 Attribute-Based Data Model Record.

A keyword predicate is satisfied only when the attribute of a particular ¢
record’s keyword is identical to the attribute of the keyword predicate and the relation
specified by the relational operator of the keyword predicate holds between the value of
the predicate and the value of the keyword predicate. Hence, a record satisfies a query
only when all predicates of the query are satisfied by certain keywords of the record. ;

2. The Data Language J

ABDL, as defined by [Ref. 17], is the kernel data language of MLDS. It .
allows five basic database operations that are capable of making numerous in-depth
transactions on the database. The database operations provided by ABDL are,
INSERT, DELETE. UPDATE, RETRIEVE, and RETRIEVE-COMMON, however, :
this implementation will not concern itself with the latter operation. !

ABDL allows the user to issue either a request or a transaction. A request is a
basic operation with an attached qualification. The qualification specifies the portion
of the database that is to be manipulated, while a transaction is defined as the grouping Dt
together of two or more sequentially executed requests. The four operations used in
this work are explained below, [Ref. 6: page 10].

¢ INSERT places a new record into the database and is qualified by a list of :
kevwords. '.,

e DELETE removes one or more records from the database and qualified by a
query. N

e [UPDATE modifies records of the database and is qualified bv a query and a

modifier. The query identifies one or more records to be updated. while the
modifier specifies how the target record(s) are to be modified. N

e RETRIEVE accesses and returns records of the database and is qualified by a
query, a target-list, and a byv-clause. The query identifies the recordts) to be
retrieved, Tae target-list contains a list of output attributes, and the bv-clause

. may be used to group records when an aggregate operation 1s specified.

Together, these five ABDIL. operations provide all of the required processing to support "
g p P q I £ PP

Jata-language translation. X

WW“ N BT mevme

I1I. DATABASE MAPPINGS

For the purpose of this thesis, data-model transformation is the mapping process
from a given data model to the kernel data model (ABDM), and dara-language
translation is the mapping process from a given dJata language to the kernel data
language (ABDL). MLDS has already implemented four data-model transformations
(hicrarchical, relational, network, and functional to ABDM) and four data-lunguage
translations (SQL, DL/I, CODASYL-DMIL., and Daplex to ABDL). This thesis makes
use of two of the aforementioned data-model transformations (network to ABDM and
functional to ABDM) of Lim and Emdi [Refs. 18,19). and one of the data-language
translations (CODASYL-DML to ABDL) [Ref. 19]. Figure 3.1 depicts the high-level
transformations and translations of the nctwork and functional data models. It should

be noted that the Jdatabascs that are transformed from the network schema and the
functional schema to an attribute-based schema are represented throughout this thesis
as .4B(network) and AB(functional), respectively.

Network Functional
Transactons Transactions

Language
e

Attribute- Attribute-
Based Network Based Functional
Representation Representation

AB-AB
Transiator

Figure 3.1 MLDS Mapping of the Network and Functional Data Models.

The thrust of this work is (1) transforming a functional database into a nctwork
database and (2) modifying the CODASYL-DML to ABDL transiation in crder to

22

B R S I R T N AT S P Nl St R

P RTS SRR RS et T e e TN . S oy
A G T R e TIPS A IS PP IIE N A PEN NN I N NN N ATV A ey

allow CODASYL-DML transactions on an AB(network) database that has bcen
previously transformed from the functional data-model to the network data-model.

A. BACKGROUND MATERIAL

The MLDS mappings of network(CODASYL-DML) to ABDM(ABDL) is a
modification of the procedure developed by Banerjee [Ref. 17}, explicitly defined by
Wortherly [Ref. 3: pages 31-37], and will therefore only be generalized in the following
paragraph.

The key point in the mapping process is the retention of the network records and
sets; the mapping algorithm does, in fact, retain those notions through the use of
attribute-based constructs. The translation of CODASYL-DML to ABDL requests
was implemented by Emdi [Ref. 19}, and as previously discussed, only a subset of the
CODASYL-DML statements were considered: FIND, GET, STORE, CONNECT,
DISCONNECT, ERASE, and MODIFY. The translation maintains the all important
notion of currency by using a Currency Indicator Table (CIT). The actual structure
and implementation of the CIT are defined in detail in a later chapter. Another
translation consideration is the one-to-many correspondences between the CODASYL-
DML statements and the ABDL requests; this necessitated a storage facility to
maintain the intermediate information for the ABDL requests. The request buffer (RB)
is used to store the information returned by the auxiliary retrieve requests (ARR), of
which several may be generated by the translation of a single CODASYL-DML
statement. With the exception of several flags and special conditions, the translation
process of this thesis is similar to that of Emdi [Ref. 19].

B. MAPPING THE FUNCTIONAL(DAPLEX) MODEL(LANGUAGE) TO THE
NETWORK(CODASYL-DML) MODEL(LANGUAGE)

1. Available Strategies
The goal of this thesis is to provide the network/CODASYL-DML user with
the means of accessing a functional database without the user having to be familiar
with the functional data-model and Daplex. As one might imagine, this task requires a
sound mapping strategy that maintains the constructs and characteristics of the target
(functional) database while allowing the CODASYL-DML statements to access this
target database. Rodeck, [Ref. 2], proposed the fcllowing mapping strategies:

e DIRECT LANGUAGE INTERFACE: modify MLDS's existing LIL to allow
the transformation of a functional schema to a network schema‘along with a
new language interface between the network model and AB(network).

23

y A A O N p ¥ T T e I T R R
..I 'I‘.‘A'Jt...\ .“..‘a‘.'!..’t .“.'t‘..l o.‘ g’l) .‘l LS 1Y o‘i e s'd,; { MY o' ‘Q 0 ‘o. |.|. . ..A Ohl,v..h Q..ll.'.t [} N " . " "

Lmoum&cmmmﬁ-m&ﬁﬁt&:{m '

o AB-AB POSTPROCESSING: create a language interface between the

AB(functional) and the AB(network) databases along with a CODASYL-DML
transiator.

e HIGH-LEVEL PREPROCESSING: create a functional schema to network
schema transformer along with a CODASYL-DML to Daplex translator.

The Direct Language Interface approach proved to be best suited for this
implementation and the reasons for its selection are discussed in the following section.
2. The Selected Mapping Strategy
Each of the three mapping strategies was analyzed and compared with the

other two strategies by Rodeck [Ref 2]. The evaluation process looked at their
respective advantages and disadvantages before finally selecting the direct language
interface approach primarily because of the following implementation considerations:

® a one-step schema transformation.

® a faster schema transformation.

¢ highest compatibility with existing components of MLDS.

The direct language interface strategy transforms the functional database into

a network database and allows the user to access the transformed database with a
subset of CODASYL-DML statements. These statements are translated into one or
more ABDL requests and executed on the AB(network) database. Figure 3.2 depicts
the direct language approach. By comparing Figure 3.2 with Figure 3.1, one can see
that the primary difference is the addition of the schema transformer and the modified
language interface. It is the schema transformer that represents the process of
transforming the functional schema into the network schema. With the exception of
the schema transformer, this approach is similar to the approach with the network to
AB(network) and the functional to AB(functional) transformation. The goal of the
Multi-Model and Multi-Lingual Database System can be conceptualized by placing
schema transformers between all model language pairs, therebv arriving at a fully-
database-sharing environment.

C. DATA-MODEL TRANSFORMATIONS REFERENCED IN THIS THESIS
This section provides a high-level view of the data-model transformations that are

referenced in this thesis. In the first subsection, the functional to ABDM mapping is

presented. The {unctional to network mapping is introduced in the second subsection.

24

¥
L]
L
-
of

AAAST PL LS LT L SR Py

Schema
Transiator
DML
Translator
Network Functional
Schema Schema
Language Interface Language Interface
Autnbute: Attribute-
Based Network Based Functional
Representation Representation

Figure 3.2 Direct Language Interface Approach.

1. The Functional to ABDM Mapping

The primary task of this mapping is to transform the constructs of the
functional data-model into ABDM constructs. This approach shows that, given the
attribute-value pairs in a record in ABDM, the functions of the functional data-model
map into the attributes of the corresponding attribute-value pairs. An algorithm to
map the cntity types and subtypes into ABDM constructs was designed by Goisman
[Ref. 20|, and implemented by Anthony and Billings [Ref. 21].

In order to represent the relationships of the functional data-model that must -
exist between individual records of ABDM, the related attributes for each related
record must be repeated [Ref. 20: page 35]. This is accomplished by using an artificial
attribute and its associated value to allow for unique mappings. The artificial attribute
is in fact a unique kcy for each entity type or subtvpe in the functional data-model,
thereby allowing for the relationships amongst entities to exist in accordance with the
unique key. The remainder of the transformation algorithm is given below:

(1) An ABDM file is created for each entity tvpe and subtype. The first attribute-
value pair has as its attribute “File” and its value is the entity type or subtype

name.

(2) The second attribute attribute-value pair for each ABDM file representing an
entity has as its attribute the name of the corresponding entity tvpe. The
value of this attribute-value pair is the unique key.

(3) For each ABDM file transformed from an entity subtype, the second
attribute-value pair of each record has as its attribute the name of the
corresponding entity subtype and its value is the record consisting of its entity
supertype and its unique key.

(4) For each function applied to an entity type or subtype, an attribute-value pair
is inserted into the corresponding ABDM file. The attribute of the attribute-
value pair is the functions name and the value is the value returned by the
particular function.

Using this algorithm to transform the University database schema of Figure 2.1 results
in the AB(functional) database as depicted in Figure 3.3. The asterisks represent
relationship-dependent values.
2. Functional to Network Mapping

This subsection provides the reader with a high-level view of the mapping
algorithm described by Rodeck [Ref. rRod]. The specific implementation issues of the
algorithm are discussed in Chapter V of this thesis. As is the case in all data-model
transformations, the goal is to provide the user with a familiar and accurate
representation of the source database schema. In mapping the functional data-model
to the network data-model we are primarily concerned with the basic functional
constructs: the entity type, the entity subtvpe, and the non-entity types.

(1) Entity types are mapped into network records with the record name being the
name of the corresponding entitv type. Additionally, each entity type is a
member of a set type which is owned by SYSTEM.

For each entity subtyvpe, a record type must be declared with the record name
being the name of the subtype. A set type is also declared with the owner
being the subtype’s entity supertype.

Non-entity types map fairly directly to network constructs:
(a) Integers map to integers.

(b) Strings map into characters.

(¢) Floating-points map into floating-points.

(d) Enumeration types map into characters.

The functions that are applied to entity types and subtypes can be scalar,
scalar multi-valued, single-valued, or multi-valued:

(a) Scalar and scalar multi-valued functions map into attributes of the
corresponding record type of the entity type or subtype.

26

JY IR R

. " 2% “a% o

(<File, person>, <person, integer>, <home_address, string>,
< office, string>, < phones, string > *, <salary, float>,
< dependents. integer >)

(< File, emplovee>, <emplovee, integer>, <home_address, string>,
< office, string>, <phones. string> *; < salary, float>,
< dependents, integer >)

(< File, support_staff>, < sulpgort staff, integer >,

< supervisor, infeger>, < full_timeT integer>

(File, student>, <student, integer>, <advisor, integer>,
< major. integer>, < enrollments, integer> *

(< File, undergraduate>, <undergraduate, integer>, <gpa, float>,
<year, integer>)

(<File, course>, <course, integer>, <title, string>,
< deptmt, Integer>, < semester, string>, < credits, integer>)

- (< File, department>, <department, integer>, <head, integer>)

(< File, enrollment >, <enrollment, integer>, <class, integer>,
< grade, float>)

Figure 3.3 The AB(functional) University Database Schema.

(b) Single-valued functions map into sets with the name of the particular
function, owned by the corresponding record type of the eatity type or
subtype.

(¢) The mapping of multi-valued functions is performed depending upon
whether the multi-valued function is a one-to-many or a many-to-many
relationship.

Chapter V provides detailed explanations of the mapping algorithm as well as a
complete database transformation. In a later chapter, we demonstrate this
transformation process for the Daplex university schema given.

27

- - PR S R LI e A S P TR ARV VTRV P T
T O R N i T e T A SR o

1V. THE DATA STRUCTURES

A. DATA SHARED BY ALL USERS

Both the CODASYL-DML and the Daplex language interfaces have been
developed as single-user svstems that will eventually will be modified to multi-user
systems. Appropriately, two separate concepts of data are used the in the language
interface: (1) data structures that are shared by all users, and (2) data specific to each
user. The requirements of this thesis work have necessitated the slight modification of
several existing data structures from previous implementations on MLDS; however, the
generic data structures are for this implementation are not drastically altered.

The data structures that are shared by all users are the database schemas that
have been loaded (defined) by the users. The schemas that are of interest to this thesis
are the functional schemas, consisting of entities and the functions of the entities, and
the network schemas, comprised of sets and attributes.

The first data structure, Figure 4.1, is represented as a union and supports each
of the previous MLDS implementations (ie., SQL, DL/I, CODASYL-DML, or
Daplex) as well. At this point, our interest lies with the functional and network
models. In this regard, either the third or fourth fields will be activated. Should the
selected database be based on the functional model, the fourth field of the union would
point to the structure represented in Figure 4.7, fun_dbid_node. Likewise, if a network
schema were being manipulated, the third field of the dbid_node would be activated
and point to a structure of type net_dbid_node, Figure 4.2,

-

union dbid_node

struct rel_dbid node *rel;

struct hie_dbid node *hie;
struct net_dbid_node *net;
struct fun_dbid_node *ent,

Figure 4.1 The dbid_node Data Structure.

P T A TP RS " AR R EREL! F P IS KA.

?———————-——-——- r— -—

1. Data Shared by All Users of a Network Database

The first field of the net_dbid_node is a character arrav holding the name of
the respective network schema. The second and third fields are integer svalues
representing the number sets and records in the schema. An integer value represcnung
a database key is maintained in the fourth field, while the fifth, sixth, and seventii {ieids
are pointers to structures containing information about each set and record o!f the
schema. Specificaily, the fifth field and seventh fields pomnt to the first set and record,
respectiveiy, of the schema. and the sixth and eighth fields point to the current set and :
record, respectively, of the schema. The final field of the net_dbid_node 1s a peinter to)

a structure representing the next network schema in the MLDS.

struct net_dbid_node

char ndn_name|DBN\Length - 1

nt ndn_num_set;

int ndn_ num ru

int n?

struct nset_node rst se‘)
. struct nset_node *curr_set; .

struct nrec_node *firstrec; N

struct nrec_node ‘curr rec;

struct ret_dbid_node *next_db:;

Figure 4.2 The net_dbid_node Data Structure.

The nset_node data structure, Figure 4.3 represents information each set n
the schema. The first field, nsn_name, is a character array holding the name o! the |
particular set. while the second and third fields are also character arravs contaming the
names cf the owner and member of the set. The fourth and fifth fields are churucters

representing the insertion and retention modes of the set. The insertion modc can ve

. . . » . . . - g \J
either automatic, ‘a’, or manual, ‘m’, and the retention mode can he fixed. ", manual, .
‘m’, or optional, ‘0o’. The seclect_mode ficld is a pointer to a set_select_ncde. The y
seventh field is a pointer to the owner record type of the respective set tvpe and the \

eighth field is a pointer to the member record tvpe of the respective set type.
. Figure 3.4 shows the set_select_node data structure. This structure mamntains
the set selection mode information fcr each set. The first field s a character
representation of the sct selection mode, either by VALUE, v, by STRUCTURE, 5.

- a_~a-a-

29

[T

. R L P T P R N R R R I A i A N A N AL L AN
"n.'a'i"\"h ,-.hh.".,l N W Lo, R R N Wy TR VRS, N y Y\ .

R e et

struct nset_node

char name{SN\Length - 1], ,
char owner_name{ONlengtin + 1,
char member_name[M\ cngth ~ 13,
char ancestofANLeneth = 150
char mscrt_mo\.cgl\l.cngth - 1
char retent” mode'RLength ~ 1
struct set_selec: _node *selecl mode;

struet nrec nodé *owner,

struct nrec_node “member.

stract nset_node ‘nent_set;

Figure 4.3 The nset_ncde Data Structure.

by APPLICATION, a, or not speaiied, o . If the set selecion mode of the set 1s by
value or »v structural, the second field. a character arrav. wil! hold the item: name of
the specified record and the thurd tield wii, hold the name of the record. The fourth
Neld wili contain the name of a second record only if the set selection mode 1s by

structural.

struct set_select_node

char selccx_modeLSLcngth - l[,;
vhar wem_pame{ANLength ~ T},
char recerd] _name %\Leng!_h = 1)
char record2”name(R\Length - I

FMgure 4.4 The set_select_node Data Structure.

The nrec_node. Figure 4.3, contains information concerning cach record in the
schema. The first field 1s a character arrav holding the name of the record and the
second field 1s an integer representation of the number of attributes of the record. i
third and fourth fields are pointers to structures containing infermation about the firt
and current attnbutes of the parucular record. The finai tield of nrec_node 1s 4 pointer

to the next record tvpe representation in the schema.

30 e

memm»;w-y-;ﬁhx-mﬁ-' e N NI N e e e e e kndiaknb e adaiakadada

struct nrec_node

, char nrn_name{R\Length + 1
int nran_num_attr,
char nrn_ancestorfANLength = 1],
struct nattr_node *first_aur;

! struct nattr_node “eurr_attr,

! struct nrec_node *next”rec;

Figure 4.5 The nrec_node Data Structure

The nattr_node s depicted in Figure 4.6. Information about the attributes o!
each CODASYL record type 1s maintained in this data structure. The first field s a
character arrav containing the name of the attribute while the second and :hird fields
represent the level number and type of ithe attnbute. The attribute can be e:ither an
integer, i, a lloating point number, f, or a string, 's. The fourth field deternunes the
mavimum length that a value of this attribute mayv possibly have and the tifth ield
wndicates the maximum length of the decimal portion of a value :f this attribute tvpe iy
a 'loatuing point number. The sixth field is an integer valued flag indicat:ng whether or
not the attnibute can have duplicates. It 1s inialized to 0, allowing for dupi:cates
The seventh. eighth, and ninth fields are pointers to structures representing the net

attribute. the child of the attnibute, and the parent of the attribute, respectinels

struct nattr_node

char nan_name{ANlength - I
char nan”ievel_numAlTenytic = |}
cnar nan_tyne;)

int lengthl,

int lendth

nt Jup th%;

struct natir node acnt attrn

struct nattr_node childn

siruct nattr_node *parent:

Figure 4.6 The nattr_node Data Structure

, 2. Data Shared by All Users of a Functional Database

1 If the database accessed by the user is based on the functional data-model.
| then the fourth field of the dbid_node data structure, Figure 4.1, will be activated. The
powmnter will be directed to a structure of type fun_dbid_node, Figure 4.7.

The fun_dbid_node contains information about a functional database. The
first field 1s a character array which represents the name of the database. The second
field is a pointer to the base-tvpe nonentity node, and fdn_num_nonent is and integer
value of the number of the base-tvpe nonenuty nodes ‘- the database. The following
field. *tdn_enuty, points to the entity node and while the fifth field is an integer value
of the number of these nodes. The sixth field is a pointer to the generalized entity
subivpe node and as before the field that immediately follows contains an integer value
representing the number of such nodes. The fdn_nonsubptr is the nonentity subtypes
, and the number of these nodes is maintained in the ninth field. fdn_num_nonsub. The
b next field, *fdn_nonderptr, is a pointer to the nonentity derived tvpes respectively with

the eleventh jield containing the integer value for the number of such nodes. The

fdn_ovrptr is a pointer to a structure containing the overlap constraints of the Jatabase
and the thirteenth field, fdn_num_ovr keeps track of the number of overlap constraints.
The final field of the fdn_dbid_node structure is a pointer to the next functional
schema in the MLDS.

struct fun_dbid_node

v

char fdn_name[DBNLength + J

struct ent_non_node ‘f n_nonentty;
int fdn_fium_nonént:
struct ent_node ‘jd entity,

int {dn_Tum_ent;
struct gen_sub_node “fd _subptr:

nt fdr_fium_gen:
struct sub_non_node “fdfi_nonsubptr,
nt - - tdn_fium_nonsub:
struct der_non_node *1dN_nonderytr.
mt fdn_num_der.
struct overiap_node rdn _ONIPLr:

1t . !u) num_ovr;
struct fun_dhd_node IdA_nent_dh:

Figure 4.7 The fun_dbid_node Data Structure

‘sl
to

:'l:-' y? -.‘..A’\A':!’\n':l;i:x' P AN VN |

The ent_node data structure is shown in Figure 4.8 The !irst field of this
structure 1S a character array contaiming the name of the enuty. lhe en last ent &
field 1s an integer value represcnting the last unique number assigned to the particular
ent:ty node. The third field 1s an integer representation of the number of functions
assoviated with the particular entitv type. while the fourth tfield. en termunal i« an
:nteger representation ol a boolean flag that indicates whether or not the entuty .~ 4
termunal type. An enuty type 1s a termunal type onlyv when 1t 1s not a supertype ¢ any
entity subtype. The *en_ftnptr field 1s a pointer to the function nodes associated with
the parucular entity node. The final field of the ent_node data structure 15 4 panter ¢

the next entity (ent_node: in the schema

struct ent_node

char en_nameil \length ~ ||
int en_.ast_ent .

int en_nuni_funct.

int _ en_terminal,

struct funcuon_node *efi_{tnptr;

struct ent_node *en_next_ent,

Figure 4.8 The ent_node Data Structure.

Figure 4.9 depicts the gen_sun_node This data structure vontains iniHrmation
about the entits subtypes of the accessed database The tirst fieid is a characier arran
helding the name of the generalized entity subtype. The gsn_num_tunct field & an
integer value representing the number of functions assouated with the enutv sebtvpe,
whiie the third field. gsn_termunal is an integer representation of a booican lag
indicating whether or not the entity subtipe 18 a subtipe ot an enuty type and not
supertype to any entity subtvpes. The fourth field 1s a pointer o the entity supertipe
of the particular entity subtype represented by the gen_sub_node lhe g nun ent
tieid 15 an integer valuc indicating the number of entity supertypes of the vuhtipe fhe
next {leld. *gsn_ftnptr, 1s a pownter to the tuncuons associated with the enuity sukivpe,
and the “gsn_subptr tield i1s a pointer to the subtipe supertipe [he eighth fiele noids

the number of these subtype supertipes. The last field of the gen sub_node Jata

structure s simply a pomnter to the nex: generalized entity subtyvpe in the schemia

P AR

»

struct gsn_sub_node

char gen rame b Nlength - |
e gen num_tuict,

int o gen_termin...,

Mruct ¢nt_node st gAR_entptr,

it §en_fam ent

st tuncuion_node g _binptr

N WS sub rode st PRI sLDpIT

e ' {3n_num sub.

strue E2r suh node psfi nenl _genpur,

Pigure 49 The gan sub node Data Structure

Inliormation concerning cach nonentity hase-tivpe s maintained noa Jaty
structure of tipe ent ner node, higure 4160 The Sret held o0 this dote sracture
SITL.AT 1O Previods data structures, s g Jharadcter array containing e nan.e Olothe
nonentity hase-tipe the enn tvpe fieid v a character tag ndigung tte pe !
nonentitv node. erher. anteger. . enumeration, ¢, lloaung powr noniren !
Caracter string. s oo hocean, 0 The third tield coananteger saine W ch senresers
te mav.mum length ! the nonentity base-tvae vaiue The enn range Lol oo ons an
nteger representation ol a rooiean tlag that ndicates wnether or oot tsere L nange
of values asscuated with the nonennuts base-tipe The nevt nod. enroar e
sepresents tne number of ditferent saiues thil fne nonentoy can assamme The soadh
fied 18 g pomnter to the actug: sadue of the nonentits hase-vpes whao e b vy
GO CRD LOLATART, 1v un Lateger Teprasentation vl oa peosean g indieatryg
ot the Passtvoe o g constant The st Beld on the ent non nade datl vl oo s
pUInter tootne nevt nonentty ndase-tvpe n the schiema

[he sub ron node data structure, Figure < 1 contans o on an a0
nenentoy sakrupe hase-tvpes an the tunctiona, setema the Dre e o o
Cructure 1S a character arra containang the name 0 the nonentes cohoure 0 d g
enn nipe fiedd holds o charscter *har odicates the U pe o0 o enty st e e
TCUCT. L. enumeration. € . Hoaling poant nurirer Vo Jhdracter i o 0 T e
b The next field, nn total jeng'h, Contans an iNTEEET "na’ rLboates ey L
lergt: o the nonentity subtvpe vawde The snin range ted van siegr repreon

ot 1 hoolean Cag vhich ndicates vhether the nonenstn subtype bas a0 rar e o 0L

assogated weth ct o The D0th held contuns an (reger tha! teprosents e o

.
]

N S N e o ¥

a8

i, ‘.l'al':‘:-‘v‘t‘
"
;"

c’ I',u ‘A"¢'
AU

struct ent_non_node ,

char enn name[ENlength - 1}

char enn_tipe; '
nt enn”te of length:

int enn_range,

int enn_num_values;

struct ent_value *enfi_vaide;

el Cﬂ"l constun’;

struct ent_non_node “enfi_next_node:

Figure 410 The ent_non_node Data Structure.

ditferent vaiues that the nonentity subtype can assume. The next field is a pointer to
the actual velue of the node, while the final field of the data structure. *snn_next_node,

is a pointer to the next nonertty subtyvpe 1n the schema.

struct <ub_non_node

char snn_name{EN\Length + 1
char san_ivpe,

int snn_total_length;

int snn_range,

it snn_num_values;

sTruce ent_value *sni_vaide;

strugt sub_non_node *snnTnent_naode;

Figure d 11 The sub_non_nrode Data Structure.

The dJer non_node data structure. figure d12. pertains to the denved
nenentty types cof the furctional schema: 1t v adentical in structure to the
sub_non_node, Figure 4 11

Ihgure 4 1% depicts the orgamizatior of the overlap_node data structure The
initial held of the structure contains the name of the base tvpe for the overlipping

ent.ties The *niptr field 1v a pointer to the st of termunal subtvpes, sub_node_lst

that are overiapped. The next feid. nar_sub_node, indicater the numser of

overfapped sabtvpesan sub neode st The Binal field in bPigare < 13 o4 pointer 1o the

nent averap_ncade in the schiema

’
a
-
A

A

X

R

P er 2]

K5 =R

'.l_.‘ d

FXXER

"

o |

L.

R \ AR
S .- ','.4.".0‘| 0’. 'u‘ o t‘. st igtlag \.;"
s’. * 'o‘. -', o’ c' g' " ¢ , 0'.‘0% 4' "‘ \ .‘l'. “ d.n "i' A "

» !
N ’!'.“4" c.t' ¥, a"'-’*')Yy :’ !' 3 ' o‘ N Myt
L)

ftruct der_non_node !
char dnn name[E\'Length + 1} |
char F !
int dnn-toral length; 1
int dnn”rangg@, i
int dnn”num values;
struct ent_value *dnn_valae; }
struct der_non_node *dnn”_next_node; !

Figure 4.12 The der_non_node Data Structure.

|

i struct overlap_node !
; ' char) base_type_name{ENLength + 1]; |
i struct sub_node_list *snlptr; |
i nt - num sub _node; :
} struct overlap_node *next \

| l

Figure 4.13 The overlap_node Data Structure.

Each function declared in the functional schema is represented by a data
structure of the tvpe function_node, Figure 4.14. The name of the function is
contained in the first field of the structure, while the second field is a character which
represents the tvpe of the function, either floating point number, 'f'; integer, i’
character string, 's’; boolean, ‘b or entity, ‘e’. The next field, fn_set, is an integer
value representing a boolean flag that is used to indicate whether the function is a set-
valued function. The fn_range field indicates whether or not there is a range of values
associated with the function. The next field indicates the maximum length of the
values and the fn_num_value field indicates number of values. The following field 1s a
pointer to the actual value, which the nex: five fields hold pointers to the tvpe to which
the particular function belongs. A function may belong to only one type. either an
entity, an entty subtvpe, an nonenuty, a nonentity subtvpe, or a nonentity derived
tvpe. The thirteenth field indicates whether or not there is an entity value associated
with the function. The fn_unique field is used to indicate whether or not the function

1s unigue, while the final field is a pointer to the next function in the schema.

36

..!‘g (' l

e Y e

R

W

¢
4

- -

-

)

?truct function_node

char fn _name{ENLength + 1J;

char n t\Fe

nt fn”se

int fn"range;

int fn_tota 'length

nt fn_num_value;

struct ent_value *fn_value;

struct ent_node "‘fn cntptr

struct gen_sub_node *fn~subptr;

struct ént _non_node *in”nonentptr,

struct sub_non_node *tn” nonsubptr

struct der “non__node *fn_nonderptr,

int fn_@ntnuli;

Int . fn"unique;
} struct function_node *rext,

Figure 4.14 The function_node Data Structure.

The ent_node_list, Figure 4.15, and the sub_node_list. Figure 4.16, data
structures are used to maintained linked lists of entity types and generalized entity
subtypes. respectively.

?truct ent_node_list

struct ent_node Lentptr;
struct ent_node_list *next;

Figure 4.15 The ent_node_list Data Structure.

struct sub_node_list

struct gen_sub_node +subptr;
struct sub_node_list *next:

Figure 4.16 The sub_node_list Data Structure.

37

Piagitasttag gl

[gy =

The final data structure that is shared by users accessing a functional schema,

ent_value, is shown in Figure 4.17. The structure’s function is to maintain a linked list
of entity values.

struct ent_value

char *ev_value;
struct ent_value *next,

Figure 4.17 The ent_value Data Structure.

B. DATA SPECIFIC TO EACH USER

The data structures that are discussed in this section are necessary in order to

support each user’s particular interface requirements. The key structure is depicted in
Figure 4.18, user_info. This structure holds information on each user currently using a
particular language interface of MLDS. The first field of user_info is a character array
containing the user’s ID. The next field is a union that describes a particular interface
and the last field is simply a pointer to the next user of MLDS.

struct user_info

char . uid[CIDLength + 1},
union li_info li_type;
struct user_info “fiext_user;

Figure 4.18 The user_info Data Structure.

The union, li_info, depicted in Figure 4.19, can hold the data for a user accessing
any type language interface of database schemas supported by MLDS, (SQL, DL.I,
CODASYL-DML, or Daplex). For the purpose of this thesis the data structures

peculiar to the CODASYL-DML language interface and the Daplex language interface
will discussed.

38

e .. Y LAY AN e e A A
. - Y W e e M > - WAL, » ”
R T TR A T A A i S NN g e R DX) Ny N o)

|"'o"‘n"l‘~t'. LR

union li_info

struct sql_info li_sql;
struct dx Tinfo h 1
struct dnml_info

struct dap_info h dap,

S U —

Figure 4.19 The li_info Data Structure.

Should the user access a network database, the third field of Figure 4.19, li_dml,
will be activated. This action will call upon Figure 4.20, dml_info.

?truct dml_info
struct cur db info curr_db;
struct tile7info file;
struct trafi_info dm] tran;
struct ddl_info *ddr files;
int operation;
nt answer;
int, . error;
union kms_info kms_data;
union kfs_info kfs_data;
union ke info kc data;
struct cur_table *clr_table:

| int buft count;

Figure 4.20 The dml_info Data Structure.

The dml_info data structure, Figure 4.20, contains user information mation
concerning the CODASYL-DML language interface. The curr_db_info ficld is also a
structure; it contains information about the network database being accessed by the
user. The file field is a data structure which contains the file descriptor and identifier
of a file of CODASYL-DML transactions. The third field, dml_tran, is a data
structure that maintains information describing the CODASYL-DML transactions that
are awaiting processing. The next field is a pointer to the ddl_info data structure,
which describes the descriptor and template files. The operation field is an integer
representation of a flag used to indicate the operation to be performed on the network

39

» ! MW, s LT - -'\\.‘ - ‘f’ '-*-J-..'-..-‘\v
l-l.-l.l'&lﬂ!'hla"".‘n.-‘ul-!‘- ..ll... \"i A ™ o -~ ([Nt v "* s e %, '- v TN

-

- - .

& i o

- - X5 Sy -’

- v
’.\ '-.1' r

4

»
-
A
L)

an"--- BACART WE SRR A TR ST T T T o

' database, either loading a new network database, or executing a request on an existing
network database. The answer is an integer value that is used by the Language
Interface Layer (LIL) to record the answer it receives from interfacing with the user.
The eleventh field is a pointer to the Currency Indicator Table (CIT), as discussed by
Meyer and MacDougal, buff_count, is a count of the result buffers of the Kernel
Controller (KC).

If the user accesses a functional database, then the fourth field of the li_info data
structure, li_dap, is activated, referencing the dap_info data structure, Figure 4.21.
This structure contains information about the Daplex language interface and is similar
’ to the dml_info data structure, Figure 4.20, with the exception that it applies to Daplex
rather than CODASYL-DML. '

?truct dap_info

struct curr_db_info dpi_curr_db;
struct tile_tnfo pi_file;

struct trafl_info dpi_dm]_tran;
int i dap_opération;
struct ddl_infg *dpi_ddl_files;
union kms_info dpi_Kms_data;
union kfs_info dpi_kfs_data;
union kc Tinfo dpi_kc data;
int dap_ertor;

int dap_answer;
nt dap_buff_count,

Figure 4.21 The dap_info Data Structure.

40

DO,

q".t(' RS

47!

V. FUNCTIONAL TO NETWORK TRANSFORMATION ALGORITHMS

The Language Interface Layer (LIL) is the first module in the mapping process
of MLDS. Its function is to control the order in which the other modules are called
and to allow the user to either load a new database or process an existing database.
The implementation of this thesis, in addition to permitting the user to load a new
network database, allows the user to apply transactions to either a network or a
functional database. When an existing database (network or functional) is to be
processed, the user is queried for the name of the database. LIL then uses the user-
supplied name and first searches the existing network schemas; if the desired database
is in fact a network database, then LIL primarily functions as implemented in
Reference 19. If the desired database is not found to be in the list of existing network
schemas, the list of functional schemas is then searched. If the desired database is
found to be an existing functional database, a mapping process is initiated in order to
transform the functional schema into a network schema. This transformed database is
actually a network representation of the functional database which maintains the
characteristics of the functional database while preserving its constraints {Ref. 2: page
52].

In order to preserve the constraints of the source database (functional), there are
siX essential constructs of the functional schema that m:- t be accurately transformed
to equivalent constructs of the rarget database (netwo.k). The constructs of the
functional schema are:

¢ the entity tvpe

¢ the entity subtype

¢ the non-entity types

¢ the uniqueness constraints

e the overlap constraints

e the set type
The methodology for the transformation was primarily implemented as designed in
Reference 2 and is described in detail in the following subsections. In order to provide
the reader with realistic examples of the mapping of a functional schema to a network
schema, this section depicits the transformation of the functional-based University

41

T T % T I L S RRT RV RSYY LN RN P L P 5 P o 0 P & P A A TP P E S,
! ,l.-\n " N Y L) ' () = .. v‘ ,, & .1. 0 .. .'...5\ ..\. .. W W \\ ")

‘.‘~ -.'-‘,-'-'.

a a8

o e ey

v
[
D)
"

‘o8 Cal el ok hl

database schema of Figure 2.1, to the network University database schema shown in

Figure 5.1. Figure 3.1 is referenced throughout this chapter.

A. ENTITY TYPES

In transforming a functional entity, LIL maps not only the entity itself, but also
the functions of the entity, as the functions are applied to the respective entity type.
The function-type may be string, scalar (integer, floating-point, enumeration), entity,
non-entity or a set of any of the above. The form of an entity-type declaration is
shown in Figure 5.2, where entityXX is the unique name of the entity being declared
and functionXX1, functionXX2, ..., functionXXn are the names of the functions that can
be applied to enrityXX. The function_types determine what type of value will be
returned by the respective functions.

In the transformation process, an entity tvpe is mapped into a network record
tvpe. Each entity is also made a member of a set type which is owned by SYSTEM.
When mapping the function types associated with a particular entity, LIL must
determine whether or not the function type is a scalar function, scalar multi-valued
function, single-valued function, or multi-valued function. It accomplishes this task by
checking several fields of the function_node data structure of Figure 4.14.

A particular function of an entity is a scalar function if the fh_subptr and
Sfn_entptr fields are NULL and the fn_ser field is not set (i.e., has a value of zero),
indicating that the function does not belong to a specific entity type or subtype, nor is
it set-valued. Scalar functions are mapped into attributes of the record type that has
been transformed from the function’s entity.

A function is determined to be a scalar multi-valued function if it meets two of
the three criteria discussed in the preceding paragraph; it's fn_entptr and fn_subptr
fields are NULL. however, the fn_set field is set to a value of "1”, indicating that it is a
set-valued function. The scalar multi-valued function is declared as an attribute in the
corresponding record type. It must be noted, however, that only one occurrence of the

single multi-valued function may be stored in the record, therefore the nan_dup_flag

fieid of the nattr_node, Figure 4.7, is not set, indicating that the attribute cannot have

-
-

duplicates.
If either the fn_entptr or the fn_subptr field of Figure 4.14 is not NULL. then the
function in question is either a single or a multi-valued function. Again, the

-

determining factor is the fi_set field; if it is set to a value of 17, then the function is a

multi-valued function. In the case of a single-valued function, a network set tvpe is

At o

-
-

42

LYY

.
A

IJA(L{ l.'&’ a .‘ ﬁ'

| Pp 0, 0 AT F BTN T WS R A

LRI B]
‘4‘ A\ . . I"’*l".inf\' ‘ "’l‘t‘
4 5' ‘) '-.l‘l ,"g,!g (N ,‘1 | ¢

PRI L Yy]

.l .“'."'.:'1 .‘Q ‘h ‘q‘l‘l .".‘0.‘ |'0"‘~ '(::'::::

SCHEMA NAME IS university;

othice™ Cl
phones: O
salary: FLOA
dependents: TINED 10;

RECORID NAME IS support stafl}
fll_time: CHARACTER 1

RECORD NAMIE l\ {aculty;
rank: CHARACTLER 9.
tenure: CHARACITLER 1.

RECORD NAME IS tinkl;
RECORD NAME 1S student;
RECORD NAME IS graduate;

RECORD_N: \\III IS undergraduate;

a: JFLOA
o FINED 1

RFCORD NAME lS COUrse;
bll L CATES \I |
utle: CIH,
semester: (
credits: Fl

RECORD XA cpartm
DEPLICATES A RE \(91 ATTOWED FOR name:
name CHARAC ITR 20,

RECORD NAME IS enrollment;
grade: FLOAT;

LLOW ED ['OR title, semester;

fee !
iRV
=%

TN

/e
—T </

o>

-

—ry

-nm

<o

”»

L

N

~

G

S

Y

o

[

17

o

2

(741
T
—
v

%‘ol\)tAﬂc
Y 'APPLICATION;

Figure 5.1

Network Schema

The Functional Schema of the University Database Transformed to a

wr SIS

L

P orC

‘l
/]

s
N4
o,

f;l.‘/ A :'
-ttt S

k)

l."’
SE

..
?
e

A

Y, 1'.{3
AR AR

5

.
74

e I‘I "h"l'
'.:‘P-'.-’:"(’L

PR
Ghed!

Ny
y)

z

"X c

= oy o oy oy ; - o

== Z /. 4 /. z. /. 7z /. o

S & 8 S S S o S S .

= = 8 = = = = = = = _ o
R < 3 < < < < < < < - T
KA 14 [4 .n.kx L o o 5 & v o

s o 8 U Lo e g 2 E O L 5

2 EEE O & & KT e £ | B

2% L edSE 2 e < ks TR o5 Ut g AT & « < LWA -

et L wdl U Ssi </ w @l B« < o SA: <&

Rt g wOx 8 wZRx s JOx B JO% b Oz & L0z 8 38R o 29%

:ll!ll - — e m It) ..‘.l - . .-I.A . .ll ¥ . . . 0\“

B ey SydbRo 8 ZE0 8 Zho B Zhe .Bilie Spt¥e 8 ilee

Tt 8 o — 0.5 O)= Q. O.l. o, ... — D e nus.mhu OI p\-ol.LLF FE I TR

50850, ESRa, IS0, JUSO, FELPO, $EESO, ESB<Ls RESPSs

Tt w'a.o e VO g &3°q o, ~5a) 2 ond

. W E2L=0 LER2-C o ah.ﬁlro.. 0=l 0 $ZFL-O HES2-O gE2-0 o, 222 Q

N

¥ K
13
LA LIS

LI A leSNNT e L T 0w L =On, /= TOn L O, =y,

T

¥
' fz’ RS AR
I APTOAPS E N LR

L

et FOTvEe RSToE RSl BT SO v ol R LT
[gy E:_ “ g —:“E. E:u :u-\ g .“ g E_: - E*u w {8 :~W (SO 1)
SOM“.RS O Ll tln SO\.&RS SOMBRS SOM\. SOMBRS SO\.W..RS IZOPRa. 47

.
o . ¢

. {cont’d.)

45

v

N Y e
PO 2N

ol

~n
COC oA

P\ 8

AN & L L LN

Lk

vl

[

W& L=t Y

Z /. /. /. /. /. /. /.
o o o o o .. o o 5
5 S S ¥ m 2 g < < z
3, L . SRR U S U
— B - — (7] . — 3 P — Ot

s = U = - &) J
30 R -Sra - m .L.mw 3 - o 2 S o L.m.u o S n
el el @ - o el S ~ a 9 = a. cerls =~ a,
54y i g <<g FEE 4P iz 254 5 @ 4

. JSAETEN = ~ . - = A HAN ~
¢ 20z §oior % 2z ¢ Do 2 2% D EREs u¢ oSk S 3Ee
LG, B B, E Gl Sy, £S5 g SPwem de rm o Ot
Sggeny Jufane §. .8 7a 2uiawn gogYe godre ERylae §oghre
SE350, EESSC, §837, 55550, 3Esx, 2E5ws, §EESC, BELaL
E2n20 Y32 Eno Q23,00 SR I v & vl P92 i VI3 wh T8I nk
B@Ml“l Bmhl“ﬂ Smhl”l Smmﬁwm Smﬁﬁﬂm Smuwlm Sw&ﬁlm Smwmlm

L= T — G, = TR, TR, TR0, e 0

%mkmmm mmkmmm %mRmOK wsmmom wsmmom Esmmom ESlmmc Esmmmm
QoD et Lt MRETHI e i) NRmr1L MRHHTw
i = A R = e W = FuSee /bl iy e
HWE%HU H“EWHH HWH%HT HMH%UT THW%HT TMD%HT THH%NT TWW%TT
wa g, f p (1) ™ -— ¥ o S ot 1 NS
RosZats oSl KOSl HoSlas Hozles hoslds wosldy o>l

Figure 5.1

P ey =y P e X W I V.Y " WS £ 6% B "o -—rw e e
L3
. .

7 7

5 &

~ =

< <

S 5§ .8

. od E O -

& £ EE
- 8 € =«

Py act (o} it
E5- ¥ 2P~

o =m I 90w

.. &+ E Erue
g, .tca2 g ETXn
S ﬂ.mr..wrr.l.l
SE87=, LER7,
Smkwwm wn 29L=0

/. yd

S S

= =

< . <

g ¥ O

c .=

2 E 28
.'AP -|0A T P
=S54 2 < <
LTl £ CSA
S0~ & B30
m.\ﬂB m. 50w
Eqon § _EXas

v -
3 RMMO.\ 2 &0k

. {cont'd.)

Figure S.1

e — e

Uy @
o.Co o
g &
4]
[l =t =
X °
€8 g
cc <
22 &
17 QAT c
= XW
g =
. 00 OW
LSS =7
S QD [T
c—cc b=
Vpe 3.3 30
w/, /.
£l 48]
-
T

Figure 5.2 Entity Type Declaration.

created whose name is the single-value function name. The owner and the ancestor of

the set type is the record type declared for the range entity tvpe, and the set member is

46

the record type declared for the domain entity type.

stx.-\;ﬂnuﬂ;._,s,n_.-« :

O NS

Multi-valued functions are defined over entities and return sets of entities. When ’
applied to an entity or an entity subtype, a multi-valued function returns zero or more
data values, where each of these vaiues is of the same Jata type as the functions range
tvpe [Ref. 8. A mulu-valued function represents either a one-to-many relationship or !
a many-to-many relationship as defined below. .
A many-to-many reiationship of a multi-valued function exists in the case where
entity A has a mulu-valued function with entitv B declared as the range entity tynpe.
Additionally, entity B must also have a multi-valued function with entity A as the
range entity tvpe. In order to determine whether or not this s.:uation exists, for each
multi-valued function of an entitv LIL traverses the network database’s list of entiues

and searches for a separate entitv that has been declared the range entity type of the
multi-valued function of the first entity type; should a match be found, the matched
entity is checked to determine if it has anv multi-valued functions (fn_set '= 0)
assoctated with it and whether or not its multi-valued function declare the first entity
tvpe as the range entity tvpe. If the above conditions are satisfied, indicating a many- 4

to-many relationship for the mulu-valued function, a new record type is defined with

» o e

its name being LINK_X, where X is an integer representing the numerical standing of)

this particular many-to-many relationship. Additionally, two set tvpes are declared -- '

o

one each with the record type for the two respective entity tvpes as the set owner and ;
the LINK _X record as the set member.

]

A one-to-many relationship exists when a multi-valued function is determined not

to have a manv-to-many relationship. In this case a set tvpe is defined with the record

y AR PR

tvpe of the domain entity as the set owner, and 1ts range entity record type as the sct v
memoer.

"l.“

In order to properly illustrate the transformation process of a functional entity
and its associated properties Figure &entexamp is presented. This figure shows a
functional entity taken from the University database schema of Figure 2.1. and in its

network representation following the application of the transformation. :

£ e

B. ENTITY SUB-TYPES

The entity subtypes of the functional database are pointed to by the edn_subptr
field of the gsn_sub_node structure which is depicted in Figure 4.10. As long as this
field is active (not equal to NULL), there are entity subtypes that must be transformed

into network structures. As is the case in the entity tvpe transformation, LIL must

Sw e e e -

also concern itself with the functions associated with the entity subtvpe. Figure 5.4

P A IS NI

-

47 \

O R e e

Functional

STRING (1..10y;
dept: department;
semester: seniester_name,
credits: INTEGER:

i taught_byv: SET OF faculty,
| END ENTITY;

Network

credits f

S deptmt;

O
(1]
g
o
-
3
[¢]
=4

[ONAL: ,
Y APPLICATION:

19,
%
5

7,

3>

<

.
=7

!

a3

<

ge!
m</
- R

LICATION;

LY.
T .
~3
wm
M/
=
gle;
e
7
(@]
n]
=
~<O
7
>
o

(

l){ title, semester;

are supertypes or ancestors of subtyvpeYY.

48

Figure 5.3 A functional entity type and its network representation.

shows the form of an entity subtype declaration, where subtype Y'Y is the unique name

of the subtype and supertypeAA is a list of one or more entity tvpes and subtvpes that

Each entity subtype is declared as a record type with the record name being
identical to that of the entity subtype. A sct tvpe is also declared with its name being

the concatenation of the subtypes entity supertype, an underscore (_), and the subtypes

.
o)
.

NSNS

'y .

O

. ~ L i L X
A CAOLIMA S ST YW 0 P PR = Mo M T b Mn S Rk M 0™

L o e -

SUBTYPE subtypeYY IS supertypeAA
ENTITY . .
functionYY1: function_type
funcuonYY2: function”tipe

functionYYn: function_type
END ENTITY -

|
. |
i
|
|

Figure 5.4 Entity Subtype Declaration.

name. The subtypes entity supertyvpe is pointed to by the gsn_entptr field of the
gsn_sub_node .tructure. The set member 1is the particular entity subtype
(gsn_nsn_name), and the set owner is the subtvpes entity supertvpe. The functions
associated with an entity subtype are transformed as previously described for the
functions defined on the entity tvpes. An example of the transformation of a

functional entity subtype to the equivalent network structures is shown in Figure $.5.

C. NON-ENTITY TYPES
Non-entity types are represented by those functional schema statements that
declare data types other than entities and functions. The non-entity types of Daplex
are:
(1) strings
(2) scalars
(a) integers
(b) floating-points
(c) enumeration (including Boolean)
(3) numeric constants
These non-entity types form a rich set of tools that allow the user to provide
semantically meaningful names to data types and to limit the range of values that may
be assumed by a particular data type [Ref. 8: page 34]. Non-entity types have
corresponding counter parts in programming languages such as Pascal and Ada.
The transformation of the Daplex non-entity types impacts upon the attributes of
network records, where these records have been transformed from functional entity

tvpes or subtvpes. The task is to maintain the integrity constraints of the non-entity

49

-, -

3N
P ()

-

P R G O R S L R CA A SR A
0.0; .' "‘ \' ..o. - A Ay .IJ

- %% WY

»

& %t ey

.‘
o)
"

WWwwm“"wwwnnnv- FHe =

.

I SUBTYPE emplovee IS person

l»
ENTITY) |
‘ home_address: STRING (1..50), i
office? STRING (8& 1
phones: SET OF STRING (1..7); !
salary: FLOAT: .]
' dependents: INTEGER RANGE 0..10; |
END ENTITY; !
! i
|
RECORD IS emflowee !
DUPLICATES ARE NOT ALLOWED FORSphones: t
home_address : CHARACTER 30; |
office : CHARACTER §&;
phones : CHARACTER 7,
salarv : FLOAT.
dependents : FIXED 10

I
™M
|
i/
-
o
—
7
.

Figure 5.5 A functional entity subtype and its network representation.

5 types as they are mapped into the network data types. These data types are characters,
integers, and floating-points. The mapping of the non-entity tvpes is based on
“ determining the Daplex data type by implementing the “switch” facility of C. The
\ source of the switch is the fn_type field of the function_node shown in Figure 4.14.
" The targets of the switch are the nan_type and nan_length fields of the nan_attr_node
structure depicted in Figure 4.7. The mapping is conducted as shown below:

| (1) The Daplex string data type (fn_tvpe = ’s’) maps directly into network
: characters (nan_type = 'c¢’). The length of the type is set by making
nan_length equal to the value of fn_total_length.

(2) The Daplex floating-point (fn_type = ‘f) maps directly to network floating
{nan_type =).
(3) The Daplex integer is mapped directly into a network integer.
! (4) Daplex enumeration types are mapped into network characters with the length

of the character string (nan_length) set equal to the length of the longest of ‘

the enumeration types.
’
}
’
ll
¢
¢
|

50

2 - PR Iy W AW «
A S o ot o Y M N N O M

R T T L N O e A AP PU AT
R I P St T I A R I PR L
AT R P NN I SEMAL LA T
LA :'Ml‘"&"‘ NLOUGODUORNINEN]

2t
x'y

The goal of the non-entity mappings is achieved by the aforementioned algorithm, thus
preventing the network user from destroying the integrity of the functional schema.

D. UNIQUENESS CONSTRAINTS

Daplex utilizes uniqueness constraints in order to identify a collection of
functions whose values are unique across all database entities belonging to a particular
entity type or subtype [Ref 23: page 72]. Uniqueness constraints conform to the
foilowing representation in a functional schema declaration:

UNIQUE A,B,C WITHIN D
A,B,C represents a list of one or more functions declared for the entity type D. The

values of the list of functions, when combined, uniquely identifv the specified entity
type or subtype. MLDS identifies a uniqueness constraint by setting the value of the
Jn_unique field of the function_node, which is shown in Figure 4.14. A uniqueness
constraint is mapped directly into the network schema by adhering to the following
algorithm:

(1) locate the record type that has been transformed from the specified entity type
or subtype by traversing the ent_node or sub_node fields and comparing names.

(2) locate the attribute type, nattr_node, of the record type located in step (1).

(3) set the nan_dup_flag of the attribute located in step (2), indicating that
DUPLICATES ARE NOT ALLOWED.

The algorithm is implemented as a loop follo ving the declaration and subsequent
transformation of the entity types, subtypes, and non-entity types.

An example of a functional uniqueness constraint mapped into its network
equivalent can be seen in Figure 5.3. One should note the declared uniqueness of title
and semester. This constraint is transformed into the CODASYL-DML statement
"“DUPLICATES ARE NOT ALLOWED FOR title, semester”.

E. OVERLAPPING CONSTRAINTS
Functional subtypes are assumed to be disjoint unless an overlapping constraint

has been declared, specifying otherwise. Basically, the notion of overlapping

constraints is used to indicate whether or not an entity can belong to more than one

%

:},;- terminal entity subtype within a hierarchy. Overlapping constraints are represented in
Ty . . .

..‘;5.'3) the functional schema in the following manner:

1Y)

OVERLAP E.F WITH G,H;

T

N RS T .
oy e rab tago b Tt et 4 e 0 agt R b ey
t‘ﬁl’.{'l,“!“.lg‘,{.‘ Mgte ety .'l

E,F and G,H are lists of one or more entity subtvpes. The overlap constraint specifies
that data items of an entity subtype of the class E or F may also belong to an entity
subtype of the class G or H. The implementation of the overlapping constraint is
through the use of an overlap table which verifies the existence of such a constraint
prior to allowing the addition of a record to the database. The specifics of the overlap
table are given in the following chapter.

F. SETTYPES

Network set types were described in Chapter 11 of this thesis. The functional
data model does not have a structural equivalent for the set type, however, the network
set type plavs a vital role in the database transformation scheme. Earlier in this
chapter the role of the set was discussed in the mapping of entity types and subtypes.
The details of the set implementation include the insertion, retention, and selection rules.

The set is represented in the network language interface of MLDS oy the
nset_node structure of Figure 4.4 and the specifics of fully defining a set are described
below:

(1) With the exception of sets declared from the transformation of single or multi-
valued functions. the set name is defined as the owner record type name (
nrn_name field of the nrec_node, Figure 4.6), followed by an underscore (_),
followed by the member record type name. For example if employee is the
owner record type and faculty is the member record type, then the set name is
of the form:

SET NAME IS employee_faculty

(2) The set owner and set member name, nsn_owner_name and nsn_member_name
respectively, are declared as the corresponding record type name. Continuing
with the example from (1) above, employee is the owner record type and will
be declared the set owner while faculty is the member record tvpe and is
declared the set member as shown below:

OWXER IS employee
MEMBER IS faculty

(3) When a set is defined in the schema it is given an insertion status. Each record
tvpe that has been transformed from an entity tvpe or subtype is required to
belong to a particular set and therefore the insertion mode of the set is alwavs
automatic, indicating that whenever a member record is created, it 1s
automatically inserted into the corresponding set. The assignment of the
automatic insertion mode is shown below:

nset_node- > nsn_insert_mode = InAutMode;

(4) Set types declared from the transformation of functions applied to entity types
or subtypes, however, are nct required to be inserted and the insert mode is
thercfore optional, with the assignment as shown:

nset_node- > nsn_insert_mode = [nOptMode;

2

R e T . T e R e

(S) There are three separate rules governing the retention mode of sets depending
upon the basis of the set declaration:

(a) A set type that is owned by SYSTEM can never allow its member record
tvpes to change owners, therefore its retention is always fived, ensuring
that records connected to the set occurrence, remain in the set
occurrence.

nset_node- > retent_mode = RetFixMode;

. {(b) A member record type transformed from an entity subtype always

belongs to the same owner record type and its retention mode is also
fixed.

(c) The set types resulting from the mapping of single- or multi-valued
functions must allow their member record types to be deleted, modified,
or reattached and thus their retention mode is optional, allowing the
member records to be disconnected, connected or reconnected.

nset_node- > nsn_retent_mode = RetOptMode.

(6) When a record is to be inserted into a set tvpe , the set must be the current of
the set type. Therefore, set selection is always by application:
nset_node- > select_mode = SelAppMode.

The above algorithm for mapping into network set types supports both set type
declarations used in Daplex: set types reflecting an [SA relationship between two entity
types or subtypes, and the set types representation of a Daplex function.

FIUT B ERIEE

)

LR

53

NV S F Ll rr.l LALSE

Loy

;%
7

VI. TRANSLATION OF CODASYL-DML STATEMENTS TO ABDL
REQUESTS

Having presented an algorithm for the transformation of a functional schema
into a network schema, we are now ready to discuss the mapping of CODASYL-DML
statements into ABDL requests that will be able to accurately carry out the equivalent
operations on an AB(functional) database.

The DML translation takes place in the Kernel Mapping System (KMS), the
second module in MLDS. KMS is called from the language interface layer (LIL) when
LIL receives CODASYL-DML requests from the user. The two functions of KMS
are: (1) parse the user's CODASYL-DML request to validate the syntax, and (2) map
the request to an equivalent ABDL request. As previously stated, in the MLDS
network interface we restrict ourselves to the following subset of CODASYL-DML
statements: FIND, GET, STORE, CONNECT, DISCONNECT, ERASE, MODIFY.

This chapter discusses each of the above statements and the required mapping
process. Generally speaking, the mapping process is to be somewhat similar to the
mapping that was prescnted by Wortherly [Ref. 3] with the modifications described by
Rodeck [Ref 2], and with further modifications as implemented in this work.
Additionally, we give our rationale for building onto KMS of the original MLDS
network interface as implemented by Emdi [Ref. 19] rather than developing an entirely
new module.

A. OVERVIEW OF THE DESIGN

The second component of a database model is the data manipulation language
(DML). DML is a vocabulary for describing the processing of the database. A
procedural DML is a language for describing action to be performed on the database.
[t obtains a desired result by specifving operations to be performed. CODASYL-DML
statcments are procedural, [Ref. 12: pages 191-192]. As one may surmise, a data-model
transformation is virtually useless without an accurate and efficient DML translation
that allows the user to perform the desired operations on the target database. It is
with this thought that the DML translation procceded.

Most CODASYL-DML operations are executed in two phases: first, a FIND
command is issued to identify a record, and then a second CODASYL-DML command

54

Y L § pt - aF kv § 2 v st 4t gt D) gt ¢t .9 af gl . At g

is issued to perform an operation. This section will briefly describe the format and
intent of each of the pertinent CODASYL-DML statements, as well as give the
translation algorithm for these statements. !

B. MAPPING CODASYL-DML FIND STATEMENTS
The FIND statement is logically required before each of the major CODASYL-
DML statements, except for the STORE statement. When a user issues a FIND

command, a record is found, and it is placed in the currency indicator table (CIT). The

format of the FIND statement is: :
FIND record_selection_expression [], :
while the general format of the ABDL RETRIEVE statement is:
RETRIEVE Query Target-list [by attributes]
Each of the preceding formats is presented using the following conventions: upper-case
notation represents literals, lower-case represents user-supplied variable names, and A
square brackets contain optional clauses. As discussed in Chapter 1I, the FIND ¢
statement has several variants, and we will, in turn, present each of these.
1. The FIND ANY Statement 3
The FIND ANY statement locates a specified record of type whose value for .

the specified data items are equal to those in that record’s template in the user work
area (UWA). The syntax of the statement is:

FIND ANY record_type_x USING item_1, ..., item_n IN record_type_x
KMS, in mapping the FIND ANY statement, must use the ABDL RETRIEVE
statement and form a query whose first predicate is (FILE = record_type_x). KMS
then forms the additional predicates by locating the valuzs of the relevant data items in
the record-template. The request is then executed with the results being placed in the
result buffer (RB). Following the request execution, KMS creates the target list
consisting of the requested records attributes. Thus, the ABDL translation of the the
CODASYL-DML statement is:

RETRIEVE ((FILE: record_tvpe_x) AND \

(item_1 = value_I) AND {

(item_n = value_n)) \

(all attributes) [by record_type_x] N

The translated request is then forwarded to KC for execution. .
55

s : - . o Wil Cu T ‘A L : AR AP AT S W b I ‘J‘.'-"-’-‘- ~.
A e X i AT T O D

T WA MWL AW AT TR TR TR DR IR TR

; The following example taken from the University database illustrates the
' mapping of the FIND ANY statement. The requirement is to find any course record
whose title is ‘Advanced Database’. The CODASYL-DML procedure is:

MOVE "Advanced Database” TO ritle I'N course

FIND ANY course USING title I'N course
It should be noted that the MOVE statement is an assignment statement found in the
host COBOL language and in the above transaction it serves to initialize the UWA
field title in course. KMS would make the following translation and actions:

(1) ‘Advanced Database’” is placed in the course template of the UWA for the
attribute title.

(2) A RETRIEVE request is formed:
RETRIEVE ((FILE = course) AND
(title = "Advanced Database))
title, dept, semester, credits)
BY course

(3) Pass the request to KC for execution.

The result is that the course record satisfving the search criteria are placed in RB.

2. The FIND CURRENT Statement

The FIND CURRENT statement causes an update of CIT by changing the

current of the run-unit from its present value to the value of the database key of the
current record of a specified set type. The statement is of use when we want to begin a
search at the current of a particular set, which requires that the current of the run-unit
be updated to agree with it. The syntax of the FIND CURRENT statement is :

FIND CURRENT record_tvpe_x WITHIN set_type_v
The only function of this statement is to update CIT, and therefore it is a relatively
simple task for KMS to handle as there is no direct mapping to an ABDL statement.
An example taken from the University database illustrates the use of the FIND
CURRENT statement:

FIND CURRENT student WITHIN person_student
KMS would pass the CIT update information to KC for execution, and where CIT is

actually updated. The current of run-unit becomes the current student record

occurrence of the current person_student set occurrence.
3. The FIND DUPLICATE WITHIN Statement
The FIND DUPLICATE WITHIN statement is used to sequentially access

records within a particular set occurrence. A basic assumption is that the requested

A AASER e du

records have previouslv been located by another FIND and are therefore already
resident in RB. The statement then locates the first record with the current set
occurrence whose values for the listed items match those of the current record of the
set. The syntax of the FIND DUPLICATE WITHIN is:
- FIND DUPLICATE WITHIN set_tvpe_x USING
item_1, ..., item_n I\ record_type_y
. The translation actions are as listed below:
(1) KMS forwards set_type_Xx, record_type_vy, and item_l1,..., item_n to KC.

(2) KC locates the relevant RB using the information from (1) above.

(3) Each record with RB is searched until the first duplicate record with the set is
found.

(4) The record is made available to the user.
Additionally, KC will update CIT following the accessing of each record presented to
the user.
4. The Find FIRST/LAST/NEXT/PRIOR Statements

This subsection presents several related variants of the FIND statement; they
identify a record by its position in a set. For instance, the FIND FIRST statement
locates the first record of a set occurrence, the FIND LAST statement locates the last
record of a set occurrence, and so on. Each of these statements is mapped in the same
manner, and therefore we will focus the translation explanation on the FIND FIRST
statement. The syntax for the FIND FIRST statement is:

FIND FIRST record_type_x WITHIN set_type_y

First of all, KMS ensures that the specified record type is a member of the
specified set occurrence. This is accomplished by checking the nsn_set_member_name
field of the nset_node data structure of Figure 4.4. Once the set membership is verified,
KMS forms a RETRIEVE request that places every member record of the set
occurrence into its RB. The request is satisfied by returning the first record.

In the case of FIND NEXT and FIND PRIOR, the set occurrence must have
previously been retrieved and placed into RB. KMS must simply check CIT and
determine the current of the set and return ecither the next or the prior rccord. Recalling
the two types of sets in the functional data model, ISA relationships and Daplex
functions, we have devised two methods for accessing all members of a particular set

gccurrence.

57

mewnw" FHEREFEE ™RSS

The first method is for retrieving members of a set tvpe reflecting an [SA
relationship where the set name consists of the owner name, followed by “_", followed
by the member record name. KMS generates the following ABDL request:

RETRIEVE ((FILE = record_type_x) AND
(MEMBER, set_tvpe_v = set_type_x.owner.dbkey))
(all attributes)
As an example, suppose we query the University database in order locate students
majoring in "Computer Science’. The CODASYL-DML transaction reads:
MOVE ‘Computer Science’ TO major I\ student
FIND ANY student USING major I'N student
MOVE 'NO' TO EOF
FIND FIRST person WITHIN person_student
PERFORM UNTIL EOF = 'YE§’
GET student
FIND NEXT student WITHIN person_student
END PERFORM
In response to the above CODASYL-DML sequence KMS would issue the following
ABDL request:
RETRIEVE ((FILE = person) AND

(MEMBER, person_student = dbkev of 'CS"))

(all attributes) [by major]

In the case of a set representing a Daplex function, there are two possihilities:
either the function belongs to the owner record tvpe or the function belongs to the
member record type. In order to determine which record type a particular functior
belongs to KMS must traverse the functional schema to check the required function.
If the Daplex function belongs to a owner record type the translation ts as described in
the previous paragraph. However, if the Daplex function belongs to a member record
the translation is altered as follows:

RETRIEVE ({FILE = record_type_x) AND

(set_type_v = CIT.set_type_v.owner.dbkev))

(all attributes)
By definition, the set tvpe representing a Daplex function beionging to a member

record tvpe has only one member--the member record occurrence that we are secking.

‘o
[
AR Y SCES S SRY WESRE WSS

5. The FIND OWNER Statement
The FIND OWNER statement identifies records by ownership and causes the
owner of the current of set type to be returned. The syntax of the FIND OWNER
statement is:

FIND OWNER WITHIN set_type_x. Since all of the necessary information is
already present in CIT, the mapping is simple. KMS extracts the set owner and
database key for the specified set and issues a RETRIEVE of the form:

RETRIEVE ((FILE = CIT.set_type_x.owner) AND

(CIT.set_type_x.owner = CIT.set_tvpe.dbkey))
(all attributes)
KC then executes the RETRIEVE request and returns the owner record-type.
6. The FIND WITHIN CURRENT Statement
The FIND WITHIN CURRENT statement causes a record which is the
current of the specified set type whose values match the specified values of UWA for
the specified record type. The syntax of the statement is:

FIND record_tvpe_x WITHIN set_type_v CULRRENT

USING item_l, ..., item_n IN record_type_x
The FIND WITHIN CURRENT is very similar to the FIND DUPLICATE
statement, the difference being that FIND WITHIN CURRENT uses the values
resident in UWA while FIND DUPLICATE uses the value of the current set tyvpe.
Once it is determined that the specified record is a member of the set KMS generates a
RETRIEVE request of the form:

RETRIEVE ((FILE = record_type_x) AND
(record_tyvpe_x = ClT.set_tvpe_v.owner.dbkey) AND
user_value_I)AND

(item_1

(item_n = user_value_n)
(all attributes)

KMS then passes the request to KC for execution and the records satisfving the

retrieval are placed in RB with the first record being returned to the user.

OO T g, Eoe

Ly

'S Py

2 P,

. S

C. MAPPING CODASYL-DML GET STATEMENTS
CODASYL-DML GET statements are data retrieval statements, but thev can

only access records that have been previously located by FIND statements. It is the
GET statement that actually allows the user to access a record for the purpose of
displaying it. As was done in the network interface, the GET statements are handled
through KC rather than mapping them directly into ABDL RETRIEVES. There are
three options with the GET statement and they will be discussed in the following
subsections.
I. The GET Statement
The GET option places the entire current record of the run-unit into UWA for
user access. When KMS receives the GET statement it informs KC that the record in
RB containing records of the type CIT.run_unit.t,pz is to be passed to the user via
UWA.
2. The GET record_type Statement
The GET record_type statement is similar to the GET option in that it
retrieves the current record for the user, however, this option allows the user to specify
a particular record type. In this instance, KMS checks to ensurc that the record tvpe
being accessed is in the current of the run-unit RB, and if so, all data items are
returned to the user.
5. The GET item_l, ..., item_n Statement
This statement differs from the previous GET options in that the user specifies
the data items which are to be returned for a particular record. The syntax for this
option is:
GET item_1, ..., item_n IN record_tvpe_n
Again, KMS checks to ensure that the specified record tvpe is resident in the RB
containing the current of the run-unit, then the specified data items are used as search
criteria to locate a matching record. [f KMS is successful in locating a record, KMS
informs KC and KC places the desired data items in UWA.

D. MAPPING CODASYL-DML CONNECT STATEMENTS

The CONNECT Statement manually inserts the current record of the fun-unit
into the current occurrence of the specified set(s). The use of this statement requires
the record to be a member of the specified set(s) and that the set(s) have an insert:on
clause of munual. The syntax of the CONNECT statement is:

CONNECT tocord _tyvpe_x TO set_type 1, ..., set_tvpe_n

60

There are several ways that the CONNECT statement operates on an AB(functional)
record and these could result in varying results as follows: adding information to an
existing AB(functional) record, creating a new AB(functional) record, or creating a new
set of AB(functional) records. The particular operation depends on the manner in
which the network set types were declared in the transformation from the functional
schema. Recalling the transformation algorithm of Chapter V, we know that set types
represent either an ISA relationship or a Daplex function. The insertion of
information into set types representing a Daplex function is further complicated
depending on whether the information is to be inserted into an owner record of the set
or a member record of the set.
1. Sets Representing an ISA Relationship

As described in Section F of Chapter V, each network record tvpe that has
been transformed from an entity type or subtype represents a functional ISA
relationship. These record types are required to belong to a particular set and
therefore the insertion mode of the set is always automatic. This indicates that
whenever a member record is created during the transformation, it is automatically
inserted into the corresponding set. Therefore, sets with an insertion clause of
automatic cannot be used in CONNECT statements.

2. Sets Representing Daplex Functions

The destination of the information that is to be inserted will be in either an
owner record or a member record type of the set occurrence. This location determines
the method of translating the CONNECT statement. Each of these methods is
discussed in the ensuing sections.

a. Information Resides in Owner Record

When the specified record type is the owner of the set type, the set can be

null or it can coniain one or more members. [f the set type is null, then there are no
member records associated with it. If the set type is representing a scalar multi-valued
function, then there mav be more than one member record associated with the set. We
can see that there are four cases that must be considered when applving the
CONNECT statement when the information resides in the set tvpe owner. The
situation depends on whether or not the set representing a Daplex function is nuil or
not, and also on whether or not there are scalar multi-valued functions associated with
the original functional entity type or subtype.

(1) Null Set and No Scalar Multi-Valued Function--The AB(functional)record 1s
the only record to be updated. The null value of the attnbute-value pair

61

"] AT % g RN W (W e W SN '-‘\‘.'n\\'-\'.‘-\\‘n_\.'-\-\‘-\._ﬂ'-\\' e L
k«a&&:&ﬁmm,&nﬂa T N PN NN NN NN PN N, POLR TR TN, R

A A - W,

y ¥

MY A

LA

. -:-r

=y ‘.,‘Y‘lj

a b

r XXX ERAS

e

. o0
*Lt.%

g ".I

()

representing the attribute of the set type is replaced with the database kev of
the current of the run-unit as shown below:
UPDATE ((FILE = ClIT.set_type_l.owner) AND
(CIT.set_tvpe_l.owner = CIT.set_tvpe_l.owner_dbkev))
(set_tvpe_l = ClT.run_unit.dbkey)

Null Set and Scalar Multi-Valued Function--The null value in each
AB(functional) record created because of the scalar multi-valued function
must be updated. Using CIT information KMS duplicates all attribute-value
pairs of the attributes that de mor represent scalar mulu-valued functions and
updates the null value of the attnibute-value pairs representing scalar muiti-
valued functions. The required attribute-valued pairs are retrieved with the
following ABDL request:
RETRIEVE ((FILE = CIT.set_type_l.owner)AND
(CIT.set_type_l.owner = CIT.set_tvpe_l.owner.dbkev)
(all attributes)
After the results of the above RETRIEVE are placed in RB, KMS traverses
the functional schema and determines which attribute-value pairs represent
scalar multi-valued functions. Once these pairs are :dentified, thev are
updated as shown below:
UPDATE ((FILE = ClT.set_type_l.owner) AND
(CIT.set_tvpe_l.owner = ClT.set_tvpe_l.owner.dbkev) AND
(attributel = valuel)

(set_tvpe_I = ClT.run_unit.dbkey)

AB(functional) record with identical attribute-value pairs to those of the
owner record, with the exception of the attribute-value pair whose atiribute
name is the same as the set name. This attribute is given the value of the
database kev of the current of the run-unit. As KMS Jdid in . 2) ubove, the
owner record of the set type occurrence 1s retricved with the resuits <tored in
RB. KMS then maps the following ABDL INSERT request:
INSERT (< FILE, CIT.set_tvpe_x.owner ~.
< ClT.set_type_x.owner. CIT.set_type_x.owner.dbkev -.
< data iteml, valuel >,

< data item_n, value_n>.
< set_tyvpe_X. CIT.run_unit.dbkey >

record representing the scalar multi-valued function that posseses the database
kev of the set owner. However, the attribute whose name 1s the sume as the
set tvpe is assigned the value of the dbkey of the current of the run-un:t [his
1s accomplished by retrieving the ABifunctional) record representuy the e
owner. After the attribute-value pairs representing scalar muiti-sajucd

62

- bl o e e

functions are retrieved, they are used to retrieve the relevant records. Each
record in RB will have a new attribute-value pair inserted in it whose values
are the same as those in RB, except for the attribute whose name corresponds
to the set type member; this value becomes the database key of the current of
the run-unit:
INSERT (< FILE, CIT.set_type_x.owner>,
< CIT.set_type_x.owner, CIT.set_type_x.owner.dbkey >,
< data_item_1, value_I >,

< data_item_n, value_n>,
<set_type_x, CIT.run_unit.dbkey>)

b. Information in Member Record

The mapping of the CONNECT statement applied to member record is
much less complex then when applied to an owner record. Again KMS must ensure
that the record type is a member of the specified set and that the insertion clause of the
set is manual. However, the existence of scalar multi-valued functions is irrelevant
because we will update all records whose database key is the same as the database kev
of the current of the run-unit. This is due to the transformation algorithm specifying
the set membership requirements. ,

The attribute of the attribute-value pair whose attribute name is the same
as the set name is updated to equal the value of the database key of the set owner.
The ABDL request is:

UPDATE (‘FILE = record_type_x) AND
CIT.run_unit.dbkey))
(set_tvpe_v = ClT.set_tvpe_y.owner.dbkey) KMS then passes the request to

(record_type_x

KC where it is executed.

E. MAPPING CODASYL-DML DISCONNECT STATEMENTS
The DISCONNECT statement is the opposite of the CONNECT statement in
that it disconnects the current record of the run-unit from the specified set type(s).
Once disconnected, the records are simply detached from the set tvpe(s) and they
remain in the database. The svntax of the DISCONNECT statement is:
DISCONNECT record_tvpe_x FROM set_tvpe_l, ..., set_tvpe_n
The requircments for the statement are that the current of the run-unit be a member of
the specified set typesis) and that the record be removed from tie set tvpes that are

current.

63

The DISCONNECT statement is similar the CONNECT statement in that in
that it has several possible results, dependent on whether the function information is
| contained in the set owner or set member record. However, the key is whether the
’ function set is a singleton, or whether it has multiple members. The DISCONNECT
| statement could cause an attribute value to be nulled out, or a single AB(functional) -
record could be deleted, or a set of AB(functional) records could be deleted. The
rationale behind these possibilities is explained in the following paragraphs.
If the information regarding the disconnection concerns a Daplex function
represented by a network set owner record, then the function set is either a singleton or
it contains multiple members. If the function set is a singleton we want KMS to null
out the value of the attribute whose name is identical to the set type name. KMS
generates the following ABDL request:
UPDATE((FILE = CIT.set_type_y.owner) AND
CIT.set_type_v.owner = ClT.set_type_v.owner.dbkey)
set_type_v = NULL)
If the above request is applied to a the representation of a scalar multi-valued function,
all of the relevant AB(functional) records will be updated to reflect the null value.
Otherwise a single AB(functional) record will have a value nulled out.
If the function set has multiple members KMS deletes all of the AB(functional)
4 records with matching database key and function value. The mapping is as shown
below:
DELETE ((FILE = CIT.set_tvpe_v.owner) AND
(CIT.set_tvpe_y.owner = ClT.set_type_v.owner.dbkev) AND

(set_tvpe_v = CIT.run_unit.db_key))
Again, the above would delete all of the matching AB(functional) records if a scalar

multi-valued function is part of the owner record type.

If the AB(functional) record to be deleted is a member record, then, by definition
of the schema transformation, we are updating a singleton function set. KMS will null ?
out the value of the applicable attribute as indicated in the following ABDL request:

UPDATE ((FILE = record_type_x) AND
(record_tyvpe_x = CIT.run_unit.dbkey) AND
(set_tvpe_v = ClT.set_tvpe.owner.dbkey))
(set_tyvpe_y = NULL)

64

e easEm. A & A S e s AN N B A A AN

B G T T S AT N A A AT AT WA X RN WA AT AN IS AN SN

Prior to mapping the MODIFY statement it should be noted that the
CONNECT and DISCONNECT statements are used to modify attribute-values
representing functions in the AB(functional) database. In order to perform these

modifications the attributes are disconnected from the set type occurrence, modified,

and then reconnected to the set type occurrence.

F. MAPPING CODASYL-DML MODIFY STATEMENT

The MODIFY statement either alters the entire current record of the run-unit or
it modifies specific data items in a the current record. The syntax of the MODIFY
statement updating an entire record is:

MODIFY record_type_x The syntax of the MODIFY statement to alter specific
data items of the current record of the run-unit is:

MODIFY item_I, ..., item_n IN record_type_x In each of the aforementioned
instances, the data items that are to be modified must be supplied by the user. KMS
will then retrieve these data items from the UWA of the specified record and map the
following ABDL request:

UPDATE ((FILE

(record_type_x

record_type_x) AND
CIT.run_unit.dbkey))

(data_item_i = user_vaiue_i)

The above UPDATE request is repeated for each field of the record that is to be
modified. The only change to the UPDATE would be reflected in the individual data
items.

G. MAPPING CODASYL-DML STORE STATEMENTS
The STORE statement creates a new record occurrence and establishes it as the
current of the run-unit. Prior to inserting the record, however, it is constructed by
having its field values stored in UWA. The syntax of the STORE statement is:
STORE record_type_x The key factors in mapping the STORE statement are:
(1) Set selection status.
(2) Insertion clause.
(3) Duplicate condition.
As defined in the schema transformation algorithm, the set selection status is always
BY APPLICATION. Additionally, the STORE statement requires that the inserticn
clause of the pertinent set tvpes be AULTOMATIC. Furthermore, the interface checks

the dup_flag field of the nattr_node of Figure 4.7 to determine if any of the data items

-

- ==

of the record being inserted has a DUPLICATES NOT ALLOWED clause assigned to
it. Should it be determined that one or more fields of the record have the clause
associated with it, a RETRIEVE request is formed to see whether or not a duplicate
record already exists in the database. Thus, the mapping of the STORE statement

consists of an INSERT request to store the request and possiblv a RETRIEVE request
to determine the status of duplicates.

Once the above requirements are met KMS must ascertain the status of Daplex
imposed overlap constraints. As discused in Chapter V, the Overlap Table maintains a
list of which set types representing functional subtypes have overlap constraints
declared. It is essential that the overlap status be verified in order to maintain the
integrity of the database. The mapping of the STORE statement then proceeds with
KMS verifving the duplicate status. If data items have been designated DUPLICATES
NOT ALLOWED the following ABDL request if formed with the results being placed
in UWA:

RETRIEVE ((FILE = record_type_x) AND

(data_item_i = user_value_i))
(record_type_x)
Next KMS forms an INSERT request:
INSERT (< FILE, record_type_x>, <record_tvpe_x, ***>,

<data_item_}, user_value_i>,

< set_tvpe_v, CIT.set_type_y.owner.dbkey >)

The data items values are user supplied and retrieved via UWA.

H. MAPPING CODASYL-DML ERASE STATEMENTS

The ERASE statement deletes records from the database. When mapping this
statement it is imperative that we consider the constraints imposed by the rules of
CODASYL-DML as well as those imposed by Daplex. The CODASYL-DML
limitation is that the record(s) to be deleted cannot be an owner of a non-null set tvpe
occurrence.

In examining the Daplex requirements we must evaluate the Daplex equivalent of
the CODASYL-DML ERASE statement, the DESTROY statement. The DESTROY

66

- o m & A

- e

statement is used to remove entities from the database. If the entity type that is being
deleted has any entity subtypes in its hierarchy, then these subtvpes are also deleted;
the entire hierarchy of the entity type is deleted. However, there is a significant factor
that comes into play when processing the DESTROY statement. If the entitv being
deleted is referenced by a database function, then the DESTROY statement is aborted.
The ERASE statement has two options, the ERASE ALL option and the ERASE
option. The two options are presented in the following subsections.

1. The ERASE Option

The ERASE statement without the ALL option deletes only one record from

the database, the current of the run-unit. Its syntax is:

ERASE record_type_x '
Recalling the CODASYL-DML constraint, we realize that KMS must form a

RETRIEVE request to determine if there are any sets whose members are connected to

the specified record. This is accomplished by checking to see if there are any set type

occurrences where the owner database key is the database key of the current of the
run-unit. In order to meet both the CODASYL-DML and Daplex imposed
constraints, KMS must form two separate RETRIEVE requests for each ERASE
statement:
(1) Retrieve all set occurrences where the current of the run-unit is the owner.
(2) Retrieve all set occurrences where the current of the run-unit is a member.
The ABDL translation being:
RETRIEVE ((FILE = CIT.set_type_v.member) AND
(set_type_y = CIT.run_unit.dbkey))
(set_type_y)
If the above request places any set types in RB then the ERASE statement does not
satisfy the CODASYL-DML constraints and it is aborted. If RB is empty then KMS
{orms the next ABDL request:
RETRIEVE ((FILE =CIT.set_type_v.owner) AND
(set_type_y = CIT.run_unit.dbkev))
(set_type_y)
If this request results in an empty RB then the Daplex constraints were satisfied and
KMS continues mapping the ERASE statement as follows:
DELETE ((FILE = record_tvpe_x) AND
(record_type_x = CIT.run_unit.dbkey))

In mapping the ERASE option KMS always issues the first RETRIEVE
request for execution by KC. The results of the first request will determine whether or

not the two remaining requests are issued or if the ERASE transaction is aborted.

2. The ERASE ALL Option

The second option of the ERASE statement is the ERASE ALL option. [t

deletes every record in the hierarchy of the current of the run-unit. the svntax of the
ERASE ALL statement is:

ERASE ALL record_type_x
In this instance the constraints imposed by CODASYL-DML clash with those imposed
by Daplex because of the requirements explained above and therefore the statement is
| not translated in this implementation. It should be noted that the lack of an ERASE
ALL option is not considered to critical because the same effect can be obtained by the
repeated use of separate ERASE statement, if the constraints are met.

68

I

VII. CONCLUSIONS

As previously mentioned, the conventional approach to the design and
implementation database management systems (DBMS) has been based upon the
premise of a single data model with its model-based data language. This methodology
restricted a DBMS to transactions solely on the specified model and in the specified
data language, resulting in the proliferation of single-model, single-language systems
with limited flexibility and extensibility. The obvious need for increased efficiency and
portability in DBMS has highlighted the requirement for a system that can support
databases based on the five major data models using the respective model-based data
languages, specifically: functional/Daplex, hierarchical, DL/I, relational/ SQL,
network, CODASYL-DML, and attribute-based/ABDL. Hence, the Multi-Lingual
Database System (MLDS) has evolved, allowing a user to access and interact with
numerous databases based on various data models via their corresponding data
languages.

While MLDS allows the user to access databases based on the five major data
models using their respective data languages, this thesis has presented the partial
implementation of a first step toward making MLDS a truly Multi-Model Database
System (MMDS). The primary goal of this work is to access a functional database via
CODASYL-DML transactions, achieving interaction across the artificial boundaries of
data models that the conventional approach to DBMS has vet to cross.

A. A REVIEW OF OUR WORK

We have fully implemented a language interface layer (LIL) that is based on the
LIL of the network interface of MLDS as implemented by Emdi [Ref. 19]. The
difference, however, is that the LiL of this thesis allows the user to access a database
that is based on either the network data model or the functional data model. [f the
desired database is based on the network data model, then the user inputs his
transactions using the data model-based data language, CODASYL-DML. On the
other hand, if the desired database is based on the functional data model, LIL
transforms the functional schema into a network schema and the user is then allowed

to access this transformed database using CODASYL-DML transactions.

VRWPUWLUN WS

The kernel mapping subsystem (KMS) should be modified as described in
Chapter VI of this work in order to allow the CODASYL-DML transactions to
properly manipulate the AB(functional) database that has become the target database.
KMS translates the CODASYL-DML transactions to their equivalent ABDL
transactions somewhat differently from the translation designed by Wortherly [Ref. 3]

and implemented by Emdi [Ref. 19], due to the fact that the target database is an
attribute-based representation of a functional database rather than an attribute-based ’
representation of a network database.

The kernel controller subsystem (KCS) was not implemented as a part of this
thesis work. This was due to the uncovering of a problem in January 1987 during the
integration of MLDS with the Multi-Backend Database System (MBDS). This
problem: prevented the connection of KCS to the kernel databace system (KDS) and
would not have permitted the actual test and evaluation of KCS. Although KCS was
not implemented, it was examined and thought to entail only minimal changes to the
existing KCS of the network interface of MLDS. The modifications are similar to
those described by Rodeck [Ref. 2].

B. FUTURE RESEARCH

Rodeck’s design [Ref. 2] and the work completed in this thesis present a bright
picture for the emergence of MMDS. It is anticipated that the unfinished work from
this thesis will eventually be completed. The remaining work is to implement the
translation schema of the CODASYL-DML statements as described in Chapter VI,
which entails altering the existing KMS and KC of the network interface of MLDS.
Once finished we will have created a complete and full interface allowing the accessing
of a functional database via CODASYL-DML transactions.

Along with this interface, the Laboratory for Database Systems Research, Naval
Postgraduate School, Monterey, California is continuing to examine other interfaces
that should lead to further breakthroughs. Current work includes that of Zawis
[Ref. 24], which implements a means for accessing a hierarchical database via SQL
transactions. It is expected that the ongoing research and development effort will
ultimately result in a comprehensive MMDS.

70

BRI A OC T LY o A 4T s T

10.

1.

LIST OF REFERENCES

Demurjian, S.A., The Multi-Lingual Database System, Doctoral Dissertation, The
Ohio State University, December 1986.

Rodeck. B.D.. Accessing and Updating Functional Databases Using CODASYL-
DML, Masters Thesis, Naval Postgraduate School, Monterey. California, June
1986.

Wortherly, C.R., The Design and Analysis of a Network Interface for the Multi-
Lingual Database System, Masters Thesis, Naval Postgraduate School, Monterey,
California, December 1985.

Hsiao, D.K., "New Database Systems,” Computer Science in the Naval
Postgraduate School, pp. 11-14, September 1986.

Canaday, R.E., et al, "A Back-end Computer for Data Base Management,”
Communications of the ACM, Vol. 17, No. 10, October 1974.

Naval Postgraduate School Report NPS52-86-011, The Multi-Lingual Database
System, by S.A. Demurjian and D.K. Hsiao, February 1986.

Sibley, E.H. and Kershberg, L., "Data abstraction views and updates in RIGEL,”
Proc. ACM SIGMOD AFIPS, Nat. Computer Conference. Dallas, Texas, June
1977.

Shipman, D.W., “The Functional Data Model and the Data Language
DAPLEX,” ACM Transactions on Database Systems. Vol. 6, No. 1. March 1951.

Chen, Peter Pin-Shan, “The Entitv-Relationship Model--Toward a Unified View
of Data,” ACM Transactions of Database Sysiems, Vol. |, pp. 9-36, March 157¢6.

Date, CJ.. An lIntroduction to Database Systems, Vol. 1, Addison-Wesley
Publishing Company, 1986.

Tsichritzis, D.C. and Lochovsky, F.H., Data Models, pp. 119-147, Prentice-Hail,
1982.

Kroenke, David, Darabase Processing, Second Edition, Science Research
Associates, Inc., 1983.

By, 85 54t

L)

4§ % vy e

"

"2

vamw-—r—_m—-—.w-u -——— o —— o —

13. Emdi, B., The Implementation of a Network Inierface for the Mulli-Linaual
Database System, Master's Thesis, Naval Postgraduate School, Monterey.,
California, December 1985.

14, Hsiao, D.K. and Haray, F., "A Formal Syvstem for Information Retrieval from
Files,” Communications of the ACM, V.13, No. 2, February 1970 Corrigenda. Vol.
13, No. 3, March 1970.

15, Wong, E, and Chiang, T.C. “Canonical Structure in Attribute Based File .
Organization,” Communications of the ACM, September 1971.

16. Rothnie, I.B. Jr., “Attribute Based File Organization in a Paged Memory
Environment,” Communications of the ACM, September 1971.

17. Banerjee, J. and Hsiao, D.K., The Ohio State Unuversitv Technical Report No.
OSU-CISRC-TR-77-7, 4 Methodology for Supporting Existing CODASYL
Datahases with New Database Machines, by J. Banerjee and D.K. lHsiao,
November 1977,

18. Lim. B.H.. The Implementation of a Functional Interface for the Mulii-Lingual
Database Sjystem, Master's Thesis, Naval Postgraduate School. Monterey,
Califorma, December 1986.

19. Emdi, B., The Implementation of a Network [nierface for the Mulu-Lingual
Database S.scem, Master's Thesis, Naval Postgraduate School. Meoenterey,
Califorma, December 1985.

20. Goisman, P.L., The Design and Analysis of a complete Enuty-Relationship
Interface for the Multi-Backend Database System, Master s Thesis, Naval
Postgraduate School. Monterey, California, December 1985,

21, Anthonv.J.A. and Billings. AJ., The [mplementation of a Compicte Enuty-
Relationship Interface for the Multi-Backend Database Sysiem, Master s Thesis,
Naval Postgraduate School, Monterev, California, March 1956.

22, Mever, G. and MacDougal, P., 4n Auribute-Value T'ransiation of CODASYL s ‘
Data Manipuiation Language, Ohio State University, 1982. 4

A

23. Computer Corporation of America, Cambridge, Massachusetts, Technical Report A
CCA-84-01, Daplex User's Manual, S. Fox ct al., June 1984. .

24, Zawis, J.A., Accessing Hierarchical Databased via SQL Transactions in the Mulu-
Model Database System, Masters Thesis, Naval Postgraduate School, Monterey,
California, (to be published December, 1987).

RSP R 7k AR P T

to

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station:
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterev, CA 93943-5002

Chief of Naval Operations

Director. Information Svstems (OP-945)
Navy Department

Washington, D.C. 20350-2000

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
VMonterev, CA 93943-5000

Curricular Officer, Code 37
Computer Technology

Navai Postgraduate School
Monterey, (CA 93943-5000

Professor David K. Hsiao, Code 52Hq
Computer Science Department

Naval Postgraduate School

Monterev, CA 93943-5000

Professor Steven A. Demurjian

Computer Science and Engineering Department
The Unuversity of Connecticut

200 Glenbrook Road

Sicrrs, CT 06268

[.icutenant Harrv Coker, Jr.. LS\

Code R620

Defense Communications Engineering Center
Reston. VA 22090-5500

Beng Hok Lim

307, Bedok North Ave 3
=]1-347, Singapore 1646
Repubiic of Singapore

No. Copies

EY
-~

to

()

tJ

N TSP . W) AT N LN
R K T O WL AN ".A"f.'la:"k"‘-"ﬁ‘ '!'.‘*‘»'l‘.‘k'

A
e
L o
A
R

.

.

’\

4

ms
H
[
I IyNNINS S

E:

IS S T R LR) S LAME 2 WE M R B G R aA

