
R-AI13 202 ACCESSING A FUNCTIONAL DAT99ASE YIA CODASYL-DNL 1
TRANSACTIOUS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLASSIFIED FIG 12/5 NM.

Eomhmhhhhmmmhl
mhhomomhhhmmlmEhhmhhhhmmmhl
II."'.s

24-

NA~ :t236

'"'agoLW

- .-.. ~ ** ~ 1w~ - 25 LW-4 -. 6 4 .W W rW

__- lo

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DflILL- uei-

~0:_

THESIS
ACCESSING A FUNCTIONAL DATABASE

VIA
CODASYL-DML TRANSACTIONS

by

Harry Coker, Jr.

June 1987

Thesis Advisor: D. K. Hsiao

Approved for public release; distribution is unlimited.

DTICSELECTE
AUG 1 719870

E

unclassi fied-
Si[CUM'Y CjASAiIICATION 06 TWI PAGF 9

REPORT DOCUMENTATION PAGE
to REPORT SECURITY CLASS'. CATION 1b RESTRICTIVE MARKCINGS

unc las si fi ed_______________________

Ile SECURIT CLASSIFICAtION AUTHORITY IOISTRIBUTION/ AVAILABILITY OF RiPoRr

lb ECLSS'lIC~iOODWNGA~iG SHIDLEApproved for public release;
Zb OCLASF'CTON 0*NGA0N SCHDUI distrIi but ion is utnli imit ed.

S PEROIFM'N4NG ORGANIZATION REPORT NUMER($) S MONITORING ORGANIZATION REPQRT NuVBPER($I

6a NAME Of PERFORMING ORGANIZATION 16b OFFICE SYMBOL ?a NAME OF MONITOAiNG ORGANIZATION

Naval Postgraduate School if aplcbe NavalI Post gradua te Schiooli

IS ADDRESS (CiFy Stiff. andlill"Code) ?b ADORESS(Cory. Staret. and IIP Code)

Mionterey, California 93943-5000 MIonterey, California 93943-SOO0

@a NAME OF FUNDING d PONSORNG 8 b OFiICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENrFICAtION YjUMOIR
ORGANIZATION (it aposcable)

Sc ADORE SS Kpiry. State arid ZIP Code) 10 SOURACE OF FIJNDING NuMBGERS
PROGRAM PROJECT ITASK AOR~ KJNIT
ELEMENT NO NO NO ACCE SSO'D NO

'IIjIIVd eu'~ ~u''a'n ACC ESS ING A FUNCT IONAL DATrABAS E VIA CODASY I.-R\M L
TRANSACTIONS

PERSONA, AUTHOR(S) Coker ,Ha rrv Jr.

* j?~OF FE0 In " ME (COvvRED r~DT $RPR Ya Month Dar) S' PACj tO0-%1
NasTer sines.. F. ~ Mto 1987 J1une I74

6 SLP-'LfkYNYARY NOTAt;ON

(OSArI CODES 18 SUBJECT TERPAS (Coninue on reverse of flQctuary and #dentIy, by blo(k n.vsnber)

sI LO GROUP SueGROUP MILDS, Multi-lingual Database System; !['I)S, Mfulti

Backend Database System; Functional Data Model ;
Network [)ati MIodel* CODASYI -W DM Dip Io

9 ABSTRACT (COi~tIAue OAl Fevers# if fl#(qUai) and edentok by block nufflbA'j

Conventi.onal ar-'-oaches to the design and implementation of database systems have
been based upon t!_' premise of a single a ata nodel with its model-based data lanaua ~e
thus restricting the database system to transactions based solely on a specific rrodel
and written in a specific data language., This traditional approach has drastically
hindered~ the widespread interaction of atabase systems based on various data models
and languages. As ar, alternative to this traditional and less effective appioach to
database systems, the multi-lincrual database system (IILDS) has evolved. UIDS has
allowed the user to access and initeract with numerous databases in various data models
via their correspondi.ng data languages.

This thesis implements a methodollogy for accessing and manipulating databases
stored in a particular data model via transactions of a separate data nrodti;
specifically, a functional database is accessed via CODASYL-DML transactions. This
interface is the initial move toward extending MLDS to a thoroughly Multi-Model
Database Sy~stem (1MS).

.0 :) S'R 3JON AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASS FitCATION

00 FORM 1473, 64 MAR 81 APR #a t-on -4y be used unti-nMI 0oted SECURITY CLASS F-CAtKN CUF *.,S PACE
Ali~~~~ ~ ~~ at~ sdtA 41 ob11 ucasf i ed

Approved for public release; distribution is un mited.

Accessing a Functional Database
Via

CODASYL-D.ML Transactions

bv

Harry Coker, Jr.
Lieutenant , United States Navy

B.S., United States Naval Academy: 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPLTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author:

Approved by 4 t)~)~kC(

D.K. Hsiao, Thesis Advisor

S A. Dem u~ji, Second Readc

V. Lum, C Ailan.
Department of Comnputer Science

Dean of I nformation and Polw'v Sc~ie6~es

2p

L WNAERNM9111 Mil '"iliA

ABSTRACT

Conventional approaches to the design and implementation of database systems

have been based upon the premise of a single data model with its model-based data

language, thus restricting the database system to transactions based solely on a specific

model and written in a specific data language. This traditional approach has drastically

hindered the widespread interaction of database systems based on various data models

and languages. As an alternative to this traditional and less effective approach to

database systems, the multi-lingual database system (MLDS) has evolved. M LDS has

allowed the user to access and interact with numerous databases in various data

models via their corresponding data languages.

This thesis implements a methodology for accessing and manipulating databases

stored in a particular data model via transactions of a separate data model; specifically.

a functional database is accessed via CODASYL-DML transactions. This interface is

the initial move toward extending MLDS to a thoroughly Multi-Model Database

System (M M DS).-

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0 ,-

Ju3tifioaltlon

Distribut ton/

Avallabillty C0o68

[Avail and/or
Dist SpolaS

3
4-

THESIS DISCLAIMER
U

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

9,

TABLE OF CONTENTS

1.INTRODUCTION10
49 ~A. MOTIVATION 10

B. SYSTEM ORGANIZATION.............................11
1. The Multi-Lingual Database System 11
2. The Multi-Backend Database System.................... 12

C. THESIS OVERVIEW 14

II. THE DATA MODELS...................................... 15
A. THE FUNCTIONAL DATA MODEL AND DAPLEX 15

I. The Data Model 15

2. The Data Language................................. 15
9. B. THE NETWORK DATA MODEL AND CODASYL-DML 16

I. The Data Model 16
2. The Data Language................................. 19

C. THE ATTRIBUTE-BASED DATA MODEL AND ABDL.......20
1. The Data Model 20

2. The Data Language.................................. 21

HL DATABASE MAPPINGS....................................22)

A. BACKGROUND MATERIAL 23
B. MAPPING THE FUNCTIONAL(DAPLEX)

MODEL(LANGUAGE) TO THE NET WORK(CODASYL.
DM1L) MODEL(LANGU AGE)............................

1. Available Strategies................................. 23
2. The Selected Mapping Strategy........................ 24

C. DATA-MODEL TRANSFORMATIONS REFERE\(LD
.N THIS THESIS 2.4

I. The Functional to ABDM Mapping 25

2. Functional to Network Mapping 26

IV. THE DATA STRUCTURES 28
A. DATA SHARED BY ALL USERS 28

1. Data Shared by All Users of a Network Database 29
2. Data Shared by All Users of a Functional Database 32

B. DATA SPECIFIC TO EACH USER 38

V. FUNCTIONAL TO NETWORK TRANSFORMATION
A LG O R ITH M S ... 41

A. ENTITY TYPES .. 42
B. ENTITY SUB-TYPES 47
C. NON-ENTITY TYPES 49

D. UNIQUENESS CONSTRAINTS 51
E. OVERLAPPING CONSTRAINTS 51
F. SET TY PES .. 52

VI. TRANSLATION OF CODASYL-DML STATEMENTS TO
ABDL REQUESTS .. 54

A. OVERVIEW OF THE DESIGN 54

B. MAPPING CODASYL-DML FIND STATEMENTS 55
1. The FIND ANY Statement 55

2. The FIND CURRENT Statement 56
3. The FIND DUPLICATE WITHIN Statement 56

4. The Find FIRST/LAST/NEXT, PRIOR Statements 57

5. The FIND OWNER Statement 59
6. The FIND WITHIN CURRENT Statement 59

C. MAPPING CODASYL-DML GET STATEMENTS 60

1. The G ET Statem ent 60
2. The GET recordtype Statement 60
3. The GET item_1, ..., item_n Statement 60

D. MAPPING CODASYL-DML CONNECT STATEMENTS 60
1. Sets Representing an ISA Relationship 61

2. Sets Representing Daplex Functions 61
E. MAPPING CODASYL-DML DISCONNECT

STA TEM EN TS 63
F. MAPPING CODASYL-DML MODIFY STATEMENT 65

6

G. MAPPING CODASYL-DML STORE STATEMENTS 65

H. MAPPING CODASYL-DML ERASE STATEMENTS 66

1. The ERASE Option 67
2. The ERASE ALL Option 68

VII. CON CLUSION S .. 69

A. A REVIEW OF OUR WORK 69
B. FUTURE RESEARCH 70

LIST OF REFERENCES .. 71

INITIAL DISTRIBUTION LIST 73

7

~ A ~.1X

LIS'" OF FIGURES

1.1 The Multi-Lingual Database System (MLDS) 12

1.2 Multiple Language Interfaces for KDS 13

1.3 M BD S Architecture ... 14
2.1 The University Database Schema 17

2.2 Graphical Representation of Univ Schema 19
2.3 Attribute-Based Data Model Record 21

3.1 MLDS Mapping of the Network and Functional Data Models 22

3.2 Direct Language Interface Approach 25
3.3 The AB(functional) University Database Schema 27
4.1 The dbid node Data Structure 28
4.2 The net dbidnode Data Structure 29

4.3 The nset node Data Structure................................... 30
4.4 The set select_ node Data Structure 30
4.5 The nrec node Data Structure 31

4.6 The nattrnode Data Structure..................................1

4.7 The fun dbid node Data Structure 32
4.S The entnode Data Structure 33
4.9 The gsn sub node Data Structure 34

4.10 The ent non node Data Structure 35

4.11 The sub non node Data Structure 35
4.12 The dernon node Data Structure 36
4.13 The overlapnnode Data Structure 36
4.14 The function node Data Structure 37

4.13 The ent node list Data Structure 37
4.16 The sub node list Data Structure 37

4.17 The ent value Data Structure 38
4.18 The user info Data Structure 38

4.19 The vlinfo Data Structure 39

8ILA8 he I se in fo D t tu t r3

4.20 The dm1_info Data Structure 39
4.21 The dap info Data Structure.................................... 40
5.1 The Functional Schema of the University Database Transformed to a

Network Schema ... 43
5.2 Entity Type Declaration 46
5.3 A functional entity type and its network representation 48
5.4 Entity Subtype Declaration 49
5,5 A functional entity subtype and its network representation 50

* 40%

9

I. INTRODUCTION

A. MOTIVATION

Traditionally database systems have been limited to a single data model along
with its respective model-based data language. This conventional approach to

Database Management System (DBMS) development has resulted in the evolution of a

DBMS that has restricted the user to transactions on a single data model and its

corresponding data language.

Ideally. an effective and practical DBMS should be able to access and interact

with numerous databases based on various data models via their respective data

languages. Thus, the motivation behind Mtulti-Lingual Database System (MLDS) is to

have one DBMS that is able to support numerous databases that may be structured in

various data models by executing transactions written in their model-based data

languages [Ref 1]. MLDS is a modern approach to DBMS development that is

attacking the problems of the older, conventional, homogeneous database system

designs that are currently in abundance. More precisely, MLDS allows the user to

access a DBMS that is comprised of a hierarchical DLI interface, a relational SQL

in'erface. a network'CODASYL-DML interface, a functional, DAPLEX interface, and

an attribute-based'ABDL interface; the system functions as if it were a heterogeneous

collection of database systems.

The primary advantages to be gained from M LDS are (1) reusability of database

transactions developed on existing systems, (2) more economical and efficient hardware

upgrades by spreading the upgrade benefit to each of the data models rather than a

single model, and (3) an ability to support a variety of databases built around any of the

major data models.

Up to this point MLDS has permitted the user to access and interact with several

databases in the five major data models via their corresponding data languages. This

thesis implements a design methodology, [Ref. 21, for accessing and manipulating

databases stored in a particular data model via transactions of a separate data model;

specifically a functional database is accessed via CODASYL-DML transactions. This

interface is the initial move toward extending the MLDS to a thoroughly Multi-Model

Database System (MMDS).

10

B. SYSTEM ORGANIZATION

In ordpr to meet the aforementioned capabilities, MLDS is supported by an
underlying database system that is fast, efficient, and effective, therefore necessitating a
powerful kernel data model and kernel data language, as well as a high-performance.

high-capacity database system [Ref. 3: page 121.

The kernel data model and the kernel data language are the underlying model and

language for MLDS. The attribute-based data model and the attribute-based data

language were chosen as the kernel data model and the kernel data language for

reasons that will be explicitly cited and analyzed in the following chapter. The software

multiple-backend approach is used to provide the required high-performance and high-

capacity underlying database system that MLDS requires. This system, known as the

Multi-Backend Database System (MBDS), will be examined later in this chapter.

1. The Multi-Lingual Database System

The system structure of MLDS is depicted in Figure 1.1. The language
interface layer (LIL) supports user interaction with the system via a user-selected data

model (UDM) with transactions written in a corresponding user data language (UDL).

The user's transaction is routed to the kernel mapping subsystem (KMS) by LIL, where

KMS performs one of two possible tasks. It either transforms the UDM-database

definition into an equivalent kernel data model (KDM) database definition: or it

translates a UDL transaction into an equivalent kernel-data-language (KDL)

transaction.

The first of the two possible tasks of KMS occurs if the user indicates that a

new database is to be created. KMS forwards the KDM-database definition to the
kernel controller subsystem (KCS), where the KDM-database definition is then sent to

the kernel database system (KDS). Upon completion, the user is notified by I.IL, via

KDS and KCS, that the database definition has been processed and that the loading of

the database may continue.

The second of the possible tasks of KMS occurs if the user chooses to process

an existing database. KIS sends the KDL transaction to KCS, which in turn

forwards the KDL transaction to KDS for execution. When KDS has finished

executing the transactions, the results, in KDM format, are sent back to KCS. where

they are routed to the kernel formatting subsystem (KFS). KFS reformats the results

into UDM format and displays them , via LIL, to the user.

11

KMS

KFS

UDM: User Data Model Information Flow

UOL: User Data Language
LIL: Language Interface Layer Data Exchange
KMS: Kernel Mapping System
KC: Kernel Controller (Data Model
KFS: Kernel Formatting System
KDM: Kernel Data Model(Qf Data Language
KDL Kernel Data Language
KDS: Kernel Database System Module

Figure 1.1 The Multi-Lingual Database System (MLDS).

LIL, KMS. KCS, and KFS make up a language interface of MLI)S. [-our

language interfaces exist, one for each of the respective UDM,UL)i. combination..

This thesis modifies the networkiCODASYL-DML language interface in order to allow

the accessing and manipulation of a functional database via COI)ASYL-DML

transactions. KDS, on the other hand, is a single and major component that is

accessed by all of the languages interfaces, as shown in Figure 1.2.

2. The Multi-Backend Database System

The traditional approach to a DBMS is to have the database-system software

running as an application program on a mainframe computer system. This requires the

DBMS to share the use and control of the resources with the other applications of the

mainframe system. It is obvious that, with the traditional approach. as the workload

of the DBMS increases, the performance of the DBMS degrades. (Ref. 4: page 141

The software shigle-backend approach, developed by Bell Laboratories [Ref. 5],

offloaded the database-system software from the mainframe computer to a separate

dedicated computer and partially solved the problems of performance degradation and

resource and control sharing.

12

Figure 1.2 Multiple Language Interfaces for KDS.

The Multi-Backend Database System (MBDS) uses a software multiple-

backendapproach to overcome the performance problems that remained in the single-

software backend approach by utilizing multiple backends connected in parallel. 1 he

backends have identical software and their own disks. Thcre is a backend controller.

the master, which supervises the execution of the database transactions and the

interfacing of hosts and users. The backend controller is connected to the individual

backends by a communication bus. The backends, or slaves, perform the database

operations with the database stored on the dedicated disk system of each backend.

Users access MBDS through either the host or directly through the backend controller.

Figure 1.3 shows the architectural configuration of MBDS.

MBDS realized piribrmance gains over the single-software backend system in

two significant areas. First, by increasing the number of backends, while maintaining

the size of the database and the size of the responses to the transactions at a constant

level, MBDS yields a nearly reciprocal decrease in the response times of the user

transactions. The number of backends corresponds directly to perjbrmance gains in

terms of reduction in response-time. Secondly, by increasing the number of backends

proportionally with an increase in the size of the database and in the size of responses

to user transactions. MBDS produces invariant response-times for the user

transactions. This relates the number of backends to the capacity grovth of NBI)S in

terms of response-time invariance. [Ref. 6: page 111

13

-4

Backend
Storage

To Host j < i
Compute B'ckenP s

Controller

Communications
Bus

Figure 1.3 MBDS Architecture.

C. THESIS OVERVIEW

This thcsis implenicnts the initial step, as described by Rodeck [Ref. 21. in a move

toward the Multi-Model Database System (MMDS). Fundamental to this work arc

the Multi-Lingual)atabas System and the .,ulti-Backend l)atabase Svstci as

described earlier in this chapter. Additional background material is providcd in

Chapter II. where the functional, network, and attributc-bascd data models arc

discussed along with their respective model-based data languages. Chapter III prcecnts

the possible mapping strategies fbr translorning a functional database into a network

database and the generalized translation of CODASYL-DML statement. into

attribute-based data language requests. Of the three approaches discussed in the

chapter, the best solution is chosen and described in greater detail.

Contained in Chapter IV are the various data structures required for this

implementation. Each of the data structures is depicted and described along with it's

use in the system.

The actual mapping methodology is given in Chapters V and VI. Chapter V %

discusses the transformation of functional structures into network structures; each

structure is described in detail. The translation of CODASYL-DML statemcnts into

attribute-based data language requests is specified in Chapter VI. Finally, the

conclusions are presented in Chapter VII.

14

',4

i. THE DATA MODELS

This chapter provides material that will enable the user to become familiar with

each of the three data models whose terminologies are needed in this thesis, the

functional model, the network model, and the attribute-based data model.

A. THE FUNCTIONAL DATA MODEL AND DAPLEX

1. The Data Model
Sibley and Kershberg [Ref. 71 first introduced the notion of a functional data

model while Shipman [Ref. 81 completed the final de'sign of the data model. The
functional data model is primarily a logical database model that provides a somewhat

natural view of the real world based on entities and relationships, IRef. 9: page 91. The

model is based on sets and relationships and maintains a high degree of data

independence.

* An entity can be considered a distinctl. identifiable "thing-, while a

relationship, or function, is an association among these things. Entities of similar

structure are collected into entity sets. A set of functions will be affiliated with each
entity, while the role of an entity in a relationship is the function that it performs n

the relationship [Ref. 9: page I l. A property is a piece of information that ,'escribes

an entity, while an association is a many-to-many relationship among en:ities, JRef 1aui.

A weak entity, or subtype is an entit' whose existence is dependent on another enti'N.

it's supertvpe or ancestor, in a way that the subtype cannot exist if it's supertnpe does

not also exist. A subtype exists such that entity type A is a subtype of entaty t~pe B u:

and only if every type A is necessarily of type B. Suht'ping estabishes an IS:\

relationship among entities and implies value inheritance. Subtypes also hate a set of'

functions associated with them.

Functions can be either single-valued or multi-valued and those that are defined

over entities (types or subtypes) can return scalar values, entities, or et of entitic..

Scalar values are atomic values which have a literal representation.

2. The Data Language
Whereas a data definition language (DDL) provides tr the defin,: on cr

description of databases, a data maniputation language (DIL) supports the a,,,essm
or processing of the databases. Daplex is the DDL and the DMlL for the u!,,ct1o1,1,

15

data model. Most of the concepts on which Daplex is based come from previous work

in database management; however. Daplex managed to integrate them into a single

framework, the functional data model, and provided a straightforward and almost

natural syntax.

It was intended for Daplex to model real-world situations in a manner that is

very similar to the conceptual constructs that a person ught use when focusing on

those same situations: its goal is "to provide a 'conceptually natural database inter!_,:e

language" [Ref. 81 and a database system interface which permits the user to more

directly model the way he she attacks the database manipulations. This conceptual

naturalness simplifies the use of Daplex since the translation between the user s llg, .al

model and models physical representation in the syntax of Daplex is fairly direct.

The fundamental data definition constructs of Daplex are the entity and the

function, with the function mapping a given entity into a set of target entities. The

University database schema defined by Shipman and referenced throughout this theeis.

is presented in Figure 2.1 and a graphical representation of the database is shown in

Figure 2.2.

B. THE NETWORK DATA MODEL AND CODASYL-DML

The retwork da:a model is one of the oldest of the data models ard rnav se

thought of as an extended form of the hierarchical data model. [Ref If)- page :12! It

wa developed in the iate 1960's by the Con!terence on Data S}item language%.

Database lask Group. (CODASYI. DBTG). which .xlded quite a cornprehell,.1e

specification. IRef 1I I.

I. The Data Model

A network schema is about a collection of records and sets. ihe ,chemi i' t

logtcal view of the database that defines exerv record "ield and relationship c te

datahase rhe schema contains onl% the data descrirtien. piix.icai cen%ru,'_, are

a1%,,c.c,1. th.%s the number of pathological connections tc tlhe dtdhae arcte,. r, .re

reLiced [Ref 12 page 3361.

A daa-item is sampl% a field or .in attrbtet, lierea, a record -Nnc i% *i

,.iiet.'Con of these daia-:tems. A set is a one-to-man. relation,hir "Netveen reL,,rd

types and each set type involves an owner record t'pe and a member reNor p t;e ihe

owner reccrd t'pes are the parents oC the menier reLord tL IM.h Lan bP

Lor.sidered the ldren in a one-to-mar. relatiohi-; A %et .,: dincd i-% ,peL;!.;ng

it' rame and idenrtii- :g the a'.'ner re.crd ts e and he meriher reCL'r.1 t\ o,,, A ,c,
%

,4d

DA . ILSE university IS
U e son:

employee;
U, .N up ort staff.LU Y 'l AucfIact,,.
SUBYPE studt:
SL N*YE graduate;
SL t.,YPE undergraduate;

11r course;I ' dpartment:1"Ne enro lment'
rank name IS (assistant, associate. full);

1!a semester name L$ (fall scnng summer).
N grade point IS FLOAT A.1GE 0.0 .. 4.0;

TYPE ,.rsqn IS
ENTITN

name : STRING (I .. 25);
sNG 0 .. 9) -0 00";

END ENTI Y:
SUBTYPE employee IS person

hMe address : STRING.%.. 50);0lic STRING (1I.)
plones SET OF STRINSG.(.. 7);
saiarv FLOATI
cdpendents : INTEGER RANGE 0.. 10:

END ENTITY;
SLIP. P. support staff IS employee

Supervisor: emplovee WITHNULL;
*ufti.rne : BOOLEAN;

EN1) ENTITY
SL BTYPE faculty IS employee

rank ra nk name:
teaching •SET OF course-
tenure BOOLEAN:- FALSE;
dept department;

EN t\ ~ NTTY:

SUBYPE student IS personLM~~ IY
adviser faculty WITHNULL;
major dewtrtment;
enrollmens: SET OF enrollment.

E\D ENTI ITY;
SPTIPEI Sraduate student

adviory comnmttee : SET OF facult':
END LNrlTY.

SUBTYPE undergraduate IS student

gra grade 9t M 0o-\,ar a.- RR \('E 1 .. -4" I'
l:'M) LiNI fl.

Figure 2.1 The I niersit', l)atabase Schema
I"A

V1

T YPE-orse IS

title STRING (I .. 10);
deptmt department;
semester semester name-,
credits :INTEGE

ENuthtibrY SET 01I fcly

TYEEdrfartment IS

name: STRINGL.2Y
head :facultv WIHN1. L

END ENTITY;'

TYPE enrollment IS
ENTI1TY

class : course;
,,NuT: ffae point;

UNIQUEs-sn WITIiN .person.
UNIQLE narne I l\dvatet
LNI IE title. semester WITHIN course;

OVERLAP graduate WITH faculty:;
END universirt.

Figure 2.1 . (cont'd.)

can hase one and only one record type as owner, however. more than one record tN;Vc

ma'; he members. Additionally. a member record can belong to only one in%rance of a
set. The set characteristics are summarized as follow-.:

" A set is a collection of records.
" There are an arbitrary number of sets in the database.
" Each- set has ane owner record type and one or more membher record t'.pes
* Lach owner record Occurrence definies a sct occurrence.

* 1here are an arbitrarv number of rnembcr rccurd OLLcjrrences m~ one "et
occurrence.

* A record ma% be a member of mnore than one set.

* A record may not be a member of* two occurrences of the same r-et.

* A record may be a membher and an owner ot the samne set.

Is

n

officeW aOA SA

hmada
IaSa' GA Year

ran

"Pot" f e nr

deD"ngrade

creds =

C'..

Figure 2.2 (;rapiAIa Rep.escntation of LUnv Sclhcma

2. The Data Language
CODASNIM.-I)\I is a procedural language based upon the conc p of

currency. A curreuy ind c er defines the .urrcnt posion %,ith in a file h% Imulita;rIIjru

a value of either (I i null. uhich means that it currentl, does not identzv a record or (2)

the address of a record in the database (Re I. page 5lI A rAmn-tunt is esscnra to

this notion of currenL_ and is defined as the cxecution of a pfograuui on heh.uilf L, a

user. 1 he currencx :ndicaor. thcn. ser~es as a ddiabese poinfer h% udcnt',1ing

* the current record of the run unit

* the current reCord of each record t1pc

* the current record of ech set t'.pc

lhis thesis will lnut itself to a subset of the (COl)ASN [.fl\1 opcratigi q

which were inip!ementcd as part of the (OD \S i-IL)\11. lari.age intcrIt,.e in \Ll)S

[Refs 3.13). 1 hese imnjor operations are liited hcu w

19b

* FIND identifies a record to be manipulated and marks it as the current of the
run unit.

* GET retrieves the current of the run unit.

" MODIFY updates the current of the run-unit.

* CONNECT attaches the current of the run-unit to the current occurrence of
the stated set.

* DISCONNECT detaches the current of the run-unit.

* ERASE deletes the current of the run-unit.

* STORE creates a new record occurrence and marks it as the current of' the
run-unit.

CODASYL-DML tasks are generally executed in two phases. First a FIND command

identifies a record to be manipulated and then a second DML command is issued to

perform an operation. Most importantly, it is the FIND commands that updated the

currency indicators.

C. THE AlTRIBUTE-BASED DATA MODEL AND ABDL

The attribute-based data model (ABDM) was originally proposed by Hsiao

[Ref. 141. extended by Wong (Ref. 151. and examined by Rothrie lRef. 161. It was

chosen as the native model of the MLDS because of it s excellent combination of

simplicity and power. The fundamentals of the ABDM are basic. -et the model is

capable of representing diverse data models without loss of information.

V The Data Model

ABDM is based on the attribmte-value pair or ke,%word. These attribute-value

pairs are formed from a cartesion product of the attribute names and the domattns of'

the .a ue' ,or the attributes. Ihis allows for the representation of anj, and all logical

con;cpts h. order to more fully understand the attribute-vaIue pair e must first

deti fe se\eral ether terms.

A file :1 the database contains groups of records, each of which represernts a

logicai ,)iiept. A record is comprised of at moqt one kevword for each a'tnbute

de1,n-d :n the database and a tevual portion, allo\sing for a %ert' ii dccription of the

retord or concept I igurc 2.3 sficws the general format cf an ABI)M re.ord,

K eNvord preditates are empioyed bK ABI)\1 to access the database and

ider, he " spec:K , records A keyword predicate is a .-tuple o'. the forir ,dirvctorx

attributc relarvionai operator. attribute-saiuci. A q er; o1 the datiha,e ; the:n :,e

r.Jnh :iun. *n A: ,iurn.tic normal form. o! ke\ %ord prediLa:e

20

~~ ~*~% ~ * ... %. % %

(< attribute 1, value > .< attribute 2, value_2 >, < attribute3, value3 >,
<attribute -h, value -n>, (text})

Figure 2.3 Attribute-Based Data Model Record.

A keyword predicate is satisfied only when the attribute of a particular

record's keyword is identical to the attribute of the keyword predicate and the relation

specified by the relational operator of the keyword predicate holds between the value of

the predicate and the value of the keyword predicate. Hence, a record satisfies a query

only when all predicates of the query are satisfied by certain keywords of the record.

2. The Data Language

ABDL. as defined by [Ref. 17], is the kernel data language of MLDS. It
allows five basic database operations that are capable of making numerous in-depth

transactions on the database. The database operations provided by ABDL are,

INSERT, DELETE. UPDATE, RETRIEVE, and RETRIEVE-COMMON, however,

this implementation will not concern itself with the latter operation.

ABDL allows the user to issue either a request or a transaction. A request is a
basic operation with an attached qualification. The qualification specifies the portion

of the database that is to be manipulated, while a transaction is defined as the grouring

together of two or more sequentially executed requests. The four operations used in

this work are explained below, [Ref. 6: page 10].

" INSERT places a new record into the database and is qualified by a list of
keywords.

" DELETE removes one or more records from the database and qualified by a
quer..

* UPDATE modifies records of the database and is qualified by a quer. and a
modifier. The query identifies one or more records to be updated. while :he
modifier specifies how the target record(s) are to be modified.

* RETRIEVE accesses and returns records of the database and is qualified b" a
query, a target-list, and a by-clause. The query identifies the records) to be
retrieved. 1,e target-list contains a list of output attributes, and the by-clause
niai be used to group records when an aggregate operation is specified.

Together, these five ABDI. operations provide all of the required processing to support

data-language translation.

21

MI. DATABASE MAPPINGS

For thc purpose of this thesis, data-modlel transformation is the mapping process

from a given data model to the kernel data model (ABDM), and data-Ianqmage

translation is the mapping process from a given data laniguage to the kernelI data

language (A BD L). MILDS has already implemecnted four data-modcl transformations

(hicrarchical. relational, netwvork, and functional to ABDNI) and four data-language

translations (SQL, DL'1, CODASYL-DML01, and Daplex to ABDL). This thesis makes

use of two of the aforementioned data-model transformations (nietwork to ABDM and

functional to ABDM) of Lim and Eindi [Refs. 18.19]. and one of the data-language

translations (COI)ASN*L-l)ML to AIIDL) [Ref. 191. Figure 3.1 depicts the high-lczvc

transformation; and tranqlations of the network and functional data models. It should

be noted that the databases that are transformed from the network schema anid the

functional schemna to an attribute-based schemna are represented throughout this thesis

as I B(network) and A B(functional), respectively.

Netwof kFunctional

anuae

a ~ e

Based Network Based Functional
Representation Representation

Figure 3.1 NILDS Mlapping of the Network and Functional Data Models.

The thrust of this work is (1) transformning a functionall database into a network

database and (12) modifying the CQDASY'L-DML to ABDL translation in crdcr to

22

allow CODASYL-DML transactions on an AB(network) database that has been

previously transformed from the functional data-model to the network data-model.

A. BACKGROUND MATERIAL
The MLDS mappings of network(CODASYL-DML) to ABDM(ABDL) is a

modification of the procedure developed by Banerjee [Ref 171, explicitly defined by

Wortherly [Ref. 3: pages 31-37], and will therefore only be generalized in the following

paragraph.

The key point in the mapping process is the retention of the network records and

sets; the mapping algorithm does, in fact, retain those notions through the use of

attribute-based constructs. The translation of CODASYL-DML to ABDL requests

was implemented by Emdi [Ref. 19], and as previously discussed, only a subset of the

CODASYL-DML statements were considered: FIND, GET, STORE, CONNECT,

DISCONNECT, ERASE, and MODIFY. The translation maintains the all important

notion of currency by using a Currency Indicator Table (CIT). The actual structure

and implementation of the CIT are defined in detail in a later chapter. Another

translation consideration is the one-to-many correspondences between the CODASYL-

DML statements and the ABDL requests; this necessitated a storage facility to

maintain the intermediate information for the ABDL requests. The request buffer (RB)
is used to store the information returned by the auxiliary retrieve requests (ARR), of

which several may be generated by the translation of a single CODASYL-DML

statement. With the exception of several flags and special conditions, the translation

process of this thesis is similar to that of Emdi [Ref. 191.

B. MAPPING THE FUNCTIONAL(DAPLEX) MODEL(LANGUAGE) TO THE
NETWORK(CODASYL-DML) MODEL(LANGUAGE)

1. Available Strategies

The goal of this thesis is to provide the network/CODASYL-DML user with

the means of accessing a functional database without the user having to be familiar

with the functional data-model and Daplex. As one might imagine, this task requires a

sound mapping strategy that maintains the constructs and characteristics of the target

(functional) database while allowing the CODASYL-DML statements to access this
target database. Rodeck, [Ref. 21, proposed the following mapping strategies:

DIRECT LANGUAGE INTERFACE: modify MLDS's existing LIL to allow
the transformation of a functional schema to a network schema'along with a
new language interface between the network model and AB(network).

23

" AB-AB POSTPROCESSING: create a language interface between the
AB(functional) and the AB(network) databases along with a CODASYL-DML
trans4ator.

* HIGH-LEVEL PREPROCESSING: create a functional schema to network
schema transformer along with a CODASYL-DML to Daplex translator.

The Direct Language Interface approach proved to be best suited for this
implementation and the reasons for its selection are discussed in the following section.

2. The Selected Mapping Strategy

Each of the three mapping strategies was analyzed and compared with the
other two strategies by Rodeck [Ref. 2]. The evaluation process looked at their

respective advantages and disadvantages before finally selecting the direct language
interface approach primarily because of the following implementation considerations:

• a one-step schema transformation.

* a faster schema transformation.

* highest compatibility with existing components of MLDS.
The direct language interface strategy transforms the functional database into

a network database and allows the user to access the transformed database with a
subset of CODASYL-DML statements. These statements are translated into one or

more ABDL requests and executed on the AB(network) database. Figure 3.2 depicts

the direct language approach. By comparing Figure 3.2 with Figure 3.1, one can see
that the primary difference is the addition of the schema transformer and the modified

language interface. It is the schema transformer that represents the process of
transforming tile functional schema into the network schema. With the exception of

the schema transformer, this approach is similar to the approach with the network to

AB(network) and the functional to AB(functional) transformation. The goal of the
Multi-Model and Multi-Lingual Database System can be conceptualized by placing
schema transformers between all model/language pairs, thereby arriving at a full"-

database-sharing environment.

C. DATA-MODEL TRANSFORMATIONS REFERENCED IN THIS THESIS
This section provides a high-level view of the data-model transformations that are

referenced in this thesis. In the first subsection, the functional to ABDM mapping is
presented. The functional to network mapping is introduced in the second subsection.

'2

24

LagaeItraeLnug Intrfc

Based Ntwork aAsribute

NetwrkBased Functional
Representation Representation

Fi~gure 3.2 Direct Language Interface Approach.

1. The Functional to ABD NMapping

The primary task of this mapping is to translorm the constructs of the

functional data-model into ABDM constructs. This approach shows that, given the

attribute-value pairs in a record in ABDM, the Functions of the function.al data-model

map into the attributes of the corresponding attribute-value pairs. An algorithm to

map the entity types and subtypes into ABDM constructs was dcsigned by Goisman

[Ref. 201. and implemented by Anthony and Billings [Ref. 21.

In order to represent the relationships of the functional data-model that must

exist between individual records of ABI)M, the related attributes for each related

record must be repeated [Ref. 20: page 35]. This is accomplished by using an artificial

attribute and its associated value to allow for unique mappings. The artificial attribute

is in fact a unique key for each entity type or subtype in the functional data-model,

thereby allowing for the relationships amongst entities to exist in accordance with the

unique key. The remainder of the transformation algorithm is given below:

(1) An ABDNI file is created for each entity type and subtype. The first attribute-
value pair has as its attribute "File" and its value is the entity type or subtype
name.

25

- .. , • -,, ',;" .' .".,',f .%" .€ ,"..- " €."V" " ,'; '":,%'0' a ,'' "

(2) The second attribute attribute-value pair for each ABDM file representing an
entity has as its attribute the name of the corresponding entity type. The
value of this attribute-value pair is the unique key.

(3) For each ABDM file transformed from an entity subtype, the second
attribute-value pair of each record has as its attribute the name of the
corresponding entity subtype and its value is the record consisting of its entity
supertype and its unique key.

(4) For each function applied to an entity type or subtype, an attribute-value pair
is inserted into the corresponding ABDM file. The attribute of the attribute-
value pair is the functions name and the value is the value returned by the
particular function.

Using this algorithm to transform the University database schema of Figure 2.1 results

in the AB(functional) database as depicted in Figure 3.3. The asterisks represent

relationship-dependent values.

2. Functional to Network Mapping

This subsection provides the reader with a high-level view of the mapping

algorithm described by Rodeck [Ref. rRod]. The specific implementation issues of the

algorithm are discussed in Chapter V of this thesis. As is the case in all data-model

transformations, the goal is to provide the user with a familiar and accurate

representation of the source database schema. In mapping the functional data-model

to the network data-model we are primarily concerned with the basic functional

constructs: the entity type, the entity subtype, and the non-entity types.

(1) Entity types are mapped into network records with the record name being the
0name of the corresponding entity type. Additionally, each entity type is a

member of a set type which is owned by SYSTEM.

(2) For each entity subtype, a record type must be declared with the record name
being the name of the subtype. A set type is also declared with the owner
being the subtype's entity supertype.

(3) Non-entity types map fairly directly to network constructs:

(a) Integers map to integers.

(b) Strings map into characters.

(c) Floating-points map into floating-points.

(d) Enumeration types map into characters.

(4) The functions that are applied to entity types and subtypes can be scalar,
scalar multi-valued, single-valued, or multi-valued:

(a) Scalar and scalar multi-valued functions map into attributes of the
corresponding record type of the entity type or subtype.

26

(< File, person>, < person, integer >, < home address, string >,
< office, string>, < phones, string > *. < salary,float >,
< dependents. integer >)

(< File, employee >, < employee, inte er>, < home address, string >,
< office, string.>, <phones. string > % < salary, floit >,
< dependents, integer>)

(< File, support su ot staff integer >,<supervisor, integer >, < ful_ ime7 integer >

(File, student >, < student integer>, < advisor, integer>,
< major. integer>, < enrollmerits, integer> *)

(< File, undergraduate >, < undergraduate, integer >, < gpa, float >,
< year, integer>)

(< File, course >, < course, integer >, < title, string >
< deptmt, integer>, < semester, string>, < credits, integer>)

(< File, department>, < department, integer>, < head, integer>)

(< File, enrollment>, < enrollment, integer>, < class, integer>,
< grade, float >)

Figure 3.3 The AB(functional) University Database Schema.

(b) Single-valued functions map into sets with the name of the particular
function, owned by the corresponding record type of the entity type or
subtype.

(c) The mapping of multi-valued functions is performed depending upon
whether the multi-valued function is a one-to-many or a many-to-many
relationship.

Chapter V provides detailed explanations of the mapping algorithm as well as a

complete database transformation. In a later chapter, we demonstrate this

transformation process for the Daplex university schema given.

27

IV. THE DATA STRUCTURES

A. DATA SHARED BY ALL USERS
Both the CODASYL-DML and the Daplex language interfaces have been

developed as single-user systems that will eventually will be modified to multi-user

systems. Appropriately, two separate concepts of data are used the in the language

interface: (1) data structures that are shared by all users, and (2) data specific to each

user. The requirements of this thesis work have necessitated the slight modification of

several existing data structures from previous implementations on MLDS; however, the

generic data structures are for this implementation are not drastically altered.

The data structures that are shared by all users are the database schemas that

have been loaded (defined) by the users. The schemas that are of interest to this thesis

are the functional schemas, consisting of entities and the functions of the entities, and

the network schemas, comprised of sets and attributes.

The first data structure, Figure 4.1, is represented as a union and supports each

of the previous MLDS implementations (i.e., SQL, DL, 1, CODASYL-DML, or

Daplex) as well. At this point, our interest lies with the functional and network

models. In this regard, either the third or fourth fields will be activated. Should the

selected database be based on the functional model, the fourth field of the union would

point to the structure represented in Figure 4.7, fun dbid node. Likewise, if a network

schema were being manipulated, the third field of the dbidnode would be activated

and point to a structure of type netdbidnode, Figure 4.2.

union dbid node

struct rel dbid node *rel;
struct hie dbid- node *hie;
struct net7dbid-node *net;
struct fun-dbid-node 'sent; I

44

I
p,

Figure 4.1 The dbid node Data Structure.

li

28 'p
'Il

1. Data Shared by AD Users of a Network Database

The first field of the net dbidnode is a character array holding the name of

the respective network schema. The second and third fields are integer %alues

representing the number sets and records in the schema. An integer value represcnzing

a database key is maintained in the fourth field, while the fifth, sixth, and seventh Leh s

are pointers to structures containing information about each set and record of -he

schema. Specifically, the fifth field and sesenth fields point to the first set and record.

respect-vciv, of the schema, and the sixth and eighth fields point to the current WeT and

record, respectively, of the schema. The final field of the netdbidnode is a .c:r..er to

a structure representing the next network schema in the M L DS.

struct net dbid node

char ndn name[DBNLength - 1'.
mt ndn-num set.
.mt ndn-nun-rec:it n !n dbke;struct nset node * rsl set;"

struct nset-node *curr set;
st ruct nreCnode *first-rec:
struct nrec-node *curr -rec;
struct netUbid node *nexfdb:

Figure 4.2 The netdbidnode Data Structure.

The nsetnode data structure, F-igure 4.3 represents information each sct in

the schema. The first field, nsnname, is a character array holding the name , the

particular set. while the second and third fields are also character arrays contain the

names of the owner and member of the set. The fourth and fifth fields are characters

representing the insertion and retention modes of the set. The inserion mode -an be

either automatic. 'a'. or manual, 'm, and the retention mode can he fixed. t. manual.
'Im', or optional, 'o. The selectmode field is a pointer to a setselect node. The

seventh field is a pointer to the owner record type of the respective set t.pe and the

eighth field is a pointer to the member record type of the respective set type.

Figure 4.4 shows the setselect node data structure. This structure maintains
the set selection mode information fcr each set. The first 'led i; a character

representation of the set selection mode, either by VALUE. 'v. by S -R t: RII. s.

29

"".
1A

struct nset-node

char name(SNLength - I];
char o'.,r name[D\l ength i
char menwnr narneI \l\ ' .cnth - I.
char anLStA\LengtYh - 1:char Insert nio,.eil\[Tenith - 1'.
char retent- modeTRI, en~lth - I'.'
%truct set select node "se!ect mode: -

St r" I, _ nrec niodf o,. ncefr
S, r .;L I nrec-node ememcr;c.
str ct n set-node nex _s et,

l-igure 4. The nset_ ncde Data Structure

h- APPLICA I [O\. a .or not specified. o If the set selection mode of the set is bl.

value or *,' tructural. the second field. a character arra\. WIl! hold the Item name of

"ie spe.fded reord and the third field WAi" hold the name of the re,.ord the fourth

!Ield %%iE ccnta:n the name of a second reCord orl. if the se, se.ectwon mode is h.,

structural.

struct wt select node

char select modeSLength - I,
Lh-r trn ame.niAl.ength - 1.
,ha- reccfdl namelR \Fen ,,h -
tchar record 2ninie(K \Length I

Figure 4.4 lhe setselec,_ node Data Structure.

I-he nrec node. Figure 4.5. contains information con.ernin. each record in tie

schema. The first field is a character array holding tile name of the record and the

seconJ field is an Integer representation of the number of attrn-we- of the record I ie

third and fourth fields are pointers to structures containing infornaun about the firt

and current attributes of the particular record. The final iield of nrec node is a pointer

to the next ret.ord type representation in the schema.

. -., -,., " " -..' " .., -.." .", " 7 'q .." --, , .' - " " " ' " -'

struct nrec node

char nrn naneR\length " j ,i
mt nrn num attr
char nrn-an e tarjA\Length - II.
struct nattr node *fir-t attr;
stru.t nattr-node curr- attr
;truct nrec -node *next- rec.:

Figure 4.5 The nrecnode Data Structure

The nattr node is depicted in Figure -4.6. Information about the attrihutes of

each CODASYL record type is maintained in this data structure. The first field is a

Lhzracter array containing the name of the attribute while the second and :hird re!d,

represent the level number and type of the attmbute. The attribute Lan he e.ti:er an

inteer. I a floating point number. r. or a stnng. s . The ourth field determines the

maximum length that a value of this attribute may possibly have and the !,th jield

,ndiates the maximum length of the decimal portion of a value I1 this attr.'ute :, pe :%
a Iloating point number. The sixth field is an integer valued flag mndimat:ng whether or

not the attribute can have duplicates. It is initialized to 1) , a!lowing !or dupi:,.ate,

The se\enth. eighth, and ninth fields are pointers to structures representin-g the -,e-\t

attribute, the child or the attribute, and the parent of the attribute. re"';speL'. C'

struct nattr node

char nan-namejANi envh - I.
char nun ie el _nur,A I en_t. I.
ccar nan type;
int !ength 1,

int deun, h2:
struct nattr node *eC\t Atlr
struct nattr-,,de LI
struct nattr-node parnt.

Figare 4.6 The nattr_node Data S'ruLtture

* - l

2. Data Shared by All Users of a Functional Database
If the database accessed by the user is based on the functional data-model.

then the fourth field of the dbid node data structure, Figure 4.1. will be activated. The

pointer will be directed to a structure of t5 pe fundbid node, Figure 4.7.

The fundbid node contains information about a functional database. lhe

flr~t fleld is a character array which represents the name of the database. The second

field is a pointer to the base-type nonentity node, and fdn num-nonent is and integer
value of tre number of the base-type nonentity nodes :- the database. The following

field. "tJn entity, points to the entity node and while the fifth field is an integer Nalue

of the number of these nodes. The sixth field is a pointer to the generalized entit%
uhvpe node and as before the field that immediately follows contains an integer aluc

representing the number of such nodes. The fdn nonsubptr is the nonentity subt.pes

and the number of these nodes is maintained in the ninth field. fdn num nonsub. The

next field. *fdn nonderptr, is a pointer to the nonentity derived types respectively with

the ele'enth ield containing the integer value for the number of such nodes. The
fdn-o'rptr is a pointer to a structure containing the overlap constraints of the database

and the thirteenth field, fdn nurnovr keeps track of the number of overlap constraints.

The final field of the fdn dbidnode structure is a pointer to the next functional
ichema in the MLDS.

,truct fun dbid node
char fdn name[DBNLength -,I
struct ent-nion node fdn nonentity;
mt - -in iun non -nt:
struct ent node *fdii entiTv
mt fdn ium ent.
struct gen-sub node *fdii sub ptr.
int -fdn _ium cen;
struct sub non node *fdf nori-hhptr;
mt - n ium nonub:
struct der non node *fdh nor-der!-tr;
lit fdn Hiur Jei;
struct overlapnode *'dii o% rptr:
mt In uin or;
struct funUbid node >id5 nexT_ Jh:

1igure 47 The fun dbidnode Data Structure

p ,,q ,e w ,, . (~, ''., ' -. % ' % ,.' ,..;.* .'-*%%-*_._ .- *- . ",- . . -. '.'- ,, "",""- . " -

The ennode data structure is shown in Figure 4.S The first field o! :his

structure is a character arra' containing the name of the entit r. The en last ient .:

field is an integer value representing the last unique number alsigned to the parital-r

entity node. The third field is an integer representation of the nuni'%er of lun#.t+uri%

assciated with the particular entit% type. while the fourth filid, en ternLnal. is at,

nteger representation ol a boolean flag that indicates whether or rot the entw.'. a

termunal %,pe. An entit' t.pc is a terrmnal type onl% when it is not a supert'pe tc ar.M

entity subtype. The *enftnptr field is a pointer to the function nodes asso.aed Aith

ta, particular ent.tv node. The final field of the cnt _node data structure is ,I p itter

the next entity (ent_node in the schema

stru,.t ent node

char en nameil\.ength I I. a
int en ast ent :d.
nt en-nuni fui.t.
int en-ernffnal.
struct function node *enf !tnptr;
*truct ent nodF "en next ent.

Figure 4.S rhe entnode Data Structure.

Figure 4.9 depicts the gensun node fhi,, data structure ,ontain% m'rmat;an S

about -he entt subt. pe, of the accessed database The firt fieid is a ,hara,.-e, ar-a'

i.,'ldini the name of the generahied entit subt.pe rhe gsn num _iluni: fied '

integer value representing the number of function,; asso iated wxith the entir, ,btN pe.

while the third field, gsn_terminal is an integer representation of a hoiewm

indiLating w hether or not the entit% iubt, pe is a suht% pe of an eortit t% pe and no,' a

,uperl:pe to an; entity subtpes. The fourth field is a pointer to the enti; k .,,ertxre

of the particular entit% subtype represented bx the gen_suhnode Ihe c,,, _ nnn er,:

1leld o, an integer %alue indicating the number of entivr ,upert. pe, of the -T't~pc I ,e

next f-eld. *gsn_ ftnptr, is a pointer to the func:ions associated with the entitxt\ re.

and the 'gsn _subptr field is a pointer to the suht'pe supert pe Ihe eighth ikL no;,

the number of thee subtype supertspes. -he last field of the cn _ 'h_ node Jata

structure :s simrl1 a pointer to the ncx: generalized entit ubtkpe in *he ,dena

L46

strut gpn~subnadc

char #%n nan kc1 I\M engt h I i.

%I 'U0e lunt.,lon n.oJc p'.

I Ig 4 e I lic g~r. ..ut'_)d oJ ald StrULAUreC

Ini,-mton .or...crninj can nonentl.-\ %~ct~t A aintine,. n

StfrU~.T'r J1 \,,-c C - r ;;J, I igure .4 14, I bc Krs hed..' o. Ntj ~ 'r.,!u-c

%sf...4r- :k) rrc is d.lt~t Ir~ a t J .harda r atrra% . ntimning *.c 1lf,inx

19flePi i %C PC Ihe cr. t~r PC icid ii a t.hjrj,-ter !..g ::I~m ~ p

nonergit% node1. e V .'r. in:eger. . enunierathir. C , Jkajj

t..iaoer %trlrng. % r hOO.C.M. r' IC eh:rlt. 'i~ iA an integer . .t c

ti~c ma-u icngh)! ihc no -ait,~%C' \a'ue I tie ernn rar;,C lx-,

.r' e rprCc T-r*. :ion of l nooie.i fibg thit .ndli-.s i : %%r. ether (r ";c-C .

\,J IUC, JS.,CL.:JtCJ Wth *tt.c nor~nww. ha-.-c I xc\ :;C.J. Crflr:.u

1%l A .a pontCI' ?C Ithe IL'L;,I. I-ije '' t"hC hAnc!k.Cx~ - "'Pt..k . i.

C..i Lnn f. '.Ar.!, 11 An .:t~ r rcr%cntv .i)I .a n(o,ii, . .

11 1 the a~ % t\'Nc !%'i. L-1t'.%tant 1""c ;I, fe.J ' i e en, Cf J.

Pt-wer I t *ne d~ norientiv. nj~c-r' tv r the ..kacn.a

I -c iuH ron 'oic darta ktruc!0L.rO. F :gi.rc -; 11. ,,n a,.::I... .' t

'ruk.: "Lre ii t.hiri..cr arra' .ourtxa r;ng thc r:.anlc lle n r:

e:1:PC fid hOldi J: Lharatocr 11,, L..t'ac p t.

:'C r. i . enurlcra!i.; i. c illota:mb -. ii, r'.,.,~ 2. P.i

h I he next Xd krn-totalle'llit. t~r'.,~.integer 'r~iT~C .

leg'.:. .: !he -ionen~it'. \w ala~.~.e Ih 7-v':. ,anc !:aC1d' . r: .c.':

I l'oolcean !laig 'hah ::aa.ae -t.thr 'hL.:.na:t.~~1t,~~ .

% %

struct entnon-node

:K.ar enn nameENI[ength -I].

, hair ennt' mse
int Cflfltc Alength.
int en n- inge:
int enr nurn %alues:
struct ent value N~ alJe.

erin constanlt;
truc t ent_non-node ~ enfiinext-node:

Figure .4 10 [he ent-non-node Data Structure.

deferent values that the nonentivy subtype can assume. The next field is a pointer to

the ac.tual vzalue of the node, while the final field of the data structure. *snn next-rnode.

is t pointer to the next noner.tmt%. ;uht%.pe in the ichema.

st ruct uhnon-_node

char snn nainc[L NLength 11l.
char snn tvpe:

ints %rn _tota I length.
int %nn range:,
1.111 snn nurn %alues;-

s ,-uct ent %alue Isnni vaidle;
stru2! sub, non node ,rannc\t no.de;

I igure -4 11 1 he suh-rnon _ node D~ata Structure.'

The den-non _node data structure, Figure .3 12. pertain,, to the deweoe

nonentit' t~ tes. of the furnctional Scherna. is v identi,-al ;n ,tru,:tjre !c the

%u"- - nuon -node. Figure .4 11

Figure .4 11~ depicts 'he organi/atior. o! the oserlap_no"'e diata stru,!ure TFic

initia' field of the structure contains the nanie of the base t\pe for the 3crpll

ent~t;cs Tht. *-nlptr field i% Am pointer to zhe :iSt Mf ter-ninal %uht~ pes. h olct

that. irc 's eriapped. 1,e next !lei,;. n-.rr h node. ;J.,_te% the nk.7111er of

0%C.ixp-Cd 11)t %UcI TICn su_ oe sz I e tnil fiecJ in lkg-.re 4 1 1s t pomimtcr L) the

r'ev. %enap _nodeJ -1 Tile ,h%:nIA

struct der non node

char dnn name[ENLength + 11;.char drnn-tvve;
nt dni-tbla length;

int dnn-range;
int dnn-num values;
struct ent value *dnil valile:
struct der-non node *dnn- next-node;

fp

Figure 4.12 The dernonnode Data Structure.

struct overlapnode

char base type name[ENLength + I];
struct sub node list *snllti;
int num sub node;
struct overlapnode *ne\T:-

t}

Figure 4.13 The overlap-node Data Structure.

Each function declared in the functional schema is represented by a data
structure of the type function_node. Figure 4.14. The name of the function is
contained in the first field of the structure, while the second field is a character which

represents the type of the function, either floating point number, fI; integer. T:
ch:aracter string, 's" boolean. 'b'. or entity. 'e'. The next field, fn set, is an integer

value representing a hoolean flag that is used to indicate whether the function is a set-
valued function. The fnrange field indicates whether or not there is a range of values

associated with the function. The next field indicates the maximum length of the
values and the fnnum value field indicates number of' values. The following field is a
pointer to the actual value, which the nex: five fields hold pointers to the type to which
the particular function belongs. A function may belong to only one type. either an

entity, an entity subtype, an nonentity, a nonentity subtype, or a nonentity derived

type. The thirteenth field indicates whether or not there is an entity value associated
with the function. The fnunique field is used to indicate whether or not the function

is Ulique, while the final field is a pointer to the next function in the schema.

36

struct functionnode

char fn name[ENLength + I];
char fn-tyte;
.nt fn-set;
nt fn-range n
int fn-total length;
int fn-num-value;
struct ent value *f- valife;
struct ent-node *fn-entptr;
struct gen- sub node *fn-subptr;
struct ent -non-node *fn-nonentptr;
struct sub-non- node *th-nonsubptr;
struct der -non -node *fn-nonderptr;
int fn ntnull;
mt fn-unique;,
struct function-node *next;

}-

Figure 4.14 The function-node Data Structure.

The ent node_list, Figure 4.15, and the sub node list. Figure 4.16, data

structures are used to maintained linked lists of entity types and generalized entity

subtypes. respectively.

struct ent node list

struct ent node *entptr;
struct ent-node list *next;

Figure 4.15 The ent node list Data Structure.

struct sub node list
struct gen sub node *subtr;
struct sub-noe list *next

Figure 4.16 The subnodelist Data Structure.

37

The final data structure that is shared by users accessing a functional schema,

ent value, is shown in Figure 4.17. The structure's function is to maintain a linked list

of entity values.

struct ent value

char *ev value;struct ent value *next;

Figure 4.17 The entvalue Data Structure.

B. DATA SPECIFIC TO EACH USER

The data structures that are discussed in this section are necessary in order to

support each user's particular interface requirements. The key structure is depicted in

Figure 4.18, userinfo. This structure holds information on each user currently using a

particular language interface of MLDS. The first field of user-info is a character array

containing the user's ID. The next field is a union that describes a particular interface

and the last field is simply a pointer to the next user of MLDS.

struct user-info
char uid[UIDLength + 1];
union li info Ii type;
struct u-er info *ie'xt_user;

Figure 4.18 The userinfo Data Structure.

The union, liinfo, depicted in Figure 4.19, can hold the data for a user accessing

any type language interface of database schemas supported by MLDS, (SQL, DL, I.

CODASYL-DML, or Daplex). For the purpose of this thesis the data structures

peculiar to the CODASYL-DML language interface and the Daplex language interface

will discussed.

38

union li_info

struct s I info li s 1:
struct dri-info li-di;
struct drn info li-dml;
struct dap-info li-dap;

Figure 4.19 The li_info Data Structure.

Should the user access a network database, the third field of Figure 4.19, li_dm1,

will be activated. This action will call upon Figure 4.20, dmlinfo.

struct dm_ info

struct cur db info curr db;
struct file-inf file; -
struct traff info dm1 tran;
struct ddl nfo *ddF Files;
int operation;
int answer;
int error:
union kms info kms data;
union kfs ihfo kfs data;
union kc -hfo kc data:
struct cu?_table *cUr table:
mt buff-count;

Figure 4.20 The dmlinfo Data Structure.

The dm1_info data structure, Figure 4.20, contains user information mation

concerning the CODASYL-DML language interface. The curr db info field is also a

structure: it contains information about the network database being accessed by the

user. The file field is a data structure which contains the file descriptor and identifier

of a file of CODASYL-DML transactions. The third field, dm1_tran, is a data

structure that maintains information describing the CODASYL-DML transactions that

are awaiting processing. The next field is a pointer to the ddlinfo data structure,

which describes the descriptor and template files. The operation field is an integer

representation of a flag used to indicate the operation to be performed on the network

39

- - - ,'

database, either loading a new network database, or executing a request on an existing

network database. The answer is an integer value that is used by the Language

Interface Layer (LIL) to record the answer it receives from interfacing with the user.

The eleventh field is a pointer to the Currency Indicator Table (CIT), as discussed by

Meyer and MacDougal, buffcount, is a count of the result buffers of the Kernel

Controller (KC).

If the user accesses a functional database, then the fourth field of the li_info data

structure, li_dap, is activated, referencing the dapinfo data structure, Figure 4.21.

This structure contains information about the Daplex language interface and is similar

to the dmlinfo data structure, Figure 4.20, with the exception that it applies to Daplex

rather than CODASYL-DML.

struct dap info

struct curr db info dpi curr db;
struct ile rnfo- dpj-file'-
struct traff info dpi dm1 tran.
int dap oDpeation;
struct ddl info *dprddl files;
union kmin info dpi _ms-data;
union kfs I-nfo dp._kfs data;
union kc -info pikc -data;
int da - error:
nt dap answer:
int dap-buffcount;

Figure 4.21 The dapinfo Data Structure.

40

) }iZuZ*wY ~ $~ ,

V. FUNCTIONAL TO NETWORK TRANSFORMATION ALGORITHMS

The Language Interface Layer (LIL) is the first module in the mapping process
of MLDS. Its function is to control the order in which the other modules are called
and to allow the user to either load a new database or process an existing database.
The implementation of this thesis, in addition to permitting the user to load a new
network database, allows the user to apply transactions to either a network or a
functional database. When an existing database (network or functional) is to be
processed, the user is queried for the name of the database. LIL then uses the user-
supplied name and first searches the existing network schemas; if the desired database

is in fact a network database, then LIL primarily functions as implemented in
Reference 19. If the desired database is not found to be in the list of existing network
schemas, the list of functional schemas is then searched. If the desired database is
found to be an existing functional database, a mapping process is initiated in order to
transform the functional schema into a network schema. This transformed database is
actually a network representation of the functional database which maintains the
characteristics of the functional database while preserving its constraints (Ref 2: page

521.
In order to preserve the constraints of the source database (functional), there are

s~x essential constructs of the functional schema that rr t be accurately transformed
to equivalent constructs of the target database (netwok). The constructs of the

functional schema are:

* the entity type
* the entity subtype

* the non-entity types

* the uniqueness constraints

* the overlap constraints

* the set type

The methodology for the transformation was primarily implemented as designed in
Reference 2 and is described in detail in the following subsections. In order to provide
the reader with realistic examples of the mapping of a functional schema to a network
schema, this section depicits the transformation of the functional-based University

41

ii

!W1ltp"NUM OR-~ 1b. SW*
%.P ran

database schema of Figure 2.1. to the network University database schema shown in

Figure 5.1. Figure 5.1 is referenced throughout this chapter.

A. ENTITY TYPES

In transforming a functional entity, LIL maps not only the entity itself, but also

the functions of the entity, as the functions are applied to the respective entity type.

The function-type may be string, scalar (integer, floating-point, enumeration), entity,

non-entity or a set of any of the above. The form of an entity-type declaration is

shown in Figure 5.2, where entityXX is the unique name of the entity being declared

and functionXX1, functionXX2, ... , functionXXn are the names of the functions that can

be applied to entityXX. The function-types determine what type of value will be

returned by the respective functions.

In the transformation process, an entity type is mapped into a network record

type. Each entity is also made a member of a set type which is owned by SYSTEM.

When mapping the function types associated with a particular entity, LIL must

determine whether or not the function type is a scalar function, scalar multi-valued

function, single-valued function, or multi-valued function. It accomplishes this task by

checking several fields of thefunction..node data structure of Figure 4.14.

A particular function of an entity is a scalar function if the fnsubptr and

fnentptr fields are NULL and the fnset field is not set (i.e., has a value of zero),

indicating that the function does not belong to a specific entity type or subtype, nor is

it set-valued. Scalar functions are mapped into attributes of the record type that has

been transformed from the function's entity.

A function is determined to be a scalar multi-valued function if it meets two of

the three criteria discussed in the preceding paragraph; it's fn_entptr and fnsubptr

fields are NULL. however, thefnset field is set to a value of"l", indicating that it is a

set-valued function. The scalar multi-valued function is declared as an attribute in the

corresponding record type. It must be noted, however, that only one occurrence of the

single multi-valued function may be stored in the record, therefore the nandupflag

field of the nattrnode, Figure 4.7, is not set, indicating that the attribute cannot have

duplicates.

If either thefnentptr or thefnsubptr field of Figure 4.14 is not NULL. then the

function in question is either a single or a multi-valued function. Again, the

determining factor is the fnset field; if it is set to a value of" I", then the function is a

multi-valued function. In the case of a single-valued function, a network set type is

42

S.",

SCHEMA NAME IS university;

RECORD NAME IS peron:
DUPLICA [IS ARE KO l'ALLOWED FOR ssn;

name: (I.RACIi:R 25;s~:CII:\IAC [|ER 9:

RECORD NAM 17 IS cmlovece:
DUPLI.A1 ES ARF Mf'! AL. LOWED FOR phones;

home address: C 1.A RMA L 1R 5o;
ollice: ('I IA RAC IF R S;
phones: (I ARACI LR 7;
salarv: 1:1).,A I
dcpeiidents: IIXfLEI 10;

RFCORI) NAME IS support staff;
II. time: (IIARAC 'It '1;

RECORD NAMl IS Ecultv;
rank: CIlARA('IEIR. 9.
tenure: C1AR.A ,C i tR I.

RECORI) NAME IS linkl;
RECORI) NAML IS student:
RILCORD NAME IS graduate;
RECORD NAMEL IS undergraduate;

gpa: FIL)AT.
Sear: FIXED 1.

RECORD NAME IS course:
DU'L[CA I ES .\Rit No ALLOWED [OR title, semester;

title: C 1I.\ IH % I (R 1o.
semester: CIAR.CIER 6.
credits: FIXEI) 1;

RECORD NAME, IS department-
DUPLICA1 FS ARV NO ['ALLOWED FOR name;

name: CI ([A -tIL "R 20;
RECORD NAME IS enrollment;

grade: FLOA F;

SET NAIE IS qsstern person;
OWNL R IS sstdn:--

I ! \ P:R I S rso*
INSi1:, I I ON [S AL' IOMATIC;
REl tINI ION IS FIXFI);
SEI' SELECTION IS BY APPLICATION;

SET NAME IS person employee; 0_7
OWNER IS person; -
.IEM BER IS en lovee' Z__%
INSIR HON IS AL"I O'IATIC;
RE] EN! ION IS FIXE);
SET SELECrfION IS BY APPLICATION;

I- %
P. p

Figure 5.1 The Functional Schema of the University Database Transformed to a

Network Schema
43

SET NAME IS supervisor;
OWNER IS employee:
MEMBER IS supp'ort staff-
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS employee support staff;
OWNER IS employee;
MEMBER IS sup ort staff.,
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS teaching;
OWNER IS facultv;
MEMBER IS linkl;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL:
SET SELECTION IS BY A 'LICATION;

SET NAME IS taught by;
OWNER IS course;
MEMBER IS linkl;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS taughtby;
OWNER IS course;
MEMBER IS linkl;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS dent;
OWNER IS department:
MEMBER IS facultv
INSERTION IS MA\UAL"
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS employee faculty;
OWNER IS employee:
MEMBER IS facurtv;
INSERTION IS AUTOMATIC
RETENTION IS FIXED:
SET SELECTION IS BY APPLICATION:

SET NAME IS advisor;
OWNER IS facultv
MEMBER IS student;
INSERTION IS MANUAL:
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION

Figure 5.1 . (cont'd.)

44

MEporliLw R IS sudent

SET NAME IS major;
OWNE IS department;MEM ER IS student.,
INS RION IS MANUAL;
RET NTION IS OPTION.\:*L
SET SELECTION IS B APPLICATION:

SET NAME IS enrollments;
OWNER IS student:
MEMBER IS enrollment"
INSERTION IS MANLAL:RETENTION IS OPTION '%
SET SELECTION IS BN AP UICATION;

SET NAME IS person studertOWNER IS Person;-
MEMBER IS student-
INSERTION IS AUTOMATIC:-
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS advisorv committee;
OWNER IS graduate'-
MEMBER IS faculty"
INSERTION IS MANUAL
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS student graduate:
OWNER IS student;
MEMBER IS raduate:
INSERTION s AUTOMATIC;
RETENTION IS FIXED ;
SET SELECTION IS BY'APPLICATION;

SET NAME IS student undergraduate;
OWNER IS student;
MEMBER IS undergraduate-
INSERTION IS AU -OMAtIC'
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS deptmt;
OWNER IS department;
MEMBER IS course-
INSERTION IS MA'NUAL"
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS system course;
OWNER IS system;
MEMBER IS'course;
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;SET SELECTION IS BY APPLICATION;

Figure 5.1 (cont'd.)

4.5

SET NAME IS head.
OWNE IS faculty;

R IS depiLtment;INETON IS MANUAL-
RETENTION IS OPTIONAL.
SET SELECTION IS BY APPLICATION;

SET NAME IS system department;
OWNER IS s, stm:
MEMBER IS'department'
INSERTION IS AUTOCRATIC
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS class:
OWNER IS course
MEMBER IS enrollment;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS system enrollment;
OWNER IS svstem: -
MEMBER IS'enrollment'INSERTION IS AUTO.MATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 5.1 . (cont'd.)

TYPE entitvXX IS
ENTI IY

functionXXl: function type:
functionXX2: function_thpe:

functionXXn: f-nction_type
END ENTITY

Figure 5.2 Entity Type Declaration.

created whose name is the single-value function name. The owner and the ancestor of
the set type is the record type declared for the range entity type, and the set member is
the record type declared for the domain entity type.

46

Ft1

Multi-valued functions are defined over entities and return sets of entities. When

applied to an entity or an entity subtype, a multi-valued function returns zero or more

data values, where each of these values is of the same data type as the funLtions range

type [Ref. 8]. A multi-valued function represents either a one-to-many relationship or

a many-to-many relationship as defined below.

A many-to-many relationship of a multi-valued function exists in the case where

entity A has a multi-valued function with entity B declared as the range entity type.

Additionally, entity B must also have a multi-valued function with entity A as the

range entity type. In order to determine whether or not this s.:uation exists, for each

multi-.alued function of an entity LIL traverses the network database's list of entities

and searches f3r a separate entity that has been declared the range entity type of the

multi-valued function of the first entity type; should a match be found, the matched

entity is checked to determine if it has anv multi-valued functions (fnset != 01

associated with it and whether or not its multi-valued function declare the first entity

type as the range entity type. If the above conditions are satisfied, indicating a many-

to-many relationship for the multi-valued function, a new record type is defined with

its name being LINK X, where X is an integer representing the numerical standing of

this particular many-to-many relationship. Additionally, two set types are declared --

one each with the record type for the two respective entity types as the set owner and

the LINKX record as the set member.

A one-to-many relationship exists when a multi-valued function is determined not

to have a many-to-many relationship. In this case a set type is defined with the record

type of the domain entity as the set owner, and its range entity record type as the set

member.

In order to properly illustrate the transformation process of a functional entity

and its associated properties Figure &entexamp is presented. This figure shows a

functional entity taken from the University database schema of Figure 2.1. and in its

network representation following the application of the transformation.

B. ENTITY SUB-TYPES

The entity subtypes of the functional database are pointed to by the ednsubptr

field of the gsn sub node structure which is depicted in Figure 4.10. As long as this

field is active (not equal to NULL), there are entity subtypes that must be transformed

into network structures. As is the case in the entity type transformation. LIL must

also concern itself with the functions associated with the entity subtype. Figure 5.4

47

Ur..

°,,

Functional

TYPE course IS
ENT I TY

title: STRING (1.. 10);
dept: department;
semester: semester name;
credits: INTEGER:
taught by: SET OF faculty;

END ENTITY;

Network

RECORD NAME IS course.
DUPLICATES ARE NOT ALLOWED FOR title, semester;

title ; CHARACTER 10.
semester ' CHARACTER 6.
credits ; FIXED 1.

SET NAME IS system course,
OWNER IS system: -
MEMBER IS course-
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS deptmt;
OWNER IS department;
MEMBER IS course:
INSERTION IS MANUAL;
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION:

SET NAME IS taught by;
OWNER IS course:
MEMBER IS linkl;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

Figure 5.3 A functional entity type and its network representation.

shows the form of an entity subtype declaration, where subtype ' is the unique name

of the subtype and supertypeAA is a list of one or more entity types and subtypes that

are supertypes or ancestors of subtypeYY.

Each entity subtype is declared as a record type with the record name being

identical to that of the entity subtype. A set type is also declared with its name being

the concatenation of the subtypes entity supertvpe. an underscore (_ and the subt.pcs

4 4

SUBTYPE subtypeYY IS supertvreAA
ENTITY

functionYYl: functiontype
functionYY2: functiontype

functionYYn: function-type
END ENTITY

Figure 5.4 Entity Subtype Declaration.

name. The subtypes entity supertype is pointed to by the gsn entptr field of the

gsnsubnode ,tructure. The set member is the particular entity subtype

(gsnnsn name), and the set owner is the subtypes entity supertype. The functions
associated with an entity subtype are transformed as previously described for the

functions defined on the entity types. An example of the transformation of a

functional entity subtype to the equivalent network structures is shown in Figure 5.5.

C. NON-ENTITY TYPES

Non-entity types are represented by those functional schema statements that
declare data types other than entities and functions. The non-entity types of Daplex

are:

(1) strings

(2) scalars

(a) integers

(b) floating-points
(c) enumeration (including Boolean)

(3) numeric constants
These non-entity types form a rich set of tools that allow the user to provide

semantically meaningful names to data types and to limit the range of values that may

be assumed by a particular data type [Ref. 8: page 34]. Non-entity types have
corresponding counter parts in programming languages such as Pascal and Ada.

The transformation of the Daplex non-entity types impacts upon the attributes of
network records, where these records have been transformed from functional entity

types or subtypes. The task is to maintain the integrity constraints of the non-entitv

49

:' ,' .'" ,' ; ,, . ", ' ' . :, , . " ", vG %';. . : - ' .- " " ,. " " ; ,, P

V1 Mpsww" bWWW UW M W V W WMM

SUBTYPE employee IS person
ENTITY

home address: STRING 1_50);
office7F STRING (1..8);
phones: SET OF STRI.-G (L..7).
salary: FLOAT-
depehdents: INTEGER RANGE 0.. 10;

END ENTITY;

RECORD IS employee
DUPLICATES ARE NOT ALLOWED FOR phones;

home address CHARACTER 50;
office- CHARACTER 8;
phones CHARACTER 7;
salary FLOAT.
depefidents FIXED 10.

SET NAME IS person employee;
OWNER IS system; -
MEMBER IS'enmlovee-
INSERTION IS AUTO4ATIC:
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 5.5 A functional entity subtype and its network representation.

types as they are mapped into the network data types. These data types are characters,

integers, and floating-points. The mapping of the non-entity types is based on
determining the Daplex data type by implementing the "switch" facility of C. The

source of the switch is the fntype field of the functionnode shown in Figure 4.14.

The targets of the switch are the nan-type and nanjength fields of the nanattrnode

structure depicted in Figure 4.7. The mapping is conducted as shown below:

(1) The Daplex string data type (fntype = 's') maps directly into network
characters (nan type = "c'). The length of the type is set by making
nan jength equal to the value of fn_total length.

(2) The Daplex floating-point (Ih_tvpe = T) maps directly to network floating
(nanjtype = 'f").

(3) The Daplex integer is mapped directly into a network integer.

(4) Daplex enumeration types are mapped into network characters with the length
of the character string (nan length) set equal to the length of the longest of
the enumeration types.

50

r ',q, r %" j -' - ' ' - '-q-' ;q- q q q . ._.,,.,.. ,, , - V . , . % 3,., W:;"- , ";" W '"

The goal of the non-entity mappings is achieved by the aforementioned algorithm, thus

preventing the network user from destroying the integrity of the functional schema.

D. UNIQUENESS CONSTRAINTS

Daplex utilizes uniqueness constraints in order to identify a collection of

functions whose values are unique across all database entities belonging to a particular

entity type or subtype [Ref, 23: page 72]. Uniqueness constraints conform to the

foilowing representation in a functional schema declaration:

UNIQUE A,B,C WITHIN D

A,B,C represents a list of one or more functions declared for the entity type D. The

values of the list of functions, when combined, uniquely identify the specified entity

type or subtype. MLDS identifies a uniqueness constraint by setting the value of the

fn.junique field of the functionnode, which is shown in Figure 4.14. A uniqueness

constraint is mapped directly into the network schema by adhering to the following

algorithm:

(1) locate the record type that has been transformed from the specified entity type
or subtype by traversing the ent.node or sub-node fields and comparing names.

(2) locate the attribute type, nattr.node, of the record type located in step (1).

(3) set the nan dup flag of the attribute located in step (2), indicating that
DUPLICATES ARE NOT ALLOWED.

The algorithm is implemented as a loop follr ving the declaration and subsequent

transformation of the entity types, subtypes, an1 non-entity types.

An example of a functional uniqueness constraint mapped into its network

equivalent can be seen in Figure 5.3. One should note the declared uniqueness of title

and semester. This constraint is transformed into the CODASYL-DML statement

"DUPLICATES ARE NOT ALLOWED FOR title, semester".

E. OVERLAPPING CONSTRAINTS
Functional subtypes are assumed to be disjoint unless an overlapping constraint

has been declared, specifying otherwise. Basically, the notion of overlapping
constraints is used to indicate whether or not an entity can belong to more than one

terminal entity subtype within a hierarchy. Overlapping constraints are represented in

the functional schema in the following manner:
OVERLAP E.F WITH G,H;

51

E,F and GH are lists of one or more entity subtypes. The overlap constraint specifies

that data items of an entity subtype of the class E or F may also belong to an entity

subtype of the class G or H. The implementation of the overlapping constraint is

through the use of an overlap table which verifies the existence of such a constraint

prior to allowing the addition of a record to the database. The specifics of the overlap

table are given in the following chapter.

F. SET TYPES

Network set types were described in Chapter II of this thesis. The functional

data model does not have a structural equivalent for the set type, however, the network

set type plays a vital role in the database transformation scheme. Earlier in this

chapter the role of the set was discussed in the mapping of entity types and subtypes.

The details of the set implementation include the insertion, retention, and selection rules.

The set is represented in the network language interface of MLDS by the

nset.node structure of Figure 4.4 and the specifics of fully defining a set are described

below:

(1) With the exception of sets declared from the transformation of single or multi-
valued functions. the set name is defined as the owner record type name
nrn name field of the nrec node, Figure 4.6), followed by an underscore (_),
followed by the member record type name. For example if employee is the
owner record type and faculty is the member record type, then the set name is
of the form:

SET NAME IS employee faculty

(2) The set owner and set member name, nsn owner name and nsn member name
respectively, are declared as the corresponding record type name. Continuing
with the example from (1) above, employee is the owner record type and will
be declared the set owner while faculty is the member record type and is
declared the set member as shown below:

OWNER IS employee
MEMBER IS faculty

(3) When a set is defined in the schema it is given an insertion status. Each record JIM
type that has been transformed from an entity type or subtype is required to
belong to a particular set and therefore the insertion mode of the set is always
automatic, indicating that whenever a member record is created, it is
automatically inserted into the corresponding set. The assignment of the "
automatic insertion mode is shown below:

nset node-> nsninsertmode = InAutMode:

(4) Set types declared from the transformation of functions applied to entity types
or subtypes, however, are nct required to be inserted and the insert mode is
therefore optional, with the assignment as shown:

nset node- >nsn insert mode lnOttMode;

52

(5) There are three separate rules governing the retention mode of sets depending
upon the basis of the set declaration:

(a) A set type that is owned by SYSTEM can never allow its member record
types to change owners, therefore its retention is always fixed, ensuring
that records connected to the set occurrence, remain in the set
occurrence.

nset node-> retent mode = RetFixMode;

(b) A member record type transformed from an entity subtype always
belongs to the same owner record type and its retention mode is also
fixed.

(c) The set types resulting from the mapping of single- or multi-valued
functions must allow their member record types to be deleted, modified,
or reattached and thus their retention mode is optional, allowing the
member records to be disconnected, connected or reconnected.

nsetnode- > nsnretentmode = RetOptMode.

(6) When a record is to be inserted into a set type , the set must be the current of
the set type. Therefore, set selection is always by application:

nsetnode-> selectmode = SelAppMode.

The above algorithm for mapping into network set types supports both set type

declarations used in Daplex: set types reflecting an ISA relationship between two entity

types or subtypes, and the set types representation of a Daplex function.

53

VI. TRANSLATION OF CODASYL-DML STATEMENTS TO ABDL
REQUESTS

Having presented an algorithm for the transformation of a functional schema

into a network schema, we are now ready to discuss the mapping of CODASYL-DML

statements into ABDL requests that will be able to accurately carry out the equivalent

operations on an AB(functional) database.
The DML tr,-nslation takes place in the Kernel Mapping System (KMS), the

second module in MLDS. KMS is called from the language interface layer (LIL) when

LIL receives CODASYL-DML requests from the user. The two functions of KMS

are: (1) parse the user's CODASYL-DML request to validate the syntax, and (2) map

the request to an equivalent ABDL request. As previously stated, in the MLDS

network interface we restrict ourselves to the following subset of CODASYL-DML

statements: FIND, GET, STORE, CONNECT, DISCONNECT, ERASE, MODIFY.

This chapter discusses each of the above statements and the required mapping

process. Generally speaking, the mapping process is to be somewhat similar to the

mapping that was presented by Wortherly [Ref. 3] with the modifications described by

Rodeck [Ref. 21, and with further modifications as implemented in this work.

Additionally, we give our rationale for building onto KMS of the original MLDS

network interface as implemented by Emdi [Ref 19] rather than developing an entirely

new module.

A. OVERVIEW OF THE DESIGN
The second component of a database model is the data manipulation language

(DML). DML is a vocabulary for describing the processing of the database. A

procedural DML is a language for describing action to be performed on the database.

It obtains a desired result by specifying operations to be performed. CODASYL-DML

statements are procedural, [Ref. 12: pages 191-1921. As one may surmise, a data-model
transformation is virtually useless without an accurate and efficient DML translation

that allows the user to perform the desired operations on the target database. It is
with this thought that the DML translation proceeded.

Most CODASYL-DML operations are executed in two phases: first, a FIND

command is issued to identify a record, and then a second CODASYL-DML command

54

is issued to perform an operation. This section will briefly describe the format and

intent of each of the pertinent CODASYL-DML statements, as well as give the

translation algorithm for these statements.

B. MAPPING CODASYL-DML FIND STATEMENTS
The FIND statement is logically required before each of the major CODASYL-

DML statements, except for the STORE statement. When a user issues a FIND

command, a record is found, and it is placed in the currency indicator table (CIT). The

format of the FIND statement is:

FIND recordselection expression [],
while the general format of the ABDL RETRIEVE statement is:

RETRIEVE Query Target-list [by attributes]

Each of the preceding formats is presented using the following conventions: upper-case

notation represents literals, lower-case represents user-supplied variable names, and

square brackets contain optional clauses. As discussed in Chapter II, the FIND

statement has several variants, and we will, in turn, present each of these.

1. The FIND ANY Statement

The FIND ANY statement locates a specified record of type whose value for

the specified data items are equal to those in that record's template in the user work

area (UWA). The syntax of the statement is:

FIND ANY recordtype_x USING item_1, ..., itemn IN record type_x

KMS, in mapping the FIND ANY statement, must use the ABDL RETRIEVE

statement and form a query whose first predicate is (FILE = record typex). KMS

then forms the additional predicates by locating the values of the relevant data items in

the record-template. The request is then executed with the results being placed in the

result buffer (RB). Following the request execution, KMS creates the target list

consisting of the requested records attributes. Thus, the ABDL translation of the the

CODASYL-DML statement is:

RETRIEVE ((FILE: record type_x) AND

(item 1 = value l) AND

(item-n = value n))
(all attributes) [by recordtypex]

The translated request is then forwarded to KC for execution.

55

~h ~ v % $ 2 ~ V ~ ~ ~ ~ * * * ?d ..P . . -~. "

The following example taken from the University database illustrates the

mapping of the FIND ANY statement. The requirement is to find any course record

whose title is 'Advanced Database'. The CODASYL-DML procedure is:

MOVE 'Advanced Database' TO title IN course

FIND ANY course USING title IN course

It should be noted that the MOVE statement is an assignment statement found in the

host COBOL language and in the above transaction it serves to initialize the UWA

field title in course. KMS would make the following translation and actions:

(1) 'Advanced Database' is placed in the course template of the UWA for the
attribute title.

(2) A RETRIEVE request is formed:
RETRIEVE ((FILE = course) AND

(title = 'Advanced Database))
title, dept, semester, credits)
BY course

(3) Pass the request to KC for execution.

The result is that the course record satisfying the search criteria are placed in RB.

2. The FIND CURRENT Statement

The FIND CURRENT statement causes an update of CIT by changing the

current of the run-unit from its present value to the value of the database key of the

current record of a specified set type. The statement is of use when we want to begin a

search at the current of a particular set, which requires that the current of the run-unit

be updated to agree with it. The syntax of the FIND CURRENT statement is

FIND CURRENT record type x WITHIN set_tvpey

The only function of this statement is to update CIT, and therefore it is a relatively

simple task for KMS to handle as there is no direct mapping to an ABDL statement.

An example taken from the University database illustrates the use of the FIND

CURRENT statement:

FIND CURRENT student WITHIN personstudent

KMS would pass the CIT update information to KC for execution, and where CIT is

actually updated. The current of run-unit becomes the current student record

occurrence of the current person-student set occurrence.

3. The FIND DUPLICATE WITHIN Statement

The FIND DUPLICATE WITHIN statement is used to sequentially access

records within a particular set occurrence. A basic assumption is that the requested

56

records have previously been located by another FIND and are therefore already

resident in RB. The statement then locates the first record with the current set

occurrence whose values for the listed items match those of the current record of the

set. The syntax of the FIND DUPT ICATE WITHIN is:

FIND DUPLICATE WITHiN set typex USING

item_1, ..., item n IN record type y

The translation actions are as listed below:

(1) KMS forwards settypex, record type-y, and item_1,..., item_n to KC.

(2) KC locates the relevant RB using the information from (1) above.

(3) Each record with RB is searched until the first duplicate record with the set is
found.

(4) The record is made available to the user.

Additionally, KC will update CIT following the accessing of each record presented to

the user.

4. The Find FIRST/LAST/NEXT/PRIOR Statements

This subsection presents several related variants of the FIND statement; they

identify a record by its position in a set. For instance, the FIND FIRST statement

locates the first record of a set occurrence, the FIND LAST statement locates the last

record of a set occurrence, and so on. Each of these statements is mapped in the same

manner, and therefore we will focus the translation explanation on the FIND FIRST

statement. The syntax for the FIND FIRST statement is:

FIND FIRST record_type x WITHIN set_type_y

First of all, KMS ensures that the specified record type is a member of the

specified set occurrence. This is accomplished by checking the nsn set member name

field of the nsetjnode data structure of Figure 4.4. Once the set membership is verified,

KMS forms a RETRIEVE request that places every member record of the set

occurrence into its RB. The request is satisfied by returning the first record.

In the case of FIND NEXT and FIND PRIOR, the set occurrence must have

previously been retrieved and placed into RB. KMS must simply check CIT and

determine the current of the set and return either the next or the prior record. Recalling

the two types of sets in the functional data model, ISA relationships and Daplex

functions, we have devised two methods for accessing all members of a particular set

occurrence.

57

a, € € 1" -/- i¢ B . . i • • * • .d

I{,'0 ,,,tl/ ., , .. " .,. . W',, . .W . ',,_,,: ,'''e l~.'maa'.e 't'...'Je,",t%,.¢., -.. , , '.., , ., % ' ,... ,' .' . ,* . . ,, *- *,- ,'

unraUw wwr.ww ww W

The first method is for retrieving members of a set type reflecting an ISA

relationship where the set name consists of the owner name, followed by "., followed

by the member record name. KMS generates the following ABDL request:

RETRIEVE ((FILE = recordtype x) AND

(MEMBER, set_tvpey = set_type x.owner.dbkey))

(all attributes)

As an example, suppose we query the University database in order locate students

majoring in 'Computer Science'. The CODASYL-DML transaction reads:

MOVE 'Computer Science' TO major IN student

FIND ANY student USING major IN student

MOVE 'NO' TO EOF

FIND FIRST person WITHIN person student

PERFORM UNTIL EOF = 'YES'

GET student

FIND NEXT student WITHIN person student

END PERFORM

In response to the above CODASYL-DML sequence KMS would issue the following

ABDL request:

RETRIEVE ((FILE = person) AND

(MEMBER, person_student = dbkey oC'CS')

(all attributes) [by major]

In the case of a set representing a Daplex function, there are two possibilities:

either the function belongs to the owner record type or the function belongs to the

member record type. In order to determine which record type a particular functior

belongs to KMS must traverse the functional schema to check the required function.

If the Daplex function belongs to a owner record type the translation is as described in

the previous paragraph. However, if the Daplex function belongs to a member record

the translation is altered as follows:

RETRIEVE ((FILE = recordtype_x) AND

(set type-y = CIT. settypev.owner.dbkeyi)

(all attributes)

By definition, the set type representing a Daplex function belonging to a member

record type has only one member--the member record occurrence that we are secking.

• • • Q 4'

5. The FIND OWNER Statement

The FIND OWNER statement identifies records by ownership and causes the

owner of the current of set type to be returned. The syntax of the FIND OWNER

statement is:

FIND OWNER WITHIN settype x. Since all of the necessary information is

already present in CIT, the mapping is simple. KMS extracts the set owner and

database key for the specified set and issues a RETRIEVE of the form:

RETRIEVE ((FILE = CIT.set_typex.owner) AND

(C IT.settype x. owner = CIT.settype.dbkey))

(all attributes)

KC then executes the RETRIEVE request and returns the owner record-type.

6. The FIND WITHIN CURRENT Statement

The FIND WITHIN CURRENT statement causes a record which is the

current of the specified set type whose values match the specified values of UWA for

the specified record type. The syntax of the statement is:

FIND recordtypex WITHIN settypey CURRENT

USING itemI, ..., itemn IN recordtype_x

The FIND WITHIN CURRENT is very similar to the FIND DUPLICATE

statement, the difference being that FIND WITHIN CURRENT uses the values

resident in UWA while FIND DUPLICATE uses the value of the current set type.

Once i, is determined that the specified record is a member of the set KMS generates a

RETRIEVE request of the form:

RETRIEVE ((FILE = recordtypex) AND

(record-type x = CIT.set_typey.owner.dbkey) AND

(item I = user_valueI)AND
'

(itemn = uservalue_n) ,

(all attributes)

KMS then passes the request to KC for execution and the records satisfying the

retrieval are placed in RB with the first record being returned to the user.

59p

C. MAPPING CODASYL-DML GET STATEMENTS

CODASYL-DML GET statements are data retrieval statements, but they can

only access records that have been previously located by FIND statements. It is the

GET statement that actually allows the user to access a record for the purpose of

displaying it. As was done in the network interface, the GET statements are handled

through KC rather than mapping them directly into ABDL RETRIEVES. There are

three options with the GET statement and they will be discussed in the following

subsections.

1. The GET Statement

The GET option places the entire current record of the run-unit into UWA for

user access. When KMS receives the GET statement it informs KC that the record in

RB containing records of the type CIT.run unit.t,p is to be passed to the user via

UWA.

2. The GET recordtype Statement

The GET record type statement is similar to the GET option in that it

retrieves the current record for the user, however, this option allows the user to specify

a particular record type. In this instance, KMS checks to ensure that the record type

being accessed is in the current of the run-unit RB, and if so. all data items are

returned to the user.

3. The GET item I, ..., itemn Statement

This statement differs from the previous GET options in that the user specifies

the data items which are to be returned for a particular record. The syntax for this

option is:

GET iteml ..., itemn IN record type_n

Again. KMS checks to ensure that the specified record type is resident in the RB

containing the current of the run-unit, then the specified data items are used as search

criteria to locate a matching record. If KMS is successful in locating a record, KMS

informs KC and KC places the desired data items in UWA.

D. MAPPING CODASYL-DML CONNECT STATEMENTS

The CONNECT Statement manually inserts the current record of the fun-unit

into the current occurrence of the specified set(s). The use of this statement requires

the record to be a member of the specified set(s) and that the set(s) have an insertion

clause of manual. The syntax of the CONNECT statement is:

CONNECT r-cord_type_x TO settype_! ..., set_type_n

64)

:, . , ~, ' ,J 4.""d" " ' ..€, 4**

There are several ways that the CONNECT statement operates on an AB(functional)

record and these could result in varying results as follows: adding information to an

existing AB(functional) record, creating a new AB(functional) record, or creating a new

set of AB(functional) records. The particular operation depends on the manner in

which the network set types were declared in the transformation from the functional

schema. Recalling the transformation algorithm of Chapter V, we know that set types

represent either an ISA relationship or a Daplex function. The insertion of

information into set types representing a Daplex function is further complicated

depending on whether the information is to be inserted into an owner record of the set

or a member record of the set.

1. Sets Representing an ISA Relationship

As described in Section F of Chapter V, each network record type that has

been transformed from an entity type or subtype represents a functional ISA

relationship. These record types are required to belong to a particular set and

therefore the insertion mode of the set is always automatic. This indicates that

whenever a member record is created during the transformation, it is automatically

inserted into the corresponding set. Therefore, sets with an insertion clause of

automatic cannot be used in CONNECT statements.

2. Sets Representing Daplex Functions

The destination of the information that is to be inserted will be in either an

owner record or a member record type of the set occurrence. This location determines

the method of translating the CONNECT statement. Each of these methods is

discussed in the ensuing sections.

a. Information Resides in Owner Record

When the specified record type is the owner of the set type, the set can be

null or it can contain one or more members. If the set type is null, then there are no

member records associated with it. If the set type is representing a scalar multi-valued

function, then there may be more than one member record associated with the set. We

can see that there are four cases that must be considered when applying the

CONNECT statement when the information resides in the set type owner. The

situation depends on whether or not the set representing a Daplex function is null or

not. and also on whether or not there are scalar multi-valued functions associated with

the original functional entity type or subtype.

(1) Null Set and No Scalar Multi-Valued Function--The AB(functionalhrecord is
the only record to be updated. The null value of the attribute-value pair

61

h-, . t - - _. - .* % ' .h .,,*.',M_4 _.". ,' "p . " **. "e" %. " , . m , ." %."."-% .* , "a.%F -." , % t -4 Ne"* ?.* t ." .", ' -A

representing the attribute of the set type is replaced with the database kev of
the current of the run-unit as shown below:

UPDATE ((FILE =CIT.set_tvpe_l.owner) AND
(CIT.set type I owner =CIT.set type I owner dbkev.))
(set_type I CITrun_unit.dbkey)

(2) Null Set and Scalar Muti-Valued Function--The null value in each
AB(functional) record created because of the scalar multi-valued function
must be updated. Using CIT information KMIS duplicates all attrihute-valuc
pairs of the attributes that do no, represent scalar multi-valued functions and
updates the null value of the attribute-value pairs representing scalar muiti-
valued functions. The required attribute- va lued pairs are retrieved with the
following ABDL request:

RETRIEVE ((FILE = CIT.set_ty.pe I .owner)A\D
(CIT-set type I .owner =C IT.set-t\ype_lI.o%%ner.dbke\v
(all attributes)

After th.. results of the above RETRIEVE are placed in RB, KNIS traverses
the functional schema and determines which attribute-%alue pairs represent
scalar multi-valued functions. Once these pairs are :dentified, they are
updated as shown below:

UPDATrE ((FILE = CIT.set type ' .owneri ANI)
(CIT-set-tvpe-I owner = Cl T.set ty~pe l.owner.dhkeii AND
(attribute I value I)

(set_t,,*pe I =CIT run unit.dbkev)

(3) AB(functional) record with identical attribut e-value pairs to thiose of' the
owner record. wvith the exception of the attribute- value pair wvhose atinhute
narne is the same as the set name. This attribute is vix en the value of' tile
database key of the current of the run-unit. As KMS did in 2) Thoxe, thle
owner record of the set type occurrence is retrieved with the resuits stzored in
RB. K.MS then maps the following ABDL IN*S[ERT request:

INS ERT F I FL E, C IT. set_t,,pe x. owner
"CIT. set_tvpe_x. owner. CITset :'pe vowner.dbkc%

"<data iteml. valuel ->.

" data ;tem n, value_n ~
"set-ty-pe_x, CI'Frun-unit.dbke%

(4) record representing the scalar inulti-alued function that posweses the database
kev of' the set owner. Hiowever, the attribute wvhose name is, the ,irme vs tile
set ty pe 'is assigned the value of the dbkcv of the current ol tile rnu: [Is

is accomplished by retrieving the ABI functional? record represenii.g :hee,
owner. A*fter the attribute-xalue nairs represcntins! %slar ni:..kc

functions are retrieved, they are used to retrieve the relevant records. Each
record in RB will have a new attribute-value pair inserted in it whose values
are the same as those in RB, except for the attribute whose name corresponds
to the set type member; this value becomes the database key of the current of
the run-unit:

INSERT (< FILE, CIT.set_type_x.owner>.
< CIT.settypex.owncr, CIT. settype_x.owner.dbkey >,
< dataitem_1, value 1 >,

<dataitem_n, value_n >,
< settype_x, CIT.rununit.dbkey >)

b. Information in Mlember Record

The mapping of the CONNECT statement applied to member record is 4

much less complex then when applied to an owner record. Again KMS must ensure

that the record type is a member of the specified set and that the insertion clause of the

set is manual. However, the existence of scalar multi-valued functions is irrelevant

because we will update all records whose database key is the same as the database key

of the current of the run-unit. This is due to the transformation algorithm specifying

the set membership requirements.

The attribute of the attribute-value pair whose attribute name is the same

as the set name is updated to equal the value of the database key of the set owner.

The .\BDL request is:

UPDATE (FI LE = recordtypex) AND

(record_t.pe_x = CIT.rununit.dbkey))

(set typev = CIT.set tvpey.owner.dbkey) KMS then passes the request to

KC where it is executed.

E. MAPPING CODASYL-DML DISCONNECT STATEMENTS

The DISCONNECT statement is the opposite of the CONNECT statement in

that 1: disconnects the current record of the run-unit from the specified set type(s).

Once disconnected, the records are simply detached from the set type(s) and they
remain in the database. The syntax of the DISCONNECT statement is:

DISCONNECT record type x FROM set type 1, ..., set type n

The requirements for the statement are that the current of the run-unit be a member of

the specified set types(% and that the record be removed from the set types that arc
current.

63

The DISCONNECT statement is similar the CONNECT statement in that in

that it has several possible results, dependent on whether the function information is

contained in' the set owner or set member record. However, the key is whether the

function set is a singleton, or whether it has multiple members. The DISCONNECT

statement could cause an attribute value to be nulled out, or a single AB(functional)

record could be deleted, or a set of AB(functional) records could be deleted. The

rationale behind these possibilities is explained in the following paragraphs.

If the information regarding the disconnection concerns a Daplex function

represented by a network set owner record, then the function set is either a singleton or

it contains multiple members. If the function set is a singleton we want KMS to null

out the value of the attribute whose name is identical to the set type name. KMS

generates the following ABDL request:

UPDATE((FILE = CIT.settype_y.owner) AND

CIT.set typey.owner = CIT.set typev.owner.dbkey)

settypey = NULL)

If the above request is applied to a the representation of a scalar multi-valued function.

all of the relevant AB(functional) records will be updated to reflect the null value.

Otherwise a single AB(functional) record will have a value nulled out.

If the function set has multiple members KMS deletes all of the AB(functional)

records with matching database key and function value. The mapping is as shown

below:

DELETE ((FILE = CIT.settype_v.owner) AND

(CIT.settype_v.owner = CIT.set_type_v.owner.dbkey) AND

(set_typey = CIT.rununit.dbkey))

Again, the above would delete all of the matching AB(functional) records if a scalar

multi-valued function is part of the owner record type.

If the AB(functional) record to be deleted is a member record, then, by definition

of the schema transformation. we are updating a singleton function set. KNIS will null

out the value of the applicable attribute as indicated in the following ABDI. reque;t:

UPDATE ((FILE = record type_x) AND

(record type-x = CIT.run unit.dbkey) AND

(set_tvpey = CIT.set_type.owner.dbkey))

sct_typey = NULL)

6-4

Prior to mapping the MODIFY statement it should be noted that the

CONNECT and DISCONNECT statements are used to modify attribute-values

representing functions in the AB(functional) database. In order to perform these

modifications the attributes are disconnected from the set type occurrence, modified,

and then reconnected to the set type occurrence.

F. MAPPING CODASYL-DML MODIFY STATEMENT

The MODIFY statement either alters the entire current record of the run-unit or

it modifies specific data items in a the current record. The syntax of the MODIFY

statement updating an entire record is:

MODIFY recordtype_x The syntax of the MODIFY statement to alter specific

data items of the current record of the run-unit is:

MODIFY itemI, ..., itemn IN record typex In each of the aforementioned

instances, the data items that are to be modified must be supplied by the user. KMS

will then retrieve these data items from the UWA of the specified record and map the

following ABDL request:

UPDATE ((FILE = record typex) AND

(recordtypex = CIT.rununit.dbkcy))

(data_item i = user value i)

The above UPDATE request is repeated for each field of the record that is to be

modified. The only change to the UPDATE would be reflected in the individual data

items.

G. MAPPING CODASYL-DML STORE STATEMENTS

The STORE statement creates a new record occurrence and establishes it as the

current of the run-unit. Prior to inserting the record, however, it is constructed by

having its field values stored in UWA. The syntax of the STORE statement is:

STORE recordtypex The key factors in mapping the STORE statement are:

(1) Set selection status.

(2) Insertion clause.

(3) Duplicate condition.

As defined in the schema transformation algorithm, the set selection status is a!wavs

BY APPLICATION. Additionally, the STORE statement requires that the inserticn

clause of the pertinent set types be AUTOMATIC. Furthermore, the interface checks

the dup.lag field of' the nattrnode of Figure 4.7 to determine if any of the data items

65 1

- ~ ~' '~' V '' P P V V V~V V

of the record being inserted has a DUPLICATES NOT ALLOWED clause assigned to

it. Should it be determined that one or more fields of the record have the clause

associated with it, a RETRIEVE request is formed to see whether or not a duplicate

record already exists in the database. Thus, the mapping of the STORE statement

consists of an INSERT request to store the request and possibly a RETRIEVE request

to determine the status of duplicates.

Once the above requirements are met KMS must ascertain the status of Daplex

imposed overlap constraints. As discused in Chapter V, the Overlap Table maintains a

list of which set types representing functional subtypes have overlap constraints

declared. It is essential that the overlap status be verified in order to maintain the

integrity of the database. The mapping of the STORE statement then proceeds with

KMS verifying the duplicate status. If data items have been designated DUPLICATES

NOT ALLOWED the following ABDL request if formed with the results being placed

in UTWA:

RETRIEVE ((FILE = record_type x) AND

(data_item i = user_valuei))

(recordtypex)

Next KMS forms an INSERT request:

INSERT (< FILE, record typex>, < recordtypex, ***>,

< data_-itemI, user_valueI >,

< set type-y, CIT.set-typey.owner.dbkey >)

The data items values are user supplied and retrieved via UWA.

H. MAPPING CODASYL-DML ERASE STATEMENTS

The ERASE statement deletes records from the database. When mapping this

statement it is imperative that we consider the constraints imposed by the rules of

CODASYL-DML as well as those imposed by Daplex. The CODASYL-DML

limitation is that the record(s) to be deleted cannot be an owner of a non-null set type

occurrence.

In examining the Daplex requirements we must evaluate the Daplex equivalent of

the CODASYL-DML ERASE statement, the DESTROY statement. The DESTROY

66

statement is used to remove entities from the database. If the entity type that is being

deleted has any entity subtypes in its hierarchy, then these subtypes are also deleted;

the entire hierarchy of the entity type is deleted. However, there is a significant factor

that comes into play when processing the DESTROY statement. If the entity being

deleted is referenced by a database function, then the DESTROY statement is aborted.

The ERASE statement has two options, the ERASE ALL option and the ERASE

option. The two options are presented in the following subsections.

1. The ERASE Option

The ERASE statement without the ALL option deletes only one record from

the database, the current of the run-unit. Its syntax is:
ERASE recordtype_x

Recalling the CODASYL-DML constraint, we realize that KMS must form a

RETRIEVE request to determine if there are any sets whose members are connected to

the specified record. This is accomplished by checking to see if there are any set type

occurrences where the owner database key is the database key of the current of the

run-unit. In order to meet both the CODASYL-DML and Daplex imposed
constraints, KMS must form two separate RETRIEVE requests for each ERASE

statement:

(1) Retrieve all set occurrences where the current of the run-unit is the owner.

(2) Retrieve all set occurrences where the current of the run-unit is a member.

The ABDL translation being:

RETRIEVE ((FILE = CIT.set_type_v.member) AND

(set_type_v = CIT.rununit.dbkey))

(set typey)

If the above request places any set types in RB then the ERASE statement does not

satisfv the CODASYL-DML constraints and it is aborted. If RB is empty then KMS

forms the next ABDL request:

RETRIEVE ((FILE = CIT.set_type v.owner) AND

(set-type y = CIT.rununit.dbkey))

(set typey)

If this request results in an empty RB then the Daplex constraints were satisfied and

KMS continues mapping the ERASE statement as follows:

DELETE ((FILE = record type x) AND

(record_type x = CIT.rununit.dbkey))

67

m ''%," ,.,;v , -' , .,,rv" :' ',,.1 9. .,N',,%'b'! .' -.vl,"-.,>.'..', %:-' " " ='-',v -,' ¢ ,, -.', ,..' -4%.'>:,

In mapping the ERASE option KMS always issues the first RETRIEVE

request for execution by KC. The results of the first request will determine whether or

not the two remaining requests are issued or if the ERASE transaction is aborted.

2. The ERASE ALL Option

The second option of the ERASE statement is the ERASE ALL option. It

deletes every record in the hierarchy of the current of the run-unit. the syntax of the

ERASE ALL statement is:

ERASE ALL recordtype_x

In this instance the constraints imposed by CODASYL-DML clash with those imposed

by Daplex because of the requirements explained above and therefore the statement is

not translated in this implementation. It should be noted that the lack of an ERASE

ALL option is not considered to critical because the same effect can be obtained by the

repeated use of separate ERASE statement, if the constraints are met.

68

VII. CONCLUSIONS

As previously mentioned, the conventional approach to the design and

implementation database management systems (DBMS) has been based upon the

premise of a single data model with its model-based data language. This methodology

restricted a DBMS to transactions solely on the specified model and in the specified

data language, resulting in the proliferation of single-model, single-language systems

with limited flexibility and extensibility. The obvious need for increased efficiency and

portability in DBMS has highlighted the requirement for a system that can support

databases based on the five major data models using the respective model-based data

languages, specifically: functional/ Daplex, hierarchical, DL/ I, relational,'SQL,

network,'CODASYL-DM L, and attribute-based,/ABD L. Hence, the Multi-Lingual

Database System (MLDS) has evolved, allowing a user to access and interact with

numerous databases based on various data models via their corresponding data

languages.

While MLDS allows the user to access databases based on the five major data

models using their respective data languages, this thesis has presented the partial

implementation of a first step toward making MLDS a truly Multi-Model Database

System (MMDS). The primary goal of this work is to access a functional database via

CODASYL-DML transactions, achieving interaction across the artificial boundaries of

data models that the conventional approach to DBMS has yet to cross.

A. A REVIEW OF OUR WORK

We have fully implemented a language interface layer (LIL) that is based on the

LIL of the network interface of MLDS as implemented by Emdi [Ref. 191. The

difference, however, is that the LiL of this thesis allows the user to access a database

that is based on either the network data model or the functional data model. If the

desired database is based on the network data model, then the user inputs his
transactions using the data model-based data language, CODASYL-DML. On the
other hand, if the desired database is based on the functional data model, LIL

transforms the functional schema into a network schema and the user is then allowed

to access this transformed database using CODASYL-DML transactions.

69

VW1WVW~rKWIVV VW YW'W

The kernel mapping subsystem (KMS) should be modified as described in

Chapter VI of this work in order to allow the CODASYL-DML transactions to

properly manipulate the AB(functional) database that has become the target database.

KMS translates the CODASYL-DML transactions to their equivalent ABDL

transactions somewhat differently from the translation designed by Wortherly [Ref. 31

and implemented by Emdi [Ref. 19], due to the fact that the target database is an

attribute-based representation of a functional database rather than an attribute-based

representation of a network database.

The kernel controller subsystem (KCS) was not implemented as a part of this

thesis work. This was due to the uncovering of a problem in January 1987 during the

integration of MLDS with the Multi-Backend Database System (MBDS). This

problem prevented the connection of KCS to the kernel database system (KDS) and

would not have permitted the actual test and evaluation of KCS. Although KCS was

not implemented, it was examined and thought to entail only minimal changes to the

existing KCS of the network interface of MLDS. The modifications are similar to

those described by Rodeck [Ref. 21.

B. FUTURE RESEARCH

Rodeck's design [Ref. 2] and the work completed in this thesis present a bright

picture for the emergence of MMDS. It is anticipated that the unfinished work from

this thesis will eventually be completed. The remaining work is to implement the

translation schema of the CODASYL-DML statements as described in Chapter VI,

which entails altering the existing KMS and KC of the network interface of MLDS.

Once finished we will have created a complete and full interface allowing the accessing

of a functional database via CODASYL-DML transactions.

Along with this interface, the Laboratory for Database Systems Research, Naval

Postgraduate School, Monterey, California is continuing to examine other interfaces

that should lead to further breakthroughs. Current work includes that of Zawis

[Ref. 24], which implements a means for accessing a hierarchical database via SQL

transactions. It is expected that the ongoing research and development effort will

ultimately result in a comprehensive MMDS.

70

Lwna-

LIST OF REFERENCES

1. Demurjian, S.A., The Multi-Lingual Database System, Doctoral Dissertation. The
Ohio State University, December 1986.

2. Rodeck, B.D.. Accessing and Updating Functional Databases Using CODAS YL-
DM1IL, Masters Thesis. Naval Postgraduate School, Monterey. California. June
1986.

3. Wortherly, C.R., The Design and Analysis of a Network Interface for the .!uti-
Lingual Database System, Masters Thesis, Naval Postgraduate School, Monterey,
California, December 1985.

4. Hsiao, D.K., "New Database Systems," Computer Science in the .Vaval
Postgraduate School, pp. 11-14, September 1986.

5. Canada", R.E., et al., "A Back-end Computer for Data Base Management.
Communications of the ACM, Vol. 17, No. 10, October 1974.

6. Naval Postgraduate School Report NPS52-86-011. The Multi-Lingual Database
S'stem, by S.A. Demurjian and D.K. Hsiao, February 1986.

7. Sibley, E.H. and Kershberg, L., 'Data abstraction views and updates in RIGEL,"
Proc. ACM SIGMOD AFIPS, Nat. Computer Conference. Dallas, Texas. June
19"7.

8. Shipman. D.W., "The Functional Data Model and the Data Language
DAPLEX." ACM Transactions on Database Systems. Vol. 6, No. 1. March 19Sl.

9. Chen. Peter Pin-Shan, "The Entity-Relationship Model--Toward a Unified View
of Data," ACM' Transactions of Database Systems. Vol. 1, pp. 9-36, March l-6.

10. Date, C.J., An Introduction to Database Systems. Vol. 1, Addison-WcsIc%
Publishing Company, 19S6.

11. Tsichritzis, D.C. and Lochovsky, F.H., Data Models, pp. 119-147, Prentice-ltai.
1982.

12. Kroenke, David, Database Processing, Second Edition, Science Research
Associates, Inc., 1983.

71

.

13. Emdi, B., The Implementation of a Network Interface fror the .Xfiuii-L:ng'zwl
Database -System, Master's Thesis. Naval Postgraduate School, Monterej.
California. December 19S5.

14. Hsiao, D.K. and Haray. F., "A Formal System for Information Retrieval f-rom
Files," Commtni cati.ons of :he A0CM. V. 13, 'No. 2. February I 9'O Corrigenda. Vol.
13, No. 3. March 1970.

15. Wong, E., and Chiang, T.C. "Canonical Structure in Attribute Based File
Oreanization," Communications of the A CM, September 19-1.

16. Rothnie. .J.B. Jr., "Attribute Based File Organiation in a Paged \vlemor-v
Environment," Communications of the A C.1!, September 1971" .

17. Banerjee. J. and lisiao, D.K., The Ohio State LniversitvN 'technical Report No.
OSL*-CISRC-TR-77-'7,.4 Methodology for Supporting E.sting (oDAS FL
Databases 'with Ne~w Database Machines. by J. Banerjee and D.K. lislao.
November 1977.

18. Lim. B. H.. The Implementation of a Functional Interface for Mhe .1tuiti- Lingual
Database SyVstem. Master's Thesis, Naval Postgraduate School. \Ionterev,
California. December 1986.

19. E mdi1. B., The Ilpnet:tation oj' a Netwvork Interface for the J.llui&Lingu~al
Database S-ysiem, Master's Thesis. Naval Postgraduate School. \tcn;:rey.
Cahf'ornia, December 1985.

20. Goisman. P.L., Thle Design anti Anall'sis of a complete Entqav,-Relaumsmp~u
Interface tor the .1fulti-Backend Database Svsi'em. Master s Thesis. \a\ al
Postgraduate School. Monterey. California. December 1985.

21. Anthonyv. J.A. and Billings, A.J., The Implemnentation)I' a cotnrlcte Fin'v -
Relationship Interface for the I~fulti-Back'end Database S stem, Master is I hecs.
Naval Postgraduate School, Monterey. California, March N9S6.

2. Meyer. G. and Mac~ougal, P., An A'ttrihute- Value Translatwn of COD1.IS YL
Data Manipulation Language. Ohio State University. 19S2.

23. Computer Corporation ofl America, Cambridge, Massachusetts, Tec-hnical Report
CCA-84-01. Daplex User's Manual, S. Fox et al., June 1984.

24. Zawis, J.A., Accessing Hierarchical Databased via SQL Transactions in thle .ti
.Hociel Database Systemn, Masters Thesis. Naval Postgraduate School. Mlonterey,
Calif'ornia. ito be published December. 1987).

72

7

INITIAL DISTRIBUTION L.IST

No. Copies

I. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5WJ2

3. Chief of Na~al Operations
Direc'or. Information Systems (OP-945)
Navx Department
Washington. D.C. 20350-2000

.4. Department Chaimian. Code 52 2
Department of Computer Science
Naval Postgraduate School
\lontere%. CA 3943-50(m)

5. Curricular Officer. Code 37
Computer Technology
Nava, Postgraduate School
Monterey, CA 93943-5(M)

6. Professor David K. Hsiao, Code 52Hq
Computer Science Department
Naval Postgraduate School
Monterev. CA 93943-5i)(m

Professor Steven A. Demurjian
Computer Science and Engineering Department
The Lniveritv of Connecticut
204; Glenbrook Road
Szcrrs. CT 06268

S. Lieutenant Harry Coker. Jr.. L SN
Code R620
l)eense Communications Engineering (Center
Reston. VA 22U09-55()

9. Beng Hok Lir
307. Bedok North A'e 3
=1,'i-3-. Singapore 1646
Repubiic of Singapore

73

- ?.f': e*

'p

I

i
*~ -Y

I

I,

p

~tsIImmmmmmmmmmum.i~mEmb~mr~..a. 4.

b.F~

