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Introduction

Finding the sources of misconceptions possessed by students is a

difficult task because it is impossible to see what is happening in

their brains. The only observable outcomes are the students'

responses on the test items. Studying their spoken-aloud protocols

is one method for discovering how students solve or think through

problems. Several programs that are capable of diagnosing students'

misconceptions have been developed in the past decade (Brown &

Burton, 1978; Marshall, 1980; Vanlehn, 1983; Tatsuoka. Baillie, &

Yamamoto, 1982; Sleeman, 1984; Ohlsson & Langley. 1985). The common

ground of these cognitive diagnostic systems is that they infer

unobservable cognitive processes from logical interrelationships

among cognitive tasks. subtasks and goals involved in the domain of

interest. It is important that we retrieve invisible things from a

"black box" and interpret them into a useful form so that valuable

information can be obtained for improving educational quality.

The effort of incorporating the findings in cognitive theories

into construction of test items is not new. Bloom and his associates

(1956) created a taxonomy of educational objectives for the cognitive

domain and it has become very popular among educational practitioners

in the past decades. However, some people have had considerable

difficulty in classifying items according to Bloom's taxonomy.

Statistical properties of the taxonomy (Madaus. Woods & Nuttall,

1973; Miller. Snowman. & O'Hara, 1979) were investigated and the
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results suggested only two factors, fluid and crystallized

intelligence (Cattell, 1971).

Recent advances in cognitive theory provide new insights into

human thinking and learning processes. As a result, it had become

apparent that the need for a new kind of test has arisen. The new

tests have to be used as an integral part of instruction. In order

to be of any use, the measures of the new assessment must promote

learning and improvement of instruction. Reshaping of testing will

lead to better measures of ability and achievement with greater

instructional utility.

Linn (1985) pointed out that "there are a number of barriers

that will need to be overcome if the envisioned improvements in

testing are to be even partially realized." He describes three

barriers: a lack of technical, methodological theories that are

appropriate to handle dynamic aspects of modern learning theory; the

economic barrier; and the ideological barrier. As for the latter

barrier, the researchers and practitioners dealing with current

theories of educational and psychological statistics perceive "noise"

or "response errors" as an incidental factor, and are not accustomed

to seeking reasons for what they are and why they happen. Aberrant

responses are seen as errors, although they often coincide with the

responses resulting from the perfect application of wrong rules F

(Birenbaum and Tatsuoka, 1982). Linn (1985) says that "it is

important to understand the obstacles to change, whatever their

nature, in order to overcome them."

. - - In this study, a new methodology that is capable of diagnosing

cognitive errors and analyzing different methods for solving problems
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D will be introduced, illustrated with fraction subtraction problems.
The new approach called 4 Rule space' integrates Item Response Theory

(IRT) and the algebraic theory of databases (Lee, 1983). The rule

space model is general enough to apply to any domain of interest,

where classifications and selections of students, diagnoses of

misconceptions are done by Bayes' decision rules for minimum errors

(Fukunagawa, 1972) or any other equivalent decision rules with

respect to a set of systematic errors determined prior to analyses.

The first section discusses important objectives which the

construction of cognitive diagnostic tests must follow. Then the

introduction of the rule space model starts with its brief concept,

connection to a distribution theory, construction of a bug library

and the rule space, and finally introduction of the operational

classification scheme. --

On the Construction of Items for Cognitive Diagnostic Testing

Selection of the items in cognitive diagnostic testing is

important. Special care has to be taken in selection of the items.

For example, one of the most popular misconceptions in the fraction

subtraction problems committed by seventh or eighth graders (2.8% of

the total number of students), is when it is necessary to increase

the numerator of the first fraction of a subtraction problem, a

student reduces the whole number part by one and adds 10 to the

numerator of the fraction (Shaw, 1984). If the denominator of the

first fraction happens to be 10, then the procedure produces the

correct answer. Therefore, at least one item must have a denominator

V K-TW A RM"Xbf 1R" Ri
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not equal to 10 in the first fraction, while a second item may have

the denominator of 10. Then. the response pattern (1 for the correct

answer and 0 for wrong answers) yielded by the right rule is (1.1).

but the rule adding 10 to the numerator produces the response pattern

of (1.0) or (0.1).

Traditionally, item construction originated from the evaluation

of content validity, that is. "how well the content of the test item

covers the class of situations or subject matter about which

conclusions are to be drawn" (APA...). However, Angoff (1986).

Messick (1980) and Cronbach (1985) came to the same conclusion as the

view offered by Loevinger in 1957: "Content validity is essentially

ad hoc and does not have scientific value." The recent view of

content validity, therefore, replaces its essence by construct

validity.

Construct validity is termed so as to "examine the psychological

trait, or construct, presumed to be measured by the test and

investigate relationships between the data from the test and the

theory underlying the construct" (Messick, 1984). Futher, Angoff

(1986) states "Construct validation is a process, not a procedure;

and it requires many lines of evidence, not all of them

quantitative." According to his view, a validation study may include

logical task analyses such as that done by Klein et al. (1981) for

predicting bugs or erroneous rules of operation and construction of

test items by which all the predicted bugs will be covered. Protocol

studies have also become an important component of the validation

process.
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Glaser (1985) suggested a new direction of educational

measurement in achievement test. He writes "Test items can be

comprised of two elements--information that needs to be known and

information about the conditions under which use of this knowledge is

appropriate." As for the first element, there are various stages of

competence in students' knowledge, including cognitive skills. Also,

it is important to assess what knowledge structure the students have.

Greeno (1980) pointed out that the acquisition of declarative and

procedural knowledge is usually an object of instruction but

strategic knowledge that enables one to set goals and subgoals and to

form plans for attaining goals is not explicitly taught. It is often

left to individuals to acquire it by induction. Different item types

often require the students to decide which solution path should be

taken, what should be done first to reach the final answer. Many

erroneous rules discovered in the studies of signed-number and

fraction addition and subtraction problems indicated the students did

not even recognize that different item types require different

solution paths and different sequences of different subtasks. They

did not have the slightest idea of why the strategic skill described

by Greeno were necessary.

The new test design must be capable of reflecting and

discriminating between the different knowledge structures possessed

by individuals. Each different structure requires its unique

strategic skills. For example, there are two contrasting methods to

solve mixed number fraction subtraction problems. One is to separate

whole number parts from fraction parts (Method B) and the other is to
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convert mixed numbers to improper fraction first and then subtract

two numbers (Method A). If a student has excellent computational

skills in the arithmetic of whole numbers, then he/she does not have

to learn how to borrow one from the whole number part. So. Method A

always gives the correct answers for subtraction of mixed numbers.

The student using Method A can get high scores without understanding

numbers and the number system.

Modern cognitive theory concludes that one of the important

stages in learnirg processes is "Theory change" (Glaser. 1985). When

learning takes place, students test their hypotheses and then

evaluate, modifying current theories on the basis of new information.

New educational measurement must take the volatile theory changes by

an individual into account and be able to capture the traces of

performance changes in detail in order to increase educational

utility of responses to the tests.

The goals to be attained in modern measurement theory are not

easy. Apparently, the technical barrier, as Linn states, is high and

the traditional theories of educational measurement and testing have

only limited power, or are simply inapplicable to the new measures.

IRT is not an exception in dealing with the new demands just

described if we conceptualize IRT at the level of individual items.

The definition of construct validity, thus, has to be expanded

to a reconceptualization of traditional test theory so as to explain

the dynamic aspects of learning and to express knowledge structures

in terms of relational databases. None of the traditional test

theories can handle theory changes or assess knowledge structures.

'I
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As for a summary of the above discussions, Claser (1985)

categorizes the main objectives of assessing new achievement measures

into four parts: The first is to diagnose the principles of

performance, the second is to assess the theory changes, the third is

to evaluate a structure or representation of problems, and the fourth

is to assess the automaticity of performing skills. The automaticity

is important to reduce attention-demanding tasks. Carrying out

single component processes may be easy, but it may not be easy when

several components have to be worked out together. The importance of

this operation, orchestration of several component tasks, seems often

to be neglected by textbooks and in classroom teaching.

The four dimensions of objectives listed above seem very

descriptive and qualitative. Psychometrics, by nature, is concerned

with quantitative theories of educational and psychological

measurement. The area of standardized testing has a long history of

contributions to American education. The development of IRT has led

to many areas of improvement, such as item analysis, test design,

test equating, and procedures for detecting item bias.

The basic concept underlying IRT is latent traits. "A theory of

latent traits supposes that an individual's behavior level can be

accounted for, to a substantial degree, by defining certain human

characteristics called traits, quantitatively estimating the

individual's standing on each of these traits, and then using the

numerical values obtained to predict or explain performance in

relevant situations" (Lord and Novick, 1968. p. 358). Messick (1984)

projected his view of new achievement assessment as a combination of
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trait theory and the decriptive theory used in differential

psychology. However. there is no guarantee that traits exist in any

physical or physiological sense. "It is sufficient that a person

behaves as if those amounts substantially determined his behavior"

(Lord and Novick. 1968, p. 358). Convincing interpretation trait

variables have never been given in the past.

Returning to the definition of construct validity given by

Angoff (1986), let us examine the psychological traits or constructs

as viewed by traditional psychology. Catell describes ability as

organized complexes of transferable concepts and skills. Guilford

(1967) describes it as information processing skills. Sternberg

(1977) treats abilities as constellations of information-processing

components. Snow (1986) conceives of abilities as structures of

assemble and control processes as well as performance processes.

On the other hand. psychometricians have developed probabilistic

models to measure invisible constructs. Two general classes of the

models have been proposed: continuum and state models. Two

conflicting views are at the root of the models: For continuum

models, trait acquisition is assumed to be continuous in nature.

while state models take the position of all-or-none, discrete
I

processes.

As for the continuous models, several pioneers have developed

various types of item response theory models (Lord. 1953; Lord and

Novick, 1968; Birnbaum, 1968; Rasch. 1960). Since then, several

extentions or modifications of the original IRT models have been

developed (Samejima. 1969; Bock. 1972; Fischer. 1973: Embretsen.
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1984; Reckase, 1985). The IRT models express a trait by the variable

0 and express item characteristics by continuous probability

functions. That is, item scores x.(j=l,2... n) are related to a trait

0 by a function that gives the probability of each possible score on

an item for a randomly selected examinee of given ability. These

functions are response curves of item characteristic curves.

Although the models fit the datasets of various standardized tests,

the clear meaning of 0 remains undetermined through data analysis.

Spada and McGaw (1985) investigated cases fer which the one-parameter

logistic model and Fischer's linear logistic model (LLTM) are

inapplicable. They concluded "the simple Rasch model is applicable

only if global learning of item-specific learning occurs, with

constant gains for all persons. Person specific learning falsifies

the model. The same is true for application of LLTM that decompose

item-specific learning into changes in the difficulties of elementary

cognitive operations" (p. 189).

A discrete learning model pioneered by Lazarsfeld (1956) and

Lazarsfeld & Henry (1968) also has branched out to many modified,

extended models (Macready, 19S2; Alvord and Macready, 1985; Muth~n,

1985; Paulson, 1985). Paulson, in particular, extended the latent

structure model to apply to detection of rules of operation in

signed-number addition problems. Each rule was treated as a discrete

state in his model. Some basic assumptions in the state models are

too restrictive and unrealistic to incorporate into the modern

learning theory. They assume a priori how many latent classes or

states the model has. Then, every subject must belong to exactly one

a.



of the finite sets of classes which are mutually exclusive and

together exhaustive. The explanation of theory changes by state

models is very difficult. The restriction in the number of states to

be included in modeling before the parameters are estimated

critically limits the flexibility of this approach. Although recent

advances in methods of estimating parameters are significant, it is

still an expensive task with respect to computer time and it requires

a dataset of astronomical size in order to obtain accurate estimates

of many parameters.

Tatsuoka and her associates (Tatsuoka, 1983, 1985, 1986;

Tatsuoka & Tatsuoka, 1983, in press) have developed a new

probabilistic model which has taken advantage of both the continuous

and discrete models. They named it "Rule space."

Rule Space Nodel

1. Philosophy behind the rule space model

Whatever the invisible traits or constructs stand for, the

statistical meaning of the estimated latent variable is equivalent to

the proficiency levels of the performances on the test items because

the total score or weighted total score is a sufficient statistic for

estimating the true 0 by the maximum likelihood method in the one-

and two-parameter logistic models (two of the basic IRT models).

Suppose item j is scored 1 or 0; then xj is a random variable

related to 6 by a probability function as follows:

(1) P (6) = Prob (xj = lie) = 1 - Qj(0) = 1 - Prob(x. = Ole).

Jw

'S
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The one-parameter logistic function defines a basic type of mode'

called the Rasch Model. Equation (2) gives the two-parameter

logistic function, where aj is item discrimination power, b is item

difficulty

(2) Pj(ei) = 1/[1 + exp(-1.7aj(0i-bj))].

If aj is set equal to 1. then it becomes the Rasch model.

Tatsuoka and Linn (1983) discussed the relationship between item

response function PJ(0I) and person response function Pi(bj). The

person response function (or curve) is defined by the same equation

(2), but Pj(0i) is a function of a continuous variable 0 for a fixed

bJ. Pl(b is a function of variable b (assuming there are

infinitely many items) for a fixed level of 61. Especially. the

one-parameter logistic function is a symmetric function with respect

to 8 and b.

The person response function is the probability function of

person I with 01 = 6 getting the correct answer for an item with

difficulty b . Since Mosier explored person response curves in 1941,

several researchers have found them very useful for explaining the

relation between ability 6 and item difficulty b (Trabin & Weiss,

1979; Carroll, 1985). By using the one-parameter logistic model,

Carroll (1985) explored the relation between both the curves with

several ability tests in order to obtain an answer to the question,

"what is an 'ability'?" (p. 1). His assumption is that "The

existence of an ability can be demonstrated when it can be shown that

for any individual there is a systematic, monotonic, and close
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relation between the individual's probability of correct or

satisfactory performance and the difficulties of a series of tasks,

and when there are variations over individuals in the parameters of

this relation." (p. 22). One of his conclusions is that the ability

is defined in terms of the attribute(s) of the tasks that cause

differences in task difficulty. Carroll's conclusion is that the

ability is defined in terms of the attribute(s) of the tasks that

cause differences in task difficulty. Carroll's conclusion is

applicable to the situation such that the space of the difficulties

resulting from various combinations of attributes involved in the

tasks is unidimensional. Then his conclusion is mathematically sound

because of the symmetric relation of the Rasch model.

As long as we interpret 0 as the latent ability or construct

which influences the performances on the tests, we may face the

philosophical dilemmas of IRT models such as the dimensionality of 0

or b. or the impossibility of explaining gain scores or Glaser's

Theory changes. Since a composite of several factors (or abilities)

influences the performance of an item, and each item in the test is

likely to require a different composite or possibly a different set

of abilities, the psychological meaning of 0 is very complicated and

difficult to interpret (Stout, in press).

IRT models are formulated by utilizing a response pattern or

binary vector with n elements. There are two distinct independent

pieces of information in a response pattern. One is quantitative,

telling us how many items are correctly answered (total score), and

the other is qualitative, regarding which items are correctly

' ''. ' ' '.', .)' 'r .. r' r ' ",? 'j,' '.' ', .r 'r' ,, .' , , , . a
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answered and which are missed. Since IRT assumes the local

independence (Lord & Novick. 1968), the likelihood function is

expressed by taking the two pieces of information into account. The

item and person parameters can be estimated from the likelihood

function by applying the maximum likelihood procedure.

However. Tatsuoka (1987) investigated what really determines the

item response curves, a task somewhat similar to Caroll's quest

regarding "what ability is." Starting from a painstaking logical

task analysis, she constructed sets of items such that each item

involves a unique combination of cognitive subtasks. The study

showed that underlying cognitive processes for solving an item

determine the slope and location parameters of an IRT curve. If this

is true for any domain, then it is important to expand our view from

a localized, narrow interest in IRT curves to a broader global

concept. Refinement and improvement in psychometric techniques.

after IRT models were introduced, have been limited for most works to

dealing with individual items separately.

A new model has to be able to measure the objectives of modern

learning theory. In order to achieve this demanding goal, it is

helpful to see item response curves as a whole, as a set. and to

investigate algebraic and topological properties of this function

space. Many IRT models have been proposed recently. These

probability functions provide finer, or more accurate measure of 0

than simple basic IRT models. They too can be used for formulating

the rule space model, so it is not necessary to be restricted only to

one- and two-parameter logistic models.
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Expanding the perspectives of test theories to functional

analysis leads to some important and useful conclusions. For

example. Tatsuoka (1975) reformulated classical test theory in a

vector, Hilbert space and proved the existence of the true score.

The theory of functional analysis treats a function as a "point"

and utilizes the methods of algebra and topology in a set of

functions. Ramsay (1982) outlined the concept of functional analysis

as an extension of classical statistical techniques and explained

least squares, principal components and canonical correlation

analyses in the context of functional analysis. He stated that "the

data must be viewed as an element in a space of possible functions

taking a domain space into a range space" (p. 352). He concludes

with the remark that "functional analysis already has revolutionized

numerical analysis so that any issue of a major journal [in that

discipline] now has a number of papers using this technology. I

claim that this is about to happen to statistics" (p. 394). The rule

space model is an application of functional analysis using a

projection operator.

The third objective listed by Glaser was to assess the structure

of knowledge possessed by an individual. This dimension requires a

leap to a new world for the field of educational measurement, as it

is apparent that the algebraic theory of relational databases is

needed to achieve this objective. If a set of items is carefully

constructed, then various relationships among the items should

reflect the relationships among cognitive subtasks underlying each

item. By examining bugs and sources of misconceptions, one can see

. % % ,, , - . w • . ., ,, . A . mW)" 'd w f
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which subtasks caused scores of ones or zeros on the items. For

example, Tatsuoka (1984c) represented 27 erroneous rules of operation

found in signed-number addition problems as ordered pairs of (1) the

number of cognitive steps taken correctly, and (2) the value of the

Norm Conformity Index, one of several indices that measure

appropriateness of response patterns (Tatsuoka & Tatsuoka, 1982).

The latter assesses the degree of conformity of the sequence of

cognitive steps followed by each bug to the expert's procedural

steps. That is, the second value measures how early or how late an

erroneous rule causes departure from the correct steps in the

procedural network. The result of the study indicated that an early

derailment obviously has more serious consequences than one at a

later stage. Cluster analysis separated bugs caused by early and

frequent derailments from those due to later and less frequent

derailments. She named the former, "seriously ill-composed rules."

Later studies (Birenbaum & Tatsuoka, 1986a; Shaw, 1986) indicated

that wrong rules that are not seriously ill-composed can be

remediated by giving correct answers, or even by the feedback of OK

or NO to each reponse to the item.

Norm Conformity index characterizes the quality of information

of a response pattern and expresses its characteristics

quantitatively. The rule space uses a similar index (called

IRT-based caution index) defined in the context of the IRT curves

(Tatsuoka, 1984b). However, in order to explain what the rule space

model is, we have to clarify the terms "bug" and "erroneous rules of

operation," which have been used without specific definitions so far.
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2. What are Rules?

A systematic error over the test items can be the combination of

one or more bugs, or a part of erroneous rules. If a student applies

his/her erroneous rule with perfect consistency to the items in the

test, then his/her responses to the test will be perfectly matched

with the responses generated by a computer program. We call

systematic errors erroneous rules.

A correct rule will, by definition, produce the right answer to

all the items, but sometimes wrong rules may produce the right answer

to some subset of the test items. Moreover, some rules are

combinations of the right rule and wrong rules, and others are

combinations of two or more different wrong rules. We consider them

as new rules as long as they are consistently applied to all the

items. If we construct the test items carefully so that the

important, predicted common errors can be expressed by unique item

response patterns of ones and zeros, or component response patterns

specified in a task analysis, then the rules can be distinguished by

response patterns. In other words, we can assume that rules are

expressed by binary response vectors.

The rule space model was developed to solve a specific

classification problem in which the entities to be classified are the

rules in some well-defined domain such as arithmetic, algebra and

science. As was mentioned earlier, two kinds of information are

included in a response pattern. They are the quantitative

information of the total number of ones and the qualitative

Information on which items had ones. The former is represented by 0.
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the latter, by , an index expressing atypicality (or

non-appropriateness) of the response patterns of a given group

(Tatsuoka. 1984b). Any rule can be expressed by an ordered pair of 6

and C. We assume that, at least at the very beginning, the rules are

determined a Priori through a logical task analysis. A later section

explains this in detail.

3. Bug Distribution

The distribution of observations plays an important role in

statistical theories. When we deal with students, random errors or

slips due to careless errors or uncertainty always affect the

outcomes of performances on a test. Even if a student possesses some

systematic error, it is very rare to have the response pattern

perfectly matched with the patterns theoretically generated by its

algorithm (VanLehn, 1983; Tatsuoka. 1984a). Some systematic errors

may have a tendency to produce more slips, while other rules have a

small number of slips. Also, some items may be prone to produce more

slips than other items. It is very important that we be able to

predict the probability of having slips on each item for each

systematic error (or rule). Knowing the theoretical distribution of

observed slips of a rule enable us to see and predict statistical

properties of observed responses yielded by the rule.

Tatsuoka and Tatsuoka (1987) derived the theoretical

distribution of observed slips and named it "Bug Distribution."

First, the probability of having a "slip" on item j (J=1.2 .... n) is

denoted by pj for item J. (J=1,2 .. n) and it is assumed that slips

occur independently across items. The bug distribution of a rule R
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follows a compound binomial distribution with different slip

probabilities for the items.

(3) Prob (having up to s slipsR ) = pj J( .i}
m--O Ix=m j=l

The expectation and variance of the bug distribution of Rule R whose

corresponding binary vector is -- in which we assume, without loss

of generality that the first r elements are ones and the remainder

are zeros (i.e. x =1 for J=l....,r and x = 0 for j=r+l....,n)--
rj r

will be given by

r n(4) pR = I p " + I q  '

J=l j=r+l

n
(5) aR = j pjqj

where q =l-p1 .

The bug distribution of rule R corresponds to the conditional

probability that a subject in the state of possessing rule R will

respond correctly to item J.

4. A Mapping Function of Response Patterns x.

The rule space model begins by mapping all possible binary

response patterns, x's into a set of ordered pairs ((0, f(x))}. The

mapping function f(x) is an inner product of two residual vectors.

P(B) - x and P(G) - T(O) where P (0) J=l .... n are the logistic

V
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functions and P(0) = (P(O) ....P (6)] and T(O) = (T(O) .... T(O)), T(O)

being the average of P (0). J=l ... ,n. Since f(x) is a linear

function, the bug distribution of Rule R mapped into the rule space

will have the centroid of Equation (6) and the variance and

covariance matrix of Equation (7) (Tatsuoka. 1985).

r n
(6) 0 - O + n T R

(7) 0 [ R PR - T(OR)]

J=l )jR((R

where 0R is the O-value for Rule R, Q J 0R) is 1 -Pj (R) and '(OR) is

the information function of the test at OR - The mapped bug

distribution of R has the slip probabilities S (0R) given by Equation

(8). See Tatsuoka and Tatsuoka (1987).

(8) S (eR) = (1 - xR j)PjR) + XR Qj(0R)'

By standardizing f(x). IRT based caution index C (Tatsuoka. 1985)

will be

f(x)

(9) P= n PJ(OR)Qj(OR) Pj(eR) - T(OR)]

J=l ) R

The mechanism of how the index r distinguishes atypical response

patterns from typical ones is described in M. Tatsuoka and K.

Tatsuoka (1986). so more detailed explanation than that given in
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section 7.2 will not be given in this paper. But the statistical

properties of the bug distributions will be discussed later.

The next section introduces an elementary relational structure

of the items that will be used for preparing a list of erroneous

rules in the bug library.

5. Differential Ordering of Items by Underlying Cognitive Processes.

If a content domain for constructing a cognitive diagnostic test

is determined, then logical task analysis can nominate cognitive

attributes. The attributes may refer to production rules, procedural

operations, item types or. more generally, any cognitive subtasks. A

set of n items can be characterized by K nominated attributes and

expressed by K-element vectors. Let us call this matrix an attribute

x item matrix, or Q-matrix. (Embretsen, 1984). It is hoped that the

initial task analyses can be carried out by several experts or master

teachers. If two experts use different methods to solve a given set

of problems, then they may get entirely different attribute x item

matrices.

In this study, all the nodes of a directed process network will

be called "attributes" and denoted by A1. 2 ... A K. Items will be

characterized by placing one in the (J.k) cell of the Q-matrix when j

involves attribute Ak. and a zero when item j does not involve

attribute Ak

I if item j involves attribute Ak.
q kj

0 otherwise

29
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For example, Figure lb. Method B is an attribute x item matrix

for fraction subtraction problems solved by Method B (separate whole

number and fraction parts).

Figure 1

The purpose of introducing an attribute x item matrix is, first,

to make it easier to construct a set of items relevant to diagnosing

students' misconceptions resulting from a lack of knowledge or

misunderstanding of an attribute or combination of several

attributes. The second aim is to extract a set of binary patterns of

n items from the matrix, each pattern being produced by a systematic

application of an erroneous rule resulting from a misconception or

incomplete knowledge of a targeted attribute, or a combination of

several attributes.

Starting from the attribute x item matrix, many researchers in a

variety of disciplines such as biology, differential psychology,

engineering, and sociology have investigated clustering techniques.

Although the author has applied some techniques to the attribute x
P

item matrix, the results were disappointing. By using a dataset,

results of the analysis may be more objective, but interpretability

of analysis results may be washed away to a great extent. The lack

of interpretability of factors, obtained by factor analysis of the

estimated trait variables is well known. It is a problem of

trade-off between establishing objectivity and interpretability. At

this stage of making a diagnostic test, we will take the value of

interpretability of data into account. However, it is not our

*1

-~ 3',J','~ ~ V ~,V'~'W~'' %' ,
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intention to neglect objectivity. This issue will be discussed again

in the summary and discussion.

Each item. represented by a column vector, Q of the attribute x

item matrix is now characterized by a specific combination of

attributes. Similarly. each attribute, a row vector Q contains the

information as to which items involve attribute k. Let R be a

relation on a set of the column vector xj., j=l,...,n. where n is the

number of items.

Definition of R will be given as follows;

(10) x (x if Xik x for k=l. K.

Or equivalently, if item J includes the attributes involved in item i

then item J needs more task than item i. This relation satisfies the

reflexive and transitive laws:

1) x, K xi, reflexive law

2) if x x and x Kl then xi x1. transitive law.

With this relation, a set (x,, .... x n}has a partial ordering. If the

symmetric law is satisfied by xi and xj then, x and xj are

equivalent, and written as xi ~ xJ" Let (xj} be a set of items

expressed by vectors of K attribute elements where xj. j=l .... n.

From the attribute x item matrix a set of totally ordered items is

extracted. When relation R exists for any two elements in a set S.

then S is said to be totally ordered.

In Figure lb. Method B. Items 6. 8. 12 and 10 are tctally

ordered but 6. 2. and 12 are not. Denote a set of totally ordered

i
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items by Si. Then a list of the totally ordered sets of the items

extracted from Figure 1, Method B is listed in Table 1.

Table 1

In Figure 2b. Method B tree, a tree of the items is constructed

from the list of totally ordered sets in Table 1. If two item are

connected by a directed arc, then the items are totally ordered.

Figure 2

The number(s) in a box is (are) the item(s) involving attributes

listed next to the box. An advantage to using an item tree is that a

structural interrelationship among the items can be expressed

schematically. With the process network, it is difficult to see all

the different solution paths taken by 20 items in a single graph and

also it is difficult to pinpoint why and where a student's response

pattern deviates from the perfect responses. For example, Tatsuoka

(1984) describes Rule 8 as "The student subtracts the smaller from

the larger in corresponding parts when the two numbers are

different." With rule 8, items 12 and 14 (11/8 - 1/8, 3 4/5 - 3 2/5)

have correct answers while 2 and 17 (3/4 - 3/8. 7 3/5 - 4/5) don't.

By marking each box in the item tree of Method B with ' for the

correct answers and x for the wrong ones, the sources of

misconceptions producing rule 8 (refered to as G14) are represented

clearly as can be seen in the following Figure 3--they are borrowing,

getting a common denominator, and converting a whole number to a

fraction.
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Figure 3

6. Preparation of the "bug information bank" or "bug library."

Unlike most psychological models, the rule space model has been

developed by emphasizing the importance of interpretability of

statistics estimated from the data. Fischer and his associates

(Embretson, 1985; Fischer, 1973) expressed item difficulties in the

Rasch model by a linear combination of component subtasks, and also

unobservable frequencies with which each component influences the

solution of each item. Since the models contain several parameters

in the logistic functions, the estimation of the item parameters has

become a major task in the past ten years. (Fischer, 1978; Fischer

and Formann, 1972). Scheiblechner (1972) estimated item difficulties

from the Rasch model first and then regressed the estimated item

difficulties onto the hypothetical frequencies contained in the task

matrix Q. Estimated -weights approximate fairly well the estimates

of component subtasks obtained by a conditional maximum likelihood

procedure. However, Spada and McCaw (1985) state, "Despite the value

of the LLTM's analysis of task performance in terms of performance on

elementary operations, there are some difficulties in interpreting

the parameters of the model. The decomposition of the item

difficulties is, of course, quite precisely defined but its

psychological interpretation is not equally clear," (p. 180). The

difficulties in interpreting the estimates of the psychological

models are very common in psychometrics. It seems impossible to

maintain the interpretability of estimated parameters in terms of

underlying cognitive tasks in the current psychological modeling

pn
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approaches. New approaches must be flexible enough so that

individual differences unaccounted for during the process of

formulating a model will not only alter the interpretability of the

estimates but also be able to determine the existence of subjects who

don't fit the model. Since the item trees are constructed from the

inclusion relationships among attributes, the interpretability is

clearly retained.

6-1. Use of Multiple Regression

As did Scheiblechner (1972), a multiple regression analysis of

the attributes onto the item difficulties of 40 items showed that the

four attributes, converting a whole number to a fraction or mixed

number, getting the common denominator, borrowing of whole-number

subtraction and borrowing one from the whole number part to make the

numerator larger, have significant 13-weights to predict the item

difficulties (Chevalaz. 1983). Also, the number of attributes

involved in each item correlates with the item difficulty, at the

value of .57. Therefore, it is true that the greater the number of

attributes involved in the items, the more difficult the items are.

Suppose that a student cannot get the lowest common multiple of

two denominators, and he/she uses Method A, but that the student can

do the remaining attributes. Then, the response pattern of the

performance on the 40 items will be 0 for Yhe items involving the

attribute cd in the Method-A item tree, 1 for those not involving the

attribute cd. Because getting the common denominator has a

substantial P-weight.this error can be a good indicator of

determining a list of rules in a bug library.

V

Lp% A
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6-2. Use of the Item Tree

There are 27 possible response patterns obtainable from the

attribute x item matrix in each method. However, the item trees in

Figure 2 enable us to select a smaller number of rules and bugs that

are substantially important in designing and evaluating lessons.

The numbers shown near the directed arcs of Figure 2 are

conditional probabilities, Prob (Xi = 11 Xi_ 1 = Xi- 2 =... X1 = 1)

where i-1, i-2, ... .1 are antecedent items of i, and X. is the score

of item i.

Since x. xi _1 (i.e., item i includes all the attributes

involving item i-i) a drastic decrease in the value of the

conditional probability implies that a newly added attribute (or

attributes) causes the change. For instance, for Method B, the new

attribute added to item 17 is indeed a difficult subtask, borrowing.

If a student can't do the new attribute, borrowing, and can do the

other attributes perfectly well, then subsequent items not including

the borrowing attribute can be answered correctly. Thus, a binary

response pattern corresponding to the student's performance will be

zeros for the items that involve borrowing and ones for non-borrowing

items. This conjecture with respect to borrowing will be confirmed

by examining the arc between items 12 and 10.

Next, the conditional probability value between items 9 and 7 is

.60, which is low enough to merit attention. The new attribute in

the second box is "w to f or m" -- converting whole numbers to

fractions or mixed numbers. Therefore, the second response pattern

resulting from this case is zeros for the items with whole numbers
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such as 3 - 1/2, and ones for the items not including whole numbers

in their first position. By proceeding in this manner a set of

response patterns that are logically interpretable will be obtained.

Thus, representing the structural relationships among the items with

respect to their underlying cognitive attributes facilitates error

analysis. We have developed a computer program to make an item tree

from an attribute x item matrix and extract a set of totally ordered

items. Then, applying the method just mentioned, a list of 39 rules

is prepared. They are coded as G1 through G39. For instance. G2 is

the binary pattern of ones for items 6. 8, 26, and 28 and G13 is

binary pattern of ones for easy non-borrowing items. The

interpretation of G2 is that a student can subtract two numbers if no

attribute in Figure 1 is involved. Then, their centroids and

variance-covariance matrices are stored in the bug library for later

use.

7. Stochastic Behavior of the Rules: Inferences from the Bug Distribution

7-1. Which rules are More Consistently Applied?

The bug distribution of Rule R defined on the neighboring

response patterns of R was introduced in the previous section. It

was expressed by a compound binomial distribution with the slip

probabilities Sj(0R)' J=l,.... n. Let S(OR) be the mean of S (0R),

J=l .... n. Since any rule can be used as R. 0. instead of 0R will be

used. Walsh (1954) expanded the compound binomial in powers of

S (0) - S(O). Suppose X is a random variable of slip and s is the

number of slips, then the probability of having s slips is given by

(11).

•'
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(11) Prob(X=s) = Pn(s) + 1/2 nV2C2 (s) + 1/3 nV3C3 (s) + (1/4 nV4- 1/S n2V2)

c4(s) + (1/5 nV2 - 1/6 n2 V2 V3 )C5 (x) +.... s = 0.1.2.....n.

where P(s) = ( ):(
6
) (1-s(8))n

-s for s = 0.1,2....n,
nS

Cr(s) = I (-1)v 1vPn-r(s-v).
v-O

V =1/n- S(O)] r, r = 2,3....n.

Let us use G2, and G13 for illustrating the relationship between

the rule the probability of having s-slips away from the rules.

Insert Table 2 about here

As can be seen in Table 2, the probability of having a slip at

item 6 is .610 for Rule G2 and .240 for C13. Since the scores for

item 6 of both 02 and 013 are 1. the probability of having a slip, 1

to 0, at item 6 is higher for G2 than for C13. That is.

Prob (X6 g XC26 1 C2) = .610 and Prob (X6 A XG136 1 013) = .240.

Item 6 produces more slips for G2 than for 013. Table 3 shows the

Insert Table 2 about here

theoretical frequency distributions of Rules 013 and 02. The

probability of having 5 slips for C2 is .225 and for 013 is .150.

The frequency distribution of 013 reaches the mode at s = 6 while

that of 02 reaches the peak at s = 5. A close examination of the bug

distributions indicates that as 0 comes closer to the sample mean.

the rule associated with such 0 produces more slips. As 0 becomes

larger or smaller, such rules produce fewer slips. This
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gives rise to the conjecture derived from theoretical bug

distributions with the results of error analysis performed on

fraction addition problems as did Tatsuoka (1983) with signed-number

subtraction problems.

7-2. Which Rules are Atypical?

The IRT models assume the local independence of reponses to the

items. Therefore, the likelihood of each rule can be computed by

Equation (12). For each rule Ri.

P )Ri n R( -i(0) 1-Ri(12) L CU P1(0i

j=l

It is known that the likelihood correlates very highly with

(Harnisch & Tatsuoka. 1983; Birenbaum. 1985. 19). The numerator of

r is the function, f(x). linear function of x. K(O) - x[P(O) - T(O)]

for a fixed 6. where K(O) = P(O)(P(8) - T(O)] is a constant for a

given 6.

(13) f(x) = P(6)(P(9) - T(O)) - x(P(6) -T()

Since IRT curves represent underlying cognitive processes as

mentioned earlier, the deviation of P(6) (denoted by P(O) - T(6))

also reflects those cognitive processes. But the shapes of function

p (0) will be very different from those of the original logistic

functions. Figure 4 shows three curves where the difficulty of item

27 is smaller than the average function T(O). and that of item 28 is

W- -. . . .. ., . .. " ' . 1
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greater than T(O). Let us take T() as the horizontal axis and the

value of P (0) as the vertical axis and draw the deviations of item

response curves.Then graphs of deviations p.(0) will be as in Figure

Insert Figures 4 & 5 about here

5. Easier items are located in the upper half of the space while

more difficult items are in the lower half. If a student with

ability 6 takes the score of 1 for easier items and 0 for harder

items then the value f(x) will be smaller. If he/she scores 0 for

easier items and 1 for harder items, then the values of f(x) tend to

become larger. The same relation will hold for Equation (12). the

likelihood function.

For example, if a student has a wrong rule for the borrowing

operation in fraction subtraction, then his/her response pattern

consists of ones for the items which do not require borrowing and

zeros for those requiring borrowing. Figures 6 and 7 show two sets

of strikingly different curves of pj(O). The first set of items, in

Figure 6. contains items 4, 10. 11. 13. 17. 18. 19. and 20 which

require borrowing before subtraction of the numerators is carried

out. The second set of items, Figure 7. Includes non-borrowing items

1. 2. 3. 5. 6. 8, 9. 12. 14. and 16 in which items 7 and 15 are

excluded. Items 7 and 15 need conversion of a whole number to

improper fraction or mixed number. All the items in Figure 6 (except

item 4) have the functions p (0) below the x-axis which is the

average function T(O). The functions in Figure 7 all have curves

above the horizontal axis.
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Insert Figures 6 & 7 about here

The response pattern associated with the borrowing error has the

following binary vector of:

G19 = (1110110110011101000011101101100111010000)

and the maximum likelihood estimate of the latent variable 9 is .09.

The value of T(O) for G19 is obtained by substituting 0 = .09 into

the item response functions and yields T(.09) = .48. Next, let us

examine the values of the functions P.(0) - T(O) at T(.09) = .48. As

can be seen in Figures 6 and 7. the functions p.(0) at TO = .48. have

clearly different values for borrowing versus non-borrowing items.

Since the value of Equation (13) at a given 0 depends on the item

score of 1 or 0, the r value of G19 will be a negative number

(because the value of K(O) is nearly zero). By dividing the value of

f(G19) by the standard deviation at 0 the value of Equation (9) is

obtained. Thus. G19 corresponds to (.09, -2.26) in the rule space.

The rule space model starts by mapping all possible binary

response patterns into a set of ordered pairs {(O.C)} and

representing it by a Cartesian product space. A list of bug-response

patterns {Gr, r=l .... 39)produced from the item-tree program (Baillie

& K. Tatsuoka. 1985) will be expressed by a set of ordered pairs

(Or r ) which are centroids of r binary patterns. Table 4 lists the

39 points.

Insert Table 4 about here

:j
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Figure 8 shows the 39 centroids of 39 bugs in the rule space:

their values are given in Table 4. In Figure 8. the cluster

Insert Figure 8 about here

represented by circled + signs are the bugs derived from the item

tree by Method A. and the squares are those by Method B. It is

interesting to see that the two sets of bugs derived from the two

entirely different structures of the item trees partition the rule

space, and yet spread evenly over the 6-axis. Since the points below

the 6-axis conform better to the order of item difficulties, they are

more typical performances on the test items. If a rule is very

unusual, then the location of the rule will be seen in an upper part

of the space. So. the location within the space will tell whether or

not the rule is atypical with high scores or low scores. The same is

true for typical rules with high or low O's. Figure 9 contains a

selected set of ellipses whose major and minor axes are 1/I(6) and 1.

respectively (Tatsuoka. 1985).

Insert Figure 9 about here

Operational Classification Scheme

If all rules prepared in the bug library are mapped into a set

of ordered pairs. {(OR.CR)) along with their neighboring response

patterns with several slips a,.my from each rule, then the topography

would be like Figure 9.

The population of points would exhibit modal densities at the

rule points, and each rule forms the center of an enveloping ellipse

with the density of points getting rarer as we depart farther from

.~% A
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the center in any direction. Furthermore, the major and minor axes

of these ellipses are parallel to the vertical and horizontal

reference axes, respectively. The set of ellipses with Mahalanobis

distance as the metric, gives a complete characterization of the rule

space. If the ellipses represent misconceptions possessed by a

majority of students then any response-pattern point can be

classified as most likely being a random slip from some rule. For a

students' response-pattern point we search the two nearest ellipses

by computing the Mahalanobis distances of the student's point to the

centroids of the ellipses. Then. Bayes' decision rule for minimum

error is applied to classify the point and to determine error

probabilities.

However, computation of error probabilities (the probability of

misclassifications) is not an easy task. If the two nearest ellipses

from the student's point have equal variance-covariance matrices and

if the mapped distributions of the response patterns around the rules

R1 and R2 into the rule space follow the multivariate normal

distributions, then the logarithm of the likelihood-ratio function

becomes linear. Therefore. computation of the error probabilities is

reduced to the integration of the posterior conditional density

functions (Tatsuoka & Tatsuoka. in press). More detail of the

general procedure will be found in Fukunaga (1971). The assumption

of equal variance-covariance matrices of R and R2 must, needless to

say, be thoroughly examined.

1. The Results of Classification

The 535 students' responses on the 40-item fraction subtraction

problems are mapped into the rule space, and almost 90% of the

!, , ., , - :',' ,w , ,,., ,.'.. , ,. .,,' - ..., '. ' .-... .-...a.-,.-A-.-'..L.A
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students are classified into 39 sources of misconceptions. Table 5

summarizes the number of students classified into the ellipses

derived from the item trees of Method A and B in Figure 2.

Insert Table 5 about here

The distribution of Method A users and Method B users over the

0-axis, is fairly even and not much different in terms of the level

of O's. In an earlier study by Tatsuoka (1984). 275 out of 535

students, most of them seventh graders in a local junior high school.

had never been taught Method B. The remaining 260 students were from

a different school and most of them were in the eighth grade.

Moreover. quite a few students used both methods. If they don't need

borrowing, then they use Method B. otherwise they switch their method

from B to A (Shaw, 1984. p. 43). Method A does not require the

borrowing skill. These students are left undiagnosed in this study,

because the item trees utilized in producing a list of bugs are of

either Method A or B and the combination tree of Methods A and B is

not constructed. One of the advantages of using the rule space model

is that uncertain errors on the test can be left classified without

forcing them into one of the ellipses. They can subsequently be

further investigated for their underlying cognitive processes.

Therefore, the model can be exploratory and sensitive to any changes
4

which affect students' performances.

Regarding the psychological meaning of 0. the content of Table 5

is investigated in detail. The histograms of both groups over the

O-axis are drawn and shown in Figure 10.

A.-
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Insert Figure 10 about here

The 0 values in the two groups are not significantly different but

the C values are different. Histograms 1 and 2 for 8 overlap and

cannot be distinguished from each other. However, the Method-B users

have a deeper understanding of the number system and many of them

later advance to an algebra class. If 0 is really an ability

influencing the scores of the 40-item fraction subtraction test, it

is only natural to assume that the Method-B users should have higher

ability levels than those of the Method-A users. As Resnick (1982)

states, Method A requires a better short term memory with accurate

computational skills, while Method B requires sophisticated

manipulation of the numbers.

Tatsuoka, Linn and Yamamoto (1986) analyzed the dataset more

carefully and found that Method B users had higher mean scores for

most subtasks except for borrowing. They clearly demonstrated that

borrowing caused differential item performances. This study

indicates that the rule space model is useful for studying item bias

and for investigating the causes of item bias.

Summary and Discussion

This paper discussed some important issues for theories in

educational measurement and testing. Recent findings in modern

learning theory have raised tough challenges to psychometricians.

Glaser categorizes these challenges into four main objectives which

new achievement measurement should take into account. These
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objectives are descriptive, dynamic, structure-oriented, and

orchestrate several component tasks.

The pros and cons of two representative approaches of

probabilistic modeling commonly used in psychometrics were discussed.

Their common, basic principle is that an individual's proficiency

level is explained, to a substantial degree, by defining certain

human characteristics called traits. These traits are invisible.

The only observable outcomes are the students' responses to the test

items.

Modern physics and advances in theory and practice of

electricity and electronics share this problem with us. We have to

infer the outcomes of invisible traits (if they exist), unobservable

cognitive processes, individuals' knowledge structures and theory

changes from observable responses to test items. Modern physicists

have discovered neutrons, electrons and other elementary particles by

modeling observable physical phenomena as logical relationships.

It would seem that a new addition to the current theory and

techniques of psychometrics is needed to incorporate the new

challenges raised by modern learning theory. This addition must

overcome an ideological barrier as well as a technological one as

stated by Linn (1985). At the same time, the new addition requires

an expansion of our common sense to more abstract level, and a

re-examination of the basic principles of test theories. However,

the time is ripe, and finally research that manifests a new tiend has

begun to appear in several journals. This includes, for example,

renewed concepts of construct validity proposed by Messick, Angoff
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and Cronback, and a new technology, called rule space, introduced by

Tatsuoka and her associates.

This study introduced a part of the rule space model. The model

consists of four major components: (1) Item construction and

preparation of the bug library. The bug library consists of response

patterns resulting from various sources of misconceptions, sources of

incomplete knowledge and erroneous rules of operation; (2) Estimation

of parameters, including item parameters of IRT models and bug

distributions; (3) Execution of decision rules; (4) Evaluation of the

information in the bug library and update of the contents.

Each component requires a substantial amount of time to discuss

in detail. The first component was discussed mainly by introducing a

method for constructing an item-tree. Making a tree is an

application of deterministic relational databases. Each item tree

reflects a unique process structure underlying the problem-solving

activities. The values of conditional probabilities computed on a

specific directed path will help to identify the attribute that

causes difficulties in doing the test.

After locating a source of error types, or combinations of

several attributes that require special attention in teaching,

remediation. or designing instructions, the item-tree program

converts them into a list of response patterns. Since the attributes

can be production rules, the item tree can be a descriptive

representation of a production system.

One of the main differences between the traditional modeling

approach and the rule space approach lies in the ways they utilize

% %.,%
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the information obtained from a detailed task analysis. The former

approach defines a set of new variables and formulates them as

parameters in a probability function, or formulates them into

probabilistic relationships among probability functions. The rule

space approach utilizes algebraic relationships among item response

functions for expressing the information obtained from the task

analysis. Rules are associated with bug distributions and

represented as true points in the rule forms the rule space which is

a Cartesian product of two quantities, 0 and C. Each rule forms the

center of an enveloping ellipse with the density of points getting

rarer as we depart farther from the center in any direction.

Further, the major and minor axis of these ellipses are

asymptotically orthogonal (Tatsuoka, 1985). An observed response, on

the other hand, will be classified into one of the ellipses if

possible. Statistical pattern recognition techniques are applied to

classify the observed point. By examining the probability of errors,

the student's performance on the test will be diagnosed with an

interpretable prescription.

Since the meaning of 0 is taken as denoting the levels of

proficiencies and not as latent traits or constructs which govern

obtaining certain levels of performances on the tests, the change

scores resulting from hypothesis-testing activities of testees are

explained smoothly without any philosophical difficulties. The model

has treated 6 as quantitative variable and attributed an important

role to the contents of the bug library.

5,
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Table I
A List of Totally Ordered Sets of the
Items Extracted from Figure 1. Method B

1. 6(8)w.2(3)*.I
2. 6(8) .2(3) .13
3. 6(8) .12 5
4. 6(8) .12 10
5. 6(8) .14(16)*,17.13
6. 6(8) ,14(16) ,17.4(11,20)**.18.10
7. 6(8) ,14(16) .17,4(11,20) .19
8. 6(8) .14(16) . 9.7.19

Items 6 and 8. 2 and 3. 14 and 16 are
equivalent.

Items 4.11. and 20 are equivalent.
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Table 2
Slip Probabilities of the First
20 Items for Rules C 2and G 1

2 13

Item Slip Probability XR Slip Probability X

1 .043 0 .175 0
2 .025 0 .164 0
3 .025 0 .128 0
4 .154 0 .308 0
5 .285 0 .435 0
6 .610 1 .240 1
7 .006 0 .037 0
8 .495 1 .331 1
9 .430 0 .448 1
10 .002 0 .020 0
11 .012 0 .076 0
12 .269 0 .592 0
13 .001 0 .005 0
14 .192 0 .444 1
15 .006 0 .048 0
16 .208 0 .490 1
17 .003 0 .029 0
18 .021 0 .099 0
19 .000 0 .001 0
20 .001 0 .014 0



Table 3
Bug Distributions of Rules C13 and C2 (N = 1000)

No. of Slips Frequencies of 013 Frequencies of C2

0 1 1
1 5 11
2 18 48
3 49 122
4 98 198
5 150 225
6 181 188
7 176 119
8 141 58
9 93 22
10 51 6
11 23 1
12 9
13 9



Table 4
The 39 Centroids Representing 39 Different Error

Types in Fraction Subtraction Tests (N = 535, n = 40)

Group 6 No. of 1(0) Group 0 No. of 1(0)-1
Items Items

1 -2.69 -.80 1 .85 21 .24 -.89 22 .01
2 -1.22 -.69 4 .08 22 -.22 -1.23 14 .02
3 -.75 -.68 8 .05 23 .62 -1.55 32 .01
4 -.46 .75 10 .03 24 1.04 -.61 38 .03
5 .11 .91 18 .02 25 .75 -.05 34 .01-
6 .64 1.74 30 .01 26 -.51 -1.62 10 .04
7 -.17 1.48 13 .02 27 -.87 -.56 6 .05
8 .40 -.16 25 .01 28 -1.99 1.01 2 .29
9 .60 -.43 31 .01 29 -.19 1.53 12 .02
10 .57 -.24 29 .01 30 -.24 2.74 10 .03
11 .99 .72 37 .03 31 -1.18 1.46 4 .07
12 1.19 .86 39 .05 32 -1.45 .58 4 .11
13 -.60 -1.58 10 .04 33 .57 -.66 31 .01
14 -.44 -2.31 12 .03 34 .59 -1.39 30 .01
15 -.18 .67 14 .02 35 -1.66 -1.96 4 .16
16 -.08 -1.81 16 .02 36 -.52 -.94 10 .04
17 .16 -.86 20 .02 37 -.32 -1.26 14 .03
18 -.01 -2.12 18 .02 38 -.41 -2.57 13 .03
19 .09 -2.26 20 .02 39 .17 -2.34 22 .01
20 .29 -1.51 24 .01



Table 5

Frequencies of Students Who Used Either Method A or B

Range of 0 Method A Frequencies Method B Frequencies

6 -3
-3 < -2.5 1 29

-2.5 < 0 -2
-2 < < -1.5 36 12

-1.5 < ( -I 2,31 25
-1 < 0 -0.5 3,27 27 13,37 12

-0.5 < 6 < 0 4.7,29,30 42 14,15,16,18,22,38 39
0 < 0 < 0.5 5,8 46 17,19.20,21.39 31

0.5 < 8 1 6,9,10,11 78 23,25,34,35 73
1 < 0 12 50 24 26

Total 16 groups N=306 18 groups N=193
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Method A (Always convert mixed numbers to improper fractions.)

ATTRIBUTES ITEMS

1 2 3 4 5 6 7 a 9 I 11 12 13 14 15 16 17 18 19 29

l.Convert a whole
ru orm to traction l a I a I a a I m a I a

2.Cotwert lit mixed 1 a • I a I • I I I 1 1 I 1 1 I 1 1
number to 6-action

3.Convert 2nd mixed
number to fraction d • l l l • E 1 1 1 1 8 1 0 1 • 1

4.9implify bafore I a a a I 1 1

subtracting

S.Find i common I 1 1 a I a a a a a a a 1 a a a a a a a
denominator

S.Column borrow to
subtract numerator same a mum • ama • ama a •

7.Reduce mswer to
simplest form •

Method B (Separate mixed numbers into whole and fraction parts.)

ATTRIBUTES ITEMS

1 2 3 4 5 6 7 a a 9 10 1 12 14 15 16 17 18 19 2.
l.Convert a whole

numbe to frmction mamm a a•a•a•• mmml a
or mixed number

2.Separate whole number

-from traction am• a i a a a a i i a i i 1 1 1 1 1 1

3.Simplity before
gatting final answer m c i • Ia mammal II

.4.Find the common

denominator saa a a a a I a •ama a

$.Borrow I from whole

number p rt. c hange a a mama a a • Ia said a
numerator and whole

.. Column borrow to
Subtract2n a a a a a a ama a ama • ama I a N
numerator from lot

7.Reduce answer to

simple etform a a a I a a a a I azI Iam a a a a a • a

Figure 1. Attribute x Item Matrix of Fraction Subtraction Problems
by Using Method A or Method B.
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* Method B
6.26
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Figure 3. Representation of a rule G14 bV the item tree.
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