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ABSTRACr

This study demonstrated that item response theory, latent class

models, and the rule space model introduced by Tatsuoka (1985) and

Tatsuoka and Tatsuoka (1987) are algebraically related. Specifically,

it was shown (1) that IRT functions may actually be regarded as the

conditional density functions of item scores for a special latent class

representing the null state of knowledge (i.e., the state that would

' ideally ( produce a response vector of all zeros); and (2) that

estimates of the item parameters of IRT functions can be determined from

the union of several latent classes with the following property: when

their response vectors are mappped into rule space, the centroids of

these projections lie approximately along the first principal axis of

the union set.

Bug distributions, which are density function of the numbers of

slips away from the ideal rule-generated response patterns, play an

important role in interrelating IRT and latent-class models; they in

fact hold the key to the development of a general theory of rule space

that includes these two models as special cases. Furthermore, bug

distributions form the basis for developing new indices that measure the

stability of states or rules and the consistency with which a particular

rule is applied with no intrusion of slips. ,.
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Recent advances in cognitive theory provide new insights into human

thinking and learning processes. Linn (1985) pointed out that it is

important to develop a new theory and measurement technique in order to

measure volatile learning activities described in Glaser (1985) and

assess cognitive skill acquisition. Glaser (1985) summarized the main

objectives of assessing-new achievement measures into four categories:

1) Diagnosing the principles of performance; 2) Assessing the theory

changes; 3) Evaluating a structure or representation of problems; and

4) Assessing the automaticity of performance skills. A modern

measurement theory must be developed by taking the four objectives into

account. This implies that it is necessary to establish a concept of

item construction that is different from the classical foundation.

Traditionally, item construction originated from the evaluation of

content validity--how a test covers subject matter and situations.

Again, Glaser (1985) suggested that test items could be comprised of two

elements--"information that needs to be known and information about the

conditions under which use of this knowledge is appropriate." As for

the former element, there are various stages of competence in students

knowledge, including cognitive skills. Also, it is important to assess

what knowledge structure the students have. Greeno (1980) pointed out

that the acquisition of declarative and procedural knowledge is usually

an objective of instruction, but that strategic knowledge that enables

one to set goals and subgoals and to form plans for attaining goals is

not explicitly taught. Different item types often require the students

to decide which solution path should be taken, and what should be done

first to reach the final answer.

I
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Many erroneous rules discovered in past research (Brown & Burton.

1978; VanLehn, 1983; Tatsuoka & Tatsuoka. 1981) indicated many erroneous

rules originated from a lack of the strateg'c skill described by Greeno.

Therefore, new measurements must include the information for prescribed

diagnosis of students' erroneous rules or sources of misconception. The

new test design must be capable of reflecting and discriminating between

the different knowledge structures possessed by individuals. Each

structure requires its unique strategies to set subgoals and goals and

to find solution paths. As a result, different structures produce

different sets of erroneous rules; some rules may be included in both

the structures but the others are included in just one of them. The

modern measurement theory must be able to discriminate one knowledge

structure from another. The third condition "theory change" is stated

as "hypotheses testing." When learning takes place, students test their

hypotheses and then evaluate, examine, and modify current theories on

the basis of new information. It is not unusual that many students

change their erroneous rules one to another before reaching the mastery

stage. Measurements of new kinds of tests must capture the traces of

these performance changes in detail in order to increase educational

utility of responses to the test. The goals to be attained in modern

measurement theory are not easy. Apparently, the technical barriers, as

Linn states, are high and the traditional theories of educational

measurement and testing have only limited power, or are simply

inapplicable to the new measures.

In this paper, the pros and cons of two representative test models,

Item Response Theory (Lord & Novick, 1968) and Latent Class (Lazarsfeld

p.M



5

& Henry, 1968) will be discussed with respect to the demands of modern

measurement theory and their interrelationships with rule space will be

discussed. Discussion will be focussed on their modeling assumptions,

and conditional density functions of latent rules (classes or groups).

It will also be shown that IRT becomes a special case of latent rule

(classes or groups).

A cluster of response patterns around Rule R

If a student applies his/her erroneous rule with perfect

consistency to the items in the test, then his/her responses to the test

will be perfectly matched with the responses generated by a computer

program. We call such systematic errors erroneous rules or rules. A

correct rule will, by definition, produce the right answer to all the

items. Although wrong rules sometimes may produce the right answer to

some subset of the test items, it is very unlikely that they will

produce the right answer to all the items. We further assume that the

test items are carefully constructed so that the important, predicted

common errors can be expressed by unique item response patterns of ones

and zeros. Therefore, rule R can be represented by a binary vector

R = (rrr2 ....rn). However, actual students performances on the test

items are unlikely to be perfectly consistent and are subject to random

errors or slips due to carelessness or uncertainty that always affect

the outcomes of performances on a test. Even if a student possesses

some systematic error, it is rare to have the response pattern perfectly

matched with the pattern theoretically generated by its algorithm

(VanLehn, 1983; Tatsuoka, 1984). Some systematic errors may have a

•W
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tendency to produce more slips while other rules produce fewer slips.

Some items may be prone to produce more slips than other items. Thus,

it would not be realistic to assume that all the items have equal slip

probabilities.

Bui Distributions

Tatsuoka & Tatsuoka (1987) derived the theoretical distribution of

observed slips, and called it "bug distribution." First, the

probability of having a slip on item j (J=1,2.....n) is denoted by p.

for item J

(1) PJIR = Prob (having a slip on item jIR) = Prob (uj = 1IR)

where u. is a random variable such that u. = 1 if a slip occurs on itemJ J

j and u =0 if not, and Rule R is a vector R = (r,r 2 .... rn).

u = 1 if a slip occurs (i.e., if x. s rj)(2) iJ
uj 0 otherwise (i.e., if x. = r.)

More succinctly, u. may be defined as

(2a) uj = xr - Ixl

Given the reasonable assumption that slips occur independently across

items, the bug distribution of rule R follows a compound binomial

distribution with different slip probabilities for the items

(3) Prob (having up to s slipsIR) = 2 17 P. J(I-P)
m--O [ u.=m J=l 4J

Since R can be any rule, the number of slips from the correct rule

R =(l ... 1) = 1 also follows a compound binomial distribution with

'p

,
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slip probabilities pJ[= Prob(uj = O )11), i = 1. n. If the elements

of Rule R are zeros, 0 = (0,0 .... 0). then the slip probabilities from

this wrong rule will be given by pj12 = Prob(u = 110). j = 1..-n.

Property 1. The slip probabilities of the bug distribution are

determined by the logistic function of Item Response Theory. The slip

probabilities pJIR are given by Equation 4

(4) PjIR = Prob(uj = 1;R) = Prob(xj 4 rj;R) = rjQj(OR) + (1 - rj)Pj(OR)

where xj is the observed score of item j and P (0R) is the IRT function

at the 0 level associated with rule R.

Suppose Rule R corresponds to a vector R = (1111000), the first

four elements being ones and the others, are zeros. The random variable

u. will be 1 if a slip from r. occurs and zero if not. If a student's

performance on the seven items results in a response pattern of two

slips away from R. then two items have different values from the

elements of vector R. Suppose the two slips occurred on items 1 and 7.

then the corresponding response pattern will be x = (0111001). The

middle member of 4 can be rewritten as follows:

(5) If rj = 1, then Prob(xj X r ;R) = Prob (x O;R)

If rj = 0, then Prob(xj X r ;R) = Prob(x. = 1;R)

It is known that the probability of score 1 for item j is the logistic

function pj(R)' Prob(x = 1;R) = pj(0 R), thus Equation 5 can be written
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in the single Equation 4, viz.:

Prob (xj r ;R) = rjQJ(0R) + (1 - rj)PJ(GR)-

From Equations 2. 3. 4. and 5. the slip probability is given by a

weighted mean of r and 1-r, as follows;

(6) PJIR = rjQjf( R) + (1 - rj)P(0R)'

Alternatively. to simplify the notation, we may write

(6a) PJIR = Irj - Pj(OR)l

Equation (.-) shows that any slip probability p. is a function of 0. In

order to emphasize this fact, pj will be denoted by Sj(0) hereafter.

The conditional distribution function of number of slips given by

Equation 1 will be rewritten in terms of S (e). in Equation 7 by

replacing pj by S (0). and Equation 8 is the generating function of

expression (7). (We omit the subscript R in 0 as understood.)

s I n juj. 1-u i
(7) Prob (having up to s slips from R) = [f u jS ) l - S (0))i}

m--0 lu =m j=l I.

I.

n
(8) g(O;R) = IX (S (0) + (1 - S (O))

J=l 
.

The expectation and variance of the number of slips from rule R are

given by (9) and (10),

n
(9) PR= 2 S (0) = I Pj(0) + I Qj(0)

j=l r -O r =1

2 n
(10) R = (0)(1 - S(0)) = 1 P (M)Q.(0) + .2 Q.(O)P (0).

J=l r r =O r=

r="0
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A Measure of Rule Stability

The expectation and variance given by equations (9) and (10) are

not those of the total score as is customary in conditional density

functions of latent rules or classes; rather, they refer to the number

of slips. The expectation of. the number of slips from a rule is a

measure of the instability of rule, since the expectation represents the

average number of slips from that rule, and the variance is a measure of

the extent to which the number of slips made varies from student to

student. For example, for the erroneous rule producing all wrong

answers, expressed by the vector 0 = (0.0-. 0), the expectation

n
I-P (0) will be very small because the values of P (00) j=l,....n are

very small -- nearly zero. Therefore. Rule 0 is very stable and slips

rarely occur. At the same time, the right rule 1 = (1.1. 1) has the

n
expectation of 2 Q (01 ) which also is very small. We can conclude that

j=l1 

4

any students who are in the state of mastery can execute the right rule

systematically and the probability of having any slip deviating from the

right rule is very small. In general. the mean number of slips from 1

to 0 will be r= 1Sj(0) and the mean number of slips from 0 to 1 will be

n
IThe expected number of slips will be 2 S.(0).
r $ O ) j=l J

Now let us consider a rule R whose elements are about half ones and

half zeros. Then the probability of having slips will be close to .5,

(Tatsuoka, 1986). which implies that such rules have a 50% chance of

having slips away from its perfect execution. Moreover, since the

conditional expectation of the bug distribution is larger around the

I~. -,,. -.- . . . ..
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mid-range of 0 (Tatsuoka, 1986) the number of slips expected to occur

there will be fairly large. This means that rules used by many average

ability students will tend to have more slips than the rules that very

high or very low ability students are likely to use, and the stability

of such rules is lower because the probability of having slips is higher

for rules espoused by high or low ability students.

A Measure of Rule Consistency

The expectation of the number of slips is given in Equation 9.

which can be regarded as a measure of how stable this rule is. The

variance given in Equation 10 represents the dispersion or spread of

number of slips.

However, consistency of a rule r is a different concept. If a

student uses rule r with perfect consistency then the resulting response %

pattern matches the binary pattern generated by a logically programmed

algorithm for rule R. Therefore, the probability of not having any

slips can be obtained by setting u. 0 for j 1....n.J

n
(11) Prob (perfect execution of rule R) = T (1 - SJ(O)).

j=1

The probability obtained from Equation 11 is an index of consistency and

represents the probability of systematic execution of rule R. However,

the value of the consistency defined in this manner will be extremely

small as the number of test items becomes large. The consistency

measure must be independent of the test length. The most plausible

candidate for the consistency index is

CR n )]iin
(12) CR  = (1 - S.(O))

3 J
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which is the geometric mean of the probabilities of not having slips on

items 1,2....,n -- i.e., of the n factors of the right-hand member of

Equation 11.

Relationship Between Bug Distribution and Item Response Theory Model

Bug distribution was formulated by taking the notion of slips and

slip probabilities. It was assumed that the occurrence of slips was

independent across the items and the probability of a slip occurring for

each item was denoted by pjR' j=l,....n. Each item j has its unique

chance of having a slip away from r. and different values of slip

probabilities are assumed across the items. Then, the probability of

having some finite number of slips away from Rule R was given by

Equation 3 with the slip variable u. defined by Equation 2 or 2a.

Derivation of the compound binomial distribution (3) is applicable to

any rules--where a set of response patterns resulting from inconsistent

application of rule R was introduced as a cluster around rule R in

Tatsuoka & Tatsuoka (1987) and was denoted by {R}. When an erroneous

rule produces wrong answers for all the items in a test, it corresponds

to the null vector, 0 = (0,0....,0). In this case the random variable

u. is the same thing as the random variable of item score xj, so

Prob(u. = 110) = Prob(xj = 110) where 00 is the latent ability level of

rule 0. and the slip probabilities of n items become the logistic

functions P.(0) of IRT models. Therefore, it can be said that the IRT

model is equivalent to the latent class model associated with the rule

that produces the null vector, 0. The likelihood functions of

rule-0-latent class and IRT are as follows:
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r P.oUj1 )-

(13) L(O) = Ir TI (0) (- P .(0))
iE{O} j J(O)

N n PjoX.~l 1-x]

(12) L(IRT) = I 1 P (0))
i=I J=l

where N is not the number of subjects belonging to the cluster of latent

rule 0. {}. but is simply the sample size.

A sample whose response patterns are well described by the IRT

model (i.e. an "IRT sample") may contain clusters around many rules.

including the cluster around the correct rule 1. Let R be one of many

rules contained in the IRT sample. Then, the likelihood of the bug

distribution associated with Rule R is

n S JOl 1-u.
(15) L(Q) = TI S0 SC(O))iE{R) j=l

The relationship between the two variables u and x was already given in

Equation 2a, viz., = Irj - xjI. Also, the slip probability of S.(O)

is given by Equation 6a with PJ now rewritten as sj(O). Substituting

u and S.(0) from these two relations, Equation 16 is obtained,

n Ir. - xj1 (1 - Ir. - x 1)

(16) L(R) =tR Ir Irj - Pj(Oi)I (1 - Ir. - P.(Oi))
iE{R} j=l j Ij

Separating the multiplication over j into those factors for which r. = 1J

and those for which r = 0. we get



13

L(R) = 1 1 1 - P (0 )] x [ 1 1 (-P
iE{R}{Jrj=l -1 ( ))]

xP011 x ji I' -I -~ xjil
TI I-~ (6)Ii- -1 -

jDr -O

or

(17) L(Q) = U i. J 1i )

iC{R} r { j(] Ir r Pj(8)

Therefore expression (17) becomes the same as the conventional

likelihood expressed in terms of the score variable x. and IRT function
J

P.(0) upon combining the r = 1 and rj = 0 cases. Thus, Equation 18 is

obtained;

n x 1 -xji
(18) L(R) = TI T P()J'Q.(0)

iC{R} j=1 1

Equation 18 is exactly the likelihood of latent class R which is

referred to as the cluster around rule R in this paper. That is,

(19) L(R) = iR U 7 S (0) ui( Sj(0)) = TI TI Prj(0)) 1a 1
iE{R} j [(8) (l-

Suppose a sample (IRT) that fits the IRT model well contains K + 2

latent classes or the clusters around K rules besides Rule 0 and Rule 1,

denoted by (Oj,(R,(2 {RK} ,.. } , then the IRT sample must be the

union set of K + 2 latent classes of R.

K+I
(20) (IRT} = (0) U (R1 ) U ...U{R) U (1} = U (k

k=O

I,

I.
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By avoiding to count subjects who may belong to the gray area between

two clusters, and taking memberships in the clusters to be mutually

exclusive, we conjecture that the likelihood of IRT model can be given

by the equation below.

n x. 1-x.] N n x. 1-x.
(21) L(IRT) = P .(6) J(l- P.(0)) = P.(0) J(l- P (0)) .

K+l j=IL J i=l j=lJ
iC U {(R}
k=O

An assumption required in IRT models is the unidimensionality of data.

Therefore the union of K + 2 sets expressed in (20) must satisfy the

unidimensionality condition in order to yield estimates of logistic

parameters. The most intuitive explanation for the union of K + 2

clusters to become unidimensional is that their centroids are located on

the principal axis of the IRT sample and the first eigenvalue is

considerably larger than the others. Moreover, each class {Rk} follows

the compound binomial distribution given by Equation 7 with the slip

probabilities given in Equation 9. By rewriting the bug distribution in

the form of a conventional conditional density function using the

relation given in Equation 19, each rule Rk is seen to have the

n r1 -r
likelihood IT P (R) (1 - P(0)) Jwhich indicates the frequencyj=l j

with which rule Rk is chosen by students, and is hence a measure of the

popularity of rule R among students. Let us denote the stability and

consistency of rule R kby SR and CR-respectively; then each rule R k

is characterized by the values of its stability S and consistency CR
k
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The conditional density function of a given latent class R and the bu:

distribution of Rule R.

In the previous section. it was shown that IRT could be regarded as

a special case of latent classes, and that the conditional probability

function, P (0). of IRT model becomes identical to the bug distribution

of Rule 0. The relation was given by Equations 13 and 14. Moreover,

the likelihood function of any rule R. written in terms of slip variable

u. and slip probability S (0) in Equation 15, can be rewritten by using

the score xj, of item j and the IRT conditional probability function

Pj(0) in Equation 18.. The slip variable uj can be transformed into the

item score variable x by a relation parallel to Equation 2a. viz.:

(22) x r (1 - u + (1 - r u = Irj - uI

n
Therefore, the total score, Z x depends on the elements r. of rule R.

j=l j J

and becomes

n n n n
(23) 2 x = r.(l - u) + (I - r u. = .2r - I u. + I u.

J=l J=l1 J= r J= r1=1 3  rj=O

that is, the sum of 1 - uj over the items for which r. = 1 plus the sum
J
n

of uj over the items which rj = 0 or, equivalently, 2 r., the total
i=I

score of R plus the difference between the number of slips 0 4 1 and

1 -* 0. By taking the expectation of xj and uj of Equation 22 for a

given 6. Equation 24 is obtained.

(24) kj = 110) = R- = l ) + (1 - R.) 6 uk = jk ikJ e C.f

P'A
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Replacing k J( x k = 11) by P (0) and a l ( u k = 11) by Sj(0). Equation 24
1l klj

can be rewritten as P (0) = R -R S (0) + (1 - R )S (0). Summing over

j from 1 through n. and expressing S (O) by Pj0) or Q (O) as

appropriate, the following equation is obtained:

n
(25) 2 pj(R) = XR - 1 QJ(R) + 1 Qj(0R)

J=l R =I R -O

where XR is the number of ones in R. The expected variance of the total

n
score will be I p (0R)Qj (R). (Lord. 1980). The variance of r=luj and

J=l j

1- u4 are I S 1( R)(I Si(R)) and Ri S ( Rr -- r i=l i_-,

n
respectively. Adding the two sums yields I S 1 (R)(I - SJ(0R) ) which is

j=l ",

equal to expression (10). Therefore, the relationship between the bug

distribution of slips away from rule R and the conditional density

functions of latent class R is as summarized below:

I) Both have the same likelihood function as can be seen in Equation 19.

II) Both have the same expected variance given in Equation 10.

III) The expectation of the conditonal density function of latent class

R. 6(x = 1IR) is the sum of the number of ones in R and the

difference of the expectation of number of slips changing from "0

to 1" and that of "l to 0".

Interpretability of estimated parameters, factors and clusters

Determination of the number of latent rules or classes that are

required in cognitive error diagnosis testing is crucial for successful

results. Most statistical and psychological modeling such as cluster

.ak
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analysis, factor analysis and latent class models are developed for

finding several groups into which subjects are assigned so that subjects

belonging to the same group are more similar than are subjects belonging

to different groups. However, it is not unusual to encounter

difficulties in interpreting the estimates for the psychological models.

clustered groups or factors. Unlike most psychological models, rule

space has been developed by emphasizing the importance of

interpretability of statistics estimated from the data.

Tatsuoka (1986, 1987) expressed task attributes involved in n items

by a binary matrix (called Attribute x Item matrix in which the element

Qkj is 1 or 0, and 1 means that item j requires subtask k and Qkj = 0

means that item j does not require subtask k. If students use two

different strategies to solve the items, then two matrices are

constructed with different sets of task attributes and item task

vectors. Figures 1 and 2 show two Attribute x Item matrices based on

two distinctly different strategies for solving fraction subtraction

Figures 1 & 2 about here

problems. The first strategy (Method A) is to solve the problems by

always converting a mixed number (e.g. 3 1/4) to a simple fraction (e.g.

13/4) and adding or subtracting the two fractions. The second strategy.

(Method B) involves separating the whole number part from the fraction

part, adding or subtracting the two numbers independently, then

combining the answers. Method A requires better computational skills

while Method B requires deeper understanding of the number system. The

borrowing skill is not required by Method A. while it has an important

v& K.1 s.. a.1. -L.S P S'~ N ~ ~ ~
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role in Method B. As a result, erroneous rules resulting from borrowing

skills will not appear in students using Method A, but they will often

be observed in those who use Method B. Table 1 shows 0R' C. stability.

slip dispersion, likelihood of latent classes by Method A and those by

borrowing errors when Method B is used. The interpretation of these

classes is given in Appendix I. The values in Table 1 used the

Insert Table 1 about here

two-parameter logistic model obtained from a sample of size N = 543 and

the group of Method A users are identified by the rule space diagnostic

mechanism by Tatsuoka (1986). The third column contains the number of

students classified into each of 18 latent classes, students in each

class being diagnosed as having the source of corresponding

misconceptions as described in Appendix I. Appendix I lists the

interpretation of error types of 18 latent classes. The fourth and

fifth columns show the positions of the classes in the rule space.

Since C is fairly large for class 7 (1.48) this class is unusual, so the

probability of observing the class 7 misconception will be small, while

class 8 (f = -.16) will be observed often. The sixth column is the

number of slips each class may expect to have. Class 5 has a mean

number of almost 15 slips, or 36.6% of the 40 items. Therefore. class 5

represents a very unstable misconception and as such it may be easier to

remediate. Classes 1 and 12 are in a fairly stable state compared to w

classes 5. 6. 7, 8. and 30. The classes located in the neighborhood of

the mean 0 value of the group tend to be less stable.

,
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Investigation on the Conjecture

The conjecture described in Equation (20) that an IRT sample is the

union set of K + 2 latent classes, or clusters around rules R1 .. .R, 0

and 1 can be examined by a Monte Carlo study. The procedure for testing

this hypothesis is as follows:

Hypothesis: Item parameters of the Method A dataset in Table 1 are equal

to the estimated item parameters of the Monte Carlo

dataset, generated as described below.

1) Generation of the Monte Carlo data

a. The 18 classes listed in Table 1 are used in this study. A sample

of size N = 1000 was generated as the union of subsamples with

sizes proportional to the numbers of students classified into the

respective classes in the previous dataset, as shown in the third

column of Table 1 (N = 328).

b. Slip probabilities for each class on the 40 items are computed

from the original set of item parameters given in Table 2. The

estimates of parameters were calibrated from a larger sample

(N = 534). including the Method A dataset of N = 328 as a subset.

2) Method of Analysis

a. Principal component analysis and varimax rotation were carried out

for Method A sample and generated data, and their eignevalues were

examined.

b. IRT parameters of Method A sample were calibrated.

c. IRT parameters of the generated N = 1000 sample were calibrated.

d. Mean square error was computed and X 2 test of disparity between

the two sets of item parameters were carried out (Lord. 1980.

p. 223).
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Results of the analysis, d. indicated that the two sets of

estimated item parameter values a and b -- one from the actual sample of

N = 308 and the other from the generated dataset of N = 1000 -- do not

have significant differences, as shown in Table 2.

Insert Table 2 about here

This implies that the conjecture expressed by Equation 20 is supported.

The analysis a, indicated Method A sample and generated data are

unidimensional and their eigenvalues (larger than 1.0) are 20.02. 2.17,

2.03. 1.55, 19.82, and 1.62. respectively.

Discussion

This study demonstrates that IRT and latent-class models are

algebraically related and the IRT conditional density functions of the

items are expressible in terms of those of latent "null state" class.

Bug distributions introduced by Tatsuoka and Tatsuoka (1987) are here

formulated by using the notion of slips away from the perfect response

patterns R representing a state of knowledge. The bug distribution

follows a compound binomial distribution with slip probabilities S.(e).

S (0) equals P (0) if R = 0 and Q (0) if R = 1. If a bug distribution

is expressed by the conditional probabilites of item scores given 9,

then it can be considered as the coiditional density function of latent

class R. The traditional latent class models require the rather strong

assumption of statistical independence among classes and further the

latent classes must be mutually exclusive and together exhaustive in

order to enable formulation of likelihood functions and estimation of
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parameters. Moreover. the underlying foundation of latent class models

assumes that each state of knowledge is discrete and hence not mutually

transferable from one state to another. However, recent advances in

cognitive psychology have shown the learning process is very volatile

and students change their hypotheses or theories while their learning is

in progress. Therefore, the constraints imposed on the latent class

models make it difficult to explain theory changes, or to measure change

scores, although the models can explain cognitive states of knowledge

fairly well as Paulson's model (1985) does.

Rule space respresentation of response patterns enables us to

visualize both the IRT and latent class models in a Cartesian Product

space of 0 and the value of a linear operator f(x ; 0 = (P(O) - x.

P(e) - T(O)) (Tatsuoka, 1985, 1986. Tatsuoka & Tatsuoka, 1987). In this

representation 6 plays the role of "glueing two contrasting

psychological models, IRT and latent classes in a single two-dimensional

vector space. By so doing, conceptualization of latent states of

knowledge and a continuum scaling of latent ability 0 becomes much

easier than thinking in the abstract.

Introduction of bug distributions, instead of the traditional

conditional density approach of latent classes have made it easier to

derive algebraic relationships between IRT and latent class models and

made it possible to develop a general model of rule space, which is an

expansion of the two leading psychological models. Consistency and

stability of rules, or state of knowledge are introduced in the context

of distribution theory in this study. However, validation of these new
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notions, characterize each erroneous rule, cognitive error or latent

class requires further investigation.

The conjecture raised in this study also requires further

investigation. This study showed that if the union set of several

latent class samples satisfies the unidimensionality condition then

their first eigenvector in principal component analysis becomes

collinear with the first eigenvector of the IRT sample. In other words.

it is plausible to conjecture that the centroids of several latent class

samples are on first principal axis of principal component analysis,

then the IRT model will also fit the union of these latent-class

samples. Grounds for acceptance of this conjecture were provided only

by a Monte Carlo study in this paper. More mathematically rigorous

investigation of the topic is needed.

p

p

°1*

~|
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Table 2
Estimated Item Parameters of Sample A

and Generated Sample and 2 for Testing
the Null Hypothesis a = a ', bj = b',

j=l,....n.

Method A Sample Generated Sample
N=306 N=1000

a b a' b' 2

1.131 -.034 1.468 .373 .0002
1.504 -.213 2.137 .204 .0003
1.369 .079 1.756 .345 .0002
1.079 -.241 .797 .043 .0001
*725 -.256 .613 -.222 .0000

1.099 -1.220 1.623 -.767 .0002
1.719 .246 1.634 .444 .0002
.693 -1.124 .557 -1.320 .0000
.469 -.734 .340 -.722 .0000

1.889 .201 2.517 .568 .0005
2.136 -.058 2.179 .382 .0003
1.114 -.788 1.312 -.300 .0001
2.377 .473 2.004 .705 .0004
1.451 -.644 1.673 -.355 .0002
1.741 .132 2.248 .425 .0003
1.179 -.581 1.460 -.257 .0001
1.661 .095 2.461 .459 .0004
1.356 -.002 1.688 .392 .0002
2.495 .446 3.979 .746 .0015
1.737 .184 2.457 .519 .0004
1.668 .224 1.792 .477 .0002
1.928 .065 2.541 .264 .0004
2.222 .191 2.262 .347 .0003
.853 -.405 .538 -.187 .0000

1.485 .195 1.424 .271 .0001
1.589 -.964 2.251 -.605 .0004
2.702 .309 2.140 .475 .0003
.715 -1.282 .837 -.929 .0001
.871 -.148 .5605 -.065 .0000

2.371 .322 3.298 .586 .0009
2.090 .094 2.991 .442 .0006
1.053 -.542 1.240 -.254 .0001
3.922 .531 2.253 .930 .0006
1.510 -.542 1.974 -.358 .0002
1.937 .202 2.068 .481 .0004
1.066 -.415 1.263 -.203 .0001
1.727 .120 3.386 .476 .0009
1.604 -.019 2.090 .334 .0003
2.713 .420 3.666 .770 .0014
2.218 .231 3.606 .604 .0011
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