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FOREWORD

This book collects, under single cover, the acoustic reflection and
scattering work, theoretical and experimental, that has been carried out
on acoustic reflection and scattering by the group that was first started
in the Sound Division at the Naval Research Laboratory by the author
under Dr. Raymond Steinberger in 1958.

The funds to produce this bock were provided cooperatively by
three codes in the Office of Naval Research: Dr. Nicolas Basdekas,
Code 432, Dr. Logan Hargrove, Code 421, and Dr. Peter Rogers, Code
425UA and the Acoustics Division of the Naval Research Laboratory.
Their support and encouragement is gratefully acknowledged.

I wish to thank my co-workers, past and present, and co-authors
of the papers that are the foundation of this book for their contribu-
tions. The long association, co-authorship and many conversations
about the book and its contents with Dr. Louis R. Dragonette have
been a rewarding association for me. Also, work with Dr. Lawrence
Flax has been stimulating, provocative, and a great pleasure. In various
ways and to varying degrees the contributions of the following are
recognized and deeply appreciated:

Dr. C. M. Davis
Dr. Herbert Uberall
Richard Vogt

Dr. Susan Numrich
Dr. Peter Ugindius
Luise Schuetz
Leonard Burns
Janet Mason

Without the encouragement of the Superintendent of the Acoustics
Division, Naval Research Laboratory, Dr. John C. Munson, this
volume would probably not exist. The production of a book has edi-
torial, mechanical, emotional, financial, and a seemingly unending list
of considerations and difficulties. It is not possible to mention all those
who had some hand in some aspect of producing these pages, but their
willing and expert help is nevertheless greatly appreciated.




Typing, proofing, and coordinating many aspects of the production
of this book are the result of unceasing always cheerful efforts of Mrs.
Roberta Hopkins. 1 wish to thank her for her great help and patience.
The text was first typed on a word processor, transmitted by a commun-
ications link to the Technical Information Division, Computerized
Technical Composition Section at the Naval Research Laboratory. That
group, headed by Mrs. Dora Wilbanks, composed the book and
prepared it for printing. This was primarily the patient and capable
effort of Judy Kogok who made it all come together in coherent
fashion. Her contribution and the willing and cheerful assistance of
Mrs. Jean Moon is gratefully acknowledged.
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. PREFACE
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}](iment of this book is to make accessible selected reflection-
and <eflection-related work of a group that has been conducting such
research since approximately 1958. | have myself carried out or been
involved in or responsible for the work described in each of the
chapters in this book. In some cases, I have played the part of no more
than editor, with only minor modifications introduced from the original
publication. In all cases, when a single published paper is an entire or
major content of a chapter it is referred to at the title of the chapter.
For many chapters my role was more appropriately that of editor than
author. Time and budgetary considerations prevented extensive rewrit-
ing. I regret that, as a result, notation and mathematical conventions
are not necessarily consistent among all of the chapters. Various
degrees of new material are included in several chapters.

The material is intended to be collective rather than encyclopedic.
Therefore, regretfully, this book does not include the work of other
groups and individuals who have contributed significantly to the field of
acoustic reflection and scattering.
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Chapter 1

APPROXIMATE FORMULATION OF REFLECTION
BY THE SUMMATION FORMULA*

INTRODUCTION

Approximate solutions to reflection and scattering problems,
beyond their usefulness in computations over limited ranges of parame-
ters, have a value in clarifying physical understanding. This is true of
the Kirchhoff approximation. The fundamental approximation attrib-
uted to Kirchhoff has basic limitations; but, also, the description of it
leads to a basic understanding of reflection by finite bodies. There
seems to be no direct application of such an approximation to reflection
by Kirchhoff himself. Meecham [1], however, has considered its use
for reflection problems. The attribution of the approximation stems
from its use in a problem that is similar to the reflection problem, that
of propagation of a wave through a circular aperture in a plane screen.
In words, it demands that the wave in the aperture is everywhere what
it would be if the screen were absent. Thus, there is a restriction of the
aperture size relative to the wavelength and, also, of the accuracy of the
resultant formulation describing a field value which depends on the
location of the field point relative to the aperture. It can be shown [2]
that for an aperture size greater than the wavelength a good approxima-
tion is achieved. Similarly, an angular limitation to the main lobe
between the first two nulls, caused by the diffraction, is adequately
described. The angular region for reasonable accuracy by the Kirchhoff
approximation can exceed the main lobe as will be shown in Chapter 2.

The reflection from a body, whose dimensions are large compared
to the acoustic wavelength, at a great distance from it, can be approxi-
mately described by the use of Fresnel zones on the surface of the
reflector. In a way similar to the Kirchhoff approximation, as the
reflector dimensions approach the acoustic wavelength, Fresnel zone
analysis gives poor results. The Fresnel formula can be interpreted to
describe the far field acoustic pressure as (3]

p,-%l+—”;—"—. 1)

“This development was first presented in: Werner G. Neubauer; J. Acoust. Soc. Am. 38,
279-285 (1963).
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where p,; and p,, are contributions to the total reflection from the first
and n" quarter-wave (Fresnel) zones respectively. On most regular
curved convex bodies, such as spheres and cylinders, the last (n*) zone
is almost normal to the direction of incident wave propagation, especial-
ly if the body is much larger than an acoustic wavelength. Therefore,
the last zone contribution to total reflection is negligible and the
reflection by the body is substantially one half that from the first (cen-
tral) zone. An example of the application of the Kirchhoff approxima-
tion will be given in which Fresnel zones are subdivided. It has been
called the summation formula method. By this means, the contribution
to the elements of acoustic reflection by bodies will be brought out.

It is convenient to express the solution to the wave equation in
the velocity potential ¢ by

¢ = -f:- exp im[t - -f] )

This assumes a lossless infinite homogeneous diverging acoustic wave
traveling with a speed ¢. The potential is at any point in the field at a
distance r from a point source. That source has a strength A exp (iwt)
at unit distance, oscillating harmonically with angular frequency . A
smooth, rigid finite reflector insonified by such a wave results in a ve-
locity potential in the field which depends on the reflector size, shape,
and orientation. A continuous source results in a velocity potential
which is the summation of the potential due to that source and the
potential due to the reflection by the scatterer. Here the interaction
between the source and reflected wave will be ignored and only the
velocity potential resulting from interaction of an incident wave with
the reflector will be considered. For simplicity, consider the far field
reflection in the backscattered direction, or that which is monostatic
reflector.

CONTINUOUS SURFACE

Since w = 27 fand A = ¢/f, Eq. (2) may be written
A r
¢ - exp[Zn[ﬂ- k“ 3)

The far field demand on the problem forces r,, the distance to the point
on the reflector nearest the source, to be considered sufficiently large
that , >> A. If, in addition, each dimension of the reflector is also
very small compared to r,, a portion of the spherical wave incident on
the reflector may be considered plane to any desired degree. We will
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consider the space between the normal plane (Fig. 1) and the reflector
to contain a wave that is sufficiently plane so that spherical divergence
may be neglected there. Now the velocity potential at the reflector sur-
face may be written

rp+ Ar
A

where r; +Ar is the distance from the source to an elemental area da
on the reflector. As a consequence of our previous assumptions,
r, >> Arin Eq. (4) bis a constant factor containing the periodicity of
the source and the source strength as well as the spherical divergence
causing diminution of velocity potential over the distance r;, so B =
(A/r) exp (2w f1). In the exponent of Eq. (4) the ratio r/A may be
divided into an integral and a fractional part, since exp (—i2zn) = 1
and exp (—i2wa) = a = constant where » is an integer and a is a
number less than unity. Now

’ (4)

¢, =B exp[—i21r

¢, =aB exp[—- 2w -AA—’-] (5

As a part of the Kirchhoff approximation, and to satisfy the boundary
condition on particle velocity at the rigid surface, the reflecting surface
is regarded as an infinite number of elemental areas da, each of which
operates as a simple source in an infinite baffle and radiating through
half space. This construction is known to limit the applicability of the
forthcoming analysis with respect to the curvature, extent, and perime-
ter of the surface.

i
{SOURCE)

Se Re
(RECEIVER)

t fi

Fig. | — Geometry for monostatic reflection
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The incident particle velocity is

¢ 2 ,
£, =— T’r,- -’-f’—¢,+ i:—’- ik¢,{l-— :ﬁr—‘] )

where k = 2w/A. The imaginary term in Eq. (6) is not significant since
’, >> k, SO f, : ik¢,.

The strength Q of the elemental area da as a source whose normal
particle velocity is equal and opposite to that of the normal component
of the incident particle velocity is Q = — ¢,da = — ik¢, cos 8da,
where 0 is the angle between the normal to da, and the direction 7; of
the incident wave. See Fig. 2. The velocity potential at R, the position
of the receiver, due to the area da acting as a source is

d¢-__Q__
" 2u(r,+Ar)
n+Ar__ ja'k
o 2nr,

exp |— 2w ¢,-exp[— iZ-rrii—r-] cos@da. 0,
We can simplify, as we did for the incident phase, and determine that
exp (—=i2wr,/A) = ', where o' is a constant for a fixed value of r, just
as a was a constant for a fixed value of r;. Substituting for the incident
field ¢, from Eq. (5), Eq. (7) becomes

e, = — i;a'k

B exp [— idm ﬂ] cos 9da. 8)
r, A
The exponent —idwAr/A may be written —i2wAr/(1/20). The factor
Ar/(1/20) will take values which may be expressed again as an integral
part m = 0, 1, 2, ...and b, a number less than unity, as before in
deriving the expressions in treating « and a' so that

exp [~ i2n(m + b)] = exp(~ i2mwb),

and '
iaa'k
2z,

The field at r resulting from the entire reflecting surface is the integral
of the contributions d¢, from the elemental areas da and is given by

¢, = -

de, = B exp (~ i2wb) cos 0da. 9)

iaa'B

Y L cos @ exp (— i2w b)da, (10)
r

where s is the reflector surface. Geometrically, da cos @ is the projec-
tion da’ of the element da onto the normal plane (Fig. 1) and, there-
fore, the integral may be taken over the projection of the entire surface

—— e
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Fig. 2 — Particle velocity at the
reflecting element

onto the normal plane instead of the surface itself. So Eq. (10) may be
written as

iaa'kB ; ,
¢, =— Z—'nr,_fs exp (~ i2wb)da’ an

Now we have an expression for an acoustical quantity, the ve-
locity potential, from which may be derived other quantities in which
one might be interested, in terms of constants derived from measurable
distances or areas on the reflector or on a projection of the reflector
onto the normal plane that can be measured. In most descriptions of
the acoustical field, quantities that are required to describe the reflected
field are acoustical quantities such as pressure or particle displacement
measured on or near the body itself. Equations (10) and (11) require
only area and distance measurements, but are encumbered by the limi-
tations of the Kirchhoff approximation.

RIGID, FINITE PLANE

As an example of the application of the formulas which have been
derived, let us consider a rectangular reflecting plane of width 4 and
height A Let the plane be located in an orthogonal coordinate frame
with the height h parallel to the Y-axis, the X-axis dividing the normal
plane in half and let Z be the direction of propagation. The positive Z
direction is the direction of the incident wave considered plane by the
time it reaches the reflector. See Fig. 3. Since b+ m = Ar/(1/2)), b
= (2x tan 8/A\) — mand da’ = dxdy, Eq. (11) becomes

. 'B 1/2h dcoséd ;
¢, = — EX‘."’_I_]/M dy j:) exp l— _'4T1”L tan 0]dx. (12)
r
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CHAPTER 1
REFLECTING
PLANE
Y
Z

Fig. 3 — The orientation of the plane reflector
in Cartesian coordinates

Equation (12) can be written approximately as a finite sum as

 _ iaa'B &L & i4m
b, = — T;:—— ,2:, p2 Ax,Ay; exp |- % tan G]. (13)

This equation may be considered the velocity potential from the normal
plane itself if it were composed of areas Ax, Ax; ¢, in number. Each
area is considered to be vibrating with phase (4w/)) x, tan 8 where x,
= pAx,. Because of the choice of the orientation of the plane in the

g
coordinate system ¥ Ay; = hand Eq. (13) may be written
J=1

ica’'B & idr
@, A, p§ Ax,,exp[ X A, tan 0]. (14)
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Consider the reflecting plane divided into smaller planes spaced at
integral multiples of A/2 from the normal plane, and parallel to it as
shown in Fig. 4, where the geometry is being viewed looking down
along the Y-axis. These subplanes will intersect the reflecting surface
to define on it what may be considered half-wavelength zones. Subdi-
vide the distances between these subplanes with even more closely
spaced planes, again parallel to the normal plane, equally subdividing
the A/2 distances into an arbitrary number ». Let the smallest planes
intersect areas having widths on the reflector surface small compared to
a wavelength. In Fig. 4 the construction is viewed in the X—Z plane
for v = 6. For any orientation parallel to the Y-axis, the projections of
the subdivided surface areas, all of length A, are proportional to the line
length Ax; = Ax; = --+ = Ax,. These are the magnitudes of the vec-
tors in the complex plane in Fig. S. The constant phase increment is
the angle between successive vectors, and each time the factor
[Ax,/(A/2) tan @] becomes an integral value i.c., when p = v, the sum
becomes zero. In Fig. 4, only two and a fraction (1/A) subzones are
taken; in the second, A/2 zone. The resultant relative velocity potential
at R is proportional to the vector A. It must be remembered that a
constant factor A, which was a coefficient for the sum, accounts for the
height of the plane and must be taken into account as a scale factor for
A.

The graphical solution of Eq. (12) can now readily be seen to be a
circle tangent to the real axis in the complex plane if Ax, — 0 as
p —* oo,

Fig. 4 — A graphical composition of the plane reflecting
surfaces as finite normally oriented areas
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() IMAGINARY
AXIS

L
AXIS

Fig. 5 — The plot in the complex plane of ¢,
approximated by the sum in Eq. 14

FINITE WEDGE

A wedge, as depicted in Fig. 6, can be considered by the previous
method if it is regarded as two finite planes rigidly fixed with respect to
each other. Under the same conditions as in the previous section, the
velocity potential at a distance R will get the summation in phase and
amplitude of the velocity potential of each plane separately. In integral
form this may be expressed as

iaa'B | *? d\cosd idr
¢, =— [f dyfo exp I—Ttan 9]05:

A, —h/2

h/2 d,cosy idmx
+ __mdyj; exp|— tan y|dx (15)

which upon integration yields

_ aa'hB|exp— {(i4wd)/N) sin8]  exp— [(i4mdy>) sin (6 +8)]
4ny, tan® tan(@ +8)

é,

~ cot@ + cot (9 +B)]. (16)
For a cube, in which case 8 = #/2 and d, = d, = d, Eq. (16)
becomes

¢ = 2o'hB expl—(idwd/\) sin@l  expl— (i4md/)) cos8] _
T 4wy, tan@ cot9

20sc20] .

17)

I

L e A AL
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Fig. 6 ~ The wedge reflector

Taking finite elements along a plane, as shown in Fig. 5, Eq. (15) may
be expressed as a sum similar to Eq. (14) for the plane as,

¢, =~ iaa hBLgAx,exp[———x tanO]

4w
+ ¥V Ax, exp [— -'-—Ap'tan-yl . (18)
Fonreo|- 4

Figure 7 shows two means of arriving at the complex resultant A,. In
Fig. 7(a), the resultant obtained from the separate consideration of
each face by adding A and A’ associated with faces P and P’ respec-
tively in Fig. 6. The same resultant A, is obtained if Ax, and Ax, are
first added and then summed over p, as shown in Fig. 7(b), in which
p=1t> p'= (. Here the definition is made that for ¢ > ¢, Ax, is =
0. Since lx, tan 8] = |x, tany| (Fig. 8), Eq. (18) reduces to

9, = — Jachl hB ; (Ax, + Ax,) exp [— < % mnol (19)
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(~) 1 MAGINARY
AXIS

(a)

CHAPTER |
(=) IMAGINARY
axis
Ap
Ax, + AX o ae:Lm
(d)

Fig. 7 —~ Plots in the compiex plane for reflection from a wedge: (a) each taken separately
and their resultants added, and (b) both planes taken as contributing to the same zone

Fig. 8 — The graphical composition of the
reflecting wedge surfaces as finite normaily

oriented arcas

= 2]
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RIGID, DOUBLE CURVED SURFACE

If the same construction and analysis already applied to a plane
and a wedge is applied to a curved surface, the finite moduli Ax, of Eq.
(19) would, in general, not be equal for equal phase increments as
p — t (see Fig. 9). In addition, a restriction must be imposed on the
principal radii of curvature of the surface. It is sufficient to demand
that at all points of the reflector the principal radii of curvature be
greater than the incident sound wavelength so that the small but finite
areas Aa, may be considered essentially plane. The general expression
for the velocity potential ¢, as an integral over the illuminated surface
of the reflector is

b, =- -"‘;:# L [ exp (— i2kAr)] cos @da, (20)

where k2w/A. The equivalent expression over the projections da’ of
the subzones onto the normal planes is

¢, =~ jaa’'8 f exp (— i2nwkAr)da. 21
2ur, Js

{-) IMAGINARY AXIS

Fig. 9 — A piot in the complex plane for
reflection from a general shape as approxi- .
mated by the sum in Eq. (24)

Ay

REAL AXIS

The distance from the normal plane, along the Z-axis, is con-
sidered to be / and is divided into u equal parts, the integrals in Eqs.
(20) and (21) respectively can be approximated by sums

é, - ;—%a_kﬂ t Aa, cos 8 exp {— lzkdl (22)
wr, £ "

¢, = - laa’kB 5; A, exp l— mﬁl. @23)
E. u

2wr,

e ——— 4 ¢ e a4 ——————— — =
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As shown in Fig. 10, Ag, is the projection onto the normal plane of
that portion of the reflector surface between the pth and the (p + 1)th
plane subdividing L The complex plane is shown for such a sum.
Equation (22) can be evaluated by measuring the areas on the reflecting
body between successive cutting planes or alternatively the areas of
their projections onto the normal plane. The associated value of pi/u
to the area measured on the surface of the reflector or on the normal
plane must, of course, also be known. The magnitude of the velocity
potential at R then for a given orientation of the reflector may be ex-

pressed approximately as
i Aa, cos lzkﬂll (24)
r~ “'

Application of this formula result in formulas for the reflection from
rigid quadric surfaces which have been published (5] and a table for
various spheroidal shapes is reproduced here in Table 1.

2
b, | = - xiB{ Aa, sin 2| +
2nr, | 5 M

It would be useful to know how much of an approximation such
an approximate formula employing the Kirchhoff approximation and
then an approximate summation to an integral will cause. For this, let
us consider the reflection from the sphere. Figure 11 shows the solu-
tion for the reflection from a sphere using the Kirchhoff approximation
given by Eq. (24) which results from the integration of Eq. (11) over
the projection onto the normal plane of a sphere radius a. The result is

aa'a"B sin 2ka |, .
-—— -t
b, 3, lcos 2ka "ka i

where a” = exp{—i2ka). The magnitude of Eq. (25) is

2
alBl |, _ sin2ka  sin’ka Y
2r, k

.2
sin 2ka — Ml].(ZS)
ka

(26)

+
a (ka)?

The square-root expression is what is plotted against ka in Fig. 11. The
exact solution, which will be given later, is also shown. It can be seen
that the periodicity of oscillation of the solution with increasing ka is
significantly different and the magnitude in the region of 2 can be very
much different. However, as ka increases, these oscillations in both
cases decrease and the difference in the solutions tend to be no more
than plus or minus 10% or approximately plus or minus |1 dB. In addi-
tion, an approximation is introduced by approximating the integral by a
finite sum. The integral is approached to a desired degree by the choice
of the ratio I/Au or the choice of u/p for a given ka. For ka greater
than 6, the difference between the two curves is never greater than
16%, or approximately 1.5 dB.

lp,| =~
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Fig. 10 — The geometrical quantities involved in the derivation of the reflection summa-
tion formuis  For clarity, the contours defined on the reflecting obyect are not prosecied
onio the normal plane. but onto a plane parallel to the normal plane at s constant dis-
tance from it. The family of projected contours on this paralel plane is identical to the
family of contours which would be obtained if the projection were made onto the normal
plane.
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Table 1 — Reflection Characteristics of the Rigid Ellipsoid
and Its Special Cases

Reflecting | Goometrical EhG ol A Magnitude of the Reflected Velocity Potential
Object Aspect | Conditions mental Area
Ae, le.|
Along & 3 . 2
Etipecsd | Princi Lo by ) 0 '/2’! (2 — 20 + 1y 18L Illl h sin (kl’:) _ sinQis)
Axis u ’ (kis) kl's
th. &, h)
=it J__ I. snl (kis) _ sin Qus) |7
Sphere Any h=eimiy Qu-2p + 1} —_——— - +1
n (kl's) kl:

Prolate . ]
End-On |1 m w1 '—I-I-(h—b«fl) lﬂ_l'[ﬂlﬂ”sm (kl):)_sln(!klsl+|
Spherosd u (kl 5) kis

Prolate
Beam AW APNR pALLL "“’ Qu-241) J—'ll"" l‘—"
“

in! (kis) _ sin QW) "
sin’ (kls) _ sin kﬂ*'l

Spherosd 2 (&t 5)? ki's
Oblate 2 17
EndOn |1, 24 =, '_'l(z,-znn o falfn) e o  sweauo

Spherowd " . {12 (ki s} kis

0* (L4
v Beam om0y e g T -I.l. Qu-2p+0 181 [ | ] sn’ (kis)  sin (24t s) .1 ’

Spherond u! v 1172 (ki s) ki s

| 4

INTEGRAL (KIRCHHOFF APPROX)
EXACT

! N AR W U U U U U U S
2 4 6 8 0 12 4 16 18 20
) re

Fig 1t — The reflection from a rigid spherc
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The error introduced by use of the summation formula related to
the choice of u for a sphere is given in Table 2. These error values
were obtained by evaluating Aa, for a sphere and algebraically sum-
ming the series thus obtained. Passing to the limit by allowing u - oo
as Aa, — 0 results in Eq. (26). Of course, this error is not directly
applicable to what one would expect for an arbitrary shape, since the
error introduced would definitely be a function of the local curvature of
the reflector. Evaluations such as this can however serve as a guide in
the application of the formula summation.

Table 2 — The Error in
Approximation of the Integral by a
Finite Sum for a Chosen 4.

m Error (%)
8 1

16 2

24 1

48 03

CONCLUSION

The summation formula can be employed to utilize measured
areas on the target to directly arrive at an acoustical field quantity
representative of the reflection, say the velocity potential. The formula
is only useful in those cases where an insignificant amount of energy
can be considered to penetrate the target and cause elastic vibration of
the target itself. As will be seen later, there are regions even for very
practical shapes and dimensions that will permit application of the
assumption of very little penetration into the target and, therefore, rea-
sonable approximation by a formulation assuming a rigid boundary con-
dition.
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Chapter 2

REFLECTION FROM A FINITE PLANE AND
EXPERIMENTAL MEASUREMENTS*

INTRODUCTION

A further application of the Kirchhoff approximation to the prob-
lem of the reflection from a rectangular plane considered to be rigid will
allow a comparison with experimental results. Theoretical description
will be accomplished by approximate evaluation of the retarded poten-
tial in a rectangular coordinate system.

THEORY

The velocity potential ¢ at a distance r, from an elemental
reflecting area da is

d¢, = (dQ/2wr,) exp — (ikr,), 00

where dQ is the strength of the elemental source ua on the reflector,
radiating into half space. This essentially constitutes the Kirchhoff
approximation. In terms of the incident particle velocity £,,

dQ = — £, cos ¢ cos 8da = — ik, cos ¢ cos 0da, 2)

where ¢,' is the incident velocity potential in the absence of the
reflecting plane, k is the wave number of the incident wave and the
angles ¢ and @ are those defined by Fig. 1. For a simple harmonic
spherically diverging wave emitted from a source at a distance r;

&, =~ (A/r) exp lik(ct — r)]. 3)

At a sufficiently large r,, i.e., r, >> A, where A is the wavelength, a
plane wave approximation over a limited region may be achieved.
Assuming the reflecting plane to have a wave incident on it under these
conditions,

dé, = — (id,/r,A) cos ¢ cos 8 expl— 2w (r, + r))/\)da, (4)

*The theory and experiments described here first approved in: Werner G. Neubauer and
Louis R. Dragonette, J. Acoust. Soc. Am. 41, 656-661 (1967)
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Pouye)

j‘ source

Fig. 1 — The geometry which defines 7, and ,

where ¢; represents the incident velocity potential on the normal plane
which just touches the corner of the reflecting plane nearest the source.
The plane wave approximation permits ¢, = ¢,. The quantity
(r, + ri')/)\ represents the phase retardation that occurs as the wave
transits from the normal plane to the reflector and back to the field
point p. The distance r; is the distance from the normal plane to the
element da on the reflecting plane. Expressed as an integral over the
reflecting plane

i¢; cos ¥ cos @ gt
b, = — [——T—] fs exp [-— [lZ'tr ——:——

where r, has been approximated by s, which means that the divergence
from each elemental area da to a reflected point p is the same for all
elements on the reflecting plane. From the geometry in Fig. 1, da
equals d{ dv and it is possible to derive the relationship

da, (5)

x4+ -+ 2=+ 24+ 92— 2x{ — 2ym. (6)
1t can also be shown that
r, = [(d/2n) — {] sin ¢ cos 8 + [(d/2) — n] sin @, @)

TS e - et e e 2 o e
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FINITE PLANE 19
where d and » are defined in Fig. 1. The quantity r, can be taken to be
the first two terms of the binomial expansion

ra =S+ (2~ 2xy + 2 - 2ym)/2r, (8)

and the exponential in Eq. (§) can be cast into the form of the Fresnel
integral so

27(r, + r,-')/)\ = (/2D 4(r, + r )N = n/2a' + u? + VD), (9
where

a’= (4r/x) + (2d/nr) sin ¢ cos 8 + (2d/A) sin @

(9a)
u? = QInr)e? = (4/\(x/r) + sin ¢ cos 8)¢,
and
v2= (Q2/ar)n? = 14X/ ) + sin 0). (9b)
Solving Eq. (9a) for ¢ and substituting
u? = u? — Q/xr) %)%,
it follows that from Eq. (9a)
u= Q)Y - 2x).
Similarly, Eq. (9b) results in
v= /Ay -2y,
where x = rsin ¢ cos § and y = rsin 8. Now Eq. (5) becomes
6 = — [qu; coszu]/ cos @ exp [:_‘:\_’.I]
10)
X f;:z exp ‘:-—5-27—'—& du fv‘:2 exp [:-12'—7—!1 dv,
where
a=2r+ (xdfnr) + (pd/r) ~ 4(x¥r) - 4¥r)
and

Uy = (/Ar)2F(d/2) - 2x],
vi,2 = QIADVF(d/2n) - 2y].

e —— -
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Also,

br

u —; 2
COS sqzcos 0 fu 2 exp[ 112ru ] du
1

v i 2
f ? exp l iy ]dv
M 2

where py and p, are the incident and reflected pressures, respectively.
Since this result was obtained by expanding r, in a binomial series and
retaining the first two terms, it is subject to the limitation that

(@ = 2xL+ 02— 22 < 1.

In geometric terms this means that the region inside of a hemispherical
volume containing the reflector is to be excluded from consideration.
The integrals in Eq. (10) can be expressed in terms of the compiex
Fresnel integral F(u,) given by

|¢r/¢ll -

. aan

x

— i u?

2

Fu)) = foul exp du, (12)

which by application of "Euler’s" formula, can be expressed as
u 2 ) u u2
Fu) = fo cos il%u—] du — lfo sin llz—]du. (13)

The conventional definitions are
u 2
Clu) = j:) ' cos [12“_

and (14)
u 2
Su) = fo ' sin llriu—]du.

A similar definition can be made for a second integral F(u,) and by
manipulation of the integrals it may be shown that

2

Fluy, u) = Fluy) ~ Flu) = [ exp [—i'rzru "
“y

(15)
= [C(up) — Clup] = ilS(uy) — S(u)]

whose magnitude is
|Fuy, up| = {IC(uy) = Cu1? + [S(uy) - SwplF2. (16)
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This magnitude is the quantity required to compute the reflected pres-
sure and is the line length from u; to u, in the complex C(u), S(u)
plane. The associated phase for this magnitude may be taken at the
angle that the directed linc u; u, makes with the positive C(u) axis.
The functions S(x) and C(u) have been tabulated [1] and their
appropriate expansions have been evaluated by computer [2].

EXPERIMENTS

The pressure reflected monostatically from the faces of solid
metal blocks with parallel sides was experimentally measured. The pur-
pose of experiments was to determine the degree of agreement that
could be achieved between an experiment using a real elastic reflecting
material in water and the theory which assumes the reflector to be rigid
and is based on the Kirchhoff approximation. The reflectors were
suspended in the field so that no reflections could be measured from
suspension wires. The blocks were placed in the far field of spherical-
wave sources that subtended an aperture over which the incident wave
was essentially plane. Sufficiently long pulses were used so that their
flat portions could be assumed to be steady-state insonification of the
block, which justified comparison of the results with the steady-state
theory. Figure 2 gives examples of two reflected pulses indicating how
nearly flat the envelopes of the pulses were. The slight decrease in
amplitude toward the end of the pulse in Fig. 2b would indicate a
degree of penetration of acoustic energy into the block and subsequent
interaction at the front face to cause a reduction in amplitude. An
experimental determination of dilatational wave speed, density, and
acoustic impedance are tabulated in Table 1 for three materials that
were used.

Reflected pressures were referred to the reference pressure pg
measured at the position later occupied by the reflecting plane before
measuring the monostatic reflection by the plane. The receiver was a
probe hydrophone which occupied a small portion of the field. In all
cases, even in the near field measurements, the variation of the
incident pressure over the area of the reflecting plane was never greater
than 3%. A listing of all reflectors is given in Table 2 along with the
differences from theory for a rigid reflector at normal incidence. Figure
3 shows the reflected axial pressure amplitude for brass blocks of
different thicknesses. Since the pressure can be either higher or lower
than what one would expect from a rigid plane, the indication is that
internal energy is a significant contributor to that degree. These
differences from rigid reflection were not possible to account for by
considering a simple three-medium problem i.e., water, brass, water
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(a)
:
I
)!- 4
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| J
(b)
Fig. 2 — Reflected pulses from 4.5A square faces
of (a) K-8, and (b) brass, at normal incidence
Table 1| — Materials and Their Properties
¢ B pc
Material Dilatational Density ] Acoustic
sound speed (kg/cm) impedance
(m/sec) (kg/sec - m?)
K-8 6901 149 x 10° 102.8 x 108
Brass 4445 841 x 10° | 37.38 x 105
Aluminum oxide 10696 391 x 10° 41.82 x 106

Table 2 — Reflection from Rectangular Areas.

(Dimensions are given in units of wavelength in water.)

Difference from
Face size in Depth in Material rigid theory at
wavelengths wavelength normal incidence
(%)
28x28 2.1 K-8 1.2
28x 28 2.1 Brass 17
29x 38 38 K-8 2
29x38 38 Brass 9
29x39 39 K-8 0.8
36x36 27 K-8 1.9
45x 4.5 34 K-8 <
45x 45 34 Brass 12

R Y
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Fig. 3 — The monostatically reflected axial pressure from
3a,, square face for different thicknesses of brass blocks
(A, wavelength in water; \,, wavelength in brass). The

reflecting plane is shaded.

and a subsequent reflection to the first water medium. The way axial
pressure can be expected to change is shown in Fig. 4 for a Kennametal
[3] K-8 block. It can be seen that the Fresnel theory continues to give
reasonable quantitative results, even in the near field when r = 15A.
Where Fresnel theory is only 6% higher than the actual experimental

3.0 7
| d=asx /
Nn=(0 /
25 X:.580cm /
| /
/
20} /
/
Fig. 4 — The monostatically reflected axial / o
presure from the 4.55\ square face of a K-8 153 /
block vs 1/r for 1/r extrapolation of the far Py, Y/
field (---); Fresnel theory (—); experimental Po {
measurement (0). d=455\; n=1, 10 [°
A = 0.580 cm.
0.5
:
0 U G i
[0} 005 o X] Q.18
1/r{em™")
[ J - 4
0 50 20 10 66
r (cm)
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value, while the 1/r extrapolation is 20% too high; and at r = 6.6\ the
Fresnel theory gives a value 10% above the experiment, while the 1/r
extrapolation is 65% too high. In Fig. 5 there is a comparison of exper-
imental results with Fresnel theory for far-field monostatic reflection
from otherwise identical K-8, brass, and aluminum oxide blocks whose
faces are rotated about an angie @ that includes the first side lobe. All
measurements were taken for ¢ = 0. (See Fig.1.) In this experiment
a wavelength of incident sound was 0.584 cm. Similar comparisons for
identical brass and K-8 blocks are shown in Figs. 6 and 7. In these
experiments, the wavelengths of sound were 0.952 and 0.692 cm,
respectively. Noise limited measurement at angles larger than those
shown. Near-field measurements using a 4.55A square-face K-8 block
at a distance 15A from the receiver are shown in Fig. 8. A similar com-
parison for a block 6.6A from the receiver is shown in Fig. 9.

0o | N 1 . .

) 2 4 ¢ [] 10 12 4 € 18
8

Fig. 5 — The monostatically reflected axial pressure vs reflecting plane ro-

tation angle (@) for Fresnel theacy (—); and experimental measurement

of faces of blocks of K-8 (O). brass (®). and aluminum oxide (A).

d=45\, p= ;A =0584cm; r = 68.5).
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8"
Fig 8 — The monostatically reflected axial pressure vs reflecting
plane rotation angle (@) for Fresnel theory (—), and experimen-

tal measurement of the face of a K-8 block (—~O—~) d = 455,
n=1 A=0580r=15A
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Fig. 9 — The monostatically reflected axial pressure vs reflecting
plane rotation angle (@) for Fresnel theory (—), and experimen-
tal measurement of the face of a K-8 block (—O—). d = 455\,
ne | A=0580 r =66\
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CONCLUSION

The comparison is favorable between the Kirchhoff theory and
experimental measurements using real materials for relatively small
finite planes whose edge length is approximately four wavelengths.
With only slight reduced accuracy, the theory even allows description of
the near field in the region beiween one and two edge lengths distant
from the plane. 1t appears that the differences found between approxi-
mate reflection theory for a reflecting plane and measurements of
reflection from planes of relatively high-impedance materials can be
similar to those imposed by the approximate theory itself.

For high acoustic impedance materials. quantitative agreement at
normal incidence if found to be within 2% for reflecting planes of real
material and for lower specific acoustic impedance material agreement is
somewhat poorer. For instance, for brass it was still found to be within
approximately 25% or 2.5 dB.




Appendix
RADIATED FIELD OF A RECTANGULAR PISTON*

By procedures similar to those in this chapter an acoustic approxi-
mation (o the acoustic field radiated by a rectangular piston can be cal-
culated. A rectangular-plane piston with dimensions 4 by d/n is located
in a plane infinite, rigid baffle. Assume a rectangular-coordinate system
with the origin at the center of the piston, as shown in Fig. A-1. The
radiation into half-space. in terms of the velocity potential resulting
from the simple-harmonic motion normal to the surface of the piston,
may be expressed (1] as

¢ = — (A/2mexpliwn) [ [ (/r)exp(=ikr,ida,  (A-1)

where A4 is the uniform piston-velocity amplitude, s, is the radial dis-
tance from the contributing-piston element, k is the wavenumber 2w/A,
where A is the wavelength, and the integral is taken over the radiating
area.

Approximating r, in the phase, by the first two terms of an
expansion about 7, = r,
rg=r+ (2= 2x{ + 0 = 2yn)/rl. (A-2)
which is subject to the condition that
Q= 2x{ +n? = 29/ L L. (A-3)

This limitation is satisfied for all field points on or outside of the hemi-
sphere that circumscribes the piston.

A similar approximation was previously given by Freedman [2] in

which a more limiting phase expansion was made about (r = z), result-
ing in a greatly restricted region of validity for the solution.

*This development first appeared in Werner G Neubauer. J Acoust Soc Am 38, 671-
672 (197%)
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Fig. A-1 — Geometrical orientation for the radiation from a rectangular piston
Manipulation and transformation of Eq. (A-1), yields [3]
¢ = — (4/2Kk)expllimt — Gim/N)2r = (x¥r) - Y 1))}

X f.' exp(—iwu/2) du fvz exp(—iwvi/2)dv, (A-4)
ol vi
where u = (/MY — x), v = (2/Ar)V2({ - y), and

Uy2™ — (ﬂxr)'/’[x b o (d/Zn)]. Vijr=-— (Z/Ar)m[y +* (4/2)]
(A-S)

The integrais in Eq. (A-4) can be expressed in terms of the complex
Fresnel integral [4].

The scalar field described by evaluating Eq. (A-4) is shown in
Figs. (A2-AS). Comparison is made with a numerical integration of
Eq. (A-1), as well as recomputed results, using the formulation of
Freedman in Figs. (A2-A4). Essential agreement between the present
spproximation and the numerical integration is seen to exist even rela-
tively close to the piston face and far from the piston axis. In addition,
expected agreement is found with the results after Freedman on and
near the central axis.
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Fig. A-2 — Plot of [2k¢/ 41 computed in a rectangular-
coordinate system over a range of y/A for x = 0.05A and
2 = 1.5\, for a piston for which d = 2A and n = 2 (ie.. a
A x 2\ piston). Similar results of a numerical integration
(Huygens construction) are plotted for comparison.
This work. ®: Huygens construction.
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Fig. A-3 — Plots of |2ké/A | computed
in a rectangular-coordinate system over
a range of y/A for x = 0.05A and (a)
z=25\, (b) z=5A, (¢) z =751, @)
z = 10a, (e) z = 20\, for a piston for
which d = 2r and n =2 (e, a A X 2\
piston). Similar results of an analysis
following Freedman and a numerical
integration (Huygens construction) are
plotied for comparison. ——: This
work. —@-—: After Freedman. ©:
Huygens construction.
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— THIS WORK
06 -O- AFTER FREEDMAN
T . HUYGENS CONSTRUCTION

y/ X
(a)

THIS WORK
AFTER FREEDMAN
HUYGENS CONSTRUCTION

to |

y/A

(b)

Fig. A-4 — Plot of 12k¢/A| computed in a rectangular-coordinate system over a range of
y/x for x = 0.05\ and (a) z = 5SA and (b) z = 20a for a piston for which d = 4x and
n =2 (e, adr x 2\ piston). Similar results of an analysis following Freedman and a
numerical integration (Huygens construction) are plotied for comparison. : This
work. ~©—: After Freedman. ®: Huygens construction.
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Fig. A-5 — Isometric plots of one quadrant of the field in a plane parallel to the piston
face at a distance z = 7.5A for (a) a 2\ X A piston and {b) a 4A x 2A piston.
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Chapter 3

THEORY AND DEMONSTRATION OF
CREEPING WAVES*

INTRODUCTION

Among the multitude of classical problems which A. Sommerfeld
[1] considered is the problem of propagation of radio waves around the
earth. He solved it by using a mathematical method which is now
known as the "Sommerfeld-Watson transformation.” Also van der Pol
and Bremmer [2] addressed themselves to the same problem, and
Franz [3-7] advanced the theory considerably by applying it to diffrac-
tion of electromagnetic waves around conducting cylinders and spheres.
It was he who coined the term "creeping wave," (Kriechwelle), to
describe the phenomenon of circumferentially propagating waves.

The same creeping-wave theory furnishes a most useful descrip-
tion for analyzing acoustic scattering as well. The impetus for this was
given by the experimental observation by Barnard and McKinney [8]
that a single underwater sound pulse which is incident on a scatterer
will produce a series of echo returns. A number of experiments [9]
have corroborated the basic idea of these results: that the physical
mechanism for acoustic scattering consists of a superposition of con-
tinuously radiating circumferential waves. The creeping-wave theory
furnishes this physical picture in a most natural way, via the
Sommerfeld-Watson transformation, whereas in the classical "normal
mode solution" (an infinite-series expansion in terms of separable
eigenfunctions of the wave equation) this interpretation is hidden. (See
Ref. 10.) The creeping-wave solution is much more rapidly convergent
than the normal-mode solution. Acoustic scattering is particularly
suited for the experimental study of creeping waves, (better than elec-
tromagnetic scattering), because of the slow propagation speeds of
acoustical waves.

*The theoretical summary presented here first appeared in W. G. Neubauer, P. Ugincius.
and H. Uberall. Z. Naturforsch. 24a, 691 (1969), written in memory of Arnold
Sommerfeld’s hundredth birthday, December 5, 1968.
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The theory of creeping waves has been applied to various prob-
lems in acoustic scattering from rigid, soft, or elastic cylinders or
cylindrical shells using both continuous and pulsed waves [11-17].
Here we consider the creeping-wave analysis of acoustic scattering by
an infinite elastic cylinder immersed in a fluid. Two types of circum-
ferential waves emerge: (1) highly attenuated "Franz-type" waves which
are slower than ¢ — the speed of free acoustic waves in the liquid; and
(2) very slightly attenuated "Rayleigh-type” waves which are faster than
¢. The former are the original creeping waves first identified by Franz,
and depend mainly on the geometry of the scatterer, whereas the latter
owe their existence to the scatterer’s elastic properties.

THEORY

Figure 1 shows the geometry of the problem: a plane wave exp
i(k;x — wt) is incident from the negative x-axis on an elastic cylinder
with radius a, density p,, and Lamé constants A, u. The surrounding
medium is an infinite homogeneous fluid with density p,, in which the
speed of propagation for the acoustic wave is

a= w/kl', (l)

whereas inside the cylinder the longitudinal (compressional) and
transverse (shear) waves have the respective speeds

cr=IN+2u)padV% = (u/p)V2. (2

expressed in terms of the properties of the material. The total acoustic
pressure at the general observation point P{(r, 8) is obtained in the
usual way, by subjecting the general separable solution in terms of the
cylinder eigenfunctions to the elastic boundary conditions at r = a.
After suppressing the time dependence exp (—iw?) the result is (see
Refs. 11,17):

P = Pinc + Dy, (3a)
where the incident and scattered pressures are given respectively by
Pinc = ¥, i"(2 = 8,0)J, (k1) cos (n6), (3b)
n=0
< ; L
P = Y i"(2—8,9) HV (kyr) cos (n8), (3c)
’ n=0 D,,

where Bessel and Hankel functions are represented by J, and H."
respectively. The expansion coefficients in Eq. (3c) are found to be

By ap ap ay o o
B, =By ay ay|, D,=|ay an azyl. (4)
0 a3 aj 0 a3y ayn
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Fig. | — Scattering geometry.

With the introduction of the dimensionless parameters
x; = ak, = aw/c;, (i=1,1 1) (5)

the elements of these determinants are given by [20] (primes indicate
differentiation with respect to the argument):

B = (p\/p) X2, (x)),

By = x1J, (x)): (6a)
an = (/p)xtH" (x)),
ap = — 2x,J,(x) + 2n? = x)J,(x}), (6b)

ay = 2nlJ,(x) = xJ,(x)];

az; = — x,H,,“)'(xl).

ay = — x;J,(xy), (6¢c)
ay = n,J,(x);

as = 2nlxJ, (x)) = J,(x)],

@z = 2xJ,(x) + (x2 = 2n0)J,(x). (6d)

A quantity of experimental interest is the differential scattering cross
section defined by

da/dO - ’ILTE "lpsc/pincp' (7)
By using Hankel’s asymptotic expansion for large argument
HMV(p) = (2/mp)2exp i lp — (/) |n+ -;— (8)
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for the scattered pressure in Eq. (3¢), we arrive at the
2

do 2 < B,
do _ < - = ) 9)
T X 2-35,0 D, cos (n9)

In principle this equation could be summed to arrive at a value for
cross section which is accurate to any desired degree. However, for
large values of ka(x; > 1) Eq. (9) is limited by its very slow conver-
gence. For example, Sommerfeld ({1}, p. 282), in a similar problem
finds that a normal-mode series like that of Eq. (9) would require more
than 1000 terms before it would start to converge.

THE CREEPING-WAVE SOLUTION

The normal-mode solution can be reformulated via the
Sommerfeld-Watson transformation. [1,21] This will not only improve
the convergence of the solution but, more importantly, furnishes the
physical picture of the circumferential creeping waves. The
Sommerfeld-Watson transformation may be written in the form

T C-s0s=iPf -2

=0 sin 7wy

e ™ f(v), (10)

where C is a contour which passes through the origin » = 0, surround-
ing the positive real axis in clockwise sense, and excludes all poles of
the function f(v). The Neumann factor 2 — § 4 requires that the prin-
cipal value be taken for the integration through the origin. The next
step is to transform the contour C (which encloses all the zeros of sin
wv and no poles of £(v)) into a different contour which surrounds all
poles of f(v). To do this one must have an a priori knowledge of the
complex zeros of the determinant D, — D(»), because applying the
transformation (10) to Eq. (3c) we see that the only poles of the
function f (v) are those zeros, all other cylinder functions which appear
in B, and HV being entire functions of their order in the complex v-
plane.

The determinant D (v) is too complicated to yield any information
about its roots by analytical methods. For special cases, however, it
degenerates into simpler forms for which the asymptotic zeros are well
known. Thus, for example, for rigid (u — o) and soft (u — 0)
cylinders it is found [11] that they are the roots of H!" (x,) and of
HV (x,) respectively. For large x, these roots are known from the
work of Sommerfeld [1] and Franz [4]. There are infinitely many of
them and they all lie in the first quadrant of the v-plane on a line which
when extrapolated intersects the real axis at v = x,.
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The zeros of the determinant D(v), Eq. (4), can be found
numerically (see Ref. 17). A procedure that is essentially the Newton-
Raphson method, generalized to the complex plane, is used and con-
verges quite rapidly if the initial estimate is fairly good. To make sure
that no zeros are overlooked we also made use of the "Principle of the
Argument"

2a0(Z — P) = Ac Arg D(v), an

which states that the number of zeros Z minus the number of poles P
(with their multiplicities taken into account) inside any closed contour
C is equal to the net change (divided by 2 #) of the argument of D (v)
in a complete traversal of C. With P = (0 Eq. (11) enables one to
determine unambiguously the number of zeros in any given region of
the complex plane. The results for an aluminum cylinder (A = 6.1 x
10" dyn/cm?, p = 2.5 x 10! dyn/cm?, p,= 2.7 gm/cm®) at x; =
kia = 5 are shown in Fig. 2. Two sets of zeros were found: (1) the set
labelled F which lies entirely in in the first quadrant, and which differs
numerically very little from the "rigid" Franz-type zeros — the roots of
HMY (x,) = 0; and (2) the set labelled R which starts out with two
zeros close to the positive real axis, and continues into the second
quadrant approaching asymptotically the negative real axis. They seem
to coalesce pairwise into the negative integers. This second set of
Rayleigh-type zeros is absent from either rigid or soft cylinders, and
their existence, therefore, must be attributed to the elastic properties of
the scatterer. We also find that there may be zeros in the third
quadrant; however, they were difficult to locate with the available
numerical program. Fortunately, as will be seen below, only first-
quadrant zeros close to the real axis can contribute in the theory. All
these zeros are functions of x;,. The behavior of the Franz-type zeros
v8 x; is the same as that deduced from their asymptotic formulas (see
Ref. 1 or Ref. 4). The line of Rayleigh-type zeros, however seems to
be "pulled” into the first quadrant with increasing x;, so that it appears
that for x; = oo there may be an infinite number of them in the first
quadrant (see Fig. 5 in Ref. 15). For a cylindrical shell (15,17) the
analogous function D (y) is a six-by-six determinant. There we find the
zeros are qualitatively the same as in Fig. 2 with the exception of an
additional set in the fourth quadrant.

Figure 2 also shows the tranformation of the original contour Cin
the Sommerfeld-Watson integral (Eq. 10). This is done with the addi-
tional contours Cy and C' closed up at oo in such a way that the new
closed contour C'+ C,, + Cy + C, — C + C,, does not include any
poles, so that the integral in Eq. (10) over this contour must vanish.
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Fig. 2 — Contours for the Sommerfeid-Watson
transformation. The cirles show the Franz (F) and
Rayleigh-type (R) zeros of D(y) for an aluminum
cylinder with kya S.

The peculiar shape of C'is dictated by the requirement (see the discus-
sion after Eq. (22) that no second-quadrant poles should be included,
and by the fact, which Franz [7] has shown, that the integral over C,
to the left of the dashed line in the fourth quadrant (which is the
reflection of the F-line) would not converge. Vanishing of the integral
over the portions C, shown in Fig. 2 can be readily established. The
transformation (10) applied on Egs. (3) then yields for the total pres-
sure

p=p+ o (12a)
- dv__ —ivan2 () BG)
o ,fco oo e osGO Y (k) S, (120)
pu= inC, si::ru e~ "*/2 cos(v@)
J,(kyr) D) + HV (kyr)B(G)
x . (12¢)

DG)

The "background” integral p; of Eq. (12¢) is absent for either soft or
rigid cylinders. For an elastic (aluminum) cylinder it has been shown
[13,14] that it is negligible (except maybe at critical angles) by compar-
ing resuits evaluated without that integral with the exact normal-mode
calculations of Faran. [22] We shall therefore neglect it. Note that the
incident pressure which is proportional to J,(k,r) seems to have
dropped out of Eq. 12b. We shall see below that this is not really so,
but that it can be recovered by a saddle-point integration.
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The integral p; could be evaluated by the residue method, but
Franz [7] has shown that the resulting residue series would not con-
verge in general, the reason being that p; also contains the geometri-
cally reflected wave. That wave can be separated out of Eq. 12b by
writing for cos(»9) the identity

cos(¥@) = e'™ cos v(m — 0) — ie™” ™9 sin(mwv). 13)

The last term cancels the sin (wv) in the denominator of Eq. (12b).
This results in an integral which has been shown [13] to represent the
geometrically reflected wave. It is evaluated for large x; by the saddle-
point method. Using Hankel's asymptotic expansion, Eq. (8), for H!"
in Eq. (12b), and Debye’s asymptotic expansion

Hvl/z (x) = (2/mx sin x)l/2e:tilx(sina—ac05a)—w/4l. (14)
v = x COS X.

for the first-column elements of B(v) and D (v) we have shown [13,16]
that the saddle point is located at o, = 6/2,

vy = x; cos(0/2). (15)
Figure 2 reveals that at the “critical angles”
0; = 2cos ' (Re v,/x,), (16)

where v, is any first-quadrant Rayleigh pole, the saddle point (Eq. 15)
will lie directly under a pole. This would mean that the resulting
saddle-point evaluation for the geometrically reflected wave would be
very inaccurate, because we would be unable to distort the contour C,
in order to make it pass through the saddle point without coming too
close to a pole of the integrand. (We have shown that the path of
steepest descent must go through the saddle point at an angle of 3w/4
with the real axis). To overcome this difficulty we break up the con-
tour C of Fig. 2 into the two separate contours C, and C,, as shown in
Fig. 3, before the separation of the geometric term by Eq. (13). We
then evaluate the integral (Eq. (12b)) by the Residue Theorem in its
"unseparated form" (leaving cos »8 unaltered) over the contour C 1 and
in the "separated form" (rewriting cos »@ according to Eq. (13)) over
the contour C,. These two residue series will yield the creeping waves.
The geometrically reflected wave can be evaluated by the saddle-point
method over the contour C; as outlined above. (Another saddle point
is present which is shown schematically in Fig. 3 on the real axis to the
right of x,. Franz [5,7] has shown that this restores the contribution of
the incident wave, but since we are only interested in the scattered
wave, we shall ignore it here.)
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Fig. 3 — Contours for separation of the
geometrically reflected wave.

The results are:
p=p tp. (17a)

—iv,mw/2
cos(v,0)e * O
m k
Hyk (k|f)B(Vk) . (17b)

3

P = — 2w . .
=t sin (my,)D(w,) v
=t Kk cos v, (m —@)e * 7@

P = — la sin (6/2)/2r1R (v,) ™11 7225 (17c)

In the summation of Eq. (17b) D(v,) = dD/3v evaluated at v = v,;
the forms (D and @ must be used when

Re(v,) < x; cos(8/2): © Unseparated Form:; (18)

Re(v,) > x, cos(8/2): @ Separated Form.
The function R(») in Eq. (17¢) was assumed to be constant in the
saddle-point integration and is given explicitly by
(p|/p2)X,ZD|(V) + ix) sin aD;(V)
(p|/p2)x,2D|(V) = ix) sin aDz(V) '
where D, D, are the respective 2 X 2 minor determinants obtained by
expanding D (») by its first column.

(19)

R@) =

By the use of Eq. (8), Eq. (17b) can be written for r — oo (the
asymptotic approximation for r — co has already been made in Eq.
(17¢)) as
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g 12 "
p=- -klrl et (20)
1
« | BG,) cos(v,8)e " )
x 3 < : w-0| @
it sinmy, D(y,) [€OSVi'T

At this point it is possible to demonstrate explicitly the circumferential
character of the creeping waves. For the unseparated form (D in Eq.
(20) we rewrite the trigonometric terms

cos(v,8) ~ v Ae+w+lme)
_— - , 21
sin(wvk) : A_zﬂ ,,,;(,e

which is uniformly convergent for Im(y,) > 0. Inserting the time
dependence exp(—iwt) we see that the residue series (20) is made up
of terms having the form

iy, 0-wt) —imG )20 il2Rely,)0-wi]
e k - e k e k N (22)

which are clearly circumferential waves traveling in the 6 directions,
and are damped with an attenuation factor proportional 1o Im(y,).
Their phase velocities are given by

X)

wa
th Re(Vk) Re(vk) “- (23)
For pulses we can also define the group velocities
dx;
" - — . 4
t d Re(v,) “ (24

The additional summation over m in Eq. (21) represents waves which
have circumnavigated the cylinder m times. Equation (22) also shows
that no second or fourth quadrant zeros », are allowed since these
would lead to physically unacceptable exponentially increasing waves.
This was one of the main factors for determining the contours in Fig. 2.

The differential scattering cross section, Eq. (7). is now given by
(approximately, because we have neglected the background integral Eq.
) (12¢)

i (do/dé) = lim rlp, + p | (25)
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which by using Egs. (17¢) and (20) can be put in the form

2 da

de

[sin(8/21V2R (v,) + 4(m/k,a)2e' P12 =/ (26)

2

- | B, lcosti®e T D
x _ .
k;f sin v, D(v,) [0S wir -1 @

This is much more complicated than the relatively simple expression in
Eq. (9). However, whereas the latter may need on the order of 1000
terms before starting to converge, we found that for k,a > § we need
sum only three or four terms (the first-quadrant Rayleigh-type poles
plus at most two Franz-type poles) in Eq. (26) to obtain four-digit accu-
racy. A numerical evaluation of Eq. (26) for an aluminum cylinder is
shown in Fig. 2. More extensive computations for aluminum shells can
be found in Refs. 15 and 17.

Finally we consider the paths of the creeping waves around the
cylinder, which determines the critical angles at which a creeping wave
may be launched on the cylinder and radiate off to an observer after m
circumnavigations. These critical angles have been derived intuitively
in Keller's [23) "geometrical theory of diffraction” by noting that at
these angles there exists a resonance effect: the incident wave velocity
is equal to the component in the direction of incidence of the
creeping-wave velocity. In Ref. 13 they have been established
rigorously by following the path of a delta-function pulse and correlat-
ing its travel times with causality requirements. The picture which
emerges from such an analysis is given in Fig. 4. Figure 4a shows a
creeping wave (solid line) launched on the cylinder at the critical angle
a (measured from the shadow boundary), then proceeding to the
observer P, leaving the cylinder at the same critical angle & (measured
from N — the normal to the observation direction). The rigorous
theory {14] predicts these angles to be

aft= lim cos™'(v,/x,)

= cos™!(¢y/cf for continuous waves, (27a)
af = lim cos ! (dv,/dx,)

= cos~'(c)/cf) for pulses, (27b)

where s is the integration variable in a Laplace transformation used to
obtain a delta-function pulse from the plane wave. These angles in
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(b)

Fig. 4 — Geometry of the circumferential
waves: (a) 8 < 2a corresponding to the "un-
separated form.” (b) 6 > 2a corresponding
10 the "separated form." The geometrically
reflected wave is indicated by the dashed
line.

general are complex (except for the rigid or soft cylinder in which case
they become a, = 0, showing that the Franz waves are launched at the
shadow boundary). The approximation of taking their real parts (the
right-hand sides of Eq. (27)) gives meaningful physical angles if Im{v,)
is small, which is the case for all Rayleigh-type zeros. For 8 = 2a the
distance which the upper creeping wave in Fig. 4a has to travel on the
cylinder shrinks to zero. It therefore has to make a full revolution
around the cylinder before proceeding to P, as shown in Fig. 4b. (This
means that m has increased by one in Eq. 121)). The condition 8 = 2«
is precisely the same as that in Eq. (18) for the change-over from the
unseparated to the separated forms for the residue contributions. At
this point the saddle point (15) is directly under one of the Rayleigh-
type poles. The separated form of the solution (which is to be used for
0 > 2a) predicts exactly, from our causality arguments [14], the path
shown in Fig. 4b in agreement with physical intuition.
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SCHLIEREN OBSERVATION OF FRANZ AND
RAYLEIGH RADIATION

Waves that contribute to the total acoustic field resulting from a
wave incident on the curved circular cylindrical surface and normal to
the cylinder axis can be isolated and identified by hydrophone experi-
ments and also by schlieren visualization of the resultant radiation.
The total field is a combination of many effects resulting from waves
that are diffracted in the outer medium, travel circumferentially inside
the cylinder or on the interface, and travel through the body of the
cylinder. Isolation of specific waves and identification of exact causes
for them has been largely achieved. A schlieren visualization of the
entire radiated field resulting from an incident acoustic pulse is shown
in Fig. 5. In this dark-field schlieren photograph the cylinder is seen in
cross section as a dark disk and the acoustic pulse is seen as a white
area. The schlieren system used to produce the photographs shown
here is described in Chapter 22. In Fig. 5, a pulse of 7 MHz waves
slightly longer than the cylinder diameter causes the complicated field
that cannot be readily sorted out. Using a shorter pulse and insoni{ving
only one side (quadrant) of the cylinder circumference causes consider-
able simplification of the radiated field and permits some isolation of
the causative effects. Those are the conditions for Fig. 6 which shows
photographs for a short acoustic incident pulse at two different times
and the reradiated field resulting from that incident pulse.

Fig. 5 — The total field radiated from a
cylinder when the entire cylinder is
insonified with a pulse longer than the
cylinder diameter.
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(a) (b)

Fig. 6 — Schlieren photographs of a short (3) pulse of 6.6 MHz insonifying one
quadrant of a solid aluminum cylinder in water (ka = 353). (a) The incident
pulse shown at two different times in a multiple exposure before it strikes the
cylinder. (b} The total radiated field of waves resulting from the incident pulse in
(a).

Selectively insonifying only a small range of incidence angles can
further simplify the radiated field. If the pulse falls incident only near
the tangent to the cylinder the visualization of the Franz wave results in
the shadow region. For cylinder sizes small enough, this diffracted
wave can interfere with the directly reflected backscattering from the
central region of the cylinder. This interference causes the characteris-
tic oscillations in the differential scattering cross section or form func-
tion vs x, curves for rigid and elastic cylinders (see Chapter 4, Fig. 2).
This behavior of the creeping or Franz wave will be discussed further in
Chapter 4. In the schiieren photograph in Fig. 7, a pulse was incident
only near the tangent. The creeping or Franz wave is seen to propagate
into the shadow region on the opposite side from the source and
attenuates rapidly from the intersection of the tangent to the point
where it intersects the cylinder surface in the shadow. The striations in
the wavefront to the left of the cylinder tangent have been explained by
Marston and Kingsbury. [24] In the series of schlieren photographs in
Fig. 8 the pulse was incident on the range of angles that included the
Rayleigh angle and the tangent to the cylinder cross section. The
resulting Franz wave radiation and the Rayleigh wave radiation are
labeled in Fig. 8. The first dark gap in the wavefront, indicated by an
arrow, is a result of the known dark strip caused by opposite phase of
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Fig. 7 — Schiieren photograph of the wavefront
resuiting from the Franz wave for an aluminum
cylinder (diam = 10.16 cm) in water for ka of

1008.

FRANT

HAYLE GH RAZIATION N
FRANZ WAVE

Fig. 8 — Schlieren photographs of the pulsed creeping
wave propagated into the geometric shadow of an

aluminum cylinder at a frequency of S MHz (ka =
324) showing two successive positions of the wave.
The source is at the top radiating downward with its
beam incident at the Rayleigh angle and on the
tangent of the cross section at the far left of the

cylinder.

the specular and Rayleigh radiation which will be discussed in detail for
a flat surface in Chapter 18. One advantage of schlieren visualization is
that it gives one an ability to examine the entire radiated field. How-
ever, shortcomings exist for this method of examining acoustic fields.
It is largely qualitative rather than quantitative in amplitude, since
schlieren is not a linear process over all of its dynamic range.
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Accurate quantitative information about the radiated waves can be
obtained from hydrophone experiments. A diagram of an experiment
that permitted determination of creeping wave attenuation and circum-
ferential speed is shown in Fig. 9a. The pulse in Fig. 9b is the one that
was used, having a 1 MHz center frequency. The pulse was measured
at six different positions for which the circumferential path on the
cylinder, that the wave travels from source to receiver, was successively
increased. A multiple exposure of the oscilloscope traces received at
positions 2 through 6 is given in Fig. 10. The dashed line connects the
peaks of the signals indicating the decay of the creeping wave.

SOURCE

(a)

_./\j

(b)

Fig. 9 — (a) Diagram of an experiment used to measure circum-
ferential wave properties. (b) The pulse received at position (1)
in (a) in the absence of the cylinder.

N
Fig. 10 — A multiple exposure of successive \‘?\ 3
receptions of the "Franz-type" or "creeping” T |
waves al receiver positions 2-6 in Fig. 9(a), "~,"'."v“‘~s__ 6
showing the attenuation that occurs in the

+ ’
! .‘.“.' »

path along the cylinder. o
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Accurate measurement of the time differences associated with the
difference in path between the adjacent receiver positions allows a
determination of circumferential wave speed. If peaks of the individual
cycles of the pulse do not change their position within the pulse for the
different path lengths on the cylinder, the speed that is measured
represents both the phase and the group velocity value to within the
accuracy of this experiment. A double exposure in Fig. 11 of the pulse
at position 1 and at position 6 shows that to be the case for this experi-

ment.
fey . Fig. 11 — Double exposure of a received
L ] H acoustic pulse in the absence of a cylinder
_../\l WN\/\/\M and the same pulse with part of its transmis-
- \.'v sion path along the circumference of the
o ' cylinder.

The creeping wave speed determined by this means along with
theoretically computed values and other experimental values are plotted
in Fig. 12. A similar plot for creeping wave attenuation is shown in

Fig. 13.
1.00
0.95
»
[+
~—
Ity
0.90
B EXPERIMENTAL (ALUMINUM)
2 « ALUMINUM (UGINEIUS) PHASE
THEORY < © RIGID (FRANZ)
| 0851 {A RIGID (DOOLITTLE ET.AL) S VELOC!TY
v ALUMINUM (UGINCIUS) - GROUP VELOCITY
OT A 1 i i | 1
0 50 100 150 200 250 300 350

ka

Fig. 12 — The comparison of experimental measurements and various
theoretical calculations of the Franz-wave velocity is a function of size
parameter (ka).
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S

ATTENUATION (NEPERS/RADIAN)

K +  ALUMINUM (UGINEIUS)
‘L THEORY < © RIGID(FRANZ)
A RIGID (DOOLITTLE ET AL.)
@ ALUMINUM (NEUBAUER)
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ka

Fig. 13 — The comparison of experimental measurements and theoretical
calculations of Franz-wave attenuation as a function of size parameter
(ka).

REFERENCES

1.

A. Sommerfeld, Partial Differential Equations in Physics, Academic
Press, New York-London 1964. See particularly the appendix
after Chapter 6.

B. van der Pol and H. Bremmer, Phil. Mag. 24, 141, 825 (1937).

W. Franz and K. Deppermann, Ann. Phys. Leipzig 10, 361
(1952).

W. Franz, Z. Naturforsch. 9a, 705 (1954).

W. Franz and P. Beckmann, IRE Trans. Antennas and Propaga-
tion AP-4, 203 (1956).

P. Beckmann and W. Franz, Z. Naturforsch. 12a, 257 (1957).

W. Franz, "Theorie der Beugung Elektromagnetischer Wellen,"
Springer-Verlag, Berlin 1957.

G. R. Barnard and C. M. McKinney, J. Acoust. Soc. Am. 33, 226
(1961).




52

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

CHAPTER 3
See the bibliographies in Refs. 11 and 13.
A. J. Rudgers, J. Acoust. Soc. Am. 45, 900-910 (1969).

R. D. Doolittle and H. Uberall, J. Acoust. Soc. Am. 39, 272
(1966).

H. Uberall, R. D. Doolittle, and J. V. McNicholas, §. Acoust.
Soc. Am. 39, 564 (1966).

R. D. Doolittle, J. V. McNicholas, H. Uberall, and P. Ugindius, J.
Acoust. Soc. Am. 42, 522 (L) (1967).

R. D. Doolittle, H. Uberall, and P. Ugincius, J. Acoust. Soc. Am.
43, 1 (1968).

P. Ugindius and H. Uberall, J. Acoust. Soc. Am. 43, 1025 (1968).

J. V. McNicholas, H. Uberall, and K. Choate, J. Acoust Soc. Am.
44, 752 (1968).

P. Ugincius, Ph.D. thesis, Phys. Dept., The Catholic Univ. of
America, 1968; and U. S. Naval Weapons Lab. Tech. Report No.
2128, Feb. 1968, Dahlgren, VA 22448,

W. G. Neubauer, J. Acoust. Soc. Am. 44, 298 (L) (1968).

W. G. Neubauer, Ph.D thesis, Physics Dept., The Catholic Univ.
of America, 1968; Experimental Examination, By Means of
Pulses, of Circumferential Waves on Aluminum Cylinders, Naval
Research Laboratory Report 6791, November 15, 1968; and J.
Acoust. Soc. Am. 45, 1134-1144 (1969).

These differ from the corresponding elements in Refs. 10 and 13
by the overall factor of u, thereby making them dimensionless.
See also Refs. 14 or 16 where the correctly nondimensionalized
elements are given for the more general 6X6 determinants for a
cylindrical shell.

G. N. Watson, Proc. Roy. Soc. London AS9, 83, 546 (1919).

J. J. Faran, J. Acoust. Soc. Am. 23, 405 (1951).




WP R T . -

CREEPING WAVE 53

23.

24

B. R. Levy and J. B. Keller, Commun. Pure Appl. Math. 12, 159
(1959).

P. L. Marston and D. L. Kingsbury, J. Acoust. Soc. Am. 70,
1488-1495 (1981).



Chapter 4

1. INTRODUCTION

A -

AP = -

55

CIRCUMFERENTIAL WAVE INTERPRETATIONS
IN CYLINDER REFLECTIONS*

Theoretical solutions to the problem of the scattering of sound by
rigid, immovable cylinders, nonrigid cylinders in a fluid medium, and
) small cylindrical obstacles in a solid medium were formulated by Ray-
1 leigh [1]. The solutions he presented described goemetries in which
the diameters of the cylinders were small compared to the acoustic
wavelength in the surrounding medium, aithough he outlined a more
general method for finding the solution for larger diameter cylinders in
terms of cylindrical harmonics. This method, called the harmonic
series or the Rayleigh series method of solving acoustic scattering prob-
lems is in theory applicable to targets whose shape conforms to any of
the eleven separable coordinate systems. In practice it has been exten-
sively applied only to scattering from spherical and infinite cylindrical
geometries, since cylindrical and spherical harmonics are readily avail-
able. Solutions to the problems of the scattering from rigid cylinders

and rigid spheres which have radii up to the order of a wavelength (ka
# == 6) were given by Morse, [2]; here ka = 2ma/\, a is the radius of

the scatterer, and A is the acoustic wavelength in water. Exact solu-
tions to the scattering of a plane sound wave by homogeneous, isotro-
pic cylinders and spheres capable of supporting both shear and compres-
sional waves (elastic scatterers) were first given by Faran, [3] who
obtained expressions in terms of normal mode series. Faran presented
comparisons of computed bistatic patterns and experimental measure-
ments at ka = 5. Extensions of the normal mode calculations to
higher ka [4,5] and experimental measurements to determine the
degree to which the normal mode theory and experiment agreed, over a
broad ka range, were first made on solid elastic spheres and spherical
shells [6-9]. Hickling [4] was the first to make extensive use of a digi-
tal computer to evaluate the normal mode series expressions, although

*These results first appeared as NRL Report 8216 by Louis R. Dragonette (1978).
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his computations were hampered by the slow convergence of the har-
monic series solution, which led to computation difficulties with the
computers available at that time. Hickling gave computed curves that
describe the steady-state-backscattered pressure vs kg, which results
when the target is a solid-elastic sphere in water. The computations in
his work ranged generally from 0 < ka < 30, and he extended the for-
mulation to include the scattering of incident spherical as well as
incident plane waves. He also included both near-field and far-field for-
mulations. The results presented by Hickling are given in terms of the
form function, f... This dimensionless quantity is obtained by normal-
izing the reflected pressure with respect to the radius (a) of the target
and the range (r) of the field point from the center of the target. Hick-
ling also computed acoustic reflections from elastic spherical shells 5].
Empirical results on solid metal spheres in water were given by Hamp-
ton and McKinney [6], who demonstrated that the reflection from
metal spheres immersed in water could not be described by purely
geometric theory, and by Diercks {7], who demonstrated qualitative
agreement between the computations of Hickling and measurements
made in a lake. Precise quantitative comparisons between normal mode
theory and experiment were first carried out by Neubauer et al, [8] who
performed a series of precise steady-state measurements on solid metal
spheres in a controlled acoustic tank facility. These measurements
demonstrated quantitative agreement, between computations, based on
the normal mode series, and experiment, to within the known accuracy
of the shear wave speeds of the materials used in the sphere fabrica-
tions. This work (8] covered the ka range 0 < ka < 30. Dragonette et
al. {9] demonstrated empirically that quantitative steady-state results
could be obtained from measurements made with short broadband-
incident-acoustic pulses. Comparisons between normal-mode theory and
experiment for elastic cylinders in water are more recent, [10] but again
demonstrated excellent agreement between the theory based on the
infinite elastic cylinder and near-real-time experiments performed with
finite length cylinders in a laboratory tank. The preceding theoretical
and empirical papers [1-10) established that the normal-mode series
formulation of the acoustic reflection from elastic-metal targets quanti-
tatively describes measured results up to at least ka = 30, without the
necessity of material absorption being included in the theory.

Empirical observations by Barnard and McKinney [11] demon-
strated periodic, multiple echo returns when solid and hollow brass
cylinders (ka = 40) were illuminated by short acoustic pulses. Subse-
quent empirical work and analysis by Diercks et al. {12}, Horton et al.
{13}, and others [14,15] proposed the existence of two types of circum-
ferential waves that were compared to flexural and longitudinal modes
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on infinite plates. A similarity was recognized between the circum-
ferential behavior of the waves they observed and the waves discussed
by Franz [16} in his work on the diffraction of electromagnetic waves
by conducting cylinders and spheres. The original analogy between the
acoustic waves observed on cylinders and the purely geometrically
diffracted circumferential waves considered by Franz broke down,
because the speeds of the observed acoustic circumferential waves were
from 33% to 300% higher than the speed of sound in the medium sur-
rounding the targets; whereas, analogy with the "creeping waves" of
Franz would have predicted a speed slower than that in the surrounding
medium.

Uberall and collaborators at Catholic University also noted the
similarity between the circumferential behavior of empirically observed
acoustic waves and waves studied in electromagnetic theory. A modified
Sommerfeld-Watson [17] transformation had been used in the study of
the propagation of radio waves around the earth [18] and in the studies
of the diffraction of electromagnetic waves by cylinders [16}]. The
Sommerfeld-Watson transformation offered certain advantages, namely,
the opportunity to isolate the individual mechanisms responsible for the
empirically observed circumferential waves and rapid convergence of
the solution. This latter advantage was particularly significant at the
time since the normal mode series was considered to be practical only
at low ka, because of its slow convergence and the expense of computa-
tion. (Advances in computer technology make present high ka Ray-
leigh series computations both possible and economical [19].) Uberall
et al. applied the Sommerfeld-Watson transformation to cylinders with
rigid and soft boundary conditions and predicted the existence of true
Franz type, or purely geometrically diffracted, circumferential waves
[20]. Application of the Sommerfeld-Watson method to solid elastic
cylinders [21] revealed two groups of poles corresponding to two types
of circumferential waves discussed in Chapter 3. The Franz-type or
geometrically diffracted waves again appeared, and, in addition, poles
related to elastic circumferential waves, called R or Rayleigh-type
waves, whose speed and properties depend primarily on the elastic con-
stants of the target, were found. Grace and Goodman [22] also
presented theoretical evidence for the existence of R-type waves.

Experimental detection of the acoustic Franz-type or purely
geometrically diffracted wave was accomplished by Neubauer [23] and
by Harbold and Steinberg [24]. The first experiments designed to
demonstrate elastic R-type circumferential waves, that is, those related
to R-type poles, were performed by Bunney et al. [25] and by Neubauer
[26]. Both of these researchers [25,26] used short incident pulses and
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narrow beam sources to observe the scattering from solid aluminum
cylinders. Their results demonstrated the existence of a train of
periodic echoes with a circumferential speed close to the shear wave
speed in aluminum. Neubauer’s [26] work included schlieren visualiza-
tion of wavefronts resulting from the circumferentially traveling waves.
These experiments gave mainly high ka results (ka values between 50
and 500). Originally the mechanism responsible for the periodic pulse
trains observed [25,26] was, in fact, considered to be multiple circum-
navigations of the cylinder by the Rayleigh wave. Later work by Neu-
bauer and Dragonette [27] showed that multiple internal reflections of
shear waves could produce the observed effect, and this multiple
reflection analysis was supported by the theoretical work of Brill and
Uberall [28], who demonstrated the circumferential behavior of the
radiation from multiply internally reflecied waves. Theoretical [29] and
measured attenuation (30] of the Rayleigh wave on submerged flat sur-
faces also gave attenuations too large to support the conclusion that
Rayleigh waves were the source of the multiple returns observed at
high ke in Refs. 25 and 26. Dragonette [31] first predicted and
observed the ka range at which a Rayleigh circumferential wave can be
significant.

The normal mode solutions give a straightforward method of
obtaining the scattered acoustic pressure vs frequency, limited only by
the expense involved in summing a slowly convergent series. Experi-
mental results have been obtained which agree with the computation to
a high degree of accuracy. The major disadvantage of this approach is
that individual physical phenomena, such as surface waves, which make
up the solution are not immediately obvious. The Sommerfeld-Watson
transformation of the normal mode series has the advantage that it iso-
lates individual circumferential waves and the disadvantage that the
poles must be found and interpreted and their significance judged.

GENERAL THEORETICAL FOUNDATION

The Rayleigh series expression for the scattered acoustic pressure.
p,(8), which results when a plane wave, p,e™, illuminates an infinite
elastic cylinder, in the geometry described by Fig. 1, is given in many
publications {3,10,21,32,33]. The following form is found in Refs. 32
and 33:

- I(Z) L, - Z J(Z)
o)-_ (. n n n l'
~{ P L N L~ Z H(2)

The time dependence e™'*' is suppressed. In Eq. 1, €, is the Neumann
factor (¢, = 2, n = 0. ¢, = 1, n > 0), J, is a Bessel function, H, is a

H,(kr) cos né. (1)
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Fig. 1 —~ The geometry used in the description of the scattering
of a plane wave by an infinitely long cylinder.

Hankel function of the first kind, Z = ka, and the L, are the quotients
of two 2-by-2 matrices:
ay ap

D{Z] ay ay

L=£ 2 " £ (1a)
ps D2(Z) o, |ay ay
as 4

where the matrix elements a; are given in Ref. 32. In the far field
where r >> a, H,(kr) may be written in its asymptotic form

12
”,,(kf) - [_2_.l eikr—in:/)—ir/( Q)
wkr
and, defining

I(Z) L~ Z J(2D)
H(2) L, - Z H,(Z)

the far-field pressure scattered by an infinite cylinder illuminated by a
plane incident wave may be written

l- G,(2), (3)

12 -
p,(8) = —p, e'*’{-——z—-] e"* ¥ €,G,(Z) cos(né). 4)
mwkr _-

For backscattering, 8 = #» and

V2 .
pyim) = —p, e* l-#] e’/ § e, (~1)"G,(2). (5)
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A quantity called the far field form function, f., is defined to give a
nondimensional representation of the scattered pressure. In keeping
with the definition used extensively in the literature {4,5,7-10,32,33]

1/2
£.(0) = lﬁl LN 6)
a Po

This definition is chosen since it results in |[f,| = | for the case of a
purely rigid cylinder in the high frequency limit. From Eqs. 4 and 5
the expressions for f.(8) and f.(w) for an elastic cylinder are given
by

-2 had

-—t 7
S (B) T aYE HZ_E €, G,(Z) cos (n@) (7a)
and
_2 (-]
- — —_1)n ) 7
[ () im 27 "z_oe,,( D" G,(Z) (7b)

Using Eq. 7b, the individual normal modes or partial waves which make
up the backscattered form function are defined as

-2 .
Solm) = G Z)7T e, (=" G,(2) (7c)
where
Solm) = Z S (). (7d)
ne=(

Computed plots of f,, vs ka, obtained from Eq. 7b are called reflection
function plots, and such curves give a dimensionless representation of
the scattered steady state pressure vs frequency. This representation
can describe the scattering at any combination of radius and frequency
within the ka limits of the calculation. Equations 7a and 7b give steady
state values of f, so that a continuous wave or very long pulse experi-
ment can be used to obtain a direct comparison between experimental
and calculated results [8]. Such an experimental method is tedious and
excessively time consuming, as each experiment at each single fre-
quency gives one point on the reflection function curve. To overcome
this practical deficiency, methods to obtain the steady state quantity,
f =, from short broadband incident pulses were developed [9,10].

If the incident sound wave in the geometry described by Fig. | is
not steady state but a pulse, p;(r), with a Fourier transform g;(ka)
given by

gka) = [ p(r) ewar dr (8)
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then from Egs. 6 and 8, the backscattered pressure has a Fourier
transform g, (ka, ) given by

172
glka, m) = [-20—’] Sfolka, m) g(ka) 9

and | f..(ka, 7)| can be obtained from

1/2
2r |gs(ka, 1'r)|
,f ( a ﬂ)l [a Ig,(ka)l
The quantity 7 is a dimensionless time parameter
gm S (11)

a

which is normalized to be zero when the incident pulse is coincident
with the position of the center of the cylinder. The wave speed in the
ambient fluid is ¢ and ¢ is the time. Equation 10 is the basis by which
a steady state quantity |f.(ka, #)| can be obtained over a broad fre-
quency range by a single short pulse experiment. The incident and
reflected pulses are digitized, their transforms computed, and the divi-
sion indicated in Eq. 10 carried out [9]. With present minicomputer
technology this entire procedure can be accomplished in a near real
time framework [10]. The ka range over which f., is obtained depends
of course on the bandwidth of the incident pulse. Theoretical computa-
tions of the scattered echoes which result when a short incident pulse
with a known spectrum, Ig, (ka)|, is used to insonify a target with a
known f. (8, ka) can be obtained by using Eq. 9. This computational
procedure allows the isolation of the individual mechanisms which con-
tribute to the steady state scattered pressure. These pulse calculations
are of significant value for many reasons, the most important of which
is, that the theoretically formulated incident pulses used, can be made
shorter than any which can be reasonably achieved in the laboratory.
This allows isolation of closely spaced echoes which cannot be accom-
plished at a reasonable cost in the laboratory. In addition theoretical
computations can simulate experimental measurements over a large
number of frequencies, target materials, target sizes, and target shell
thickness that would be impossible to duplicate economically in a
laboratory. In the theoretical procedure an incident pulse p,(r) with a
known spectrum, Ig (ka)|, is used to insonify a target whose form
function can be computed. Computation of the form function and the
procedure indicated in Eq. 9 are accomplished by the computer, and the
scattered echo, p, (r), is described by

p(7) = 1/2n f 8 (ka) e~*" dka. (12)
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Solutions to Eq. 12 are obtained by using fast Fourier transform tech-
niques in the computer.

NORMAL MODES OF VIBRATION OF A CYLINDER
AND CREEPING WAVES

The acoustic reflection from a rigid cylinder has been well under-
stood since the prediction [20] and empirical observation [23,24] of the
Franz wave, and only a few ideas relating to the direct use of the form
function curves to derive Franz wave properties can be added. In the
case of a rigid cylinder, G,(Z) as defined in Eq. 3 reduces to

J, (2)
G (2) = 22 (13)
H, (Z)
and the form function for a rigid cylinder is given by
) oo
B (Z) = — - GR (2). 14)
S mka) /2 "go e, (=GR (Z) (

A plot of f.(m) vs ka computed from Eq. 14 is given in Fig. 2. Since
by definition the boundary conditions imposed to obtain the curve in
Fig. 2 preclude penetration into the cylinder, the backscattered
reflection function curve can include contributions only from specular
reflection and diffraction.

3 y
o8l -
0.3r e
0.0 L 1 A i

] 2 4 8 8 10

Fig. 2 — The form function for a rigid cytinder.
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In the creeping wave solution Eq. 14 is transformed from an
infinite series of n terms into a series of "creeping surface waves" by the
Sommerfeld-Watson transformation [18,20]). The creeping waves arise
as the residue of poles in the complex » plane determined from the
equation

H (Z)=0 (15)
with solutions

/3 2
= 3 ims, _ |6 i3] 1 1 qi
vilo)=Z+(Z[9T e a [z] ¢ [10q,+ 150 * 180 ©

where the g, are the zeroes of the first derivates of the Airy function as
defined by Franz [18]). The index / = 1, 2, 3..., and [ increases in the
direction of increasing real and imaginary parts of v,. The attenuation,
af, of the I"" Franz wave in Np/rad is given by

af(Np/rad) = Im v, (17a)
and the phase speed, c,,F , is given by [20]
F =
ct/e R. 7, (17b)

where c is the speed of sound in water. Calculations based on Egs. 16
and 17a demonstrate that only the / = 1, or first Franz wave is of
significant magnitude, and Figs. 3 and 4 give computations of the
attenuation and phase velocity of this first Franz wave as a function of
ka as computed from Eqgs. 17b and 17a.

1 o LA T T T T L T
08} B
o osf {
~
-0
Q
0.4} 4
0.2 I 4
00 1 L 1 1 1 1 4
0 1 2 3 4 5 6 7 8

Fig. 3 — The Franz wave phase velocity vs ka for a rigid cylinder.

s,




64 CHAPTER 4
1.6 T Y ¥ Y T - g
1.4} 1
1.2} 4
)
8
> 1.0} J
z
-]
0.8} 4
o6l 1
04 . " L n n 1 "
0 1 2 3 4 5 6 7 8
ka

Fig. 4 — The Franz wave attenuation vs ka for a rigid cylinder.

In the case of the rigid cylinder the connection between the steady
state form function f&, given in Fig. 2 and the Franz wave with proper-
ties described by Figs. 3 and 4 is not difficult to determine. Sound does
not penetrate a rigid cylinder, thus the form function must be made up
entirely of specular reflection plus a pure geometrically diffracted contri-
bution. The backscattered return must then be as described by Fig. 5.
A specular reflection begins at point A of Fig. 5, and two Franz waves
begin at points B and C and take the paths shown. This well under-
stood result can, however, be taken further. The reflection function
given in Fig. 2 is a steady state function, and the knowledge that this
reflection function results from sound waves taking the circumferential
paths shown in Fig. 5 leads to the following analysis. Because the two
diffracted waves BC and CB take the same path and travel at the same
speed, they are always in phase with each other in the backscattered
direction. Computations based on Eqgs. 16 and 17a demonstrate that for
ka > 1 only these first Franz returns need be considered; that is, the
contribution from succeeding circumnavigations of the cylinder are too
small in amplitude to be significant. The difference in the time of
arrival, at the field point P, between the specular and diffracted waves is

ar=24 .74 (18)
c c]
The difference in path lengths traveled by the backscattered specular
and Franz wave contributions at the field point P is expressed as

Ad = 2a + TZ5, (19)

Cp
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Fig. S — Source of backscattered echoes from a rigid cylinder.

If it is assumed that the peaks in the reflection function curve (Fig. 2)
occur when the specular and Franz contributions add in phase at P,
then peaks occur when

Ad=a(2+1rc/cp’)=n)\=-"—kzlr~ (20)
which feads to
c/cf = _n —2- 1)

(ka )peak m

The notation (ka) e is used to indicate the (ka) values at which a
peak in |fR | as seen in Fig. 2 occurs. A similar expression can be
derived by assuming that the nulls in the reflection function curve of

Fig. 2 occur when Ad = L 2_ . This expression is
/6 (ka) e (22)

A Franz wave speed can than be calculated directly from the reflection
function curve by determination of (ka) ., and (ka),,,. The normal-
ized phase velocity c,,’/ ¢ (which is the reciprocal of the left-hand side of
Egs. 21 and 22) is computed from these equations and compared to the
direct "creeping wave" theory computation, from Eq. 17b, in Fig. 6.
Agreement between the two methods is excellent, demonstrating the
possibility of obtaining Franz wave velocity directly from the normal
mode form function curves. Thus Franz wave velocities can be
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Fig. 6 — A comparison between the computed Franz wave wave speed for a rigid
cylinder (=) and values estimated from the form function curve (x).

obtained for bodies for which no creeping wave analysis exists. Exam-
ples are given in Figs. 7 and 8, where computed form functions and
derived Franz wave velocity for a rigid sphere and an aluminum oxide
cylinder are given. The rigid sphere shows a much more rapid rise in
Franz wave velocity with increasing frequency, than is observed for the
rigid cylinder. The velocity for the aluminum oxide cylinder shows
only minor deviations from the rigid cylinder curve.

The attenuation of the Franz wave as a function of ka can also be
investigated directly from the normal mode calculation. Here the
reduction in amplitude of the successive oscillations is assumed due to
the increase in attenuation of the Franz wave as a function of ka. The
reduction in magnitude of the oscillations in Fig. 2 with increasing ka
should then give a measure of the Franz wave attenuation vs ka. A
comparison of attenuation values obtained from creeping wave theory
for a rigid cylinder and values obtained from the form function curve is
given in Fig. 9a. In Fig. 9b the attenuation is given for an aluminum
oxide cylinder for which no direct creeping wave data are available. The
rigid cylinder curve is included in Fig. 9b, for comparison.

Empirical observations of Franz waves on a rigid cylinder were
obtained in an air acoustic range. A solid 3.18-cm-diameter cylinder
was used as the target, and the frequency of the incident pulse was 34.4
kHz. In air the impedance mismatch between the aluminum and sur-
rounding air medium is so great that rigid boundary condition assump-
tions are successfully achieved.
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Fig. 7(b) — Franz wave velocity estimated from (7a) for a rigid sphere
(—) and Franz wave velocity for a rigid cylinder (- - -).
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Fig. 8(b) — Franz wave velocity estimated from the form function (—)
and Franz wave velocity for a rigid cylinder (- - -).
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Fig. %a) - Franz wave attenuation for a rigid cylinder obtained directly (—)
and estimates obtained from the form function curve ¢- - -).
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Fig. %(b) — Franz attenuation estimates for an aluminum oxide cylin-
der (o) compared to the rigid cylinder (—).
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Experimental observations of Franz waves on a rigid cylinder are
given in Fig. 10. The measurements are made at aspect angles of 45°
and 75° so that the changes, both in relative amplitude and time separa-
tion, between the specular reflection and the Franz wave can be clearly
observed. The incident pulse is seen in Fig. 10(a) and the scattered
echoes at 45° and 75° are seen in Figs. 10(b) and 10(c). The time
separations between the specular and Franz waves are measured from
the large positive going peak in each echo. The measured time differ-
ences are 81 us at 45° and 125 us at 75°. The ratio of the Franz wave
to specular amplitude is pr/pyec = 0.56 at 45° and = 0.13 at 75°
Plots of theoretical computations, based on Eqs. 9 and 12, for the
echoes from a rigid cylinder are shown in Fig. 11. The theoretical com-
putations agree closely with experiments in the relative magnitudes and
positions of the Franz waves. The values obtained from Fig. 11 are a
time separation of 78 us at 45° and 125 us at 75°, and a ratio ps/Peec
of 0.57 at 45° and 0.14 at 75°. The center dimensionless frequency of
the pulse is k,a = 10. Echo computations agree with experimental
measurements, and can be used to isolate mechanisms or to supple-
ment measurements when f,, is known or can be computed.

—{116 pa— — 196 ps —l fe— 243 s —+
(a) The incident pulsc, (b) The specular and Franz (c) The specular and Franz
echoes at 8 = 45°, echoes at 6 = 78°,

Fig. 10 - The experimental observation of the Franz wave
radiation from a rigid cylinder.

For elastic cylinders, resonances in the normal mode solution can
be identified with specific R-type circumferential waves predicted by
creeping wave theory. The kg range over which the Rayleigh wave
makes a significant backscattering contribution has been the subject of
much conjecture [25-28.34] in the literature. There is a limited, low
ka, region of importance for the Rayleigh circumferential wave in con-
trast to previous hypotheses [25,26.4]). The first experimental observa-
tion of backscattered circumferential radiation from the true Rayleigh
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() The incident pulse. (b) The speculas and Franz () The specular and Franz
echoes at 0 = 45°, echoes at ¢ = 75°.

Fig. 11 - Computation of the scattering of a two cycle
incident pulse by a rigid cylinder.

wave was described by Dragonette {31} and was accomplished in the
low ka region where it is predicted. Computation and analysis of the
effects of the normal mode resonances on the backscattered .| demon-
strate further that the form function is made up of a rigid background
on which narrow resonances are superimposed.

The backscattered form function for an elastic aluminum cylinder
in water is calculated from Eq. 7b and given in Fig. 12 over the range
from 0.2 € ka £ 20. The curve is calculated in ka steps of Aka =
0.01. A comparison between this theoretical computation and an exper-
iment using the short pulse experimental technique is given in Fig. 13.
The theoretical curve is computed in intervals of Aka = 0.05 which is
compatible with the Aka resolution that can be achieved experimen-
tally. Agreement between theory and experiment is within 2%. The
form function curve seen in Fig. 12, shows that over the range 0.2 <
ka € 4.7 the aluminum reflection curve is very similar to that of the
rigid cylinder (Fig. 2). This region of similarity is followed by marked
irregular oscillations and these oscillations continue as (see Chapter 13)
ka — oo, if no absorption is included in the theory. Damping of the
oscillations as ka increases will occur when absorption becomes
significant [35], but for metals such as aluminum, experimental results
indicate [8-10] that absorption need not be included over the ranges of
ka that will be considered here.

et
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Fig. 12 — The form function for an aluminum cylinder in water.
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Fig. 13 — Comparison of theory (——) and experimental observations (the points)
for an aluminum cylinder in water.

The irregular oscillations in the aluminum form function, which
begin at ka == 4.5, are related to excitation of the individual normal
modes, f,. as defined in Eq. 7c. Resonances occur at ka values at

which
D;? lkal = D [n, kal =0 (23)

with D!? [n, ka) the matrix introduced in Eq. 1a. Solutions to Eq. 23
give the ka position of the free modes of vibration (resonances) of the
cylinder. The correspondence between the ka values at which irregular-
ities in the form function occur and the ka values at which resonances
occur is indicated in Fig. 12, where the resonances are identified by the
subscript (n. . Here n is the mode number and / is the eigenfre-
quency, for example (n, 1) means the fundamental resonance of the
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nth normal mode, {(n, 2) the first harmonic, etc. The "creeping wave”
solution to the problem of the scattering of an incident plane wave by a
solid aluminum cylinder was carried out by Doolittle et al. [21]}, who
transformed Eq. 7b using the Sommerfeld-Watson technigue. Doolittle
found poles in the complex » plane al the positions

DY v, kal = 0. (24)

He computed a series of R type, or elasticity related, poles and gave a
table of the positions of the first six R-type poles in the complex »
plane as a function of ka. Each pole gives rise to a circumferentially
traveling wave [21]. The relationship between Eqs. 23 and 24 form the
basis for the correspondence between normal mode resonances and the
individual circumferential waves predicted by the creeping wave theory.
To obtain this relationship, it is necessary o consider the properties of
the norma! modes individually. Equation 7c describes the mth normal
mode. The n = 0 term is the breathing mode, n = 1 the dipole term,
n = 2 the quadrupole, etc. The individual motions can be represented
by a pair of standing waves e'* (***!) traveling in the opposite direc-
tions with phase velocities

¢, (ka) = "—‘;5 (25)
and group velocities
cHka) = ¢ 4ka) (26)
dn

At a resonance of the nth mode exactly n wavelengths fit over the cir-
cumference of the body, and the /th eigenfrequency of the ath mode,
(ka), is the /th solution to Eq. (23). A comparison of Egs. (23) and
(24) leads 10 the connection between the creeping wave solution. The
complex quantity

v =y, (ka), Qn
which is related to R type circumferential waves with phase velocities
kac
c,(ka) Re "'I (28)
and group velocities
c
cf(ka) dRe »/dka’ (29)

If now Re v ,ka = n, Eqs. 23 and 24 become identical in form and the
modal velocities (Egs. 25, 26) are identical to the creeping wave veloci-
ties (Eqs. 28, 29). Thus, when Re v, = n, the /th Rayleigh type cir-
cumferential wave coincides with the wave speed, ¢,(ka), of the ath
modal vibration. This hypothesis is demonstrated below. Table | gives
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Table | — Modal Eigenvalues
(ka) 4 and Mode Speeds c,/c for an
Aluminum Cylinder in Water

(ka,) c,/c
!
NN ENERERERE
0] — - 1943} - | — oo
1] - 587|1344| — |5.87(13.44

2( 478! 9.17(16.31|2.39]|4.59| 8.16
3| 7.38[12.53(19.12(2.4614.18} 6.37
4 9.65(15.84] — [2.41|3.96] -

SI11.78(19.02| — [2.36{3.80] —

the modal eigenfrequencies obtained from Eq. 23, that are identified in
Fig. 12, and the corresponding modal phase velocities are computed
from Eq. 25. The breathing modes (0, ) are not strongly excited. as
evidenced from Fig. 12, but are included in Table 1. The (1, 1) mode
is generated in the region where the Franz wave or rigid reflection
predominates and is also not observed in the curve of Fig. 12. The ka
values at which Re v, (ka) = n, are extrapolated from the work of
Doolittle et al (Table 2 of Ref. 21), and comparisons are made between
these extrapolated values and the normal mode resonances identified in
Fig. 12. This comparison is shown in Table 2, which also gives the
computed values of the creeping wave phase velocity (21]. Tables 1
and 2 demonstrate that the ka values at which resonances occur
correspond to ka values at which Re v, (ka) = n. They demonstrate
further the equality of the modal and circumferential wave velocities c,
(ka) and c;(ka). The relationship is thus established between the (a,
» normal modes and the elastic or R-type poles found by the "creeping
wave” theory. For n = 2 (i.e., the (2,1) mode), the circumference of
the cylinder is 2 wavelengths of the R, type wave, at the (3, 1) reso-
nance, the circumference of the cylindér is exactly 3 wavelengths, etc.
The R, circumferential wave is similarly related to the (n, 2) normal
mode resonances, and so on, with the (n, ) normal mode resonances
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Table 2 — The correspondence between the normal mode
resonances and the ka values at which Rey; = n.
The target is and elastic aluminum cylinder in water.

Kka) values at which
Normal Rey| = nfrom the Phase velocities cy/c of the
mode Sommerfeld-Watson{ R, circumferential wave when
resonances formulation of Rey,= n
Ref. 21
N / (ka)y, [L (ka) R, R, Ry, Ry R
0 3 0943 |3 09.40 - - oo - -
4 1046 | 4 10.40 - - - o -
5 1714 | S 17.08 - - - - o
1 2 0587 |2 05.80 5.85 - - - -
3] By |3 13.39 - 1324 - - -
4 1602 | 4 15.90 - - 1604 - -
2 1 0478 |1 04.85 2.37 - - - -
2 0917 |2 09.10 — 0458 - - -
3 1631 3 16.28 - - 0816 - -
3 1 0138 |1 07.30 245 - - - -
2 1253 |2 12.47 - 0415 - - -
K L R 19.05 - - 0636 - -
4 1 0965 |1 09.70 2.40 - - - -
2 1584 |2 15.80 - 0394 - - -
s 1 1178 | 1 11.80 235 - - - -
2 1902 |2 18.90 - 079 - - -

related to the /th order Rayleigh or R, Rayleigh type circumferential
wave.

The R, circumferential wave is related to the leaky Rayleigh wave
{36] on a flat surface (see Chapter 18). This is the surface wave which,
as ka increases, approaches the phase velocity of the Rayleigh wave on
a flat infinite half space. The higher order R-type waves are called
"whispering gallery” waves and become lateral waves in the limit as ka
— oo [35]. Since the R, or Rayleigh wave is related to the (n, 1) reso-
nances in the normal mode solution, the influence of the circumferen-
tially traveling Rayleigh wave on the backscattering from an aluminum
cylinder can be inferred from the relative influence of the (2, 1) modes
on the form function seen in the curve of Fig. 12. The (2, 1), (3, 1),
and (4, 1) resonances are observed to have a marked effect on the form
function in the ka range from 4 € ka € 10. For n > 4 the effects of
the (n, 1) resonances on |f..] are small, and in fact for ka > 20 no (n,
1) modes were observed to influence {f..l The result of the calculations
plotted in Fig. 12 and calculations of |f.| carried out between 20 < ka
€ 40 (not shown) strongly indicate that the Rayleigh wave will not
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contribute significantly to the observed backscattering from an
aluminim cylinder at ka values above ka = 20. This is a significant
point, since the possibility of Rayleigh wave generation at high (ka) has
been a matter of dispute in the literature [25-28,33]. This point will be
explored in more detail. Figure 12 does show, however, that the (2,1),
(3,1), and (4,1) resonances are major features of the form function
curve for k@ < 10. Nulls in the form function at the ka positions of
these three resonances should be related to the interference between
specular reflection and the circumferentially traveling Rayleigh wave.
Specular reflection and Rayleigh wave radiation are known to be 180°
out of phase with each other in the flat surface case [30,36,37].
Verification of the above explanation of the nulls at the (2,1), (3,1),
and (4,1) resonance values should be possible both by computing the
low ka echo response of an aluminum cylinder to an incident short
acoustic pulse and by experimentally determining the echo response of
an aluminum cylinder at low ka. Both measurement and computation
were done, and this experimental observation of the backscattered rera-
diation from a circumferentialy traveling Rayleigh wave was the first
observation of this phenomenon {31}

The major difficulty in achieving an experimental observation of
the Rayleigh wave at low kg is in obtaining a practical and possible
combination of cylinder radius, frequency, and pulse length that allows
the Rayleigh wave to be separated from the specular reflection. The
best available combinations were an aluminum cylinder of radius a =
0.635 cm measured with a short pulse centered at frequencies f, = 386
kHz and 7, = 500 kHz. Commercially available lead zirconate titinate
transducers, with active elements 1.905 ¢cm square were driven with a
rectangular pulse, and the achieved pulse length was S cycles.

Figure 14 shows the experimentally observed backscattering from
the 0.625-cm-radius-aluminum cylinder at f, = 500 kHz, or k,a =
13.5. The backscattered echo consists of a specular return followed by
a Rayleigh circumferential wave which is 180° out of phase with the
specular return. Even at this relatively low ka value the second traver-
sal of the cylinder by the Rayleigh wave is already almost entirely in the
noise 25 dB below specular reflection. The experimental backscattering
result at f, = 386 kHz, (k,a) = 10.4 is given in Fig. 15. Here there is
a slight overlap of the final cycle of the specular reflection and the first
cycle of the Rayleigh wave, but the 180° phase shift can still be
observed. At this ka, direct measurement can be obtained of the group
velocity and attenuation, as the second transversal of the Rayleigh wave
is now visible. The path difference between the first and second man-
ifestations of the Rayleigh wave is Ad = 2wa. The measured group
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Fig. 14 — Experimental observation of the Rayleigh circumferential wave
on an aluminum cylinder at k,a = 13.5.
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Fig. 15 — Experimental observation of the Rayleigh circmferential
wave on an aluminum cylinder at k,a = 10.4.

velocity is c§/c = 1.9, in comparison to the estimated value of c§/c =
2.0 obtained from Ref. 21. It is expected that the group velocity would
be higher [39,40] at these ka values than the infinite half space Ray-
leigh wave velocity, which is c§/c = 1.8 [30]. Equality between the
group velocities of the flat surface and circumferential Rayleigh wave
does not occur until the ka value of the cylinder reaches, at least kg =
30, when the cylinder circumference is greater than 10 wavelengths of
the Rayleigh wave [39].
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The fact that the circumferential speed of the R, wave is a func-
tion of frequency, or ka, means that changes in the pulse shape should
occur between the specular reflection and the R, circumferential wave.
The speed of sound in water is not a dispersive quantity, i.e. not a
function of frequency, and the specular reflection has the same puise
shape as the incident wave. The Rayleigh velocity is a function of fre-
quency over the range 0 € ka = 30, and thus is not constant over the
range of frequencies represented by the incident puise. Changes in
pulse shape between the Rayleigh wave and the incident and specularly
reflected waves are expected. Figures 14 and 15 are digital representa-
tions of the experimental recovered signal sampled at intervals of 0.02
us, or at about 100 points per cycle of the received pulse. No two digi-
tal representations are exactly alike, but with so many points having
been taken, the only differences that are noticeable occur in the flatten-
ing effects at some of the peaks and valleys. In amplitude measure-
ments these effects are negated by averaging many measurements. The
phase shift of 180° was determined by comparing the pulse cycles
labeled (1) and (P) in Fig. 14. Despite the slight change in pulse shape
as discussed above, the beginning cf the pulse labeled (1) and the
characteristically large amplitude at the center of the pulse labeled (P)
are present in both the specular and Rayleigh echoes and are 180° out
of phase for these two echoes. The attenuation of the circumferential
Rayleigh wave at ka = 10.4 is measured from Fig. 15 to be ag = 1.69
Np/revoiution where one revolution equals a travel path of oae cir-
cumference. Computations of the response of an aluminum cylinder to
an incident pulse should allow examination of the Rayleigh circum-
ferential wave properties at even lower ka values than k,a = 10.4 (the
experimental conditions for Fig. 15). A one-cycle pulse can be pro-
grammed as the incident pulse for a computer even though it is not
readily attainable in a laboratory with normally available transducers.
The computation of the reflection of a single-cycle pulse centered at
k,a == 8.8 is shown in Fig. 16. Again specular and Rayleigh wave
echoes are 180° ou! --f phase. The group velocity obtained from Fig. 16
is cR/c = 2.4, which compares to cf/c = 2.3 estimated from Ref. 21.

Estimates of the expected Rayleigh wave attenuation due to radia-
tion into the water can be made from the flat surface formula given by
Dransfeld {29]:

- P
*R Ps Cr AR (30)

The nonsubscripted variables refer to water, and the subscript R refers
to the Rayleigh wave. Just as the limiting velocity is not achieved until
ka > 30 for aluminum, it is not expected that computations made from
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Fig. 16 — Computation of the echoes scattered by an aluminum
cylinder at k,a = 8.8.

Eq. 30 be exact for low ka. For aluminum the flat surface values for
the variables in Eq. 30 are

plp, = 0.37; c/cg = 0.55, and Ag = 1.8%

yielding
- 0.113 - 0.113k 4
ap N o cm (313)
or
Qwa) ag = ag = (0.113) (ka) (31b)

, :
where a z is dimensionless.

Equation 31b gives a ;Q = 1.0 at ka = 8.8 in comparison with the
value agp = 1.0 obtained from Fig. 16. At ka = 10.4, Eq. 31b gives
agp = 1.2 compared with ag = 1.7 obtained from the measurement in
Fig. 15. The results indicate that a reasonable estimate of ag can be
made using the flat surface attenuation formula, even at low ka. The
empirical observations given in Figs. 14 and 15 are the first observa-
tions of the true Rayleigh circumferential wave. Previous observations
of circumferential waves on solid elastic cylinders have been made at
ka values in the range 40 < ka < 400 [25,26]. This high ka range
was chosen because of the ease of pulse separation of any circumferen-
tial effects and, also, because Rayleigh-like circumferential wave pro-
perties would have more closely approximated the flat surface Rayleigh
wave at high ka. The circumferential waves that were observed on
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aluminum were identified as Rayleigh [25] or "Rayleigh type" [26]
waves. Further analysis of high ka circumferential results lead to an
explanation of the effects seen in Refs. 25 and 26 in terms of muitiple
internal reflections of shear waves in the cylinder [27]. This view was
further supported by theoretical calculations of the circumferentially
radiated wavefronts which result from internal reflections [28]. The
subject has remained however a matter of some conjecture, [25-28,34],
but the results given here show that the Rayleigh wave has large
enough amplitude to contribute significantly to the backscattering by
the cylinder only at ka values below 20.

The excitation of the (2,1) resonance, which corresponds to the
ka value at which the cylinder circumference is two wavelengths of the
Rayleigh circumferential wave, marks the highest ka at which the Franz
wave contribution can be isolated. A comparison of the form function
curves for the rigid cylinder (Fig. 2), the aluminum oxide cylinder (Fig.
8a), and the aluminum cylinder (Fig. 12) shows that, in all these cases,
there exists a region where the behavior of the form function is purely
rigid, i.e., dominated by the interference of specular reflection and the
Franz wave. For an aluminum cylinder this behavior exists up to ka =
4.5, where the (2,1) resonance minima begin. For aluminum oxide the
specular plus Franz wave behavior persists up to ka = 9.9, and the
resonance null at ka = 9.9 in Fig. 8a is the (2,1) mode for aluminum
oxide. Similar curves were computed for copper, brass, and tungsten
carbide, and in all cases the generation of the (2,1) mode marks the
end of the purely rigid behavior. The ka value at which the purely rigid
behavior will end for a cylinder of a given material can be inferred by
using aluminum as a reference. The (2,1) mode will be excited at

cg (material)

cg (aluminum) (31c)

Zg,l(material) = Zzl(Al) .
The Rayleigh wave speeds used in Eq. 31c are flat surface numbers,
and the equation assumes that the effect of curvature is the same for all
materials, i.e., that the flat surface limit is reached when the circumfer-
ence is greater than 10 Rayleigh wavelengths. Using the simple for-
mula given in Eq. 3lc, the ka position of the (2,1) resonance was
predicted to within 1% for the materials discussed above.

SEPARATION INTO RIGID BACKGROUND
AND RESONANCE PARTS

Junger and Feit [40] qualitatively considered the resonance
features of the acoustic scattering by elastic bodies. They showed that
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resonances should appear where the sum of the mechanical and radia-
tion impedance goes to zero. The acoustic scattering from a submerged
aluminum cylinder can be described in terms of a rigid background
term, with a resonance contribution superimposed on that background.
The observed phenomenon can be formalized by using the methods of
nuclear scattering theory, so that mathematically explicit forms for the
resonances and background, as well as expressions for the resonance
widths, are obtained. It is necessary to establish the nature of the back-
ground before the formalism is developed because a parallel formalism
could have been developed, using a soft or an intermediate back-
ground, which would have had no physical significance for the problem
of the solid metal cylinder. The conclusions and formalism developed
for the scattering from an aluminum cylinder apply to the scattering
from any submerged solid cylinder whose density is greater then that of
the surrounding fluid and whose shear and compressional wave speeds
are greater than the speed of sound in the fluid.

It has been shown in the previous section that the irregular
characteristics of the form function for solid elastic cylinders are related
to the normal modes of free vibration of the body, and these reso-
nances often occur over a narrow frequency range as was seen in Fig.
12. It will be demonstrated in Figs. 17 through 20 that the resonances
are superimposed on a background of reflection resulting from rigid
boundary conditions, so that the elastic body can be regarded as a rigid
body except in the frequency interval over which the resonances occur.
In Fig. 17, the individual partial waves, lf,,l, from n = 0 through n =
5 are plotted vs ka for an aluminum cylinder. The f, are described by
Eq. 7c. The curves in Fig. 17 show that the amplitude of the individual
partial waves |f,| have distinctive behavior in regions where the reso-
nances occur. The eigenvalues /, are labeled along the curve in Fig. 17.
The individual partial waves for both the infinitely rigid and the
infinitely soft cylinder have no resonance irregularities, as seen in Fig.
18(a) and 18(b) respectively. The dzmonstration that the individual
partial waves for a metal elastic cylinder consist of resonances superim-
posed on a rigid background is seen in Fig. 19. Here the |f;] and | /3]
individual partial waves for rigid, soft, and elastic boundary conditions
are plotted. 1t is clearly observed in Fig. 19 that the rigid and elastic
curves are the same except in the region where resonances occur. The
resonances for / 2> 2 are narrow resonances; the / = 1 eigenvalue
which corresponds to the R, or Rayleigh surface wave is a broader
resonance. A more dramatic example of the relationship between the
elastic and the rigid solutions for a solid cylinder is seen in Fig. 20.
Here the quantity |f5(m)®stic —f,(7)"8¢| is plotted vs ka, and the
(2,1), (2,2), and (2,3) resonances are clearly isolated. As was noted,
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Fig. 17 — The individual partial wave amplitudes from
n=0to n = S for the aluminum cylinder.
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Fig. 20 — A plot of the difference between the elastic and rigid partial
wave amplitudes for n ~ 2, over the range 0.2 < ka < 20.

the (2,1) resonance and in fact the (n, 1) resonances in general are
broader than the narrow resonances which occur for higher order eigen-
frequencies, i.e. / > 1. A method of computing resonance widths will
be described later. The results seen in Figs. 17 through 20 are, of
course, not restricted to the backscattered direction.

Fig. 21a shows a bistatic form function |£..(8)| curve for a rigid
cylinder at ka = 12.53, which is the ka value at which the (3,2)
resonance occurs in the aluminum case. In Fig. 21b this bistatic form
function for a rigid cylinder is compared with the bistatic form function
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Fig. 21(c) — The same comparison as (b) except that the n = 3 term
in the rigid series is replaced by the n = 3 elastic term.

for an aluminum cylinder. Here the results are plotted on a linear
rather than polar plot, and due to the symmetry apparent in Fig. 2la
only the range 0° < ¢ < 180° is plotted. The rigid and elastic solu-
tions plotted in Fig. 21b were obtained with 23 terms (n = 0 through
22 from Eq. 7a). If the single n = 3 term from the elastic solution is
substituted for the » = 3 term in the rigid solution, the result seen in
Fig. 21c is obtained. A similar procedure was carried out by Vogt and
Neubauer [41] for a sphere in a monostatic geometry. In Fig. 2lc the
exact bistatic solution for the aluminum cylinder at ka = 12.53 is com-
pared with the hybrid solution formed by taking 22 terms from the
solution for the rigid cylinder (n = 0 through 2 and n = 4 through
22) and adding the » = 3 term from the solution for the elastic
cylinder. The form function resulting from the modified solution for
the rigid cylinder vs aspect curve and the same plot for the elastic form
function are seen in Fig. 21c as very similar. The differences between
Figs. 21b and 21c are most noticeable in the backscattered half space,
90° < @ < 270° (recall that by symmetry the results seen in Fig. 21c
from 90° < @ < 180° are exactly the same as the results between 180°
< @ < 270°). Figure 21 again indicates the probability that the scatter-
ing from an aluminum cylinder can be treated as resulting from a rigid
background term with resonances superimposed. It indicates further
that this behavior is not limited to the single monostatic angle (§ =
180°) but can be utilized at any bistatic aspect angle.

These results indicate that the solution to the scattering from solid
elastic bodies as expressed in Egs. 4, 5, and 7 should be separable into
two terms, the rigid background term and the resonance term.
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Consider the scattering function
S, = exp(2i 8,). (32)

Now the solution describing the scattering by an elastic cylinder may be
written in the form familiar to nuclear reaction theory [43] as

p =172 ie,, i"(S, — 1) H,(kr) cos nf. (33)

n=-

The 8, of Eq. (32) are called scattering phase shifts, and a comparison
of Egs. 1, 3, and 33 shows that

S, — 1 = —2G,(ka). (34)

For the case of a rigid cylinder, defining £, as the scattering phase shift
for a rigid cylinder and defining

SR = exp(2i £,) (35a)

as the scattering function for a rigid cylinder using Eqs. 34 and 13,
leads to

SR — 1 = -2G® (ka) (35b)
and thus
H®(Z)
SR - L ——— (35¢)
H(2) ¢

If the rigid portion of the scattering function as given in Eq. 35c is
factored out of the expression for the elastic scattering function Eq.
(34), we have using Egs. 3 and 35¢

L-—l — Z—l
(R) [ Zn %2
S, =S, an" ey l (36)
The L,’s were previously defined in Eq. (1a), and the Z's are defined by
H,(Z)
2zl = (2) Tz (37a)
and n
H?(Z)
-1 n
z;! = (2Z) W (37b)

the primes in Egs. 37 and 35¢ represent derivatives with respect to the
argument, and as defined previously H and H® are Hankel function of
the first and second kind respectively. The quantities z~' of Eq. 37 can
be separated into real and imaginary parts:

iy =4, s, (38)
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with
J,(2Z) I (Z)+ Y,(2) Y, (2)

A, =1/(Z) - ; (39)
=V VA2 + (Y (Z))
and
-2 1
- - , . (40)
Y2 [[1,(2)12+ [y,<2)12]
Equation 36 may be rewritten using Eq. 38 as
-1 _ X
s, = s e 8t 5 @)
L7'— A, ~ s,

The linear approximation method of nuclear resonance theory is
used in which the resonance frequencies Z, are defined by the condi-
tion

L' (Z,) =A,. (42a)

The quantity (L, ' — A,) is assumed to be linearly varying with fre-
quency so that it can be expanded in a Taylor series in Z in the vicinity
of any one of the resonance frequencies:

L7'=Aa,+8,(Z~2,). (42b)

A resonance width is defined by

~25
r,= < (43)
" B,
and the scattering-function S,, may be rewritten in resonance form as
2i8 Z - Z - lr /2
S = [ - S(R) n n . 44
n=e " \Z=z, +ir,2 (44)

From Eq. 44 the §, are seen to have resonance poles at the complex
frequencies Z = Z,, given by

Zooe =2, — il',/2 (45)
and a resonance zero, Z = Z,.,, at
Zyero= 2, + il ,/2. (46)

The resonance width T', defined in Eq. 43 is a positive quantity. Thus
Zyoe is located in the lower half of the complex Z-plane a distance
(1/2)r, from the real axis, and Z,,,, is located in the upper half plane
at the same distance above the axis.

— e ——— A e
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The quantity S, — 1 which appears in Eq. 33 can be written,

recalling the definition in Eq. 32, as
S,—1 =2iesinsg,. (462)

Using Eq. 36 and the expressions for z;'} given in Eq. 38 (S5, — 1) can
be rewritten in the form

i 5, i .
S,—1=2e € — - + e"" sin £, (46b)
L' —48,—is,
or, using Egs. 44 and 46a, S, — | may be written in the resonance

form

S, —1 2, 1/2r, —ig, .
= [Z,,—-Z—l/Zl‘,,+e sin £,¢. 47)

The individual partial waves, f, (@), of Eq. 7c can thus be written, using
Eq. 47, as

2 (- 1/2T,
f0) = —En “~[ /

—ig, .
m Z"—Z—1/2il",, +e Slnf,,]COS(ﬂe).

(48)

The first term of Eq. 48 represents the resonance contribution, and the
second term represents the rigid boundary contributions. The represen-
tation of £, (6) given in Eq. 48 shows that the complex eigenfrequencies
of the scatterers are the locations of the resonance poles in the complex
frequency plane, whose real parts determine the resonance frequencies
in the scattering amplitudes.

A consideration of the field within the elastic cylinder can aiso be
made in light of the above results. The displacement u within the
cylinder is represented by a scalar potential ¥ and a vector potential A,
and is written

u=—-VV¥+VxA (49)
with solutions [20]
Y- i{,‘" i" C, J,(ky r)cos n@ (50a)
and
Az= 3 ¢, i" B, J,(kr )sin n6. (50b)

n=0
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The subscripts L and T are longitudinal and shear respectively. The
coefficients C, and B, are given by
2i 1 as;

- (51a)
wpwt ZH,(Z) DY V- L}

C,=
and
B = 2i 1 asz
" wpe? ZH(Z) D!V z'-LV

The expansion of L, ! in Eq. 42 leads in to the resonance expressions
for ¥ and A,, which are

(51b)

2 €, in as; .,ﬂ(ka) cos no
Y= , - (52a)
i p w? z B, ZH(Z)D!Y Z-Z,+1/2iT,
and
Ay = 2 = €,i" aj ./,,(krr) sin n¢ (52b)

im pw’ ,,;6 B, ZH(Z)D!" Z-2Z,+1/2iC,’

Equations 52a and 52b show that the internal solutions are of a
pure resonance form only. This is as expected, since by definition a
rigid body is impenetrable; thus no rigid background term is expected
for the internal solution.

CIRCUMFERENTIAL WAVES ON CYLINDRICAL SHELLS

Numerous empirical observations of circumferential radiation
from cylindrical shells exist in the literature [11-15,25-27], but these
have left many serious voids in the understanding of circumferential
waves as well as erroneous information concerning the properties of the
waves. A connection can be made between circumferential waves and
the exact Rayleigh series solution. It can be demonstrated that the
Lamb wave dispersion curves on plates predict the range of possible
excitation of circumferential waves and that the velocity of circum-
ferential waves may be obtained directly from the form function vs ka
curves. Lamb dispersion curves also give immediate knowledge of the
ka region over which a particular circumferential mode is significant.
Calculations of the backscatiered echoes from shells can be used to
obtain curves relating the amplitude of the specular and circumferential
contributions as a function of ka, and, contrary to earlier literature, the
circumferential waves will be shown to be of most importance in the
low ka region generally avoided in that work. A target classification
scheme has been proposed in the literature which relied on the assump-
tion that a hollow shell acts as a soft body, in that its specular reflection
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is 180° out of phase with an incident wave [44]. By consideration of
the interference between specular and circumferential radiation, the
actual ka range over which such a hypothesis is valid is determined.

Barnard and McKinney [11] were the first to observe backscat-
tered acoustic echoes with circumferential properties. This observation
was a significant contribution done in the absence of guiding theory.
They attempted to link the observed acoustic phenomenon with the
geometric diffraction phenomenon observed by Franz and Doypermann
[18] in the electromagnetic domain; however, the analogy broke down,
since the acoustic phenomenon was a predominately elastic effect, the
geometry serving in the capacity of a waveguide. Horton, et al. [13]
made the initial attempt to relate circumferential waves on cylindrical
shells to the elastic properties of flat plates. They compared their
observation of a circumferential wave on an aluminum shell to a
theoretically computed flexural plate mode and found a 10% difference
between measured and predicted velocities. A similar comparison was
attempted with a brass shell [13], but the circumferential wave could
not be excited. The ka range considered was 21 < ka < 38, with b/a
= (.96, where b and a are the inner and outer shell radius respectively.
The circumferential wave observed by Horton et al. will be related in
this work to the first antisymmetric Lamb mode, whose properties and
ka region of possible excitation are discussed later. Diercks, et al. [12]
made empirical observations of circurnferential waves on both brass and
aluminum shells near ka = 50, with & a = 0.96. They established the
existence of circumferential waves with two different group velocities.
The faster velocity wave was called a longitudinal mode, and the lower
velocity wave was called the flexural mode. This paper by Diercks et al.
[12] was significant in that it was the first to clearly state that more than
one circumferential mode existed. Their conclusions, concerning which
mode is dominant and whether both modes can be simultaneously
excited, were thought to be general but are limited strictly to the con-
ditions of the observations. It has been demonstrated [31] that the so-
called longitudinal mode is actually many different modes, and therein
lies much of the confusion about the frequency range of excitation
and/or dominance of a particular mode. Goldsberry [14] demonstrated
that the circumferential waves observed previously f{11-13] would
reflect from slits cut in the shell. He called the wave with lower group
velocity a low frequency wave, and the faster wave a high frequency
wave. Again these generalizations do not survive beyond his experi-
mental conditions. The ranges he considered were 32 < ka < 38
(flexural, slow, low frequency wave) and 70 < ka < 76 (compres-
sional, fast, high frequency wave). The b/a was 0.96. Uberall et al.
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predicted circumferential waves of different types on rigid [20] and elas-
tic cylinders [21] and shells {45]. These predicted wave types were
Franz-type waves [20] with properties similar to the electromagnetic
case of Franz [16], and R-type or Rayleigh-type [21,45] waves, which
depend on the elastic properties of the target. Neubauer [23] empiri-
cally isolated the Franz-type wave on a solid elastic cylinder in water,
and Harbold and Steinberg [24] isolated the wave on a rigid cylinder in
air.

Bunney, et al. [25] used narrow beam sources to illuminate
cylindrical shells over narrow ranges of incidence angles and "direc-
tional" receivers to observe circumferential-wave radiation. The ka
range they considered was between 50 < ka < 320 with b/a = 0.95.
Many observations of a low velocity circumferential wave were com-
pared to the antisymmetric Lamb mode, and the single observation of a
higher velocity mode was related to the symmetric plate mode.

Neubauer and Dragonette [27] and Dragonette [46] empirically
demonstrated that the velocity of the observed circumferential waves
on cylindrical shells [27] and the velocity of Lamb waves on plates [46]
could be predicted by considering guided wave propagation within
cylindrical shells and plates. Dragonette [46] also established that
Lamb modes were most easily excited in the frequency thickness
regions where the phase velocity reached a constant plateau. This
result is significant in a consideration of the so-called fast circumferen-
tial wave on cylindrical shells and was the basis for correcting some
erroneous conclusions in the literature.

Shirley and Diercks [47] compared measured and predicted values
of the steady state response of spherical shells over the range 25 < ka
< 65 with b/a = 0.95. Differences of the order of 10 dB, or 300% in
pressure amplitude, were found between theory and prediction, but
similarities in shape between the theoretical and empirical curves were
observed.

Horton and Mechler [15] attempted to measure phase velocity of
circumferential waves on aluminum cylindrical sheils by setting up a
long pulse or steady state interference pattern between the successive
circumferential pulses. The significance of their paper was that it
offered a possible approach to phase velocity determination which, as
will be discussed later, is a difficult parameter to obtain when waves are
excited on a curved surface.

Figure 22 shows the geometry of the cylindrical shell problem. It
is similar to Fig. 1 except that the target now has a finite thickness A
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Fig. 22 — The geometry used in the solution to the
reflection from a cylindrical shell.

given by # = a — b, where b is the inner radius and a is the outer
radius. The shell is air filled. An experimental observation of circum-
ferential waves using a pressure sensor is seen in Fig. 23. Here the tar-
get is a stainless steel cylindrical shell with 6/a = 0.96. The radius of
the shell is 1.27 cm, and the center frequency of the pulses seen in Fig.
23 is 1.5 MHz, leading to k, a = 80. The specular reflection is not
shown, since it is 40 dB greater than the largest echo seen in Fig. 23,
and was gated out of the return so that the echoes seen in the figure
could be amplified to the maximum extent for display. The
source/receiver is located 15 diameters from the target. The backscat-
tered echo seen in Fig. 23 was digitized at the rate of 13 points per
cycle and stored on magnetic tape. The first, third, and all successive
echoes in Fig. 23 result from a circumferential wave which circumnavi-
gates the cylinder, with little attenuation, continually radiating into the
water as it travels. The second echo in Fig. 23 is the result of a second
type of circumferential wave so highly attenuated at the ka and/or kk
value of this experiment that only its first traversal around the cylinder
is observed before it attenuates into the noise. (Observation of Fig. 23
alone would not allow identification of the second echo as a circum-
ferential wave. This identification was based on many experimental
measurements, some of which will be given below.) Measurements of
the circumferential velocity of the persistent series of equally spaced
echoes (1-7) in Fig. 23 straightforward. The circumferential group
velocity c, is obtained from Fig. 23 by

. 2ma

At

where At is the time between echoes and 2wa is the circumference of
the shell. The measured value from Fig. 23 is ¢, = 5.48 x 10° cm/s or
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Fig. 23 — Experimental observation of circumferential waves on a
stainless steel shell at k,a =~ 80.

c;/c = 3.7. This value for cg' identifies this wave as that which had
been called the "fast”, "high frequency”, or "compressional® wave [13-
15]. As will be discussed, these names can be misleading or in error.
Attenuation measurements from Fig. 23 are also straightforward. The -
successive amplitudes from Fig. 23 are plotted on semilog paper in Fig.
24, yielding an attenuation of

a, = 0.14 Np/revolution.

The use of the digitizing procedure and display makes possible observa-
tion of the individual cycles of the successive echoes in Fig. 23. The
empirical observations in Figs. 25 through 28 are photographs of scope
traces. Time scales needed to show many successive echoes do not
allow observation of the individual cycles within the echo.

Figures 25, 26, 27, and 28 show further results of reflection mea-
surements on steel shells, and the experimental conditions and resuits
are summarized in Table 3, which also includes the results described
for Fig. 23. The hydrophone measurements seen in Figs. 23 and 25
through 28 show the acoastitreflection in the backscattered direction, 6
= s. Observation of the entire scattered field, 0 £ & £ 2» can be
obtained simultaneously by schlieren visualization. Figure 29 shows a
schlieren visualization of the scattered field of a stainless steel cylindri-
cal shell of radius 0.9525 cm with 4/a = 0.95, and k,a = 202. The
incident puise is seen in Fig. 29a, and the time sequence of photo-
graphs shows the scattered field at later times. The specular reflection
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Fig. 24 — The amplitude of the circumferential
waves seen in Fig. 23 plotted on semilog paper.

Fig. 25 — Experimental observation of a "fast” circumferential wave
at k,a= 11, on a stainless steel shell. The time scale is
20us/division; the amplitude scale is 5 mv/division.

&t k,a=69, on a stainiess steel shell. The time scale is

i
Fig. 26 — Experimental observation of a "fast" circumferential wave
20us/division; the amplitude scale is 2 mv/division.
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Fig. 27 — Experimental observation of a "slow” circumferential wave
at k,a =17, on a stainless steel shell. The time scale is 20
us/division; the amplitude scale is 200 mv/division.

Fig. 28 — Experimental observation of a "slow" circumferential wave
at k,a~43, on a stainless steel shell. The time scale is 20
us/division; the amplitude scale is 2 mv/division.

Table 3 — Summary of Cylindrical
Shell Observations

. Radius a*
Figure {(cm) k.a | b/a C‘{ ¢ | Np/revolution

23 1.27 80.8 [ 96 [ 3.7 0.142

25 1.59 113.0 { .97 | 3.5 0.209

26 0.9525 69.0 | 95 | 3.6 0.126

27 0.9525 170 | 95 | 1.35 1.000

28 1.905 430 1 97 | 135 0.600




Fig. 29 — Schlieren visualiza-
tion of a "fast” circumferential
wave at k,a = 202 on a
stainless steel shell.
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and the beginning of the radiation from a circumferential wave are seen
in Fig. 29b, and Fig. 29¢ shows the reradiation from the first complete
traversal of the circumferential wave into the backscattered direction.
At the bottom of Fig. 29¢ the diffraction around the shell can also be
observed. The group velocity of the wave seen in Fig. 29 is cg’/ ¢c=3.6.
In Fig. 29 the incident pulse insonified the entire cylinder, so that the
same effect was generated on both the upper left and upper right qua-
drants of the cylinder.

The properties of the circumferential waves seen in Figs. 23 and
25 through 29 are similar to circumferential wave properties previously
reported in the literature [11-15,25-27]). Specifically, circumferential
waves with group velocities c3/c = 3.6 (Figs. 23, 25, and 26) and c§/¢
= 1.3 (Figs. 27 and 28) are observed, with the faster group velocity
observed at the higher frequency (or higher ka) and the slower group
velocity wave at the lower frequency. This simple interpretation of the
results is, however, misleading and demonstrates some of the practical
difficulties in a predominantly empirical approach to this problem,
where broad generalizations are made, based on limited measurements.
The experimental measurements here, and reported previously, are
generally made at high ka values. At very low frequencies, or ka
values below kg = 20, it is a practical impossibility to achieve short
enough pulse lengths to separate circumferential waves with transducers
generally available; hence, high ka measurements are made as a matter
of necessity. This low-ka limitation on the isolation of separate echoes
is especially true of high speed circumferential waves. In addition,
most empirical measurements are made on shells with b/a < 0.96,
since thinner shells are more difficult to fabricate and maintain.
Finally, as a practical matter it is not possible to measure enough com-
binations of shells and frequencies to do a complete empirical study.
This latter statement is true not only because of the low ka separation
difficulty mentioned above but also because in the case of a curved
shell there are two frequency variables. For a flat plate, frequency
times thickness, fh may be considered a single variable. The radiation
from a given plate may be examined as a function of fh, simply by
varying the frequency of the incident pulse or continuous wave. A
similar experiment on a curved shell is not as unambiguous. As the
frequency of the incoming wave is varied, the fh or kh of the shell
changes accordingly, but in addition the ka value changes. As will be
seen, there are certain effects which are strong functions of ka, and
others which depend almost entirely on k. These had not previously
been differentiated successfully in the literature, and this could not
have been reasonably accomplished empirically. Because previous work
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has been limited to the high ka region, where the flat surface limit is
approached, the khk variable has generally been considered most
significant in all empirical observations of isolated circumferential
waves. In fact the low kg region which has been avoided is the only ka
region where a high velocity circumferential wave plays a significant
role in the acoustic scattering by a cylindrical shell, as first shown by
Dragonette (311.

Analysis of circumferential waves on cylindrical shells can best be
accomplished by determining the relationship between the circumferen-
tial waves and exact steady state theory. In addition, Lamb theory for
plates can be used to predict the possible ranges of excitation of cir-
cumferential waves on shells.

The geometry of the cylindrical shell problem was given in Fig.
22. The formulation of the exact normal mode solution to the scatter-
ing of sound by an elastic cylindrical shell exists in the literature and
can be presented in a form similar to that of Eq. 1, which described the
scattering from solid elastic cylinders [33}:

J(Z)Q,-Z J2)
H,(Z) Q,- Z H,(Z)
This expression differs from Eq. (1) only in the replacement of L,,
which involved the division of two 2-by-2 matrices, by Q,, which
involves the division of two, 4-by-4 matrices. The larger matrix results

from the extra boundary condition on the surface r = b, and the
expression for Q, is

p8) = —p, T e, ()"

H,(kr)cos n8.(53)

Ay A 934y
a3; 33 A3y
42 Q43 Ay
gy Q63 A4
a)24a1344

—_—

as

a,
a

g, = L ]
Ps a,

a;

—

a3 33 A34

—

Q41 042 043 Ayq (54)
ag

gy g3 Ay

with the matrix elements g,; given in Chapter 5 {33]. Computations are
given in Fig. 30 of the form function vs ka for stainless steel shells
with b/a = 0.99 (Fig. 30a) and b/a = 0.98 (Fig. 30b). The curves
cover the ka range 0.2 < ka < 50. A similar set of curves for alumi-
num are given in Fig. 31, and the two figures demonstrate the similarity
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of results obtained on metals quite different in density, but with shear
and longitudinal wave speeds approximately twice and four times the
water wave speed, respectively. The elastic constants used in obtaining
the curves seen in Figs. 30 and 31 are given in Table 4.

Table 4 — Table of Constants

. C c

Material ae? ch/s) 10’ ch/s) (gfcc)
air 00.343 0.000 0.00
aluminum 06.370 3.120 2.17
aluminum oxide 10.700 6.300 3.92
iron 05.950 3.240 7.70
stainless steel 05.5940 3.106 7.90
water 01.493 0.000 1.00

The curves in Figs. 30 and 31 are made up of the steady state
interference of specular reflection and a single circumferential mode
which makes many circumnavigations of the cylinder before attenuating
into the noise. The above explanation of Figs. 30 and 31 can be
demonstrated analytically by computing the response of the shell to an
incident pulse. The computation is made using Egs. 9 and 12 with the
procedures described earlier. Figure 32 shows the response of an
aluminum shell, with 4/a = 0.99, to an incident acoustic pulse. The
pulse is centered at a dimensionless frequency k,a = 10. The back-
scattered echoes are seen in Fig. 32(a), and the incident wave is seen in
Fig. 32b. The backscattered return is made up of the specular reflec-
tion followed by a series of equally spaced echoes which result from
multiple circumnavigations of a circumferential wave. The ratio of the
circumferential wave group velocity c; to the water wave speed ¢ is
given by

)¢ = %1:— (55)

where Ar is the dimensionless time between successive circumferential
echoes. The result obtained from Egs. 32 and 55 is ¢;/c = 3.7. The
deviations from |f..| = 1 in Figs. 30 and 31 occur when the circumfer-
ence, 2wa, is an integral number of circumferential wavelengths. For
ka values at which 2ra = n\°, where A’ is the wavelength of the cir-
cumferential wave and »n is an integer, the long pulse or steady state
interference of the circumferential waves gives a maximum contribu-
tion, since all add in phase with one another. At these ka values peaks
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Fig. 32 — Computations of the echoes scattered when a short incident pulse

impinges on an aluminum shell with b/a = 0.98. The pulse is centered at k,a =
10. The scattered echoes are seen in (a) the incideat wave in (b).

will occur in the form function if the specular reflection and circum-
ferential waves are in phase and nulls will occur if they are out of
phase. The ka difference, Aka, between the successive fluctuations in
the |f.| vs ka curve are directly related to the circumferential wave
phase velocity ¢, by

¢,/c = Aka (56)

which for Figs. 30 and 31 gives c,/c = 3.7. The nearly constant spac-
ing of the fluctuations Aka = 3.7 indicates a constant or slowly varying
phase velocity, so that the approximation cg' = cp' is valid over the ka
range 0 < ka < 50 seen in Figs. 30 and 31. The phase velocity of the
circumferential wave on an aluminum cylindrical shell with b/a = 0.99,
is obtained from Fig. 31a and Eq. 56 as ¢,/c = 3.7, which is identical to
the group velocity obtained from Fig. 32 and Eq. 55.

The previous paragraphs demonstrated the significance of the Aka
spacing between the deviations in the form function for cylindrical
shells. The direction of the deviations from [f.| = 1 in the form
function curves, as seen in Figs. 30 and 31, is also significant. The
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hypothesis of Tucker and Barnickle [44] was based on the assumption
that a hollow air-filled shell will act as a soft body in that its specular
reflection will be 180° out of phase with an incident wave. This would
then distinguish hollow body echoes from echoes scattered by solid
bodies, which would act rigidly, that is, give a specular return in phase
with the incident wave. In fact, the return from solid bodies whose
density is greater than the density of water and whose shear and
compressional wave speeds are greater than the speed of sound in water
can be described in terms of a rigid background term plus a resonance
term over all ka > 0. Thus, for solid bodies with these elastic proper-
ties, the rigid background portion of the hypothesis of Tucker and Bar-
nickle would be correct. With regard to the "soft" scattering by a hol-
low shell, however, the hypothesis breaks down, as can be determined
form the work described in the previous paragraph. Figures 30 and 31
demonstrate that the ka range over which cylindrical shells will act as a
soft body is a function of frequency. As frequency is increased, the
thickness h of a given shell becomes greater with respect to a
wavelength, and whether a shell acts as a "soft" body (specular
reflection 180° out of phase with the incident wave) or a "rigid" body
(specular reflection in phase with the incident wave) depends both on
the frequency and shell thickness. For example, as was discussed the
fluctuations in [f..] for the shell described in Fig. 31b occur at intervals
Aka = 3.7. The deviations from {f..l| = 1 are, however, not uniform in
direction either in Fig. 31b or in any of the other form function curves
shown in Figs. 30 and 31. Three separate background regions exist.

The shell acts as a soft body over the ka range where the fluctua-
tions in |f,[, at Aka = 3.7, are in the negative direction. Here the
specular and incident wave are 180° out of phase. Recall that the
incident wave and the circumferential wave are in phase (as seen in Fig.
32), and further pulse calculations such as that in Fig. 32 show that
they remain in phase over the ka range from 0.2 < ka < 50. For an
aluminum shell with 6/a = 0.98 the ka region over which the shell acts
as a "soft" body (specular reflection and the incident wave 180° out of
phase) is seen from Fig. 31b to be 0 < ka < 23.

As ka increases, the shell passes through a transition region dur-
ing which a single fluctuation has both positive and negative aspects.
This occurs over the range 23 < ka < 37 for the 0.98 Aluminum shell.
Finally, for ka > 40 the deviations from |f..] = 1 are positive and the
shell is a rigid reflector with respect to its specular reflection. The
extent in ka of the three background regions will vary with thickness
and with material. Later in this section the advent of higher order
modes will be discussed, but it can generally be said that if the product
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of frequency and thickness is large enough to allow more than one cir-
cumferential mode to be excited, the shell has already reached the rigid
background region. Development of the formalism for the resonance
scattering from hollow shells with intermediate background is the sub-
ject of work by Murphy et al. [48].

The generation of a single circumferential wave under the condi-
tions present in the computation of the results seen in Figs. 30 through
32 are consistent with the dispersion curves for Lamb waves on plates.
Figure 33 shows dispersion curves for the first four symmetric and
antisymmetric Lamb [49] waves for aluminum plates. The symmetric
Lamb modes satisfy the frequency equation [46,49,50]

tanh{(mr fr/ V) [(c}— VD/cF1V?)
tanh{(z fh/ V) [(c} — V?)/ cFI}V2
4{{(ct= VB 12 (e}~ VI A1V

57
[2cf— VV)/cf)? 57)
and the antisymmetric mode satisfies the equation
tanh{(w fh/ V) [(c}— V)/cF1VY)
tanh{(z fn/ V) [(c? — V))/c}1VY)
2 _ VZ 212
[(ZCT )/Cr] (58)

T (2= VYA (R = v VY

In Egs. 57 and 58, Vis the Lamb phase velocity. The group velocity of
the Lamb wave, V,, is related to the phase velocity by
1

V,=V |l - . 59

g TG avidGm) (59
It has been demonstrated that Eqs. 57 through 59 describing Lamb
waves on plates in vacuo are not strongly modified when the plate is
immersed in water [46,50,51] and that Lamb waves can be generated
by illuminating a plate in water by an incident pulse [46,50]. Radiation
of the Lamb wave into the water can be observed either with a hydro-
phone [50] or by schlieren visualization [46].

Grigsby and Tajchman [52] gave dimensionless curves for the
phase and group velocities of Lamb waves on a plate whose ratio of
longitudinal to shear speeds is 1.8. Their curves are seen in Fig. 34.
Special attention is directed to the group velocity curves in Fig. 34b,
where all the modes show a flat peak in the group velocity at Ven =
1.8. In Fig. 34 the ordinate ¥, is Lamb phase velocity divided by shear
wave speed i.e. ¥, = V/cr, and the abscissa (fh), is fh/cr. In Fig.
34b the ordinate V,, = V,/cr.
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Dragonette [46] demonstrated that strong generation of a Lamb
mode takes place in the region where the phase velocity curves reach a
flat plateau (at approximately ¥, = 1.8 in Fig. 34a). This plateau
region corresponds to the frequency thickness region where the group
velocity curve for a particular mode reaches a flat maximum (at approx-
imately V,, = 1.8 in Fig. 34b). Dragonette [46] demonstrated further
that this strong generation of a Lamb mode, in the fh region where

phase velocity is approximately equal to the group velocity, persisted as
the plate was curved.

In Fig. 35 the Lamb phase velocity curves describing the first
symmetric and first antisymmetric mode curves for an aluminum plate
are isolated. The ordinate is given in terms of the Lamb phase velocity
V, and also in terms of the angle of incidence @; at which a Lamb wave,
with that phase velocity, can be generated by a plane wave incident
from water onto the plate surface. This angle 8, satisfies the equation

sin@, = c/V, (60)

and a Lamb mode cannot be generated by an acoustic wave incident
from water to the plate unless ¥V > c¢. The frequency thickness vari-
able, fh, which is the abscissa of the Lamb curves seen in Fig. 35 may
be written in terms of ka for a specific cylindrical shell by a simple alge-
braic manipulation:

kh = 2"; L. kall — (b/a)l (61a)
(ka) c(1 — b/a)
Ih o : (61b)

Using Eq. 61b the abscissa, fh, for the flat plate case may be
transformed from fh into ka for shells with various b/a values. Figure
35 shows the abscissa written in equivalent ka values for an aluminum
shell with /@ = 0.98 (see Fig. 31b). The results seen in Fig. 35
predict that the first symmetric mode can be generated at any ka value,
and in fact since the flat plateau in group velocity occurs at the low end
of the frequency thickness or ka scale, this wave should be strongly
generated at low ka. The arrow in Fig. 35 points to the place where V
= ¢ for the first antisymmetric mode. For the shell with b/a = 0.98,
this curve predicts that the antisymmetric mode cannot be excited at ka
values below ka =~ 50. The phase and group velocity of the symmetric
mode is predicted to be ¥/c = 3.7 by the curves in Fig. 35, in excel-
lent agreement with the circumferential wave observed for the cylindri-
cal shell (Fig. 32). The circumferential wave related to the first sym-
metric Lamb mode has died out by ka = 50, as seen in Fig. 31b, and,
as seen above, the results in Fig. 35 predict that the onset of a circum-
ferential wave related to the first antisymmetric mode cannot occur at a
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Fig. 35 — The angle of incidence at which the first symmetric and
antisymmetric Lamb modes may be generated.

value lower than kg = 50. Such a wave would have a lower group

velocity; i.e., oscillations in |f,.| vs ka would occur at closer intervals
than those observed in Fig. 31b. Recall that ¢,/c = Aka.

A plot of [f..| vs ka for an aluminum shell with b/a = 0.98 is
given over the range 50 < ka < 90 in Fig. 36. This is then a continua-
tion of the curve given in Fig. 31b, and it shows the onset of a circum-
ferential wave with the properties related to the first antisymmetric

mode. The oscillation in the form function curve predict a circum-
ferential wave with c,/c = Aka = 1.3.
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Fig. 36 — The form function vs ka over the range 50 € ka € 90
for an sluminum shell with d/a = 0.98.
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In general, then, a circumferential wave related to the first sym-
metric mode should always be generated for a shell of any thickness.
Its influence is restricted to the low ka region over which the phase
velocity has a flat plateau. The location of this region is a function of
thickness, as will be described below. A circumferential wave related to
the first antisymmetric mode can only be generated at ka values higher
than the coincidence frequency ka = (ka)., where ¥ = ¢. Thus the
thicker the shell, the lower the ka value at which this mode can be gen-
erated.

These conclusions should be reflected in the form function curves
for aluminum cylindrical shells of various thicknesses. Differences
from |f..| = 1 should occur at intervals Aka = 3.7 for all thin shells,
and these differences should die out more quickly with ka as thickness
increases, since the plateau region in Fig. 35 corresponds to a smaller
ka range for thicker shells. Differences at Aka = 1.3 should begin to
occur at lower ka values as thickness is increased. Fig. 37 shows the
form function curves for aluminum cylindrical shells with b/a = 0.99,
0.98, 0.96, 0.94, 0.92, 0.90, and 0.85. The above conclusions are
demonstrated by the curves in Fig. 37.

As thickness increases, the antisymmetric mode is seen to occur
at lower ka values. The low velocity circumferential wave observed in
Figs. 27 and 28, and by others [12-15,25-27], is related to the first
antisymmetric Lamb mode for a plate. The ka range over which it is
generated depends on the thickness of the shell. The first symmetric
mode is strongly generated on aluminum plates in the thickness region
where it has a phase and group velocity ratio of ¥/c = 3.7. This is car-
ried over to the shell case, where a circumferential wave having the
properties of the first symmetric mode are observed at low ka on all
thicknesses of shells from 0.85 < b/a € 0.99. Closer spaced oscilla-
tions in |f..| vs ka are also seen to occur at relatively lower ka values as
shell thickness is increased. These oscillations are related to a circum-
ferential wave with c,,'/c = 1.3. If one returns now to the Grigsby-
Tajchman [52] group velocity curves seen in Fig. 34b, the reason for
the association of low frequency, with low velocity and high frequency
with high velocity in the literature becomes apparent. All the higher
order Lamb modes in Fig. 34b are most strongly generated when their
group velocity is V,, = 1.8. This is also the group velocity of the first
symmetric mode at its region of strong excitation. Moreover, the same
is true of all higher order antisymmetric modes (see Fig. 33). Thus the
first symmetric mode and all higher order symmetric and antisymmetric
modes cannot be distinguished from one another by measurement of
group velocity alone, and these waves collectively have been identified
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as the fast circumferential wave. The particular mode generated
depends on the shell thickness and frequency, but, as discussed earlier,
practical considerations generally preclude isolation of the first sym-
metric mode. All of the measurements of a low velocity wave are
related to the first antisymmetric mode, which for thin shells is gen-
erated at a higher frequency than the first symmetric mode but at a
lower frequency than any of the higher order modes. In the empirical
observations of circumferential waves, the wave related to the first
antisymmetric mode is obtained at a frequency which depends on the
thickness (see Fig. 37).

Because of the slow speed of this wave, there is a greater time
difference between successive traversals of the circumferential wave (a
factor of 3 as compared to the faster waves); hence, this mode when
present can be isolated at lower ka values than a mode traveling with a
velocity 3 times higher. Thus in past pulse hydrophone measurements
{12-15,27] low velocity corresponded to low frequency in the experi-
mental observations. As frequency was increased it became possible to
isolate higher velocity modes, all of which were strongly generated with
the same group velocity; hence, high velocity corresponded experimen-
tally to high frequency.

The circumferential wave related to the first symmetric mode is
the only one of the "fast" circumferential waves whose amplitude
approaches the amplitude of the specular reflection, and, while it is not
practical to isolate it experimentally, its contribution to the steady state
pressure or form function at low ka is apparent. As demonstrated in
Fig. 33, it is possible to isolate the first symmetric mode by computa-
tion of the response of a shell to a short incident pulse. The results of
computations similar to those carried out to produce Fig. 33 are given
in Figs. 38 and 39 for various thicknesses shell at various center fre-
quencies. The purpose of these calculations is to demonstrate that the
relative amplitude of the circumferential and specular contributions is a
function of ka. In Figs. 38 the responses of three aluminum shells with
thickness b/a = 0.99, 0.96, and 0.90 are presented. The center dimen-
sionless frequency of the caiculation is k,a = 10. A circumferential
wave related to the first symmetric mode is seen in Fig. 38a (4/a =
0.99) and Fig. 380 (#/a = 0.96). The measured attenuation in these
two cases is 0.50 Np/revolution (Fig. 38b) and 0.43 Np/revolution
(Fig. 38a). In Fig. 38c the first antisymmetric mode is generated simul-
taneously with the symmetric mode. This figure demonstrates that the
antisymmetric mode is in fact generated at lower frequency as thickness
is increased, as predicted in the discussion of Fig. 37. It also shows that
at the same k,q the attenuation of the symmetric mode increases with

:
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Fig. 38(c) — Computation of the echoes scattered by an aluminum shell at
k,a = 10; the shell thickness is b/a = 0.90.

increasing thickness, and finally it demonstrates that the large oscilia-
tions in |f.(w)| which appear with increasing thickness in Fig. 37 are
due to the larger magnitude with which the antisymmetric mode is gen-
erated. The attenuation of the antisymmetric mode in Fig. 38c is 1.0
Np/revolution, which is much larger then that of the symmetric mode,
but the magnitude of the first-antisymmetric-mode-echo is more than 6
dB larger than that of the first-symmetric-mode-echo.

The responses of an iron shell with /a = 0.99 at k,a values of
11 and 20 are seen in Figs. 39(a) and 39(b) respectively. Here the
attenuation is 0.46 Np/revolution at k,a = 11 and 0.23 Np/revolution
at k,a = 20. Thus the attenuation decreases with higher frequency, an
observation similar to that of Horton and Mechler {15], who observed
this phenomenon at ka = 30 for the wave identified here as the
antisymmetric wave.

As may be observed in Fig. 38c, a determination of the attenua-
tion of a particular circumferential wave is not necessarily a measure of
its relative importance to the total scattered field. If the ratio of the




114 CHAPTER 4

[=]
0
T
i
o
(<)
T
1

(<]
T
1
o
T
n

NORMALIZED AMPLITUDE
(=]
=
A

il 1 1 1 -1t ! 1

i | A N SR U W
2 1 0 1 3 4 5 -1t 01 2 3 4 5

ok

2
Fig. 39(a) — Computation of the Fig. 39(b) — Computation of the
echoes scattered by an iron shell with echoes scattered by an iron shell with
b/a = 0.99 at a k,a value of 11. b/a = 0.99 a ta k,a value of 20.

amplitude of the first circumferential echo, p,, to the specular echo,
Dspec» is taken from Figs. 39(a) and 39(b), the result obtained is
P/ Pspec = 0.2 at k,a = 11 and py/pgpe. = 0.1 at k,a = 20. These ratios
show that a particular circumferential wave is more strongly generated
and gives a larger contribution to the steady state scattering at low &a,
as was observed in Figs. 30, 31, and 37. The ratio p,/ Pspec is directly
related to the relative contribution or importance of the wave to the
steady state solution. Figure 40 shows a plot of p,/ps,,ec for various
thicknesses of stainless steel shells as a function of ka. The points were
obtained from pulse computations such as those in Figs. 38-39. In gen-
eral for shells with 5/a < 0.99 the circumferential wave related to the
first symmetric mode has a backscattered amplitude more than 20 dB
down from specular for ka > 20.
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Fig. 40 — The ratio (p,/pypec) vs ka for stainless steel shells
of thicknesses (a) 0.99 (b) 0.98 (c) 0.95 (d) 0.90.
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For higher order modes generated above ka = 20, the ratio
P/ Pspec is more than 20 dB down from specular. This is consistent with
the observations made here of a "fast" circumferential wave (Figs. 23,
25, 26), where p, is greater than 30 dB below specular, and with all
reported observations in the literature [12-15,261.

The circumferential wave related to the fundamental antisym-
metric mode also has its largest influence on |/ at low ka. It can,
however, be generated only at low ka for thick shells. The general
observation in the literature that the "slow” circumferential wave is
more strongly generated in thicker shells, is simply because of the
results discussed in connection with Fig. 37, namely that as shells
become thicker, it is possible to excite the first antisymmetric mode at
lower ka.

The results considered here were for thin shells. Figures 33 and
34 show that as f» becomes larger, all the Lamb modes tend toward a
final velocity ¥V = 2.0c. Since the phase velocity curves again level off
for large fh, the Lamb modes are again strongly excited. Each higher
order mode is first strongly excited at ¥/c¢ = 3.7 and then in the limit
of a thick shell at ¥/c = 2.0. Therefore it should be possible to find
an intermediate frequency range at which a Lamb type mode is gen-
erated with V/c = 3.7 simultaneously with a lower order mode which
has reached its high frequency limit ¥/c¢ = 2.0. Such a situation is
seen in Fig. 41. Here a schlieren visualization is made at an /4 value
of 11.2. The target is a 3.4-cm-diameter-aluminum cylinder with b/a
= (0.9. This corresponds to ka = 476 and kb = 47.6. Simultaneous
observation of circumferential waves with c;/c = 3.7 and ¢;/c = 2.0
are seen. Figures 37 and 41 explain what has been referred to in the
literature [12] as rare occurrences when slow and fast circumferential
waves are observed simultaneously.

CONCLUSION

The steady state acoustic response of infinitely long solid elastic
cylinders and cylindrical shells can be exactly computed in terms of a
normal mode series. For rigid cylinders the backscattered form func-
tion can be described in terms of the interference of a specularly
reflected wave and a Franz-type circumferential wave whose speed and
attenuation are related to the peaks and nulls in the form function.
Solid metal cylinders in water exhibit this purely rigid behavior in the
low ka region, after which region the form function is dominated by
minima related to resonances in the individual normal modes. For
cylinders made of metals whose shear and compressional wave speeds
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Fig. 41 — Schlieren visulization of circumferential
waves generated on an aluminum shell, with b/a =
0.9 at k,a = 476.

are greater than the wave speed of sound in water, the first resonance
minimum observed is the (2,1) resonance. This occurs at ka = 4.78
for aluminum, and the ka value at which it occurs for other metals can
be computed using aluminum as a reference.

The normal mode resonances are related to circumferential waves
predicted by creeping wave theory. A mode resonates when its modal
velocity is matched by the velocity of a circumferential wave. A single
circumferential wave generates a given eigenfrequency in successive
modes. The (n, 1) resonances are related to the Rayleigh wave, and
the (2,1), (3,1), and (4,1) modes are generated at ka values at which
the cylinder circumference is 2, 3, or 4 Rayleigh wavelengths. Similarly
the (n, 2) resonances are related to the R, type whispering gallery
mode and so on. The predominant circumferential waves in a given ka
region can be predicted from the dominant resonance minima in
If ()l The "Rayleigh” wave was experimentally observed on alumi-
num in the predicted region.
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The region of oscillations in |f,, ()| which begins at the position
of the (2,1) resonance persists as k@ — oo; however, in reality a fre-
quency will be reached after which absorption must be included in the
theory. In the resonance region (ka > 4.78 for aluminum) the scatter-
ing from the cylinder is made up of a rigid background part, on which
the numerous resonances are superimposed. The resonance formalism
of nuclear reaction theory is used to separate the exact normal mode
series solution into rigid background and resonance terms, and reso-
nance widths can be calculated.

For a thin cylindrical shell, the Franz wave does not measurably
affect |f.. ()] even at low ka. This is consistent with soft rather than
rigid scattering behavior, and it is demonstrated that as ka increases
thin shells pass through three background regions. In the soft-
background region at low ka the specular reflection is 180° out of phase
with an incident pulse. This is followed by a region of intermediate
background, and then a rigid-background region at which the specular
and incident pulses are in phase and remain in phase as ka is further
increased. Circumferential waves are isolated theoretically by applying
fast Fourier transform techniques to the Fourier integral representing
the echoes scattered, when a short acoustic pulse is incident on a shell.
The relationship between the observed circumferential waves and the
steady state form function shows that, for thin shells, the number of
circumferential waves present, their velocity, and their relative
significance can be obtained directly from the form function.

Lamb theory for plates is utilized to predict the ka range of possi-
ble excitation of specific circumferential waves. A circumferential wave
related to the first symmetric mode is generated for ka > 0, for all thin
shells. A circumferential wave related to the first antisymmetric mode
is generated at ka values which vary with thickness in a predictable way.
As shell thickness is increased, circumferential waves related to all high
order Lamb modes are strongly generated with the same group velocity.
This accounts for observations reported previously in the literature and
thought to be the observation of a single circumferential wave.
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Appendix A
LIST OF SYMBOLS

a the radius of the target

a; matrix elements defined in Ref. 32

A the vector potential

b the inner radius of a cylindrical shell

B, a coefficient in Eq. 50b

¢ the velocity of sound in water

cf the phase velocity of the Franz wave

cf the group velocity of the Franz wave

¢, (ka) the modal phase velocity for the »* normal mode

cé(ka) the modal group velocity for the n” normal mode

¢ (ka) the phase velocity of the I R-type circumferential wave

cf(ka) the group velocity of the /" R-type circumferential wave

Cr the phase velocity of the Rayleigh or R, circumferential

cR the group velocity of the Rayleigh or R, circumferential
wave

oL the longitudinal wave velocity in a material

cr the shear wave velocity in a material

c,,' the phase velocity of a circumferential wave in a
cylindrical shell

cg' the group velocity of a circumferential wave in a
cylindrical shell

C, a coeflicient in Eq. 50a

d distance

DV(ka) - A 2-by-2 matrix defined in Eq. la

DP(ka) - A 2-by-2 matrix defined in Eq. la

S the far field form function

R the far field form function for a rigid cylinder

A the n™ partial wave or n” modal contribution to the form
function

S frequency

o the center frequency of an incident pulse

Jh the frequency thickness product

(/h), the dimensionless frequency thickness parameter,

BT T W AR T S

(Uh)y = fhlcr

g AN e e s e~ R T o SEETTIEREEE e

A -




122

8 (ka)
8 (ka)
G,(Z)
GX2z)
H,(2)
H?Y(2)
H,(Z)
H?(Z)

I(2Z)
J(2Z)

CHAPTER 4

the spectrum of an incident pulse

the spectrum of a scattered echo

defined in Eq. 3

the expression to which G,(Z) reduces when the target is
a rigid cylinder

the thickness of a cylindrical shell

the Hankel function of the first kind (order n,
argument Z)

the Hankel function of the second kind (order n,
argument 2)

the derivative of the Hankel function of the first kind
with respect to its argument

the derivative of the Hankel function of the second kind
with respect to its argument

the Bessel function (order n, argument Z)

the derivative of the Bessel function with respect to
its argument

the wavenumber in water given by k = 2x/A

the longitudinal wavenumber in a material

the shear wavenumber in a material

the dimensionless frequency variable, ka = 2mwa/A

the center dimensionless frequency of a pulse in water

the ka value at which a peak in | f..| occurs

an integer, / = 1, 2, ..., used to number the
eigenfrequencies of a given mode

defined in Eq. (1a)

an integer, n = |, 2, ..., used to number the normal modes

an incident acoustic pulse

the incident plane-wave amplitude

the pressure amplitude of the first backscattered
circumferential echo

the steady state scattered acoustic pressure
at the bistatic angle 6

the pressure amplitude of the specular reflection

the zeroes of the first derivatives of the Airy
function

defined in Eq. 54

the range or distance between the scatterer and the
field point

the /" order Rayleigh-type circumferential wave

defined in Eq. 40

the elastic scattering function defined by S, = exp (2i 8,)

the rigid body scattering function defined as
SM =exp (2i¢,)
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t time
u the particle displacement
v the phase velocity of a Lamb wave
Ve the group velocity of a Lamb wave
v, dimensionless Lamb phase velocity given by V, = V/cT
Ven dimensionless Lamb group velocity givey by V,, = V,/cr
Y, (Z) the Neumann function (argument Z, order n)
Y, (Z) the derivative of the Neumann function with respect to
its argument
V4 short-hand form for the dimensionless frequency variable
Z= ka
Zz, the dimensionless frequency at a resonance, Z = (ka),
Zooie the Z value at which a resonance pole in the scattering
function S, occurs
Ziero the Z value at which a resonance zero in the scattering
function S, occurs
2| defined in Eq. 37a
‘ 2 defined in Eq. 37b
1 af the attenuation coefficient for the Franz wave
ag the attenuation coefficient for the Rayleigh or R,
, circumferential wave
1 ag the dimensionless attenuation coefficient for the R,
circumferential wave
at the attenuation coefficient for a circumferential wave in
a shell
B, coefficient i1 the Taylor series expansion (Eq. 42b)
r, the width of a resonance, given by I', = —2s,/8,
5, scattering phase shift for the elastic scattering function
Ad change in distance
# Aka change in ka
At change in time
AT change in the dimensionless time parameter
An defined in Eq. 39
€, the Neumann factore, =2, n = 0. ¢, =1, n > 0
('] the polar angle
8, the incidence of angle of a plane wave
A the wavelength of sound in water
Ag the wavelength of the Rayleigh wave on a flat
surface
! A" the wavelength of a circumferential wave
v a complex variable
$n the phase shifts for the rigid scattering function
p the density of water

the density of the target material
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g €9

. . . ct—a
the dimensionless time parameter 7 =
the azimuthal angle

a scalar potential

the angular frequency, w = 2w f

CHAPTER 4
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Chapter §
LAYERED ELASTIC ABSORPTIVE CYLINDERS*

INTRODUCTION

This scattering of sound by elastic hollow cylinders has been dis-
cussed by several authors [1-4]. In these papers, and in others men-
tioned in their references, the absorption of acoustic energy in the shell
was assumed negligible. Although this assumption is valid in many
cases, it is not, for certain cylindrical shells composed of nonmetallic
materials. This was demonstrated (5] for spheres by showing the solu-
tion to be altered significantly when absorption was present. Excellent
agreement between experiment and theory was obtained for that case
only after absorption was accounted for. Acoustic reflection from two-
layered cylindrical shells is formulated in which either layer of the shell
may absorb wave energy, and different media may be assumed to be
inside and outside the shell.

A mathematical model is developed to predict the scattering of a
plane acoustic wave from a two-layered absorptive cylindrical shell with
different fluid media inside and outside. Either layer or the shell may
absorb wave energy. The hollow space within the cylinder is assumed
to be occupied by a fluid or a vacuum. Solutions to the elastic prob-
lems considered here are constructed using scalar and vector potentials.
The resulting equations are solved in terms of Bessel functions of com-
plex argument. Matrix methods are used throughout.

DESCRIPTION OF PROBLEM

Figure 1 shows the cylindrical coordinate orientation and the
direction of a plane wave incident on an infinitely long cylindrical shell
in a fluid medium. The two-solid-elastic-absorptive layers are denoted
by 1 and 2. The axis of the cylindrical shell is taken to be the zaxis of
the cylindrical coordinate system (r, ¢, 2). There is a plane sound

*These resuits first appeared in: Lawrence Flax and Werner G. Neubauer, J. Acoust.
Soc. Am. 61, 307-312 (1977).

125

SSPYY




126 CHAPTER §

AIDENT
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’ ~ FLUID 2
Fig. | ~ Geometry used for formulating the sound scattering

from an infinite circular two-layered cylindrical shell.

wave of circular frequency w incident along the negative x-axis. The
fluid (2) inside the shell has a density of p, and wave propagation
speed ¢,. In general, the outer fluid (1) will be different and is
described by parameters p and c,,.

In an effort 10 facilitate comparison with previous single-layered
computations, it is convenient to define cylinder parameters which
represent thickness ratios, b/a and c¢/a. The radius of the inner core is
b, ais the radius to the outside of layer 2, and c is the outside radius.

MATHEMATICAL ANALYSIS

The two fluids outside and inside the shell are labeled by w and £,
respectively. The two layers are described by the densities
p,(i=1, 2), and longitudinal and shear speeds V;, and Vs, which are
complex.

In the outside fluid medium, the excess acoustic pressure is the
sum of the incident plane wave

o0

P= Py ;)c,,(-— " J, (kr) cos (nd), (1a)
and a scattered (outgoing) wave

P, = Do § €,C,H? (kr) cos (nd). (1b)
-

The incident pressure amplitude is py, €, is the Neumann factor, k =

w/c, H? = J, - 'YT' where J, and Y, are Bessel functions of the first

and second kind, H,? are Hankel functions, and C, are the scattering
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coefficients. Throughout, the time dependence (e™'*) has been
suppressed.

The solution for the scalar and vector potentials in layer 1 are

® = p, ie, " (4,J,Ckp r) + B, Y, (ky )] cos (ng),  (2a)

A, = py 2‘5 €, " (DJ, (k1) + E, Y, (ks r)] sin (n¢), (2b)

n-
and in layer 2

¥ = pg i €, " (G Iy kpar) + K, Y, (ko)) cos (ne), (3a)

n=0
B, = po i €, i " 1,J, (ksar) + L, Y,(ksyr)] sin (n¢).  (3b)

n=0

In the core, one has again a compressional wave,

Pr= Do i €, i7" M,J,(k;r) cos (nd). 4)

n=0

Since the core contains the origin, the solution must be regular at
r = 0. Thus, the coefficients associated with Y, (k.r) must be zero.

At the outside boundary of the shell r = ¢, the displacements and
normal stresses must be continuous and the tangential stresses must be
zero. Four boundary conditions are prescribed at the interface between
the outer layer and inner layer r = a:

(i) Radial displacements are continuous.

(ii) Tangential displacements are continuous.

(iii) Radial stresses of adjoining material are equal.
(iv) Tangential stresses of adjoining material are equal.

Finally, three conditions are established between the inner layer
and the internal fluid r = 4 These are similar to the conditions present

atr = ¢

The coefficients C, are determined from the boundary conditions
and are of the form
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J (2L, - Z JP(2)
H™NZ)L, — ZH® (Z)
where the primes denote the derivative with respect to the argument

Z = kc. The functions L, are given by a division of two ninth-order
determinants of the form

(5)

G

wtd
1 n

where

ay apaypay0 0 0 O
azyapaszayd0 0 0 0
Q4] Q4) Q43 Qa4 Qg5 Qg Q47 dag
Gsy A5y As3 Q54 Ass  Asq ds7  dsg
P, = | aq) ag; ag3 Gg4 ags ass ag7  QAgs

SO O QO O O

an 472 @73 Q74 Q15 Q7 A7 agg
0 0 ags ag ag ag ag

0 0
0 0 0 O dgs Qg9 Q97 AQogg 0

0 0 0 0 aysanea0,7 9103 3109
and

apapazasd® 0 0 0
a3 a3 a3z az azs 0 0 0
Qa1 A4y Qg3 G4q Qg5 Q46 Qg7 A4
as) dsy As3 Asq Ass  Gse A5y Asg
Q. = | a¢1 Q62 Qg3 A6 Ags  Tes g7 Agg
a1 @13 @13 A Ays Ay Ay Ay
0 0 0 0 ags ag ag; ag Ay

(=T = B = R e B I =)

OOOOags Ags Qg7 0930

0 0 0 0 a5 4106 10,7 310,38 D109

The elements of the determinants are given in the Appendix.
The arguments of the function appearing in these expressions are deter-
mined from the following relationships:
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r=c
Zy = kpic — iBrikuie Zg = ksic — iBsiksic;
r=a,
= kpa = iBrikpia, & = ks1a — iBsiksia,
qL = kpaa ~ iBrakira, gs = ks2a — iBsaiksaa;
r=25
up = kpyb ~ iBrakpab, us = kgb — iBsaksab, M
where 8's are absorption factors given in Np.
In addition, ratios of complex wave numbers appear in some of
the matrix elements and are given by
G\ = Z}/(Z¢ - 2ZD), Gy = ¢}/ (¢ — 24D),
Gy = u/(ud — 2up), U= (o/p)Z¢ 1. (8)

As a result of using complex wave numbers in the theory, the ele-
ments of the determinant defining L, contain Bessel functions with
complex arguments. Techniques [6] for calculating these functions are
available.

The scattered pressure is obtained using Eqs. (1b), (5), and (6).

= (2L, — Z J(2Z)] H2(Z)
B=Po X | gL - ZHP(2)

] cos (ng). (9)

For large distances from the reflector, the asymptotic expressions
for the H®(Z) can be used. For monostatic reflection ¢ = , making
cos(nm) = (— 1)" and the scattered pressure becomes

12 w J(Z)L,~Z,(Z)
py= o LN Lo 1| 2| (o)
(n2) - H“(Z)L,- ZHY (Z)
This may be rewritten as
P = po(2c/ V21 (2). (1)

From these results it is possible to consider several limiting cases.
If L, — 0, the solution would apply to scattering by a rigid cylinder. If
L, — oo, the solution for a soft cylinder is obtained. The single layered
fluid filled shell scattering coefficients are obtained if ¢/a = 1.00. The

PR s - i~ -t - ®ra
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solid cylinder scattering coefficients are found by first taking c¢/a = 1.00
and letting b/a approach zero. One must make sure to take the limits
of Y,(Z,) and Y,(Zg) each going to 0. The limiting process must be
used since simply setting Z; = Zs = 0 gives 0 in both numerator and
denominator of L,.

CALCULATED RESULTS AND CONCLUSIONS

The calculations were performed for two-layered hollow (vacuum
in the core) cylindrical shells in water. The layers consisted of Lucite
(outer), an absorptive material, and iron (inner) considered to be loss-
less. Physical parameters for the materials assumed in the calculations
are given in Table 1. Absorption is included in the theory by using
complex wave numbers. Absorption factors expressed in Np were
derived from Ref. 7 where they are given in dB.

Table 1 — Material properties

p X100V, x 100 Vs x 10°

(kg/m?) (m/sec) (m/sec) B, (Np) B (Np)
Iron 7.700 5.950 3.240 <o .-
Lucite 1.180 2.680 1.380 0.00340 0.00531
Water 0.998 1.4824 . s S

“Referred to as c,, in the text.

Figures 2-8 show the computation of |f.(ka)|, called
MODULUS in the plots, for various shells. Computation for shells of
three thicknesses (b/a = 0.99, 0.97, and 0.95) without an outer cover-
ing (c/a = 1.00) is shown in Figs. 2(a)-2(c), respectively. The func-
tions were computed for intervals of ka of 0.05. Cases of shells having
iron inner layers of the same thicknesses as the above-mentioned
single-layer shells but with a thin Lucite covering layer (c/a = 1.01)
are shown in Fig. 3(a)-3(c), and with a thicker Lucite covering layer
(c/a = 1.10") are shown in Fig. 4(a)-4(c). In all plots the abscissa is ka
where k = 27r/X and A is the wavelength of sound in water. In all
cases as the iron thickness is increased, the curves exhibit similar
behavior at low ka (ka < 5). The first dip becomes less pronounced
and moves to a higher ka. Comparing i igs. 2(a) and 3(a), Figs. 2(b)
and 3(b), or Figs. 2(c) and 3(c) would lead one to predict a decrease in
variation of the modulus as ka is increased. This is however, fallacious.
It can be noted that with a thicker Lucite outer layer, even for the case
of the thinnest shell whose reflection was computed [¢/a = 1.10 and
b/a = 0.99, Fig. 4(a)], the modulus variation increased at higher




[ -

LAYERED CYLINDERS 131

g'L —~N

MODULUS

Fig. 2 — Theoretical calculations of the monostatic reflection expressed as MODULUS
(If.]) from a two-layered hollow cylindrical shell with vacuum inside (a) c/a = 1.00,
b/a = 0.99; (b) ¢/a ~ 1.00, b/a = 0.97; and (¢c) c¢/a = 1.00, b/a = 0.95.

(a)

%' /\/\f—\/-\/
e e
%o

2
(b)
a‘r/_\/—\/—-v
0 —————
ke
2r
©
E‘TW
oo 3 & 1 — (k3 A|5

he
Fig. 3 — Theoretical calculation of the monostatic reflection expressed as MODULUS
(11D from a two-layered hollow cylindricat shell with vacuum inside (a) c¢/a = 1.01,
bfa =099, (b) ¢/a = 1.01, b/a = 0.97; and (¢) c/a = 1.01, b/a = 0.95.
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MODULUS

MODULUS

MODULUS

"~

(a)

?

o 3 1] 9 12 ]
ke

Fig. 4 — Theoretical calculation of the monostatic reflection expressed as MODULUS
(I f!) from a two-layered hollow cylindrical shell with vacuum inside (a) ¢/a = 1.10,
b/a=09% (b) c/a = 1.10, /a = 0.97: and (<) c/a = 1.10, b/a = 0.95.

MODULUS

0 " A i " A " n i " "

3 6 ? 2 (-]
ke

Fig. 5 — Delineation of three regions for the calculation of the reflection from a two-
layered hollow cylindrical shell with a vacuum inside (¢/a = 1.01, b/a = 0.93).

i 1 2 " " " " i 5
[ 3 . 9 2 18
ka

Fig. 6 — Theoretical calculation of the monostatic reflection from a hollow cylindrical
Lucite shell with a vacuum inside (c/a = 1.10, b/a = 1.00).
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A i —_— i " 4
°0 3 [ 9 12 -]
ke

Fig. 7 — Theoretical calculation of the monostatic reflection from a hollow cylindrical
iron shell with a vacuum inside (¢/a = 1.10, b/a = 0.90).

. a . N 4 A
o 3 [ L] ” 8
o

Fig. 8 — Reflection by a solid Lucite cylinder.

ka (ka > 12) in the same range where only a small variation was
observed for a thinner Lucite covering [c/a = 1.01, Fig. 3(a)]. For a
thick outer Lucite layer (layer 1 in Fig. 1), increased variation of the
modulus resulted [Figs. 3(b) and 3(c)] over the same range of the ka
values (12 < ka < 15) for which little variation occurred for an outer
layer only one tenth as thick [Figs. 3(b) and 3(c)].

For many cases we can delineate three regions of the function
| fw(ka)|. Figure 5 illustrates these regions Region I is characterized
by a fairly regular slow variation with ka. Region Il is an irregular or
mixed region. Region Il tends to be regular or periodic and varying
faster with ka than region I. These regions appear to be bounded
within a certain ka range that can be identified in many cases. Varying
the thickness ratios or complex moduli will change the ka delineation
of these regions and in some cases can eliminate one or more of the
regions.

By taking the dppropriate limits in the matrix equations, these
solutions reduce to the single-layered shell or solid cylinder case. The
plot in Fig. 6 shows |f.(ka)l for a Lucite shell without any other
material layer computed by taking #/a = 1.00 and ¢/a = 1.10. Simi-
larly, a simple iron shell of the same thickness is considered by taking
b/a = 0.90 and ¢/a = 1.00. The resulting computation is shown in
Fig. 7. Allowing b/a — 0 and c¢/a = 1.00, a solid cylinder case is
approached. Figure 8 shows the computations for a solid Lucite
cylinder.
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APPENDIX: MATRIX ELEMENTS
The following are the expressions for the elements of the deter-
minants appearing in Eqs. (5)-(11) in the text.
ay = J,(Z,) = 2GJ, (Z)V (1 + 2G),
ap = 1Y,(Z;) = 2G, Y, (Z)V/ (1 + 2G)),
a3 =—2nlZ,J0(Z) - 1,(Z))/ Z2,
ay=—2nlZ,Y(2Z,) - Y,(2))/ 22,
an = 2,4,(Z,),
ap=2,Y.(Z,),
ay; = nJ,(Zg),
ay,s = nY,(Zs),
ay = 2nlz,0,(Z,) — J,(Z)],
ay = 2n(Z, Y. (Z,) - Y,(Z)],
ay = (ZPU, (Zs) + nJ (Z5) — ZgI(Zs),
a3 = (Z)Y, (Zs) + n*Y,(Zg) — Zs Y. (Zs),
ay = U, (1) = 2G,J, )V A + 2G)),
agy = [7,(1) - 2G,Y, (1)) (1 + 2G)),
ag = 2nltJ,(t) — J, )V &8,
Qg =~ 2nlt,Y,(t) = Y, (tx))/ 82,
ass = (pofpy) U, (q) — 2G,yJ, (g )/ (1 + 2Gy),
as = (pofpy) U, (q) = 2G, ¥, (g )}/ (1 + 2G)),
ag == 2n(py/py) lgsJ,(as) — J,(q5)V/ gd,
asg = — 2n(ps/p)) las¥,(q5) — Y,(q5))/qd,
as; = tLJ,;(rL),
as;= 1 ¥, (1),
Ss3 = nd,(15),
Ss¢ = nY,(15),
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ass = qula(qp).

ase = q. Y. (qu),

asy = nJ,(qs).

asg = nY,(qs),

ag = 2nly (1) = J, (1)),

ag = 2nlt, Y, () = Y, (e)],

ags = (134, (1) + n2J,(t5) — t5J, (15)],
age = (1Y, (55) + n?Y,(15) — 15, (15)],
ags = 2UnlquJ,(q) — J,(q;)],

ag = 2Unlq, Y, (q) — Y. (q.)],

agr = 2UlqdJ, (g5) + n?J,(qs) — asJ. (g5)],
as = 2U1qY, (qs) + n?Y,(gs) — g5V, (g5,
an = ny(y),

an=n¥y(y),

an = t5J,(t),

arn= 1Y, (1),

a;s=nt(q.),

a;= nY,(q,),

an= qSJn’(qS)'

a3 = gs Y;(‘ls):

ags = [J,(u) — 2GyJ, (u)V/(1 + 2G)),
ag = (¥, (u) = 2G, Y, (u)l/(1 + 2G,),
ags = — 2n(ugJ, (us) — J, (us))/ud.

agg = — 2nl(us ¥, (ug) ~ Y, (us))/ ud,

agg = — J,(u)/p,,

ags = 2n[(uJ, (uy) — J,(u)],

age = 2n[(u, Y, (u) — ¥, (u)],

agy = ~ ugd, (us) + n2J,(ug) + udJ, (ug),

agg = — usY,(us) + n¥,(ug) + ud¥, (ug),
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a5 = ugdy(uy),
ae=u Y, (u),
a0 7= nt,(ug),
ay g = nY,(us),

aj09™= u.l,,'(u),

The argument of the functions are given in Eq. (7) and, as usual, the
prime denotes derivative with respect to the argument.
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Chapter 6
NONABSORBING AND ABSORBING CYLINDERS*

INTRODUCTION

The scattering of a plane sound wave by an infinite elastic cylinder
has been examined by several investigators {1-3]. In those papers, the
absorption of acoustic energy in the cylinder is assumed negligible.
Although this assumption is undoubtedly valid in many real situations,
there are, however, cases where absorption plays an important role.
Here an infinitely long cylinder is considered analytically that is com-
posed of a material in which wave absorption may be ignored and also a
material in which both longitudinal and shear waves are significantly
attenuated by absorption.

The material of the cylinder is assumed to be solid and isotropic,
supporting compressional and shear waves with speeds ¢, and cg,
respectively, and immersed in a fluid of sound speed c,.

The pressure p, reflected by a cylinder is given by Eq. (9) of
Chapter 5 [4].

ad Jo(ka) L, — kal,(ka) H'? (kr)

b= Po ,,;0 € H®(ka)L, — kaH? (ka)

where p, is the incident acoustic pressure, J, and H\? are the Bessel

function of the first kind and a Hankel function of the second kind,

respectively, and €, is the Neumann factor. Primes indicate a deriva-

tive with respect to the argument. The polar coordinates of the field

point are r and 8, aq is the cylinder radius and k is the incident wave

number. Equation (1) can be specialized to the farfield by substituting

an asymptotic form for H ¥ (kr) for large kr. The farfield form func-
tion magnitude is then

|Fo(ka, 8)]

cos (n@), (1)

7 = J,(ka) L, ~ kaJ,(ka)
- — € -
(wka)"/? § " H?(ka)L, — kaH? (ka)
where the L, are defined by Eq. (6) of Chapter 5.

cos (n@),

*These results first appeared in: Luise S. Schuetz and Werner G. Neubauer, J. Acoust.
Soc. Am., 62, 513-517 (1977)
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Absorption has been included, by introducing complex shear and
compressional wave numbers in the solid as

k, = k(C[/Cs)(l - I'Bs). and kL = k(C//CL)(l - IBL)-

The B’s are absorption factors, with the dimensions of Np, derived
from the measurements of Hartmann and Jarzynski, (5] who reported
their measurements as absorption coefficients expressed as a;A; and
aghs in dB. Conversion between these factors is accomplished accord-
ing to the relations

BL= a,_)«,_/401r log e and B, = asks/40ﬂ' log e.
The nonabsorptive case is given by 85 = 8; = 0.

The chief difficulty in this solution lies in the evaluation. Unex-
pected difficulties are encountered in calculating the Bessel functions
over the required wide range of complex arguments [6). Comparisons
were made with experimental monostatic and bistatic form functions
measured using lucite (absorbing) and aluminum (essentially nonab-
sorbing) cylinders.

EXPERIMENTS

The theory is two-dimensional, i.e., an infinite cylinder is
assumed which, of course, can not be realized in a real so-called free
field. However, reasonable agreement between two-dimensional theory
and experiments was shown in Chapter 4 using finite metallic cylinders
if reasonable care is exercised in performing the experiments. Plane-
wave incidence demanded by the theoretical solution was approximated
using directional sources. Schlieren photographs were taken to allow a
preliminary examination of the entire acoustic field. Figure 1 shows
the dark-field schlieren observation for an aluminum cylinder, with the
magnitude of the theoretical bistatic form function, |f (ka, 8)|, super-
imposed. The cylinder is seen end-on as a dark disk in the center and
the source is visible as a black rectangular area at the top of the picture.
A long incident pulse was used, and the photograph is taken at the
instant when the pulse is just leaving the cylinder. The theoretical
curve in the forward-scatter direction is not shown, since the theoretical
results do nor include the incident field.

This photograph indicates good agreement between theory and
experiment at a distance of two or three diameters from the scatterer,
implying that the cylinder is placed in the plane-wave field of the
source.

PO
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Fig. 1 — Schlieren photograph of the field scattered by a alumi-
num cylinder (ka = 24 58) with the calculated bistatic form
function superimposed

A water-tank facility similar to the one described by Neubauer [7]
was used for the quantitative experiments. Cylinders with a large ratio
of length to radius were insonified using directional sources. Conven-
tional piezoelectric transducers with square or circular active areas were
used. In fact, some of the results at 200 kHz were obtained using a
"fish-finder” source available at boating equipment stores for little cost.

In Fig. 1, the cylinder was placed in the nearfield, i.e., in the
plane-wave field, of the source. This was impossible in the quantitative
experiments. Instead the cylinder was placed at a large enough distance
so that the center of the main lobe was a sufficient approximation to a
plane wave. Figure 2 shows typical beam patterns of sources that were
used. Their use resulted in an incident field which was approximately
plane over a section of the cylinder between 2.5 and 5 cm in length.

Transducers were suspended in the water from two movable
tracks. One of these held the source, on the other the receiver was
mounted from a rotating arm, with the cylinder suspended at its axis of
rotation. Source-to-cylinder distances ranged from 15 to 30 cylinder
diameters. A fine nichrome wire mounted in the upper end cap was
used to hang the cylinder.

. - - e o e e e v ——
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RELATIVE PRESSURE AMPLITUDE
»

4° 8° 12° 16°
ANGLE

Fig 2 — Typical measured beam patterns of
sources used in Quantitative experiments

The incident field was pulsed to reduce interfering reflections.
The steady-state results were in some cases derived from the pulsed
data by Fourier transforming short-pulse returns [8]; in others they
were measured directly by approximating the steady state by a very long
pulse. A repeated harmonic pulse was generated by gating the output
of a synthesizer. A counter operating from the signal frequency was
used to trigger the gate, and the same trigger, with a delay, initiated
display of the received pulse. The resulting return was stable enough to
permit signal averaging over long periods of time.

None of the foliowing data are absolute. All are normalized in
such a way that the averages of the theoretical and empirical curves are
equal.

NONABSORBING CYLINDERS

The facility permitted the taking of bistatic data in the backscatter
half-space. Figures 3-6 are plots of the scattering form function versus
scattering angle at various ka, for cylinders composed of 6061 alumi-
num. Data are taken using cylinders ranging in diameter from 0.90 10
2.54 cm with acoustic frequencies of from 0.2 to 1.2 MHz. Previous
work using aluminum spheres [8] at similar frequencies gave good
agreement between theory and experiment when the theory neglected
absorption. Therefore, it is reasonable to assume that at these frequen-
cies aluminum is virtually nonabsorbing. For the theoretical curves
shown here that assumption is made. The theoretical curves are calcu-
lated taking the longitudinal and shear wave speeds of 6370 and 3120
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Fig. 3 ~ Bistatic form func-
tion of a 6061 aluminum
cylinder, ka = 1083, Cf =
1473.39 m/sec. Theory —:
experiment, .
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Fig. 4 — Bistatic form func-
tion of a 606! aluminum
cylinder, ka = 2272, ;-
1470.00 m/sec. Theary, ——
experiment, ®.
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Fig. 6 — Bistatic form func-
tion of a 6061 aluminum
cylinder, ka = 3131, ¢ =
1468.96 m/sec. Theory, ——;
experiment 1, x; experiment
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Fig. 5 — Bistatic form func-
tion of a 6061 aluminum
cylinder, ka = 2341, ¢ =
1477.65 m/sec. Theory, ~—:
experiment, @,
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m/sec, respectively. These wave speeds are believed to be accurate to
within one percent. The sound speed in water was derived from Ref. 9.

As indicated above, the section of the cylinder which is approxi-
mately plane-wave illuminated is only about three diameters in length.
In view of this fact, the agreement between theory and experiment is
surprisingly good. The ratio of plane-wave illuminated length to
cylinder diameter decreases as ka increases in these experiments. It is,
therefore, not surprising to see a decrease in agreement with increasing
ka.

Figure 7 is a plot of the backscatter form function versus ka, also
using a cylinder of 6061 aluminum. The experimental curve is the
result of analysis of transient data processed as described in Chapter 8.
Essentially, the form function versus frequency is calculated by fast
Fourier transforming both a short incident pulse and the reflected
return. The form-function magnitude is then given by the normalized
ratio of the reflected to the incident spectrum.

1.2 B
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o
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Fig. 7 — Backscatter form function of a 6061 aluminum
cylinder. Theory, . experiment, ®.




146 CHAPTER 6

ABSORBING CYLINDERS

In view of the agreement obtained in the above cases, it was
assumed that the two-dimensional geometry of the theory had been
sufficiently approximated. Under the same experimental conditions
similar observations were made using lucite cylinders at ka of 4.30 and
10.90. In this case, longitudinal and shear wave absorption was
included for calculating the theoretical curves. The absorption factors
B, and Bg were taken equal to —0.00348 and —0.00531, respectively.

By far the greatest uncertainty in this case lies in the values of
wave speeds, which are difficult to measure, and which, furthermore,
have been found to vary greatly from one sample of plastic to the next.
For example, Refs. 5 and 6 arrive at shear wave speeds of 1380 m/sec
and 1340 m/sec, respectively, in two different samples of lucite. As
shown in Fig. 8, the theoretical form function is highly sensitive to
these velocities, so that an error of 1% or 2% completely changes the
character of the curve. With only a limited knowledge of the wave
speeds (within 3%) it was nevertheless possible to test the model in the
least-squares sense. Highly overdetermined systems were used, with
the wave speeds as parameters. In every case, the result was an
extremely good fit, with narrow confidence limits, and a small standard
deviation. Calculated wave speeds fell well within the expected range.

Y
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A i A d 1 L 1 —d 1 J

90 100 110 120 130 140 150 160 170 180

0
Fig. 8 — Variation of theoretical form function with smali

differences in wave speeds for a lucite cylinder, ka = 10.90, ¢,
= 1469.64 m/sec. ¢, = 2680.00 m/sec, cg = 1380.00 m/sec
L g = 2680.00 m/sec, cs = [350.00 m/sec — -~ — .
and ¢; = 2710.00 m/sec, cs 1380.00 m/sec.
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Figures 9 and 10 are the bistatic form functions of two different
lucite cylinders. Wave speeds obtained from the least-squares fit are
indicated in the captions. Both cases resulted in an excellent fit, with a
standard deviation of 0.02 in the first case, and 0.0] in the second case.

l 9(10,90,#;)'

10

|Fi4.3, 0} |
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T

Fig. 9 — Bistatic form function for a lucite cylinder,
ka = 4.30, ¢; = 2717.30 m/sec, cg = 1312.90 m/sec,

and c; = 1468.27 m/sec. Experiment ; theory ®,
6r
. r ves
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th

Fig. 10 — Bistatic form function for a lucite cylinder, kg =
1090, ¢, = 2688.50 m/sec, ¢g = 1340.00 m/sec, and ¢, =

1468.72 m/sec. Experiment

; theory @,
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The importance of the absorption in the theory is indicated by
Fig. 11. The two curves are identically calculated backscatter form
functions, except that one allows the absorption coefficient to go to
zero, and the other does not. In the latter case (solid curve) a; =
—0.00348 and a5 = —0.00531.

[ F(ka, 180°) |
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>
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4 6

ka
Fig. 11 — Effects of absorption on backscatter form function of a lucite cylinder;

— —— neglecting absorption (ag = a; = 0) and including absorption (ag =
—0.00531 and a; = —0.00348).

CONCLUSIONS

In summary, we find that very good predictions can be made
theoretically of scattering from absorbing cylinders, provided the acous-
tic wave speeds and absorption factors are known to the required accu-
racy. In the case of lucite, in particular, these wave speeds are difficult
to measure, and widely variable from one sample to the next.

Furthermore, these results indicate that experiments using con-
ventional sources can give good approximations of two-dimensional cal-
culations.
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Chapter 7

A CYLINDRICAL CAVITY IN AN
ABSORPTIVE MEDIUM*

INTRODUCTION

Formulation and computation of elastic wave reflections by a
cylindrical cavity in a solid homogeneous isotropic medium with no
losses has been given by Lewis et al., [1] among others [2-4]. Several
materials have been considered as the wave-supporting medium.
Among these is polyethylene, a material known (5] to have the
property of significant attenuation of both compressional and shear
waves. In the range of low megahertz frequencies most applications
would indeed appropriately ignore absorption in the ambient medium
for the case of most metals. However, grainy metals such as brass can
have extraordinary losses and thus can cause problems in some cases.
If polymers and other nonmetals are considered, wave attenuations
become significant and should be included in the theory. Although a
very large number of materials were not considered, a sufficient
number were considered by Lewis et al. that it seems that materials fall
into two rather arbitrary but convenient categories depending on the
behavior of the total scattering cross section (SCS) versus ka curves.
In this paper k will designate the wave number of the longitudinal
wave, x that of the shear wave, and a is the cavity radius. In their
work some materials approach a limit of SCS with increasing wave
parameter (ka,xa) from above and some from below when no losses
are considered. The plots of Fig. 1 distinguish those two categories.
The ordinate labeled SCS is the total scattering cross section following,
but deviating slightly from, the definition of White [2]. He defines the
total scattering cross section as the total scattered power per unit length
of cylinder divided by the intensity. We imposed the additional modifi-
cation used by Lewis et al. [1] of normalizing to the cylinder radius by
simply dividing by 2a. The upper curve in Fig. 1 is computed for
polyethylene, here considered lossless, approaching a limit from above
with increasing ka of SCS slightly above 2. This case also has a peak at

*These computations first appear in: Lawrence Flax and Werner G. Neubauer, J. Acoust.
Soc. Am. 63, 675-680 (1978).
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Fig. 1 — A comparison of the scattering cross section (SCS) of a cylindrical cavity
for an incident compressional wave as a function of ka for PMM and PE without at-
tenuation.

low ka. Lucite is the material for which the lower curve was computed
and approaches the limiting value of SCS from below with increasing
ka. The parameter that characterizes the scattering-cross-section-
function behavior is the ratio of compressional-wave speed c. to shear-
wave speed c,. The "critical value” for that ratio {(c./c;) which deter-
mines to which of the two classes a particular material belongs is very
close to 2. Examples of metals [1] that belong to the same class as
lucite are beryllium (c./c, = 1.45), silver (1.64), and tungsten (1.82)
and ones that fall in the same category as polyethylene are aluminum
(2.1) and gold (2.7). A thorough parametric study of all possible case
was not attempted; rather in this study samples of Lucite (a brand of
polymethyl methacrylate PMM) were chosen as an example to calculate
as a member of one category and having significant, but small, wave
attenuations. Polyethylene (PE) was chosen as the member of the
other category but is known to have significantly greater wave attenua-
tions than PMM.

NOTATION

The elastic material containing the cylindrical cavity will support
shear and compressional waves and both will be considered as incident
waves and mode conversion on reflection will produce shear from
compressional as well as shear, and vice versa. Also, computations
ignoring and including absorption will be presented. Hence, a word
about notation is in order. Scattering cross sections of separate waves
will be designated with a ¢. A first subscript will designate the kind of
incident wave, ¢ for compressional and s for shear. A second subscript,
again ¢ or s, will designate the reflected wave type. Whereas an
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unprimed ¢ designates a computation ignoring wave attenuations,
primes designate the same computations including attenuations. The
physical constants used in the computations are given in Table 1.

Table 1 — Material Properties

PMM* PE

¢. (m/s) | 2680 1950b5

¢, (m/s) | 1350 540 b
/¢ 1.94 3.61

B. (Np) 0.0035 0.0070°
B, (Np) 0.0053 0.0212¢
4gee Ref. 7

See Ref. |
See Ref. §

THEORY

Consider a cylindrical cavity of radius a embedded in an isotropic
absorptive medium characterized by density p and speeds ¢, and ¢, as
determined earlier. The axis of the cylindrical cavity is taken to be the
z axis of the cylindrical coordinate system (r, ¢, 2). Both types of
incident waves of circular frequency w are considered, i.e., compres-
sional waves and shear waves polarized in a direction normal to the
cylindrical axis.

Compressional-Wave Incidence

In the solid medium the incident plane acoustic wave p, =
Po exp(—ik.x) can be expanded in cylindrical coordinates as

Pi= Po i €,(=i)"J,(k.r) cos (ng). (1a)

a=0

The scattered pressure is

2= Po E‘be,C,, H2(k,r) cos (ng) (1b)

ne
+py Y €, B, H? (k,r) cos (ne).
”n
The incident pressure amplitude is py, €, is the Neumann factor, k, =

w/c., k, = w/c,, H? = J, — iY,, where J, and Y, are Bessel functions
of the first and second kind. The H,\? are Hankel functions, and C,
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and B, are the scattering coefficients. Throughout the time dependence
exp(iwt) has been suppressed.

At the boundary of the cavity r = a, the tangential stresses must
be zero. The coefficients C, and B, are determined from the boundary
conditions and are given by a division of two second-order determinates
of the form

a; ap
as as;
Cyp= |——————|
ayp; —a)3
az; —ajy
(2)
a;; —ay
a3 —ay
B, = [———|.
a);; —ap
dasy; —aj

The elements of the determinants are
ay = J,(Z) - 267, (Z)V/ U +2G),
ay = [HP(Z,) — 2GH, (Z))/(1 + 2G),
ai3=~-Q2n/2)Z,H,2(2,) - H?(Z))],
aw=—-Q2n/ZHZ,J,(Z,) - J (Z,)], 3)
ay = 2nlZ.J,(Z,) - J,(Z.)),
ay = 2nlZ . H,?(Z) - H®(Z,)),
a3 = Z2H;NZ) - Z,H,%(Z,) + it H!?(Z,),
asx = Z2,(Z) - 2,J.(Z,) + n*J,(Z,).

The arguments of the function appearing in these expressions are deter-
mined from the following relationships:

Z, = k.a — if.k.a,
4)
Z, = k,a — iB,k,a,

where 8’s are absorption factors given in nepers.
In addition, ratios of complex wave numbers appear in some of
the matrix elements and are given by
G = Z}(Z}-22). )
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As a result of using complex wave numbers in the theory, the elements
of the determinants defining C, and B, contain Bessel functions with
complex arguments. Techniques developed by Flax and Mason [6] for
calculating these functions were used.

Dimensionless scattering cross sections, as defined in the Intro-
duction are

Qe = o}o: €, |C, I H2(Z,r/a) |2,

n=0
ds= Y, €, |B, 2 H?(Z,r/a) |
n=0

The nondimensional parameter r/a is the distance from the cavity axis.
For large ratios of r/a, the asymptotic expression for H,? is used:

HP(Z) = Q/nZ) 2 expl~i(Z — nm/2 — 7/D)], ¢))
where Z = x + iy.

(6)

Shear-Wave Incidence

For the case of an incident shear wave the same procedure was
used as for the compressional case. The coefficients D, and E, are
again determined from the boundary conditions and are given by the
quotient of two second-order determinants of the form:

a3 ap

asy as
D, = |—————|,

a); —dap

ds; —as;

8
ay; ays

a3, a3
E, = |————|
a); —a
a; —ass

Similarly, the normalized cross sections for monostatic reflectors
are found to be

@ = Y, €, |D, I HP(Z,r/a) 1,
n=0

= 9
s = 266,,|E,,|2|H,‘”(Z,r/a)|2.
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COMPUTATIONAL RESULTS

In all calculations an assumed value of the range at which the field
is computed is taken to be 10 radii of the cylindrical hole, i.e., r/a =
10. This was taken to be the farfield as defined by a comparison of a
computation using an asymptotic form of the Hankel function for that r
and an equivalent explicit evaluation.

The scattering cross sections for compressional-wave incident on a
cavity in PMM and a resultant scattered compressional wave is shown
versus ka in Fig. 2 for calculations ignoring and including attenuation.
In all plots, the wave number plotted on the abscissa is that of the
incident wave. It can be seen in Fig. 2 that for a hole diameter slightly
larger than one incident wavelength (ka = 10), the SCS attributed to a
compressional wave with attenuation is approximately one-half of the
SCS in PMM when attenuation is ignored- The comparable diminution
in SCS because of shear reflection, generated by mode conversion from
the incident compressional wave is shown in Fig. 3. The SCS for a
compressional-wave incident and a combined result of compressional
and shear reflection from the cylindrical hole is shown in Fig. 4 again
for PMM. An interesting behavior of the computatlon near a ka of
unity is apparent when the curves labeled qcc and q“ are plotted
together as in Fig. 5. A decreased value or "dip" in the curve for Qg
compensated for by an increased value or "bump"” in the curve for qq to
result in a combined smooth curve in that region in the plot of ¢, +
Qcs-

|

|

|

i f

i i

‘ |
“ [P, 2 J
v
°L’ i 1 g | 1

) 2 4 s s 10

ke

Fig. 2 — A comparison of the compressional component of the SCS for PMM as a
function of ka with and without wave attenuation for compressional-wave incidence
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Fig. 3 — A comparison of the shear component of the SCS for PMM as a function
of ka with and without wave attenuation for compressional-wave incidence.

PMM
3 —_
|
2k T N e e e e e e e — e e, e ————————- ~
» 4 Qec+Gcs
i |
1 , Qcc* Qs
o[ ! ] ! 1 L
0 2 4 ¢ [ ] 10
ka

Fig. 4 — A comparison of the net SCS for PMM as a function of ka with
and without attenuation for compressional-wave incidence.
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Fig. 5 — The net and components of the SCS for PMM as a function of ka
with wave attenuation for compressional-wave incidence.
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The results of similar computations are shown in Figs. 6 and 7 for
PE which has, as can be seen in Table 1, somewhat lower wave speeds,
double the compressional-wave attenuation and approximately four
times the shear-wave attenuation. The contribution to the total SCS by
the shear wave generated from mode conversion of a compressional
wave incident on the cavity is very small for all values of ka. This is
apparent from the similarities of the differences between each pair of
curves in Figs. 6 and 7. The importance of including absorption in the
calculations is apparent from the difference in magnitude of SCS
between the computations with and without attenuation. Curves simi-
lar to those shown in Fig. | which seem to approach a limiting value of
SCS when no attenuation was included are shown in Fig. 8 for compu-
tations including attenuation. The waves in the two categories referred
to previously do not approach a single value. They cross over at a
value of ka between 3 and 4 for these materials.

0 x 1 | |
0 2 4 ks s s 10

Fig. 6 — A comparison of the compressional component of the SCS and PE as a
function of ka with and without wave attenuation for compressional-wave incidence.

r\\ |
N PE "

scs

i

0————— 4 - s -~ i - - ] B R ,,_J

° 2 . e ’ "

Fig. 7 — A comparison of the net SCS for PE as a function of ka with
and without wave attenuations for compressional-wave incidence
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Fig. 8 — A comparison of the SCS of a cylindrical cavity for an incident compressional
wave as a function of ka for PMM and PE with attenuation.

Computations of SCS similar to those for an incident compres-
sional wave on the cavity were carried out for an incident shear wave.
The results of those computations are plotted in Figs. 9 and 10 for
PMM and PE, respectively. The plots of Fig. 9 show a curious result.
The computations of SCS including wave attenuation results in a mag-
nitude which is, over a small ka range near unity, larger than that not
including attenuation. No explanation is known for the behavior at
present. It should be mentioned that for PE not only is the mode
conversion a negligible contribution to the SCS, as suggested by others,
{1] but the total shear-wave contribution is negligible for xa above 8.

PMM

[ 2 4 [} L 10

Ka

Fig. 9 — A comparison of the net SCS for PMM as a function of xa with
and without wave attenuations for shear-wave incidence.
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Fig. 10 — A comparison of the net SCS for PE as a function of xa with
and without wave attenuations for shear-wave incidence.

A caution in conceptualization of the problem treated here is in
order. The scattering of waves by a cavity in a solid does not really
change locally at the cavity. The apparent scattering behavior appears
different as expressed by the function of SCS versus ka or xa because
the waves, compressional and shear, are attenuated in the course of
propagation to a point in the field. Therefore, it is probably more use-
ful to consider the hole and a surrounding elastic medium out to a
given radius as a total system whose characteristics are sought.
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Chapter 8

ELASTIC SPHERES —
STEADY-STATE SIGNALS

INTRODUCTION

The closest approach of experiment to theory in a reflection situa-
tion would be expected to be for a problem of finite elastic geometry
for which the wave equation is separable and for which all conditions
are known. In geometries that are not finite, such as cylindrical
geometry, the approximation of the experiment would be in question,
i.e., the lack of experimental satisfaction of the infinite dimension
inherent in the solution of cylindrical geometry, or the approximations
of the theory would be in question, i.e., the lack of theoretical validity
of approximating the finite length of the cylinder. The problem of
reflection from a sphere is the simplest problem of finite geometry suit-
able for defining the methods and accuracy of the system and methods
used for measuring reflection. Meaningful definitive measurements of
reflected pressure cannot be expected to be any better for other
reflectors than the correspondence that can be achieved for such a
well-defined analytically calculable problem.

The free-field backscattered acoustic pressure amplitude was
measured in the farfield for aluminum and tungsten-carbide spheres
immersed in water. These were compared with the wave harmonic
steady-state computer solutions incorporating the conditions of the
experiments. A close correspondence between theory and experiment
was sought for the relatively simple case of the sphere as well as a
determination of the effect caused by specific experimental parameters,
such as temperature and material wave speeds, on achieving agreement.
This was necessary so that the experimental facilities and methods
could be used to obtain measurements having known limits of error or
reasonably estimated ones for cases in which little or no guiding theory
is available.

161
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The scattering of acoustic waves by a solid elastic sphere in water
was described theoretically and experimentally by others [1-3]. Acous-
tic scattering by a solid, homogeneous, isotropic, elastic sphere
immersed in a uniform, inviscid, elastic fluid was described quantita-
tively by Faran [1] before the advent of digital computers for the case
of a plane-harmonic-incident wave. Hampton and McKinney (2] made
an experimental study in the absence of theoretical computation of the
scattering from solid metal spheres in water, for pulses of sine waves
which were both of long and short duration compared to the size of the
sphere. Hickling [3] obtained expressions describing the backscattered
field by the use of a digital computer for incident sinusoidal pulses,
either spherical or plane, and obtained computer solutions for several
sphere materials. Numerical evaluations of the formulas describing
monostatic scattering of harmonic waves used to compare the measure-
ments discussed below with the theory were made by Rudgers [4].

The elements of the theory for the reflection by a sphere are
reproduced here for the purposes of definition. Let the pressure of a
plane wave traveling in the direction of the positive z-axis and incident
on the sphere centered at the origin be

pi = poexp lilwt — k2)],

where k is the wavenumber and « the angular frequency. The pressure
at a point outside the sphere is the sum of the incident pressure field p,
and a scattered pressure field p,,

p=p+tp
where the scattered pressure amplitude may be written
ps = (poa/2r) exp lilwt — kr)lf,,

where a is the radius of the sphere, r the distance from the origin to
the field point and f, is called the reflection "form-function." That
function is a complex quantity whose modulus is related to the experi-
mental observations by the expression

Ifl = Qrra)Upl/py),

where py is the measured incident pressure amplitude at the origin in
the absence of the sphere and |p,| the observed scattered pressure
amplitude.

A sound pulse was used for the measurements, an approximation
to the steady-state amplitude being achieved by making the length of
the pulse train many sphere diameters and appropriately interpreting a
steady-state amplitude at a specific position within the scattered pulse.
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In the monostatic case (scattering at 180°, or backscattering) the
form function is given by [3]

f, == 2kr/ka)e T (=) D (kr)(=1)"(2n + 1) sin 7™,
n=0
where h/?(kr) is a spherical Hankel function and 7, the phase angle of
the n th partial wave. Expressions for 5, are given in Refs. 1 and 4.

For large distances from the sphere, use of the asymptotic expres-
sions for A2 (kr) gives the farfield form function in the monostatic
case,

fuo=—Q/ka) T (=D"Q2n + 1) sin n,e™

n=0

In order to compare the measurements with the theoretical calcu-
lations, the reflected pressure amplitude was observed at a distance of
10 or more sphere diameters from the sphere. At that distance the
measured results correspond to the farfield form function in the range
of frequency parameter ka from 0 to 30.

EXPERIMENTAL METHOD

The experimentally determined modulus of the farfield form
function |f.,| was obtained from the relative pressure amplitudes p,
and |p;| of the incident and scattered waves, respectively, measured
with the same equipment. The incident pressure was determined at the
frequencies of interest before and after each run with the receiver at
the position normally occupied by the center of the sphere, and the
sphere removed. Usually the size of the sphere was held constant and
the frequency was varied during a run over a range of ka of approxi-
mately unity. Then the sphere was changed to be a different size and
the same range of frequency was covered to achieve a different range of
ka. The steady-state condition was approximated by a burst of sine
waves 300 to 800 usec in duration.

It was found necessary to enhance the signal-to-noise ratio of the
reflected signal. For that purpose, the box-car integrator was used to
scan and record on a strip chart recorder, five cycles of the sine wave
located at a position in the pulse judged to be a true representation of
the steady state. The average of the 10 peak values so obtained gave
the peak pressure amplitude. The sphere was then removed and the
box-car integrator continued scanning to record background. If a
coherent background was present, a correction for its effect was
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estimated from the relationship between its amplitude and phase and
that of the total pressure wave measured with the sphere in place.

The pressure wavefront incident on the sphere was slightly dis-
torted by the presence of the receiver situated on the straight line
between the transmitter and the sphere. The result was to reduce the
incident pressure at the sphere by a few percent. When the receiver
replaced the sphere to measure the incident pressure p, a dummy
receiver was placed in the position normally occupied by the receiver
when the scattered pressure |p;| was measured and the result was com-
pared with that obtained with no dummy probe. In practice, the pres-
sure pulse incident on the sphere was usually observed with no dummy
probe and the experimentally determined appropriate correction (of the
order of 2%-4%) was applied.

EXPERIMENTAL EQUIPMENT

The water-tank facility is similar to the one described by Neu-
bauer [5]. A cypress-wood tank containing a volume of water 12 ft x 6
ft X 6 ft is surrounded by a platform which supports the electronic
equipment and serves as a working area. The temperature of the water
in the tank was measured at six points at different depths and was held
constant to within 0.1°C for the duration of each measurement. A resi-
dual chiorine level between 1 and 4 ppm was maintained by the addi-
tion of sodium hypochlorite solution to the water to keep its optical
clarity at a level required to measure distances optically in the water.

The source, receiver, and scattering sphere were placed along a
horizontal line parallel to the long dimension of the tank and held in
position by a system of tracks, rails,, and carriages mounted over the
tank. The placement systemn made longitudinal, lateral, rotational, and
elevation movements possible. All positioning of the elements was
done by hand. Final determinations of placement and all lateral and
longitudinal positions of objects in the tank were made by optical
squares which moved on precision flat surfaces located on support
beams above two adjacent sides of the tank. The vertical location was
fixed by placing all objects of interest in the same horizontal plane,
determined by a level telescope sighting through a porthole at one end
of the tank.

The aluminum spheres used for the scattering measurements were
precision machined in a range of sizes from 0.25 to 2.5 in. in diameter,
known to within 0.0005 in., and were suspended in the water from one
of the carriages by nichrome wire 0.005 in. in diameter attached to the
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sphere with epoxy resin in a radial hole at the surface about 3]2— in.

deep and 0.009 in. in diameter. The tungsten-carbide spheres were
commercially available sizing balls suspended in a similar manner.

The hydrophone was similar to the piezoceramic device described
by Neubauer [5]. The disk, 0.125 in. in diameter by 0.010 in. thick,
was contained in a waterproof housing, covered by a unicellular rubber
jacket and the whole assembly held in place by a titanium tube 0.063 in.
in diameter extending from the receiver assembly to a connector above
the surface of the water. The tube also acted as an electrical shield for
the signal lead. The projectors used were circular pistons from 1 to 3
in. in diameter.

Sine waves were generated by a synthesizer and monitored by a
counter. The frequency was divided by a preset counter determining
the repetition rate of the acoustical pulse by synchronizing the pulse
generator which provides the rectangular modulating pulse for the gate
and also the timing pulse for the receiving oscilloscope. The acoustical
signal received by the pressure sensing probe was amplified, filtered,
and displayed on an oscilloscope. A box-car integrator was operated in
the scan mode to extract the repetitive signal from the background
noise and its output was recorded with a strip chart recorder.

RESULTS AND DISCUSSION
Aluminum

The curve in Fig. 1 shows the modulus of the farfield reflection
form function as a function of ka for an aluminum sphere in water.
The curve starts at the upper part of the figure and is continued below.
The experimentally determined points, shown by open circles, are back-
scattered relative pressure amplitudes normalized in amplitude. It was
of greatest interest to make the measurements in regions where the
form function is rapidly varying, especially near the sharp minima in
the curve. Calculations showed close correspondence between the fre-
quencies of free vibration of the elastic sphere and the frequencies at
which the minima occur in the form function.

Faran [6] noted and verified experimentally for cylinders that in
some materials nulls in the backscattered pressure amplitude are close
to the frequencies of free vibration of the elastic cylinders and spheres.
In Faran’s work, the distribution in angle of the scattering was observed
and computed for relatively few selected values of the frequency. In
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Fig. 1 — Comparison between the exact theoretical calculation. of the form function

vs ka (solid curve) for an aluminum (1100) sphere. and experimental measurement
(points)

this work, only backscattering was observed and the monostatic form
function was computed for a range of frequency parameters from 0 to
27.5 for aluminum and to 22.5 for tungsten-carbide, thereby showing in
more detail the proximity of the resonant frequencies of the free elastic
sphere to changes in the shape of the monostatic form function.

Faran noted that the nth term in the partial wave series expan-
sion for the scattered pressure has a term with infinites at the frequen-
cies of the free vibrations of the scattering body, which satisfy the con-
ditions of symmetry of the problem. In the case of the cylinder. the
infinities coincide with the zeros of the secular equation giving the
vibrational frequencies. The same conclusion holds in the spherical
case for a class of vibrations called the spheroidal modes. The resonant
frequencies of the spheriodal oscillations were computed by solving
numerically the equation given by Sato and Usami [7]. The spheroidal
modes are herein designated S,, (there are various conventions), where
n corresponds to the nth term in the partial wave series expansion of
the pressure and / is the overtone with 1 corresponding to the funda-
mental.
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Tables 1 and 2 list, respectively, the computed frequency parame-
ters of the spheroidal modes, S,,. of interest for the measurements for
aluminum spheres in water at 19.3°C and tungsten-carbide spheres in
water at 20°C. The frequency parameter is given by 2mva/c. where v
is the frequency of the spheroidal vibration, ¢ is the speed of sound in
water at the temperature of the measurements. and a is the radius of
the sphere. The resonant mode of lowest frequency is seen to be the

oblate-prolate mode S,,, as is well known.

Mode charts showing the

nondimensional frequency of vibration of the modes as a function of
Poisson’s ratio are given by Faran, and more extensively by Fraser and

Table | — Frequencies Expressed in ka of Spherical Modes.
S,1. of an Aluminum Sphere at 19.3°C

n\/ 1 2 3 4 5
0 11.994  26.355
| 7616 15.320 18.380 22.629
2 5.588 10.792 18.229 23.559
3 8.334 14187 21.090 27.536
4 10.696 17.564 23.949
5 12.907  20.831% 26.832
6 15.043 23954
7 17.137 26930
8 19.204
9 21.254
10 23.290
I 25.316
12 27.335

Table 2 — Frequencies Expressed in ka of
Spherical Modes, S,,. of a Tungsten Carbide
Sphere at 20.0°C

n\/ 2 3 4

0 11.213  27.604

1 9.312 18.019 21.800
2 7431  13.266 22.752

3 10.983  17.708

4 14.015  22.235

5 16.857

6 19.611

7 22.317
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LeCraw [8]. In the references, the frequencies are normalized to either
the longitudinal or shear sound speed in the material of the scattering
body. Tables of vibrational frequencies for the incompressible case and
for Poisson’s ratio of 0.25 are given by Sato and Usami [7]. The vibra-
tions of the free elastic sphere are discussed in Refs. 7-12.

The free vibration of the sphere and the form-function minima
are sensitive to changes in the shear wave speed of the sphere material
and not very sensitive to changes in the longitudinal wave speed. Shear
and longitudinal wave speeds were measured on cylindrical samples of
the same piece of aluminum of which the spheres were fabricated. The
measured values were 3100 +30 and 6370 +40 m/sec for shear and
longitudinal waves, respectively.

Both shear and longitudinal wave speeds were varied within the
region of experimental error, until the computed frequencies of free
oscillation of the sphere best corresponded to the experimental minima
in Fig. 1, and these velocities were used in computing the form func-
tion. As noted by Faran (6], the position of a minimum or other prom-
inent feature in the form function would be expected to show a shift
from the frequency of free vibration of the sphere, but in the case of
solids with low losses and with densities significantly greater than that
of the surrounding fluid, the frequency shift is small.

The open circles in Fig. 1 are the results of amplitude
measurements made with an oscilloscope, and the solid circles were
obtained from recordings with the box-car integrator. Both are absolute
mea- surements and not normalized in amplitude. The points near the
minima at ka equal to 14.1 and 20.8 are based on the most complete
set of measurements and correspond to resonant frequencies of oscilla-
tion of the free sphere to within about 0.5%. The measured shear
speed in aluminum was increased by 20 m/sec, within the known possi-
ble error of its independent measurement, to bring the calculated curve
into the agreement with the observed results shown at the two minima
near ka equal to 14.1 and 20.8. There is still some disagreement at ka
of 24. 1t was found that a 1% change in longitudinal sound speed had
less than one-tenth of the effect of a 1% change in shear wave speed in
shifting the calculated position of the vibration frequencies at ka values
14.1 and 20.8. The wave speeds used for the calculated curve of Fig. 1
were 3120 and 6370 m/sec, respectively, for shear and longitudinal
waves in aluminum and 1480.08 m/sec for the wave speed in water at
19.3°C.
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Figure 2 shows an incident pulse, of 500-usec duration, and
pulses reflected by an aluminum sphere recorded by the scanning box-
car integrator. The time scale is increasing from left to right. At a ka
of value of 20.78 (Fig.2(b)), the form function has a minimum from
which it rises steeply to a maximum at kg of 21.21 (Fig. 2(c)). In this
case, both reflected pulses show the effect of the elastic vibrations and
the pulses in Figs. 2(a) and 2(b) have a duration considerably greater
than that of the incident pulse.

(a)

(b)

Fig. 2 — (a) A 500-usec-long incident pulse. The pulse reflected by an aluminum
sphere when the pulse in Fig. 2(a) is incident for (b) ka = 2078, and () ka =
20.21.

In recording the data, only three to five cycles were recorded for
the measurement of the pressure amplitude instead of the complete
pulse as shown. In the case shown, the five cycles would have been
located about 300 usec from the beginning of the pulse.

Tungsten-Carbide

The curve in Fig. 3 shows the computed farfield form function of
a tungsten-carbide sphere in water at 20°C. The values of the shear
and longitudinal wave speeds in tungsten-carbide used for the computa-
tion were 4150 and 6860 m/sec. respectively, as estimated from the
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Fig 3 — Comparnison between exact theoretical calculation. of the form-function vs
ka (solild curve) for a tungsten carbide sphere. and cxperimentsl measurement
{pomnts)

results of Balashov and Voronov [13]. No separate sample of the iden-
tical material of which the sizing balls were made was available for
independent measurement of wave speeds in tungsten-carbide. The
measured points are given as open and solid circles and were obtained
as described for the case of aluminum. Except for the presence of
sharp minima and narrow regions where it rises abruptly, the curve
resembles the form function of the rigid sphere. The minima and
sharp rises in the curve correspond closely to the calculated modes of
oscillation of the free tungsten-carbide sphere, usually to within a few
tenths of a percent in ka. Figure 3 shows the experimentaily deter-
mined minima slightly to the right of the computed ones. Since they
are close to the frequencies of free oscillation, which are most strongly
dependent on the shear speed of waves in the tungsten-carbide, the
shear speed was adjusted to bring the computed curve into better agree-
ment with the measurements. The effect on the calculation of increas-
ing the shear speed by 35 m/sec in the sphere material is shown in Fig.
4. This measurement is a reasonable value that is within the limits of
probable error for shear wave speed in tungsten-carbide.
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Fig 4 — The samc companson given in big 3. where the theoretical curve has been

shifted. due 10 a 3S m/sec upward adjustment in the  ear veloaity in tungsten:
cartnde

In Fig. S the scattered pulse with carrier frequency. corresponding
10 a resonance ai ka equal to 7.3 (Fig. S(b)), 1s compared with the scal-
tered pulse corresponding to ka of 84 (Fig. S(¢)) and the incident
pulse (Fig. Sta))  The pulses were recorded by scanning the periodi-
cally recurring signal with the box-car integrator The amplitude of the
incident pulse, shown in Fig. S(a), i1s not related to that of the reflected
pulses. the length of the incident pulse shown in the figure 1s about
300 usec and the diameters of the spheres used for scattering at kg of
7.36 and 8 46 were 22/32 and 25/32 in . respectively The shape of the
pulse scattered at a ka of 7 36 (Fig. S(b)) 1s observed where the amph-
tude of the form function has a sharp minimum, corresponding in this
case 1o a resonant frequency of vibration of the free elastic sphere The
form function 1s changing rapdly 1n amphitude and phase and 1t can be
seen that the reflected pulse s considerably longer than the inadent
pulse as the sphere conunues to oscillate and return energy to the
detector
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Fig S — ta) A 0-gsec-long incdent puise  The pulse reflected by a tungsten:
carbnde sphere when the pulse in big Sta) s incident for (b) Ag = 736, and () Ag
- K 46

The pulse scattered at a ka of 846 (Fig S(c)) carresponds 0 &
region where the form function is not changing rapidly and 1s far from
the nearest resonance The shape ol the scattered pulse 1s similar to
that of the incident puise with hittle energy going nto the elastic vibra-
tions of the sphere

Effect of Temperature

Figure 6 shows the form function of aluminum measured near the
minimum at ke of 20.8 The measurements, shown with open circles
and error bars, were made at 17 9° and 209°C. and the solid curves
show the form functions calculated at those two temperatures. The
measurements show a shift of approximately -0.2% per °C in the
abacisss of the minimum. 10 agreement with the shift in the computed
curves This 1s accounted for. as was expected. by the change in the
speed of sound with the temperature of the water. the only parameter
changed in the caiculation

From the experimental resulls 1n this case. 1t appears that the
abscissa of the minimum near ka of 208 can be estimated to the
nearest () 05 As previously menuoned. st was found that the values of
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Fig 6 —~ The shuft of a mimimum in the
curve of the form function vs g for an
alummum (1100) sphere t0 a 3°C
change in temperature (a) |7 9°C u4nd
b)) 209°C  The sold curve 1s theoren-
cal. the pownis are experimental for
temperature of f(a) 179°C and (W
209°C
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the minima in the calculated form function were sensitive to changes in
the shear wave speed used in making the calculation  For example. the
abscissa at the minimum in the calculated form function near 20 8 was
found to change by 0 12 for o change in shear wave speed of 20 m/seq
Assuming hnearity. it follows that for the location of the mimimum 1n
the computed curve to fall within the ka range of 005 found cexpern-
mentally. the shedr wave speed must be known to within 8 m/sec. 1e¢ .
+0 3%, provided the other parameters used in the calculation are
known

Concluding Remarks

These results of the backscattered reflection from spheres used 4
pulsed sine wave signal long enough that the cxpenmental result could
be reasonably compared with calculation for reflecnon at g specthc value
of Aa The transient portion of the pulse was ignored  See Chapter K
in which only transient signals G ¢ . relatinvely short pulses) are used in
the cxperiments
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Chapter 9

ELASTIC SPHERES AND RIGID SPHERES AND
SPHEROIDS — TRANSIENT SIGNALS*

INTRODUCTION

In Chapter 8 previous comparison of theoretical calculation and
experimental measurements [1], of the reflection by a sphere versus
frequency, required the use of an acoustic pulse long enough so that a
steady-state value of the reflected pressure amplitude was achieved at a
well-defined single frequency. Such an experiment requires a number
of reflection measurements: one at each frequency of interest. Refer-
ence to earlier work can be found in the references for Chapter 8.

The reflected pressure amplitude is expressed here as
p, = (a/2r)pol £, (ka), (1

where a is the sphere radius, r is the distance from the center of the
reflecting sphere to the point of reception of p,, f,(ka) is the so-called
form function, and kq is the size parameter in the fluid surrounding the
sphere. If reflection measurements are made at a far field point of the
sphere, usually defined as a distance of at least 10 sphere diameters,
/,(ka) becomes independent of r and is calied the farfield form func-
tion f,,(ka). For a long pulse experiment approximating steady state,
S~ (ka) is derived from the substitution of measured amplitudes p, and
Pc in the expression

Ifw(ka)| = (2r/a) (p,/py). (2)

Measurements of p, and p;, made at several frequencies for a given
sphere or for several spheres at a given frequency, are used in Eq. (2)
to determine specific values of | £, (ka)l.

The incident pulse may be regarded as a function of time, so that
~cw hic guoustic pressure measured at the position of the center of the
ey ing sphere. in its absence, is

ikgct
P = poe ’
-+ a test publisted an Louis R, Dragonette, Richard H. Vogt, Lawrence Flax,
- Neohguse b Acoust Soc. Amo 55, 1130-1137 (1974).

177

e ———— . S —



178 CHAPTER 9

where c is the acoustic wave speed in the liquid in which the sphere is
immersed. Introducing the transformation r = (¢t — r)/a and rewrit-
ing Eq. (2) in terms of 7,

ikgat a ikgar

pe" = 5= poe | fo (koa) . (3)

The quantity = represents the nondimensionalized time by nor-
malizing the time parameter to a/c and reducing it by the ratio r/a,
i.e., the distance from sphere center to the reception point of p, meas-
ured in units of the sphere radius. Using r amounts to beginning time
reckoning 2t the center of the reflecting sphere and measuring in units
of wave travel time in water over the distance of a sphere radius a.

A pressure pulse containing frequencies expressed in ka space has
a spectrum g(ka) and its instantaneous time history in 7 is expressed
according to the Fourier theorem by the integral

() = [ glka)e™ d(ka),

and the inverse transform defining the pulse spectrum is
— 1 = —ikat
glka) = 7‘”—_{_“’ p,(1)e %7 dr,

The quantities p;(r) and p,(r) are now instantaneous pressures
and the relationship between them in terms of |f..(ka)|, similar to the
amplitude equation for a single frequency given by Eq. (3), is
expressed by

* —ikart _ i « —ikar
S p@etrar = 2 foka) [ pim)eterdr.

or further, ,
| foo (ka) | = %f“lm p(r)e *adr /‘f_w pi(r)e *dr  (4)
Rather than analytically examining the effects of computational
procedures for performing the integrals in Eq. (4), a well-defined case
of reflection was carried through in the mathematical operation indi-
cated by that equation. The response of a rigid sphere to a two-cycle
incident pulse at a ka of 4.328 was computed by exact theory as
described in Ref. 2. The resuiting calculated reflected pulse was sam-
pled at intervals A7 = 0.16. These values were used as a sampled
representative of p,(7). A theoretical two-cycle unit-amplitude incident
pulse, of dimensioniess frequency kga = 4.238, was also sampled at the
same Ar. This sampling rate corresponds to about 10 samples per
cycle. These values were used as a sampled representative of p,(r).
Figure 1(a) shows the spectrum g,{(ka) computed from p;(r) and Fig.
1(b) shows the spectrum of g, (ka) of the reflected pulse. Fast Fourier
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Fig. | — (a) Spectrum of an ideal two-cycle pulse. (b) Spectrum

of the computed reflected pulse from a rigid sphere.
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transform techniques were used and the results of the evaluation of Eq.
(4) are shown in Fig. 2 by the points and these are compared to the
solid curve, which is the exact calculation of the form function for a
rigid sphere.

ka

Fig. 2 — Calculated | f..| vs ka (solid curve) and computed
points derived from sampled idea!l two-cycle pulse.

RIGID SPHERE AND SPHEROID

Monostatic reflection from metal shapes was measured in air at a
pulse center frequency of 26 kHz. Rigid boundary conditions are very
nearly satisfied by any solid metal object for airborne acoustic waves.
The acoustic source that generated the pulse was a capacitance speaker
6 in. in diameter. The pulse received at the position later occupied by
the center of the reflector is shown in Fig. 3(a). Throughout the air
experiments a Briiel and Kjaer capacitor microphone was used that was
1/4 in. in diameter. All pulseforms that are shown are the actual sam-
pled outputs used in computation. The reflection of the pulse in Fig.
3(a) by a 0.750-in.-diam metal sphere is shown in Fig. 3(b). The
apparent tail on the reflected pulse is the result of a creeping wave con-
tribution that is partially isolated in time. This monostatically reflected
pulse was received at a distance greater than 10 sphere diameters from
the sphere. No precise distance measurement was available in the air-
acoustic range, so the pulses are not shown with amplitudes correct
relative to each other. The normalized spectra plotted on the abscissa,
expressed in units of ka for the pulses in Figs. 3(a) and 3(b), are given
in Figs. 4(a) and 4(b), respectively.
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(a)

(b)

Fig 3 — (a) Incident acoustic pulse used to reflect from sphere and

spherod 1n ar

(b) Reflected pulse from a metal sphere in ar
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Fig. 4 — Spectrum of (a) the incident pulse shown in Fig 3la),
and (b} the refiected pulse shown in Fig. 3(b)
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Calculation of (/.| by using the 20-samples-per-cycle output plot-
ted in Fig. 3(a) in the denominator and the similarly sampled output in
Fig. 3(b) in the numerator of the right side of Eq. (4) results in the
plot of Fig. 5. The experimental values shown by points are normalized
to the exact calculation shown as a solid curve to the center of the spec-
tral band. The values of ka at which the spectral values are 10 dB
below the peak amplitude on both sides of the peak are shown in Fig §

by vertical lines. A description of the experimental apparatus is avail-

able in Ref. 3.

1 Ot—
-

"ol .
05—
-

0 1 1 s 1l 1 | 1 1

[0} 2 ) 6 8

ko
Fig 5 — Theoretcal reflechon form-function 7" vs ka tsohd curve) and

experimental points derived from the single reflected pulse shown in kg 3th)

The same incident pulse (Fig. 3(a)) was reflected from a metal
prolate spheroid with a 5/3 fineness ratio for which half the interfocal
distance was 1.041 ¢cm. The pulse reflected from the end of the
spheroid is given in Fig. 6(a). This is the aspect of the spheroid for
which the major axis is pointing in the monostatic direction. It is
interesting 10 observe the creeping wave pulse that is distinctly
separated from and smaller than the initial specularly reflected pulse.
The spheroid was rotated to a position 90° from the position at which
the pulse in Fig. 6(a) was measured, so that the pulse was reflected
from its side. Figure 6(b) shows a plot of that pulse. Received pulse
amplitudes are set to optimize the electronic measurement of the pul-
seforms so the plotted relative amplitudes are not meaningful.
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(a)

V (b)

Fig. 6 — Pulse reflected from (a) the end of the spheroid in air (along major
axis), and (b) the side of the spherowd 1n air (along minor axis)

In Fig. 6(b), a small creeping wave puise can be observed at the
end of the specularly reflected pulse. The path around the small
dimension of the spheroid is, however, insufficient to cause separation
of the specular and creeping wave pulses, which is evident in Fig. 6(a).
Calculation of [f..| by means of Eq. (4), using sampled incident and
reflected pulse data, is plotted in Fig. 7. The x’s are data for end
reflection (incidence and reflection along the major axis) and the open
circles are for side reflection (minor axis incidence) from a rigid prolate
spheroid. Theoretical results [4] for the end reflection exist up to a ka
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Fig 7 ~ Theoretwal teflection torm-tumction /o' vy ko (sobd wutvel for end

reflection from the spherowd and experimental points tor end reflection (crosses? and
sude reflection (Gindies)

of 4.6 and are plotted as the solid curve. The end reflection data are
normalized to the peak in 1/.| at ka = 4.47. The side reflection is
arbitrarily normalized to 1.1 at the ka at the center of the incident pulse
spectrum, since no theoretical values were available. This normaliza-
tion was convenient so that the two curves would be separated and
could be compared. The large-amplitude oscillations for thé case of end
reflection are consistent with the larger-amplitude creeping wave
interfering with the specular reflection. For the end reflection case, sl
creeping wave paths are the same length and are symmetrical around
the body. When the reflection is from the side, the creeping wave
paths are not all the same length, and therefore the signals that take
these paths do not act in concert to produce the successive large oscilla-
tions over the frequency range of the pulse, as in the end reflection
case. Between the limits of ka of 3.6 and 6.2, the spectrum of the
incident pulse is no more than 10 dB beiow its peak.

ELASTIC SPHERES IN WATER

Portions of the reflection form function were obtained by the use
of a single reflected puise for spheres made of three different materials.
The materials were atuminum (1100), brass (70—30), and tungsten-
carbide sizing balls and were the same spheres for which steady-state
reflections were measured and described in Chapter 8.

The incident pulseform used for the aluminum and brass spheres
over the same ka range is shown in Fig. 8. This pulse was received by
a hydrophone at the position otherwise occupied by the center of the
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Fig 8 ~ Incdent acoustic pulse used for aluminum and
brass sphere insontfication. measured at the position of the
venter of the spheres in their absence

sphere when the monostatically reflected pulse was received. The nor-
malized computed spectrum of the pulse in Fig. 8 is plotted in Fig. 9.
The peak of the spectrum occurs at a frequency of 212.8 kHz, which
corresponds (o a ka value of 20.05 for the 4.445-cm-diam sphere used
in the experiment. The actual pulse reflected from the aluminum
sphere is given in Fig. 10. Its computed spectrum is given in Fig. 11
Both incident and reflected pulseforms were digitized at an interval of |
usec, or about five samples per cycle with 8-bit accuracy.

The calculation resulting from the use of Eq. (4) for the incident
and reflected pulses in Figs. 8 and 10 is plotted in Fig. 12 at specific
values of ka on the same plot with the exact computer solution [4]
shown by a solid line. Values of ka where the incident pulse spectrum
was 10 dB below the peak are indicated by vertical broken lines. The
experimental points are normalized to the value of |f..| at the peak fre-
quency of the transmitted pulse, since the reflection measurements
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Fig 10 — Acoustic pulse monostatically reflected from an
aluminum (1100) sphere (diam = 4 445 cm)
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Fig 12 — Theoretical reflection form-function {fo{ vs ka (sohd curve) for an aluminum
sphere and experimental points derived from the single reflected pulse shown in Fig 10
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were made 1n a | 50.000 gallon pool which was not vet instrumented to
measure accurately distance between the acousixal elements In the
water

The acoustk wave speed in water at 20°C in the cakculation of
fa: was 1482 25 m/sec Longitudinal and shear wave speeds used in
computation of /. for aluminum and tungsien carbede were those
siven in Chapter 8  The longitudinal wave speed used in the cahula:
uon for brass was measured. 1n s seperate cylindrical sampie ‘6 4-cm
diam x 7 6 cm) by direct propagation between paraliel (aces. to be 4700
* 47 m/sec  The cylindrical brass was a piece of the same bar from
which the sphere was made The measured shear wave speed in the
same sample was 2110 = 21 m/sec The pulse reflected in the mono-
static direction (rom a brass sphere the same size as the aluminum
sphere 1s given 1n Fig 13 This reflection results from the invident
pilse shown in Fig. 8 The computed spectrum of the pulse in Fig 13
1 given it Fig 14 with an abscissa 1n units of k@ A calculation similar

’

Fig. 13 — Acoustic pulse monostatically reflected from a brass sphere.




190 CHAPTER 9

.00

o
2
w

]

NCRMALIZED AMPLITUDE
e}
5
e}
]

025+

0 1 | 1 L ! | |
15 I7 19 21 23

ka

Fig. 14 — Frequency spectrum of the acoustic pulse
reflected from a brass sphere shown in Fig. 13.

to that for aluminum by the use of Eq. (4) is plotted in Fig. 15 for
brass. Vertical broken lines on the plot again indicate ka values at
which the incident pulse spectrum was 10 dB below the peak value.

The incident pulse and the reflected pulse from the tungsten-
carbide sphere for a different range of ka than that used for aluminum
and brass are shown in Figs. 16(a) and 16(b), respectively. The
incident pulse has the same center frequency as the pulse incident on
aluminum and brass but has a slightly different shape. The diameter of
the tungsten-carbide sphere used was 2.54 c¢cm. The spectra of the
incident and reflected pulses are given in Figs. 17(a) and 17(b),
respectively. The theoretical calculation by straightforward wave har-
monic mecans is plotted in Fig. 18 by the solid line and the result of use
of pulse data for tungsten carbide in Eq. (4) is shown by points with
10-dB spectral limits indicated.
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0 18 19 20 21 22
ka

Fig. 15 — Theoretical reflection form-function | /| vs ka (solid curve) for a brass
sphere and experimental points derived from the single reflected pulse shown in Fig.
13.

(b)

(a)
Fig. 16 — (a) Incident acoustic pulse used for tungsten-
carbide sphere insonification, measured at the position of the
center of the sphere in its absence. (b) Acoustic pulse
monostatically reflected from a tungsten-carbide sphere (diam
= 254 cm).
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Fig. 17 — Frequency spectrum of (a) the acoustic pulse incident on a tungsten
carbide-sphere and (b) the reflected acoustic pulse in Fig. 16(b).
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Fig. 18 — Theoretical reflection form-function | .| vs ke (solid curve) for a tungsien-
carbide sphere and sxperimental points derived from the single reflected pulse shown in
Fig. 16(b).

C st e s AR S s 1A



SPHERES-TRANSIENTS 193

It is interesting that the deviation of the experiment from theory
in the case of tungsten carbide around a ka of 11.4 was also observed in
other measurements carried out at a different time in a different
method of using a long pulse approximating steady state. This indicates
that some constants of the material of which the sphere is made are
probably not sufficiently well known to define the theory accurately.

All previous comparisons of theory and experimental results using
short pulses have been normalized to the value of |f..| at a ka value in
the center of the frequency band of the incident pulse. One absolute
measurement, for an aluminum sphere, was made for which all gains in
the electronics were recorded. Also, the sphere-to-receiver distance r
was measured to within 5 mm, so that the coefficient in Eq. (4) a/2r
could be evaluated. When all of these factors were taken into account,
the absolute comparisons in a ka range from 9.7 to 12.5, shown in Fig.
19, resulted.

o
)
)

A

—L
[ 2] 100 03 Ho "ns 20 s
ke

0 n A U | A 1 A 1 A

Fig. 19 — An absolute comparison between the theoretical
reflection form-function 1/, vs ka (solid curve) and experi-
mental poinis derived from a single pulse reflected from an
aluminum sphere.

CONCLUSION

Accurate monostatic reflection characteristics, |f.|. of rigid
bodies in air and elastic spheres in water were obtained by using short
tone bursts to insonify the targets. Agreement between exact elastic
calculations and underwater experiments was excelient for spheres of
aluminum, tungsten carbide, and brass. Comparisons between rigid
theory and measurements in air on metal spheres and prolate spheroids
diso demonstrated excelient agreement. The use of a short puise,
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rather than a steady-state acoustic wave or a pulse long enough to
approximate steady-state, has major advantages because of the fre-
quency dependence of |f.|. The tone burst covers a broad frequency
range, allowing a significant portion of the |f.| vs ka curve to be
obtained from one experiment. Steady-state experiments give only the
value of |/..] at a specific ka, and numerous such experiments must be
performed to obtain information over a significant ka range. An added
advantage of short pulse experiments, especially under laboratory con-
ditions, is the ease with which the echoes of interest can be separated
from echoes reflected at the test facility boundaries. The pulses used in
air were shorter than those which could be obtained in water, because
of the higher Q of the ceramic transducers used in the underwater
measurements, as compared to the capacitive devices available for
acoustic generation in air.

The nulls in the form function vs ka curves for elastic spheres are
highly dependent on the material constants of the sphere material,
especially the shear speed. Ordinary methods of measurement of the
elastic constants would seldom yield sufficiently accurate theory to allow
exact agreement with experiment. The wave speeds used here were
measured to within 1% by direct propagation measurements, and the
shear speed was varied within this tolerance until theoretical and exper-
imental nulls agreed.
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Chapter 10
ABSORBING SPHERES*

INTRODUCTION

. The monostatic reflection from elastic spheres has been the sub-

ject of numerous theoretical [1-4] and experimental [5-7] treatments.
Two methods demonstrated excellent agreement between exact elastic
theory and experiment for the monostatic reflection from solid metal
spheres in water. The steady-state technique described in Chapter 8,
utilized long acoustic pulses to insonify the spheres, the transient tech-
nique described in Chapter 9 utilized short incident acoustic pulses.
The latter method is generally more useful since a single experiment
gives reflected pressure-vs-ka information over a range of ka values,
whereas ecach steady-state measurement gives a single point on a
reflected-pressure-vs-ka curve. The factors in the size parameter ka are
the wave number k and the radius of the sphere a.

Figure 1 demonstrates quantitative agreement between the
theoretical results obtained by means of a harmonic series analysis (2,3]
(the solid curve) and both steady-state and transient experiments. Each
of the points was obtained from a separate steady-state measurement in
which frequency and/or sphere size was varied, while the dashed curve
resulted from a singie short pulse experiment with a single sphere. The
theoretical analysis did not include effects due to absorption of shear
and compressional waves in the material used to fabricate the spheres.
The results, given in Fig. |1 and other similar comparisons, demonstrate
that ignoring absorption effects is a very good assumption for spheres
of tungsten carbide, aluminum, and brass, which were the three metals
observed, [6,7] and probably for most other metals. In order to deter-
mine the possibie effects of absorption on the reflection form function,
a lucite sphere was investigated, and no agreement between the har-
monic series analysis without absorption in the sphere and experiment
was found. A modification of the theory to include the effects of the
absorption of shear and compressional waves in lucite was demon-
strated to be the major solution to the disparity.

*This work was reported carlier in: R. H. Vogt, L. Fiax. and W. G. Neubauer, J. Acoust.
Soc. Am. 87, 558 (1975).
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= THEORY

e STEADY STATE EXPERIMENTS
== TRANSIENT EXPERIMENT

1.5¢

|fe} 10}

Fig. 1 — Theoretical caiculation and two different types of experimental
measurement of the reflection from an aluminum sphere.

EXPERIMENTAL RESULTS AND COMPARISON WITH
HARMONIC SERIES ANALYSIS

Measurements were made on a Lucite sphere, employing the
technique described in Chapter 9. The form function |f.(ka)| is
defined in terms of experimentally measurable quantities by

2r IP,I
£, )| a Tpl (
where 7 is the distance between the sphere center and the receiving
hydrophone, |p,| amplitude of the reflected pressure, and Ip,| the
amplitude of the incident pressure measured, at the point occupied by
the center of the sphere, in the absence of the sphere. The pressure
amplitudes in Eq. (1) are steady-state values. The modified expression
for | f.(ka)|, suitable for the transient measurements, is [7]
2r Ig,(ka )l

| fu (ka)] s Tz’ 2
where g and g, are, respectively, the Fourier transforms of the
reflected and incident pulses. The geometry of the measurement is the
same as described above for the steady-state case. The method of pulse
digitization and transformation is described in Ref. 8.

Figure 2(a) shows a pulse used to insonify a 3.175-cm-diam
Lucite sphere. The center frequency of the pulse is 210 kHz, and its
Fourier transform is given in Fig. 2(b). The abscissa of the curve in
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?
SPECTRUM OF INCIDENT PULSE

TE o=

(a) (b)

Fig. 2 — (a) The pulse incident on a Lucite sphere. (b) The normalized frequency
spoctrum of the pulse in (a).

Fig. 2(b) has been converted from frequency space to ka, since the
final result of the analysis will be a form function vs ka plot. The pulse
reflected by the lucite sphere and its Fourier transform are given in
Figs. 3(a) and 3(b). The operations indicated by Eq. (2) were carried
out with a CDC 3800 computer and the resulting, experimentally
obtained, form function is given in Fig. 4, which also shows the
theoretical results obtained from a harmonic series analysis [2,3] which
neglects absorption. The limits on the abscissa in Fig. 4,
9 < ka < 12.5, were determined from the experiment as the ka values
at which the spectrum of the incident pulse is down 10 dB from its
maximum amplitude. This 10-dB-down value was empirically deter-
mined to be a reasonable choice of a cutoff value from extensive previ-
ous measurements (7). Agreement between theory and experiment was
obtained {7] beyond the 10-dB points, so this is a conservative cutoff
value.

A lIack of quantitative agreement between theory and experiment
is evident from Fig. 4. The accuracy of the experimental measure-
ments made on metal spheres, (7] by the same technique, inferred that
the experimental curve in Fig. 4 was correct and that the theory was in
need of modification. The most obvious modification considered was
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SPECTRUM OF REFLECTED PULSE
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(b)

Fig. 3 = (a) The pulse monostatically reflected by a Lucite sphere when the puise
shown in Fig. 2 is incident. (b) The normalized frequency spectrum of the pulse
seen in (a).
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== THEORY ( NO ABSORPTION)
e===EXPERIMENT

ka
Fig. 4 — A comparison between theory which does not include

absorption (—) and experiment ( ) for a Lucite sphere.

the inclusion of the effects of the absorption of shear and compres-
sional waves in lucite.
MODIFICATION OF THEORY TO INCLUDE ABSORPTION

For an elastic sphere in the absence of absorption, the exact series
solution for | £, (ka)| is given by [2,3]

Sw(ka) = l;—i] ”g -D"Q2n + l)sin'n,,ei"", (3)

with
tany, = — U, (ka)L, — (ka)j,'(ka)]/[y,,(ka)L,, - (ka)y,'(ka)]. 4)
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The j, and y, are, respectively, spherical Bessel functions of the first
and second kind, and the primes denote derivatives with respect to the
arguments. The function L, is represented by a division of two
second-order determinants of the form

ay axy
a3 das

L,= - plps. (5
ay, a4y

as a4xn

The elements of the determinants are given by Goodman and Stern, {9]
and p and pg are, respectively, the densities of water and the sphere
material. Two elements are repeated here for later comparisons in
order to indicate the complication introduced by absorption:

a = kLaj,,'(kLa) and az; = nin + l)j,,(ksa) 6)

The arguments of the spherical Bessel function in Eq. (6) include the
compressional and shear wave numbers (k; and kg) in lucite. These
arguments are real in the case where no absorption is included, and
computation of the spherical Bessel functions is standard procedure.

Absorption is included by the standard method of introducing
complex wave numbers into the theory. The complex compressional
and shear wavenumbers k; and kg are given by

kpa = (ka) <= — ika < B8, )
(43 L

ksa = (ka) = ~ ika < B. (8)
Cs Cs

The subscripts L ans S represent compressional and shear in the Lucite;
the nonsubscripted quantities refer to water. The ¢'s are wave speeds
and the B’s are absorption factors derived from the measurements of
Hartmann and Jarzynski [10]). In the frequency region of interest here,
the absorption coefficients are given in Ref. 10 as a; ‘- A, (compres-
sional) = 0.19 dB and a5 ‘- Ag (shear) = 0.29 dB. The wave speeds cs
= 1380 m/sec and ¢; = 2680 m/sec were obtained from the Ocean
Materials Criteria Branch of NRL. The velocities are measured to an
accuracy of +1%, but were unfortunately not measured on a sample
from the same stock used to fabricate the sphere, since no such sample
existed. The speed of sound in water was 1482 m/sec [11]. As a result
of introducing complex wave numbers into the theory, the elements of
the determinant defining L, contain spherical Bessel functions with
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complex arguments. No tabulations of Bessel functions with nonin-
teger order and complex arguments were available, hence these func-
tions were redefined in terms of the hypergeometric function using the
relations [12]:

Jn(Z) = AoF\ly + 1, — (2)Y4)(Z)~112, 9
where

Va ! (10)

ST +pzramr YTt

I is the gamma function, ¢F) is the hypergeometric function, and Z is a
complex quantity, in this case either (k a) or (kga). The derivatives
Ja and y, are expressed in terms of hypergeometric functions using the
relation

d" . 1
2 o160 = 45
The matrix elements describing L, (Eq. 5) are given below in terms of

the hypergeometric function. The following definitions are used in the
expressions for the matrix elements;

oF,(b+n;x). an

z, =ka Zs = ksa,

= - zY/4; 1= - zYa,
Fy = oFi(y + 1, V), Fs=oFily+ 1,0,
Fiy=oRky +2, U); Foo = oFi(y +2, D),
Fiy = oFfy(y +3; V) Fs; = oF iy +3; D).

In the following expressions, u and A are the Lamé constants, and A
and A are defined by Eq. (9-10). With the above definitions, the
matrix elements are

1 12 2+
on=ally+ FNZ[7"°F — G+ Fu] ' (12)
ay = An(n + 1)Z3"V2F, (13)
ay = 2lay — AZyV2F,). (14)
ay; = A l2(n2 - I)ZJ"”FS (15)
Z +(3/2) +(1/2)
A A S | Fol .
y+1 4y+ Dy +2)

PN
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ay = 4 {ZE”“(“FL ~ 2u/A [('y ~ 12y = 3D 2y,

—~{1/2) +{3/2)
vZy 4 F“” , (16)

TG rn TG IT 6T
2n + Vnd _ zgrtr
ay, = — *-—LZ;—* [(7 ~ 3223~ VI g ~ G0 A17)

The form function |f.(ka)| is obtained from Egs. (3-5) using
Egs. (12-17). Calculations were made with a CDC 3800 computer.

A comparison of curves calculated with and without the inclusion
of absorption effects is given in Fig. 5 while Fig. 6 shows a comparison
between the predictions of absorption theory and two independent
experiments. The significance of modifying the theory to include
absorption is demonstrated by Figs. 4-6. Quantitative agreement
between theory and experiment is found in Fig. 6.

~—— NONABSORBING THEORY
=== ABSORBING THEQRY
[ S

{

|
A, |

k4 {4 Ill ——I‘! 13
1]
Fig 5§ ~ Comparison between calculations of the
reflection from a lucite sphere with and without the in-
clusion of absorption.
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THEORY

—-—EXP |

Fig. 6 — The reflection function calculated
from the theory for an absorbing Lucite
sphere is compared to reflection functions
obtained from two independent experi-
ments.

CONCLUSION

The monostatic reflection from a lucite sphere in water cannot be
described by a plane-wave expansion technique unless the effects due to
absorption are included in the analysis. The need for modification of
the existing theory was demonstrated by a transient measurement tech-
nique and theoretical verification carried out. The results indicate that
the measurement technique is capable of producing quantitative results
with reasonable confidence on other elastic shapes not amenable to
exact calculation.
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Chapter 11

LONGITUDINAL WAVES INCIDENT
ON AN ELASTIC SPHERICAL OBSTACLE
IN ANOTHER ELASTIC MATERIAL

INTRODUCTION

Interaction effects of elastic waves and bodies are the basic source
of information used to attempt identification of flaws and inclusions in
materials nondestructively. Even though analytical descriptions of
some systems are possible, useful interpretation has often been severely
limited by the lack of special function evaluations over sufficiently large
ranges of parameters. Even when such calculations are available,
interpretation is limited because basic wave-interface interactions are
not completely understood. The spherical inclusion of one material in
another is a system that is encumbered with all of these limitations.
The problem of the spherical shape is interesting because it is a closed
(finite) surface with a separable boundary value solution and, in some
cases, is a reasonable approximation to an isotropic hole in a solid, or
an inclusion or scatterer of one material in a matrix of a different
material (often called the host material). Advances in computational
capability [1] have permitted computation of a variety of combinations
of hosts and inclusions.

Other solutions of spherical problems [2] indicate that erratic or
unexpected behavior can occur in the scattering by a solid object in an
elastic medium. A number of results, described by their scattering
cross sections (SCS) as a function of frequency for spherically shaped
inclusions in a different host material, are collected in Ref. 3. Some of
the same combinations of materials assumed in the references, are
assumed to be host and inclusion here. Earlier conclusions were
derived from calculations that did not exceed a ka of 10 and in some
cases only went as high as kg = 3. Certain conclusions about higher
frequency behavior were borne out in some cases by higher ka compu-
tations. In other cases, the limited computations indicated incorrect
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conclusions. Direct experimental observations of total scattering cross
sections are difficult, or perhaps impossible, to achieve. In spite of the
fact that total scattering cross section is an experimentally unobtainable
quantity, it has proven to be useful in allowing generalizations about
classes of scattering problems. Unfortunately, the quantity called SCS
does not have a universal definition. Here previously published curves
are compared with alternate descriptive quantities for the cases treated
elsewhere.

SCATTERING DESCRIPTIONS

Three different quantities are commonly used to quantitatively
describe scattering from bodies as a function of frequency: total scatter-
ing cross section (TSCS), differential scattering cross section (DSCS)
and form function |f.|. Perhaps the most common of these is TSCS,
which is usually defined [3] as the ratio of total energy scattered per
unit time to the incident wave energy per unit area normal to the
propagation direction per unit time. This is the quantity used to
describe solutions in the area of nondestructive investigation or evalua-
tion. However, even when TSCS is discussed in theoretical treatments
it is not measured in the associated experiments (4]. The popularity of
TSCS is probably a result of the spacial averaging inherent in the defini-
tion: i.e., for a body, it represents the total energy around the entire
body. This is difficult to measure. In most cases measurements in a
single direction, or a few directions, are all that can be made, and even
those, often with great difficulty, especially if the medium containing
the scattering body is a solid.

The detfinition of TSCS for spherical geometries leads to the
expression

TSCS = 4wa? IB"‘”IAP salatD gt
L1 ksy a?

where a is the scattering sphere radius, k is the wave number for longi-
tudinal waves when subscripted by L and for shear waves when sub-
scripted with S. The additional subscripts | and 2 refer to the outer
(matrix or host) and inner (sphere or inclusion) medium respectively.
The coefficients 4, and B, are derived from the boundary value prob-
lem in the spherical geometry in which the wave equation is separable.
The formulation of the probiem is treated elsewhere [3.5.6]. and in
Chapter 14, s0 only the solutions and definitions of pertinent quantities
necessary for computation will be given here. The matrices defining A,
and B,. the elements in those matrices and the definitions of the quan-
tities contained in them are given in the appendix.
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In addition to the above definition of TSCS another quantity
called the normalized (total) scattering cross section (TSCSy) is defined
as the ratio of the TSCS to the geometrical cross section (wa?) of the
sphere [3). It is therefore the ratio of total power in the scattered wave
to the power of the incident wave through the cross-sectional area of
the scatterer (sphere).

The use of TSCSy seems t0 have been helpful in the evaluation
of scatterers distributed in a volume since it takes into account all types
of scattering, including mode conversions. It is a measure of the total
scattered field, without taking into account any directional properties.
At the same time, and for the same reasons, there exist limitations in
the physical interpretation of scattering by evaluating TSCSy. To com-
pensate in part for this shortcoming, definitions have been made of
TSCSy for an incident longitudinal wave or shear wave alone and the
resultant longitudinal or shear wave reflected from the scatterer (4].

The DSCS is similar to the TSCS but includes the angular depen-
dence of the scattering. It can be defined as the scattered power
(energy per unit time) per steradian divided by the incident (longitudi-
nal wave) intensity (energy flux). Solving the boundary value problem
results in the expression

114 ks a

DSCS-a’”j% 2:+l A, P,,(coso)r+L°° 2n+1 B, P,.'(cosa)ﬂ. (2)

which again combines the effxcts of longitudinal and shear waves. Such
a combined quantity cannot be evaluated experimentally with present
day sensors.

For the case of backscattering (8 = ), since
P,,' (cos w) = 0and P, (cos w) = (—1)",
k]
= (=D2p +1 A'r' )

-2
DSCS aL§ %, a

in which case no shear waves are involved in the scattering.

Another quantity used to describe the scattered field is the form
function [f.| which results from the analyses of reflection from
spheres and cylinders after the manner of Hickling (2] or Neubauer et
al. {7] and others [8.9). For a longitudinal wave incident on a sphere,

2
k“a

|fuka, 8)] = Lzb (=D"Qn + 1) 4, P,(cos®)|  (4)

L — b — e - - —r e o —ammav————

co . asatamk



208 CHAPTER 11

For beckscattering (@ = =) this becomes

2 |= .
(fiulka, =)| = % a La( D*Qn+1) A,l (5)

so the relationship between DSCS and form function is
2
DSCS () = <= | fu(ka, m) 2. (6)

Elasticity problems have most often been described by TSCS, and only
occasionally by DSCS. In acoustical problems |f.,| is probably the most
common description and the one that has been compared quantitatively
with experiments [4].

COMPUTATIONS

In this work backscattering calculations were carried out for com-
binations of seven different materials. Therefore, 42 cases of a spheri-
cal inclusion of one material in another were computed, as well as the
seven materials with a spherical void or hole in each. The materials,
their densities and longitudinal and shear wave speeds are listed in
Table 1. The capability for computation of spherical Bessel functions
achievable for large argument. That capability has since been achieved
by Flax and Mason, [1] whose results were used for these computa-
tions. Here only an incident longitudinal wave will be considered in the
host medium but both longitudinal and shear waves are generated on
reflection. Absorption of bulk waves are included in the computations
by using a complex wave number.

Table 1
. Longitudinal Shear
Material (l::n/m::g Wave Speed | Wave Speed | v,/vg
(m/sec) (m/sec)

Polyethylene 0.90 1950 540 3.61
Polymethy!

methacrylate 1.18 2680 1380 1.94
Magnesium 1.74 5770 3050 1.89
Beryllium 1.87 12890 8800 1.46
Aluminum 2.70 6568 3149 2.09
Germanium 5.36 5285 3376 1.57
Iron 7.90 5790 3100 1.87
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The cases of a spherical cavity in each material computed by
Truell et al. [3] were taken only to a value of k,a = 7. Calculations,
which were carried out up to a k,a of 40, support their conclusion that
as kja increases, values of TSCSy of very nearly 2 are approached by
all curves. For k,a of 40, TSCSy was in all cases between 1% and 2%
of the value 2. Since our curves show only a gradual smooth approach
to those values with increasing k;a they will not be reproduced here.

The case of a germanium (Ge) sphere in an aluminum (Al)
matrix was computed (see Fig. 1) to permit a direct comparison with
the curves of Truell et al. [3). Agreement was obtained up to a kja of
10, which is the largest value calculated by Truell. Truell et al. specu-
lated correctly that the curve was perhaps a "very gradual oscillation,
with a maximum in the vicinity of k;a = 8, upon which a fine structure
of rapid oscillations is superimposed.” That is exactly the behavior of
this curve even up to a kja of 40. The only other features of any
interest are the bursts of sharp, but small, spikes around values of k;a
of 19, 25, and 33. The case for these small oscillations is undoubtedly
interference between the incident reflected wave and waves reemerging
in the direction of incidence after refraction and reflection inside the
sphere.

T T T T
A -
3 :
g
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12 -
0 { 1 1 L
0 8 1 " 4 x «©

Fig. | ~ TSCSy vs k\afor a Ge sphere in Al (v\/vy) = 1.243.

On the basis of their limited caiculations Truell et al. concluded
that TSCSy curves are smoothest for cases in which there are large
differences in longitudinal wave speeds of matrix and sphere material,
while similar wave speeds result in highly oscillatory TSCS, curves.
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This conclusion is not borne out by the calculations shown here. It was
shown to be true in some cases and not in others, as evidenced by the
results in Figs. 2-7. For a beryllium (Be) sphere in a polyethylene (PE)
matrix, for which the longitudinal wave speed ratio v,/v, is 0.152, the
TSCSy curve is shown in Fig. 2 to be relatively smooth up to a k,a of
30. Lest that be considered an isolated case, the example of a Be
sphere in Ge, for which v,/v, = 0.410, is given in Fig. 3. Whereas
both of these cases fit the hypothesis of Truell et al., for the inverse
case of PE in Be, for which v;/v, = 6.569, the computations result in
the oscillatory TSCSy curve shown in Fig. 4. This is in contradiction to
the hypothesis of Truell et al. Again to eliminate the possibility of an
isolated instance, the TSCSy of a Ge sphere in Be, (v;/v, = 2.348), is
shown in Fig. 5 to be oscillatory also. The case of a magnesium (Mg)
sphere in an iron (Fe) matrix, shown in Fig. 6, is one for which v, is
very close to v,, i.e ., v/v, = 1.004, and does have a TSCSy curve
oscillatory in nature, which is consistent with the hypothesis. On the
other hand the case of a Ge sphere in Fe shown in Fig. 7 which has a
ratio of v,/v, of 1.096 results in a smooth curve.

3 T T T T
2 ~
4
[72]
QO
(7]
-
1 p— —
0 ] ] 1 ]
() ) 12 18 24 0
ka

Fig. 2 — TSCSy vs k,a for a Be sphere in PE. (v,/v,) = 0.152.

On the basis of this set of TSCSy curves one might conclude that
for v,/v; > 0.9 there seem to be rather regular oscillations with a
period of kja € 1. These are superimposed on another larger basic
period which itself decreases as v,/v, increases and becomes difficult to
distinguish as the small period superimposed oscillations increase. By
viewing all of the 42 computed curves at one time, an attempt was
made to distinguish between smooth- and oscillatory — (or perhaps,
more correctly, jagged) — curve behavior and we concluded that for
v)/vs < 1.3 curves tend to be smooth and for v,/v, > 1.3 curves tend
to oscillate rapidly.
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Fig. 3 — TSCSy vs kja for a Be sphere in Ge. (v,/v;) = 0.410.
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Fig. 4 — TSCSy vs kjafor a PE sphere in Be. (v /v,) = 6.595.
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Similarities were noted among the curves for which the scattering
sphere was assumed to be beryllium. An example of a typical one of
these is given in Fig. 8. Similarly, for the cases for which beryllium
was assumed to be the matrix material curves similar to Fig. 9 were
obtained. These similarities are possibly related to the fact that beryl-
lium has unusually large longitudinal and shear wave speeds (see Table

1).

4 T T T 1
3"' -—
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Fig. 8 — TSCSy vs kja for a Be sphere in Mg. (v;/v,) = 0.448.

TSCS,,

Fig. 9 — TSCS, vs k,afor a Al sphere in Be. (v,/v,) = 1.958.
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Many TSCSy curves were particularly devoid of behavior that one
might attempt to interpret physically in terms of resonant or circum-
ferential wave behavior. (See Figs. 7 and 10.) However, curves of
DSCS or |f.| for the same cases have more features that may ulti-
mately be subject to such interpretation. The two such cases given in
Figs. 11 and 12 correspond respectively to Figs. 7 and 10. Oscillations
of similar, but not the same, periods are found in the plots for TSCSy
and |f.| for a Ge sphere in Al (Figs. | and 13 respectively). The
opposite observation can be made on examination of Fig. 9, for an Al
sphere in Be for which the TSCSy is regular and relatively well
behaved, while the |f..| curve for the same combination (Fig. 14) is
irregular. These cases indicate that it may be helpful for applications
where characteristic behavior is sought, to calculate both types of func-
tions until distinct physical causes can be attributed to specific features
of curve behavior.
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Fig. 10 — TSCSy vs k,a for an Mg sphere in Al. (v{/v;) = 1.138.
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Fig. 11 — Form function | f_| vs kyafor a Ge sphere in Fe. (vi/v,) = 1.096.
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Fig. 12 — Form function |f,.| vs k,a for a Mg sphere in Al. (v)/v;) = L.138.
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Fig. 13 — Form function | /.| vs k,a for a Ge sphere in Al. (v)/v)) = 1.243.
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Fig. 14 — Form function |f.| vs kya for an Al sphere in Be. (v)/vy) = 1.958.

Some results claimed to indicate resonant behavior in scattering
by an inclusion have been calculated by Flax and Uberall [10]. How-
ever, on careful comparison of the curves describing TSCSy and |f..|
for an Fe sphere in Al shown in Figs. 15 and 16 respectively and the
partial wave curves given in Ref. 7, none of the maxima and minima
corresponded in a consistent way to those of the partial waves in the
spherical region.
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Fig. 15 — TSCSy, vs k,a for an Fe sphere in Al. (vi/vy) = 1134,
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Fig. 16 — Form function |f.| vs k,a for an Fe sphere in Al. (v,/v;) = 1.134.

The TSCSy curve for a spherical cavity in a solid has been noted
as having a single maximum roughly corresponding to radial resonant
behavior [3). It is also anticipated that radial resonant behavior should
be observable in elastic spherical inclusions [3]. However, experience
with the reflection from solid spheres in water [7] leads one to conclude
that the radial mode resonant peak may not be expected to be
significant in the curves describing reflection from elastic spheres
imbedded in another solid. Resonant behavior is an excitation of a
natural mode of vibration of a body, a sphere in this case, and whether
a peak is detected depends on whether that vibrational mode has
significant radiation in the observation direction. For solid spheres and
shells in fluids at low frequencies the radial mode is difficult to excite
by an incident wave [6-12]. It is, therefore, also difficult to detect.
There have been indications that resonant behavior cause minima in
|f.| for backscattering because of circumferential modes in spheres and
cylinders occurring at values of ka below those required for their radial
or breathing mode [11]. The predominant modal indications are likely
to result from the reinforcement of interface modes, as was the case for
cylindrical shells in water [11]. It would, therefore, seem that a reason-
able degree of understanding of these scattering curves for spherical
bodies in a different material matrix must await the more detailed
examination and understanding of the properties of waves that exist on
the interface of two different materials.

By means of complex wave numbers, absorption was included in
the solutions for spherical scattering and reflection. (See the appendix.)
Results of computations assuming no absorption are shown in Fig. 17
for TSCSy for a PE sphere in Al. The same case computed assuming a
longitudinal and shear wave absorption 8; and 85 of 0.0070 Np and
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Fig. 17 — TSCSy vs kafor a nonabsorbing PE sphere in Al. (v/v,) = 3.368.

0.0212 Np respectively for the PE sphere is shown in Fig. 18. A curve
of |f.| for the same case considered in Fig. 17, of a PE sphere in Al,
again without absorption, is shown in Fig. 19. The form function [f.|
for the same case of a PE sphere in Al but with absorption in the
sphere of PE is given in Fig. 20 showing a more dramatic effect in the
comparisons of the absorbing and nonabsorbing cases. Comparison of
Figs. 17 and 18 shows a moderate difference in the TSCSy curves with
and without absorption. However, for the same case the differences
shown in the curves of |f..| in Figs. 19 and 20 indicate large magnitude
differences. The two descriptors, TSCSy and |f..| (or DSCS) have
different sensitivities to the damping effects of absorption.
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Fig. 18 — TSCSy vs k a for an absorbing PE sphere in Al. (vy/vy) = 3.368.
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Fig. 20 — Form function /.| vs ka for an absorbing PE sphere in Al. (v,/v,) = 3.368.
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Fig. 19 — Form function | f,,| vs k,a for a nonabsorbing PE sphere in Al.
(v)/vy) = 3.368.
2 T T T —T
®
3! ]
; 0 J E 1 L
: 0 8 16 24 32 40
[




220 CHAPTER 1!

APPENDIX

Four boundary conditions are prescribed at the interface between
the host medium and the sphere at r = g:

(i) radial displacements are continuous, (ii) tangential
displacements are continuous, (iii) radial stresses are
equal, and (iv) tangential stresses are equal.

Since only waves in the outer medium will be considered here, the
required coefficients 4, and B, for Egs. (1-6) are

ap a,; a4 as
ann an ax ass
a3, aj; a4 ass
as a4 A das
A, = .
A
a a, a as
axn a a; ars
as as; ay; ass
aa a4 ag dss
- .
B, A
a a5 a3 dis
ax az ay an
where 4 = as as a; a3,
aq a4 a4 Qu

U
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The elements are given below.
ay = pifpy Uin(Zy) = 2G i (Z, V(1 + 2Gy)
ai=-2n(n + 1) yp)) (Z51),(Zsy) — jn(Zs)V 24,
a;; = (M2(Z,) - 2G,AP(Z, )/ + 2G)
@re==2n(n + 1) [Z5; A (Z5) — WP (Z5)V 24,
a5 = Un(Zy)) = 2Gj (Z, )V (1 +2G))
an = Z1 (2,
ay=nln +1),,(2Zs)
ay = Zy b (2)
ay=nin + HAY (Zs)
ay = ZyjAZy)
ay, = Zy o 2y3) — o Zy)) W2Zd) /w24, )
@y = (Z&Hi(Zs) + (n + D) (n = 1, (Zs)] (w0, 24, /u, Z4)
ay = 20Z,, WP (Zp) - AP(Z)
@y = ZHR D (Zs) + (n +2) (n = DAP(ZG)
ays = 202,14, (Z,) = ja(Z,)]
aq = (2 )
au = i\ Zs) + Zsyju(Zs,)
ag = "um (Z,))
Qe = WV (Zg) + Zs b V(Zs)
ays = julZs))

Where p, and p, are the densities of medium 1 and 2 respectively, u
and u, are the Lamé rigidity moduli and j,, A, are the spherical Bessel
and Hankel functions, respectively.

The following definitions are used to simplify the notation some-
what.

Z,, = k\a
Zs) = kg\a
Z,) = kpaa

Zs; = ky;a
G, = 2,24 - 2},
G, = Z,_J;Z}g - 22{?2-
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In the expression for the elements, the primes indicate
differentiation with respect to the argument of the spherical Bessel and
Hankel functions. The effects of material properties that cause attenua-
tion of longitudinal and shear waves are accounted for in the theory by
introducing complex longitudinal and shear wave numbers defined as

xp = kg (1= ipygy)
ks (1 =~ Bg))

k) = kgl =iy

LY

K5y = kgl = iBg))
where 8's are absorption factors with dimensions of Np. The relation 1o
absorption coefficients a;A; and aghs (A = wavelength) in dB is
ﬁL.S - aL,S/HOw e).
Formulations apply to lossless cases by letting 8, ¢ = 0. As a result of
the use of complex wave numbers, the elements of the determinants
defining 4, and B, contain spherical Bessel functions of complex argu-
ments. Techniques developed by Flax and Mason (1] for calculating

these functions were used. Far field approximations are assumed for
the scattered field.
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Chapter 12
RUBBER CYLINDERS AND SPHERES*

INTRODUCTION

The scattering of an infinite plane acoustic wave by isotropic
cylinders and spheres fabricated of lossless materials has been con-
sidered by numerous authors both theoretically [1-3) and experimen-
tally [4-6]. The harmonic series analysis modified to include the effect
of absorption in the elastic solid [7-9] were found to agree with experi-
ment (7,10] to within the uncertainty in the elastic constants of the
material used.

Here a parametric study will be described of the reflection and
scattering of sound by silicone rubber cylinders and spheres in water.
As will be shown, the use of silicone rubber allows a significant
simplification of the theory. These materials are of special interest due
to the fact that their longitudinal sound speed [11] ¢, is significantly
lower than that of water. Furthermore, the product of the density p,
and c¢; can be made to approach that of water. Finally, at ultrasonic
frequencies the longitudinal transmission loss is low. From a practical
standpoint materials such as these have proven useful in the construc-
tion of acoustic-slow waveguides [12) and lenses (13].

FORM FUNCTION CALCULATIONS

The ratio of the absolute values of the scattered, |p,l, to the
incident, po, pressures can be expressed as

1o,/ 1pol = (a/29)|f ], (1)
for spheres and
2
a

*This work first appeared in: C. M. Devig, L. R. Dragonstie and L. Flax, J. Acoust. Soc.
Am. 63, 1654-1698 (1978).
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for infinite cylinders, where a is the radius of the sphere or cylinder, r
is the distance from the center of the scatterer to the receiver and | /.|
is defined as the amplitude of the form function. Derivation of the far-
field expressions for |f.| are given in Chapter 10 and Chapter 4 for
spheres and cylinders, respectively.

The variation of |f.| with ka (k = 2w/A, where A is the
wavelength of sound in water) for the case of monostatic scattering of
sound from silicone rubber spheres and cylinders in water is calculated.
Values of p,. elastic moduli, and sound-absorption coefficients charac-
teristic of commercially available material [11] are considered. Follow-
ing Mason, [14] the value of shear speed, c,, is taken 10 be maximum
of ¢;/10 and the shear absorption coefficient a minimum of 25 times
the corresponding longitudinal absorption coefficient a. As is generally
the case for rubber, the value of a for silicone rubber has been shown
{11} to be proportional to frequency.

Curves of |f.| obtained with and without shear rigidity and
absorption were indistinguishable from each other. This is a result of
the abnormally iow shear speed which in turn leads 1o negligible shear
conversion at the water-rubber interface. Thus, all subsequent caicuia-
tions have omitted the effect of shear and so correspond to a liquid
cylinder. In Fig. 1 a comparison is made with and without absorption
for values of ¢; and p, typical of silicone rubber. The curves with a #
0 were obtained using a value approximately equal to the average of
those reported by Folds [11]: specifically a/k = § x 107} where a is
expressed in Np/cm. As can be seen, the effect of absorption in these
materials is simply to attenuate the amplitude of the oscillations. As
will be shown, these oscillations are due to the interaction between
various lens waves which suffer atienuation in the material and. in
some cases, specular reflections which do not. In order to simplify
both the calculations and the interpretation, the investigation will be
restricted for the most part to the lossless case.

In Fig. 2, If.|. is represented for ¢; = 1.0 km/s and variable p,
such that p,c; = p,. Silicone rubber with p, > 1.5 g/cm’ can be
achieved in practice by loading with metal oxide. Curves from Fig. |
corresponding to p, = 1.0 and 1.5 g/cm’ are repeated. For p, (and
therefore p,c;) = 1.5 the value of |f..[, increases linearly with ka up
to a ka value of approximately 5, at which point the value of |f.l,
begins to oscillate about a value of approximately 0.5. For values of
p,c; different than 1.5, an oscillation appears in the low ka region
whose amplitude increases with increasing deviation of p,c; from 1.5.
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Fig. | — A comparison of computed curves of | /.| vs ka for silicone
rubber cylinders without and with longitudinal absorption included.
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Fig. 2 — Form-function vs ka curves computed for cylinders
with ¢, = 1.0km/sand 1.0 € p, € 2.0 g/cm’.

In Fig 3 various combinations of p, and ¢; were chosen such that
the value of p,c; is maintained at a value of 1.5. In each case the form
function increases linearly with ka, with the linear region extending to
high values of ka as ¢, increases (or p, decreases). For the upper

! curve (¢; = 1.3) the value of |f.|. deviates only slightly from zero
over the entire range of ka shown. This is to be expected since when
both ¢; and p, equal the corresponding values in water, the cylinder
becomes essentially a water cylinder in water and as such produces no
scaltering.
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Fig. 3 — Form-function vs ka curves computed for cylinders with combinations
of p, and ¢, giving p ¢, = p, (water).

Similar behavior should occur for other geometries. To check this
assumption, calculations were made for spherical geometries. The
results obtained for ¢; = 1.0 km/s and p, values 1.3, 1.5, and 1.7
g/cm’ are shown in Fig. 4. For p, = p,c; = 1.5, the monotonic
increase in |f -ls with ka is observed to be parabolic rather than linear
as in the cylindrical case. For values of ka > 8, the value of |/,
exhibits an oscillation about a value of approximately 4.0, compared to
the 0.5 value observed for cylinders. The effect of sound absorption on
the curve for | f.|, corresponding to this latter case is shown in Fig. S.
The results are essentially the same as in the cylindrical case (Fig. 1).

PULSE CALCULATIONS

The form function curves seen in Figs. 1-5 describe the steady
state, backscattered response of the cylinders to an incident, infinite
plane wave, and give no obvious clues to the individual mechanisms
which account for the return. Isolation of the individual backscattered
echoes, which contribute to the steady-state response, is achieved by
calculating the response of the cylinders to an incident acoustic pulse
short enough in duration that the backscattered return is a series of
separate echoes whose magnitude and time of arrival can be observed
and analyzed. If g(ka) is the wave-number spectrum of the incident
pulse, the backscattered response at a distance 7 much greater than the
radius a is given by [2,3,6]
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Fig. 4 — Form-function vs ka curves computed for spherical targets
with ¢, = 1.0 km/s and p, = 1.3, 1.5, and 1.7 g/cm’.
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Fig. 5 — A comparison of computed form-function vs ka curves
for silicone rubber spheres without and with absorption included.

12 -
Pr= Do 1] Refo g(ka)|fo(ka)|e™ d(ka), 3)

2r

where |f.l. has ‘been described previously in Eq. (2), and 7 is a
dimensionless time parameter

= (c,t—r)la 4)

normalized to be zero at the time the incident wave would reach the
position occupied by the center of the cylinder in the absence of the
cylinder, and ¢, is the speed of sound in water.
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Calculations were made of the response of rubber cylinders to an
incident gated sine-wave pulse. The densities and sound speed of the
cylinders were chosen to be within the values considered in the form
function versus ka curves shown in Figs. 1-3. Figures 6(b)-6(d) give
the response of three targets to the incident pulse shown in Fig. 6(a).
In all three cases the targets are cylinders with a negligible shear speed
and a longitudinal sound speed of 1.0 km/s. The densities are p, =
1.0, 1.5, and 20 g/cm?, respectively. The incident pulse is centered at a
dimensionless frequency kpa = 12, where ko = 2w fy/c,. The echo
responses seen in Figs. 6(b) and 6(d) show a specular reflection begin-
ning at 7 = — 2 (recall + = 0 when the incident wave reaches the
center of the cylinder) followed by a train of pulses which have taken
internal paths beginning at + = 4. The pulse train of equally spaced
echoes beginning at v = 4 exists in all three cases. No specular reflec-
tion exists for the case p, = 1.5 g/cm® where p,c; equals the specific
acoustic impedance of the surrounding water. Even in this case signifi-
cant energy returns in the backscattered direction, as can be observed
in Fig. 6(c). The specular return is 180° out of phase with the incident
pulse when p = 1.0 g/cm’® and in phase when p, = 2.0 g/cm? (Figs.
6(b) and 6(d), respectively). The form function is a steady-state
parameter, which reflects the long pulse interference of the individual
returns isolated in Fig. 6. Most consideration is given to the cases
when p,¢c; = 1.5, since specular backscattered reflection is zero, and
for the uses discussed in the introduction (waveguides and lenses)
specular backscatter is not desirable. In addition to the calculation seen
in Fig. 6(c) at kga = 12, backscattered echoes were computed at koa
values of 2.0, 3.0, 6.0, 7.5, and 9.0 for the case p, = 1.5 g/cm?, ¢, =
1.0 km/s. These calculations showed a buildup of the pulse amplitude
at 7 = 4 at the rate of 0.08 py/koa up to a maximum of approximately
0.6 po. This accounts for the magnitude of |f.|. in the region from 0
< koa < 7. The oscillation in |f,|. are caused by the interference
between this initial return and the rest of train of echoes. The first
echo in Fig. 6(c) had an amplitude of 0.5 p,. The echoes which follow
in the train have reached amplitudes of 0.16 p,y, 0.09 p,, and 0.05 p,
and occur at + = 12.1, 20.2, and 28.3, respectively.

If the sequence of equally spaced echoes seen in Fig. 6(c) is
assumed to be the result of the continuous repetition of the same travel
path, within the cylinder a circumferential wave speed may be ascribed
to the return. The ratio of the circumferential speed, c*, to ¢, is given
by

c*/c, = 2n/Ar, )
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Fig. 6 — A computation of the echoes backscattered when a five
cycle pulse (a) is incident on cylindrical targets with C; = 1.0
km/s, (b) p, = 1.0 g/cm?, (c) p, = 1.5 g/cm’, and (d) p, = 2.0
g/cm?.
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where A7 is the time between echoes as discussed earlier. Peaks in the
form function occur when the individual echoes add in phase as the
incident pulse is lengthened. This occurs when the circumference of
the cylinder is an integer number of wavelengths. Leading to a second
relation [15]:

c*/c, = (Aka) peq; (3]

therefore, if one starts with |f.|. vs ka, the circumferential speed may
be determined from the spacing of the successive equally spaced peaks
of | f.|.. For the target described in Fig. 6(b), the form function gives
(AKka)peqe = 0.7, and Fig. 6(c) gives A7 = 8.1. The speed ratio ¢*/c,,
obtained from Egs. (5) and (6) both give c*/c, = 0.7.

The relationship between surface (or circumferential) wave
characteristics [17]) and guided wave propagation has been discussed
previously [16,17]. If the case p, = 1.5 g/cm?, ¢, = 1.0 km/s is taken
as typical of the speeds and densities considered here, the refracted
internal ray paths are as shown in Fig. 7. Seven typical paths are fol-
lowed with incident angles 8 of 10°, 20°, 30°, 40°, 50°, 80°, and 90°.

| T 7 7

INCIDENT PLANE WAVE A

80°

Fig. 7 — A cross section of a cylindrical target with
p, = 1.5 g/em’, ¢, = 1.0 km/s, showing the internally
refracted ray paths.
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The converging lens effect is seen in the bending of the incident wave
towards the normal, and all internal rays generated from normal to
tangential incidence exit the cylinder at angles within 14° of the
forwar_-. attering direction. At incidence angles up to approximately

€° the reflection coefficient curves [18] predict from 90% to 100% of
the energy is transmitted into and through the cylinder back into the
water continuing approximately in the forward direction. Thus, energy
in the ray paths beginning at 10° through 50° incidence shown in the
figure is almost entirely transmitted back into the water. For rays
beginning at 65° to 85° incidence angles, reflection-coefficient calcula-
tions predict both significant transmission and significant internal
reflection. Two legs of the ray path beginning at 80° are seen in Fig. 7,
and multiple reflections and transmission from rays generated at angles
greater than 65° incidence angle give the backscattered echoes seen in
Fig. 6(b). The path of the limiting internal ray, generated at tangential
incidence (@ = 90°) is also seen in Fig. 7. Repetition of the same cir-
cumferential path gives the apparent circumferential behavior. A plot
of |f.l. vs angle at a ka of 12.0 for the material considered above is
given in Fig. 8. This shows the convergence of energy in the forward
scattering direction (9, = 0°) with the steady-state pressure amplitude
scattered in the forward direction 20 dB greater than that backscattered
(9, = 180°) and 14 dB greater than that incident.

CONCLUSIONS

The scattering of sound from silicone rubber cylinders and
spheres was found to be equal to that of an identically shaped liquid
exhibiting the same density and longitudinal velocity. The resultant cw
scattering can be considered in two regions: (1) a low ka region defined
as that over which the first (or primary) lens wave is growing to its
equilibrium value and (2) the region of higher ka. In the low ka
region the scattering can be explained almost entirely in terms of
interference between this primary lens wave and specular reflection. In
the case where p,c; = p,c,, no specular reflection occurs but there is
nevertheless a return which at low ka is due essentially to the primary
lens wave. The corresponding low ka region of |f.| reveals the
manner in which the primary lens wave builds up. In the cylindrical
case this buildup is observed to be linear with ka, reaching an ampli-
tude approximately one-half that of the incident wave for lossless
materials. For spherical configurations the build up is quadratic in ka,
and in the lossless case the amplitude approaches four times that of the
incident wave. In the higher ka region scattering is due to the interfer-
ence between various lens waves and (when p,c; = p,c,) the specular
return.
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Fig. 8 — The bistatic-refraction-function curve (|f,| vs 8,) for a
cylindrical target with p, = 1.5 g/cm?, ¢; = 1.0 km/s. Backscattering
is 180°, forward scattering 0°.
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Chapter 13

ELASTIC CYLINDERS AND SPHERES
AT HIGH ka*

The scattering of sound by elastic cylinders and spheres immersed
in fluids has been discussed by a number of authors [1-4]. In these
papers, and in others mentioned in their references, it is assumed that
the elastic body has incident on it a plane sound wave of pressure
amplitude p, and circular frequency w = kc, where & is the wave
number and c is the speed of sound in the fluid medium of density p.
The density and compressional and shear-wave speeds in the solid
material of the cylinder or sphere are assumed to be p,, c;, and ¢,
respectively. The radii of these bodies are denoted by a.

In general, one obtains the exact normalized scattered steady-state
pressure amplitude per unit incident pressure (form function) by means
of a partial wave expansion or normal mode solution. The solution
contains all creeping, as well as through, waves [5]. The form function
is usually expressed in terms of a nondimensional frequency parameter
ka. Agreement between partial wave theory and experiment is
presented in Refs. 2-4. To obtain much higher frequency values usu-
ally required elaborate expansions of asymptotic series [6] or a
creeping-wave formalism [7].

The present investigation shows that even at a ka of 950.0, no
limiting value of the form function is approached. Calculated results
are obtained for cylinders and spheres made of aluminum, for which
the material parameters are given in Table 1.

Table 1 — Material Properties
px 100 ¢ x10°0 ¢ x10°

(%m) (m/sec) (m/sec)
Aluminum 2.7118 6.370 3.136

Water 0.998 1.482

*These results first appeared in: Lawrence Flax, J. Acoust. Soc. Am. 62, 1502-1503
19717
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The mathematical solution for the scattered sound field is given in
Refs. 1-4. Essentially. the scattered monostatic pressure at large dis-
tance R from the sphere can be represented by the expression

Poa | P O G
5o Velka. — . — . —
2R L’ [ a P ¢

where f. is a complex function of the nondimensional frequency ka
and other nondimensional parameters related to the elastic constants
and geometric properties of spheres. Similarly, the farfield monostatic
reflection for cylinders is

po(a/2R )I/Z L/,.

The evaluation of f. entails computations of sums of Bessel
functions of the first and second kind and their derivatives. Integer-
order Bessel functions are required for a cylindrical geometry and half-
) integer order for a spherical geometry. These Bessel functions must be
4 evaluated for high orders and large arguments. The ability to compute
the scattered pressure depends upon two factors: the range of the
Bessel functions and the convergence properties of the form-function
summations. The calculations have been checked by single- as well as
double-precision techniques. experimental verification has been
obtained to a ka of 50 [1-4], and series convergence has been checked
by numerous methods. For a detailed discussion of validation pro-
cedures, see Refs. 8 and 9.

(1)

C C
ka'gl_'_l"_‘
P c ¢

(2)

The form function for a sphere and a cylinder are shown in Figs.
1 and 2, respectively. Values of |/, | were calculated for a range of ka
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Fig. 1 — Theoretical calculations of the monostatic
reflection (//..]) for an aluminum sphere
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Chapter 14

REFLECTION AND VIBRATIONAL MODES
OF ELASTIC SPHERES*

INTRODUCTION

Effects of resonances on the scattered sound by solid elastic
spheres immersed in water have been observed by several investigators.
[1.2] The normalized scattered steady-state pressure amplitude per unit
incident pressure regarded as a function of frequency. i.e.. the form
function, shows features attributable 1o the free vibrations of the elastic
sphere. For the case of backscattering by lossless metal spheres con-
sidered here, the low-order characteristic frequencies of the free sphere
are separated enough for the effects of its resonant behavior 10 be seen
in the form function. However, when the frequencies of the natural
modes of oscillation of the vibrating sphere lie close to one another,
the form function does not necessarily show the separated effect of
each resonance.

Faran (1] first considered the origin of the near nulls observed in
the backscattered pressure amplitude, but for cylinders in water instead
of spheres. He observed that they occurred close to the frequencies of
natural vibration of the free clastic cylinder. Effects of resonances on
the scattering of sound by a fluid-filled cylindrical cavity in an elastic
solid have also been observed. [3] In Faran's work, the distribution in
angle of the scattering was observed and computed for relatively few
selected values of the frequency. In the present work, only backscatter-
ing and free vibration of spheres was considered and the monostatic
form function was computed for a continuous range of frequency
parameter (ka, where k is the wave number and a is the sphere
radius) from O to as high as 28, thereby showing the relationship
between several resonant frequencies of the free sphere and the shape
of the form function.

*These resuits first appeared in: R H. Vogt and W G Neubauer, J Acoust. Soc. Am. 68,
15 (1976).
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Expressions which describe the scattering of sound by lossless
elastic spheres in water are reviewed here briefly for purposes of
definition. [1.4] Let a steady-state plane wave traveling in the direction
of the positive z-axis and incident on a sphere of radius a centered at
the origin be given by

poexplilwr ~ k2)}, ()

where w and k are the angular frequency and wave number. The sound
scattered into the far field at a distance of r from the origin may be
expressed in spherical polar coordinates as

p = (poa/2riexplilwt — kr)l/.. (2)

where /., is the far field form function,

fu=~ Q2/ka) T (2n + DP,(cosd)sinm, explin,) (3)
n=()
and
tann, = — (a,/b,). 4)
with
a, ={,j,\ka) — (ka)j,(ka), (5)
b, =L, y,(ka) — (ka)y,(ka). (6)

The quantity {,. defined in the Appendix. is a function of the angular
frequency w and the material properties of the sphere. The quantities
J, and y, are spherical Bessel functions of the first and second kind and
the prime denotes the derivative with respect to the argument. When
{. 1s set equal to zero in Egs. (5) and (6). the expressions describe the
steady-state scattering by a rigid sphere. In the case of monostatic
scattering, the value of the Lengendre polynomial P,(cosé) is (—1)".

The quantity {, becomes infinite at the characteristic frequency of
each normal mode of vibration of the free elastic sphere. Torsional
modes are disregarded since they are not excited in the case under con-
sideration. The equation determining the characteristic frequencies is
given in the Appendix. Associated with each n in Eq. (3) there is a
sequence of modes of vibration of the free elastic sphere. It is of
interest to determine physically how descriptive a single term in Eq. (3)
is of an isolated resonance effect observed in the form function.

DISCUSSION
Frequency Domain

The nth term in the expression for the scattered pressure [(Egs
(2) - (6)] can be separated into a part which would be present if the
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sphere were rigid and a part describing elastic reradiation [S}. For the
reradiated part, the elastic sphere is regarded as being driven by the nth
components of the incident pressure and the "rigidly scattered” pres-
sure. When the terms are separated as just described, the expression
for the scattered pressure can be written

ipg . = P,(cos®)
p=— —’;exp[l(w! — kr)l "go Qn+1) o (ka)
x {j,(ka) + pc) (7

(ka)h,(ka)(Z, + z,) |
where
z, = ipch,(ka)/ h,(ka)
is the radiation impedance and
Z,=— ipckall,

is the modal impedance of the elastic sphere, h,(ka) is the spherical
Hankel function, j,(ka) — iy,(ka), and pc is the specific acoustic
impedance of the fluid medium surrounding the sphere. The modal
impedance Z, of the sphere becomes zero at the resonant frequencies
of the free sphere and becomes infinite for the rigid sphere. The terms
remaining for the case when all Z, are set equal to infinity in Eq. (7)
give the part of the pressure which would be scattered by the rigid
sphere. A single term of the radiated part is referred to as a resonant
term in the following and its amplitude. normalized in the same way as
fw in Egs. (2) and (3), is designated |p,| where the term number n is
not shown explicitly.

The amplitudes lp,( of the resonant terms of the immersed sphere
labelled by the corresponding modes of vibration of the free elastic
sphere are shown plotted in Fig. | in a range of ka from 0 to 15 for
three materials. Sphere modal notation is described in the appendix.
The size, spacing and overlap of the resonance terms can be seen in the
figure. The width of the resonance is the ka interval between the point
on either side of the maximum where the amplitude is 1/+/2 times the
peak value. The width of the (2, 1) resonance of tungsten carbide is
0.15. The figure shows an increase in the width of the (nm, 1) reso-
nances of aluminum and brass with increasing n. The various over-
tones have smaller widths and amplitudes. It appears that the funda-
mental resonance terms of a given material have nearly the same peak
amplitudes. In the regions between the peaks of a given resonance, the
nth resonant term varies smoothly in amplitude, as, for example, for
brass in the region between the (4, 1) and (4, 2) resonances. The (I,
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Fig. | — Modulus |p,| of resonant terms as a function
of ka for tungsten carbide, aluminum, and brass.

1) mode corresponds to a linear motion of the sphere as a whole and
does not appear so that the lowest (1, ) mode is (1, 2). The (2, 2)
resonance in aluminum which is near ka of 10.8 has a negligibly small
amplitude and does not appear in the figure. The (0, 1) and (0, 2)
resonances correspond to pure radial oscillations and are small and
wide.

For small values of the integer n, except 0 and 1, the fundamental
frequencies of the modes expressed as k,a, vary slowly as a function of
poisson’s ratio [1,6]. The wave number k, corresponds to the speed of
shear waves in the sphere material. In the particular case of the (2, 1)
mode, k,a lies between 2.6 to 2.7 for a range of poisson’s ratio between
0.05 and 0.45. The corresponding frequency in the scattering form
function is the product of k,a and the ratio of the shear speed in the
material to the speed of sound in water. The effect in the form func-
tion is an increase in the value of ka corresponding to the lower reso-
nances in proportion to the shear speed. The (2, 1) modes of free
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vibration have ka values of 7.43, 5.57, and 3.78 for tungsten carbide,
aluminum and brass, respectively, which are very nearly equal to the ka
values of the respective (2, 1) resonance peaks in Fig. 1. The
corresponding shear speeds are 4185, 3120, and 2110 m/sec which are
very nearly in the same ratios as the ka values of the resonance peaks.

Figure 2 shows the monostatic form function of a tungsten car-
bide sphere. A mode of vibration of the free elastic sphere is indicated
in the figure by a short vertical line above or below the curve with the
integer corresponding to n on the left and to / on the right. The ka
value of the characteristic frequency of the mode is given by the
abscissa of the short vertical line separating n and / on the scale of ka
immediately below it. It can be seen in Fig. 2 that values of ka
corresponding to frequencies of vibration of the free sphere, which are
close to the peaks of the resonant terms of Eq. (7) plotted in Fig. 1, are
also close to minima or other rapid changes in the modulus of the form
function in tungsten carbide. The form function approaches that of the
rigid sphere in the regions of ka lying between the first few widely
spaced resonances. Figure 3 shows the form function for an armco iron
sphere, similar in appearance to tungsten carbide for ka less than 15,
where the resonances are widely separated and appear near minima. In
Fig. 4 the curve shows the form function for an aluminum sphere. The
small open and closed circles near the curve are experimental measure-
ments discussed elsewhere [2). Figure 1 shows the broad width of the
lowest modal peaks (the fundamental set for which /is unity) in alumi-
num, i.e., at resonances (2, 1), (3, 1), (4, 1), and (5, 1). Broad dips
are also observed in the form function of Fig. 4 at fundamental modal
values. However, narrow peaks and dips are found in Fig. 1 and Fig. 4,
respectively, for the overtones (1, 2) and (3, 2).

The form function for a brass sphere in Fig. 5 appears to have
maxima near the resonant frequencies with the minima following on
the side of higher ka, apparently the result of the addition of the phase
of the nth elastic term to the total amplitude calculated for rigid scatter-
ing near the resonances. The narrow resonances of the overtones again
appear in the form function as sharp breaks, in contrast to the more
slowly varying features which are related to the large broad resonances
at the fundamentals.

The effect of a single mode on the overall form function in the
region of interest can be seen qualitatively by modifying the
corresponding term in the expressions for the form function of a rigid
sphere or of the elastic sphere. If the form function of the rigid sphere
is computed using only the nth term given by Eq. (7) which character-
izes the elastic sphere and all other terms appropriate for the rigid
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sphere, the result is a rigid sphere form function showing the effect of a
given fundamental and its overtones. Or if the form function of a
given elastic sphere is computed with Z, infinite in the nth term,
thereby in effect substituting the nth term appropriate for a rigid
sphere, the resulting form function is that of the elastic sphere without
the nth resonances. For example, the solid curve in Fig. 6 is the form
fus =tion for a tungsten carbide sphere. The solid circles which are con-
nected by a curved line show points of the rigid sphere form function
calculated in the range of ka from 5 to 15 with the term for n = 2
replaced by that for tungsten carbide. The circles appear close to the
form function of the rigid sphere (within 2% for ka between 10 and 13,
for example) except near the resonances corresponding to n = 2,
namely, (2, 1) and (2, 2), where they approach the form function of
tungsten carbide. Or if the form function of tungsten carbide is com-
puted with the second term modified by setting Z, equal to infinity, the
resonances corresponding to the second mode disappear. The results of

TUNGSTEN CARBIDE SPHERE

FAR-FIELD (kr—wm) 2j4 oft

(] e 42 2‘}3 8|l 57;3
|

(o] 1 1 L 1 1 - 1
200 210 220 230 240 250 260 270 280
3jo)t 2l 4l [l 3 i3

1 Il 1 1 1 1 1 |
100 no 120 i30 140 150 160 170 180 190

2 if2

MODULUS OF REFLECTION FORM FUNCTION (If ot}

4] 1 1 1 1 1
10 20 30 40 50

SPHERE SIZE - PARAMETER (ka)

| i 1
60 70 80 90

Fig. 6 — Computed form function for a tungsten carbide sphere (solid
line). Points on the form function computed from terms appropriate for a
rigid sphere except for n = 2 for which case the appropriate "elastic” term
is used (solid circles connected by a curved line) and computed from
terms appropriate for an elastic sphere except for n = 2 for which case the
appropriate "rigid® term is used (x's).
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such a calculation are shown by the ¥’s in the figure which fall near the
tungsten carbide form function except in the regions of the (2, ) reso-
nances. Figure 7 shows a similar calculation for the (2, ) resonances
in brass. If the points corresponding to the modified rigid sphere,
shown by solid circles connected by a line, are followed starting at
ka = 3, it can be seen that they approach the form function of brass at
the resonance (2, 1) and they show a dip corresponding to minima at
resonances (2, 2) and (2, 3). A steplike increase can be seen at reso-
nances (2, 4) and (2, 5). At values of ka sufficiently removed from the
(2, D resonances, the circles approach the form function of the rigid
sphere (within 2% for ka between 8 and 13, for example). Also, it can
be seen that the x’s are near the form function of brass except at the
resonances (2, 1), (2, 2), (2, 3), (2, 4), and (2, ).
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30 sl sl ey o N2y
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10 20 30 40 50 60 70

SPHERE SIZE ~ PARAMETER (ka)

Fig. 7 — Computed form function for a brass sphere (solid line). Points
on the form function computed from terms appropriate for a rigid sphere
except for n = 2 for which case the appropriate "elastic" term is used
(solid circles connected by a curved line) and computed from terms ap-
propriate for an elastic sphere except for n = 2 for which case the ap-
propriate "rigid" term is used (x's).
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The Time Domain

In the case of an incident plane wave, the pulse scattered at a dis-
tance r from the center of the sphere of radius a is given by

p(r) = (poa/2r)(1/2m)Re [ g(ka) f(ka)exp(ikar)d(ka), (8)

where 7 = (¢t — r)/a is a propagation parameter appropriate to an out-
going spherical wave and Re denotes the real part (7, 8]. The normal-
ized complex spectrum of the incident plane wave is given by g(ka),
and f(ka) is the form function of the elastic sphere immersed in a
fluid. The shape of the form function f(ka) within the frequency
bandwidth of the incident pulse determines the behavior of the scat-
tered pulse in time. Hickling [8] pointed out differences in the com-
puted scattered pulse forms for a long truncated sinusoidal incident
pulse. He showed in particular cases that the pulse form of the echo
depends on whether the central frequency of the incident pulse is at the
position of a maximum or an adjacent minimum of the form function.
A simpler situation results when a long truncated sinusoidal pulse has a
central frequency at a value of ka coinciding with the peak of a single
isolated resonance in the form function. For a sufficiently long incident
pulse, the vibrating sphere approaches a steady-state oscillation and at
the termination of the pulse, the amplitude of the oscillations of the
immersed sphere decays with a time constant related to the width of
the resonance. By analogy with the simple oscillator

A(ka)/(ka)y = 1/Q,

where (ka), corresponds to the resonant frequency and as before, Aka
is the full width of the resonance peak at 1/v/2Z times the maximum
amplitude. Experimentally Q was derived from the expression
P/ po = exp(—m N/Q), where p, is the amplitude near the beginning of
the decay and p, is the amplitude N cycles later. The (2, 1) resonance
of tungsten carbide at (ka)y of 7.37 and width A(ka) of 0.15, as previ-
ously mentioned, is a case for which a comparison of calculation and
measurement was made. The scattered pulse form was computed by
Eq. (8) for an incident truncated sinusoidal pulse of 60-cycles duration.
the envelope of the computed pulse is shown in Fig 8. The abscissa is
given in terms of 7, which in this case is such that each sinusoidal cycle
corresponds to 0.85 units of = and the pulse first appears at 7 = — 2. It
can be seen from the figure that the amplitude of the pulse envelope
approaches steady-state after the initial transient and that after a dura-
tion in 7 of about 51 corresponding to nearly 60 cycles, the duration of
the incident pulse has passed and is followed by the transient oscilla-
tions of the radiating sphere. From the decay of the radiated ampli-
tude, the Q is estimated from a semilogarithmic plot to be 49 which
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Fig. 8 — Computed echo envelope of a pulse monostatically
reflected from a tungsten carbide sphere. The pulse spectrum is
centered at the (2, 1) resonance dip in the form function for
tungsten carbide. The first cycle within the envelope is shown.

agrees with the value obtained from the width of the computed
resonance by the use of Eq. (9), 7.37/0.15 = 49. Figure 9 shows the
record of a scattered pulse observed when a truncated sinusoidal pulse
of 300 usec duration, very nearly 60 cycles, is incident on a tungsten
carbide sphere at ka of 7.36 corresponding to the (2, 1) resonance.
from the figure, the decay of the second transient gives a value of QO
estimated to be 40. In the same way for the (3, 1), (4, 1), (5, 1), and
(6, 1) resonances of the tungsten carbide sphere, the values for Q were
found from the widths all to be 60 with corresponding experimentally
measured values of 60, 50, 50, and 60.

A narrow resonance with small A(kg) has a large @ when com-
pared with a nearby wide resonance with large A(ka). The resulting
difference in decay times sometimes makes it possible to detect the
presence of a small narrow resonance in the vicinity of a large one by
observation of the "long" decay of the echo after the forced excitation
of the sphere is turned off. As an example, the (1, 2) resonance for an
aluminum sphere is narrow and small compared to the nearby (3, 1)
resonance shown in Figs. | and 4. The echo return related to the (1,
2) resonance of aluminum sphere is shown in Fig. 10. The part of the
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(2,1) TUNGSTEN CARBIDE

Fig. 9 — Observed monostatically reflected
pulse from tungsten carbide sphere
corresponding closely to theoretical condi-
tions of the computation shown in Fig. 8.
T ae time scales are different for Figs. 8 and
9.

(1,2) ALUAMINUM

Fig. 10 — Observed monostatically reflected puise
whose spectrum is centered at a k at which the (1, 2)
resonance is computed. The reflecting sphere is of
aluminum.
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pulse with large amplitude corresponds to the steady-state forced oscil-
lation of the sphere and the "tail" following shows the amplitude decay
of the vibrating sphere and gives a Q value of 90 in comparison with
the value 90 as obtained from the width of the (1, 2) peak in Fig. 1.
The echo return from the (3, 1) resonance in Fig. 11 shows first the
transient peak when the sphere is excited by the incident pulse and fol-
lowing, the transient pulse which appears when the incident pulise is
turned off. Comparison with Fig. 10 illustrates the relatively rapid
decay of the wide resonance. A measured Q of 7 was estimated in
agreement with a value of 8 obtained from the width of the resonance
peak. In the same way, the (4, 1) resonance of aluminum was found
experimentally to have a Q of 10 and a computed Q of 9. It appears
then that the experimentally determined decay of the undriven sphere
is in approximate agreement with the value obtained from the com-
puted resonance width in the case of observable isolated resonances or
of narrow resonances situated near broad ones. When the computed
resonance term indicates a sharp peak, the computed results are more
affected by uncertainties in the values of the maximum amplitude and
in the widths of the resonances. When the peak is broad and the decay
rapid, the experimental measurements are difficult. The experimental
and calculated results are, therefore, given with no indication of their
accuracy.

(3,1) ALUMINUM

Fig. 11 — Observed monostatically reflected
puise whose spectrum is centered at a ka at
which the (3, 1) resonance is computed.
The reflecting sphere is of aluminum.
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APPENDIX
The monostatic far field form function f,, is given in the form (4]
- _2_ < —~1)n : in,
S a ng( D"2n + )sinm,e ",

with
tann, = = {,j,(ka) — (ka) j,(ka){,y,(ka) — (ka)y,(ka) (Al)

in which j,(ka) and y,(ka) are nth order spherical bessel functions of
the first and second kind and the primes denote derivatives with respect
to the argument.

The quantity £, in Eq. (A1) is defined by
_P [(k,a)¥/2]((A4,/B,) — (C,/Dy)]

s (E/B,) — (F/D)) (A2)

where
A, = (kya)j,(kia),
B, = (kya)j,(kia) — j,(k,a),
C, = 2n(n + 1)j,(kya),
D, = (kya)*j’(kya) + (n = 1)(n + 2)j,(kya),

o
1- 20

Fy = 2n(n + D, (ka) — (kya)jy(kia)l,

with double primes denoting second derivatives. In the expression for
E,, Poisson’s ratio of the sphere material is o given in terms of the
longitudinal and shear sound speeds ¢, and c,, respectively, by

o= (cf = 2c})/2(c} - c}).

The wave numbers k; and k, corresponding, respectively, to the longi-
tudinal and shear waves in the sphere material are related to the wave
number k in the surrounding fluid by

kija = (c/c\)ka

E,, - (k|a)2

Ju(kya) —j',:(lqa)],

and
kya = (c/cy))ka.
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The characteristic equation for the resonant frequencies of the
spheroidal modes of the free vibrating sphere results from setting the
denominator in Eq. (A2) set equal to zero,

D,E, — B,F, = 0.

The modes are denoted by integers (n, /). For each value of n there is
a fundamental frequency and overtones which are given by / with [ = |
representing the fundamental [9]. (The fundamental is sometimes
denoted by / = 0.) The (0, ) modes are purely radial oscillations. The
(1, 1) mode corresponds to rigid body motion of the sphere as a whole
and does not appear as a resonant frequency of free vibration. When
the sphere is immersed in water, however, the rigid body motion
appears in the overall shape of the form function below about ka = §
as shown by Hickling and Wang [10]. The spheroidal mode (2 1) has
the lowest frequency for a free sphere and corresponds to a motion
with the shape of the sphere alternating between a prolate and an oblate
spheroid.
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Chapter 15

RESONANCE EXCITATION AND
SOUND SCATTERING*

r

INTRODUCTION

The formalism of the classical resonance theory of nuclear reac-
tions [1, 2] is applied to the problem of acoustic scattering from sub-
merged elastic circular cylinders and spheres. This approach demon-
strates in a direct fashion that the strongly fluctuating behavior of the
cross section for sound scattering from elastic bodies, as shown, e.g., by
numerical normal-mode calculations of the backscattering amplitude
due to Hickling (3], is caused by a superposition of (generally narrow)
resonances in the individual normal-mode amplitudes (or partial
waves). This was inferred [4] from considerations of the total back-
scattering amplitude, where the connection of the scattering resonances
with creeping waves ("Regge poles”) on the surface of the scatterer, and
with the eigenvibrations of the elastic body had been established
together with a physical condition for excitation of these resonances.

Here the excitation of elastic-body resonances by incident-plane
acoustic waves are discussed by considering the individual partial waves
in the Rayleigh series. The resonance scattering formalism s
developed for solid elastic cylinders and spheres, employing the
"method of linear approximation” in frequency as used in nuclear reso-
nance reaction theory. The scattering amplitudes are obtained as a sum
of resonance terms and of a geometric background amplitude, while the
elastic waves in the interior are found to be given as pure resonance
terms. Numerical values of the partial-wave scattering amplitudes are
presented, which identify the background as the scattering amplitude of
a rigid body, and demonstrate the Regge pole behavior of the elastic
resonances appearing in the amplitudes. Various types of interferences
between resonances and background are analyzed, and the time decay
("ringing”) of an excited resonance is shown o be inversely related to
the width of the resonance.

*These resuits were first reported in: L Flax. L R Dragonette and H Uberall, J Acoust
Soc Am 63,723 (1978)
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The phases of the partial waves, demonstrate that phase jumps of
m take place when one passes through a resonance. An attempt is
made to identify the lowest "Franz-type" creeping-wave resonance in
this way. Angular distributions and resonance effects appearing therein
are also considered. A connection is established between the total
rigid-body scattering amplitude and certain resonance nulls appearing in
the angular distributions.

RESONANCE THEORY OF ACOUSTIC SCATTERING
Scattering From Elastic Cylinders

An infinite plane acoustic wave exp i(kx — wt) with propagation
constant k = /¢, incident along the x axis on a solid elastic cylinder of
radius a and density p., produces the following scattered field p,. at a
point P(r, ¢) located in the fluid of density p, surrounding the
cylinder [5, 6]:

L,J,(X) — XJ,(X)

Pee = = ,,§, € ! L, HUY(X) - XH,,‘"'(X)
x H{V(kr) cos n¢; (1a)
here
e, =1(n=0), 2(n>0),
and

L, = (/o)DM D), (1b)

where D" and D? are 2 x 2 determinants:

D,,“’ - tzl az Do tu a3

TR " 31 asn

whose elements are given in Chapter 5. The argument X of the Bessel

and Hankel functions in Eq. (1a) is X = ka = wa/c, with c, the speed

of sound in water. The primes denote differentiation with respect to

the arguments. The matrix elements a,, of Eq. (Ic) contain Bessel

functions with arguments X; = k;a = wa/c; and X7 = kya = wa/cy,

where ¢; and cy are, respectively, the speeds of the compressional and
transverse waves in the cylindrical material.

(1c)

For simplicity in future expressions we define
L,J,(X) - XJ,(X)

R, (X) = ~ LHM(X) - XHV (X)

(1d)
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The scattered pressure given in Eq. (1a) may be rewritten as

Py = % i G,,i"(s,, - l)Hn(n(kr) cos n¢, (22)

n=0

where we introduced the scattering function S, = exp(2i8,) familiar
from nuclear scattering theory [7], with &, the so-called scattering
phase shifts. In the present case, one has

S, = 2R, + 1. (2b)

The far field value of p, can be obtained by employing the Hankel
asymptotic form for kr >> n,

HM (kr) ~ Q/mikr)V2i"e™, @3)
and we may introduce the far field scattering "form function"
OB WACH )
n=0

consisting of "partial-wave" contributions

So(p) = (wika)~"%,(S, — 1) cos n. (5)
In terms of f(¢), p,. becomes asymptotically
P ~ (a/2r)V2e™ £ (). 6)

For a rigid cylinder, one has asymptotically [8] for the case of back-
scattering (¢ = w)

@R~ 1. (7a)
This can be obtained by considering the limit of R,(X) as p. — oo:
Ry (X)) igia = = 4, (XY HY(X). (Tv)

(The corresponding soft-cylinder expression is, incidentally, given by
dropping the primes.)

Following Ref. 6, the expression for S,, Eq. (2b), may be
represented in either of the two forms

S, = S, - z)/(L, - z) (8a)
=S - 27D - 27Y), (8b)
where
S0 = — HOX/HO(X) = 24 (99)
and

S\ = — HO'OHY' (X) = 6 (9b)
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represent, respectively, the S functions for scattering from a soft or a
rigid cylinder, with ¢{*), £{" the corresponding phase shifts. The latter
can be shown to be given by the real quantities:

tan £ = J,(X)/Y,(X), tan £ = J (X)/ Y, (X). (10)
In Egs. (8), use was made of
z, = XHO' (X/HD(X), i=1, 2. (1n)

Equation (1) used with Eqs. (8) shows that the limits of a soft (p, <<
p.) or rigid (p. >> p,) cylinder correctly reproduce the corresponding
soft- or rigid-cylinder scattering functions S, S, respectively.

The quantities z; of Eq. (11) may be separated into real and imag-
inary parts as follows:

212™ A,SS) + iS,,(S), (12a)
or
zih = A £ isl”, (12b)
with
1(X)J(X) + Y,(X) Y. (X)
(S) - n n n n , 13
A= X JHX) + YHX) (132
() l 1
S0 == 1900 £ 70 (>0), (13b)
LX) (X) + Y,(X)Y.(X)
A(,) - l_ n ’n n . n 14
S N T N C AT L (14a)
DA I — - (<0). (14b)
" nX? [J,(X))? + [Y,(X)]?

We now employ the linear-approximation method of nuclear resonance
theory, in which we define "resonance frequencies” X,*) or X" by the
conditions:

LX) = Ak, (15a)
L7UX) = A", (15b)

which may lead to a multiplicity of solutions for a given n. The quanti-
ties (L, — A% or (L' — Al"”) are assumed to be linearly varying
with frequency, and expanded in a Taylor series in X, in the vicinity of
any one of the resonance frequencies

L (X)=AY + 88X - x'9), (16a)
LX) S AL + 800X = X, (16b)
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here, we did not distinguish the multiplicity of resonance frequencies
explicitly by a further index. One may also introduce a "resonance
width" I, by the definitions

I =~ 25/, (172)
r;r) = — zsn(r)/ﬁ'sr)_ (17b)

The S function may then be rewritten in either of the two resonance
forms:

x-x-Lipw

S, = e = 5@ 2 (18a)
X - X(s) + L ,-r(s)
n 2 n
X—n”—%mw
= 5" : (18b)
X—n”+%ww

Note that because of the reality of the quantities involved one has the
"unitarity relations”

[S,| =188 = |§{7] =1, (19)

expressing the fact that no energy is lost in the scattering process (for
the elastic scatterer, this is due to our implied assumption of no absorp-
tion, i.e., real values of X;, X7). Furthermore, S, is seen to possess
not only a resonance pole at the complex frequency

X=ﬁ”§&—%ﬂ) (20a)
but also a resonance zero at
X=x"=x+1i, (20b)

2

necessary in order to satisfy the unitarity condition. Since the reso-
nance widths ', as defined in Eqs. (17a) and (17b) will be seen below
to be positive quantities, the pole is thus located in the lower half of

the complex X plane, —;— I', determining its distance from the real axis,

and the zero in the upper half plane at the same distance above the
axis.

The quantity (S, — 1) which appears in the scattering amplitude
or in the partial waves, Eqs. (2a) or (5), and which has the forms
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S,— 1= 2ie’" sin 5, (21a)
(s)
; 2,613) S’, _16.(’) . ( )
= 2je [L,, EyNC +e sin % (21b)
(r)
_ 2ig (" S ~igd (0
= 2je [L,," A 5O + e sin £,”']., (21c¢)
may be represented by resonance expressions
(S, — 1)/2i = " sin 5, (22a)
1
-T (s)
iz (s) n —iel®
= g2 2 ; +e " sing®| @2v)
X"(s) - X - 7 -r:s)
1
— r(r)
i () n —_ig(0)
- ein 2 +e % singlP]. (220
x0 _x~-Lirn
n 2 n

With Eq. (5), one then has the partial-wave form functions
fr(¢) = 2ie,(m ika)~Y2¢"* sin 8, cos n¢. (23a)
From Egs. (22), these consist of a (soft or rigid) background or
"potential-scattering” contribution:
f8¢ = 2ie,,(1rika)“/2ei€’s” sin ¢! cos n¢, (23b)

i)
D¢ = 2ie, (mika)~"2e*" sin £ cos ne (23¢)

(it will be seen below that for the example of an aluminum cylinder in
water, the background corresponds to rigid-cylinder scattering) with, in
general, a large number of resonances superimposed.

In the vicinity of one of these, the partial wave is given by (e.g.,
for a rigid background)
.2 (r)
£, (®) = 2ie, (wika) V2 "

1o
PRkl

X=X =it

_ie’fr) . I
+e sinfy’|cosnég. (23d)

When calculating the form function as Eq. (4), interferrnces between
the resonances and the background will appear, which may sometimes
impart striking shapes to the resonance curves, as will be seen below.
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Several authors have observed [4, 9, 10] that the iocation in X of
the resonances obtained both theoretically and experimentally in /()
and f, (=) coincide with the eigenfrequencies of elastic vibrations of the
scattering body. In fact, these eigenfrequencies are obtained from the
condition of a vanishing denominator in Eqs. (8), which leads to real
eigenfrequencies for a free body (p, << p.), but to complex eigenfre-
quencies for the fluid-loaded body. (For the example of an aluminum
cylinder in water as discussed below, the real part of the latter agrees
exceedingly closely with the real eigenfrequencies.) From our reso-
nance representation, it is now clear that the complex eigenfrequencies
of the scatterer are precisely the locations of the resonance poles {Eq.
(20a)] in the complex frequency plane, whose real parts determine the
resonance frequencies in the scattering amplitudes. It should be noted,
however, that the scattering body may possess more modes of eigenvi-
brations than those appearing in the amplitude of acoustic scattering, if
the latter cannot excite the corresponding mode. For example, the n =
0 "breathing modes™ have been found to be excited with a very small
amplitude only, both in cylinder and sphere scattering (4, 10].

It will be instructive to consider, in addition to the external
scattering amplitude, also the solution of the scattering problem in the
interior of the scattering body. There, the displacement field u of the
cylinder is represented in terms of a scalar (¥) and a vector potential
(A):

Uu=—-VVv+V X A4, (24)
with the solutions [8]
¥ =¥ ¢,i"C,J,(k.r) cos n¢, (25a)
n=0
A, = Y €,i"E,J,(kyr) sin né. (25b)
n=0

The coefficients in these partial-wave series are given in terms of
preceding notation as
2i (XE=2nDJ,(Xp) + 2X1J.(Xp)
w0  XHY(X)DMV(z;' - LY
2i 2nld,(Xy) — 2X,J,(X,)]
E, = ’2 (n"' - m —LI” L—I ’ (6b)
mp,0° XHV(X)DV (' - LY

where only the version leading to the rigid background has been writ-
ten. The expansion of Eq. (16b) then leads immediately to the reso-
nance expressions (in the vicinity of each resonance):

Co= , (26a)
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2 = e, (X2—2a0J,(Xp) + 2XpJ,(X7)

V- ’
wip,w? S gL XHM (X)DIV
Jy(kyr) co: né ' Q7a)
X-x"+ 3 ir"
p 2 = € 2l (X) - X, (X))  Jkpr)sinné
: ﬂip,,mz n=0 B,S') XH,,“)’(X)D,,“) X- X(r)+ l ir (r) ’
”n 2 n
(27b)

These results are of a pure resonance form, without (rigid or soft)
background terms, which is logical since rigid or soft objects are
impenetrable and admit no fields in their interior.

The above results, together with the scattering amplitudes of Eqgs.
(22), indicate the remarkable fact that for scattering at a frequency in
between two eigenfrequencies of vibration of the elastic body, the
scatterer appears as an impenetrable object and scatters sound accord-
ingly ("potential scattering”), while at and near an eigenfrequency, a
scattering resonance is excited by the incident wave and the field
penetrates into the body. In the scattering amplitude, the resonance
scattering interferes with the potential scattering, and this interference
causes the strongly oscillating structure observed previcusly in the total
scattering amplitudes [3, 4].

In some literature, the resonance features appearing in sound
scattering from elastic bodies have been discussed in a qualitative way,
both for steady-state and for transient scattering [11], showing that
resonances should appear where the mechanical plus the radiation
impedance go to zero. The present treatment goes beyond this earlier
work by (a) indicating that the background scattering does not neces-
sarily correspond to that of a rigid body [soft-body (for air bubbles) or
even intermediate-background types (for thin shells) [12] may and do
appear also] and (b) providing mathematically explicit forms for the
resonances (as well as for the background), as the main features of the
present quantitative approach. This together with the explicit eigen-
value equations for the real resonance frequencies (as distinct from the
complex eigenfrequency of vibration of the fluid-loaded scatterer), and
also the explicit expressions of the resonance widths, serves readily for
interpreting and classifying in a quantitative manner the resonances that
appear in the complicated patterns of calculated or measured total
scattering amplitudes. After the elastic sphere is considered a study of
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resonances in the separate partial-wave amplitudes will be done and will
lead to an interpretation of certain families of resonances in terms of
circumferential waves (or Regge poles).

Scattering From Elastic Spheres

The case of plane-wave acoustic scattering from an elastic sphere
of radius a can be treated quite analogously to that of a cylinder. With
plane incident wave

Pinc = e*° = ¥ (21 + 1)i"j,(kr)P,(cos 6), (28a)
=0

one obtains [3,9] the scattered amplitude

b= 3 T @0+ DS, = DADKP(cos 0),  (28b)
n=0
where we shall again write S, = exp (2i8,). With the asymptotic form
AV (kr) ~ (1/kr)i "™, (29)
and introducing the form function
f0) =3 /(0 (30)
n=0

consisting of partial-wave form functions

£, = (2/ka)(2n + e sin 8, P, (cos 0), 31
we obtain the asymptotic scattering amp'itude
P ~ (af2r)e™ 1(0). (32)

For a rigid sphere, one has asymptotically 3] for the case of back-
scattering (¢ = =)

LA 2~ 1. (33)
The S function for the sphere is obtained as
S,, - S,,(")(L,, - Zz)/(L,, - Z|) (34a)
- S = 27" (W =7, (34b)
where
h2(X) 2wg®
(s) n - £n
Syt = — h,,(”(X) =e (35a)
and
h(2)' X «
S - — 2 ) _ el p (35b)
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Eqgs. (35) again represent the § functions for soft- or rigid-sphere
scattering, respectively, with corresponding phase shifts

an £ = . (X)/y (X)), tan €4 = jo(X)/y(X).  (350)
In Eq. (34), use was made of
2, = X (X/AOX), i=1, 2 (36)

For the sphere, the real quantity L, is given by Hickling [3] (who calls
it F,), Vogt et al. [13] and in Chapter 10; it contains spherical Bessel
functions with arguments X; and Xy, and it is proportional to (p,/p,),
where p is the density of the sphere. As for the cylinder, the correct
soft (p, << p,) and rigid (p, >> p,) limits for the S function are
obtained from Eqs. (34).

Since the preceding Eqs. ((34) and (35)] for the sphere are for-
mally equivalent to the corresponding Eqs. [(8) and (9)] for the
Y cylinder, the subsequent development of the resonance formalism, Eqs.
(12) and (15)-(22), can identically be taken over for the sphere, with
only account taken of the different form of z,, which leads to a replace-
ment of Egs. (13) and (14) by

Jn(X)ja(X) + 3 (X)y (X)

A:’) - x 37
30 + 20 (372)

(s) o l, I 7
T 0+ 0 70

and
1 X (X)) + 3, (X)y, (X)

8" =% T AT 38a)

! X GOl + (0P (382
- L ! (38b)

X UGOR+ )’

respectively. The resonance formalism then goes through in terms of
these quantities, and with an expansion of the new function L, (X) as
in Eqs. (16), one thus arrives at a partial-wave form function, e.g., for
the case of a rigid background

28"

£,0) = 2 Qn + e
ka
1

- r(r)
L —qgtn)
2 l +e ' sin £ P,(cos @), (39)
X,(" - X - ? ir:"

R
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which again consists of resonances superimposd on a background
corresponding (o scatiering from an impenetrable sphere. All the con-
clusions drawn from this expression for the cylinder apply equally to
the case of a sphere.

RESONANCES IN PARTIAL-WAVE AMPLITUDES

In this section, results of the preceding resonance theory will be
illustrated by numerical calculations for aluminum cylinders and
spheres immersed in water. It is pointed out, however, that these
numerical results were not obtained from resonance formulas such as
Eqgs. (18), which are approximations, but from the corresponding exact
equations such as Egs. (8).

Figure 1(a) shows a plot versus X = ka of the modulus of the
cylinder backscattering form function |f(x))| (Eq. (4)) and Fig. 1(b)
shows a similar plot for the sphere (Eq. (30)). Features of the rapid
oscillations occurring in these plots have been analyzed previously (4],
where it was shown that successive minima are caused by a coincidence
of the speeds of various elastic-type creeping waves with the phase
velocities of various normal-mode vibrations of the scattering body.
which happens at the cigenfrequencies of the latter.

18- (a)
18
1.2+

3
LTS
o ,
AL O Wl an
DY R ¥ B ¥ e X R By 60 a0 Mo
'
18- (b
16
IREL
£ o9
, - 1
. - 06:
| 03} . on o2l w2l
Voo . . Bn PBlen l0a 2w
00 20 40 €0 80 100 120 140 80 180 200
ka

Fig. | — Form function modulus | /()] plotied versus ka. for
aluminum bodies in water [(a) cylinder, (b) sphere]). Features
are labeled by (n, L). See text.
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A more detailed picture of the situation is obtained if one plots
the individual partial-wave absolute amplitudes |f,(w)| vs ka This is
done in Fig. 2(a) for the cylinder and in Fig. 2(b) for the sphere, for n
= Qupton =275 Ineach amplitude curve, a number of narrow reso-
nance features can be recognized superimposed on a smooth back-
ground, which is found to be given by the scattering amplitude of the
corresponding rigid body. This is seen by a comparison with Figs. 3.
Partial-wave amplitudes for the rigid, soft, and elastic cylinder are
shown in Fig. 3(a) and similar plots for the sphere are given in Fig.
3(b). The figures clearly demonstrate that the elastic case follows the
rigid background except in the regions where resonances occur. A
further demonstration of the rigid-background nature for cylinder
scattering is given in Fig. 4, where the modulus of [fy(m) — f§84 (2)]
from Egs. (23) is plotted. This procedure leaves the pure resonance
amplitudes only.

A correspondence can be recognized to exist between the partial-
wave resonances of Fig. 2 and those of the total form function, Fig. 1.
However, Fig. 2 reveals a more detailed picture. One may discern fam-
ilies of resonances labeled L = 1, 2, 3, ... whose members appear in
parentheses in all the partial waves, shifting to higher frequencies from
one partial wave to the next. They may be identified with the elastic
creeping-wave poles discussed in Refs. 4 and S, L = 1 representing the
Rayleigh wave and L = 2, 3, ... the whispering gallery modes [14).
Trajectories of the positions », of these modes in the complex » plane
(obtained by making n a complex variable v) as functions of ka were
obtained previously {15, 16]. they are all located in the first quadrant of
the v plane. Every time such a creeping-wave pole moving along its
trajeclory passes near an infeger n, a resonance will appear at the
corresponding value of kg in the nth partial wave, with a width deter-
mined by the distance of the pole from the real axis. The partial-wave
resonance families are therefore successive manifestations of the vari-
ous creeping-wave modes (known as "Regge poles” in the nuclear phy-
sics literature) as they move along their trajectories, and a picture such
as Fig. 2 may serve to make these connections evident, without having
to go into the complex plane (5, 15, 16} (see Chapter 3).

We note that for the breathing mode (n = 0), only the (n, L) =
(0, 3) We note that for the breathing mode (n = 0), resonance
appears, while all members of all Regge pole families appear in the n 3
1 amplitudes, indicating that these resonances will be excited in acous-
tic scattering. The numbers shown at each resonance in Fig. 2 are the
eigenfrequencies (ka values) of the various free eigenvibrations of the
elastic body (which were calculated by us for the body in a vacuum,
this agrees closely with the values for the water-loaded body).
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Fig. 2 — Partial-wave amplitude moduli |/,(=)| for the
first six partial waves (n = 0 — §), plouted versus ka for
aluminum bodies in water [(a) cylinder, (b) sphere]. Posi-
tions of the eigenfrequencies are labeled by integer L in
each partial wave.
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Figure 2 reveals mostly narrow resonances with strikingly
different shapes. However, these features may all be understood as fol-
lows. Classify as type A a "pure” resonance which shows a peak in
| £, ()|, examples are the resonances (n, L) = (2, 3) or (4, 2) in Fig.
2(a), and for n 2 3 the (n, 1) Rayleigh resonances (which, inciden-
tally, are seen to have considerably larger widths than the whispering
gallery resonances). This type of resonance nearly coincides in fre-
quency with a null of the rigid background, i.e., where £!”' = 0, so that
only the resonance contribution in f, [Eq. (23a)] is present here. Type
B are resonances that nearly coincide with a peak of |/ (%)|; exam-
ples are (n, L) = (1,3), (3, 3), (5, 2), and the second one of the Ray-

leigh resonances (2, 1). Here, ¢! = %w so that the background term

in Eq. (23d) becomes —i, while the resonance term at X = X"’ equals
+i, causing a cancellation and thus the strikingly narrow holes in
|/, (=) of Fig. 2(a). Finally, type C resonances are the cases, e.g., (1,
2), in Fig. 2(a) which do not coincide with peaks nor nulls of the back-
ground, showing a dip on one side and a peak on the other side of the
resonance. This is explained by the sign change of the resonance term
in Eq. (23d) as X passes through the resonance; it will hence interfere
constructively with the background on one side of X,”’, and destruc-
tively on the other.

The frequency dependence of the resonance is given by the reso-
nance expression which is the first term in Eqs. (23d) or (39), referred
to in nuclear physics as having the "Breit-Wigner form" (2]. If we take
the temporal Fourier transform f,(1) of the resonance amplitude, we
find

—tc/aIT gt

VAL DI XS (40a)
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This indicates that when excited by acoustic scattering or by other
means, the resonance will decay with a lifetime

t = (a/T,c)s. (40b)

The quantity 1/T’, thus measures the lifetime of the resonance in units
of the time a/c it takes the acoustic wave to traverse the length of one
radius. For the (n, 1) resonances, this time is fairly short (1/T, < 2)
due to the large width of the Rayleigh poles, but it is considerably
longer for the whispering gallery resonances. Corresponding long-
lasting excitations ("ringing") of the resonances have been searched for
by Faran [9], and have been found in some cases.

PHASE JUMP AT A RESONANCE

The phase of a resonance term is known to jump through a value
of = as the frequency passes through the resonance frequency. To ver-
ify this the phase of f, (=) [Eq. (23a)] is examined which is seen to be
given by

1

6/-8,“' ?1’. (413)
The resonance form of Eq. (18b) leads to
{r) 1 r(”
5, =& +tan | ————m|. (41b)
¢ 22X - X)

which indicates that for I'{”’ > 0, the phase 8, — £.” jumps from 0 to
7w as X moves from —oo to +oo, and that this phase jump will occur
very abruptly just around X = X, if the width I'{"’ is small. Equation
(41b) also shows that a corresponding phase jump of ¢, will appear
superimposed on the progression of the background phase £!”’, which
is expected to vary smoothly with X.

To investigate this quantitatively for an aluminum cylinder, in
Fig. 5 the phase ¢, (mod 2w) is plotted for n = 2 on top of the abso-
lute amplitude |/,{(wx)|. Apart from a bending over near ka = 0, the
background phase £!”’ (dashed curve) moves along a straight line.
However, the total phase 8, (solid curve) is seen to carry out a more or
less abrupt jump upward (indicating that T'!”’ > 0) by an amount =
every time a resonance is passed, due to the second term in Eq. (41b);
afterwards, it again paralleils the background phase. We note that from
a practical standpoint, if a resonance is so narrow that it may be over-
looked in a computer plot of |f,| due to insufficient resolution the
corresponding phase jump will still appear and will alert us to the pres-
ence of the resonance.
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Fig. § — (a) Phase and (b) modulus of n = 2 partial-
wave scattering amplitude for an aluminum cylinder in
water.

The mentioned bending over near X = 0 (actually, between X =
0.5 and 2.5) of ¢, for n = 2 is present in all phases ¢, for n > 1, and
its midpoint moves out approximately proportionally with X. This is
exactly where one would expect, using, e.g., the tables of Ref. §, the
resonance of the lowest Franz pole F, to occur. The Franz waves are
creeping-wave modes which propagate about the scatterer with a speed
close to the sound speed in the ambient fluid, being concentrated in the
fluid rather than inside the scatterer, hence they are present even
around impenetrable bodies (although they are much less intense for
soft than for rigid scatterers). No corresponding resonance is visible in
our plots of {f,(w)|; however, F, is located close enough to the real
axis in order to cause the mentioned "pseudophase jump,” while F; 3
probably are not. Note that the total form function f(x) for the rigid
sphere shows a succession of such phase jumps (Ref. 3, Fig. 2) which,
in connection with a corresponding structure of |f(m)| given in the
same reference, makes the connection of this feature of ¢, with F,
rather suggestive.
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ANGULAR DISTRIBUTIONS

The angular dependence of |f,(¢)| (Eq. (23d)) is simply given by
|cos n¢| and hence not very informative. It has been noted, however
[9], that the total form function {f(¢)|, Eq. (4a) shows a deep near
null at ¢ = 180°at the (2, 1) resonance [see also Fig. 1(a)], while simi-
lar near-nulls were seen at ¢ = +120°at the (3, 1) resonance. In Figs.
6(b) and 7(b), |f(¢)]| is plotted as a solid curve at ka = 4.79 [the (2,
1) resonance} and at ka = 7.47 [the (3, 1) resonancel, respectively,
while Figs. 6(a) and 7(a) show [f(¢)| at 3% below, and Figs. 6(c) and
7(c) at 3% above these values of ka. (The dashed curves show the
corresponding angular distributions of the rigid background.) The men-
tioned holes in the elastic angular distributions at these resonances (not
present for the rigid cylinder) are clearly visible. It is noted that for a
type B resonance such as (2, 1), the nth partial wave is absent since
here, the resonance amplitude has canceled the rigid background.
Hence, from Eqs. (4a) and (23),

1P| = | f(¢) — 2¢,(mwika)~"? cos nel. (42)

Now, from Eq. (7a), one has |\’ (7)] ~ 1. However, at the (2, 1)
resonance frequency X’ = 4.79, and with ¢ = w, the magnitude of
the second term on the right-hand side of Eq. (42) is 1.03, which is
compatible with f(7) = 0. The half-width of this hole is expected to
be that of |cos 2¢|, i.e., = 35° which is compatible with Fig. 6(b).
Similarly, for a type A resonance, one again has Eq. (42) except for a
plus sign, and for the (3, 1) resonance at X,\"' = 7.47, a similar argu-

ment applies but now at ¢ = % T,

Fig. 6 — Bistatic-scattering amplitude |/(¢)| for an aluminum
cylinder in water, (a) 3% below, (b) at, and (¢} 3% above the (2, 1)
resonance frequency ka = 4.79 (solid curve); comparison with rigid-
cylinder amplitude (dashed curve).
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Fig. 7 — Bistatic-scattering amplitude |/(¢)] for an aluminum
cylinder in water (a) 3% below, (b) at, and (c) 3% above the (3, 1)
resonance frequency ka = 7.47 (solid curve); comparison with rigid-
cylinder amplitude {(dashed curve).

CONCLUSIONS

The resonance scattering of acoustic waves from elastic cylinders
and spheres, has been analyzed by resciving the scattering amplitudes
into their individual partial waves, and by following the movement of
families of resonances, each corresponding to a Regge pole of the
scattering amplitude, through the successive partial waves. The adapta-
tion of the resonance formalism of nuclear reaction theory to the
acoustic-scattering problem, together with a numerical evaluation of the
amplitudes, has demonstrated the resonances to be superimposed on a
rigid-body scaiiering background, and the various types of interferences
resuiting therefrom have been analyzed. The merit of this approach
lies primarily in the fact that in contrast to previous theory, the
behavior of both background and resonances is made mathematically
explicit, and this may readily serve for an interpretation of calculated or
measured total scattering amplitude. Further, scattering problems with
both rigid and soft background may be treated; and explicit =xpressions
are available for both the resonance frequencies of the .uid-loaded
scattering and of the widih of the resonances. The resonance width
determines the lifetime of a resonanc., and the phases of the partial
scattering amplitudes increase abruptly by o when passing through a
resonance. Finally, some arguments have been advanced concerning
the existence of near nulls in the total angular distributions at certain
resonances.
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Chapter 16

CALIBRATION OF ACOUSTIC
SCATTERING MEASUREMENTS USING
SPHERE REFLECTIONS*

INTRODUCTION

Scattering measurements, in which the acoustic characteristics of a
submerged target are investigated by comparing the response of the tar-
get with that of a standard scatterer, have been considered previously in
connection with underwater measurements [1]. The sphere is a logical
choice for a calibrating object because it is a finite, three-dimensional
target whose response is independent of rotation, and because exact
analytic scattering solutions can be obtained in the spherical geometry
[2-9]. Considerations of the sphere as a standard, in comparative target
strength (target strength) measurements depend on the invariance of
the target strength of a rigid sphere with frequency. As given by Urick
(101, the TS of a sphere is

(TS) = 20 log (a/2), 4]

where g is the radius expressed in yards. Equation (1) expresses the
well-known fact that for a/x > 1 the diffracted or creeping wave com-
ponent of the scattering by a rigid sphere is negligible and the backscat-
tered response is made up almost entirely of specular reflection (A
refers to the wavelength of the incident sound wave). The idea of a
standard sphere in lake or ocean measurements was abandoned for such
practical considerations as size, fabrication, and mounting; additionally,
no sphere in water satisfies rigid boundary conditions, and in fact, the
computed and measured responses for submerged solid and hollow
metal spheres show steady-state variations from Eq. (1) of as much as
20 dB [4-9]. As will be demonstrated here, despite these large steady-
state variations from the rigid body solution, spherical targets can be
accurately and conveniently utilized as standard targets in laboratory
measurements which utilize broadband techniques and a single
source/receiver transducer.

*Description of this procedure first appeared in: L. R. Dragonette. S. K. Numrich. and L.
1. Frank, J. Acoust. Soc. Am. 69, 1186 (1981).
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Differential measurement techniques, which enable absolute
scattering measurements to be made without the necessity of a cali-
brated receiver, are standardly used in the scattering literature [7, 8,
11-16]. Absolute calibration can be avoided by using the same trans-
ducer to measure both the reflected and incident pressure amplitudes,
and expressing both the analytic and measured results as a ratio of
these amplitudes. A typical scattering experiment is seen schematically
in Fig. 1. The target is centered at Py(x,, yo, 2o) and the backscattered
return is measured by a receiver at P;(x;, yo, z¢). The incident pres-
sure amplitude can be obtained with relative ease when the source and
receiver are separate transducers [7, 8, 11-15]. For cases in which
source and receiver are the same, a replica of the incident pulse may be
obtained from the water surface or from a flat plate [16] interposed
between source/receiver and target. In the latter procedure, the plate
must be large enough to avoid illumination of its edges, thick enough
to provide separation between front and rear surface echoes, and care-
fully positioned for normal incidence; in addition, amplitude corrections
based on the reflection coefficient of the plate must be made. A more
convenient and accurate alternate method is given below.

w
] Polxg.¥o.2e)
P4(x4.Yo.20) .;_
> — x
w
§ \_]
Fig. 1 — Schematic of a typical laboratory

scattering experiment.

MEASUREMENT METHODS

The steady-state, backscattered form function of the target seen
schematically in Fig. 1 can be obtained empirically as

|fl = (2r/a) (p,/ py), ()

where r is the range, a is the characteristic dimension of the target, and
P, and p, are, respectively, the reflected pressure amplitude measured at
Py(x), yo, 20) and the incident pressure amplitude measured at
Po(xo, yo. z0). Steady-state measurements of |f..| when the target is
an elastic sphere have been made previously and the results agreed, to
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within a few percent, with exact normal mode series computations
given in Chapter 8. Measurements of the steady-state form function
can also be made utilizing transient techniques, with the advantage that
|f=| is obtained over a broad range of frequencies from a single mea-
surement. The form function of a three-dimensional target illuminated
by a short pulse, p,(¢), is given by

| foo (ka) ] = (2r/a)lg, (ka)l/lg (ka) ], (3)

where g;(ka) is the transform of the incident pulse, po(7), and g,(ka)
is the transform of the reflected echo, p,(r). Comparisons between
transient experiments and exact theory for elastic spheres in Chapter 9,
absorbing spheres in Chapter 10, and infinite elastic cylinders given in
Chapter 6, have demonstrated excellent agreement.

Solid tungsten carbide spheres are a convenient, accurate means
of obtaining a quantitative measure of g;(ka), in scattering experiments
in which a single transducer is used as both source and receiver.
Tungsten carbide was chosen both for its high specific acoustic
impedance and because precisely fabricated sizing balls made of
tungsten carbide are available as on-the-shelf items.

CALIBRATION BY A RIGID SPHERE

For a rigid sphere of radius a, positioned at a range r, from a
source/receiver transducer, the backscattered form function would be
given as a function of frequency » as

/% @) = 2r/a) g, )1/ 1)1, (4)

where g; and g, are, respectively, the Fourier transforms of the incident
pulse and of the pulse reflected from the rigid sphere. For frequencies
at which the Franz wave does not contribute significantly to backscatter-
ing |73 )| = 1 and

(g @)l = (2r/a,) g, ). (4b)

The form function of any three-dimensional target at a range ry from a
source/receiver is given in terms of its characteristic dimension ar by

/2 W) = Q2rr/ap) llgr () I/ 187611 (4c)

Here g is the Fourier transform of the backscattered return from the
target under investigation and g7 is the transform of the wave incident
on the target. Assuming 1/r spreading, the transforms of the wave
incident at the reference sphere and at the target are related by

g7 = grlrr, (4d)
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and the far field form function of the target, fL can be obtained by
comparing its reflection to that of the rigid sphere from Egs. (4b) and
(4¢) as

L) = rD(a/ar) lgr )/ g, G (5)

APPROXIMATION OF A RIGID SPHERE
BY TUNGSTEN CARBIDE

No sphere in water is rigid, even one made of a material with as
high a specific acoustic impedance as tungsten carbide. This can be
verified by comparing calculations of the form functions for tungsten
carbide and for a rigid sphere. The exact normal mode series solutions,
as formulated in Chapter 8, were used to analytically obtain the elastic
and rigid form functions and these are plotted over the range 0 € ka <
75 in Figs. 2(a) and 2(b). Significant differences between the steady-
state solutions for the rigid and tungsten carbide curves exist over the
range ka > 8, and these differences will continue until acoustic absorp-
tion in the material becomes significant (see Chapter 13). Acoustic
absorption in tungsten carbide is insignificant over the ka ranges dis-
cussed in this paper.

1.6
‘v"A"'A'A A
0.8 rlww'
0 1 11 i 1 I
(a)
161
0.8
0 1 1 I 1 1
0 10 20 30 40 S0 00
KA
{b)

Fig. 2 — The form function for a rigid (a) and a tungsten
carbide (b) sphere over the range 0 < ka < 75.
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The elastic responses of submerged spheres have been described
in terms of free-body resonances as in Chapters 4, 14, and 15. Elastic
effects dominate the form function curve for all ka values greater than
(ka), ; which is the ka position at which the (2, 1) free body resonance
is excited [18-21]. (The initial number in the label is the normal mode
number, the second number is the eigenfrequency.) This is true not
only of tungsten carbide but of all materials with wave speeds and den-
sities greater than the velocity of sound and density of water. A cur-
sory look at the curves shown in Fig. 2 would seem to indicate that a
tungsten carbide sphere could be used as a standard reflector only in
the region ka < 7.5, since this is the region over which rigid and elas-
tic responses are most nearly the same, but this is not the case. A sig-
nificant finding in Chapters 4, 14, and 15 was the demonstration that
the scattering from metal spheres and cylinders, with the material
properties discussed above, could be described in terms of a back-
ground of rigid-body scattering onto which the resonance or elastic
behavior is superimposed. The rigid body and elastic responses cannot
be conveniently separated in a steady-state measurement, but they can
be isolated in short pulse or broadband measurements. This isolation
can be achieved even in the ka range over which the deep nulls and
large peaks occur in the form function.

Figure 3 shows the response of a 2.54-cm-diam tungsten carbide
sphere to a short incident pulse. The source/receiver transducer was
driven by a square wave from a Panametrics Model 5055
Pulser/Receiver, and was located at a range of 73 ¢cm from the sphere.
The reflected echoes were obtained in digital form by a Biomation
model 8100 analog-to-digital converter interfaced to a PDP 11/34 A
computer. The center frequency of the echoes seen in Fig. 3 is 0.5
MHz, and the sampling rate used was 0.5 us. The response seen in
Fig. 3 is made up of several separated echoes. The first echo is labeled
rigid reflection and as will be shown below, this echo is an excellent
replica of the return that a truly rigid sphere would give. As discussed
earlier, it has been demonstrated that the steady-state reflection from
spheres and cylinders is made up of a rigid body return on to which the
elastic response is superimposed. In Fig. 3 the rigid reflection is
separated in time from the elastic echoes; moreover, the acoustic
energy which generated the series of elastic echoes enters the sphere at
critical angles off of normal incidence so that the backscattered specular
reflection replicates a rigid sphere return both in amplitude and fre-
quency content.

A simple demonstration that the return labeled rigid reflection in
Fig. 3 is a replica of the return from a rigid sphere can be given by
obtaining the form function for a tungsten carbide sphere from
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RIGID
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Fig. 3 — The backscattered response of a
tungsten carbide sphere.

| fou(ka) | = (2r/a) g, (ka)|/|g, (ka)]]. (6)

In Eq. (6), g, is the transform of only the first or rigid echo seen in
Fig. 3, and g, is the transform of the entire return given in Fig. 3. The
Fourier transforms of the initial or rigid return, and of the entire
reflected echo were computed, and the operations described in Eq. (6)
were carried out on the computer. A comparison of the form function
empirically obtained by this method and a computation made from
exact theory is given in Fig. 4, and quantitative agreement is obtained
over the range 14 < ka < 40. A similar, higher frequency experiment
was performed on a 2.46-cm-diam sphere at a range of 110 cm. The
center frequency of the echoes in this latter experiment was 1.0 MHz,
and the sampling rate was 0.2 us. A comparison of the analytic and
measured results over the range 40 < ka < 70 is seen in Fig. 5. The
broad ka range covered by the two experiments, whose results are
given in Figs. 4 and $, also evinces the efficiency and accuracy of using
the broadband, short pulse technique to obtain the steady-state
response of a target.
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Fig. 4 — Experimentally obtained form function (the
points) and analytic computation (the solid line) for a
tungsten carbide sphere over the range 14 < ka £ 40.
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Fig. S — Comparison of experi-
mentally obtained form funciion
(the points) and analytic computa-
tion (the solid line) for a tungsten
carbide sphere over the range 14
< ka < 70
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SUMMARY

The results described in Figs. 3-5 demonstrate that tungsten car-
bide spheres can be used as standard targets in differential broadband
measurements. The steady-state response, or form function of the
sphere, is made up of the long puise interference of echoes such as
seen in Fig. 3, and differs greatly from the response of a rigid sphere.
The calibration method works because the rigid body and elastic scatter-
ing mechanisms which make up the steady-state response of the
spheres can be separated, using short pulses, over almost the entire fre-
quency range. In the case of backscattering, the acoustic energy, which
generates the elastic echoes, penctrates the sphere at angles which do
not significantly effect the backscattered specular response, and this ini-
tial backscattered echo closely replicates the response of a rigid sphere.
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Chapter 17

EVALUATION OF A
REFLECTION-REDUCTION COATING*

INTRODUCTION

The ratio of reflected acoustic pressure p, to incident acoustic
pressure p, is called the reflection coefficient R and is alternately
expressed as |R| exp i, where @ is the phase shift caused at the
reflecting interface. The reflection-coefficient amplitude |R | affords an
insufficient description of a lossy material intended to modify, usually
reduce, the reflection from a body. In addition, the phase 8 is desired
and often measurements at various angles of incidence are desired as
well. Usual methods of evaluating such reflection-reduction materials
are the measurement of pressure in a wave reflected from a sample of
the material attached to a flat backing plate either in a free field or at
the end of a tube. That measurement is compared to the reflection
from an uncoated flat plate or surface. Tube measurements have the
disadvantage of relatively small sample sizes and are limited to normal
wave incidence. Problems of limited sample size and diffraction, result-
ing from the edges of plates, are experienced in the reflected field.
Diffraction problems, particularly troublesome for non-normal
incidence determinations, limit conventional and proposed methods
involving finite plates. In addition, such methods result in well-defined
reflection coefficients only for certain relations among material con-
stants such as their wave speeds (see Ref. 1). Those relations may not
be known in advance. The procedure described here has no such limi-
tations. However, quantities descriptive of reflection that require
material parameter values that can be derived from the methods
described here can be evaluated after the parameters have been deter-
mined. Such a quantity is the reflection coefficient given by Bre-
khovskikh {2] as

y Z,cos? 2y, + Z,sin2y, - Z
Z,cos? 2y, + Z,sin? 2y, + Z'

*This treatment was first presented in: W. G. Neubauer, J. Acoust. Soc. Am. 62, 1024
(1977).
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where the impedances of the incident wave in the fluid, the longitudinal
and transverse waves in the solid are, respectively,

Z =pcfcos 8, Z,=pyc /cos 8,

and

Z, = picsi/cos v).

The incident angle to the surface normal is 8, and the refracted angles
of the longitudinal and shear waves are 8; and v,, respectively. The
ambient fluid density is p and that of the solid is p;. The wave speed in
the ambient fluid is ¢, ¢, and ¢g, are the longitudinal and shear wave
speeds, respectively, in the solid.

A quantity such as the total impedance of the liquid-solid
boundary given by Brekhovskikh 3} <

Ziw= 2, cos? 2vi+ Z, sin? 2y,

may be evaluated as well. Here, as in the expression for the reflection
coefficient, the attenuation of longitudinal ard transverse waves can be
included by considering Z; and Z, to be complex resulting from com-
plex wave speeds.

BACKGROUND

As a point of departure in describing the new method that fol-
lows, descriptions of pertinent results will be briefly stated. The classi-
cal problem of the rcflection from a two-layer shell has been reported
[4, 5] (see Chapter 5). The monnostatic or bistatic field can be calcu-
lated as a function of frequency. The solutions are not limited to a far
field approximation. The medium inside the cylindrical shell can be
any fluid or a vacuum and the outside fluid, in which the shell is
immersed, is arbitrary. Both layers of the shell can be arbitrarily
chosen solids that may cause wave attenuations that can be described in
the theory by complex wave numbers (see Fig. 1).

Other results given in Chapter 6 show that accurate measurements
can be made with nonspecialized acoustic sources, of reflections from
long cylinders and the results are found to be in reasonably close agree-
ment with field descriptions derived from exact solutions with one
dimension (length) infinite. To demonstrate this, a least-squares fit of
the exact theoretical calculations of the form function |f.. (ka, ¢)]| for a
solid lucite cylinder is shown versus bistatic angle ¢ (180° is back-
scattering) in Fig. 2. The incident wave number is k and a is the
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Fig. 1 — Geometry for the solution of the problem
of the reflection from a two-layer shell in a fluid

| 1410.90,4}]

A 1 1 ) - |
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Fig. 2 — The reflected form functions |/, (ka, ¢)| for a lucite
cylinder for a ka of 10.90 versus ¢, the angle subtended from
the cylinder axis by the source and receiver (180° is backscatter-
ing). Exact theory (——) least-squares fit to the experimental
data (®).

cylinder radius. The points are derived from a short-pulsed wave
experiment. Additional similar results for backscattering form function
versus ka appear in Chapter 6.

Experiments have demonstrated {6, 7] reasonable agreement
between cylindrical solutions assuming an infinite length and a short
cylinder whose entire length is insonified within the major lobe of an
acoustic source. It has been shown in Chapter 6 that exact theory can
be fit by least-squares methods to measured data derived from short-
pulse (and therefore broadband) reflection measurements. The experi-
ments result in the reflected pressure |p,| or form function |f..(ka)|
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over a frequency range. For a cylindrical geometry these two are
related by the expression |p,/p;| = (a/2r)V? |f.(ka)l, where ris the
distance from the cylinder axis to the receiver. In addition, the exact
wave-harmonic solutions for a cylindrical geometry has been extended
as described in Chapter 13, to values of ka as high as 1000. It has been
adequately demonstrated in Chapters 7 and 10 that "ka scaling" is a
valid concept in reflection problems dealing with simple shapes. That
means that a reflected pressure determination at one frequency f, for a
cylinder radius 4, is the same as the reflected pressure at another fre-
quency f, # f from a cylinder of radius a; # a,, as long as ka is held
constant.

PROCEDURE

In the following discussion, specific materials will be chosen for
describing the method, but it is applicable in general to the same extent
that the classical shell problem described earlier applies to arbitrary
media. Consider a two-layer shell shown in Fig. 1 with air or water in
the interior (fluid 2), water (fluid 1) on the exterior of the shell, a
solid layer 2—a relatively well-defined solid such as a metal, and a solid
layer 1—an acoustically lossy material. In an experiment, the incident
and reflected pressure amplitudes lp,l and lp,i, respectively, can be
measured with demonstrated accuracy {12] in a controlled environment
as shown in Chapter 9. The parameters considered as known quantities
are the densities of all media and longitudinal and shear-wave speeds
¢2 and cg;, respectively, in the inner (known) shell material. The loss
parameters of the inner layer would probably not be significant (8], if it
is a metal, below MHz frequencies. However, if that layer is composed
of a material that does have significant longitudinal and shear-wave
losses, those can be determined separately and included in the theoreti-
cal calculation. The longitudinal wave speed in the external fluid (1) is
known. Values for the longitudinal and shear-wave speeds ¢;, and cg;
and their associated attenuation factors «;; and as; can be thus derived
from pressure amplitude |p,|, |p;| measurements as a function of fre-
quency, and least-squares fitting procedure provides a measure of the
relative sensitivity to the fit of each of the parameters such as wave
speeds and attenuations. Therefore this process can also be used as a
reflection-reduction design tool to indicate the potential worth, in terms
of acoustic reflection, of varying, or attempting to vary, wave speeds or
losses to achieve a specific result.

It is possible, too, to describe a reflected wave resulting from
incidence of, say, an infinite plane wave or any configuration of a
different geometry than a cylinder such as an infinite plane interface.
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This can be readily derived, with the appropriate phase, by using the
material constants obtained from the cylindrical shell theory and associ-
ated acoustical field measurements.

It should be mentioned that all of the solutions referred to here
for cylinders are in a plane normal to the axis of the cylinder. In spite
of that limitation, because of the curvature of a cylindrical shell, if the
radius is not larger than the incident-wave beamwidth, the constants
derived are a result of acoustic incidence at all angles of incidence
around the cylinder surface. In addition, this method of determining
the echo-reduction-coating material constants is not limited to such a
determination in only the far field since the theory is exact and can
accommodate the near field as well. This could be a vital consideration
in practical cases such as measurements in an enclosed vessel or a tank
limited in size as all tanks are. Also, insonification of the cylindrical
shell by a close approximation to a spherical or plane wave, although a
considerable conceptional simplification, is not an absolute requirement,
since the incident beam function can be included in the theory, making
it no less exact.

SOME LIMITATIONS

Two shortcomings of the method will be mentioned even though
one of them is common to existing methods and a means of cvercom-
ing the second is foreseen. First, the reflection-reduction material must
be suitable for consideration as a homogeneous isotropic material even
though it may not be, even on a macroscopic scale. If the scale of
inhomogeneities in the absorbing layer is too large the difficulty will
probably appear at the stage of the attempt of least-squares fitting of the
exact theory to measured data. The second potential shortcoming of
the method is that the reflection-reduction material cannot have wave-
loss properties different from those assumed in the exact theory of the
two-layer shell. For the cases considered here, al is constant where A
is the wavelength in the material, and « is the absorption coefficient
expressed as attenuation per wavelength. So how does one detect
whether the variation of reflected pressure with frequency is caused by
the shell solution itself or a deviation of the coating material behavior
from that assumed in the theory? If a greatly different material
behavior is suspected, it is possible to resolve this potential ambiguity
with additional experiments. A possible choice is the measurement of
the bistatic field pressure radially around the cylinder (see Chapter 6).
These observations can be calculated and will vary in a way consistent
with the exact reflection theory of the two layer shell. Consistent devi-
ations of the theory from those experiments must be attributed to an
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unexpected behavior of the reflection-reduction coating. The theory
could then be modified to incorporate the frequency-dependent
behavior of the losses in the material and the entire process repeated
with those losses.

VARIATIONS ON THE METHOD

It should be noted that the reflection-reduction material can be
evaluated as the innermost of the two layers of the shell even though in
practice it is intended to be used as an external coating. In that case
again the sound is incident on the outside of the two-layer cylinder and
the outer layer must be sufficiently thin that the external reflected field
be sensitive to different internal layer (solid layer 2 in Fig. 1) wave
speeds and attenuations. Also, the shell can be filled with a different
fluid so that the material is essentially evaluated while in contact with a
different fluid without filling an entire acoustic range, such as a tank,
with that fluid. Similarly, with the echo-reduction material as the inner
sheil layer the interior of the cylinder can be pressurized and the resul-
tant constants for the reflection-reduction materials derived from the
measurements will be gained without the requirement of a pressurized
free-field facility.

SUMMARY

An acoustic reflection-reduction material can be evaluated by a
combination of acoustic field measurements and theoretical computa-
tion. The material of unknown echo-reduction effectiveness is made to
be one layer of a two-layer shell the interior of which may be filled with
either a gas or a liquid like or unlike that surrounding the cylinder.
The two-layer shell is placed in a free acoustic field and the amplitude
of the resulting scattered acoustic pressure wave is measured. The
amplitudes of the incident and reflected acoustic pressure wave are con-
sidered known quantities in a computer solution of the exact theory of
a two-layer shell. The solution can be formulated so that it will yield
values of longitudinal- and shear-wave speeds and attenuations in one
of the shell layers if all other parameters of the problem are given.
These include all material densities and wave speeds and attenuations in
the second shell layer as well as the acoustic wave speeds in the exter-
nal and internal fluids. Experimental measurements of the ratio of
reflected to incident acoustic pressure amplitudes normalized by
(a/2r)V? to express reflection form functions versus either ka or
scattering angle are least-squares fit to the exact theory by computer.
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Such fitting programs indicate correlations between the various parame-
ters as well as the sensitivity of the fit to the variation of each parame-
ter. Thus the procedure would yield quantitative information about
whether a given parameter, such as, say, shear-wave attenuation is a
reasonable candidate parameter to attempt to vary to achieve a different
more favorable scattering solution, whether this is achieved by anechoic
material design or material selection. The procedures or method lends
itself to the evaluation of materials under various conditions at the
anechoic material-fluid interface such as different fluids or increased or
decreased pressure, by capping the ends of the cylinder and changing
the internal conditions. Insonification of those ends by the incident
wave can be avoided by use of a limited acoustic beam and no different
experimental facilities are needed for those conditions. Computer solu-
tions actually yield the acoustic bulk property of the reflection-reduction
material in terms of which the exact theory of the two-layer cylindrical
shell is written. A specific possible such set is the complex wave
number or alternatively the complex wave speed for both longitudinal
and shear waves, either of which allow for acoustical wave attenuation
in the material. Derived quantities such as reflection coefficients or
impedances can then be evaluated.
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Chapter 18
REFLECTION OF A BOUNDED BEAM*

INTRODUCTION

An analytical formulation of the reflection of a scalar wave beam
with bounded cross section incident from a fluid on a plane interface
between the fluid and an elastic medium was first given by Schoch [1].
That theory resulted in the formulation of a lateral displacement of the
reflected beam. This emergent beam was regarded as constituting the
entire reflected field similar to that hypothesized and demonstrated by
Goos and Hanchen {2] for light waves. An extensive treatise of this
effect has been carried out by Lotsch [3]. In each case beam displace-
ment is expressed in terms of the first derivative of the angle-
dependent phase shift of the reflection. A second-order approximation
in terms of the second derivative of the reflected phase was given by
Brekhovskikh [4] to express the field distribution in the cross section of
the reflection for a defined incident beam. In the ultrasonic case,
experiments at the Rayleigh angle have indicated [S] that the so-called
lateral displacement along the interface occurs at the Rayleigh wave
speed. Beam-displacement measurements at the Rayleigh angle have
been reported in the literature only for a limited number of materials,
namely, aluminum and its alloys [6,7], stainless steel [5], and beryllium
[7]. Also, the beam-displacement concept was used in reflection mea-
surements on stainless steel [8-10]. Experimenters have observed [7-
11] by means of hydrophone reflectivity measurements a pronounced
minimum in the reflection from plane material surfaces that is unac-
counted for by the so-called classical theory [12]. That discrepancy had
been accounted for in the case of aluminum (7] by imposing a lateral
displacement on the hydrophone predicted by Schoch’s formulation.
Later results, to be given here, have shown it to be clearly evident that
such a procedure does not take the entire reflected or reradiated field
into account. In general, for other materials and even for the case of
aluminum, a significant acoustic field was shown to be present outside
of the region that would be intercepted by a receiving crystal of the
same size as the incident beam. For a plane hydrophone, oriented at

*These results first appeared in: J. Appl. Phys. 44, 48 (1973).
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the Rayleigh angle, with a diameter of 1 c¢cm or larger, a uniform
unique-phase signal is intercepted neither at the position of the specular
beam nor at the Schoch displacement distance for a range of frequency.

A further modification to the classical theory that included the
effects of attenuating waves was carried out by Becker and Richardson
{8,9] whose results were confirmed with experiments [10]. That theory
was written for a plane-wave assumption and the analysis of the experi-
ment allowed for the finite beams employed by imposing the Schoch
displacement on the receiving transducer. The magnitude of the
minimum in reflection at the Rayleigh angle was found in that theory to
be a function of frequency. This was confirmed by reflection measure-
ments at and near the Rayleigh angle on stainless steel. The magnitude
of the reflection at the Rayleigh angle was found to decrease up to 15
MHz (for stainless steel) and then increase with increased frequency
above 15 MHz. That frequency was therefore called the "frequency of
least reflection." At that frequency the frequency-dependent phase shift
upon reflection was found to change sign with respect to the incident
wave. Support of this aspect of the theory was also given by experi-
mental observation [8-10] under the same condition as previously
stated, viz., source and receiving transducer many wavelengths large of
equal size and positioned at equal angles, and receiving transducer cen-
tered on the Schoch displacement distance. Although the prediction by
the theory of a frequency-dependent phase is indicated to be accurate
by later observations, the interpretation of a resulting "frequency of
least reflection” is misleading if it is regarded that a hydrophone of the
same size as the source beam is used to observe it, since significant
energy can be radiated beyond the hydrophone surface. Also, the
energy incident on the hydrophone would not have a unique phase over
the entire face.

The fact that previous measurements validating beam-
displacement theory were made with a limited range of equally sized
sources and receivers, or even larger receivers, and a limited range of
materials accounts for the apparent validation of a theory that is not
adequate to describe the total reflected or radiated field. Previous
observations have been rationalized in terms of the results that disclose
that the energy redistribution can be characterized by a specular
reflection and surface-wave radiation, and the entire field is not
represented by the portion incident on a receiving transducer placed in
the reflected field and displaced laterally according to the formulation
by Schoch. Subsequent to the proposal of the model of reflections at
the Rayleigh angle based on experimental observations, Bartoni and
Tamir [13] presented theory that substantiated the observed behavior
and model.
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EXPERIMENTAL OBSERVATIONS OF REFLECTION
AT THE RAYLEIGH ANGLE

For a 1.1-cm-wide beam of 7 MHz incident at the Rayleigh angle
on an aluminum (1100)-water interface Fig. 1(a) shows a diagram of
the cross section of the reflected beam containing all of the reradiation
from the surface laterally displaced to the right by a distance A = 4.5
mm as the Schoch theory would predict. The schlieren photograph of a
circular beam (diameter = 1.1 c¢cm) incident on an aluminum-water
interface is shown in Fig. 1(b). The schlieren system is pulsed (see
Chapter 22). The source transducer is seen at the left and the leading
edge of the pulse at the right of the photograph. Slight divergence is
shown in the diagram since it is unavoidable in the experiment. The
fairly well delineated right edge of the reflected or reradiated energy
appears out to a distance of 6 mm to the right of the right edge of the
incident beam which is 1.5 mm beyond the Schoch prediction. In Fig.
1(b) energy is radiated into the specular region with no displacement.
Also present is a dark strip in the reflected or reradiated energy. This
occurs at a position within the radiation where specular reflection would
normally be expected to be found, i.e., between the lateral limits over
which the energy is incident. Equivalent observations have been made
with transducers that had square faces. In the case of aluminum the
differences between the experimental observation and the description of
the result demanded by the theory, and depicted in the diagram of Fig.
1(a), are significant but not startling. In that case the lateral displace-
ment was relatively small, and the distance measured in the schlieren
photograph at which energy is seen to emerge from the interface, in
excess of that predicted, is not large either. However, the theory is not
limited to cases for which displacements are small. Aluminum oxide is
a material for which both longitudinal and shear wave speeds are
significantly larger than those in aluminum and whose density is almost
50% greater than aluminum. These factors combine to cause a predic-
tion of a lateral displacement of an incident beam for aluminum oxide
of 118.1 wavelengths at the Rayleigh angle of 14.8° as depicted in Fig.
2(a). That displacement is more than five times that predicted for
aluminum. A schlieren photograph of an actual beam reflected from
aluminum oxide at a frequency of 7 MHz is shown in Fig. 2(b). It can
be seen that no separation between the incident and emergent beam
occurs. A dark strip is again evident in the reradiation as it was in the
case of aluminum and the brightness decreases significantly toward the
right indicating a decay in pressure amplitude in that direction. Specu-
lar reflection in the normal position is evident.

——
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(a)

(b)

Fig. 1 — Finite beam of 7-MHz ultrasound in-
cident from water on a plane aluminum (1100)
interface at the Rayleigh angle. (a) Diagram
showing the entire reflected field on the right
predicted by beam-displacement theory that
should result from the incident beam on the left.
(b) Schlieren photograph of an actual incident
beam the same size as that shown in (a) and the
actual resulting reflected and radiated field.

[

®)

Fig. 2 — Finite beam of 7-MHz ultrasound incident
from water on a plane sluminum oxide interface at the
Rayleigh angle. (a) Diagram showing the entire
reflected field on the right predicted by beam-
displacement theory that should result from the in-
cident beam on the left. (b) Schlieren photographs of
an actual incident beam the same size as that shown in
(2) and the actual resulting refiected and radiated field.

CHAPTER 18
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A PHYSICAL MODEL OF REFLECTION AT
THE RAYLEIGH ANGLE

A relatively simple model is put forward here that explains the
observed results. It is supported by specific measurements and is con-
sistent with the previous experimental results of others. Consider a
limited beam of sound incident from a liquid on a solid-plane elastic
surface. For all angles, even at and near the Rayleigh angle, energy is
specularly reflected. The angle of reflection is equal to the angle of
incidence and the size of the specularly reflected beam is the same as
the incident beam. In addition, over the area on which energy is
incident, and at the same time that specular reflection occurs, a Ray-
leigh wave is generated by the phase-matching mechanism for incidence
at and near the Rayleigh angle. However, when energy is incident near
but not exactly at the Rayleigh angle, the Rayleigh wave is still gen-
erated but to a lesser degree and if permitted to radiate, as it may in the
case of an adjacent fluid, it will be radiated at precisely the Rayleigh
angle.

In the case of aluminum in water, for incidence at precisely the
Rayleigh angle, Fig. 3(b) shows the relative phase of the energy in the
specular region to be 180° from that in the region of the Rayleigh wave
radiation to the right of specular reflection. Between the two regions is
a narrow dark region where the equal amplitude coincidence of energy
resulting from both causes mutually cancel. Figures 3(a) and 3(c) show
reflection at angles smaller and larger than the Rayleigh angle, respec-
tively. It can be seen in Fig. 3(b) that at a frequency of 833 kHz the
phase fronts may reasonably be considered to be planar in both regions.
The observation of individual wavefronts and the determination of their
relative phases for reflection at the Rayleigh angle was first reported in
Ref. 14.

A slightly diverging incident beam was produced at 5 MHz with a
transducer having a Gaussian-shaped beam [15]. For incidence at the
Rayleigh angle for aluminum (1100), the resulting reflection and
reradiation into water from the surface is shown in Fig. 4. No
significant effect was observed that could be attributed to beam diver-
gence. The hydrophone is shown in place with the sensitive area in the
specular reflection. The hydrophone has a plane round active area with
a diameter of 0.32 cm. In addition to a significant amount of specular
reflection and the cancellation area along the right edge of the specular
reflection apparent in the schlieren picture of Fig. 4, a bright high-
amplitude region is seen with subsequent amplitude oscillations to its
right. The precise cause of amplitude oscillations is not known but it
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Fig. 3 — Schlieren photograph of an incident beam on
the left and a reflected and reradiated beam on the
right. The acoustic frequency is 833 kHz, the fluid is
water, and the solid is aluminum (6061). Individual
cycles are made visible by using a short light pulse.
(a) Beam incidence angle & = 25.9°, (b) 8 = 30.4°
(the Rayleigh angle), and (c) & = 35. 9°.

Fig. 4 — Narrow Gaussian incident beam incident on
aluminum (1100) at the Rayleigh angle. A receiving
transducer is shown at the left with the sensing area in
the specularly reflected field. (a) labels the specular
region and (b) labels the Rayleigh radiation region.

CHAPTER 18
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has been observed that the pattern changes periodicity inversely with
source-beam width.

Representative hydrophone output voltage signals are shown in
Fig. 5. The top oscilloscope trace is received in the region of the spec-
ular reflection labeled A in Fig. 4 and the lower trace is that measured
in the Rayleigh-wave-radiation region labeled B in Fig. 4. The two
traces have had their amplitudes adjusted so that their respective first
cycles are equalized in amplitude and occur at the same time marker so
that the pulses may be compared. The pulses are very much alike and
can reasonably be called out of phase. The slight change in pulse shape
is caused by the fact that amplitude variations exist in the region
labeled B and the hydrophone is approximately the size of the bright
specular reflection in Fig. 4, and since the amplitude variations to the
right are narrower than that, a single and uniform wavefront is not
incident on the hydrophone.

Fig. 5§ — Voltage output signal of the receiving
transducer, corresponding respectively to the
specular region labeled (a) in Fig. 4 and in the
Rayleigh radiation region labeled (b) in Fig. 4.
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The much quoted formulation of Schoch [1] for incidence at the
Rayleigh angle describes the lateral displacement A along the boundary
of a limited beam as

Aerl £ (/e cD? = (cf ) )2
T p (c/c,)[(e/c)? ~ 1]

. 1+ 6(c,/c)*{1 —(c/e)?) — 2(c,/ )13 — 2(c,/ )]
(/)2 = (c/cy)? ’

where p is the density, A the wavelength, and ¢ the wave speed.
Primed parameters refer to the liquid, and unprimed parameters refer
to the solid. The subscripts s, d, and r refer to shear, dilatational, and
Rayleigh, respectively. This displacement is, therefore, directly propor-
tional to the density p of the solid as well as the wavelength A\’ of the
dilatational wave in the liquid and inversely proportional to the density
p' of the liquid. It is also a complicated function of the various wave
speeds in both the liquid and the solid.

)

The shear and dilatational wave speeds, the densities, and the
anticipated displacements A calculated from Eq. (1) are given in Table
1 for seven materials. The various materials were chosen for specific
reasons for the observations reported here. Aluminum is the material
on which beam displacement was first demonstrated and later extensive
work has been done with 304 stainless steel. One is not at liberty to
adjust material parameters such as density or wave speed at will, but it
was possible to choose materials for which large displacements would be
predicted and for which density and wave speed had a desirable rela-
tionship to those of aluminum. Stainless steel, molybdenum, and
Kennametal K-91 all have wave speeds that are within 24% of the
corresponding wave speeds in aluminum and their densities are within
6% of being three, four and five times the density of aluminum, respec-
tively. The last three materials in Table 1 were chosen because they
have significantly higher wave speeds for a range of densities. All dis-
placements are predicted to be more than twice that of aluminum.
Radiation from the Rayleigh wave generated by the incident wave was
observed beyond the distance A predicted by the Schoch formula and
was observed on materials other than those listed in Table 1.

A broad well-collimated beam of 7 MHz is shown just incident on
Kennametal K-8 in Fig. 6(a) and the resultant reradiation caused by
that beam is shown in Fig. 6(b). The actual maximum distance to
which radiation could be observed was not measured since the end of
the limited sample caused a sharp termination of the radiated wave at
the far right edge. The displacement formula predicts a termination of
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Table 1 — Relevant Values for Seven Materials
. [ Cl @, Cs 85 Ox
Material | o/em?) | (m/sec) (deg) | (m/sec) | (deg) | (deg) | /A
Al 2.7 6296 13.6 3106 28.5 30.5 213
(1100)
SS 7.9 5840 14.7 3130 28.3 30.6 584
(304)
Mb 10.1 6400 13.4 3369 26.1 28.3 90.0
K91 13.5 6542 13.1 3847 22.7 248 139.8
K8* 14.9 6900 12.4 4200 20.7 22.6 174.5
K165* 5.7 8850 9.6 5410 15.9 17.5 115.0
A0, 4.0 10700 8.0 6360 13.5 14.8 118.2

*Material is a sintered product whose main constituent is tungsten
and is made by Kennametal Inc.

Fig. 6 — Schlieren photograph of (a) an incident ultra-
sonic beam of 7 MHz on a plane Kennametal K-8 in-
terface in water and the resultant reflection and radia-
tion at the Rayleigh angle of 22.6°. The radiation en-
ergy terminates with a sharp edge on the right at the

(b)

edge of the material. The sample is 6.35 cm wide.
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the radiated energy at a position about four-fifths of the sample width
measured from the left edge of the sample. For the last five materials
listed in Table 1, reradiated energy was observed beyond a distance of §
cm to the right of the left edge of the incident beam for an experimen-
tal arrangement similar to that shown by Fig. 6. The characteristic can-
cellation strip can be seen in Fig. 6(b) as it was in all materials at this
frequency. The distance along the surface from which radiation was
observed was a function of the incident amplitude. The rate of ampli-
tude diminution along the direction parallel to the boundary was
observed from schlieren photographs not to be the same for all materi-
als and was quantitatively measured with a hydrophone. Results agreed
well with loaded Rayleigh wave attenuation reported by Viktorov {16]
for a totally different method.

COMPARISON OF REFLECTION AT THE RAYLEIGH
ANGLE AND THE MODEL

Some previous reflection measurements at the Rayleigh angle on
a water-stainless-steel interface have presumed that the location of the
reflected finite beam would be at a lateral displacement along the inter-
face predicted by Schoch and therefore the transducer was placed at this
position. Also, the reflected beam was supposed to have the same size
as the incident beam, i.e., the source and receiving transducer were the
same size and shape. Under those conditions it was observed that there
was a frequency at which the reflection amplitude at the Rayleigh angle
was minimum when measured at the displacement distance A. The fre-
quency has been called the frequency of least reflection. The observa-
tions presented here indicate that reflected (reradiated) energy is distri-
buted over a region larger than the incident beam and is not of uniform
amplitude or phase within that region over which it is reradiated. The
observation of a frequency of least reflection can be rationalized by
showing that it is a result of the experimental method.

Presume a 1-cm-diam incident beam, without divergence, imping-
ing on a plane water-solid interface. Such a beam is shown diagram-
matically in Fig. 7 with the hydrophone placed in the field to the right
of the incident beam at an angle equal to the angle of the source
transducer (Rayleigh angle for stainless steel) and at a distance A
predicted by the Schoch formula. A schlieren photograph in Fig. 8
shows the actual radiation at 5 MHz from stainless steel that is idealized
in the diagram of Fig. 7. The regions labeled A, B, and C constitute
the radiated field. The regions A and B combined normally constitute
most of the specular reflection and C is the region in which the Ray-
leigh wave radiation predominates. Specular radiation and Rayleigh
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HIGH FREQUENCY

LOW FREQUENCY
HYDROPHONE
POSITION

}..

HIGH FREQUENCYA’I

—LOW FREQUENCY A

Fig. 7 — A diagram corresponding to the schlieren photograph in Fig.
8 that depicts the various regions of the radiated field: (a) is the spec-
ular reflection, (b) is the null region, and (c) is the Rayleigh radiation
region.

Fig. 8 — Schiicren photograph of a 5-MHz beam in
water incident from the left on a plane stainless steel
(304) interface at the Rayleigh angle (30.6°).

radiation coexist in the region B. Computation of the specular
reflection discloses that specular reflection from stainless steel (304) is
180° out of phase with the incident wave at exactly the Rayieigh angle
up to a frequency f, (for stainless steel f, lies between 15 and 20
MHz). Above f, the phase in the specular reflection is modified as a
result of bulk wave attenuation to be in phase with the incident beam.
Thus at and below f, in region B a nullification would occur when the
specular and Rayleigh radiation are equal in amplitude. As may be seen
in Fig. 8, the delineated regions are, of course, in reality not as sharp
and spatially well defined as in the diagram of Fig. 7 and are drawn as

e LS e
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they are for purposes of description. The lateral displacements A,
predicted by Eq. (1), and hydrophone positions at high (i.e., nearly as
large as f,) and low frequency that must be imposed on the receiving
transducer to measure a frequency of least reflection are indicated in
Fig. 7.

At relatively low frequency, say 5 MHz, the hydrophone is
integrating the pressure that is at phase @ = 0° in region C and part of
the field in the region B where the resultant amplitude is at least dimin-
ished and at most cancelled by a signal of opposite phase. At a higher
frequency as A is decreased consistent with Eq. (1), the hydrophone
has incident on it less of the pure Rayleigh radiation because of its
attenuation. This results in a decreased hydrophone output at 10 MHz.
The hydrophone output is a minimum at f,, the highest frequency for
which the signals in regions A and C are of opposite phase. At f,, and
for the A prescribed, the energy intercepted in the region A equals or is
very nearly that intercepted in the region C resulting in a minimum
hydrophone output. Above f, the hydrophone output rises significantly
since the pressure in all regions has been observed to have the same
phase.

It must be remembered that the radiation in the region labeled C
decreases to the right as the Rayleigh wave is attenuated along the
interface. Theories of both Becker and Richardson [8,9] and Mott [17]
that describe a frequency of minimum reflection for stainless steel also
predict that below a frequency of 5 MHz the reflection increases mono-
tonically to unity at zero frequency when received at the Rayleigh angle
and at the Schoch distance. However, this is inconsistent with the
observation of the generation and continuous radiation of a surface
wave of the type seen in Fig. 6(b). The displacement formula would
cause the hydrophone to be placed at an ever increasing distance as fre-
quency is decreased for a fixed beam size. It would intercept a small
portion of the Rayleigh radiation even at the lower frequencies when
the Rayleigh wave is only slightly attenuated along the surface by radia-
tion or loading of the adjacent liquid. The behavior of the amplitude
with frequency predicted by the attenuative theory [8,9,17] is shown in
Fig. 9. The monotonic dotted portion of the curve below f, is the
result given by attenuative theory. At the frequency f, below f, the
hydrophone would have incident on it only radiation resulting from the
Rayleigh wave because the distance A predicts that the reradiated beam
would be intercepted only there. The frequency f, is a function of
hydrophone size. As frequency is decreased below f,, the predicted
hydrophone distance A increases directly according to Eq. (1) as the
wavelength of the ultrasound. The amplitude of the radiated wave
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Fig. 9 — Qualitative plot of relative reflection amplitudes vs

frequency. The frequency f, indicates the "frequency of
least reflection.”

decreases exponentially along the surface inversely as the frequency
[16,18]. Thus, the combined result of these two effects at any fre-
quency below f, is a constant hydrophone output resulting in the flat
portion of the curve in Fig. 9.

No attempt was made to identify exactly the specific frequency f,
at which the phase in the specular reflection changed from being 180°
out of phase to being in phase with the incident beam. The manifesta-
tion of this change is the disappearance of the dark strip normal to the
radiated wavefront in the radiation. The source transducer outputs for
this range of frequencies changed greatly with frequency which changed
the schlieren-observed result, making it difficult to precisely identify the
frequency at which a strip disappeared. It can be unequivocally stated,
however, that schlieren observations showed f, to be between 15 and
20 MHz for stainless steel.

EXPERIMENTAL OBSERVATIONS AT THE
CRITICAL ANGLES

Evidence of a radiated wavefront similar to that observed at the
Rayleigh angle has been observed at the shear critical angle in the
region outside the specular reflection for some materials on which Ray-
leigh wave radiation was observed. The effect is difficult to isolate and
distinguish from the Rayleigh wave radiation that occurs for incidence
angles near the Rayleigh angle. This indicates that at the shear critical
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angles a surface wave is generated on the interface and radiates in a
manner similar to the Rayleigh wave but to a much lesser degree.
Specular reflection at an angle slightly smaller than the shear critical
angle 8, for Mallory 1000 (90% tungsten, 6% nickel, 4% copper) is
shown in Fig. 10(a). At exactly 8, shown in Fig. 10(b), radiation can
be observed to the right of the specular reflected beam. For an
incidence angle greater than 8,., Fig. 10(c) is obtained. By comparison
of Fig. 10(b) with Figs. 10(a) and 10(c) the presence of the spreading
of the wave to the right can be detected. Actually, the observation was
first made in the process of changing the incident angle through 6,..
The continuous viewing of the change in the appearance of the
reflected pulse makes the effect more visible than the static views of
Fig. 10.

(b)

Fig. 10 — Schlieren photographs after reflection of a
7-MHz pulse incident (rom the left on a plane
Mallory- 1000— water interface at (a) the incident angle
8 < 32.1°, (b) @ = 32.1° the shear critical angle, and

(c) e > 321°
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Evidence of surface wave generation and radiation similar to that
at the shear critical angle has also been found at the longitudinal critical
angle 0,. and is shown in Fig. 11 for Pyrex glass at 5 MHz. This effect
is present to even a lesser degree than that at the shear critical angle.
Figures 11(a)-11(c) show refiected pulses for incidence angles less than
)., equal to @,., and greater than 8,., respectively. Again significantly
more energy appears at the right edge of the reflected pulse in Fig.
11(b) which is taken at @,,.

1 (a)

(c)

Fig. 11 —~ Schlieren photographs after reflection of a
5-MHz gulse incident from the left on a plane Pyrex-
glass—water interface at (a) the incident angle ¢ <
15.2°, (b) @ = 15.2° the longitudinal critical angle, and
(c) e > 15.2°.
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The reader should keep in mind that all of the data, i.e., schlieren
photographs in support of observations or conclusions that are reported
here are not presented here. Conclusions were often derived from con-
tinuous observations made in the process of changing the incident angle
or pulse length. The photographs, that are shown were chosen to
demonstrate those observations and to maximize the chances of ade-
qQuate reproduction.

CONCLUSIONS

The theory of Schoch is inadequate to account for observed radia-
tion from materials for finite beam incidence. Previous apparent agree-
ment between theory and experiment resulted from a reception of only
part of the radiated field by a receiving transducer of the same size as
the source beam. Radiated energy outside of the region predicted by
displacement theory is difficult to measure for materials on which most
measurements were previously made, such as aluminum and stainless
steel. On these materials relatively small displacements are predicted
by the appropriate theory. For materials for which significantly larger
displacements are predicted, separations of the incident and reflected
beam along the plane interface would be expected. Such separations do
not occur for any of the materials examined for any size of source
beam.

For the observations reported here, it is concluded that in addi-
tion to specular reflection, a Rayleigh wave is generated by the incident
beam, propagated along the interface, and radiated continuously into
the fluid. Extant theory does not adequately describe this surface wave
generation and radiation. Interference occurs between the specular and
Rayleigh radiations when they are of opposite phase and are of equal
amplitude causing a null field in a portion of the specular region. The
results of previous experimental observations of others can be
accounted for by this description of the reflected and reradiated field of
an incident finite beam. Significant Rayleigh wave generation and radi-
ation also occurs for a range of incidence angles near the Rayleigh angle
for sufficiently low frequencies at which the phase of the specular
reflection is opposite that of the Rayleigh radiation which is always true
(19] when attenuation of bulk waves can be ignored. The theory
describes the observed reradiated field.

The theory of Becker and Richardson has shown the phase for a
plane reflected wave to be frequency dependent as a result of attenua-
tion of the bulk longitudinal and shear waves. That theory predicts a
frequency for incidence at the Rayleigh angle above which the phase in
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the specular reflection is the same as that of the incidence wave and
Rayleigh radiation. That change in phase was detected in schlieren
observations by the disappearance of the dark null strip in the specular
reflection for stainless steel at a frequency between 15 and 20 MHz
indicating the need for considering an attenuative theory in this fre-
quency range.

The attenuative theory also predicts a consequence of the phase
change manifested as a frequency of least reflection. That effect is a
result of the experimental configuration that was used to observe it
which does not include the entire reradiation caused by finite beam
incidence.

The theoretical consideration of the attenuation of bulk waves in
the solid is indicated to be consistent with schlieren observations at fre-
quencies above f,. That same theory is deficient for the explanation of
reflection amplitude at lower frequencies. Theory predicts the mono-
tonic increase of amplitude to unity toward zero frequency. The model
of surface wave generation and attenuation introduced in this paper
demands an approach of the amplitude to a constant value as zero fre-
quency is approached.
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Chapter 19

RAYLEIGH AND SHEAR SPEED DETERMINATION
USING SCHLIEREN VISUALIZATION*

INTRODUCTION

The low-MHz region is the frequency range in which significant
internal losses in the material can be neglected and for most metals
would have an upper limit in the neighborhood of 10 MHz. It has been
shown in Chapter 18 that when a finite acoustic beam was incident on
the solid, in the vicinity of the Rayleigh angle, a "head-wave" was gen-
erated and progressed along the interface. Figure 1(a) shows a
schlieren visualization of the radiation which results from a 1-cm-wide
acoustic beam incident on a molybdenum surface in water. The source
is in the upper left-hand corner of the picture radiating downward, and
the frequency is 5.3 MHz. The beam displacement theory of Schoch
[1] predicts a displacement A shown in the diagram of Fig. 1(b) and is
clearly inadequate to explain the observation. The observation in Fig.
1(a) and observations on other metals are explained by the following
model presented in Chapter 18. At and near the Rayleigh angle, in
addition to the normal specular reflection, an incident acoustic beam
generates a Rayleigh wave in the solid which radiates into the water as
it progresses along the surface. At exactly the Rayleigh angle the spec-
ular reflection and the Rayleigh wave radiation are 180° out of phase.
This model, based on experimental observations, is in agreement with a
theoretical model of Rayleigh-angle phenomenon by Bertoni and Tamir
[2). The dark strip in Fig. 1(a) is caused by the mutual cancellation of
specular and Rayleigh radiation where they have equal amplitude.

It is this null strip which makes the Rayleigh angle easily and
accurately observable and thus makes possible accurate measurements
of Rayleigh phase velocity. Specular reflection occurs from the region
directly illuminated by the incident beam, and outside of this region
Rayleigh wave radiation alone is responsible for the observed wave
front.

*These results were first reported in: W. G. Neubauer and L. R. Dragonette, J. Appl.
Phys. 45, 618-622 (1974).
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-~ s
(@) (b)

Fig. 1 — (a) Schlieren visualization of the reflection of a finite
beam from a molybdenum-water interface at the Rayleigh angle.
The incident beam is on the left-hand side. (b) Diagram of a
displaced beam according to the prediction of Schoch theory for
the incident beam in (a).

MEASUREMENTS

The materials were solid circular cylindrical samples with radii of
6.35 cm and with 7.62-cm lengths. The circular ends are flat to within
+0.001 cm, and these flat ends are the metal surfaces used in the
experiments. The sound source is a 1.9-cm-diam lead-zirconium-
titanate transducer. No receiving transducer is needed for the velocity
measurements. A transducer similar to the source with a mask having
a 1-mm wide slit was used as a receiver in attenuation measurements.

The Rayleigh phase velocity ¢, is related to the Rayleigh angle 6,
by (4]

¢, = ¢,/sin@,, ¢}
where ¢, is the speed of sound in water. The speed of sound in fresh
water is known to at least 0.01% from Chapter 23. Thus, the limitation
on how accurately ¢, can be obtained is limited by the measurement of
0,. The generation of a head wave by an incident acoustic beam does
not by itself give an accurate measure of 9,. As shown theoretically in
Viktorov [3] and experimentally by Neubauer [1], Rayleigh waves are
generated at many angles and are strongly generated over a wide range
of angles in the vicinity of the Rayleigh angle. The dark null strip seen
in Fig. 1(a) is, however, a sensitive function of the Rayleigh angle,
since it is at this exact angle that the Rayleigh radiation and specular
reflection are 180° out of phase. Figures 2 and 3, respectively, show
the radiation observed when stainless steel and molybdenum interfaces
are insonified at and near the Rayleigh angle. In both cases the dark
strip in the middle frame at Rayleigh-angle incidence is easily distin-
guishable from the radiation at angles 0.1° away. With real-time obser-
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Fig. 2 — Reflection of a finite beam from a
water-stainless steel interface for incidence at (a)
0.1° less than the Rayleigh angle, (b) at the Ray-
leigh angle, and (c) 0.1° greater than the Rayleigh
angle.

Fig. 3 — Reflection of a finite beam from a
water-molybdenum interface for incidence at (a)
0.1° less than the Rayleigh angle, (b) at the Ray-
leigh angle, and (¢) 0.1° greater than the Rayleigh
angle.
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vation of the radiation using a TV monitor, the Rayleigh-angle mea-
surements could be repeated to 0.10° and the limitation was the
mechanical measurement system and not the method. Table 1 gives
measured Rayleigh angles and calculated phase velocities for several
materials that were measured. The velocity errors given in the table are
based on the +0.1° limitation in angle measurement imposed by the
angular measurement system used here. This is not necessarily the
limitation of the experimental method.

Table 1 — Rayleigh Phase Velocities at 20°C

Material Experimentally determined Raylgigh phase
6, (deg) velocity (m/sec)
stainless steel 31.62 2827 + 8
aluminum 31.36 2848 + 8
molybdenum 28.61 3095 + 8
K-91 25.40 3456 £ 13
K-8 23.00 3794 £ 16
K-16S 17.26 4996 + 28
aluminum oxide 15.10 5691 + 38

SHEAR VELOCITY ESTIMATES

In addition to the accurate and direct measurement of Rayleigh
phase velocity obtained from this schlieren technique, estimates of the
shear velocity may be made which are accurate to within a few percent.
These estimates can be made by using only the acoustic surface
reflection measurements discussed above. The determination of a bulk
property using a surface property can be very advantageous in materials
where direct shear velocity measurements are quite difficult. The shear
velocity estimates can be made by using the approximation found in
Mason [5]. This approximation is shown graphically in Fig. 4, which
shows the ratio of Rayleigh velocity ¢, to shear velocity ¢, plotted vs
Poisson’s ratio . The velocity ratio is slowly varying with Poisson’s
ratio so that o need not be known with great accuracy. For example, a
value ¢ = 0.25 £ 0.10 on the curve of Fig. 4 corresponds to a range in
c/c; of 0.90 € ¢/¢, £ 0.935. This is an error of about +2% in the
estimate of ¢,/c,. Over the entire curve, the ratio ¢,/c, varies only from
0.86 to 0.96, so that a value c,/c; = 0.91 can be chosen if nothing is
known about o and still give a result within usable limits for many
applications.
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Fig. 4 — Ratio of Rayleigh velocity to shear velocity plotted
vs Poisson’s ratio.

Table 2 gives a comparison between shear velocities estimated
from the schlieren measurements of ¢, and shear velocities measured
by direct shear wave propagation through the same samples.

Table 2 — Comparison of Shear Velocity Estimates
with Direct Measurements

¢, direct
Material & (‘:t/l:;:;es m‘;raos‘:xari?rt:::ts % difference
(m/sec)?
aluminum 3030 3143 36
stainless steel 3040 3148 34
molybdenum 3328 3347 0.5
K-91 3757 3853 2.5
K-8 4135 4172 0.8
K-165 5490 5410 1.5
aluminum oxide 6254 6300 0.7

3The direct propagation measurements were made by the Ocean Materials Cri-
teria Branch at NRL on the same samples used in the schlieren results. These
direct measurements are accurate to within = 1%.

A similar technique, one of measuring elastic constants by the
identification of the Rayleigh angle through observation of the well-
defined dark strip in the reradiated field, can be applied to plates. This
method of estimating shear wave speed on plates is usable for plates
three Rayleigh wavelengths thick, it is probably usable for plates even
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thinner. A finite beam incident on a nickel plate approximately three
Rayleigh wavelengths thick is shown in Fig. 5. The sound pulse has a
center frequency of 5.8 MHz. Values for Rayleigh speed measured on
five different plate materials, as well as the estimated shear speed in
those materials, are given in Table 3. Comparison with handbook
values is also given where these are available [6].

Fig. 5 — Reflection of a finite beam at the Rayleigh angle
from a nickel plate 3.0 Rayleigh wavelength thick.

Table 3 — Shear Wave Speeds Inferred from
Schlieren Measurements on Plates

Rayleigh Shear Handbook values
Material speed speed of shear speed % difference
(m/sec) | (m/sec) (m/sec)
Nickel 2780 2973 3000 0.9
Armco iron 2935 3166 3240 2.3
Mu metal 2749 2988 XX
Iconel 2757 2996
Permalloy 2757 2996

e S . 4,
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ATTENUATION RESULTS

In the low-MHz region, in which these experiments were per-
formed, the attenuation of the Rayleigh wave caused by radiation into
the water is given by [7]

a, = chw/PC,A. (2

where a, is the absorption coefficient of the Rayleigh wave, p, is the
density of water, p is the density of the solid, and A is the Rayleigh
wavelength. As demonstrated in Fig. 2 for stainless steel, even when
the Rayleigh wave is not transmitted over a large distance along the
interface, the identification of the null strip remains a sensitive
identifier of the Rayleigh angle. Attenuation measurements were made
on the materials listed in Table 1. As mentioned previously, the
receiving transducer used in attenuation measurements was similar to
the source transducer and was masked to have an active face 1 mm
wide. The Rayleigh angle was first determined by using the null strip
method described. A receiving transducer was then placed in a fixed
position and the source transducer was moved parallel to the liquid-
solid interface. A typical plot of amplitude normalized to the maximum
value vs distance parallel 1o the interface for reflection from molybde-
num is given in Fig. 6. The initial peak is the specular peak. The dip
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in the curve corresponds to the position of the cancellation of specular
and Rayleigh radiation, and the second peak is the Rayleigh peak which
is followed by an exponential decay. Figures 7(a) and 7(b), respec-
tively, show a linear and logarithmic plot of the decay of the Rayleigh
amplitude as a function of distance parallel to the interface in cm for
stainless steel. Measured values of a, are listed in Table 4 and are
compared to values calculated from Eq. (2). This equation predicts that
a, is directly proportional to frequency, and this was verified experi-
mentally on aluminum oxide at frequencies from 4.46 to 6.19 MHz.
The amplitude measurements given in Figs. 6 and 7 show oscillations
about the exponential decay of the radiated wave. Hydrophone meas-
urements of the amplitude of these fluctuations about the exponential
decay vary with receiving hydrophone aperture, and these differences
with aperture are discussed in Ref. 8. However, a consistent value of
a, is obtained from a least-squares fit of a plot of the logarithm of the
amplitude vs the distance.
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Fig. 7 — (a) Relative amplitude of the reflection of a finite beam from a stainless steel-
water interface at the Rayleigh angle, plotted vs the relative distance paraliel to the
liquid-solid interface. (b) Relative amplitude in (a) plotied logarithmically vs relative dis-
tance parallel to the liquid-solid interface.
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Table 4 — Measurement of Rayleigh Attenuation «, in Np/cm

. Frequency | Experimental | Caiculated
Material (MHz) a, «,
stainless steel 3.8 0.82 0.89
aluminum 5.00 3.43 3.41
molybdenum 33 0.58 0.51
K-8 4.72 0.35 0.33
K-91 38 0.42 0.35
K-165 6.50 0.67 0.64
aluminum oxide 4.46 0.46 0.52
aluminum oxide 5.00 0.55 0.58
aluminum oxide 6.19 0.71 0.71
CONCLUSION

Measurements of the Rayleigh phase velocity in the low-MHz
region can be directly and easily made by using a schlieren technique.
When a finite acoustic beam is incident from water on a plane solid
interface, head waves are generated at and near the Rayleigh angle.
These head waves are due to the generation of a Rayleigh wave. In
addition to normal specular reflection, the Rayleigh wave radiates into
the water as it progresses along the interface. At exactly the Rayleigh
angle, the specular reflection and the Rayleigh wave radiation are 180°
out of phase. Over a small region where they are of equal amplitude,
the specular and Rayleigh radiations mutually cancel and thus form an
easily observable dark null strip in the radiation. This measured angle
is related to Rayleigh phase velocity by a simple equation. The attenua-
tion of the Rayleigh wave in the frequency range used was shown to be
primarily due to radiation loss into the water. Even for materials with a
high attenuation, the null strip was easily observed and phase velocity
was easily obtained. The direct measurements of Rayleigh phase
velocity were also used to estimate the shear velocities of the materials
by utilizing a theoretical approximation. The least accurate estimate of
shear velocity by this method disagreed with measured shear velocities
by 3.6%. The technique was attempted on plates of the order of three
Rayleigh wavelengths thick, and agreement, when comparisons could
be made, was excellent. Thus, given an arbitrarily shaped body with a
flat surface, a simple method exists for determining its Rayleigh phase
velocity accurately and for estimating its shear velocity to within a use-
ful accuracy.

O R

PUE




324 CHAPTER 19

REFERENCES
1. A. Schoch, Ergeb. Exakten Naturwiss 23, 127 (1950).
2. H.L. Bertoni and T. Tamir, Appl. Phys, 2, 157 (1973),

3. L.A. Viktorov, Rayleigh and Lamb Waves (Plenum, New York,
1967).

4. W.G. Neubauer, J. Appl. Phys. 44, 48 (1973).

5. W.P. Mason, Physical Acoustics and the Properties of Solids (Van
Nostrand, Princeton, N.J., 1958), p. 21.

6. Handbook of Chemistry and Physics, 52nd ed. (Chemical Rubber
Co., Cleveland, Ohio, 1971-1972), p. E-41.

7. K. Dransfeld and E. Salzmann, in Physical Acoustics, Vol. VII,
edited by W.P. Mason and R.N. Thurston (Academic, New York,
1970), pp. 260-261.

8. W.G. Neubauer, in Physical Acoustics, Vol. X, edited by W.P.
Mason and R.N. Thurston (Academic, New York, 1973), p. 61.




Chapter 20

SCHLIEREN VISUALIZATION OF
"HEADWAVES" ON PLATES*

INTRODUCTION

A schlieren technique of measurement and a path trace method of
analysis have been used [1] to identify the wavefronts radiated from
solid and hollow aluminum cylinders illuminated by short acoustic
pulses in water. The schlieren technique was found to be helpful, and
in some cases necessary, towards understanding pressure pulse hydro-
phone measurements of periodic puises in the shadow zone of cylinders
and cylindrical shells {1-5]. Two distinct guided waves with circum-
ferential properties were found on cylindrical shells [1]. The position
and group velocity of the radiated wavefronts resulting from these two
effects were shown to be consistent with appropriate combinations of
multipie shear and longitudinal reflections between the shell surfaces.
Illumination by a plane wave at a single angle of incidence is not possi-
ble in the case of the shell because of the cylindrical geometry and the
finite beam width. Methods for determining the angles at which
incident energy contributed to the observed effects are discussed in
Ref. 1. Illumination at a single incidence angle can be more nearly
achieved in the case of a flat plate.

Guided modes in aluminum plates are isolated here by illuminat-
ing the plates with short acoustic pulses at specific angles over a range
from 0° to 35°. This range includes the longitudinal and shear critical
angles, 13.5° and 28.5°, respectively, and the Rayleigh angle, 31.0°. In
general, only those guided modes which are not strongly attenuated by
radiation into the water will be isolated and considered. Both the trace
velocity and the group velocity of the modes are easily obtained from
schlieren visualizations. A formula giving the group velocity of the
observed radiated wavefronts or "headwaves" along the plate is derived
independently of the type of wave motion in the plate. The effects gen-
erated are compared with previous experimental results on plates in
water (7, 8]. The utility of a path trace technique for predicting the
group velocity of the observed "headwaves" is determined for the plate
geometry. Comparisons between the plate and previous [1] cylindrical
shell results are made, and the association of Lamb modes, with the
guided waves seen in shells, is discussed.

results were first reported in: Louis R. Dragonette, J. Acoust. Soc. Am. 51 920

*These
(1972).
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EXPERIMENT

The schlieren system utilized here is fully described in Chapter 22
and in Ref. 9. A diagram of the system is given in Fig. 1. The sources
are lead-zirconium-titanate transducers and are, in all cases, above the
plate and radiating downward. The radiated field in the water is visible
above and below the plate. The plate, in some cases, rested at each
end on a 1/4-in.-thick rubber cushion glued to a brass block. In other
cases, the plate rested at each end on a brass rod supported by a device
capable of accurately rotating the plate. The aluminum plates used in
the schlieren measurements were made of 6061 aluminum and had
dimensions of approximately 12.7 x 7.6 cm. The plate thickness
ranged from 0.002 to 0.241 cm. At the frequencies used, these
thicknesses (D), expressed in wavelengths, varied from 0.023A, to
1.891,, where A, is the compressional wavelength in aluminum, or
from D = 0.046A, to D = 3.84)\,, where A, is the shear wavelength.
The values for shear wavespeed (¥, = 3.136 x 10° cm/sec) and
compressional wavespeed (V, = 6.370 x 10° cm/sec) were measured
directly from circular cylindrical samples of 6061 aluminum. These
samples were 2.54 and 10.16 cm thick, and 7.62 cm in diameter. The
speed of sound in water at 20°C, 1.4853 x 10° cm/sec, was obtained
from Ref. 10, and is given in Chapter 23.

PULSE
SOURCE
T™E $TROBO- ACOUST,
L ooy T S ACOUSTIC SOURCE
/ ALUMINUM PLATE
——-T
v & ya 'J
e ——1—
Hapld 777 y A .
Soumce’ LENS 7 TELEVISION
CAMERA
wATER m‘«/

Fig. | — A diagram of the experimental sysiem.
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Figure 2 shows a schlieren observatior of the radiated field in the
water above and below a 0.130-cm-thick plate illuminated by a 3-usec
acoustic pulse. At the frequency 7.2 MHz, this thickness corresponds
to 1.47x,. In the successive frames of Fig. 2, specific angles of
incidence, between 0° and 26.5°, are shown. Frames (a)-(c) (incidence
angles 0°, 2.0°, and 4.0°) show specular reflection above the plate and
transmission below it. In addition, a definite brightening appears
behind the specular and transmitted pulses which seems to maximize
between 2.0° and 4.0°. No detailed interpretations of this brightening
are attempted since the effect does not separate sufficiently from specu-
lar reflection to make any useful study of its properties possible; how-
ever, it could correspond to a highly attenuating plate mode. The only
effects which will be considered in detail are those which persist far
enough along the plate, so that separation and isolation from specular
reflection are achieved. The first occurrence of such an effect is seen
in frame (e) (8.0°). At 10.0°, in frame (f), only specular reflection and
transmission are observed. In frames (g) and (i) (12.0° and 13.2°), the
appearance of two distinct wavefronts which have progressed along the
plate are observed and in frame (h) (12.5°), both are seen simulta-
neously. From 16.0° through 22.0° [frames (j)-(1)], only specular
reflection and transmission are present. Finally, the occurrence of
another progressing wavefront is observed in frames (n) and (o) (26.0°
and 26.5°). Only specular reflection and transmission were observed as
rotation of the plate was continued through 35.0°. The additional
wavefront, seen in frames (g)-(0), is a reflection from the transducer
of the reflected puise. The effects seen in Fig. 2 are observed
separately in Figs. 3 through 7.

When the 0.130-cm-thick plate is illuminated by an acoustic pulse
at an incidence angle of 12.5°, the result shown in Fig. 3 is obtained.
The driving pulse is approximately 3-usec long at a frequency of 7.2
MHz. The successive frames of Fig. 3 show the sound beam striking
the upper surface of the plate and at later times the formation and pro-
gression along the plate of two distinct wavefronts, each with its own
characteristic inclination angle and speed. Separation in time between
the frames is obtained by varying the time delay between the triggering
of the sound source and the strobe-light source. In this way, the sound
pulse and its effect can be frozen at any instant, from the time the
sound pulse leaves the transducer until it and its effects disappear below
the dynamic range of the system. Both of the wavefronts, seen in Fig.
3, are equally well observed above or below the plate. The two wave-
fronts can be isolated by changes in the incidence angle and are
observed separately in Figs. 4 and § (12.0° and 13.2°). The strong
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Fig. 2 — Schlieren photographs taken as a 0.130-cm-thick plate is rotated from normal to
the direction of propagation of an incoming acoustic pulse through 26.5°. Puise length is
3 psec, frequency is 7.2 MHz. Frame (a) is 0.0°, (b) 2.0°, (c) 4.0°, (d) 6.0°, (e) 8.0°, (D)
10.0°, (g) 12.0°, (h) 12.5%, (i) 13.2°, () 16.0°, (k) 20.0°, (1) 22.0°, (m) 24.0°. (n) 26.0°,

and (o) 26.5°.
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(f)

.
(b)
/\
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@ | (e)

Fig. 3 — A time sequence of schlieren photographs showing the effects of
illuminating a 0.130-cm-thick plate with an INCOMINg acoustic pulse at 8, =
12.5°. Pulse length is 3 usec: frequency is 7.2 MHz.

:
¢

Fig. 4 — A time sequence of schlieren photographs show-
ing the effect of illuminating a 0.130-cm-thick plate with an
incoming acoustic puise at 9, = 12.0°. Pulse length is 3

usec; frequency is 7.2 MHz.
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() (d)

Fig. 5 — A time sequence of schilieren photographs showing the
effect of illuminating a 0.130-cm-thick plate with an incoming
acoustic pulse at §; = 13.2°. Pulse length is 3 usec; frequency is
7.2 MHz.

Fig. 6 — A time sequence of schlieren photographs show-
ing the effect of illuminating a 0.130-cm-thick plate with an
incoming acoustic pulse at 9, = 8.0°. Pulse length is 3
usec; frequency is 7.2 MHz.
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(c) (d)

Fig. 7 — A time sequence of schlieren photographs showing the effect of illuminating a
0.130-cm-thick plate with an incoming acoustic pulse at §, = 26.5°. Pulse length is 3 usec:
frequency is 7.2 MHz.

persistence of each of the radiated wavefronts over a small range of
incidence angles is consistent with the amount of beam spreading
expected with the source transducer. At incidence angles of 8.0° and
26.5°, the final two effects observed in Fig. 2 were maximized and
time-sequence schlieren photographs of the progressions of the radiated
wavefronts along the plate are seen in Figs. 6 and 7, respectively. The
angles of incidence of the incoming acoustic wave in Figs. 2-7 are
measured with a possible systematic error of +0.5°. Measurements
were made from Figs. 3-7 of the angle of inclination, @,, between the
radiated wavefront and the plate surface (i.e., the angle at the intersec-
tion of the wavefront and the plate). The measurements show that 6,
is not equal to 6;, the original angle of incidence of the sound pulse. In
all cases, however, the specular reflection makes an angle @, with the
plate. The radiated wavefront angles are measured when the
"headwave" has progressed far enough along the plate that the specular
reflection is easily avoided. Differences between 0, and @, are espe-
cially obvious in Fig. 6, where sound is incident at 8, = 8.0°, and 9, is
60.0°, and, in Figs. 4 and 5, where a change of 1.2° in incidence angle
leads to generation of two wavefronts, whose inclination angles differ
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by 10.0°. Measurements of @,, taken from different frames in the
time-sequence photographs, show it to be a constant for each wave-
front, as that wavefront progresses along the plate. Theoretically,
Snell’s law predicts that energy will leave the plate at an angle equal to
the angle of incidence. This is confirmed by the plate results of Worl-
ton [7, 8]. The apparent paradox between the expected result, that
energy should leave the plate at the same angle at which sound was
incident, and the determinations of 8,, made from the schlieren photo-
graphs, is in reality only a manifestation that the group velocity and
phase velocity of the effect involved are different.

On the single assumption that energy making up the wavefronts
observed in the schlieren photographs does leave the plate at an angle
equal to the incidence angle, a formula for the group velocity of the
wavefront along the plate can be derived from geometric considerations
alone. The derivation does not depend upon any consideration of the
type of motion within the plate. In Fig. 8, the lines AC and BD
represent positions of a radiated wavefront above a plate OD at times ¢,
and t,. Positions A and B represent positions of a ray which has left
the plate at an angle 9; and traveled with the speed of sound in water,
V,. to position A in time ¢, and from position A to B in time , — ¢,.
The radiated wavefront moves a distance CD along the plate in the
time, t, — ¢,. The group speed V, is related to the speed of sound in
water, V,,, by V,/V, = CD/AB, which can be expressed as

Vo=V, cos (9, — 8,)/sin @,. (1)

N

T s
: >

A s
Bifs~ -8
8 6r

0 < D

Fig. 8 — Diagram, representing the position of a radiated
wavefront at successive times 1y and r,, from which group
velocity formula is derived.
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Table 1 gives values of ¥, which were calculated from the measured
values of 4,. The latter were obtained from the schlieren photographs
presented. The radiated wavefront angle, determined from photographs
shown in Fig. 6 (entry No. 1), was measured with a precision of +5.0°.
The thinner, sharper wavefronts in the schlieren photographs,
corresponding to entries 2 through 9 in Table 1, were measured with a
precision of +2.0°. Included in Table 1 are results obtained from
schlieren photographs of waves generated on plates thinner compared
to a wavelength. These schlieren photographs are seen in Figs. 9
through 12, and correspond to entries 5 through 10 in Table 1. Figures
9(a) through 9(c) show wavefronts which occur when a 0.130-cm-thick
plate is tilted at 12.0°, 12.5°, 13.4°, and 26.0° with respect to the direc-
tion of propagation of an incoming acoustic pulse. The pulse is 5 usec
long and the frequency is 5 MHz. At this frequency, the plate thick-
ness corresponds to 1.02x,. The three separate wavefronts isolated in
Figs. 9(a), 9(c), and 9(d) were the only observed progressions along
the plate, in a range of rotation from 0° to 35.0°. Figures 10-12 show
the single strongly persistent wavefronts observed on plates of thickness
0.051, 0.025, and 0.002 cm, respectively. In all three cases, the pulse
length is 3 usec, the frequency is 7.2 MHz, and the angle of incidence
is 13.0°. The 0.002-cm plate is not 6061 aluminum. It is made from
commerically available aluminum foil. Entries 8-10, in Table 1, show
the results obtained from these three figures. Values for the incidence
angle and wavefront angle for the thin foil are only best estimates,
since the surface of the foil could not be flattened sufficiently for pre-
cise measurements to be made.

Some direct measurements of V., which utilized a receiving
hydrophone, were also made in a separate experiment. A source and
receiving hydrophone were set with angles of incidence and reception
the same. The receiver was moved at a constant height above the plate
and the velocity is given by V, = d/t, where d is the distance that the
receiver moved and ¢ is the time delay in the received pulse. The
results of these measurements are also included in Table 1. Pulse
shape changes and pulse lengthening effects, noted by others [8, 11],
made meaningful direct measurements of V,, for the situation
described in entry No. 1 of Table 1 impossible. No hydrophone velo-
city measurements were attempted in the two thinnest cases because of
the difficulties in obtaining and mounting long plates that thin. A sum-
mary of the experimental results, tabulated in Table 1, shows that
almost all of the persistent "headwaves” were generated at angles within
2.0° less than the longitudinal and shear critical angles (13.5° and 28.5°,
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Table 1 — Group Velocities of Observed Wavefronts

Incident and Radiated V. x 10°
s 1
Entry Plate Anglgs Corresponds t({ Ve x 10 cm/sec
No. Thickness Schlieren Ph(?tograph ‘ cm/sec Measured
Summarized rom Eq. (1) with Receiver
9, 9,
1 1472, | 8.0°| 60° % 5° of * 92
2 1.47a, 12.5° 17° £+ 2° 51 06 48 + 0.3
3| 1em, |25 | e e 320 T02 1 29+ 02
4 1.47x, 26.5° 30° + 2° 3.0+ 0.2 3.0 + 0.2
s | 1o, | 1200 19°x2° a5 P 031 4503
6 1.02a, 13.4° 29° + 2° 30+ 02 30+ 0.2
7 1.02x, 26.0° 29° £ 2° 3.0+ 0.2 30+ 0.2
8 | 058, |13.0°| 18 +2° 48| 08 a6z
9 | o028n, | 130°| 18° x2° ag| * 08
10 0.023x, 13°¢ 16°° 54

Fig. 9 — Schlieren photographs showing effects generated on a 0.130-cm-thick plate 1t (a)
6, = 12.0°, (b) 6, = 12.5°, (c) , = 13.4°, and (d) 9, = 26.0°. Pulse length is 5 usec:
frequency is S MHz.
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Fig. 10 — A time sequence of schlieren photographs show-
ing the effect of illuminating a 0.051-cm-thick plate with an
incoming acoustic pulse at 9, = 13.0°. Pulse length is 3
usec: frequency is 7.2 MHz.

Fig. 11 — A time sequence of schlieren photographs showing the effect of illuminating a
0.025-cm-thick plate with an incoming acoustic pulse at 8, = 13.0°. Pulse length is 3
usec, frequency is 7.2 MHz.
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Fig. 12 — A time sequence of schlieren photographs show-
ing the effect of illuminating a 0.002-cm-thick plate with an
incoming acoustic pulse at §, = 13.0°. Pulse length is 3
usec. frequency is 7.2 MHz.

respectively). Wavefronts with V, =45 x 10° cm/sec were generated
at incidence angles within 1.5° less than the longitudinal critical angle
on plates whose thicknesses ranged from 0.023x, < D < 1.47\,. The
effects are isolated in Figs. 4, 9(a), 10, 11, and 12. Wavefronts with
group velacity, V, = 3 x 10° cm/sec, were generated for incidence
angles within 2.5° less than the shear critical angle, on plates of
thicknesses D = 1.47A, and D = 1.02), [Figs. 7 and 9(d)], but were
not observed on the thinner plates. A second wavefront generated near
the longitudinal critical angle with ¥, = 3 x 10° cm/sec was seen on
plates of thicknesses D = 1.02\, and D = 1.47z, [Figs. 5 and 9(c)].
No "headwaves" were observed between the shear critical and the Ray-
leigh angles.

COMPARISON WITH LAMB THEORY

Theoretical [12] and experimental [7, 8] evidence indicates that
Lamb theory for plates with stress-free surfaces can be applied to the
case of water-loaded plates. Lamb [6] derived two transcendental equa-
tions, which can be written in terms of the frequency-plate-thickness
product fD and the phase velocity ¥ of the Lamb modes. The first of
these equations,
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tan h{(msD/ V)I(VE = V) VYY)
tan h{(xfD/ V)I(V2 = VD[V
4{[( sz - vy szll/z 2= vy V,’]'“}
- [@QV2— v/ V2P

is satisfied if the plate motion is symmetrical with respect to a plane
parallel to, and midway between, the plate surfaces. The second equa-

YO an Bl DIV = VD VAV
tan h{(x D/ V)(V? - V) VAV
(@vE- v/ vi)?
= MG, Vp2]|/2 (V2= v/ vy

is satisfied when motion is asymmetrical with respect to this median
plane. The number of propagating symmetrical modes possible at a
given fD is determined by the number of real values of ¥V which satisfy
: Eq. (2). Likewise, the number of propagating asymmetrical modes pos-
sible is determined by real values of ¥ which satisfy Eq. (3) at a given
fD value. Numerical solutions of Eqgs. (2 and 3), in the form of curves
relating phase velocity of Lamb modes to the frequency-plate-thickness
product are presented for various materials in Refs. 7 and 8. A plot of
the first four symmetric and asymmetric modes for 6061 aluminum was
computed and is seen in Fig. 13.

' (2)

3)

10.16

762

508

254

LAMB PHASE VELOCITY x 105CM/SEC

' 1
} ; 254 508 762 1016 127
b4 FREQUENCY x PLATE THICKNESS x 105CM CYCLES/SEC

Fig. 13 — Lamb phase velocity vs fD for the first four symmetric (=)
and asymmetric modes (——).
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The angles of incidence at which the effects, seen in the schlieren
photographs, are generated are compared in Table 2 to theoretically cal-
culated incidence angles at which Lamb modes can be generated. The
relationship between the angle of incidence 8, and the phase velocity V,
of a Lamb mode, is given by [7]:

V="V,/sin#,. (4)

Real values of V, satisfying Egqs. (2 and 3), are computed at the fD
values corresponding to the experimental situations presented, and
these are used in Eq. (4) to obtain the theoretical values of 6, at which
Lamb modes can be generated.

Table 2 — Comparison Between Incidence Angles at Which Effects
are Strongly Observed and Angles Predicted by Lamb Theory

Entry /D c):nm5 9, LO, b Lamb Mod
No. Cyscelgs/ Measured Thz::ry amb Mode
1 94 8.0° 9.2° S5th symmetric
2 94 12.0°-12.5° 12.7° 4th symmetric
3 9.4 12.5°-13.2° 13.5° 4th asymmetric
4 9.4 26.5° 27.2° 2nd asymmetric
5 6.5 12.0°-12.5° 12.7° 3rd symmetric
6 6.5 12.5°-13.4° 14.4° 3rd asymmetric
7 6.5 26.0° 25.7° 2nd asymmetric
8 3.7 13.0° 13.5° 2nd symmetric
9 1.8 13.0° 17.0° Ist symmetric
10 0.14 13.0° 16.5° 1st symmetric

Many more Lamb modes are theoretically possible than were actu-
ally seen in the schlieren photographs for a given fD value; however,
with this short puise schlieren method, the presence of an effect is con-
sidered unequivocal only when the radiated wavefront progresses far
enough down the plate so that its separation from specular reflection is
undeniable. In most cases, identification of a mode which is highly
attenuated (that is, radiates a great deal of energy into the water over a
short distance) would be ambiguous using this short pulse method.
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Though no radiation is involved in Lamb’s theory, Worlton (7] made
estimates of those modes that would be least attenuated due to radia-
tion, based on the ratio of normal to horizontal particle motion at the
plate surface for a specific mode. By this means, based on Lamb’s
theory. it is possible to estimate those modes that would propagate
furthest along the plate at a given fD value. Calculations based on this
method indicate that the wavefronts observed in the schlieren photo-
graphs are those expected to be least attenuated.

Table 2 shows good agreement between the experimentally
observed results, and predicted angles of incidence for Lamb modes,
when /D is at least 3.7 x 10° cm cycles/sec. The agreement is poorer
for the two thinnest plates. The poorer agreement between experiment
and prediction on the thinner plates suggests that water loading
becomes a more significant factor for small values of fD where only the
first symmetric and asymmetric Lamb modes are possible. Osborne and
Hart [12] made exact calculations of the effect of water loading on
phase velocity vs fD for the first symmetric Lamb mode on stainless
steel plates. These calculations did not indicate as large a modification
of phase velocity as seen experimentally at the small fD values. Their
observations that, in general, water loading had little effect on Lamb
modes were confirmed for sufficiently large fD.

Of special note are the effects summarized in entries 2, S, 8, 9,
and 10 of the Tables. These effects are similar in that they are all gen-
erated within 1.5° of the longitudinal critical angle, and have the same
group velocity to within experimental error. Despite their similarity,
they do not involve a single Lamb mode, but correspond to the fourth,
third, second, and first symmetric Lamb modes depending on the plate
thickness. Thus for aluminum plates, even as thin as D = 0.02x,, a
strongly persistent wavefront with V, = 4.5 x 10° cm/sec, will be gen-
erated by an acoustic pulse incident within 1.5° less than the longitudi-
nal critical angle. This phenomen~n jumps Lamb modes depending on
the plate thickness.

PATH TRACE COMPARISON

Path trace analyses for "headwaves" applied to the effects gen-
erated at angles of incidence slightly less than the shear critical angle
[Figs. 7 and 9(d)] show that "headwave" position and angle can be
accounted for by internal reflections of shear waves between the plate
surfaces. Here group velocity is used in the same manner considered
by Brillouin [13] in his discussions of guided waves in pipes. With the
aid of Fig. 14(a), V¥, can be calculated directly from the formula
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Ve = V,sinB, (5

where 8 is the angle between the refracted, and subsequently reflected,
shear ray and the normal to the plate surface. The formula is derived
by noting from Fig. 14(a) that a refracted ray travels a path AC with
velocity ¥,, and that the component of V; along the plate surface is
V, sinB. The value obtained for ¥, at an angle of incidence of 26.5° (8
= 704°) is V, = 3.0x 10° cm/sec, which is in excellent agreement
with the schlieren observations of Fig. 7, and the direct hydrophone
measurements, both of which gave ¥, = (3.0 + 0.2) x 10° cm/sec.
The plate thickness in Fig. 7 was 3.0A,, but owing to refraction a shear
ray travels a distance 9.0\ ; between surfaces.

In Fig. 14(b), the radiated field above plates of thicknesses 4 and
24, illuminated at an incidence angle of 26.5°, is constructed. The
upper surfaces of the two plates are colinear in the figure, and
contributions to the radiated field above the plates from a ray incident
at 26.5° at position A are determined. These contributions are calcu-
lated by path tracing of the internal shear reflections in the plates and
the radiation into the water at each reflection of a shear ray from the
plate surface. All path lengths, directions, and times of travel in the
plate and in the water were calculated using Snell’s law. Each time an
internal shear reflection strikes the surface, sound energy enters the
water at 26.5°, the original incidence angle. In the time taken for the
internal shear reflections to reach position B, rays leaving the thinner
plate have reached positions labeled (x). Rays leaving the plate of
thickness 2d have reached positions labeled (O) in the same time. The
fact that internal shear reflections in both plates reach position B at the
same time is expected since the group velocity formula, Eq. (5). is
independent of plate thickness. The radiated wavefronts from the two
plates are observed to be colinear, and to make an angle of 30.0° with
the plate surface. This is in agreement with the schlieren observation
of Fig. 7 that, for 8, = 26.5°, 9, = 30.0°. Thus, a ray trace gives
quantitative agreement with both group velocity and position of the
wavefront observed in Fig. 7. From Eq. (5), it can be seen that the
group velocity calculated from a path trace analysis does not depend on
plate thickness. It depends on the refracted angle B8 which is deter-
mined from the original angle of incidence. While the group velocity is
not dependent on plate thickness, Fig. 14(b) shows that the continuity
of the radiated wavefront is. As seen in Fig. 14(b), the effect of dou-
bling the plate thickness was to reduce to half the number of contribu-
tions to the radiated wavefront of the incident ray, over the same travel
distance along the plate. If this description of the effect, seen at 26.5°,
is physically correct, a combination of a plate sufficiently thick or an
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Fig. 14 — (4) Internal path taken by a guided wave consisting of all shear rays, from
which group velocity is calculated. (b) Radiated wavefront above superimposed plates of
thicknesses dand 24, in which a guided wave consisting of all shear paths is present.

incident plane wave sufficiently narrow, should allow gaps in the radi-
ated wavefront to be observed. In Fig. 15, this effect is demonstrated
by a resulting wavefront, which occurs when a 5-MHz pulse is incident
at 26.5° on a plate 0.241-cm thick. Calculations of the expected spac-
ings agree with the observations in Fig. |5 to within the accuracy with
which the spacing of the gaps can be measured from the photograph.
The wavefront angle and group velocity remain the same as those
observed on the thinner plate at the same incidence angle. This plate is
1.9A, thick.

At angles of incidence where both shear and compressional waves
are possible, the ray trace paths are not readily singled out. Radiated
wavefronts made up of many different combinations of internal
reflections may occur. For sound incident, water to aluminum, at
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Fig. 15 — A time sequence of schlieren photographs showing the effect of
illuminating a 0.24-cm-thick plate with an incoming acoustic pulse at 8, =
26.5°. Pulse length is 5 usec: frequency is S MHz.

angles within a few degrees less than the longitudinal critical angle, a
guided wave consisting of an equal number of shear and longitudinal
propagation paths in the plate appears probable from a consideration of
the reflection coefficient curves {14-16]. Such a path predicts, to within
experimental error, the group velocity and position of the effects iso-
lated in Figs. 4, 9(a), 10, 11, and 12, which have the same group ve-
locity but are not uniquely determined by a single Lamb mode. The
other wavefront seen in the region of incidence near the longitudinal
critical angle [Figs. 5 and 9(c), entries 3 and 6, Table 2] would have to
be explained by a combination of internal reflections consisting of more
shear than longitudinal paths. A path consisting of three times as many
shear paths as longitudinal paths is needed to give the observed group
velocity. There is, however, no obvious way of predicting a priori such
a path description. The result is not, however, inconsistent with a path
trace explanation. A propagation path consisting of all shear reflec-
tions, for the effect generated at 8.0° (Fig. 6), predicts a group velocity
Ve, = 0.9 x 10° cm/sec and a wavefront angle §, = 64.7° This com-
pares favorably with the results seen in Table 1 (entry No. 1).

COMPARISONS WITH CYLINDRICAL SHELLS

Comparisons between the plate result and results on cylindrical
shells (1] will be limited to shells with b/a = 0.9 for reasons discussed
below. A refracted ray leaving one surface in a plate will strike the
other surface at the refracted angle. For a cylindrical shell this is not
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true, and in fact a refracted ray can miss the inner surface entirely, tak-
ing chord paths from outer surface to outer surface. Radiation from
energy taking chord paths predominates for shells thicker than those
with an inner to outer radius ratio, 4/a, of 0.9 [1].

A path trace analysis was strongly suggested by the reflection
coefficient curves for a water-aluminum boundary in two regions of
incidence on aluminum plates. The group velocity of the wavefronts
generated near the shear critical angle were described by a path involv-
ing only shear reflections (called S-S), and the faster wavefronts gen-
erated near the longitudinal critical angle had group velocities described
by a path consisting of an equal number of shear and longitudinal seg-
ments (called L-S). The L-S and S-S path descriptions also described
the two radiated wavefronts observed on cylindrical shells [1], which
were also generated near the longitudinal and shear critical angles. Of
the two wavefronts observed on cylindrical shells, only the wavefront
generated near the longitudinal critical angle persisted to shell
thicknesses much smaller than a wavelength, and the L-S path contin-
ued to describe the position and group velocity of the observation.
This is in agreement with the results on very thin plates presented in
Figs. 11 and 12, where only one wavefront persists.

A bent plate with both flat and curved portions was used to deter-
mine the persistence of the wavefronts generated on plates when they
encountered a curved surface. The effects seen in Figs. 4, 5, and 7
were generated on the flat portion of a bent plate of the same thickness.
The persistence of the wavefronts around the curved portion of the
plate is seen in Fig. 16. Figure 16(a) is included for reference to show
the size and approximate position of the incoming pulse. In Figs. 16(b)
and 16(c), respectively, the effects generated at incidence angles near
the longitudinal and shear critical angles, and described by L-S and S-S
paths, are observed after they have reached the curved portion of the
bent plate. Both are seen to have persisted strongly around the curva-
ture. In Fig. 16(d), the second wavefront generated near the longitudi-
nal critical angle (corresponding to entries 3 and 6, Table 2) is also seen
to persist around the curved surface, but is more highly attenuated as
seen in the fluid above the plate.

Neubauer and Dragonette [1] previously pointed out that the two
predominant guided wavefronts observed on cylindrical shells could not
be related to only the first symmetric or first asymmetric Lamb mode.
Comparisons between the experimental results on cylindrical shells and
the results presented here on plates indicate that the faster of the two
circumferential waves seen on shells corresponds to the plate effect
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Fig. 16 — Schlieren photographs showing the effect of plate curvature on the per-
sistence of three of the waves generated on a 0.130-cm-thick plate. The pulse length
is 3 usec: the frequency is 7.2 MHz. (a) An incident pulse. (b) The wavefront iso-
lated at 12.0°; (¢) The wavefront maximized at 26.5°; {(d) The wavefront isolated at
13.2°.

which jumps symmetric modes as thickness is increased, and the slower
circumferential wave corresponds most closely to the second asym-
metric mode.

CONCLUSION

Radiated wavefronts were observed when aluminum plates were
illuminated at specific incidence angles by short acoustic pulses in
water. The effects least attenuated by radiation into the water occurred
at incidence angles within a few degrees less than the longitudinal and
shear critical angles. The propagation of these "headwaves” along a
plate has not been previously reported and would be difficult to
describe with hydrophone measurements alone. With a single schlieren
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photograph, it is possible to determine both the group velocity along
the plate of the effects generated, and the trace velocity, even when
these are quite different. The measured angle of inclination between
the radiated wavefronts and the plate surface was related to the group
velocity of the wavefront along the plate by a formula derived indepen-
dently of the type of motion within the plate.

Comparisons between the incidence angles at which the effects
were generated and incidence angles calculated from Lamb theory for
unloaded plates showed good agreement for plates as thin as 0.58A,.
Agreement between Lamb theory and experiment became poorer when
plate thickness was reduced below 0.3X ,, suggesting that water loading
was becoming more significant. There are more Lamb modes theoreti-
cally possible than there were effects observed at any given plate thick-
ness. Only those effects which persisted far enough along the plate so
that specular reflection was avoided were considered by this method.
Estimates of the attenuation following a procedure used by Worlton
indicated that the modes observed were those that would be least
attenuated by radiation into the water. Those effects on plates whose
position and velocity were describable by path tracing corresponded to
the two circumferential waves found on cylindrical shells of b/a > 0.9
[1]. The faster circumferential wave on cylindrical shells is similar to
the plate effect, generated near the longitudinal critical angle, which
jumps modes as thickness is increased. The slower cirumferential wave
on shells is most closely associated with the second asymmetric Lamb
mode, generated near the shear critical angle.
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Chapter 21

SCHLIEREN VISUALIZATION TO
DETECT FLAWS ON PLATES*

INTRODUCTION

The use of Lamb [1] waves for nondestructive testing applications
has been the subject of numerous papers [2-5]. Generally these appli-
cations involve the hydrophone reception of a Lamb mode or a Lamb
wave reflected from a flaw.

Surface waves may be launched on a plate immersed in a fluid by
illuminating the plate at specific angles of incidence with short acoustic
pulses. A wave thus launched propagates along the plate and reradiates
energy back into the fluid as it propagates. The reradiated energy
leaves the plate at an exit angle equal to the original angle of incidence.
This reradiated wave is called a "headwave," and the detection of a
"headwave," in a region beyond that where normal specular reflection
occurs, serves as an indicator for the presence of a surface wave.

Schlieren visualization of "headwaves" generated when thin alumi-
num plates in water were illuminated by short acoustic pulses were
presented in Chapter 19. "Headwaves" were observed when the plates
were insonified at specific angles of incidence, and their properties com-
pared with predictions of Lamb theory. In addition, the position and
group velocities of the "headwaves" were described in terms of a path
trace technique. Those waves not strongly attenuated by radiation into
the water are of particular interest in nondestructive test applications.
Such waves are found to be generated by acoustic pulses incident within
2° less than the longitudinal and shear critical angles on plates made of
metals and glasses. The angle at which the "headwaves" are generated,
and their phase and group velocities, can be predicted by the known
elastic properties of the materials, and the distortion of these
"headwaves” when flaws are present in the material is easily observable
in real time by the schlieren method.

*Some of this material first appeared in "Materials Evaluation,” Oct. 1974.
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The schlieren system used is fully described in Chapter 22. The
sound source used is a lead zirconium titanate transducer pulsed at a
center frequency of 6.6 MHz. The active face of the transducer has a
diameter of 0.75 in. The plate material in all of the photographs that
will be shown is 6061 aluminum, which has a compressional wave
speed of 6370 m/sec and a shear wave speed of 3136 m/sec. The long-
itudinal and shear critical angles are 13.5° and 28.2°, respectively. The
plates are supported at each end by brass rods. Both the source and the
plates can be accurately rotated. The radiated sound field in the water
above and below the plates will be visible.

Figure 1 shows the "headwave" which results when an aluminum
(6061) plate 0.130-cm thick is iluminated by a 5-us-long acoustic pulse
at an incident angle of 12.0°. At the center frequency of 6.6 MHz, the
plate thickness, d, is 1.5 A,, where A, is the compressional wavelength
in aluminum. The incident pulse is seen in Fig. 2(a), and the succes-
sive frames of Fig. 1 show the generation and propagation of a
"headwave" along the upper and lower surface of the plate at later
times. Separation in time between the frames is obtained by varying
the time delay between the triggering of the sound source and the light
source. In this manner the sound pulse and its effects can be frozen
and observed at any instant, from the time the sound pulse leaves the
transducer until it and its effects attenuate below the dynamic range of
the system. Observations are made in real time on a TV monitor, and
the photographs seen here were made from the TV screen. The wave
seen in Fig. 1 was generated within 2° less than the longitudinal critical
angle on aluminum plates as thin as d = 0.023 A ,. The phase velocity,
V, of the plate mode seen in Fig. 1 is given by:

V’ Vw/sin 0,’ (l)

where 8, is the angle of incidence of the sound wave, and V, is the
velocity of sound in water. The group velocity, V,, of the wave is
given by [6]

cos (8, —6,)

Ve= Vo sin 0, (2)
where 6, is the angle of intersection of the plate surface and
"headwave” as seen in the photograph. The group velocity of this
"headwave” was measured to be ¥, = 4.5 x 10° cm/sec. This velocity
can be predicted by assuming that the observed radiation results from a
guided wave in the plate which takes an equal number of shear and
longitudinal paths between the plate surfaces. This type of guided wave
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(@)

(b)

(c)

Fig. | — A time sequence showing the generation
and propagation of a "headwave" on a 0.130-cm-
thick plate when sound is incident near the longi-
tudinal critical angle.

Fig. 2 — The distortion of the *headwave” seen in Fig. 2 by
a 0.025-cm (deep and wide) scratch on the upper surface of
a 0.130-cm-thick plate.
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is consistent with reflection coefficient calculations on aluminum, and
with previously shown results on cylindrical shells [6]. This "headwave"
was generated on all aluminum samples studied. These samples ranged
in thickness from 0.023A, < d < 2),, and the "headwaves" had the
same properties on all the samples, i.e., they were generated within 2°
less than the longitudinal critical angle. Their group velocity was
V, = 4.5 x 10° cm/sec, and their explanation was consistent with a
guided path consisting of an equal number of shear and longitudinal
legs between the plate surfaces. The strong generation of a guided
wave near the longitudinal critical angle is not limited to aluminum.
Such waves were generated on samples of nickel, armco iron, inconel,
stainless steel, and other metals and glasses.

Figure 2 shows the distortion which has occurred in a "headwave"
generated under conditions similar to those in Fig. 1, except that the
plate had a 0.025 cm (deep and wide) flaw on its upper surface. The
radiated wavefront has proceeded past the position of the flaw, and the
distortion the wavefront is easily observed. The distortion obtained
from a scratch on the bottom surface of a 0.050-cm-thick aluminum
plate is seen in Fig. 3. The flaw is 0.012-cm deep and wide. The plate
thickness here is d = 0.6\, and the "headwave" has the same proper-
ties and is generated within 1.5° of the longitudinal critical angle under
the same conditions (except for plate thickness) as that seen in Figs. 1
and 2. The distortion of the wavefront begins when the flaw is initially
encountered in frame (4c) and clearly identifies the presence of the
flaw.

The plate seen in Fig. 4 is 0.130-cm thick and has a 0.040-cm-
diam hole drilled 0.254-cm deep into its side between its surfaces. This
size hole was chosen since this was the smallest drill easily available.
The encounter of the "headwave," seen in Figs. 1-3, with a flaw
between the plate surfaces is seen in Fig. 4 to distort the "headwave" in
a similar manner.

Within 2° less than the shear critical angle, a strongly persistent
"headwave" with a group velocity Ve = 3.0 x 105 cm/sec was generated
on aluminum plates as thin as d = 1.0A,, and was not observed on
thinner plates. This wave was also generated on the other metals previ-
ously mentioned and glasses. The group velocity observed can be
predicted by assuming a guided wave consisting of multiple shear
reflections between the surfaces. The generation of this "shear
headwave” on a 0.130-cm plate is seen in Fig. 5. Thé interactions of
the wavefront, seen in Fig. 5, with flaws are similar to the effects seen
in Figs. 2-4.
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Fig. 3 — The distortion of a

"headwave” by a 0.012-cm (deep and
wide) scratch on the bottom surface of
a 0.051-cm-thick plate.
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(a)

(b)

(c)

@

(e)

Fig. 4 —~ The interaction of a
"headwave” with a flaw between the
surfaces of a 0.130-cm-thick plate.
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(a)

Fig. 5 — The generation of a
"headwave" by a sound pulse incident
near the shear critical angie on a 0.130-
cm-thick plate.

N N
-~

()

When a flaw is contained within the incident sound beam, detec-
tion by schlieren visualization is immediately obvious. Figure 6 shows
the illumination of a 0.005-cm-deep scratch on the top surface of a
0.130-cm-thick plate. The angle of incidence is 27.5°. Frame (a)
shows the incident pulse. In frame (b) the near shear angle "headwave"
has been generated, and its progression along the plate as well as its
reflection by the flaw in the opposite direction are observed. A semicir-
cular pattern is seen in frames (c) and (d). This is caused by the flaw
which is at the center of the semicircle. With a flaw on the bottom sur-
face of a plate, the semicircular pattern appears below the bottom sur-
face, as seen in Fig. 7. Here the flaw is a 0.025-cm (deep and wide)
scratch on the bottom surface of a 0.130-cm-thick plate. The center
frequency is 7.2 MHz; the angle of incidence is 27.5°. Frame (a) shows
the generation and reflection of the near shear angle "headwave,” and
the subsequent frames show clearly the semicircular pattern formed
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(a)

(b)
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Fig. 6 — The observation of effects,
caused by a surface flaw, contained
within the incident beam. The plate is
0.130-cm thick. the scratch is 0.025-cm
deep and wide.
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(a)

(c)

Fig. 7 — An observation under condi-
tions similar to Fig. 7, with the flaw on
the nonilluminated side of the plate.
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below the bottom plate surface. This effect is not limited to angles of
incidence at which "headwaves" are generated. The semicircular pat-
terns seen in Figs. 6 and 7 are easily observed and separated from spec-
ular reflection at all angles of incidence from 5° through the shear criti-
cal angle, the only necessary criterion being that the flaw is contained
within the physical dimensions of the incident beam.

The distorted "headwave" seen in Fig. 8 is characteristic of results
obtained when a flaw between the surfaces of the plate is within the
dimensions of the incident beam. The flaw in this case is a 0.040-cm-
diam hole drilled into the side of the plate and centered between the
plate surfaces.

Fig. 8 — The pattern obtained when a flaw
between the plate surfaces is contained within the
incident beam.

CONCLUSION

A schlieren visualization technique can be :sed to perform flaw
detection inspections on flat samples of various thicknesses.
"Headwaves” are generated by acoustic pulses incident at specific angles
on plates in water. Distortion of these "headwaves" in the presence of
flaws is directly observed by schlieren visualization.

The advantages of a schlieren technique are:

1. Detection of energy scattered by a flaw is not limited in
direction by a receiver. Scattered energy in all directions
perpendicular to the light source can be accomplished with
the schlieren.
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2. The existence of the flaw and its position along the surface
are visually observed in real time.

3. A flaw not large enough to generate a significant reflected
echo may still distort the radiated "headwave" and be
detectable.
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Chapter 22
EXPERIMENTAL FACILITIES

INTRODUCTION

Throughout this volume various experimental measurements have
been presented, mostly acoustic field measurements of pulsed sine
waves in water and air, and schlieren visualization of pulsed acoustic
tields. In some cases, detailed experimental procedures were described,
but there has been only little physical description of the facilities suit-
able for performing the experiments. Of course, a variety of equipment
had been used over the period of almost 20 years that this work spans.
It would serve little purpose to describe old outdated equipment and
facilities, so mostly recent facilities will be described. In the case of
acoustic pool facilities the new ones are far more elaborate and capable
than earlier facilities because of the direct connection to a computer.
However, this advanced system is also suitable for measurements that
were carried out in earlier simpler systems.

GENERAL CONSIDERATIONS

The measurement of acoustic reflection in a closed body of water
or an air enclosure, such as a tank or room, is always encumbered with
one ever present factor: reflection from the boundaries (tank wails and
water-air interface or room walls). Additionally, in a water volume,
difficulties, sometimes unexplainable, with electrical grounding seem
omnipresent. The latter becomes a constant enemy conspiring to
obscure measurement values. It often seemed that the greatest care
had been taken to eliminate ground loops one day so that signals were
adequately noise free and the next day a signal is found walking
through the trace on a bed of grass offering a new grounding challenge.
It has happened that a hydrophone immersed in a water tank was pick-
ing up aircraft pilot conversations from the airport across the river.
The lesson, surely a common rule in other areas of physical measure-
ment is — while the system is working well, take all the data possible.

Some experimenters have sought to make enclosures that absorb
the energy incident on them. Such anechoic treatments of boundaries
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are very common and quite successful in air. In water, in addition to
the significant expense, anechoic linings are relatively narrowband and
often have undesirable directional properties. Reflection measurements
such as those for spheres in Chapters 7 and 8 demand a very low elec-
trical background for the signal. In that case uniform (plane wave)
insonification is required and a far field measurement is sought. To
achieve a reasonably plane incident wave, usually a large distance is
required between source and reflector, so that a 1/r diminution with
distance of acoustic intensity is suffered. On reflection, the same or a
similar distance is required resulting in an additional 1/r diminution of
the intensity with range. The reflection results from the interception of
only a small portion of the source field. For a sphere and most other
double curved objects the absolute reflection is not large. A represen-
tative example will demonstrate the magnitude of signal involved. For
a sphere (see Chapter 7),

a
prs_z—’pO,fuoI: (l)

where pg is the incident pressure at the position of the center of the
sphere. Take an average of unity for |f,.| which is the high-frequency
rigid-sphere value. Consider a sphere with radius @, and impose a 10-
diam range r = 10(2a)) for the receiver to satisfy far field conditions.
Now

b a
Do 2(200)

or the reflection is 32 dB below the incident pressure level. It can be
seen that a 30 dB echo reduction tank-wall coating would cause serious
competition for reflection from a sphere. Of course, some reflectors
return larger signals and some smaller signals and even an elastic
" sphere can return significantly higher signals at some frequencies.
However, to achieve the measurement of small magnitudes of |f..|
such as those in Fig. 4 of Chapter 7, every dB of receiver preamplifier
gain and reduction in background noise that can be garnered are
required.

= 0.025, (2)

It may seem that as far as the enclosure (tank, pool, etc.) is con-
cerned, bigger is better. As a practical matter this turns out not to be
the case. With larger size several things become a great deal more
difficult. First, there is the matter of maintenance of the water volume.
That medium is ideally made to be of uniform temperature, still, quiet,
and constant in these and other properties. If optical sighting is
required, such as for distance measurements, optical clarity is also
necessary. Of course, the frequency range and pulse lengths used in
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the experiments are a vital consideration, with larger volumes required
for lower frequencies. At all frequencies the shortest achievable pulse
lengths in water or the actual physical size of reflector are usually the
major limiting factors for tank size.

Estimates of tank size required for specific conditions result from
a complicated interaction of many parameters. Limitations of tank size
resulting from reflection interference from walls can be generalized to
some extent and used as a basis for judgment about tank size. When
source and receiver are equidistant from a reflecting surface, the
modification of the received, directly transmitted pulse by energy which
has suffered a reflection and is at least in part received simultaneously
with the direct pulse, may be predicted by geometrical considerations.
Consider a sound source located at §; (Fig. 1) and a receiver at S,
both at a distance 4 from the nearest reflecting surface, i.e., the water-
air interface or a tank wall. The interference with the direct pulse takes
place when acoustic energy simultaneously arrives via the path $,aS,;
and the path 5,55,. This is the "Lloyd mirror effect.” Let

t; = transit time of pulse via path §5bS;,
t; = transit time of pulse via path $,a4S§,, and
t, = duration of pulse.

To avoid interference, .

2 4+,

Since

Hh=rle
and

1, = 2q/c, where q = \/m
2 m =r+a,

or

242 ct,

r < —E; -

Thus r is the maximum separation of S, and §, for a given depth and
pulse duration where no interference will occur.

For the case where S, and S, are not equidistant from the nearest
surface, an interference relation can be derived in which the point of
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REFLECTING SURFACE
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Fig. 1 — Geometry for reflection interference from side-wall with
source and receiver equidistance from the reflecting surface.

reflection must be experimentally determined. This becomes unneces-
sarily complicated and makes it advisable in most cases t0 maintain
both S| and S, as close to equidistant as possible from a single surface
so that this distance is smaller than that to any other reflecting surface
parailel to it.

Reflection from the plane surface behind the source and normal
to the line between source and receiver can interfere with the directly
transmitted pulse at the receiver. To avoid this interference, the fol-
lowing relationship between the distance 4 from the source to the sur-
face should be maintained

ct,

/1>-2—.

Reflection from the surface behind the receiver is also capable of
interfering with the directly transmitted puise; so the above relationship
should also be maiutained where # is the distance from receiver to the
surface behind it. These considerations will be true for a perfectly
square pulse emitted by the source, reflected, and propagated in the
water and also for the case of measurement on a pulse at some specific
fixed time along its length. To assume interference for no part of the
pulse, the effective pulse lengthening due to the finite bandwidth of the
source, medium, reflector, and receiver must be taken into account.
The number of cycles needed to allow the pulse that is introduced into
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the water to reach a desired percentage of its steady-state value can be
determined from the quality factor Q of the source. The degree of
interference between the direct and reflected pulse will of course be a
function of the relative magnitudes of energy emitted in the direction
of the source and reflector. For a highly directional source and
receiver, experimentation in an interference region may be permissible
to the extent that the reflected signal is smaller to a desired degree than
the directly received signal.

The transient pulse analysis of reflection data described in Chapter
8 affords a significant advantage over long pulse experiments by using a
pulse as short as possible to maximize bandwidth and maximize also
the free volume in which interference-free measurements can be made.

TANKS AND POOL DESCRIPTIONS

One tank of a size that has proven useful had a capacity of
approximately 250 gals which was built to the normal standards of a fish
aquarium of that size. Its dimensions were 76 cm x 183 cm X 76 cm
deep. A frame was placed on top of the tank which allowed the posi-
tioning of acoustic sources, receivers, and reflectors. A side view of
the tank showing the frame and the positioning of transducers and
cylinders in the water is shown in Fig. 2. Smaller glass-walled tanks
have been used for reflected-pulse hydrophone measurements and for
schlieren visualization experiments. The relatively small glass-sided
tank was used for measuring the circumferential-pulse sequences of
Chapter 3. No pulses reflecting from the side walls interfered with the
desired pulses in most cases. If and when such wall pulses did exist,
they were identified and avoided for very limited experimental confi-
gurations. The glass tank was too small to allow a sufficient distance
between the cylinder and hydrophone at all angles around the cylinder
SO scattering-cross-section experiments were done in a larger tank. A
photograph of that larger tank is shown in Fig. 3. The tank has cypress
walls and bottom normally 7.6-cm thick and contained a water volume
152 cm x 305 cm x 152 cm deep. Location of acoustical elements in a
volume 1-m square by 10-cm deep in the center of the tank’s volume
was accomplished optically with microalignment telescopes mounted at
right angles to each other on two adjacent sides of the tank (see Fig. 3)
and a vertical cathetometer that viewed through a porthole in one end
of the tank. Elements were placed in the tank by a system of tracks,
rails, and carriages mounted on top of the tank. The wooden walls of
the tank into which water soaked to a certain depth afforded some
reduction in acoustic reflection from them depending on the degree to
which water soaked into the wood. This occurred presumably because
of the gradual impedance change over the wood thickness.
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Fig. 2 — A side view of the glass-walled tank showing the framework
which supported the transducers and diffracting cylinder.

Fig. 3 — A view of the wooden tank showing placement and
location equipment on top of the tank.
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A much larger wooden tank was also used. A photograph of the
work area showing the tank protruding above the deck around the tank
is seen in Fig. 4. This redwood tank is set in a hole in the ground and
has dimensions of 9-m diam and 6-m deep. Typical swimming-pool
water-maintenance techniques were used to keep the water pure.

Fig. 4 — The work area around the top of the 30-foot-diam redwood tank.

The pool of a pool-type research nuclear reactor became available
after the reactor was deactivated at NRL in 1970. The pool is approxi-
mately 8 m x 10 m x 6 m deep at the shallowest point. A photograph
of the pool area at NRL is shown in Fig. 5. Sources, receivers, and
reflectors are suspended from bridges that span the pool (see Fig. 6).
The bridges travel the length of the pool on rails that are flat and level
to better than 1 mm but, are seldom moved during the course of an
experiment. The pool contains approximately 150,000 gal of filtered
and deionized water. The water purification system was originally
designed and used with the reactor to remove from the water modera-
tor all particles capable of becoming radioactive. Therefore, the water
is very clear and has an extremely low electrical conductivity. This is
often a distinct advantage in that electrical leakage paths are minimized,
especially if transducers lose their watertight integrity. The purity of
the water also helps retardation of corrosion.of immersed metals.

The incident acoustic pulse is either measured directly or a replica
of the incident pulse is obtained by the sphere calibratioh procedure
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Fig. 5 — The large pool used for acoustic reflection
and scattering measurments.

Fig 6 — The target suspension platform attached to one bridge
that spans the large acoustic pool.
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described in Chapter 16. Alignment and relative aspect of source,
receiver, and target center are usually, but not necessarily, fixed in a
horizontal plane. The target is suspended from a stepping motor
assembly so that it can be rotated about its center. Target aspect angle
is varied by the stepping motor which are controlled by the computer.
The resolution of the motor that rotates the target is 1/30th of 1°.
Measurements of reflection amplitude vs target aspect are routinely
acquired in the pool at 1/2° intervals over 360°. After the target has
been rotated by the stepping motor, a waiting period is imposed before
data collection to permit damping of any oscillation of the target in its
suspension. Care has been taken to design a suspension system that
minimizes such oscillations. The support members for targets are usu-
ally 0.076-mm (0.003-in.)-diam-tungsten wires.

Data collection is performed by the computer through a Bioma-
tion model 8100 transient recorder. The entire data collection system is
shown diagrammatically in Fig. 7. The computer-operation area is
shown in Fig. 8. The transient recorder digitizes incoming signals into
2’s complement 8 bit data (7 bits plus sign). The computer can adjust
the input gain of the digitizer so that each return to be measured is
digitized with the maximum dynamic range possible for that particular
signal. The range of adjustment is from 0.05 volts to 50 volts for full
scale digitization giving a 40 dB range in which individual echoes can
vary and still be sampled with the same relative accuracy. The recorder
digitizes 2048 samples of the incoming signal at a rate set either by the
operator or the computer. Sampling rates may be varied from one sam-
ple every 10 sec to one sample every 10 nsec. The sampling rate used
depends on the frequency content and time duration of the signals.
The digitizing process begins on a trigger signal which can be delayed
by some integral number of sample intervals. This delay can be set by
the computer to optimally position the signal that will be recorded in
the time window. Once the signal has been stored in the recorder’s
memory, the computer can read the data and store it on permanent
medium such as a disk or magnetic tape for later processing.

AIR SYSTEM

An air acoustics system is shown schematically in Fig. 9. The
experimental technique in air is similar to that in water, but the
sources, receivers, and frequencies are different. The air acoustics sys-
tem allows the simulation of rigid boundary conditions for the target.
For the measurements in Chapter 8, the acoustic system employed LTV
electrostatic sources 5.08 cm and 15.24 cm in diam. The targets are
hung in a large room 9 m x 30 m x 15 m high. Variable length gated-
sine-wave pulses were produced by using a Hewlett Packard model
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Fig. 7 — A diagram of the instrumentation used with the acoustic reflection facilities.
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Fig. 8 — The computer used to control experimental conditions
and analyze the data for the large poot (Fig. 6).

PULSE
SOURCE

ACOUSTIC SOURCE

VA

/REFLECTOﬁ

ACOUSTIC CELL

Fig. 9 — Schematic diagram of an air-acoustic system.
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214A pulse generator and a Sanders switch to gate the continuous sine
wave output of a Hewlett Packard model 5110 frequency synthesiser.
The gated-sine-wave output was amplified by a Krohn-Hite model DCA
50 or ENI model 240L amplifier whose output drives the electrostatic
speaker. The signal received by the 0.635-cm-diam microphone was fil-
tered by a Krohn-Hite model 312 bandbass filter and amplified with a
Bruel and Kjaer type 2107 frequency analyzer. The microphone was
mounted on a stand and placed by hand at the desired aspect angle. A
positioning of +2° is possible in the air measurements. The received
signal is amplified and analyzed by the same equipment as described for
the pool facility. The water pool and air facility were adjacent to each
other.

SCHLIEREN SYSTEM

On several occasions [1,2] motion pictures of schlieren visualiza-
tions of ultrasonic wave interactions with cylinders have been shown.
These movies demonstrated the great usefuiness of the schlieren tech-
nique in identifying the individual components of the diffracted field of
the cylinders. In fact, such identification was not possible using the
standard pulse measurement technique of placing a hydrophone in the
shadow zone of the cylinder, and interpreting the received pulse train
displayed on an oscilloscope. The schlieren system that will be
described can be used to examine ultrasonic wave interactions with
bodies of various materials and shapes, with a size limitation of the
viewed field imposed by the diameters of the lenses used.

The great utility of the schlieren system and numerous queries
about it prompts the description of the system and its components and
the method of producing motion pictures with it. Although schlieren
visualization of sound waves is not a new procedure, practical informa-
tion about it seems not to be readily available. The basic description of
the fundamental phenomena involved is described by others, {3] and
only a brief description will be given here. A diagram of the dark field
schlieren system is shown in Fig. 10.

The following description of the schlieren system used to visualize
sound waves would not satisfy the optical science purist, but is
sufficient for the assembly and operation of a schlieren system for that
purpose. A paraliel light beam is established between the lenses B and
C in Fig. 10. This parallel light beam has all rays within it parallel to
esch other. The system is a telecentric system that is generated by a
small stop at A, which approximates a point source. The parallel rays
are focused by lens C in the plane D in Fig. 10 to a point. A stop is
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Fig. 10 — A photograph of the broad-band schlieren system.

placed at the focal point of the lens C that obliterates all of the parallel
rays between lens B and lens C. The purpose of the lens before the
aperture A is mere'v to focus the light source on the aperture. A
source of pulses ir oses a burst of sine waves on the acoustic source
which is placed so that the acoustic wave travels normal to the direction
of the paralle!l light rays in the light beam. A time delay is introduced
between the pulse source and the light source. At the delayed time the
stroboscope is driven to illuminate the acoustic puise in the water tank.
In the absence of sound, no image is seen in the image plane. How-
ever, when the acoustic source is turned on, that acoustic source causes
deviation of some of the light rays in the parallei light bundie. After
these rays pass through the lens C they are caused to miss the stop in
the plane D in Fig. 10 and pass through a lens between the plane D and
the image plane. This lens focuses the image plane at the center of the
acoustic pulse. There results an image of the sound that has been emit-
ted from the acoustic source. The stroboscope is timed so that the
pulse is illuminated at a time after it has propagated a desired distance
from the acoustic source or after it has interacted with the diffracting
field. This is done repetitively, faster than the flicker rate of the eye,
giving an apparent fixed image. If the time delay between the sound
emission and light flash is continuously varied, for instance increased,
the acoustic pulse will appear to be emitted from the acoustic source
and will appear to propagate toward the diffracting cylinder at the rate
of time delay increase and subsequently will appear to ipteract with it
and cause the reradiated field. It is not necessary to use the exact
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instruments that are described here, as many of them have equivalents
and would produce the same result. The instruments are named here
as an example of ones that could be used to assemble a working
schlieren system.

A useful source of illumination for schlieren visualization is a
laser. A helium-neon laser can be used as a steady-state source or it
may be intensity modulated to some extent. Usually the on-to-off
amplitude ratio needed for good strobed schlieren pictures is high and
not achievable by direct internal modulation. A laser light source obvi-
ates the need for achromatic lenses in the schlieren system. However,
it puts greater demands on such elements as the glass walls of the water
tank. Because of the coherence of the laser much glass, especially thin
glass plates as well as plastics, cause the optical field to be striated and
nonuniform. Of course, any visible-light laser is usable for this pur-
pose. An argon-iron laser has been used for experiments at NRL. The
laser beam was diverted by an acousto-optic modulator through an aper-
ture. This aperture must be at a distance from the modulator large
enough so that no residual edge of the undeflected beam passes
through the aperture during the time that the light is off in the
schlieren system. It was found that an extinction ratio of about 10,000
10 1 was desirable, and at times necessary. The light modulator must
have a fast rise time and a pulse duration that is short compared to the
travel time of a particular point on the acoustic wave if the wave is to
appear stationary. In water, sound travels at approximately 1500
nsec/mm, so a pulse length of less than 100 nsec would be required.
In addition, if so called phase resolution of the acoustic wave or pulse is
desired. a light pulse short compared to the period of the highest acous-
tic frequency is needed. The period of a 5§ MHz wave is 200 nsec. so a
pulse of approximately 20 nsec would be desirable.

A photograph of a broad-band light-source system is shown in
Fig. 11. The light source is a General Radio Stroboslave (model
1539-A). Even with this relatively slowly switched light source, phase
resolution of | MHz was possible using it. The condensing lens system
focuses the source image, which is in this case a zenon arc sufficiently
bright that an aperture of 0.66-cm diam can be used at A (Fig. 10) to
limit the paraliel light rays to a reasonably high-quality telecentric sys-
tem between B and C. The zenon light source is « broadband light
source and produces a schlieren picture with the full spectrum of colors.
In Fig. 9 the lens at B has a 12.7 cm diam with 2 62.9-cm focal length.
All lenses are high-quality achromatic lenses. The aperture A is at the
focus of the lens at B. The distance from B to C is 38 cm. The tank
between B and C is a stainless-steel-frame glass aquarium (40 cm x
26.6 cm x 25.4 cm deep). The original two largest sides of the tank
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were replaced with 0.03-cm-thick plate glass in order to minimize the
distortion caused by bowing of the sides. Lens C is a pair of 12.7-cm
lenses that have 27.3-cm combined focal length. The stop at D, which
is at the focus of lens C, is a circle (0.076-cm diam) of black photo-
graphic masking tape stuck to the center of a slide-glass cover. India
ink stops (on slide-glass covers) can be used as well. Large black cir-
cles photographically reduced in size to the obtained diameter afford
the highest quality stops but can be costly. The cover glass is mounted
on an aluminum plate with a 2-cm hole in it. The stop is centered by
means of a microscope mechanical stage mounted vertically. A televi-
sion camera (Fairchild model TC-177 with high-resolution RCA 8507A
vidicon) is mounted behind the stop. An f/0.95 lens is used on the
television camera but others are usable. The TV camera or any other
recording camera must be focused at the position in the tank where the
center of the acoustic pulse will appear. This is conveniently done with
a finely graduated scale placed in the plane where the acoustic pulse will
be but with external ambient light. Since the conventional television
scan rate is used, an ordinary television monitor can be used 1o view
the picture. Of course, at this point one may choose to record directly
from the television camera on a video tape recorder. To take advantage
of the high-resolution vidicon, a higher-resolution monitor can be used,
as it was for the picture shown in Fig. 11. To make motion pictures, an
Auricon motion picture camera with a TVT shutter was placed 1 m in
front of the television screen. The camera is synchronized to the tele-
vision scan rate by means of the 60 Hz power frequency. The movie
was taken at f/0.95 with Eastman Plus-X film with an ASA rating of
80. The television image was adjusted for brightness and contrast to
give the best directly viewed picture. Pictures are taken in a dark room.
The dynamic range of this system is 40 dB measured between max-
imum voltage across a 6.6-MHz transducer driven by an Arenberg
pulsed oscillator (model PG 650-C) and the voltage across the trans-
ducer to produce the minimum detectable wave on the ‘=levision
screen. The transducer is a Branson type ZT lead-zirconate-titanate
disk in a 2-cm housing.

Motion of the acoustic pulse is introduced by changing the time
delay between the acoustic pulse output and the strobe synchronization
input (light pulse). Although an internal delay is available on the
Arenberg oscillator driver, an external puise delay (Hewlett-Packard
214A) was used in most cases to ensure the time-delay range that was
from O to 100 usec. The entire apparatus was set up on a Gaertner 6-ft
optical bench. A similar system has also been set up on a smaller 4-ft
Cenco bench with 7.6-cm-diam lenses at B and C. Similar results were
obtained but adjustments were significantly more difficult. Careful ini-
tial alignment is important for optimum results. It is necessary to align
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Fig 11 — Schhieren photograph of a 3-u-sec
pulse reflected from a sohd aluminum
cyvlinder and subsequent radiation

the cylinder elements in the same direction as that of the parallel light
bundle and then it is necessary to align the transducer acoustic beam
axis normal to both the cylinder elements and the paraliel light bundle.
After the cylinder is aligned in the parallel light beam, the acoustic
pulse is observed as it is specularly reflected from the cylinder surface
so that is has maximum intensity on the television screen both on
incidence and after reflection. To get a schlieren photograph of a 5-
cm-long (Fig. 12) cylinder, without showing its supports, the cylinder
was glued with its elements perpendicular to a piece of 0.64-cm plate
glass with Eastman 910 adhesive. The plate glass was larger than the
12.7-m lenses and was mounted vertically on a 0.64-cm thick horizontal
brass base. The entire structure was set on a tiltable table that was
placed in the bottom of the tank with adjustments accessible through
the water for both tilt and rotation.
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Chapter 23
SPEED OF SOUND IN FRESH WATER*

INTRODUCTION

In the course of free field measurements of the acoustic scattering
by finite bodies in water, it was felt that the measurement of a funda-
mental quantity would unearth systematic errors in the placement-and-
location equipment, electronics, and the measurement of ambient con-
ditions. Toward this end, the measurement of the free field sound
speed was undertaken since methods of time, distance, and temperature
measurement were already available in the laboratory. In the experi-
ment, a pulse was transmitted from a fixed source to a single receiver at
two different distances along the same radius from the source. Sound
speed was determined by measuring the time difference related to the
distance difference. The resulting values for sound speed proved to be
the most accurate that then existed. Soon after these results first
appear?d], corroborating measurements by different methods were pub-
lished {1].

APPARATUS

The water medium was contained in the cypress tank described
earlier in Chapter 22. A diagram of the electronic apparatus is shown
in Fig. 1. The 100-kHz laboratory standard frequency was multiplied
first by 5 and then by 20, causing the resultant 500-kHz and 10-MH:z
signals to be synchronized. The 10 MHz was scaled down by a factor of
10° and triggered a pulse generator, which in turn triggered the
cathode-ray oscilloscope sweep each 10 msec. The pulse generator pro-
duced a 0.4-usec pulse that, after amplification and series tuning, was
applied to the acoustic source. The acoustic signal was received and
was amplified and displayed on one trace of a 4-trace oscilloscope. The
other three traces displayed on successive sweeps, the 100-, 500-kHz,
and 10-MHz signals, all synchronized with respect to each other. Since
each trace utilized the same electron gun and sweep circuitry in the

*Part of these results first appeared in: W. G. Neubauer and L.. R. Dragonette, J. Acoust.
Soc. Am. 36, 1685-1690 (1964).
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Fig. 1 — Diagram of electronic apparatus

oscilloscope as well as the same external synchronization, no timing
error could be introduced. The pulse-generator jitter was unnoticeable.
The composite signal displayed on the oscilloscope is shown in Fig. 2.

The acoustic source and receiver were fixed on rails that spanned
the tank and moved on tracks that were mounted on opposite sides of
the tank. An accurately graduated bar was slung in a framework just
over the water surface. A vernier fastened to the receiver rod moved
along the scale graduations when the distance be: #2en acoustic source
and receiver was changed. The distance between two positions of the
vernier on the scale represented the actual distance between two respec-
tive positions of the pressure-sensing element of the receiver, because
at each position the rail to which the recciver was clamped was leveled
along the line between source and receiver. This was accomplished
with a coincidence level rigidly clamped to the rod as close as possible

to the pnsition on the ra:i where the 1.905-cm % -in.| receiver rod was

clamped. The level had a sensitivity of 1 sec, causing a predictable
uncertainty in the correspondence between actual distances between
two positions of the sensing element in the water and the respective
distance between two positions of the receiver as indicated on the scale
above the water.
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Fig. 2 ~ Four-trace oscillograph of 100, 500 kHz, 10 MHz and the
first peak of the acoustic signal. (a) Delayed sweep. (b) Main sweep.
It was necessary to darken with ink some of the 10-MHz peaks to
indicate their existence in (a), since they did not survive the photo-
graphic reproduction.

EXPERIMENTAL PROCEDURE

Interference of the pulse at the receiver was avoided in all mea-
surements by time separation of the direct transmission and any reflec-
tion. The rail holding the receiver was clamped and leveled at a posi-
tion along the measuring bar, establishing a distance (d,) between
source and receiver. At each setting of the receiver, the temperature
was read with a thermometer, which is described later. A time position
with respect to the 10-MHz signal was read on the oscilloscope and
identified relative to the 500- and 100-kHz signals (see Fig. 2). The
time position of the signal was determined at the center of the
cathode-ray tube in order to minimize parallax errors in reading. At
each time determination, a photograph of the oscilloscope face was
taken. The photograph (Fig. 2) shows an expanded portion of the
entire sweep obtained by the use of a delayed sweep. The accuracy of
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the delay time of the delayed sweep was not used for timing but only to
allow the convenient observation of the signals. The rail holding the
receiver was then moved to the other end of the bar without touching
the bar, and another distance (g} was then established in the same way
as was d,. To ensure that the bar had not been accidentally moved
while the receiver was being moved, a graduation of the measuring bar
was viewed through a fixed telescope. To ensure that the receiver-
carrying rail moved along the tank and was maintained parallel at both
distances d; and d, the distances of the ends of the rail were measured
with respect to a fixed rail.

The delayed sweep on the oscilloscope was then moved with
respect to the same main sweep on which both signal positions were
displayed at different times. The amount that the delay was increased
or that the delayed sweep was moved along the main sweep was deter-
mined by counting the number of cycies of 100 kHz on the main
sweep. Each interval of 100-kHz peaks was subdivided by 500-kHz
peaks, each of which were subdivided by 10-MHz peaks. In this way,
the acoustic signal was located with reference to the three displayed fre-
quencies. The time interval At thus established in terms of periods of
100 kHz, plus periods of 500 kHz, plus periods of 10 MHz, is related to
the distance difference (4, — d, = Ad) or acoustic-signal path. Sound
speed is thus determined, since ¢ = Ad/At

DISCUSSION

Since a transient signal is employed in the experiment, an exact
analysis of the measurement would necessitate the application of a
Fourier transform to find the frequency components of the pulse. The
inherent differences between the transmission speed of the components
and of the group would be in evidence. Despite the existence of such
differences in the interpretation of sound speed, on the basis of pulse
similarities, which are discussed, and the use of a difference method,
the results are interpreted in terms of a steady-state solution.

The elementary solution to the scalar wave equation most closely
corresponding to the conditions of the experiment that was done is that
of a radial wave propagating outward from a point source in continuous,
simple harmonic vibration, in an infinite homogeneous medium. Such
a pressure wave would propagate with a phase velocity ¢ and would
diminish in amplitude as the reciprocal of the radial distance (r) from
the point source. The wavelength and phase velocity are related by
¢ = fA where fis the frequency of vibration of the source and X is the
wavelength. The phase velocity can also be expressed as ¢ = Ad/A¢,
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where Ad is the radial distance that a wave is propagated and At is the
time taken for the propagation.

In practice, the conditions that are explicit are not satisfied exactly
nor are some that are implicit. Such an implicit condition is that of
detection of an acoustical quantity such as pressure at a true point
rather than a finite area or volume. No specific quantitative evaluation
of each condition is yet possible that will allow a direct relationship
between the quantity c expressed in the elementary solution to the
wave equation and the experimentally determined quantity c¢. There-
fore, no exact numerical limits of uncertainty resulting from these
experimental conditions can be attributed to the measured sound speed.
Subjective judgment of each condition separately and an estimate of
their composite effect is the only recourse. In the experiment, the fol-
lowing conditions prevailed.

‘The acoustic field for some of the measurements was produced by
a 290-deg spherical cap [2] that approximates a 1.27-cm-diam-spherical
source. The radial pressure pattern at the 230-kHz resonance of the
source has a central lobe of approximately 200 deg. Near the axis of
this lobe, the pressure at a constant radius is constant to approximately
+2% over an angle of about 30 deg. The broad, single-lobe pattern
implies that the cap was vibrating in its fundamental mode, which
approximates the vibration of a sphere to a desired degree if a
significantly small region near the axis is considered. Since the pattern
is not truly spherical, a region near the source is present, even over
small angles, in which the pressure behavior is measurably different
from that of a true spherical radiator. This "near field" region has been
measured as extending no further than 5 cm from the center of the
source since, beyond this distance, the pressure has been measured as
decreasing with the inverse of the radial distance to +2%.

In sound-speed determination, the pressure field was sampled
with an acoustic probe [2] that has as its sensing element a 0.16-cm
ceramic disk. The acoustic probe has a radial pressure pattern with a
300-deg lobe, measured for reception, that approaches the spherical pat-
tern characteristic of a true probe. The angle subtended at the source
by the largest sensing part of the probe at its nearest approach to the
source in these measurements was 0.46 deg. For the greatest distance
between source and receiver, an angle of 0.03 deg was subtended by
the probe. The active disk-element radius is approximately 0.16 A,
whereas the probe housing is approximately 0.25 X, at the source
resonant frequency.
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If, because of the finite curvature of the wavefront at the
receiver, there was an inaccuracy of pulse location in time, it would be
due to the difference in onset at d; and d; of the pulse on the sensitive
element. This difference in onset would result in a slower rise time of
the received signal at d; than at 4;. In such a case, an observer would
have made a time determination at d, that was later on the sweep than
it should have been and the Ar associated with the Ad determination
would have been too small, resulting in a velocity derived from the
experimental values, which would have been too large. That is, the
true sound speed would have been below that determined experimen-
tally. No such difference in initial rise time of the pulse was noticed.
and therefore the influence of the effect was considered negligible.
However, had a rise-time effect been present below the voltage sensi-
tivity of the equipment and, therefore, had existed and gone unnoticed,
disagreement between results, which are given, and confined-field
measurements would be greater rather than smaller. A noise limitation
would have resulted in an error of the location of the axis departure or
any other characteristic of the received signal. However during these
measurements noise was observed to be not significant; i.e., the effect
on time location was less than the accuracy of the time reading.

Free-field or free-wave conditions at a field point were satisfied to
a desired degree by using short pulses and causing time separation of
reception at a field point of the pulse from the source and all reflec-
tions. Also, a pulse repetition rate was used that was long enough so
that all reflections in the tank were below the noise level of the
receiver-system electronics at the time that the source was pulsed again.
The necessity for the use of pulses destroys the conformity of the
experimental conditions with those assumed in the elementary solution
to the wave equation in two respects. There is a lack of both a truly
continuous wave and a true line-spectrum sinusoid. The bandwidth of
the source causes a problem in determining sound speed since ¢ = fA
and in the actual transmitted pulse no unique value of either f or A can
be measured. A range of frequencies is present at the beginning of the
pulse, where measurements are made. If, however, the medium in
which the pulse is transmitted can be considered nondispersive, i.e.,
c(f,\) is a constant, a unique value of ¢ is subject to definition to the
degree that dispersion may be ignored. If dispersion were present, the
various frequency components of the pulse would be transmitted with
different speeds, and, at different distances from the source, a com-
posite pressure resultant would be detected, and the puise shape would
necessarily change. A similar effect would be present if the attenuation
of the medium over the entire frequency spectrum of the pulse could
not be ignored as negligible. Since the pulse shape would indicate the
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presence of both of these factors, pulse shape at the short transmission
was compared with that at the long transmission for each combination
of transducers used in the measurements.

The initial part of received acoustic pulse is shown in Fig. 3 as it
was received at distances d, and 4,. Within the experimenters’ ability
to locate in time any characteristic part of this pulse, e.g., initial axis
departure or first or second peak, the two received pulses are indistin-
guishable from each other. Therefore, the resultant determination of
sound speed is no further in error than that error which is the result of
the time measurement itself. Pulse-shape comparisons were carried out
with different received pulse shapes as well as with different distances,
with identical results. Pulse-shaped comparisons were carried out with
0.63-cm-radius transducer disks and again the results were the same
even though such a disk has approximately a 25-deg central lobe in the
radial pressure pattern. Figure 4 shows the pulses that were compared
using these larger disks. In each situation used to determine sound
speed, the entire transmitted pulses were also compared by photograph-
ically superimposing them. Over the entire pulse, no detectable
differences were observed. What has been measured then can be con-
cluded to be the speed of sound emitted by a true spherical source
detected with a true probe within the experimental accuracy at a fre-
quency represented by f = cA, where f may be any frequency within
the relatively small bandwidth involved in the resonance of the source.
The resonant frequency of the 0.63-cm-radius disk is nominally 1 MHz.
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Fig. 3 — Initial portion of received acoustic pulse at
(a) d, and at (b} d,, using the spherical-cap source and
probe.
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Fig. 4 — Received acoustic pulse using 0.63-cm-radius
disk source and receiver at (a) d; and at (b) ;.

RESULTS

Figure § is a plot of measurements made with the acoustic sources
and receivers described. The measured values appear in Table 1.
Measurements were carried out by three experimenters independently.
As to whether this sound speed is what is normally called phase, signal,
or group velocity, it is all three to within the accuracy of the experi-
mental results.

These results also represent the plane-wave sound speed since the
elementary plane-wave solution to the one-dimensional wave equation
has the same form as the spherical-wave case, disregarding the ampli-
tude and allowing the distance to the source to be sufficiently large that
the spherical divergence or wavefront curvature is essentially zero over
the receiver sensing area. Again, the pulse comparison supports this
conclusion. Actually, in the experiments that were carried out, the lim-
itations resulting from the rigid definitions of conditions of the simple
solutions were sufficiently overcome to result not only in a spherical
wave but also a plane wave. The plane wave couid not be as good an
approximation 4s the spherical wave, but the difference was indistin-
guishable at the distances used and within the accuracy of the measured
values.
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Table 1 — Measured Values of Sound Speed vs Temperature

[0 CO)N | clm/sec) || 10C°C) | c(m/sec) || 16(°C) | c(m/sec)

16.6* 1471.51 19.01 1479.22 20.42 1483.35
16.8° 1471.65 19.04 1479.36 20.42 1483.48
17.9¢ 1475.38 19.11 1479.47 20.51 1483.81
18.26 1476.81 19.14 1479.64 20.55 1483.95
18.31 1476.82 19.47 1480.85 20.56 1483.95
18.55 1477.61 19.51 1480.98 21.22 1486.02
18.59 1477.86 19.57 1481.04 21.97 1488.04
18.62 1477.88 19.63 1481.07 22.01 1488.11
18.64 1478.16 19.64 1481.19 22.30 1489.11
18.72 1478.31 19.75 1481.61 22.72 1490.25
18.72 1478.31 20.06 1482.51 22.98 1490.86
18.81 1478.58 20.07 1482.44 22.99 1490.99
18.81 1478.57 20.12 1482.63 23.07 1491.24
18.85 1478.65 20.18 1482.92 23.09 1491.19
18.85 1478.67 L 20.24 1482.94 23.09 1491.26

MEASUREMENT ACCURACY

In order to determine the total maximum error due to the uncer-
tainties in the measurement of the independent variables, the total
differential of c(Ad,At,8) was computed [3]. Factors that were con-
sidered as contributing to the error in the determination of Ad were
bar-scale calibration, bar-material coefficient of thermal expansion, scale
and vernier reading error (parallax), source and receiver alignment, and
receiver rail leveling and parallelism. The total error in Ad caused by
these factors was +0.0075, —0.0067 cm. Since the maximum error in ¢
due to a 0.001-cm error in Adis 0.015 m/sec, the resulting total max-
imum error in cis +0.113, —0.101 m/sec.

The laboratory standard frequency of 100 kHz was known to be
accurate and constant to better than one part in 10%, contributing no
signifi;ant error in At Since the 500-kHz and 10-MHz signals are
derived directly from the 100-kHz signal, they also are accurate and
constant to one part in 10°. If the scaling of the 10 MHz were in error,
causing a lack of a constant synchronization interval, only the 10-MHz
signal would appear synchronized while the signals on the three other
sweeps would appear to wander across the cathode-ray-tube face. The
only factor that was significant in the contribution to the error of a
determination of At was the experimenter’s time-position reading error
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on the scope face, relative to the standard frequencies displayed. The
experimenter could determine the position of the received acoustic sig-
nal at each distance position to the nearest peak or axis crossing of the
10-MHz signal. In measuring A¢, two such determinations were neces-
sary and therefore the maximum error in Ar was +£0.025 usec. Since
the maximum error in ¢ due to a 0.01-yusec error in Aris 0.022 m/sec,
the maximum total error in ¢ related to time reading was +0.055
m/sec.

The temperature was read with a fast-response, 61-cm-long
bomb-type fuel calorimeter that was graduated at each 0.01°C between
the temperatures of 18° and 28°C. This thermometer was calibrated by
comparison with a similar thermometer that had been calibrated by the
National Bureau of Standards. The thermometer was always read with
the entire thermometer in the transmission path before and after each
pair of distance readings. Also, in each case the temperature was taken
with the bulb toward the receiver as well as toward the source. Sound-
speed determinations were not made when a horizontal gradient as
great as 0.01°C was noticed. The partial derivative of ¢ with respect to
6 was taken as 3.28 m/sec/°C from the report of Greenspan and
Tschiegg [4]. Temperature was determined in the transmission path to
an accuracy of +0.01°C, which uncertainty resulted in a maximum
error in ¢ of +0.033 m/sec.

WATER PURITY

Greenspan and Tschiegg (4] report that "Several measurements
made on local tap water give results about 30 ppm higher than for dis-
tilled water." Thus, since the 1800-gal water tank used in the measure-
ments reported here was filled with tap water in the same city in which
the difference was measured, an error of ¢ of —0.045 m/sec was
assumed. The results do not represent a single body of water since the
temperature was changed by adding hot or cold water from the tap.

The maximum total error in c¢ as a result of the sum of the errors
associated with all of the independent variables and the impurity of the
water was +0.20, —0.23 m/sec.

SOUND SPEED TABLES

Sound speed in water plays a vital role in the computation and
measurement of reflection and scattering by bodies and surfaces. A
tabulation of sound speed as a function of temperature for pure water is
therefore given here. Confident values for sound speed for all tem-
peratures within the originally measured range were derived by curve
fitting techniques. Forty-two values of sound speed were measured
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directly. To these points a best straight-line fit was made as well as a
quadratic fit.

Polynomial fits, in general, have the form
m
c= 3 4,T"
n=0

To permit the confident extrapolation of our free field data to tempera-
ture values above and below the measured values, we assumed the con-
stants for 0 € n < § that were derived from confined-field sound-
speed values measured over a temperature range 0°C to 100°C by
Greenspan and Tschiegg [4]. This assumption is justified on the basis
of the standard deviations derived for all fits of the data.

Within the temperature range (from 18.26°C to 23.09°C) for a
straight-line fit of the measured free field values, 4q = 1.422522 x 10°
and 4, = 2.9824. The standard deviation o for this data is 0.14 m/sec
calculated by the formula

- 0 — x)
U-ZN—(m+1)

jm1

where x; = the experimental values of sound speed, y;, = the values
calculated from the straight-line fit, N = the number of data points,
and m = highest order term of the polynomial. A quadratic fit yielded:

Ao = 1.398732 x 10}
A = 5.2905
Ay = —5.5639 x 1072

with o = 0.09 m/sec.

Using the values of Greenspan and Tschiegg [4]:
A, = 5.03358
Ay = —5.79506 x 102
Ay = 3.31636 x 10-*
Ay¢=—1.45262 x 107
Ag = 3.0449 x 10-°,

A new value of A4, was calculated at 1.402330 x 10°. This means that
the shape of the Greenspan and Tschiegg curve was retained (see Ref.
4) for our free field data and a new ordinate intersection was derived in

o
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the plot of sound speed vs temperature at atmospheric pressure. A cal-
culation of o for our data relative to the resulting curve yielded a value
of +0.10 m/sec.

Values of sound speed are given in Table 2 to the nearest 0.1
m/sec from 15.00°C to 30.99°C for temperature intervals of 0.01°C.
This range is intended to be useful for general laboratory use at atmo-
spheric pressure especially in open tanks for free-wave conditions.

The probable error for all values of sound speed are not greater
than +0.10 m/sec. Experimental values for sound speed reported by
others [4-7] are within a ¢ of values for that temperature given in the
table. The values are plotted and joined by a solid line in Fig. 6.
Experimentally measured values are shown on the curve.

Similar values of sound speed expressed in ft/sec over a tempera-
ture range from 60.00°F to 91.99°F, for temperature intervals of 0.01°F
are given in Table 3. Here the probable error is not greater than +0.32
ft/sec. As was done for the data of Table 2, an accompanying plot is
given in Fig. 7.
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INDEX

absorbing cylinders, 139

absorbing spheres, 195, 199

absorption, 56, 125, 140, 146, 148,
158, 159, 217, 220

acoustic impedance, 22, 27

air facility, 365

angular frequency, 2

antisymmetric modes, 105, 108-115,
337

attenuation, 95-97, 151

attenuation measurements, 316,
321-323

background contribution, 262

"background” integral, 40

beam-displacement, 297, 307

bistatic form function, 140

bistatic reflection, 143, 144, 146,
275, 276

boundary condition, 3, 127

bounded beam, 297

bulk properties determined from
reflection, 289

calibration using a sphere, 279

characteristic frequencies, 254

circumferential waves, 35, 57, 58, 75,
92, 98, 109, 117, 230

circumferential wave speed, 50

compressional waves, 95

creeping wave attenuation, 49, 51, 64

creeping wave paths, 185

creeping waves ("Regge poles®), 35, 41,
43, 44, 47-51, 57, 62, 180, 257, 265,
268

curved plates, 342-344

curved surface, 11

cylinder, 12, 40, S5, 59, 62, 142, 239,
258, 290

cylinder at high ka, 239

cylindrical cavity, 151

cylindrical shells, 125, 342

differential scattering section, 37, 43,
47, 207

397

eigen frequency, 73
elastic sphere in solid, 205
elastic spheres, 161, 177
facilities, 236

farfield, 139

finite cylinders, 140

finite plane, 5, 18

finite wedge, 8

flaws in plates, 247
flexural modes, 56, 92
fluid filled shell, 129

form function, 56, 60, 102, 139, 177,

178, 196, 208, 225, 238, 242,
259, 266

"form-function”, 163

Fourier theorem, 178

Fourier transform, 60-62

"Franz-type" waves, 36, 57, 70, 73, 75

Franz-type zeros, 39, 44

Franz wave, 45, 47, 62, 71, 117

Franz wave speed, 65

frequency of least reflection, 306, 309

Fresnel, 1

Fresnel integral, 19, 20, 23, 27, 29

gaussian-shaped beam, 301

general shape, 11

graphical solution for finite plane, 7

grounding, 357

group velocity, 94, 99, 102, 332, 334,
339, 348

group wave-speed, 332, 334

Hankel asymptotic form, 59, 259

headwave, 315, 331, 333, 347

Huygens’ construction, 30-32

hydrophone experiments, 49-51

impedance, 290

incident shear wave, 153

interference, 102

Kirchhoff approximation, 1, 12, 14,
17, 21

Lamb modes (table), 338

Lamb theory, 336-339
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Lamb waves, 93, 105, 117, 325,
336-339

Lamé constants, 36

lateral displacement beam, 299, 304

lateral waves, 75

layered cylinders, 125, 290

leaky Rayleigh wave, 58, 75, 80

lenses, 225

longitudinal critical angle, 311, 325

longitudinal mode, 56, 92

longitudinal waves, 36

material constants, 36, 102, 130, 146
153, 193, 208, 237, 305,

mechanical impedance, 264

modal impedance, 243

mode conversion, 158,

monostatic reflection, 129

near-field measurements, 21, 24

nonstatic reflection, 2,

normal mode, 35, 55, 56, 73, 100,
116, 126, 130, 242, 244

normal plane, 3, 5, 12

partial-wave scattering, 257, 265, 267

particle velocity, 4,

phase jump, 273

phase velocity, 105, 107, 337, 348

plates, 325, 327

plates and shells, 342

"potential scattering”, 262

quadric surfaces, 12

quality factor (Q), 253

radiation frequencies, 254

radiation impedance, 243, 264

Rayleigh angle, 297

Rayleigh phase velocity, 315

Rayleigh radiation, 48

Rayleigh resonances, 272

Rayleigh series, 55, 57, 58

"Rayleigh-type" waves, 36, 57, 73, 75

Rayleigh-type zeros, 39, 45, 73

Rayleigh wave, 47, 76, 268, 297

Rayleigh wave speed, 315

rectangular piston, 28

rectangular plane, 1

reflection coefTicient, 289

reflection reduction, 293

"Regge poles”, 269

resonance, 72, 75, 80, 91, 257, 267, 283

INDEX

resonance decay time, 257

resonance frequencies, 260

resonance scattering from cylinders, 2,
58

resonance width, 261

resonant modes, 167

retarded potential, 17

rigid sphere, 177, 180

rubber cylinders, 225

schileren, 12, 46-48, 140, 141, 247,
325, 354, 367-372

Schoch displacement distance, 298, 304

shadow region, 47

shear critical angle, 309, 325

Shear wave speed, 315, 319, 320

shells, 56, 91, 94, 104

silicone rubber, 225

slow waveguides, 225

solid cylinder, 130

Sommerfeld-Watson, 35, 38, 39, 57,
58, 63, 75

sound speed measurement, 373-383

sound speed tables, 383-396,

source strength, 3,

specular reflection, 331

sphere, 12, 161, 238, 265, 281

sphere as a standard reflector, 283

sphere at high ka, 238

spheroid, 12, 183-185

steady-state reflection, 161, 194, 280

summation formula, 2, 9, 15

surface wave radiation, 298

symmetric mode, 105, 108-115, 337

temperature effect, 172

test tank size, 359

thin plate, 336

tone burst, 194

total impedance, 290

total scattering cross section, 151

transient signals, 177

transmission, 327

transverse waves, 36

velocity potential, 1-3, 12, 17

wave speed, 22, 56

"whispering gallery” modes, 268

"whispering gallery” resonances, 272

"whispering gallery" waves, 75
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