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ABSTRACT

This proposal summarizes the progress made during the year 1984-85 under grant AFOSR

82-0317. We have examined the problem of extracting simple. perceptually significant representa-

tions of natural textures, and developed a system for lowest level perceptual grouping of dots in

dot pattern representation. We have also developed procedures for deriving a "scale-space" represen-

tation of natural textures in terms of discs.
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INTRODUCTrION

The objectives of our ongoing research are tuo-fold [AIIL'JA84I. The first part of our research

concerns perceptual grouping in dot textures [A]liL J -2. WVIRT13]. The goal here is to segment a

Si\en t Iolt pattern in!,, its percept ual component- i r . t, idelntif ', regions and cur\ es defined h\ dots

that coincide \,, ith the segmentation provided b J;umans.

In the second part of our research, we are developing a computational theory for extracting

three-dimensional shape of a homogeneously textured surface from its images [ST-VENS8I. WIT-

KIN81l. The goal of the second part of the research is to separate the spatial variation in the

transformed texture into its two components: one. characteristic of the original texture before

imaging. and the other introduced by the distance and orientation changes in the imaging process.

Since we are not imposing any constraints on the complexity of the original texture, the problem in

general involves separating the ambient, homogeneous, possibly anisotropic. part of the texture

from a smooth. nonhomogeneous. geometric distortion due to distance gradients and geometry of

the textured surface. The algorithm developed in this part of our research will interface with the

first part. We have worked on both of these parts simultaneously during the year 1984-85. Fol-

low ing is a summary of the progress we have made during this year in each of the two areas.

PERCEPTUAL SEGMENTATION OF DOT PATTERNS

The structure of our current grouping algorithm is shown in Figure 1. The first step of the

algorithm (box A in figure 1 ) consists of three independent modules (boxes l1. BI. and CI) running

in parallel. Each of these modules responds to a certain aspect of the stimulus. The first one (1I)

identifies interior points, the second one (BI) identifies border points, and the third (Ci) identifies

curves. These modules were developed prior to 19h4-h5. The second step (B) corrects possible

errors that might exist in the results of each of the three modules. The third step (C) combines the

results of the border correction (BC) and interior correction modules (IC) performing a more global

analysis. Steps B and C have been implemented this year (1984-85). We nov summarize steps B
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and C; details are available in the enclosed copies of publications.

To perform the corrections. first the results of the modules (I1. BI. and CI) are cross compared

(figure I ). A module changes the labels of its input ii doing so improves the measure of border

smnoothness and lncrease agreement \ ith the resultS 01 other 1('dules The results reflect proper-

ties ol more extended spatial context of dots anti edges than computed h\ the individual modules.

Once the correction of the interior and border identifications is completed. then the necessary

changes are made and the correction process is iterated on the new set of identification until there

are no changes. This iteration is necessary in order to propagate the effect of the label changes spa-

tially.

The corrected results from step B are combined with the aid of assumptions about more global

properties such as closure of borders. To do this. first the borders around the points labeled as inte-

rior by the module IC are identified. This results in border segments around interior regions. Then.

the intersection of these identifications and the results of the module BC is taken. This results in

those Delaunay edges-being identified as border that have confirmation from two independent

processes. The result is a set of border segments and a set of interior points next to them. A con-

nected component analysis is carried out on the regions surrounded or separated by the border seg-

ments (step C). If a set of border segments defines a closed curve, no further processing is done on "1
.4,

that region. If the border is not closed, then the process attempts to extend it with the eventual

goal of closing it and. at the same time, ensuring that the border segment being extended is smooth.

After the border completion is accomplished the borders are smoothed by performing single point

changes in which the border grabs a single point either from the interior or the exterior if it makes

the border smoother. A component interaction module then checks (step D) if any two components

can be merged together. thus making the border smoother without altering the interior properties

of the components.



SURFACE SHAPE FROM TEXTURE

Texture variations provide strong cues for the three dimensional arrangement and structure

o the NLirlaes \isible in an image. "'rwo types of ditortjim. occur during the imaging process:

increasi fl', large ,reas A s,!urfae are cwnmprede t, a iwel area of the image as the textured

surlace recedes, x a. I romn the \ ,. er. and an ani strol'O Lompression of the texture elements due

to foreshortening occurs aN the surface tilts away from the frontal plane. We have investigated

.iow to exploit textural cues to infer the relative distance and orientation of the textured surfaces

depicted in an image. We ha\.e looked for methods that \ould work on images of natural (as

opposed to human-made) textures. that handle sub- and super-texture appropriately, and that do

not rely on specific texture models. We do not address the texture segmentation/discrimination

problem. assuming that it is known which parts of the image correspond to different homogene-

ously textured 3D surfaces.

We have found that a "scale-space" representation. which represents V 2G image properties

over a continuous range of scales. is useful for identifying textural features of all different sizes.

We have derived measurements that can be performed in a V 2G scale-space in order to characterize

the size of texture elements without knowledge of the actual shape of the texture elements. The

equations for the measurements are derived by mathematical analysis of the V 2G and V-V
2G

responses to images consisting of ideal bars and disks. The V 2(; response to more complex images

cannot be analyzed in this way because the convolution integrals do not have closed form solutions.

Nevertheless. it can be hoped that. due to the smoothing properties of the (aussian. the V 2(;

response to components of real textural primitives will be similar to the response expected for pat-

terns of idealized bars and disks. Tests on real images bear out this hope. We have worked mainly

with the image shown in figure 2.

Our method models texture elements with equivalent disks by identifying the size and loca-

tion of circular disks which best fit the scale-space behavior of the texture sample in question. (W\'e

can compute the diameter of a disk. The location of disk centers is approximated by local maxima

U1
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Figure 2. An image of a surface with rocks. This image is being used to develop our shape from tex-

ture algorithms.
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in the V2G response.) Elongated texture elements appear as chains of disks: this representation is 1

remini.scent of the medial axis transform.
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EXR3ACrDJG PUCTUAL STIUCTURRINR DOT PATF7NS

%fihran Tiaceryan and Naradra Ahuis

Coordinted Sciences Laboratory
1nAivernty of Wino.

1101 W. Springfield Ave. Urbana. IL 61801

ABSTRACT This paper will presnt an algorithm to extract; groupings i
This raper describes an approah to structural segmentation of dot patterns and the resultng spatial structure. Ssctiam 2 will

dot patterns such that the results are in agreement with g8ta- imw~ brify past resarh efforts inds od Section 3will
tion performed by humans. Vorona neighborhoods are used to present the algorithm for grouping. Finally, Section 4 Will pest
represent the geometric strutumre in the dot pattern A st of am caoldling remarks.
experts then, in paralel. look for surl components such es 2. SZ~
borders interiors and curves. The experts have their expertin The resarch am dot patterns and grouping of dot patterns has
exe tn terms of the properties Of and interaction among Varo,. been conducted in fleld including psychology and computer eci-
ot neighborhoods. The interaction is accomplished through a an. Perceptual strutur in both dynamic and stac dot patterns
relaxation. constraint-propagation procins. The reslts of these has bus studied.
experts have erors due to the lack of local evidence for the global In the perception of static dot patter different properties
role of a dot. Each reasl then is corrected such that 1) it agrees relevant to gropings of elements in the visual field such as spacing
with the results of other experts and 2) it provides locally -~ of eleent weesuied by UttWI at &1 (261 Pomerantz and%
bordei. Except for occasional gppe in the borders the union of the Schwaitzberg (191 Jul.. (10. 111 The dricality of dotted Umne
corrected results represents a good approximation to the perceptual in a soary bakground wa studied by Ussal at al [261 and the
structure in the dot patern Connected component analysis is car impoirtance of dot spacin us this detectability was shown. Themst-
nod out to identify them Saps. The gap are filled to cls the com- sical propesle of dot pattern their local spatial properties such
ponent contours ensuring local border sooshnoe. se number of vermiatsmm. etc and the imsportance of these proper-

-L DMTODUCflMt tUs in the d~imisiehuisy of textures (10. 111
Dot patterns have been studied in the pan in difmetnt con- In computer xuace the work am dot patterns a divided into

tests including human perception (5. 14.171 and us simpler -as of two mabir antm 1) denn the neighbors of a dos, and 2)
multidimensional clustering algorithm [2. 4.6,12. 1&1 In the oa- clusterin algorithm The resarch in each of these area will be
text of visual lutychophysia, dot paittern provide a set of stulih discuissed ne=t
whose spatial properties can be controlled precisely. Doce can be The crucial information that is used by perceptual proese
regarded as tokens whom shae ames intenstis. colors. etc. are that perform the grouping of the dots into -meningfulr clusters Is
kept constant and whose mast important propertes are their p- the spatial relationship that a dot has with its "neighboW Hence
tions. Hence. they form an ideal met of stimuli to study the effects the concept of *gqhboe and the mcncpt of the anihobandoo of
of only the spatial distribution of tokens in grouping poese in a A dot ane of crucial importance to the theory of perceptual grouping
tractable fashion. The simplicity of the stimulus may help probe prin In the Past there has been a number of definitions of
selected pars of the early vision in humans and gain smes ude- neighbor.

standng aout he pncemPWIUt ~A Azaixd circular neighborhood of a dot with a globally defined
One of the most important aspects of early human vision is radius Rt is used by Koontz I121 and Patrick and shea 1181. The con-

that it unpist a structure onto the stimulus in the form of pernup- olpt of k-Oezi neighbors of a paint has been used by Zicker and
tual grouping. It identifie elements in the visual field that in soe Hummel (311 Velemto (271 and Jarvis and Patrick (%1 Both of these
sense 'go together." This phieinmenon was fire pointed out try the have the disadvantage of beig very inflexible.
Gestalt psychologiss (291 and has important consequences. Fims it %'alga 11gvsadfniino egbrba nbt
improves the efciency of the pr.e of parsing the visual field Lno ds A anagls In6 gie a to ointobse ay bth
surfaces and objects and tn the recognition of thoaw obpcs by dsacsadaW nhsdftntopit a ewti
reducing the aimount of data thene procese must handle. Second. it the right rag of distance to be consre neighbors. but if they
might result in perceps that do not exist in the objctive data but ae'idn rmec te yatidpitte nntcn
are introduced as a realt of the internal bus of th syte itef aidred to be neighbors
Thus. grouping together the broken edge segments from an edge Other definitions of neighbor include the minimum spanning
detector, would result to oue long border of a region which no edge trfe (NIST) (30D, Gabriel graphs (00) [211 and the relative neighbor-

p detector working on an intensity imag could product because of hood graphs (LNG) (22. 251 Ahuja (1) suggests the use of Voroot
the intensity distribution. An understanding of how this grouping neighborhoods (281 which have ore intuitively appaling proper-
is acccomplished and what kinds of rules govern it will probably ties than the previou definitions., in the proonng of dot patterns.
incras our understanding of how the early human visual system Early clustering algorithm used various critri baed on
is structured. Peirwis siMIlaSt masre of dou; in order to measur goodness of

Tile Werk WN Suffrte bF the Alt YOM 011a a( Sa.mik amna e clusterng [4. 96 1'21 Thae similauity mneaure were based on the
CWenn APM~ 12-0317



mom traditional deinitous of neghos of a dot. Graph- su 40 "UI
theovitainl appoce hhavIe bas used in order to segment a dot pat- 6te A -

tern into clusters (6 .23. 301 Several methods have been
devieloped whch f or tw@oiineial pafleree bas their messire
of simailarity an neighbors of points takiug into conideration local I Interior BorderCuv
geomertic structure, of the pant distibutio [6-L 14.15,.17. 23-251 ldentihicauoin dentuhcationt Identification
Some researchers have used algorithm (23. 24) which ams formi-BIl
laued in a relaeation labeling chem [201 thus -aking it unnacee
mary to usm thrubolda. A cosaderatim of the human vlial system. L. - -

its sousispuams about the physical world, its bss amily the gs-
talt pirinciples of the way patterns are perceived by humans was
laclung Lo most of these works with som eeptimns (3. 13-I5. 171 r -- F
In sie of the work restrictioins were mae about the kinde of pet-
term that the algorithm was suposd to work on. Sacme of theme ItroBrdrcurve
raiiniton were that the pattens would contain only umdori Correctiot Corremton Correcion
clusters (14. 13. 17. 231 or that they would contain only varying 1C DC cc
density clusters (241 or only curvilitna clusteus (3. 131 We now go II

on to describe the grouping algorithmn in the neirt section.
3. GROUPING ALGO31IHdL------------- - - - -

The algorithm to be doc.ibad in this paper for performing 't
grouping ofdotptersissed n the Voon etmllasa of dot--------------
pattern and the geometrical properties of the Vorooo polygons,
that are the outcome of tho telaton. Thm geometrical proper- I9owo
ue redaect inforniation about the spatial disuibutiamn of dom in the I Border
neighborhood of a given dot.ob~o

grouing by hasandradumthhierchial ir~ The oduandh~reconeBu
The current system is designed to work in two major phasse.

The Amrs phase takes the dot pattern asits input and produce. the - -- --
lowest level groupings. The second phae starts with the output 4
structure of these groups of dots (if any exists) in, a recursive this system.

m-nner. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eci The thewn etinwl ecrb h eaiso hI

3. 1. The First Phane of Segmentation lack of variation in the density. The interior of varying density

The firs phase of the segmentston mentioned above works in clusters will have cells with high eccentricinee due wo the density
thre seps Th geerl srucureof hisphse.itsmodle.n: the diretions of the - otricities will be pointing%

-Uire =L Te gnerl srucure f tis ha= it mouloand towards the mnemng density dirsectio nTus, the eccntricity
their interconnections are shownr in figure 1. The Jist soep (box A vectors of the calls in the interiors of varying densitty clusters will

infiur 1 cnsuotheineedtmoue(bx .S. be aligned mart of the time. At the borders of clustes, the socen-
Cl rnnnginparallel Each of thes modulesrpo d to a certain trat directions in most caesn. will be expected to point towards

aspect of the stimulus. The fims one (U3) identifis interior points, the interiors of the clusters because of the sudden increase in the%
the second one (BD) identifies border points. and the third one (CD) do denarr. u.. from the very low density in the interclurter space
identihfes curves. The second step (B) corrects posble errors that to the comparatively high density in the interior of the cluster.
might exist in the result of each of the three modules. The third Thus obnrvaion also holds on the bode.s of ben which are clus-
step (C) combines the results of the border cormcion (90) and inte- ihotiteirpons
rnor correctio module (IC performing a more global analysis. teiwhotnerrpits

The outputs of all these module obrainad for the ample patwer i The third propert. Gabriel measure measure. the 'neighbor-
figure 5 are shown in figures 6-11. mmes' of two Voronto neighbors. If the ine joining two Voronca

Befoe ging ntoLayfurter etals o th sytem hatdon neighbors i and j Loterets the edge shared by the corresponding
eforeping w io anycufurthe r ais of thetmtt Vorono s ooo polygons then & and ji are perfect nerighbors That ts. there

the roupngwe wll imum theproprtis oftheVoroos Ls no third point k. such that the point & is hidden from the point
polygons in the temellain used by the system to performn the van- j y h point k. e nd vice verse. if. on the other hand theme Is
otis gropings. There arm a number of meeauze that are comuted such a third point k . and the lint (a .j crmn the Voronoa cell for
refiecting the geomertric propertes of the spatial distributiion of dots. point k. then i is hidden from I by k and the Gabriel measure
Each of then measures and in significance are described below. In indicates the amount by which th i s true. The deeper the line
this paper we will use the terms polygon and neil the region stir- (iq ) Ci cell k. the worse neighbors (Q.1) are and the lower the

roundd bythe olygn. itercangebly.Gabriel measure is. Thau is unportant on the borders of clusters
The first property is the area of the Voronoi neighborhood of where if the two points are not perfect neighbors and have a low

a dot. This is a measure reflecting informauoin about the dot den- Gabriel measure, then the border follows through the intervening
sty in the neighborhood of a dot. In the interiors of homogeneous point instead of the two points.
clusters, the density does not change. Recalling the way the Voro-Th fothmauec ptdishec pan esr.

not tasllatuon is constructed. we observe that this uniformity of Th fo maur e ndicat owpuede sha the opanoi eigh-e

denstY illresut a th Vornomneihboroodbeig unfor in borhocod of a dot LL These types of cells are men at points where
area in the interior regions. the borders of two clusters 'gradually approach each other. The

The second property is the eccentricity of the Voronoi wedge-like shape of the cells as caused by toue noniinifor-m dastrsbu- I
polygons. This measure is a scaled vecto indicating how much a tion of the neighbors of a point around it. and the wedge-like
dot is off the center of gravity of its Voronoi polygon. The shapes of the polygons indicate that the points are possibly on the
significance of the eccentricity measure as that it is related to the border of a cluster.
change of density of dots. The intertois of uniform clusters are

7N, &, C,:!N': , 2 t i Z



Another measire. squeeindnin a computed which a very
cloely related to th. eleqaatios. buat it as a PropN y of the
lIauay, edges rather than Vorom polygons ad it is basd uapon.

dav. the disances oth uvidigDauyegsIts computation is
show infigre. This messu'e. simlar to the distance mumare. asJ' mostly useful around curvilinear clustars Naely, the Dlaunay

a"gs that lie on a curvilinear Cluster are expected to be shorter
* r ~.compared to the Dulaunay edges extending on the two sid.s of the
/ curve laterally.

The interior identificatioo to formulated in a probabilistic
relaxation scheme with the dots being labeled as either I7IOR
or NONDITEIO This formulation a basd upon the local
geometrial properies Of the Voromo polygons reulting from the
Voromotimllatioc.

Figure 2 -The distance measure for the Delaunay edge (a j). The main task ie to formulate the local compautitie
da,,. is defined in term of the length of the Delaunay edge (s~j)I betwee par of dots. Thus formulation is bae on the Assumption
d. and the average Delaunay edge lengh on its two endpoints. that certain properties of the polygons will be trues for the interior
dav, and davj. Let D mmn(dav,,jdav,)I Then dimr, -l-D/Id if points, Specifically, in the intersors of homogeneous clustms the
d >D. and disr,, -0 otherwise, arma of Vorono polygons will be approximately the sme and the

eccentricities of the cells will be low. In the interiom of nonhomo-
geneous clusters the eccentricities will be high but they will be
pointing in the ame directioni, namely. an the increasing density
dircton. Thes facts used conservatively. will reslt in the most9
obvious interior points being idented

daedam% The compatibilities arn defined for the foar possble combina-

dd tons of labeling two points as MTRIOR or NONITRIOL In
odrto define these compatibilitis one hsto consider all the com-

dr- bi es of combinaions and in what contrats they can occur. In
this case all the possble contexts an which interor and nownnor

C1 combinations can occur are shown an figure 4. For each of these
2.4 case an expression is written which measures bow compatible the

label combination for two points is in the given conitext. For eam-
pie. for the cass shown an figure 4a&X -n would have the expre-
*on inlclcclA ).In this axpremo- sec. and are a the
eccentricity magnitudes for the Voronot polygons of the cells of
dots i and j, respectively. &A. is the arm difference of the two
polygons normalized to the range [0.1 and is definedi as abe(A-

Figre3 -SDelauaede (eau) is adefthed aver ms Dofauha A)/msx(A.AA In tism case A, and A; ane the areas of the polygons
length of the Deanyeg i1d n h vrg eany for the dots a and j respec avely. The antuitive meaning of the
edge lengths on its two sides laterally. dav a and dav2. Let prnoisttt heneirofaomgeuscseste
D =aun (dev aiv 21 Then sq, I l-d ID if d < D. and sq, I 0 excenronit agtatite anter a diff genes cxpte the

othewise smal. I tht tothe ase iththe two doti the above expremon
will have a high value and will have a positive contribution to the
CqTERIOR-IN7rEROR compatibility value. After the exprestons
for all these cases have been derived, for a partcular combination

The fifth measure as a distance measure defined (or a of labels. the expressions for all its case an combined by a fuzzy
Delaunay edge. It measiuw the change in the distance between two OR operation. That is, for two points a and jto be compatible wath
dots compared to their surroundings. The computation of this labels INTUIRM-CCMROR they must have the context shown in r
measure as shown in figure 2. This measure is useful mostly in the can (a&I or con (bI. of figure 4. Similarly, for other combuntions of
regions containing curvilinear clusters or single-point clusters, labels for the two point&, the expresins for different camr ane coin-
because around such clusters, measures such a areas. centaties. bined to get the compatibility expressons.
etc are very unreliable. Distance. and Gabriel and slueezednese (to Once thes compatibilities are defined, the relaxzation labeling
be described below) measures ane mostly the only ones ised to scheme as run which results in the assinment of probabilities to
desribe thae contexts. Of course, if the clusters are well separated.
this measure as also helpful (or identifying edges between clusters each point of baying a certain label (step. module 1I in figure 1).
with ineios Most of then probabilities converge to either very high or very low

values resulting in unambiguous labelings (even though thev may
The sixth measure computed is the elongations of the Voronos be the wrong labels). The few points with more ambi.guous .probe.

cells and the directions of thear minor aes. When there is a cluster bilities are &signed the label Sith the stronger probabilitv. If this
in a pattern where the density of dote as uniform but direction UU- turns out to be the wrong label. it as hoped that the later phase
sitave (a.&. the density in one direction as different from that in wall corrct this taking into considertion a larger context (step B in
another direction) the Voronoa polygons tend to be elongated. The figure IL. information coming from other modules independently.
direction o( the manor axis tends to be aligned with the higher den, and Gealt assumptions such as border smoothness (steps B and C)%
sty direction. As the disparity of the densities in two directions and closure (step C1 These correctaions an performed when the
increases the 'Voronot cells become mome elongated. This measure is results of the three modules are being procaned for poinable correc-

computed using the weond order moments of are of a cell. tions and merges (steps B and C an figure I)I
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Figure 4 - The posible contexts in which N-7ERIOR and NON- Figure 5 - A ample dot pattern to be segmented.

LrE OR compaubilium are computed. ; eWn mple of computig compatibtes r,, for objecs i

and j m As follows
3. 1. Boo Udeo and Cuv M tiaon. ((--arV, )+(-rVW' )+O..gr, +agr,))

The method of identicatuon of bordes and curve is imilar 3

to the ident catuon of the iaterm point. In this a the obpcu to In this epresmon. cwv stands for the value of the curvature of a

be labeled am the Delauay edges. They are labeled as either border segment. The border segment whm curvature is computed

BORDER or NONBORDER in the border identification module and depends on the identicatuo of the obpct being labelled. For
CLRVE or NONCURVE in the curve identiatuon module. example. if the object is a dot that as identified as interior, the the

The compatibilitie in thee module are also formulated by border segment around the point as considered for curvature com-

look.ing at all the pofsble context and identifying the different IttatiO. Now that if the interior point a surrounded by el int-

cases and formulating the constraints between properum of the nor points and doe not have a horder paig by it. then it has a

cells and edges that must hold. The posble aontere for thue c conAfident identification and will not be considered for correction to

are identuid similar to the interor identificatean prmo . The b with. If the dot as ientifir as border then the borer sg-

expremons for each of these carei deatiled baed on thee con- Went going through the dot is condered for curvature compute-

texts and combined to get the final compatibility relations. o In each of them case a small portion o the border segment as

considered, for eample, a segment of five dos. The exproemsn egr

3.13. LAW Corectiona is meumre of the agreement of the results of the two independent
modula. TheWfore, this computation reflects the expectation that

As a rmutlt of the previous step (step A in flue 1). the dots the curvature of borwdem around the object i and j be minmize

and the DNlaunay edges are labelled as LN7ERIOR-NNVqT OR. (i.e. the borde be smooth) and the agreements of results between
BORDER-NONBORDER. or C'RVE-NONCLIRVE. Some of them different module be high.
labels may not be correct due to lack of local evLee. aOtitgtim, eS

etc. Thee incorrut labels need to be corrected by iima-. Once the cor n of the interor and border identifictions i

non rom a larer context. The results of the module (I. am completed. then the necemury changee ar made and the correction

CD and the Agreement among thee esilts is used to obtain the prom dumbed above is iterated on the new set of identiication.

information from the larger conext. The aitenion that borders be This iteration is necemary in order to propagate the effect of the

smooth is &i used to decide whether a labeling of a dot or a newly changed labels. This iteration proceeds until there are no

Delaunay edge needs to be corrected. The context that as considered mom label changes. Thelimnc results are then combined to

is larger because the border segment necery for computing get a final segmentaton in the next step.

smoothnee or the agreement measure pombly eztuends beyod the

neighborhood of the obpci bneg considered for correction. .. bin the ReUrts

This step consists of three modulo (IC. 8C and CC in figure The corrected results from step B ae combined with the aid

I). Each one corrects one set of idenucations; from the previous of assmptions about more global propertie such as clomure of bord-

step concurrently and independently using the information from e A connected component analysis is done in order to perform

the previous step as shown n figure I. A module change the labels thi. task which is described below.

of its input if doing so umprove the measure of border smoothnes First, the borders around the points labeled as intenor by the

and increu agreement with the results of other module. The module IC are identified. This is done by Kentifyig those
correction proces is formulated in a probabilistic relaxation scheme Delaunay edges as borders that have both endpoits noninteor and

with the labels I CHAINGE NO-CHANGE I on the objcts. The the common neighbors of whom endpoints. located m the two side

objects are the dots for the correcton of dot labels, and the of the edge, have different labels, This results in border segments
Delauny edges for the correction of boider identificakons. How- that surround the ntenor regions. Then, the interseio of thee

ever, not all of the dots or the Delaunay edgm ame conadered for ieniications and the results of the module BC s taken. This

correction. The most confident ont (i.e. the dots or Delaunay edges results in thrn Delaunay edge being ident4ed as border that have

whom idetiAfications from the two independent module 13 and I confirmation from two independent proceus The result is a set of

are n agreement) Ar omitted. Only the objects whom border segments and a set of anteror points next to them. Each of

identificatiOns from the two indepeodent modules confict are con- these border segments is given a label (e.g. they are numbered . The
sidered for correction. Thi increase the egtcaency of he correKon interior regions then are asigned the labels of all the border

,. ...-.



the l0m attempts to exend it with the eventual goal of cloung menu that surround them. That u. a point P i g ged the
it ad, at the sae tLe. eanurinn that the border segment being label of a boidor sgment B. if thee eUM a path P 2 • • , PSch
extended a smooth. The relting forks and dangling border m. that ptOP. p, a on the border smmnt 3. and all the points
ment ae cleaned. If theretill remain border sgments around a P '' * pj - an labelled interior. The tm;ult a that all th into-
region that are no clod. they are extnded as smoothly as pomble Nr pOsnt have me or more border ragment labels amsgned to
so that me of th-- segments will either merge with ech other to them. The goal is to have all ths border segments to form a cloud
form longer border sgments to be further proceed. or they will conour. NOt that the number of final border sgment labels
become cloed. thus ending the procsing of that region. While &sgod to each interior reon may be more than an snce a com-
combining the resalts of the Correction step (step B in figure 1) one porent may have hole in i.
must be careful in handling the regons which ane bar-Uke (L. two The coination proces proceeds aith the regons that have
segments of parllel borders with no interior reVon between them). only owe label assigned to them. If the border is cloud no further

Promng is done on that region. If the border a not closd, then

/.'4;

Figure 6 - The reult of interior identifcation (H) module run on
the pattern. The borders that surround the idenufid interior re-
gions ae shown in the figure. Figure 9 - The result of the interior correction (IC) module run on

the result in figure 6 unq information aelo from figure 7.

Figure 7 -- The result of border IdeDAtIM1on (11i) module run on Figure 1O0- The result of border correction (90) module run on
the patten. the result in figure 7 using information also from figure 6.

('.K .,

Fig~ure A - The result of curv identification (CI) modu~le run on the Figure I I - The partial result of combinin the two results LD
pattern. figures 9 &ad 10.%
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ABSTRACT

A representation of basic geometrical properties of dots is crucial in obtaining perceptual structure of dot pat-
terns. This paper describes the use of Voronoi neighborhoods and their geometrical properties to infer geometri-
cal structure in dot patterns. The distribution of dots characterizing different structural components such as
curve bars, single-point clusters, nonempty clusters with uniform and varying density interiors are studied.
The effects of dot distribution in each of these components on the geometrical properties of the Voronoi neigh-
borhood of a dot are described.

1. INTRODUCTION

This paper concerns representation of geometric structure in dot patterns. Since the perceived structure in
a dot pattern is completely determined by the relative spatial locations of dots, a definition of "neighbors" of a
dot and the neighborhood" around a dot is crucial in procesing the dot patterns. In [1] we discussed the impor-
tance of the notion of the neighborhood of a dot. and specifically, the possible use of the Voronoi neighborhood
in a variety of applications. In this paper. we will describe in detail some of the geometric properties of the
Voronoi neighborhoods that we have used in our research to infer structural information in a dot pattern.

Section 2 reviews previous work on dot pattern procesing and definitions of neighbors of a dot. Section 3
reviews the definition of Voronoi teuellauon and Voronoi neighborhood. Section 4 describes in detail the
geometrical properties that can be used to infer structural information in dot patterns. Many of these proper-
ties have already been used in our programs for perceptual segmentation ot dot patterns. Finally. Section 5
presents concluding remarks.

2. REIvEW OF PAST WORK

A major part of the past work on defining the neighborhood of a point has been concerned mainly with
the following question: given an arbitrary point in a dot pattern. which other points should be treated as its
ne:ghbors? The defiuon used in the past have included all the points co'ered b" a circular neighborhood
with a globally defined radius R [41 k-nearest neignbors of a dot j121 minimal spaming trees [11]. relative
neighborhood graphs (7. 9]. and Gabriel graphs [81. In all of these. the geometrical information used pertains :o
pairs of dots and is one dimensional in nature except for the circular neighborhood which has the disadvantage
of being insensitive to data. Minimal -panning trees are global in nature and a small change in one part may
result in drastic changes in parts of the graph that are far away. CYCallaghan defines a more intuitive
definition of a neighborhood. He uses two thresholds, TQ and T,. to decide whether two points P and P are
neighbors. If P,,, is the nearest neighbor of P then P. is a neighbor of P if a) the distance ratio
d (P..P., )id (P. .P.,,. ) is not greater than T, and b) for any neighbor P, of P the ahgle P, P, P is different
than 180 degrees by more than T, (i.e. P is not behind any neighbor P. of P . In [1]. Ahu* examined the
use of the neighborhood of a point which asociazes with a point not only otner points as is neighbors. but also
a part of the Euclidean plane around it., thus, giving the problem a two-dimensional character. He closely
examined one specific definition of neighborhood called the Voronoi neighborhood, which is based upon the
Voronoi temellation defined by a set of points.
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3. VORONOI NEIGHBORHOODS

3.1. Voronoi Tessellation

Suppose that we are given a set S of three or more points in the Euclidean plane. Assume that these points
are not all colinear. and that no four points are cocircular. Consider an arbitrary pair of points P and Q. The
bisector of the line joining P and Q is the locus of points equidistant from both P and Q and divides the C
plane into two halves. The half plane HY(He is the locus of points closer to P (Q) than to Q (P). For any
given point P a set of such half planes is obtained for various choices of Q. The intersection n HP?

Q eS.QOP
defines a polygonal region consisting of points closer to P than any other point. Such a region is called the
Voronoi [I0] polygon associated with the point. The set of complete polygons is called the Vorono diagram of
S [5] The Voronoi diagram together with the incomplete polygons in the convex hull define a Vorono tessel-
larion of the entire plane. The Voronoi tessellation for an example pattern is shown in figure 1. Two points are
maid to be Voronoi neighbors if the Vorono polygons enclosing them share a common edge. The dual represen-
tation of the Voronoi te ellation is the Deiaunay graph which is obtained by connecting all the pairs of points
which are Voronoi neighbors as defined above.

3.2. Neighborhood of a Point

We will consider as the neighborhood of a point P (the region enclosed by) the Voronoi polygon contain-
ing P. Considering the way a Voronoi polygon is constructed, this is an intuitively appealing approach. The
local environment of a point in a given pattern is reflected in the geometrical characteristics of its Voronoi
polygon. This presents a convenient way to compare the local environments of different points. Since the per-
ceived structure in a dot pattern results from the relative spatial arrangement of points, the geometric proper-
ties of Voronoi polygons may be useful for describing and detecting structure in dot patterns. Such an
approach lends a fully two-dimensional character to the problem in that the dot pattern is converted into a
planar image or a mosaic.

The advantages of the Voronoi neighborhood compared to the definitions given in the previous section are
that the Voronoi neighborhood s (i) intuitive. (ii) adaptive. and (iii) two-dimensional in character. It is adap-
tive in the sense that the assignment of neighbors does not depend on the scale of the dot pattern and neighbors
are asigned to dots that reflect the local density variations. Also, the number of neighbors of a dot is not fi ed
and may vary depending on the structure in the vicinity of the dot.

4. GEOMETIC PROPERTIES

It is useful to look at the possible structural patterns in a dot pattern and to see how the various possible
distributions are reflected in the geometric properties of the Voronoi neighborhoods. One type of structural
component in a dot pattern is a cluster of dots with nonempty interior. These types of clusters may have an
interior having either a uniform density or a varying density. Another component is a cluster with no interzor.
or a bar. Besides these there are the curvilinear structures and single-point clusters. All of these and their sna-
tial configurations are reflected in the shapes of the Voronoi neighborhoods or properties of the Delaunay edges.

The Voronoi neighborhoods of the points which reside within the interior of a homogeneous cluster w:liI
have similar shapes and sizes. For different clusters, these interior polygons may differ in their geometrical pro-
perties. The border :elis of a cluster will be open if there is no other cluster to bound them. The cells of the
border points of a cluster that have neighbors in a nearby cluster will differ from interior cells. For example.
they may be elongated if the distance between cross cluster neighbors is larger than within cluster neighbors.'or
the nucleus of the cell may be located well off its center. Clearly, a globular cluster will have a larger number
of interior cells than will a more elongated cluster. For dot patterns containing varying density clusters, the
interior cells will be compressed in the direction of increasing density. This results in the dots being off the
center of the cell in the direction of increasing density. Certain border cells wili assume wedge-like shapes
where borders of two clusters gradually approach each other. This is caused bv the uneven distribution of the
neighbors of a point. Such properties will be further described in detail in the next section.

Others have suggested in the past the use of certain properties of the Voronoi polygons for use in cot pat-
tern processing. Sibson (6] has suggested the use of the areas and nucleus-vertex distances of the Voronoi
polygons, and the distances between neighboring points as statistics of a point pattern. Chapman [2] uses the
distribution of the areas of the Voronoi polygons to infer the structure of dot patterns describing geographic
concentrations of economic activity. He relates the degree of the local clustering, or nonrandomness. to an
entropy measure computed f.-om the histogram o the cell areas. In the retnainder of this. section we .l'"1.
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describe each of the geometric properties in detail and their computation. The terms polygon and neighborhood
which is the two-dimensional area surrounded by the Voronoi polygon will be used interchangeably.

The first property is the area of a Voronoi polygon of a dot. This is a measure reflecting information
about the dot density in the local neighborhood of a dot. In the interiors of homogeneous clusters, the density
does not change. Recalling the way the Voronoi teellation is constructed, we observe that this uniformity of
density will result in the Voronoi neighborhood areas being uniform in the interior regions.

The second property is the eccentricity of the Voronoi polygons. This measure is a scaled vector indicating
how much a dot is off the center of gravity of its Voronoi polygon. The situation and the computation of the
eccentricity is shown in figure 2. The significance of the eccentricity measure is that it is related to the change
of density of dots. The interiors of uniform clusters are expected to have cells with very low eccentricities
because of the lack of variation in the density. The interiors of varying density clusters will have cells with
high eccentricities due to the density variation; the directions of the eccentricities will be pointing towards the
increasing density direction. Thus, the eccentricity vectors of the cells in the interiors of varying density clus-
ters will be aligned most of the time. At the borders of clusters, the eccentricity directions in most cases, will
be expected to point towards the interiors of the clusters because of the sudden increase in the dot density: Le .

from the very low densty in the intercluster space to the comparatively high density in the interior of the
cluster. This observation also holds on the borders of bars which are clusters without interior points.

The third property is Gabriel measure, whom computation is shown in figure 3. It measures the "neigh-
borliness" of two Voronoi neighbors. If the line joining two Voronoi neighbors i and j intersects the edge
shared by the corresponding Voronoi polygons then i and j are perfect neighbors. That is, there is no third
point k, such that the point i is hidden from the point j by the point k , and vice versa. If. rn the other hand,
there is such a third point k, and the line (i,j ) cre the Voronoi cell for point k, theni is hidden from j by
k and the Gabriel measure indicates the amount by which this is true. The deeper the line (i ,j) cram cell k,
the worse neighbors (i,j) are and the lower the Gabriel measure is. This is important on the borders of clus-
ters, where if the two points are not perfect neighbors and have a low Gabriel measure, then the border follows
through the. intervening point instead of the two points. For example, in figure 3 if Gabriel measure is low -'

enough. the border passes through points (i , . ) instead of going through ki ,j directly. ,

The fourth property computed is the compactness of the Voronoi cells. In the interiors of clusters, even
though the density of points may vary, the points are surrounded uniformly by other points all around. This r
results in the interior angles of the Voronoi polygons of such points being uniform. Such cells are called "corn-
pact." When the borders of two clusters gradually approach each other, the cluster exterior sides of such borders
have a nonuniform distribution of dots. The cluster interior sides of such borders, however, have a uniform
distribution of dots. This results in the dot distribution around a point lying on such a border segment to be
uneven which, in turn. is reflec-ted in the shape of the Voronoi polygon of the dot An example of such a case is
the point A and its Voronoi neighborhood in figure 1. Such a polygon has a wedge-like shape, and is "non-
compact" The computation of the compactness measure is shown in figure 4.
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,. ".Figure 2 - Eccentricity of a cell belonging to
point P is defined as d /D. Eccentricity direc-

Fieure I - The Voronoi tessellation of an ex- tion is in the direction of QP. Here Q is the
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Another property of the Voronoi cells is their elongation and the direction of their minor or major axi
rhis measure gains importance in clusters which have uniform distribution of dots but the density is direction
sensitive. That is, the dot density along a given direction is different than that along another direction. In such
cas the Voronoi polygons tend to be more squeezed along the higher density direction than along lower den-
sity direction, thus, resulting in a more elongated cell The major and minor axes directions of such cells indi-
cate the directions along which the dot densities are smallest and greatest, respectively. The cells along a curve
will also tend to be elongated (as illustrated bY point B in figure 1) due to the fact that on the two sides of the
curve the dot density is very low compared to the dot density along the curve. Thus, such elongated cells are
one of the indications of the existence of curvilinear structures.

There are many ways the elongation of a polygon can be computed. One posibility is the ratio of the
area of the polygon to its perimeter squared. Another, which we have used, uses the information from the
computation of moments of area [3] to obtain both the amount of elongation and the directions of the major
and minor axes. The computation is as follows:

jLQO/LO2$2+4PAiiZ
elong = I

IA2-AW44Mii2 +AW42,02

-utan- 2A1
2 1 A2-IA02

Here the 1 Is are the second order moments of area that are scale and translation invariant: eiong is the
amount of elongation of the cell and a is the angle that the major axis of the cell makes with the x-axis. The
elongation measure itself is rotation invariant.

So far all of the properties discued were two-dimensional properties of the Voronoi polygons. Most of
these properties make sense when used for clusters that have interiors. For curves or single-point clusters the
two-dimensional properties are no longer well behaved. For example, the area differences are not meaningful
when used in regions with curvilinear structures, or on borders of clusters. In such regions one dimensional
measures such as distances, etc.. are more useful In the following paragraphs, we will describe several such
properties.

The first such property is a measure based on the differences in the length of a Deiaunay edge and the
average distances of its endpoints to their Voronoi neighbors. The computation of this property is shown in
figure 5. In the intercluster space the Delaunay edges have endpoints on the borders of clusters, on single-point
clusters, or on curves. If one of the endpoints is on the border of a cluster then the distances on the interior of
that cluster will have relatively small distances compared to the distance in the intercluster space. Thus at
least one side of a Delaunay edge having an average distance which is small compared to the length of that
Delaunay edge is an indication that the edge is mort probably in the intercluster space. In this case the measure
will be high indicating this high probability.

.Another measure. Osqueezedness," is computed which is very closely related to the elongation, but it is a
property of the Delaunay edges rather than Voronoi pclygons, and it is based upon the distances of the

V v.

Figure 4 - Compactness measure is computed
in terms of the angles a,. Let

Figure 3 - The Gabriel measure for the De- T. 01 -C0 max

launay edge (i,j). gabr., ad/D if the line C., = I -I Then the compactness of
(i ,1) itersect the line (k ,"). and gabr, -I 1 lb--q. . .6-I-,,
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surrounding Delaunav edges. Figure 6 shows its computation. This measure is also mostly useful for curvi-
linear clusters. Namely, the Delaunay edges that lie on a curvilinear cluster are expected to be squeezed corn-
pared to the Delaunay edges extending on the two sides of the curve laterally. If this is the case, then the
squeezedness measure will be high. indicating the posibility of the Delaunay edge being on a curve.

All of the properties described above have been used in an algorithm that we are developing for obtaimng
perceptual segmentation of dot patterns. The segmentation algorithm consists of three phases (1) identification
of different types of structures in the pattern, namely interiors of clusters, borders of clusters. bars, and curve
(2) correction of the erroneous results of the first phase which are a result of local ambiguities: (3) combining
these results to obtain a unified segmentation. The Xoronot neighborhood properties were used in the modules
of the first phase for obtaining the four different types of structures. These modules are formulated as proba-
bilistic relaxation labeling schemes. The Voronoi neigbhorhood properties described above were used in deriv-
ing the expresions for the compatibility coefficients of these modules that are necessary for this formulation.

The correction module takes these results which might have wrong identifications in them because of the
insufficiency of local evidence, and tries to eliminate the errors by integrating more global information from
multiple sources (modules). It enforces such requirements as border smoothness and a high degree of agreement
between the results of the independent modules. This is als, formulated 9s a probabilistic relaxation scheme.

The corrected results of this phase is fed into the combinauon phase which combines the outputs to obtain
a unified segmentation. The combination starts with the interior regions of the clusters and looks only at the
border segments adjacent to these interior regions. If there are any incomplete borders, it extends these borders
and tries to combine them wi.,h other border segments such that the resulting closed border is the smoothest.
The eventual goal is to have all the borders around interior regions to be closed, smooth curves.

After this step it is posible to regard the groups of clusters obtained in this fashion as tokens - or dots -
to be further grouped. In this manner it is possible to obtain a hierarchy of grouping at different levels of reso-
lution.

S. CONCLUSION

Analysis of dot patterns requires a sound notion of the local environment of a point. We have used the
Voronoi neighborhoods of points to characterize the local structure because of the many intuitively appealing
properties of such neighborhoods [Ii We have described various geometric properties of the Voronoi polygons
and the Voronoi t llation that provide useful information about the geometric structure of the dot patterns.
Nke have used these properties in our research in designing a unified segmentation algorithm for procesing
unrestricted dot patterns. The results we have obtained have shown that the Voronoi tessellation and the
geometric properties of the Voronoi polygons described in this paper can be used successfully to infer informa-
tion about the geometric structure of dot patterns.

Figure 5 - The distance measure for the De-
launay edge ( .j ), dist,.,, is defined in tems of Figure 6 - S ueezedness measure. su. iS
the length of the Delaunay edge (i ,j). d. and clefined in terms of the length of the Delaunav
the average Delaunay edge lengths on its two edge (i.). d. and the average Delaunay edge
endpoints. da,, and day,. Let iengths on its two sides laterally. dav, ard
D ,mn (dav, dav,). Then dist, -I-DId if dav. Let D =,mm(dav idav). Then
d >D. and dist. -0 otherwise. I inl-d 'D if d <D. and sq, -0 otherwie..
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