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ABSTRACT

This proposal summarizes the progress made during the year 1984-85 under grant AFOSR!
82-0317. We have examined the problem of extracting simple. perceptually significant representa-
tions of natural textures. and developed a system for lowest level perceptual grouping of dots in
dot pattern representation. We have also developed procedures for deriving a “scale-space” represen-

tation of natural textures in terms of discs.
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INTRODUCTION

The objectives of our ongoing research are two-fold [AHUJA84]. The first part of our research
h concerns perceptual grouping in dot textures [A1IUJAN2. WIERTH38]. The goal here is 10 segment a
eiven dot pattern into its perceptual components 1o . Lo identif vy regions and curves defined by dots

. that coincide wath the segmentation provided by Lumuns.

e In the second part of our research. we are developing a computational theory for extracting

three-dimensional shape of a homogeneously textured surface from its images [STEVENSS1. WIT-

KINS1]. The goal of the second part of the research is 10 separate the spatial variation in the
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transformed texture inlo ils two components: one. characteristic of the original texture before

‘04--,O
N

imaging. and the other introduced by the distance and orientation changes in the imaging process.

;:; Since we are not imposing any constraints on the complexity of the original texture. the problem in
0

& general involves separating the ambient. homogeneous, possibly anisotropic. part of the texture
" from a smooth. nonhomogeneous. geometric distortion due 1o distance gradients and geometry of

" the textured surface. The algorithm developed in this part of our research will interface with the

L

),,' first part. We have worked on both of these parts simultaneously during the year 1984-85. Fol-
Y

n lowing is a summary of the progress we have made during this year in each of the two areas.

3

.

s PERCEPTUAL SEGMENTATION OF DOT PATTERNS

¢

o

* The structure of our current grouping algorithm is shown in Figure 1. The first step of the

5". algorithm (box A in figure 1) consists of three independent modules (boxes 11. Bl. and CI) running
l‘|

Y in parallel. Each of these modules responds to a certain aspect of the stimulus. The first one (11)
U

Py . }
identifies interior points. the second one (BI) identifies border points, and the third (Cl) identifies
\)

:}: curves. These modules were developed prior 10 1984-A5. The second step (B) corrects possible
¥

'.?, errors that might exist in the results of each of the three modules. The third step (C) combines the
Iy .

results of the border correction (BC) and interior correction modules (1C) performing a more global
M

\:: analysis. Steps B and C have been implemented this vear (1984-85). We now summarize steps B
't
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Figure 1. Structure of the perceptual grouping algorithm.

becemnvcocsecccccce=d




and C: details are available in the enclosed copies of publications.

To perform the corrections. first the resulis of the modules (11. BlL. and Cl) are cross compared
(figure 1). A module chunges the labels of s input il doing so improves the measure of border
smoothness and increases agreement with the results of other modules. The results reflect proper-
lies of more extended spatial context of dots and edges than computed by the individual modules.
Once the correction of the interior and border identifications is completed, then the necessary
changes are made and the correction process is iterated on the new set of identification until there

are no changes. This iteration is necessary in order to propagate the effect of the label changes spa-

tially.

The corrected results from step B are combined with the aid of assumptions about more global
properties such as closure of borders. To do this. first the borders around the points labeled as inte-
rior by the module IC are identified. This resulis in border segments around interior regions. Then.
the intersection of these identifications and the results of the module BC is taken. This results in
those Delaunay edges-being identified as border that have confirmation from two independent
processes. The result is a set of border segments and a set of interior points next to them. A con-
nected component analysis is carried out on the regions surrounded or separated by the border seg-
ments (step C). If a set of border segments defines a closed curve. no further processing is done on
that region. If the border is not closed. then the process attempts to extend it with the eventual
goal of closing it and. at the same time, ensuring that the border segment being extended is smooth.
After the border completion is accomplished the borders are smoothed by performing single point
changes in which the border grabs a single point either from the interior or the exterior if it makes
the border smoother. A component interaction module then checks (step D) if any two components

can be merged together. thus making the border smoother without altering the interior properties

of the components.
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SURFACE SHAPE FROM TEXTURE

Texture variations provide strong cues for the three dimensional arrangement and structure
of the surfaces vinible in an image. Two types of distortions occur during the imaging process:
increasingly larve areas o surtace are compressed onte u tived area of the image as the textured
surfave recedes awa. from the viewer. and an anisolropic compression ol the texture elements due
10 foreshortening occurs as the surface tilts away Irom the frontal plane. We have investigated
aow 1o exploit textural cues 10 infer the relative distance and orientation of the textured surfaces

) depicted in an image. We have looked for methods that would work on images of natural (as
opposed 10 human-made) textures. that handle sub- and super-texture appropriately. and that do
not rely on specific texture models. We do not address the texture segmentation/discrimination

problem. assuming that it is known which parts of the image correspond to different homogene-

ously textured 3D surfaces.

We have found that a "scale-space” representation. which represents VG image properties
over a continuous range of scales. is useful for identifying textural features of all different sizes.
We have derived measurements that can be performed in a VG scale-space in order 1o characterize
the size of texture elements without knowledge of the actual shape of the texture elements. The
equations for the measurements are derived by mathematical analysis of the V?G and %VzG
responses o images consisting of ideal bars and disks. The V3G response 10 more complex images
cannot be analvzed in thix way because the convolution integrals do not have closed form solutions.
Nevertheless. it can be hoped that. due 1o the smoothing properties of the Gaussian. the V°G
response 10 components of real textural primitives will be similar to the response expected for pat-

terns of idealized bars and disks. Tests on real images bear out this hope. We have worked mainly

with the image shown in figure 2.

Our method models texture elements with equivalent disks by identifying the size and loca-

tion of circular disks which best fit the scale-space behavior of the texture sample in question. (We

can compute the diameter of a dish. The location of dish centers is approximated by local maxima
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Figure 2. An image of a surface with rocks. This image is being used to develop our shape from tex-
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ture algorithms.
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in the V%G response.) Elongated texture elements appear as chains of disks: this representation is

reminiscent of the medial axis transform.
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EXTRACTING PERCEPTUAL STRUCTURE IN DOT PATTERNS

Mihran Tuceryan and Narendra Ahuj

Coordinated Sciences Laboratory
Uaivernty of Nlinois
1101 W, Springfield Ave, Urbaoa, IL 61801

ABSTRACT

This paper describes an approach to structural segmentation of
dot patteras such that the results are in agreement with ssgmenta-
uon performed by humans Voronai neighborhoods are used to
represent the geometric structure in the dot pattern. A st of
experts then, un parallel, look for structural components such as
borders. interiors, and curves. The experts have their expertise
expresmd 10 terms of the properties of and interaction among Voro-
nor neighborhoods The interacuon is accomplished through a
relazation, conmraint-propagation procest. The results of thes
experts have errors due to the lack of local evidence for the global
role of a dot. Each result then is corrected such that 1) it agrees
with the results of other experts and 2) 1t provides locally smooth
borders. Except for occasional gaps in the borders the unwes of the
corrected results represents a good approximation to the perceptual
structure 1n the dot pattern. Connected component anaiysis is car-
ried out to 1dentif v these gaps. The gaps are filled to0 close the com-
poneat contours ensuring local border smoothness.

~ 1. INTRODUCTION

Dot patterns have been studied in the past in different con-
texts including buman perception (3. 14, 17] and as simpler cases of
muludimensional clustering algorithms (2, 4, 6, 12, 18} In the coo-
text of visual psychophywmcs, dot patterns provide a set of sumuli
whose spatial properuies can be controlled precisely. Dots can be
regarded as tokens whose shapes. sizes. wntenmties colors, e are
kept constant and whos mOR (DPOriant properties are their pom-
uons. Hence, they form an ideal st of sumuli t0 study the effects
of oniy the spatial distribution of tokens in grouping procemss in a
tractable fashion. The mmplicity of the stimulus may belp probe
seloctad parts of the early vision o bumans and gun some under-
nanding about the processss present bhere.

Oune of the mom important aspects of early human vimon is
that 1t umposss & structure oato the stimulus 1o the form of percep-
tual grouping. |t ideatifies elements in the visual feld that in some
sense “go together.” This phenomenon was firm pointed out by the
Gestalt prychologists [29] and has important consequences. First, 1t
umproves the eficiency of the process of parsing the visual Seld iaw
surfaces and objcts aad in tbe recogmtion of those objcts by
reducing the amount of data these procemss must bandle. Second., it
might result in percepts that do oot exust w3 the obpctuve data but
are introduced as a resuit of the internal biases of the system itself.
Thus grouping together the broken edge segments from an edge
detactor, would result 1o one loag border of a regi00 which no edge
detector working on an intensity unage could produce because of
the inteanty dumnibution. As undersanding of bow thus grouping
1 accomplished and what kinds of rules govern it will proably
\ncTease our understanding of bow the early human visual system
13 SKructured.

Thus work was supported by the Air Poree Oice of Sennic Resmarch under
Contract AFOSR $2-0317

This paper will present an algorithm to extract groupings un
dot patterns and the resulting spatial structure. Sectios 2 will
review briefly pamt ressarch efforts in this field Section 3 will
present the algorithm for grouping. Finally, Section 4 will present
some coocluding remarks

2. REVIEW

The ressarch on dot patterns and grouping of dot patterns has
been conducted in Selds including psychology and computer sci-
esce. Perceptual structure in both dynamic and static dot patterns
has been studied,

In the perceptioa of matic dot patterns, different properties
relevant w groupings of elements in the visual Sield such as spacing
of elements were studied by Utial &t al [26] Pomeranuz and
Schwaitzberg [19] Julesz (10, 11} The detactability of dotted lines
in a noisy background was studied by Uttal et al [26] and the
importance of dot specing in this detectability was shown. The ma-
tisuca) properties of dot patterns, their local spatial properties such
a3 pumber of wermisations, etc. and the importance of these proper-
ties in the discriminability of textures (10, 11}

In computer scieace the work on dot patteras s divided into
two major areag 1) defining the oeighbors of a dot, and 2)
clustering algorithms The ressarch in each of these areas will be
discumed pext

The crucial information that is used by perceprual processes
that perform the grouping of the dots into “mesmungful” clusters i
the spatial relationship that a dot has with its “neighbors” Hence,
the concepe of “neighbor” and the concept of the “neighborhood”™ of
ndmmﬁmmmmmwdmmlgmpmg
procemes. ln the past, there has been a aumber of definitions of
asighbor. -

A fixed circular neighborhood of a dot with a glotally defined
radius R 13 umd by Kooatz {12] and Patrick and Shen (13} The coe-
cept of k-pearem peighbors of a point has been used by Zucker and
Hummel (31] Velasco {27] and Jarvis and Patrick (8] Both of these
have the dimdvantage of baing very inflexible.

O'Callaghan (16) gives 3 defimuon of neighbor bassd on both
distances and angles. 1o bus definion two points may be withun
the right range of distance to be conndered neighbors, but if thev
are “hidden” from each other by a thurd point thev are not con-
ndered to be neighbors.

Other definutions of neighbor include the munimum spansung
tree (MST) (301 Gabriel graphs (GG) (21) and the relauve aeighbor-
bood graphs (RNG) (22, 251 Abug (1] suggests the use of Vorono:
oeighborhoods (28] which have more intwiuvely appaaling proper-
ues than the previous definitions, a the procesnng of dot patterns

Early clumering algonthms usd vanous critena basmd on

purwise amilanty measures of dots o order 0 measure goodoess of
clustenng (4, 9, 12] These nmulantv measures were based on the
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more traditional definitions of neighbors of a dot Graph-
theoretics] approaches have been used in order to segment & dot pat-
tern into clusers (6 7. 25, 30} Several methods bave been
developed which, for two-dimenmonal patterns, base their measure
of amilarity oo neighbors of points taking into considerstion local
geometrx sructure of the point distribution {6-8, 14, 15, 17, 23-25]
Somae ressarchers have usd sigorithms (23, 24) which are formu-
lated in a relazaton labeling scheme [20] thus making it unneces-
mry to use thresholds A coamderation of the human visual system,
1ts asumpuons about the physical world, its biases, samely the ges-
it principles of the way patterns are perceived by humans was
lacking in mos of these works with some exceptioas [3, 13-13, 17)
In some of the work restrictions were made about the kinds of pat-
terns that the aigonthm was suppossd to work on. Some of these
restrictions were that the patterns would coatain omly uaiform
clusters (14, 15, 17, 23] or that they would contain only varying
dennity clusters (24] or only curvilinear clusters (3, 13} We now go
on to describe the groupng aigorithm in the pext section.
3. GROUPING ALGORITHM

The algorithm to be described in this paper for performing
grouping of dot patterns is bassd on the Voronoi tesellation of dot
patierns and the geometrical propertiss of the Voroooi polygoas,
that are the outcome of this temellatiop. Thess geometrical proper-
ties reflect information about the spatial distribution of dots in the
neighborhood of s given dot

The current sysiem is designed to work in two major phases
The firm phase takes the dot pattern as its iaput and produces the
lowent level groupings. The second phase sarts with the output
groupings produced by the first phase and produces the hierarchical
structure of these groups of dots (if any ewmss) in a recurmve
manner. The following section will decribe the details of the first
phase.

3.1. The First Phase of Segmentation

The first phase of the ssgmentation menuoned above works in
~three stept. The geperal structure of this phase, its modules and
thewr interconnecuons are shown in figure 1. The Ars sep (box A
1n figure 1) consiss of three ndependent modules (boxes IL, BL and
C1) running in parallel. Esch of these modules responds to & certun
aspect of the stimulus The S one ([I) idenufies interior pounts,
the second one (Bl) identifies border pointa and the third one (Cl1)
identufies curves The second swep (B) corrects pomible errors that
mught exst 1o the result of each of the three modules The third
sep (C) combines the results of the border correcuon (BC) snd 1w~
nor correction modules (IC) performing a more global analysis
The outputs of all these modules obtained for the mmple pattern in
figure S are shown 1n figures 6-11.

Before going 10to any further details of the system that does
the grouping, we will discus the properuss of the Voronoi
polygons 10 the temeilauon ussd by the sysem to perform the van-
ous groupangs There are a aumber of measures that are computed
reflectng the geometric properues of the spatial distnibution of dos.
Each of these measures and iw significance are described below. [n
this paper we will use the terms polygon and cell. the region sur-
rounded by the poiygon, interchangeably.

The firm property i the area of the Voronoi neighborhood of
a dot. Thus s a measure reflecung informauon about the dot den-
nty 1n the neighborhood of a dot. In the intenors of homogeneous
clusters. the density does not change. Recalling the way the Voro-
nos temelilauon s constructad, we observe that thus uniformuty of
dennty will result 1n the Voropo: neighborhood bewng usiform in
area 1a the \ntenor regions

The second property is the eccentncity of the Voronoi
polygons. Thus messure 13 a scaled vector indicaung how much &
dot s off the ceater of gravity of its Vorono polygon. The
signuficance of the eccentricity measure is that 1t s reisted to the
change of deanty of dots. The interiors of umuform clusers are

ottt step A
' -— el A A o ey G e = an - e -1
| L !
| latenor Border Curve '
| Identificauon ldenuficauon " ldenuficauon !
! 0 [ Bl o a |
' J L t
(I CPRN DD AR
step
{.-----.-F--'- ---------}...--I---z
{ lotenor . Boraer Curve :
i Correction " Correcuon Correction |
! Ic ] BC cc !
] \
Ty M S S
1
e .atep €
: lotenor ' :
] Border |
| Cominnauon 1
| BC :
1

e rcme e can e ———— - .- -

Figure 1 — The modules and their wterconnections that make up
this system.

expectad to bave cells with very low eccentricities because of the
lack of vanauon in the denmty. The interiors of varying deasity
clusers will have cells with high eccentriciues due w the deasity
varisuon; the directions of the eccentricities will be pointing
towards the increanng deamty direcuon. Thus, the eccentricity
vectors of the cells in the interiors of varying deamty clusters will
be aligned most of the ume. At the borders of clusers, the sccen-
tricity direcions in most cases, will be expectsd to poist towards
the interiors of the clusters because of the sudden increase in the
dot deanity: Le., from the very low dennty in the wnterciuster space
to the comparsuvely high denmty in the wnterior of the cluser.
Thus observauon also holds on the borders of bars whuch are clus-
ters without intenor pouwnts.

The thurd property, Gabriel measure, measures the “aeighbor-
linew” of two Vorono: aeighbors. If the line ouung two Vorogo:
neighbors ¢ and / intersects the edge shared Dy the corresponding
Voronoi polygons then: and ; are perfect neighbors. That is, there
ts no third pownt &, such that the powt : 1s hudden from the pount
j by the point &, and vice verm. If, on the other hand, there is
such a third pownt k , aad the line (i, ) croses the Vorono cell for
powst k, then i 15 hudden from ; by k and the Gabnel measure
indicates the amount by which thus is true. The deeper the line
(i.j ) cromees cell k, the worse neighbors (i, ; ) are and the lower the
Gabriel measure is. Thus 15 umportant on the borders of clusters,
where if the two points are not perfect neighbory and have a low
Gabnel measure, then the border follows through the wntervemng
pownt instead of the two points.

The fourth measure computed i the compactness measure.
This 4 a measure indicating how wedge shaped the Vorono: neigh-
borhood of a dot i These types of cells are seen at points where
the borders of two clusters gradually approach each other. The
wedge-like shape of the cells is caused by the sonumform distnbu-
uop of the neighbors of a pownt around it and the wedge-lLike
shapes of the poiygons indicate that the pownts are pombly on the
border of a cluster.
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Figure 2 — The disance measure for the Delaunay edge (i,; ).
du't,,.udeﬁnedmurmof:hclengmo{thcbehwyodge(n./).
d, and the aversge Delaunay edge on its two endpoints,
dav, and dav,. Let D =min(dav, dav,). Then dist,,=1-D/d if
d > D, and dist,, ®0 otherwise.

Figure 3 — Squeezednems measure, s9,,, is defined in terms of the
length of the Delaunay edge (i,j), 4, and the average Delaunay
edge lengths on it two sudes laterally, dav; and davy Let
D =mun (dav  dav,). Then sq,, =1—d/D f 4 <D, and sq;, =0
otherwise.

The fifth measure is & diance measure defined for s
Delaunay edge It measures the change 1n the distance between two
dots compared 10 their surroundings. The computation of thus
measure 1s shown in figure 2. Thus measure is useful mostly in the
regions coptaning curvilicear clusters or mngle-point clusers
because around such clusters, measures such as areas, eccentricities.
et are very unrelisble. Distance, and Gabnel, and squeezadnes (to
be described beiow) measures are mostly the only ones used to
dexcribe these contexts. Of course, if the clusters are well separated,
thus measure is also helpful for idestfving edges between clusers
with wnteriors.

The nuxth measure computed 18 the elongations of the Voronoi
cells and the directions of their punor azes. Whea there is a cluster
10 a pattern Where the dennty of dots 15 uniform but direction mn-
siive (Le the density 10 ope direcuos 18 different from that 1o
another direction) the Vorono: polygoas tead to be elongated. The
direction of the minor axs teads to be shigned with the higher den-
nty direcuon. As the disparity of the deamties 10 tWo directions
ncreases, the Vorono: cells become more elongated. Thus measure i3
computed using the mcond order moments of area of a call

Another measure, squeczednem, is computed which 18 very
closely related to the elongation, but it is a property of the
Delaunay edges rather than Voronoi polygons and it is based upon
the distances of the surrounding Delaunsy edges. Its computation is
shown in figure 1 This measure, similar to the distance measure, is
monly usful around curvilinear clusters. Namely, the Delaunsy
edges that lie on a curvilinear cluster are expacted w0 be shorter
compared to the Delaunay edges extending on the two sides of the
curve laterally.

3.1.1. Interior ldentification

The interior idenufication s formulated in a probahlistc
relazation scheme with the dots being labeled as either DNTERIOR
or NONINTERIOR. This formulation is bassd upos the local

ical propertiss of the Vorooos polygons resuiting from the
Voronoi teme!llation.

The main task is to formulate the local competibilities
between pairs of dore This formulation is bassd oa the asumption
that certain properties of the polygoas will be true for the waterior
points. Specifically, in the interiors of bomogeneous clusters, the
areas of Voronoi polygons will be approximately the sme and the
eccentricitios of the cells will be low. In the interiors of aonhomo-
gensous cluners the eccentricitios will be high but they will be

mmﬁcmdﬁummly.mthmgdnﬂq
direction. These facta, umd conservatively, will result in the most
obvious interior points being identified.

The compatibilities are defined for the four possible combina-
tions of labeling two points as INTERIOR or NONINTERIOR. In
order tw define these compatibilitiss one has to consider all the possi-
ble casss of combinations and in what contexts they can occur. In
this case all the pomible contexts 1 Which interior and nonintenor
combinations can occur are shown in figure 4 For each of these
cases AR €XIpremion is written which measures how compstible the
label combination for two points is it the given context. For exam-
ple. for the case shown 1n figure ¥a), 0ae would have the expres-
sion min(1-ecc,1-ecc,1-4A ). In this expremion ecc, and ect are the
eccentricity magnitudes for the Voronoi polygons of the cells of
dots i and ) respectively. AA is the ares difference of the two
polygons normalized to the range [0.1) and is defined as aba(A -

)/mx(A.Ar). In this case A and A are the areas of the polygons
for the dots 1 and } mpacuvelv 'nxe intuiuve meaning of the
expression is that in the interior of a homogeneous clusters the
eccentricity magnitudes and the ares differences are expecied to be
small If that is the cam with the two dota the above expresmnon
will have a high value and w1l bave a positive contribution to the
INTERIOR-INTERIOR compaubility value. After the expresuons
for all these casss have been derived, for a parucular combination
of labels, the expreamons for all its cases are comtned by a fuzzy
OR operation. That is, for two powats 1 and j to be compatble with
labels INTERIOR-ONTERIOR. they must have the coptext shown wa
case (a), or case (D), of figure 4 Sinularly, for other combinations of
labels for the two points, the expresmons for different cases are com-
bined to get the compatbility expresmons

Once these compatibilities are defined, tbe relazation labeiing
scheme s run wWhich results 12 the amignment of probabilities to
each point of having a cerwain label (step A. module II o figure 1).
Most of these probabilities converge to either very tugh or very low
values resultng in unamdiguous labelings (even though they mayv
be the wrong labels). The few points with more ambiguous proba-
bilities are asngned the label wath the stronger probability. If thus
turns out to be the wrong label it is hoped that the later phases
w11l correct Lius taking into connderation a larger context (step B in
figure 1), informauon comung from other.modules indepeacent!y,
and Gestalt asumpuons such as border smoothnes (steps B and C),
and closure (step C). These corrections are performed when the
resuits of the three modules are being procesed for pomnble correc-
tions and meryes (steps B and C 1a figure 1),
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Figure 4 — The posible conterus 12 which INTERIOR and NON-
INTERIOR compatibilities are computed.

3.1.2. Border and Curve ldentification

The method of identification of borders and curves is similar
to the identification of the interior potats. In this case the objcts to
be labeled are the Delaunsy edges They are labeled as either
BORDER or NONBORDER in the border identificauon module and
CURVE or NONCURVE in the curve identification module.

The compatibnlities 1n these modules are also formulated by
looking at all the possble contexts and identifying the different
cases and formulatiag the consrunts between properties of the
cells and edges that must hoid. The possible contaxts for thase cases
are identified similar to the interior identification procesm. The
expresmions for each of these cases are identified based on these con-
texts and combined to get the final compatibility relations

3.1.3. Label Corrections

As a result of the previous sep (step A in figure 1), the dots
and the Delaunay edges are labelled as INTERIOR-NONINTERIOR.
BORDER-NONBORDER, or CLRVE-NONCURVE. Some of these
labels may oot be correct dus to lack of local evidencs, ambiguities,
etc. These incorrect labels need o0 be correctad by using informa-
uon ‘rom a larger context. The results of the modules (IL BL and
C1) and the agreement among these resulits is used to obtain the
information from the larger context. The criterion that borders be
smooth i3 also used to decide whether a lsbeling of a dot or a
Delaunay edge needs to be corrected. The coatext that is conmdered
1s larger because the border sgment necssmry for compuung
smoothnes or the agreement measure possibly extends beyond the
neighborhood of the obypct bewng conndered for correction.

Thus step consusts of three modules (IC, BC, and CC in figure
1). Each one corrects one set of identificauons from the previous
step concurrently and independently using the waformation from
the previous step as sbown in figure 1. A module changes the labels
of 1ts wnput f downg %0 umproves the measure of border smoothness
and increases agreement with the results of other modules The
cofrecion process i formulated 10 a probabilistic relazation scheme
with the labels | CHANGE. NO-CHANGE | on the objecta The
obpcts are the dots for the correction of dot labels, and the
Delaunsy edges for the correction of border \denufications. How-
ever, not all of the dots or the Delaunay edges are considered for
correcuon. The most confident ones ‘ie. the dots or Delaunay edges
whose 1dentifications from the two independent modules 0 and Bl
are 10 agreement) are omitted Only the obpcts whose
identifications from the two ndependent modules conflict are con-
sidered for correcuon. Tlus increasss the eficency of the correction

Figure 5 — A sample dot pattern to be segmented.

procem. An example of computing compatitnlities 7,, for objects ¢
and j is as follows
, .((l-arviHI-wv,magr, +agr,))
) 3

Io this expremion, cirv stands for the value of the curvature of a
border segment. The border segment whose curvature is computed
depends on the identification of the objt being labelled For
example, if the object is a dot thst is idenufied as interior, then the
border segment around the pont is coasidersd for curvature com-
putation. Note that if the interior point i3 surrounded by all inte-
rior points and doss oot have a border pasang by it, then it has s
confident identification and will aot be conndered for correction o
‘begin with. If the dot is identified as border thes the border mg-
ment going through the dot is conmdered for curvature computa-
tion. 1n each of thess cases a small portion of the border segment is
considered, for example, 2 segment of fve dots. The expresmioa agr
is a measure of the agreement of the results of the two independeat
modules. Therefore, this computation refiects the expectaucd that
the curvatures of borders around the obpcts i and ; be oummuzad
(ie. the borders be smooth) and the agreements of results between
different modules be hugh.

Once the correction of the wsterior and border identifications is
completed, then the necemary changes are made and the correction
procam dexctibed above 15 iteratsd on the new set of idenufications
This iteration 15 aecessary wn order to propagate the effect of the
pewly changed labels Thus iterstion proceeds ugtil there are no
more label changes These corrected results are then comtrned to
get & fing) segmentation 10 the next wep.

3.14. Combining the Resuits

The corrected resuits from step B are combuned with the ad
of assumprions sbout more globai properues such as closure of bord-
ers. A connected component asalyms is doae in order o perform
this task which is described below.

First, the borders around the points labeled as intenior by the
module [C are identfied Thus s done by idenufving those
Delaunay edges as borders that have both endpownts nonintenor and
the common neighbors of whase eadpounts, located 0o the two ndes
of the edge, bave different labels Thus results ia border segments
that surround the wntenor regions. Then, the watersscuoa of these
identificaions and the results of the module BC i wuken. Thus
results un those Delaunay edges being 1destfjed as borcer that have
confirmauon from two undependent processes. The result is a set of
border segments and a set of interior pownts next o them. Each of
these border segments s given & label (eg. they are sumberedl The
intenor regions then are asmgned the latels of all the border
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the proces atiempts t extend 1t with the eventual goal of closing
ituutmwmcmﬁngmtmhumqmthmg
extended i smooth. The resulting forks and dangling border seg-
ments are cleaned If there still remain border ssgments around a
region that are not clomd, they are extended as smoothly as pomble
% that some of these ssgments will either merge with each other to
form longer border ssgments to be further processed, or they wil]
become closed, thus ending the processing of that region. While
combining the results of the correction sep (step B in figure 1), one
must be careful in handling the regions which are ber-like (Le. two
segments of paralle] borders with no interior region between them).

Figure 6 — The result of intenior idenufication (II) module rua on

the pattern. The borders that surround the identified intenior re-
gions are shown 1n the figure.
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Figure 7 — The result of border i1denufiation (Bl) moduie run oo
the pattern.

Figure 8 — The result of curv idenufication (C1) module run on the
psttern.

¥Ements that surround them. That is, a pownt P i asigned the
hb-lofabomerngmtB.inhcncmapthhp,mp,m
that p;=P, p, 13 oo the border segment B, and sl the points
PiP2 " pr -y are labelled 10terior. The result is that all the inte-
f10r pownts have one or more border mgment labels amgned w0
them. The goal s 10 bave all these border ssgments 0 form a closed
contour. Note that the number of final border segment labels
amgoed 10 each wnterior region may be more than ooe mnce a com-
ponent may have holes 1o 1t

mmbamuonprmwmaammmngmm‘ have
only one label asgned 1o them. If the border is closed no further
procesung is done oo that region. If the border is not closed, then

0

Figure 9 — The result of the interior correction (IC) module run on
the result in figure 6 unng information slso from figure 7.
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Figure 10 — The result of border correcuon (BC) module run on
the result wn figure 7 unng wnformation also from figure 6.
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Figure 11 — The parual result of combuning the two results in
figures 9 and 10.
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hn-munmmbuu-unymnthmduuckmulp
ter and if they are not considered at thus stage then problems arim
in trying to clos the borders being extanded. The problems will be
dmtomfmmnnh-w.mnmutwm
the border mgment of reprons with interior pownts then thers will
be gaps 1o the border of te entire clumer and the closure of it will
be oumed To avos thus dificulty the border mgments of these
regi003 With DO inteTors are merged With the border segments of
the repions with intenors if possible The costexts in which there
5 8 tranmuon from s regon with intariors w0 & regwa without an
intenior in 8 cluster can occur are limited. Therefore, this contex-
tual koowledge aloag with the critanoe of bordsr smoothoms are
used When merging the border ssgments.
' 4. CONCLUSION

We bave prematad an algorithm for obtaining groupings in
dot patterns. The algorithm works bottom up and is hughly paral-
lel Some of the modules dave oot been completed and are
currently being worked on. Thems are the two modules interior-
border-combination {IBC) and curve correctica (CC) in fgure 1.
The algorithm obrains the lowent level groupings preseat in the dot
pattern. However, in patterns which contain hierarchical sruc-
tures in them, the groups of dots obtainad as a result of the segmen-
tauocn at this level cas be treatad a3 tokens w be further grouped
recurmvely. Future plans include extending the algorithm to be
able to obtain the hisrarchical structures in such patterns.
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REPRESENTING GEOMETRIC STRUCTURE
IN DOT PATTERNS

by
Narendra Ahup
Mihran Tucervan

Coordinated Sciences Laboratory
Uaiversity of lllinois
1101 W. Springfield Ave.
Urbana, IL 61801

ABSTRACT

A representation of basic geometrical properties of dots is crucial in obuining perceptual structure of dot pat-
terns. This paper describes the use of Voronoi neighborhoods and their geometrical properties to infer geometri-
cal structure in dot patterns. The distribution of dots characterizing different structural components such as
curves, bars, single-point clusters, nonempty clusters with uniform and varying density interiors are studied.
The effects of dot distribution in each of these components on the geometrical properties of the Voronoi neigh-
borhood of a dot are described.

1. INTRODUCTION

This paper concerns representation of geometric structure in dot patterns. Since the perceived structure un
a dot pattern is completely determined by the relative spatial locations of dots, a definition of “neighbors” of a
dot and the “neighborhood” around a dot is crucial in processing the dot patterns. In [1] we discussed the impor-
tance of the notion of the neighborhood of a dot, and specifically, the possible use of the Voronoi neighborhood
10 a variety of applications. ln this paper. we will describe in detail some of the geometric properties of the
\'oronoi neighborhoods that we have used in our research to infer structural information in 2 dot pattern.

Secuon 2 reviews previous work on dot pattern processing and definitions of neighbors of a dot. Section 3
reviews the definition of Voronoi tessellauon and Voronoi neighborhood. Section 4 describes in detail the
geometrical properties that can be used to infer structural information in dot patterns. Many of these proper-

ties have alreadv been used in our programs for perceptual segmentation of dot patterns. Finally, Secton §
presents concluding remarks.

2. REVIEW OF PAST WORK ¢

A major part of the past work on defining the neighborhood of a point has been concerned mainlv with
the following question: given an arbitrarv point in a dot pattern, which other points should be treated as its
ne:ghbors” The definitions used in the past have included all the points covered by a circular neighborhood
with a globally defined radius R [4] k-nearest neighbors of a dot {12} minimai spanning trees {11} relative
neighborhood graphs [, 9] and Gabriel graphs (8] In all of these. the geometnical information usec pertains o
pairs of dots and is one dimensional in nature except for the circular neighborhood which has the disadvantage
of being insensitive to data. Minimal spanning trees are Jlobal in nature and a small change in one part may
result in drastic changes in parts of the graph that are far awav. O’Callaghan defines a more intuitive
definition of a neighborhood. He uses two taresholds, 7, and T, . to decide whether two points P and P are
neighbors. If P, is the nearest neighbor of P then P. is a peighbor of P i a) the distance rauo
d(P..P . )id(P P,, )is not greater than 7, and b) for any ne:ghbor P, of P the angle P, P, P s cifferent
than 180 degrees by more than 7. (1e. P is not behind any neighbor P, of P . In [1] Ahugm examinec the
use of the neighborhood of a point which associates with a point nct only otner points as its neighbors. but also
a part of the Euclidean plane around iy, thus, giving the problem a two-dimensional character. He closely

examined one specific definition of neightorhood called the Vorono: neighborhood. which 1s based upon the
Vorono: tessellation defined by a set of points.
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| 3. VORONOI NEIGHBORHOODS |

3.1. Voronoi Tessellation .

Suppose that we are given a set S of three or more puints in the Euclidean plane. Assume that these points
are not all colinear, and that no four points are cocircular. Consider an arbitrary pair of points P and Q. The
bisector of the line joining P and Q is the locus of points equidistant from both P and Q and divides the
plane into two halves. The half plane H#(Hg is the locus of points closer to P (Q) than to Q (P ). For any
given point P a set of such half planes is obtained for various choices of Q. The intersection (] H§

QESQmP
defines a polygonal region consisting of points closer to P than any other point. Such a region is called the

Voronoi [10] polygon associated with the point. The set of complete polygons is called the Voronai diagram of
S [5} The Voronoi diagram together with the incomplete polygons in the convex hull define 2 Voronoi zessel-
letion of the entire plane. The Voronoi tessellation for an example pattern is shown in figure 1. Two points are
said to be Voronoi neighbors if the Voronoi polygons enclosing them share a common edge. The dual represen-
ation of the Voronoi tessellation is the Delaunay graph which is obtained by connecting all the pairs of points ;
which are Voronoi neighbors as defined above. i

e S Ty Y Ty 2e

3.2. Neighborhood of a Point R

We will consider as the neighborhood of 2 point P (the region enclosed by) the Voronoi polygon contain-

ing P. Considering the way a Voronoi polygon is constructed, this is an intuitively appealing approach. The .
local environment of a point in a given pattern is reflected in the geometrical characteristics of its Voronoi iy
polygon. This presents a convenient way to compare the local environments of different points. Since the per-
ceived structure in a dot pattern results from the relative spatial arrangement of points, the geometric proper-
ues of Voronoi polygons may be useful for describing and detecting structure in dot patterns. Such an
approach lends a fully two-dimensional character to the problem in that the dot pattern is converted into a -
planar image or a mosaic.

The advantages of the Voronoi neighborhood compared to the definitions given in the previous section are
that the Voronoi neighborhood is (i) intuitive, (ii) adaptive, and (iii) two-dimensional in character. It is adap- .
tive in the sense that the assignment of neighbors does not depend on the scale of the dot pattern and neighbors
are assigned to dots that reflect the local density variations. Also, the number of neighbors of a dot is not tixed
and may vary depending on the structure in the vicinity of the dot.

LS

4. GEOMETRIC PROPERTIES 5|

It 1s useful to look at the possible structural patterns in a dot pattern and to see how the various possible
distributions are reflected in the geometric properties of the Vorono: neighborhoods. One tvpe of structural
component in a dot pattern is a cluster of dots with nonempty interior. These tvpes of clusters mav have an
interior having either a uniform density or a varying density. Another component is a cluster with no inter:or,
or a bar. Besides these there are the curvilinear structures and single-point clusters. All of these and their spa-
ual configurations are reflected in the shapes of the Voronoi neighbcrhoods or properties of the Delaunav edges.

The Voronoi neighborhoods of the points which reside withir the interior of a homogeneous cluster w:li
have sumilar shapes and sizes. For different clusters these interior polygons mav differ in thewr geomerrical pro-
pertues. The border cells of a cluster will be open if there is no other ciuster to bound them. The cells of the
border points of a cluster that have neighbors in a nearby cluster will differ from interior cells For example.
they may be elongatec if the distance between cross cluster neighbors is larger than within cluster neighbors. or
the nucleus of the cell mav be located well off its center. Clearly, a globular cluster will have a larger number
of interior cells than will a more elongated cluster. For dot patterns contaiming varving ceasitv clusters, the
interior cells will be compressed 1n the direction of increasing density. This results in the dots being off the
center of the cell in the direction of increasing densitv. Certain border cells wili assume wedge-like shapes
where borders of two clusters gradually approach each other. This is caused bv the uneven distribution of the
neignbors of a point. Such properues will be further described in detail 1n the next section.

Others have suggested in the past the use of certain properties of the \crono polvgons for use 1n dot pat-
tern processing. Sibson (6] has suggested the use of the areas and nucleus-vertex distances of the Vorono:
polygons, and the distances between neighboring points as statistics of a point pattern. Chapmar [2] uses the
distribution of the areas of the Voronoi polvgons to infer the structure of dot patterns describing geographic
concentrations of economic acuvity. He relates the degree of the local clustering, or nonrandomness, to an
entropy measure comfu‘_ted f;rqm_t@e histogram of ;Pg{qe_ll.’a,r_eg;.,_l.n the remainder g_f this, secyon we .w_ﬂ,].‘
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describe each of the geometric properties in detail and their computation. The terms polygon and neighborhood
which is the two-dimensional area surrounded by the Voronoi polygon will be used interchangeably.

The first property is the area of a Voronoi polygon of a dot This is a measure reflecting information
about the dot density in the local neighborhood of a dot. In the interiors of homogeneous clusters, the density
does not change. Recalling the way the Voronoi tessellation is constructed, we observe that this uniformity of
density will result in the Voronoi neighborhood areas being uniform in the interior regions.

The second property is the eccentricity of the Voronoi polygons. This measure is a scaled vector indicating bt
how much a dot is off the center of gravity of its Voronoi polygon. The situation and the computation of the
eccentricity is shown in figure 2. The significance of the eccentricity measure is that it is related to the change
of density of dots The interiors of uniform clusters are expected to have cells with very low eccentricities
because of the lack of variation in the density. The interiors of varying density clusters will have cells with :
high eccentricities due to the density variation; the directions of the eccentricities will be pointing towards the "
increasing density direction. Thus, the eccentricity vectors of the cells in the interiors of varving density clus-
ters will be aligned most of the time. At the borders of clusters, the eccentricity directions in most cases, will
be expected 0 point towards the interiors of the clusters because of the sudden increase in the dot density; Le.,

»

Sy

| from the very low density in the intercluster space to the comparatively high density in the interior of the o
’ cluster. This observation also holds on the borders of bars which are clusters without interior points. “ 1
‘ The third property is Gabriel measure, whose computation is shown in figure 3. It measures the “neigh- .
\ borliness”™ of two Voronoi neighbors. If the line joining two Voronoi neighbors i and j intersects the edge -~
| shared by the corresponding Voronoi polygons then i and ; are perfect neighbors. That is, there is no third !
! point k, such that the point i is hidden from the point j by the point k, and vice versa. If, cn the other hand, S
there is such a third point k, and the line (i, j ) crosses the Voronoi cell for point k, then i is hidden from j by .
k and the Gabriel measure indicates the amount by which this is true. The deeper the line (i, ) crosses cell &, Iy
the worse neighbors (i, ) are and the lower the Gabriel measure is. This is important on the borders of clus- -
ters, where if the two points are not perfect neighbors and have a low Gabriel measure, then the border follows .
through the intervening point instead of the two points. For example, in figure 3 if Gabriel measure is low >
| enough, the border passes through points (i, j &k ) instead of going through (i, j ) directly. ~
l The fourth property computed is the compactness of the Voronoi cells. [n the interiors of clusters, even N,
! though the density of points may vary, the points are surrounded uniformlv by other points all around. This ﬁ '
results 1n the interior angles of the Voronoi polygons of such points being uniform. Such cells are called “com- c
| pac.” When the borders of two clusters gradually approach each other, the cluster exterior sides of such borders
| have a nonuniform distribution of dots The cluster interior sides of such borders, however, have a uniform
l distribution of dots. This results in the dot distribution around a point lving on such a border segmen? to be r:
| uneven which, 1n turn, is reflected in the shape of the Vorono: polvgon of the dot. An example of such a case is l}
‘ the point A and s Voronoi neighborhood in figure 1. Such a polygon nas a wedge-like shape, and is “non- '\
‘ compact.” The computation of the compactness measure is shown in figure 4. <
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Another property of the Voronoi cells is their elongation and the direction of their minor or majr axis
This measure gains importance in clusters which have uniform distribution of dots but the density is direction
sensitive. That is, the dot density along a given direction is different than that along another direction. In such
cases, the Voronoi polygons tend to be more squeezed along the higher density direction than along lower den-
sity direction, thus, resulting in a more elongated cell. The major and minor axes directions of such cells indi-
cate the directions along which the dot densities are smallest and greatest, respectively. The cells along a curve
will also tend to be elongated (as illustrated by point B in figure 1) due to the fact that on the two sides of the
curve the dot density is very low compared to the dot density along the curve. Thus, such elongated cells are
one of the indications of the existence of curvilinear structures.

There are many ways the elongation of a polygon can be computed. One possibility is the ratio of the
area of the polygon to its perimeter squared. Another, which we have used, uses the information from the

computation of moments of area [3] to obtain both the amount of elongation and the directions of the major
and minor axes. The computation is as follows

1

vé- 3
F#zo“#oz)z""‘#uz I
elong = :
2
F#zo‘#oz)z"“‘#uzl +ap20+so2
o= lm" ﬂ.
2 Man—hkg2

Here the p,,s are the second order moments of area that are scale and transiation invariant; elong is the
amount of elongation of the cell and a is the angle that the major axis of the cell makes with the x-axis. The
elongation measure itself is rotation invariant.

So far all of the properties discussed were two-dimensional properties of the Voronoi polygons. Most of
these properties make sense when used for clusters that have interiors. For curves or single-point clusters the
two-dimensional properties are no longer well behaved. For example, the area differences are not meaningful
when used in regions with curvilinear structures, or on borders of clusters. In such regions one dimensional
measures such as distances, etc,, are more useful. In the following paragraphs, we will describe several such
properties.

The first such property is a measure based on the differences in the length of a Deiaunay edge and the
average distances of its endpoints to their Voronoi neighbors. The computation of this property is shown in
figure 5. In the interciuster space the Delaunay edges have endpoints on the borders of clusters, on single-point
ciusters, or on curves. If one of the endpoints is on the border of a cluster then the distances on the interior of
that cluster will have relatively small distances compared to the distance in the intercluster space. Thus at
least one side of a Delaunay edge having an average distance which is small compared to the length of that
Delaunay edge is an indication that the edge is most probably in the intercluster space. In this case the measure
will be high indicating this high probability.

Another measure, “squeezedness,” is computed which is very closely related to the elongation, but it 15 a
property of the Delaunay edges rather than Voronoi pclygons, and it i1s based upon the distances of the

14
Figure 4 — Compactness measure i1s computed
in terms of the angles a,. Let
Figure 3 — The Gabriel measure for the De- ‘Zﬂa. T%max
launay edge (i,j), gabr. =d /D if the line a, = =3 Then the compactness of
(i,j) intersects the line (k,1"). and gabr, =1 . Amax—Q,
: Lo thecall farroint i w L L
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surrounding Delaunayv edges. Figure 6 shows its computation. This measure is also mostly useful for curvi-
linear clusters. Namely, the Delaunav edges that lie on a curvilinear cluster are expected to be squeezed com-
pared to the Delaunay edges extending on the two sides of the curve laterally. If this is the case, then the
squeezedness measure will be high, indicating the possibility of the Delaunay edge being on a curve.

All of the properties described above have been used 1n an algorithm that we are developing for obtaining
perceptual segmentation of dot patterns. The segmentation algorithm consists of three phases (1) identification
of different types of structures in the pattern. namely interiors of clusters, borders of clusters, bars, and curves
(2) correction of the erroneous results of the first phase Which are a result of local ambiguities; (3) combining
these results to obtain a unified segmentation. The Vorono: neighborhood properties were used in the modules
of the first phase for obtaining the four different types of structures. These modules are formulated as proba-
bilistic relaxation labeling schemes. The Voronoi neigbhorhood properties described above were used in deriv-
ing the expressions for the compatibility coefficients of these modules that are necessary for this formulation.

The correction module takes these results which might have wrong identifications in them because of the
insufficiency of local evidence, and tries to eliminate the errors by integrating more global information from
multiple sources (modules). It enforces such requirements as border smoothness and a high degree of agreement
between the results of the independent modules. This 1s also formulated as a probabilistic relaxation scheme.

The corrected results of this phase is fed into the combination phase which combines the outputs to obtain
a unified segmentation. The combination starts with the interior regions of the clusters and looks only at the
border segments adjacent to these interior regions. If there are any incomplete borders, it extends these borders
and tries to combine them with other border segments such that the resulting closed border is the smoothest.
The eventual goal is to have all the borders around interior regions to be closed, smooth curves.

After this step it is possible to regard the groups of clusters obtained in this fashion as tokens — or dots —

10 be further grouped. In this manner it is possible to obtain a hierarchy of grouping at different levels of reso-
lution.

S. CONCLUSION

Analvsis of dot patterns requires a souncd notion of the local environment of a poiat We have used the
Vorono! neighbornoods of points to characterize the locai structure because of the many intuiuvely appealing
properties of such neighborhoods [1] We have describec various geometric properties of the Vorono: polvgons
and the Vorono: tessellation that provide useful information about the geometric structure of the dot patterns.
We have used these properues in our research in designing a unified segmentation algorithm for processing
unrestricted dot patterns. The results we have obtained have shown that the Vorono! tesseilation and the

geometric properties of the Voronoi polygons described :n this paper can be used successfully to unfer informa-
tion about the geometric structure of dot patterns.
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Figure 5 — The distance measure for the De-

launay edge (i, ), dist, . 18 defined 1n tecms of Figure 6 — Squeezecness measure, s¢. . IS
the length of the Delaunay edge (i, ), 4, and defined 1n terms of the length of the Delaunav
the average Delaunay edge lengths on its two edge (i.; ). d. and the average Delaunay edge
endpoints, dav, and dav . Let iengths on its iwo sides laterally. dav, acd
D =min(dav, dav,). Then disi,, =1-D/d if dav » Let D =mun(dav,dav,). Then

d > D, and dist. . =0 otherwise. sy, =1—d ‘D 1f d <D.and sy, =0 otherwise.
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