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Journal of Chemical Physics, in press

On the Born and Narkov aborohimations: Phonon

relaxation and coherent excitation of adsorbed miecules

Sander van b1aa leng and Thomas F. George

Departments of Physics & Astronoy,"ad Chemistry
239 Fronozak Hill

State tkiiverslty of Now Yqrk at Buffalo
Buffalo, New York 14260

The phonon relaxation of the vibrational adbond of an adsorbed miecule

and a phonon-damped adbond Irradiated by a laser are studied. In the first
half of the paper, approximations are made within the Zwanaig projeetion
operator formalism1 In order to arrive at a master equation for the reduced
density operator of a small subsystem (the Odbond) In contact with a
reservoir (the phonons). The conditions of validity for the Born and Markov
approximations are derived. It is shown that the master equation Is only
valid for times t )> y, where -t0Is the characteristic time of the
reservoir. These results are then applied to the phonon relaxation of the

vibrational adbond of physisorbed solecules. It Is shown that for CO

adsorbed on N1 or Cu (a strongly bound physIsorbed system) the Born and
Markov approximations are not justified. For the weakly-bound system Ar on
W, numerical results show that these approximations can be made. Finally,
an adbond Interacting with both laser radiation and lattice vibrations is
considered. This system can be regarded as a subsystem (the adbond) In
contact with two reservoirs, where the conditions for validity of the Markov

approximation Is then seen to be mre severe than when each reservoir Is
considered Independently. For the phonons, these conditions can never be
watched. However, for an Initial state given by an adbond In equilibrium
with the lattice vibrations, the conditions for validity of the

approximation& prove to be the same as for the' phonons and the loser
cons idered Independently.

'present address: Laboratory of Inorganic Chemistry, Material Science
Center, Uniiversity of Groningen, Nijenborgh 16, 9747 AG Groningen, The

Netherlands.



1. Introduction

In quantum mechanics, complete Information about a system is contained

in the wave function 1#>. When there is only a limited knowledge about a

satem, the proper way to describe its state Is by the density operator,

%'ere the reel numbers p* form a set of probability amplitudes,

ap* 1 (2)
9

All Information about the properties of a subsystem is given by the reduced

density operator,

e - Tr p, (3)

where Tr denotes the trace over all variables other than those of the

subsystem.

from the Schrbdinger equation, an equation for the time evolution of

the density operator of a closed system Is easily derived to be

100(t) - [H.p~t)], (4)

%Mere H is the Hamiltonian of the system. From Eq. (4) an expression for

the tim derivative of the reduced density operator is obtained by taking

the trace on both sides. However, this time derivative still depends on the

complete density operator, because the operators Tr and H do not commute.

It follows that to obtain the tim evolution of e(t) exactly, the equation

of motion for the complete density operator [Eq. (4)] need to be solved.

Often, we are interested in the properties at a very small system

(e.g., one mlecule) in contact with a much larger one, called the

reservoir. We assume that the reservoir can be made arbitrarily large, such
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that there Is no appreciable difference between the reduced density operator

for the reservoir, Tr p, and the density operator for the freely in time

0
evolving reservoir, pb. It Is assumed that the latter Is known. lWhen the

Interaction Is weak, we can try to obtain an approximate solution for the

time evolution of the reduced density operator of the subsystem. If the

Interaction is taken Into account to lowest order In perturbation theory, it

Is easily shown that a first-order differential equation is obtained for the

reduced density operator. Apart from o(t), it involves only the zeroth-

order approximation to the reservoir density operator, pb. For longer

times, the effect of the Interaction tends to build up. Therefore, there

will be a time beyond which perturbation theory is not valid. To obtain an

equation of motion for the subsystem reduced density operator for all times,

a second approximation is necessary, usually denoted as the Narkov

approximation.I

One method for obtaining an equation of motion for the subsystem

reduced density operator is the Zwanzlg projection technique.2 .3 With this

technique, an exact lntegro-differential equation for the reduced density

operator of the subsystem is obtained. The two approximations necessary to

arrive at a simple first-order differential equation for o(t) are commonly

denoted as the Born approximation and the Markov approximation. Recently,

this method has been used to obtain the effect of the lattice vibrations of

a crystal on the dynamics of an adsorbed atom. 5  In the derivation of the

master equation, the Born approximation and the Markov approximation have

been Introduced as separate approximations. 4.5  In later studies the

validity of both approximatlons have been studied Independently. 6 -11

In this paper we shall consider the validity of both approximations

from a more fundamental point of view. In Section 2 we give a review of the
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Zwanzlg projection operator formalism. In the next two sections the Born

an Markov approximations will be Introduced, and the conditions will be

derived under which they are justified. It will be shown that the condition

for validity is the same for both approximations. Another widely-used

technique for obtaining an equation of motion for the reduced density

operator of the subsystem Is the so-called reservoir theory. 1 ,12 In Section

5 the Zwanzig projection technique will be compared with reservoir theory.

In particular, the correspondence o the two approximations involved will be

discussed. In Sections 6-8 we shall discuss the system o a vibrationally

damped adatom and of an adatom Irradiated by laser light in more detail.

Nimerical examples will be given based on previous experimntal and theore-

tical work. Our conclusions are presented In Section 9.

2. Zwanzig projection operator technique

We consider a sall subsystem In contact with a large reservoir. We

denote the Hamiltonian of the subsystem by Hts , of the reservoir by Hb. and

of their interaction by V, such that the Hamiltonian of the complete system

is given by,

Ha H* * Kb . (5)

We then define the projection operator P by,

P a Pb Tr b (6)

where Pb is any density operator of the reservoir and Trb denotes the trace

over the reservoir variables. In the Zwanzig projection technique, an

equation of notion for Pp(t) is derived, trom which an equation of notion

for the subsystem reduced density operator is directly obtained by taking

Tr, . The starting point is the equation of motion for p(t). Eq. (4). Let L

3



be the Liouville operator defined by,

ILP - kCH.PJ. (7)

wi th analogous definitions for Lee Lb. L I and Lo - La L Lb. Then, from Eq.

(s.an exact equation for PP can be derived as3

1 dPP(t) . PLPp(t) * PL expE-i(1-P)LtJ(1-P)P(O)
dt

t
rldt PL exp(-i(1-P)Lt')(1-P)LPP(t-t').(8

0

T1he first term In Eq. (8) has a contribution of zeroth- and first-order in

the interaction, and the last term has contributions of all orders in V. To

Separate the free evolution of the subsystem (determined by L a) from the

Interaction with the reservoir, the following conditions are Imposed on b

and V:3

1b'S - [ub.KHbJ - 0, (9)

Tr b VP b a0. (10)

Equation (9) puts restrictions on p be and Eq. (10) defines V and H. for a

given p be The equation of motion for Pp(t) now becomes [Eq. ()

dP,(t) . I.EH IPP(t)) 4 1PL expC-i(1-P)LtJ(1-P)p(0)
dt R at

t

- jdt' PL~exp[-i(1-P)Lt'J(1-P)LPp(t-t'). (11)

0

The first tern in Eq. (11) describes the free evolution of Pp(t), whereas

thle last term only gives corrections of -second- and higher-order In the

Interaction.

To be able to estimate the contributions of the different terms, we

assum that V can be written as a sum of products of a subsystem operator



19.

and a reservoir operator.1'12  for only one term we have

V a a S. (12)

Let us define the operator R(t) In the Interaction picture by'

(3(t) - *Xp[ ,Ibt] 3 eXPj Q. (13)

Furthermore, we assume that the reservoir has a characteristic time I

given by

Trb(R(0 )R(t)9) - Trb{ R2(O)p~lexp.-jt l/-. (1)

It can then be shown that the contribution of p(O) (se:ond term In Eq. (11))

to Pp(t) is a factor 10 /t smaller than the contribution of the third term,

If AP(O) - p(O) - pb (O) Is small. Therefore, the secend term can be

negleote6 if we are only interested in the time evolution of the subsystem

for times t>Tc

If Ap(O) is not small, the contributions to Pp(t) can be much larger

than quoted above. Requiring AM(0) to be small leads to another condition

Pb a TraP(t). (15)

For a large reservoir in thermal equilibrium, we can use

-6b

614 P . .  (16)
fr~beb

We note that p " Trap(O) Is not a good choice because of Eq. (9).

3. born approximation

The Born approximation involves the retention of only the terms of

lowest order In V In Sq. (11). These are obtained by replacing L by Lo in

the exponential function. The resulting equation for the subsystem reduced

5



density operator Is

t
de~t) - I CHat)] Tr !dt' L expl -IL0t]L (17)

dt iN so b) Ibot~')
0

In order that this be a good approximation, the term of next order In V Must

b& much smaller than the term of second order. To test the validity of this

approximation we n~eed an estimate for the value of both terms.

We assume that, following Eq. (10). Tr bV3 Pb a 0, then the lowest-order

correction to the Born approximation is of fourth order In V. That is, We

need the second-order terms In the expansion of the exponential function.

Neglecting the commutator of L Iwith Ltthese second order terms are given

by

+(-It, )2 (1-P)L Iexp[-i(l-P)L 0t')(-P)L V (18)

The fourth-order contribution~ to LObecomesdt

t

[dot)' Trbj dt' L1 L1 expC-IL t)L 1 L P o(t-tt). (19)

0

Use of Eqs. (12) - (14i) shows that the integrand InVOIV0s a reservoir

correlation function Tr b(R 2(0)1 2(-t-)), which is approximately

Tr b(P b R2 (O) 2(-t')) a tTrb (0b R2 )]2 exPt-It'I/-Tc 1. (20)

This order of magnitude of the subsystem factor In the Integrand Is given by

Tr a(S 4 (O)) o 0t a (Tr a (S 20(o)] 2eIS 1 0tt (21)

%Ohere a0Is a typical transition frequency of the subsystem. Given the

definition

v Tr b (0b R2)Tr 0(.(0)S 2 3.(22)

the Integral of Eq. (19) can be evaluated by using these approximations to

6



yileld

dt bF ' ct). (23)

Hereby Is the upperbound of the Integral extended from t to Infinity, which

because of Eq. (20) Introduces an error o the order (-!), %hich is

comparable to the error Introduced by neglecting the contribution of p(O).

0w t'
Ne effect of the factor e in Eq. (21) 1 to single out the Fourier

terms In the expansion o the correlation function with w3w0 . An analogous

calculation for the second-order term gives
12

2
(do(t) 1l() a v T P0t) (4
dt N 2 cbot.()

For the Born approximation to be valid we have the condition

() << Y(2) (25)

where Y(n) is the n-th-order contribution In the Interaction to the

relaxation constant, Y. The latter Is defined as a typlcal matrix element

of the LIouville operator describing the time evolution o c(t) due to the

Interaction with the reservoir (second term In Eq. (17)). Substitution of

Eqs. (23) and (2) Into (25) gives

v2 2

V2 ( 1. (26)

4. Herkov approximation

Equation (11) shows that the time-derivative o oc(t) depends on the

value ot e(t) on previous times. In the Markov approximation this integro-

differential equation Is replaced by a simple firat-order differential

equation for a(t). From Eq. (11) It follows that o(t) is a fast-oscillating

7
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function, due to the free evolution of the Subsystem. These rapid

oscillations can be eliminated by transformation to the interaction

picture,1

3(t) - *xp([~t Qo(t) exp(-hI t]. (27)

The equation of motion for 1(t) is [Eq. (11))

t

dt -expt[i P3T bjdt' (L Iexpt-iC1-P)Lt'J(l-P)L I exp'-J 5 tt)

0

In the previous section It was derived that the integrand involves a factor

*xp I t- I/-[C)1. Therefore, if a(t) does not change much~ on a time scale of

the orde'r Y' C 8(t-t') may be replaced by a(t) In the integrand. The

temporal changes In N(t are of the order 1.6t, so that we obtain as the

condition for the validity of the Markov approximation

I TCr-1 .(29)
c

1 is already approximately evaluated in the previous section [Eq. (241)J.

The condition under which the Marlcov approximation is Justified then becomes

2- ( (30)

Comparison of Eq. (26) and Eq. (30) shows that the conditions for validity

of the Born approximation and of the Marlcov approximation are the same. A

similar result was obtained by Fano 13 in his treatment of pressure

broadening.

Within the Born and Markov approximations, the equation of notion for

the reduced density operator of the subsystem is

do(t) - -ICH5* '(t)] - ra(t), (31)

dt 1K8



where r is the LIouville operator describing relaxation

r a Trbjdt' Llexp[-ILot']LPbexp ILst']. (32)

0

Substitution of the solution of Eq. (31) Into Eq. (11) shows that the Markov

approximation also Involves the neglect of terms of fourth and higher order

in V.

The steady state (or equilibrium) for the subsystem requires special

consideration. That such a state actually exists is, for example, discussed
hi

by Van Hove. It is characterized by V(t) - a(-) being independent of

time. It follows Immediately that the Markov approximation can be made

without any error. Noting that d(t) o 0 for any strength of thedt

interaction then leads to the conclusion that the contribution to Eq. (28)

of the terms for each power of V should be zero Independently. Therefore,

the steady-state solution can correctly be obtained from the expression

within the Born and Markov approximations [Eq. (31)], even if the Born and

PMarkov approximations are not valid otherwise. Note that then the

relaxation constants [Eq. (32)] do not correctly describe the time evolution

to equilibrium, however close the Initial state and the steady state might

be.

5. Comparison with reservoir theory

An alternative procedure for obtaining an approximate expression for

e(t) Is reservoir theory. 1 ,12 The starting point Is the equation of motion

for the complete density operator [eq. (M) In the Interaction picture,

d (t) _ [,(t).,(t)]. (33)
dt I

where 1(t) and P(t) are defined analogously to Eqs. (13) and (27).

Substitution of the formal solution of Eq. (33) on the right-hand side and a

9



change of variables In the Integral gives

t
d (t) - (.2)[,(t).p(0)] + ()21) t ,(t).,(t-t').p(t-t'JJ. (34)
dt INi IN dt

0

An expression for the time derivative of 3(t) can be obtained by taking Trb

on both sides In Eq. (34), although it still depends on the complete density

operator O(t).

Equation (34) Is exact, and comparison of this equation with the

expression obtained with the Zwanzig projection technique [Eq. (11)3 shows

that both involve a term depending on the Initial time density operator. In

reservoir theory there is a term of apparently second order in the

Interaction, and dependent on the complete density operator. This term

corresponds to the third term In Eq. (11), the latter which Includes

contributions of all orders In V, but Involves only the subsystem reduced

density operator. Apparently the contributions of higher order In V are

contained In the coherences between the subsystem and the reservoir, still

present In Eq. (34). The first approximation to be made is therefore the

factorization of D(t),

0(t) - Pba(t) * 60(t), (35)

where again the conditions of Eqs. (9), (10) and (15) are Imposed on pb and

V. Substituting Eq. (35) Into (34) and discarding all terms Involving

411(t), we obtain expression which is Identical to Eq. (17). That Is, the

factorization of ;(t) In reservoir theory corresponds to the Born

approximation In the Zwanzig projection technique. Indeed, It can be shown

that the conditions for validity for both approximations are the sam. 12

Then, the Markov approximation (replacement of 3(t-t') by a(t)) Is also the

same In both approaches. As In the Zwanzig projection technique, the

10



factorization o P(0) In the first term [Eq. (34)] introduces an error of

order V2 , but a factor - maller than the second ter. 1 5 '  The

factorization of )(t-t') In the second term introduces an error of order V.

Therefore, the neglect of Ap(O) is an essentially different approximation

than the factorization of )(t-t').

As shown In Sections 2-11, the term involving p(O) and the error

Introduced by the extension of the integral from t to infinity are of the

sam order In V as the relaxation constant, but are smaller by a factor

I, /t. Therefore, the equation of motion for 1(t), derived within the Born

and Markov approximations [Eq. (31)], is only valid for times t >> I "

Since the condition for validity of the Born and Karkov approximations

[Eqs. (26) and (30)] requires the relaxation time of the subsystem to be

much larger than the correlation time of the reservoir, this tim Interval

sti .l includes most of the transient regime before the subsystem reaches the

steady state.

Disregarding, for the moment, the matrix character of the equation of

motion for 11(t) [Eq.(31), the solution for 1(t) is c << t <( Y- 1)

3(t) - ,(Yt * Yt O(-))I(O), (36)
t

where the terms of O(1c) represent the neglected contributions of )(0) and

the extension of the Integral. The prefactor of this term is essentially of

the same order of magnitude as the relaxation constant Itself. Equation

(36) shows that the relative error in the value of 1(t) is of the order

10/t. However, the relative error In the different 1(tt e ) - 1(t) Is only

of the order (To/t)2 . Since the value of this difference Is of the order

a /t, it follows that Eq. (31) describes the variation of 3(t) on any time

scale with the sam relative accuracy as the absolute value of 1(t) is

I 111 111



known. Therefore, the so-Called coarse-gralned averaging is not

1,12,15,16
necessary.

6. Phonon relaxation of an adsorbed molecule

Thermal desorption and laser-Induced desorptlon have been the subjects

of many studies. 5 8 ' 1 "2 1 The model employed by many authors for the

vibrationally bounded mlecule 1 that of a one-dlmenslonal

ci1lator. 5 .'9 2 0' 2 1 Only motions of the molecule perpendicular to the

surface are taken Into account. This approach assumes that the effects of

(frustrated) rotations of the molecule on the substrate can be neglected.

A.though we cannot give a rigorous proof for the correctness of this

assumption, there are some experiments which support It. For example, for

CZ on copper, It was shown that CO adsorbs In an on-top conformation, with a

relatively smll angle (- 10 deg.) for the amplitude of the rotational

vibration mode. 2 2

The Interaction between the admolecule and the substrate is usually

described by a Morse potential, which gives a fair description of the

a-sorbate-substrate potential. It also has the feature that the elgenvalues

and elgenstates can be obtained analytically, thus simplyfying the further

analysis. The discrete levels are Identified with bound states of the

adsorbate, and the continuum levels correspond to gaseous molecules.

Desorption Is described by a transition from a bound state to a continuum

state.
5

One Interesting problem, hich Is also experimentally accessible, Is

the calculation of the linewidth of the vibrational adbond due to the

Interaction with the lattice vibrations of the substrate. We denote the

Morse potential by V (z-zo), with z the distance of the admolecule above the

surface when the lattice vibrations are absent. The proper definition of

12



the Interaction Hamiltonian between the adbond vibration (subsystem) and the

lattice vibrations (reservoir), in accordance with Eq. (10), Is 5

Vz-%o-Uz ] - VmlZ-zo-u z ) - <V lZ-Zo-Uz ) , (37)

where (...> = Trp(p...) denotes the average over the phonons, and uz

u zt) Is the z-oomponent of the temporal vibration amp'itude of the surface

atom due to the lattice vibrations. The subsystem Hamltonian is

H a + <V (z-z 0-u ), (38)

where T denotes the kinetic energy of the admalecule. The averaged

potential <V(z-zo-Uz )> Is again a Morse potential, but with renormlized

values for Its depth and equilibrium distance, z 0 .5 By using Eq. (37), the

relaxation constants for the adbond reduced density operator can be obtained

within the Born and Markov approximations In a straightforward calculation.5

In the resulting expression, the reservoir Is represented by the occurrence

of only the displacement autocorrelation function <u z(t)u z(o)>.

To test the applicability of the Born and Markov approximations, we can

use Eqs. (26), (29), and (30), which give as the condition for validity

Yp (( 1. (39)

T1e characteristic tim of the displacement autocorrelation function, ip,

can be identified with half the phonon lifetime. For metals, experimental

determinations yield quantities of the order 10"12a.23,241 An experimental

determination of the linewidth (.Y) Is available for the 0*1 transition of

the Il...C vibrational mode of CO adsorbed on a Ni(100) surface. A value o

15o 1 .2.8 101 2 8 1 Is found.25  Then

Ttp- 1.14, (410)

Which Is of the order one. It follows that for this system the Born and

Ibrkov approximation are questionable, at best.

13



The estimte mentioned above is obtained by considering phonons only

(.*., the phonon life tim is used). It was shown by Person and Perseon2 6

that for metallic substrates a damping Involving a coupling of the

vibrational mode with the conduction electrons will be much larger than the

phonon damping. The strength of the coupling between the vibrational adbond

mode and the electronic degrees of freedom Is, amongst others, dependent on

the derivative of the adparticle M.O. energy with respOct to the vibration

coordinate. For the weak ad-bonds, as are considered here, this derivative

will be much smller than for the Internal vibration considered by Persson

and Persson.25  Also, the phonon damping will be much stronger for the low-

frequency adbond than for the internal mode. Therefore, we believe that)

relative to the electron-loss mechanism, the phonon-damping will have a much

larger contribution to the linewidth than In the case of internal vibrations

of a molecule on a me'a.111c substrate.

Theoretical calculations of the relaxation constants, performed within

the Born and Markov approximtions, have been published by Hood et al.2 7 and

Volokitin et al. For CO absorbed on Cu, a system similar to CO on Ni, a

value of 3.1 1013 51 was obtained for the 0.1 transition at T o 300 K.27

In this calculation a Debye spectrum was used for the phonon dispersion

relation. For CO adsorbed on I, a value of Y - 1.4 1013 a I was obtained,

also using a Debye spectrum and at T - 300 K.28 With ip * 5 10.13 s, we

obtain Ytp ) 1, and it follows that the Born and Narkov approximtions are

not Justified within the model system employed by those authors. The

values for Y quoted above are obtained for an Infinite phonon lifetle. The

effect of a finite phonon lifetime is to enlarge the calculated Y by at

least a factor ten. (A value rp a 10"12 a was used in those

14



calculations.) The Born and Markov approximations are then even more

questionable.

29
Using a nore realistic surface phonon spectrum due to Black , It was

possible to reproduce the experimental value for the Mi...C vibration very

veil (Y - 13.3 cm' ). However, an Infinite phonon lifetime was used.

Since a finite lifetime effectively broadens the phonon spectrum, and since

the spectrum used is sharply peaked 29 , It is to be expected that Inclusion

of a finite lifetime will give an even more dramatic Increase of Y than for

the Debye spectrum. Again, a much larger value than experiment will be

obtained. The conclusion is that the Born and Harkov approxlmatlons are not

Justifled for this system.

CO adsorbed on Ni or Cu is an example of a strongly-bound physisorbed

system. For the weakly-bound physlsorbed system Ar on W, a value of Y -

6zO 11 s was obtained at I - 30 K and using a Debye spectrum.2 7  (Note that

T - 30 K for Ar and T - 300 K for CO both correspond to the situation kaT 

rw , where Is the fundamental vibration frequency.) Now Y -a 0.3, and

the Born and Harkov approximation might be valid, especially since a more

realistic surface phonon dispersion relation Is expected to reduce the

calculated value of Y considerably. Because the fundamental vibration

frequency Is smaller than the Debye frequency, the inclusion of a finite p

In the calculation of Y hardly affects the result.
27

7. Multi-honon processes

The Interaction potential between the admilecule and the substrate can

be expanded In a power series In uI,

Vm(Z'oU) " VIs(ZZo) a 3z o z  2 V(Z2 ws,..., )

15I



which shows that the Interaction Hamiltonian can Indeed be written as a sum

of products of a subsystem and a reservoir operator. The latter are

Identified with the various powers of u3 . The subsystem operators are the

derivatives of the adbond potential. V (z-z ) Is Included In the subsystem

Ramiltonian. The term proportional to un gives rise to n-phonon processes,zI
I.e.. a transition between levels of the adbond Is accompanied by the

emission and/or absorption of n phonons. It can be shown that, for a Morse

potential, the contribution o n-phonon processes to the relaxation constant

is exactly given by terms Involving (u z(t)u,(O)>n In the expression for Y

obtained by using the full potential of Eq. (37)30 For a system In wh ich

the fundamental vibration froquency Is larger than the Debye frequency

(e.g.. CO on NI or Cu), the multiphonon processes give an Important

contribution to the relaxation constant. 6 '2 7 . 3 0

It has been argued that when sultiphonon processes In second-order

perturbation theory give a significant contribution, higher orders In the

Interaction also need to be Included. 6 . 7 . 8  That this Is not the case

already follows from the fact that the conditions for validity of the Born

and Farkov approximations [Eqs. (26) and (30)] are obtained without any

assumption for the form of the Interaction potential. Explicitly, the

Miultiphonon contributions to Y are given by [Eq. (24)]

2
(2). - (2)

In second-order perturbation theory. In fourth-order of the Interaction

they are (Eq. (23))

4 3)V n (43)
I(N)n

where v n defines the contribution of n-phonon processes to the relaxation
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oonstant. For n-I. 2 It Is given by

V 2 Vl-z0) 2Vl "'Jr p eb(O)uz( k )}(i
I, T,,s( b @() z D (44i)

a sTr 1 3V M(Z-z 0) 2*5
2 - l'psP b (0luz( k 2 1(5)

vith similar expressions for the higher values of n. The relative

Importance of each o the multiphonon processes follows from the ratio o

the corresponding Y( n I.e., It is determined by v2 /v 2 .m However, the

oontribution of higher orders In perturbation theory is determined by the

smallness of the parameters Vn 21n . More precise, they can always be

neglected It [Eq. (26)]

22
ftl <<1 (*16)

wtere the summation runs over all the multiphonon contributions. The

conclusion Is that the Incorporation o multiphonon processes within second-

order perturbation is a valid procedure, only as long as the Born and Markov

approximtions are Justitied [Eqs. (26). (30) and (46)].

The tact that Gortel et t.6 find an appreciable contribution o the

fourth-order terms merely Indicates that the Born and Markov approximatlon

cannot be made. It then is questionable that terms ot up to fourth order In

the Interaction are sufficient to calculate Y accurately. Moreover, the

fourth-order correction as obtained by ortel et al. 6 ' 7 ,8, or as given by

9q. (13), only includes the terms connected with the Born approximation.

Additional correction terms o tourth order In V arise due to the Markov

approximetion not being valid anymore.

. oherent excitation o an adsorbed mlecule

17



An adsorbed molecule Irradiated by laser light is a widely studied

system. 17 Examples of processes studied are laser-induced surface chemical

reactions and laser-Induced desorption. The effect of the laser is to

directly excite the vibrational adbond mode or an Internal mode of the

adspecies. Subsequently, relaxation occurs through the Interaction with the

lattice vibrations, as is described in previous sections.

The system can now be considered as a subsystem (the adbond) In contact

with two reservoirs (the phonons and the laser, respectively). Within the

Born and Markov approximations, a master equation is obtained, with

relaxation constants given as the sum of a phonon part and a term due to the

laser-admleocule interaction,

S + Yr (47)

expression for Y p Is identical to the one obtained for the adbond with

the phonons only [Eq. (32)]. The laser part, Vr. can be obtained In an

analogous calculation, employing the laser-adbond interaction as

per turbat ion. 
2 0

By an analysis analogously to Section 3, it can be shown that the

condition for validity of the Born approximation is the sae as If each

reservoir is considered Independently, we obtain,

Y P (( 1, (486)

Yr r (< 1. (48b)

However, the condition for validity of the Hmrkov approxiation Is

different. It Is given by Eq. (29)):

Vp Ir ( < 1. (49a)

r Ir 1. (49b)
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That is, the change of 1(t) is required to be small on a tlmescale of the

longest correlation time, tr . It follows that the conditions for validity

of the Born and Narkov approximations are not the sam, as was sen to be

the case when only one reservoir Ia present (Sections 3 and 4). Generally,

they are more restrictive for the Harkov approximation than for the Born

approximation.

Dependent on the relative strength of the laser adbond and phonon

adbond Intereaction, the conditions Eqs. (4i8) and (4i9) can be simplified. A

nimber of limiting cases are given In Table 1. In Sec:ion 6 It was shown

that for actual systems Y pp is more or less of the order one. Since r>>

Ip, It follows that the conditions for validity (Eqs. (48) and ('19) and

Table 1 can not be matched, except In the case of a weak laser:

Y < (g). Table 1 shows that the condition for validity of the Markov
r It rb

approximation is the most restrictive one. It Is only In this Case, With

T ip (( I but Y Ir (9 1, that the generalized master equation derived by

Berl etal. and Peremans et al. 1 1 applies. However, the numerical

examples given by these authors refer to laser Intensities stronger than

allowed by Table 1. It is lnterestlng to note that the Markov approximation

does not become better when the laser power Is reduced further. The

relative error In Y remains of the order YpTr . This Is easily understood If

we realize that the Markov approximation requires (t) to have only a small

change on a tim r . This change Is determined by both the phonons and the

laser [Eq. (4#7)]. It Yr <Y *p, then the laser has relatively little effect

a the changes Induced In 1(t).

A situation of great experimental Interest Is when we start with an

adbond In equilibrium with the phonons, and then turn on the laser. This

is, for example, encountered In speotroscopy. The condition under which the

19



Born Approximation is justified Is again given by Eq. (418). However, the

condition for validity of the Marko approximation Is different now.

Initially, there is no change In 1(t) due to the phonons. When the laser is

turned on, an upper limit for the change In 1(t) over a time Interval t is

given by Yr t. The actual change will be amiler because the phonon

Interaction forces 1(t) Into the direction of equilibrium. The condition

for validity of the Markov approximatlon then becomes

Y r I r , (50)

Instead of Eq. (419). It follows that for weak lasers, If < ( 'rb' the

condition for validity of the Born and Markov approximations is the same as

If each reservoir could be considered Independently.

Finally, we want to discuss the situation where the Born and Markov

approximations are made with respect to one reservoir only, e.g., the

phonons. For laser Intensities which lead to a change in 1)(t) smaller than

the change Induced by the phonons, the conditions under which the Born and

Markov approxlmations are justified are the same as In the absence of the

laser [Eq. (30)]. However, If the rate of change of 1(t) due to the laser

Is larger than the due to the phonons, the Markov approximation is only

justified If the change In 1(t) In a time tp due to the laser 1

smell.

20



9. Conclusions

The conditions under which the Born and Markov approximtions can be

rd vithin the Zwanzig projection formalism have been analyzed. It is

shown that the condition for validity of both approximtions Is the same. A

osmparison with reservoir theory is mde, and it is pointed out that the

orn approximtion in the Zwanzig projection technique corresponds to the

factorization of the density operator in reservoir theory.

Apart from the Born and Markow approximtions, the derivation of a

water equation [Eq. (31) relies on two other approximations: extension of

the upper bound of the integral over time from finite t to infinity, and the

factorization of the initial time density operator. Both approximtlons

introduce errors In the relaxation constant of the order c/t, but which

&-e of the sam order In the interaction. Therefore, the approximate

equations apply only for times t )> r .

For t << Y-1 the value of D(t) is proportional to Y t, with an error

due to the initial time factorization of the order Y c . On a tim scale

I a 1It) changes by an amunt Y i ; however, the error changes only by an

amount of the order (t)Y-t << YT Therefore, the details of the time

evolution of 1(t) are preserved on any time scale, although its absolute

value Is only known with an error of the order Y t . This conclusion

contradicts the idea of a coarse-grained average, 1 , 1 2 , 15 , 1 6 and indeed In

the derivation presented here a coarse-gralined averaging procedure was not

necessary.

The results of Sections 3-5 are applied to the case of phonon

relaxation of the vibrational levels of an adato.. It Is found that for CO

adsorbed on Ni or Cu (an example of a strongly-bound physisorbed system),

the Dorn and 3krkov approximation are not just1iied. For V on Cu (an
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example of a weakly-bound physisorbed system), It is shown that the Born and

Markov approximation can be made.

In Sections 6-8 the Interaction of laser radiation with a phonon-damped

vibrational adbond Is discussed. This system can be seen as a small

subsystem (the adbond) In contact with two reservoirs. It Is shown that the

conditions for validity of the Born and Markov approximations are different

from each other, and In fact, for the Markov approximation, more restrictive

than In the case with a single reservoir [Eqs. (418) and (49)]. For a weak

laser, i.e., one with much less exciting power than the relaxation power of

the phonons, the condition for validity of the Born approximation Is

(Table I)

Y bb << 1, (51)

and the condition for validity of the Markov approximation Is

Yb tr << 1. (52)

It follows that there is a region of strength of phonon interaction where

the Born approximation can be made, but the Markov approximation not. Then,

a generalized master equation should be used to describe the time evolution

of 1(t). 10 .1 1 However, for an initial condition where the adbond is In

equilibrium with the phonons, the equation for validity of the Narkov

approximation [Eq. (52)] reduces to Yb b I.e., the same as Eq. (51). It

follows that for analysis of spectroscopic data, the Born and arkov

approximations are Justified If the reservoir-subsystem Interaction obeys

Zq. (51). However, when spectroscopy Is used In non-equilibrium situations

(e.g., to follow the course of a chemical reaction), the reservoir-subsystem

Interaction has to obey the much mre severe condition of Eq. (52). For

phonon relaxation this can hardly be expected to be the case.
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Tablet1. Conditions for validity of the Born and Narkow approximations for

various ratios of the strength of the laser and phonon

Interact ions.

Ratio of relaxation constants Born aDproximtion Markow approximation

r Ir P p r

yr yp yp Ir <<ypr <

yr >yp yr Ir <<yrr<
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