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1. INTRODUCTION

The flow around submerged bodies at different attitudes evokes considerable

interest in the field of hydrodynamics. Such flow fields occur in many and

varied applications. Of particular interest is the flow field around a

submarine, torpedo, or similar body in maneuver. The computation of this flow

field is important to the analysis of performance and noise characteristics of

the device.

The flow field around a submerged body in maneuver is, in general, three-

dimensional, viscous, and unsteady. The unsteadiness in the flow field is

primarily due to the time-dependent motion of the maneuvering body. The

computation of this unsteady, three-dimensional, viscous flow field with

available computer resources is a formidable task. However, many portions of a

maneuver can be steady (e.g. a steady descent or climb) or quasi-steady and the

flow field around the body can be obtained from solution of the steady flow

equations for a fixed body attitude. Several different attitudes can be studied

in this manner. The results would provide body surface pressures which can then

be used to derive the forces and moments on the body. The computation of thisi

quasi-steady flow field is addressed in this proposal.

A possible procedure for computing the flow field would be the solution of

the steady Navier-Stokes equations. Upon hypothesis of a suitable turbulence

model, the Navier-Stokes equations contain all the required mechanisms present

in the flow field. The Navier-Stokes equations have been used to predict a

variety of three-dimensional flow fields (e.g., Ref. 1). This procedure has

been used for steady and unsteady compressible flow fields and, through

application of matrix preconditioning techniques, has been used to solve steady

near-incompressible flow fields (Refs. 2 and 3). However, solutions of the

three-dimensional, steady Navier-Stokes equations for the flow field around the

submerged body would require a large number of grid points to resolve the

important length scales in the flow field, leading to computer storage

requirements and/or computer run times that are large and preferably avoidable. [7]

Hence, an alternative and more economical solution procedure is attractive.

One approach, used by some investigators, has been to compute two-

dimensional flow fields on cross-stream planes at several streamwise locations

on the body. Although this approach represents a possible initial approach for

the problem, it neglects the interaction between the streamwise and the
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cross-stream velocities, which may be an important element in the flow fields

being considered here. Over the past few years, several investigators have

suggested methods aimed at obtaining physically realistic and numerically sound

forward marching procedures for three-dimensional viscous flows. In general,

these methods utilize a three-dimensional viscous approach based on approximate

governing equations which suppress streamwise elliptic effects requiring

downstream boundary conditions. Motivated by these same goals, Briley and

McDonald (Ref. 4) have developed a viscous primary/secondary flow analysis for

the prediction of a wide class of subsonic flows Pt high Reynolds number in

straight or smoothly curved flow geometries. This approach is applicable to

flows which have a predominant primary flow direction with transverse secondary

flow and synthesizes concepts from inviscid flow theory, secondary flow theory,

and "extended" three-dimensional boundary layer theory. In Ref. 4, Briley and

McDonald applied this analysis to three-dimensional flow in curved passages and

predicted the development of the passage flow field including the formation and

development of passage and corner vortices.

This approach has been applied at SRA to the problems of flow in circular

ducts with curved centerlines (Ref. 5), lobe mixer flows (Ref. 6), further

passage studies (Ref. 7), and to the tip vortex flow problem for a helicopter

rotor blade (Ref. 8). Of particular interest here is the on-going effort at SRA

for the computation of flow in the region of a hull-sail corner in submarines

(Ref. 9) and the generation and development of the tip vortex in a ship

propeller (Ref. 10). The effort has concentrated on the use of a forward

marching procedure for the computation of flows over component parts of

submarines, torpedoes and similar bodies. The effort here has been to extend

the forward marching procedure to the computation of flows over submerged bodies

that resemble submarine and torpedo body shapes at different attitudes. Several

tasks were identified to comprise this effort. Progess made in completing these

tasks is described in this report.

The next section of this report describes the forward marching procedure

extended here to compute flow over submerged bodies. The third section

describes tasks that have been completed and results obtained. The final

section describes current on-going tasks, as well as future work required to

extend the forward marching procedure to obtain quantitatively accurate

predictions of the flow field over submerged bodies.
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2. FORWARD MARCHING COMPUTATION PROCEDURE

The forward marching computation procedure for the solution of the

parabolized Navier-Stokes equations provides an economical and accurate method

for computing many three-dimensional viscous flow fields. The procedure,

initially developed for internal flow fields, is being extended to the

computation of flow over submerged bodies. The governing equations and

computation scheme are presented in this section.

The governing equations are derived through approximations made relative to

a curvilinear coordinate system fitted to and aligned with the flow geometry

under consideration. The coordinate system is chosen such that the streamwise

or marching coordinate either coincides with or is at least approximately

aligned with a known inviscid primary flow direction as determined, for example,

by a potential flow analysis for the given geometry. Transverse coordinate

surfaces must be approximately perpendicular to solid walls or bounding

surfaces, since diffusion is permitted only in these transverse coordinate

surfaces.

Equations governing primary flow velocity Up, and secondary vorticity,

nn, normal to transverse coordinate surfaces are derived utilizing

approximations which permit solution of the governing equations as an initial-

value problem, provided reversal of the composite streamwise velocity does not

occur. Streamwise diffusion terms are neglected. Secondary flow velocities are

determined from scalar and vector surface potential calculations on the

transverse coordinate surfaces once the primary velocity and secondary vorticity

are known.

Primary-Secondary Velocity Decomposition

In what follows, vectors are denoted by an overbar and unit vectors by a

caret. The analysis is based on decomposition of the overall velocity vector

field, rI, into a primary flow velocity, Up, and a secondary flow velocity,

Us. The overall or composite velocity is determined from the superposition

U U p + u5sI

-3-
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The primary flow velocity is represented as

U= Upip (2)

where i p is a known inviscid primary flow direction determined, for example,

from an a priori potential flow solution for the geometry under consideration.

A streamwise coordinate direction from a body fitted coordinate system could be

used as an approximation to this potential flow direction. It should be noted

that while accurate determination of the flow field requires prior specification

of an inviscid pressure field, in this initial work the inviscid pressure has

been assumed constant. Later phases of this work will include specification of

an appropriate pressure field. The primary velocity, Up, is determined from

the solution of a primary flow momentum equation. The secondary flow velocity,

Us, is derived from scalar and vector surface potential, denoted * and *,
respectively. If in denotes the unit vector normal to transverse coordinate

surfaces, if p is density, and if po is an arbitrary constant reference

density, then Us is defined by

us = vsf + (Pol/)VxinO (3)

where V. is the surface gradient operator defined by

V5  V - in(in'V) (4)

It follows that since in U5s = 0, then Us lies entirely within transverse

coordinate surfaces. Equation (3) is a general form permitting both rotational

and irrotational secondary flows and will lead to governing equations which may

be solved as an initial value problem. The overall velocity decomposition,

Eq. (1), can he written

U = UJpip + Vs$ + (Po/P)Vxin* (5)

Surface Potential Equations

Equations relating * and * with Up, p, and the secondary vorticity

component, n., can be derived using Eq. (5) as follows. From continuity,

-4-
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V-pU = 0 = V-pUpip + V.pVs + PoV.Vxin* (6)

and from the definition of the vorticity based on the secondary flow within the

transverse surfaces, 11n

in-VxU 11n n'VXUp p + in'Vx(Po/P)VXinn + inVxVs*

Since the last term in each of Eqs. (6) and (7) is zero by vector identity,

Eqs. (6) and (7) can be written as

V.pVs5  = -V.pUpip (8)

in'VX(Po/P)Vxin* = Sn - in'VxUpip (9)

Note that the last term in Eq. (9) is identically zero in a coordinate system
A

for which in and ip have the same direction, and would be small if in and

ip are approximately aligned. In any event, given a knowledge of Up, in

and p, the surface potentials, and *, can be determined by a two-dimensional

elliptic calculation in transverse coordinate surfaces at each streamwise

location. In turn, Us can be computed from Eq. (3), and the composite

velocity, U, will satisfy continuity. Equations for Up and Qn are obtained

from the equations governing momentum and vorticity, respectively.

The streamwise momentum equation is given by

ip.[(u.v)u + (vP)/pl = ip-F + ip.R (10)

where P is pressure and pF is force due to viscous stress and terms in F

representing streamwise diffusion are neglected. The pressure term in the

streamwise momentum equation (10) can be taken from a simpler analysis such as a

potential flow analysis. While this results in a set of equations which can be

solved by forward marching, the surface pressures which are due to the pressure

field imposed upon the flow are the potential flow pressures. Since the actual

surface pressures are often of primary interest, a new estimate of the actual

surface pressure which includes viscous and secondary flow effects can be

computed from the resulting velocity field in the following manner.

-5-
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The momentum equations in the transverse surfaces are:

i1 .[(p.v)5 + vP - PF - pi] = 0

i 2.[(Pii.V)i + VP - PF - pi] - 0

Equation (11) represents components of the momentum vector in the transverse

surfaces:

il(ils[(PU'V)U + VP - PF - pR]) + 1 2(i2"[(PU-V)U + VP -F - PoR) (12)

The divergence of this vector can be written as a Poisson equation for the

pressure, P, at each transverse surface:

VsP f V2(pI + pc) = - 2 (i1.[(pU-V)U - pF - pR])

(13)
- -
--2..(12.[(PlJ.V)U -PF -Pi](3
ax 2

where PI is the imposed pressure, Pc is a viscous correction to the pressure

field and x, and x2 are coordinates in the i and i2 directions, respectively.

Equation (13) can be solved for the pressure correction, Pc, at each

computational station using Neuman boundary conditions derived from Eq. (12).

The use of Neuman boundary conditions requires an additional parameter which is

only a function of the normal direction, Pv(x3), in order to set the level of

the pressure field. For external flows, Pv(x3) is set to match the imposed

pressure at an appropriate far field location.

Secondary Vorticity

The equation governing fIn is obtained by cross differentiating each of

the transverse momentum equations (11). Eliminating the pressure in the two

equations results in a single equation for the transport of the vorticity normal

to the transverse surface. This equation has the form

U-Vn - flVUn Gn + C + in.(VXR) (14)

-6-j
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where Gn is the normal component of

= VXF (14)

and C is a collection of curvature terms arising from changes in orientation of

the transverse surfaces as a function of streamwise coordinate.

System of Governing Equations

A complete system of four coupled equations governing Up, On, f and

is given by Eqs. (8), (9), (10) and (14). Ancillary relations are given by

Eq. (5) for composite velocity, and Eq. (13) for pressure.

Numerical Method

Since techniques for obtaining the basic potential flow solution are well

known and numerous, they need not be enumerated or discussed here. Instead, the

present development concentrates on describing the numerical method used to

solve the system of governing equations. Streamwise derivative terms in the

governing equations have a form such as ula( )/axl, and because the streamwise

velocity, ul, is very small in the viscous dominated region near no-slip walls,

it is essential to use implicit algorithms which are not subject to stringent

stability restrictions unrelated to accuracy requirements. Although it is

possible to devise algorithms for solution of the governing equations as a fully

coupled implicit system, such algorithms would require considerable iteration

for the system of equations treated here, and this would detract from the

overall efficiency. The present method is semi-implicit and seeks to reduce the

amount of iteration required and yet avoid the mote severe stability

restrictions of explicit algorithms. The method partitions the system of

equations into subsystems which govern the primary flow, the secondary flow and

the turbulence model. The primary flow subset of equations contains the

streamwise momentum equation. The secondary flow subset of equations contains

the secondary vorticity equation and the scalar and vector potential equations.

These subsystems are decoupled using an ad hoc linearization in which secondary

velocity components and turbulent viscosity are lagged, and are solved

sequentially during each axial step.

-7-



Summary of Algorithm

The governing equations are replaced by finite-difference approximations.

Three-point central difference formulas are used for all transverse spatial

derivatives. Analytical coordinate transformations are employed as a means of

introducing a nonuniform grid in each transverse coordinate direction, as

appropriate, to concentrate grid points in the wall boundary layer regions.

Second-order accuracy for the transverse directions is rigorously maintained.

Two-point backward difference approximations are used for streamwise

derivatives, although this is not essential. To solve the primary flow

subsystem of viscous equations for external flows, scalar ADI schemes are used

for the streamwise momentum equation.

Given the solution for the primary flow, the secondary flow subsystem can

be solved. First, the scalar potential equation (continuity) is solved using a

scalar iterative ADI scheme. Next, the secondary vorticity and vector potential

equations are written as a fully implicit coupled system and solved using an

iterative linearized block implicit (LBI) scheme (cf. Briley and McDonald,

Ref. 1). In selecting boundary conditions for the secondary flow subsystem,

care must be taken to ensure that the final secondary velocity satisfies the

no-slip condition accurately. Zero normal derivatives of * are specified in the

scalar potential equation, and this boundary condition corresponds to zero

normal velocity. However, it is not possible to simultaneously specify the

tangential velocity. Thus, the *-contribution to the secondary velocity will

have a nonzero tangential (slip) component, denoted vt, at solid boundaries.

In the coupled vorticity and vector-potential equations, both normal and

tangential velocity components can be specified as boundary conditions, since e

these equations are solved as a coupled system. By choosing (a) zero normal

velocity, and (b) -vt as the *-contribution to the tangential velocity, the

slip velocity vt arising from the * calculation is cancelled, and the

composite secondary flow velocity including both and * contributions will

satisfy the no-slip condition exactly.

A summary of the overall algorithm used to advance the solution a single

axial step follows. It is assumed that the solution is known at the n-level

xn and is desired at xn+ l .



(1) The imposed streamwise pressure gradient distribution is determined

from an a priori inviscid potential flow.

(2) The streamwise momentum equation (10) is solved to determine un+ l .

(3) Using values now available for un+l, the scalar potential Eq. (8)

is solved using an iterative scalar ADI scheme, to obtain *n+l.

This ensures that the continuity equation is satisfied.

(4) The equations for vorticity Eq. (14) and vector potential Eq. (9) form

a coupled system for fnn+l and 4P+ which is solved as a coupled

system using an iterative LBI scheme.

(5) Values for the transverse velocities v. and ws are computed from

Eq. (3).

(6) Static pressure is computed from Eq. (13).

3. RESULTS

The initial effort, completed under the present program, has focused upon

demonstrating the feasibility of computing the flow around submerged bodies at

different attitudes by a forward marching computation procedure. Two test cases

were identified for this demonstration. Laminar flow around a submerged yawed

cylinder was considered as a first test case. This test case provided geometric

simplicity while retaining important features of the flow around a submerged

maneuvering body. The second test case considered high Reynolds number

turbulent flow over a "tear-drop" shaped body at an angle of attack. The second

test case was used to develop the capability to compute high Reynolds number

turbulent flow fields over realistic body shapes using the forward marching

procedure computer code (PEPSIG). Results of computations for the two test

cases are presented in this section.

Laminar Flow over a Submerged Yawed Cylinder

Computed flows around a yawed cylinder at three yaw angles are presented in

this section. Figure I shows a schematic of the configuration. The flow was

assumed to be laminar at a Reynolds number of 10,000 based on the diameter of

the cylinder. Computations were started on the cylinder with an assumed

-9-



streamwise velocity profile corresponding to an assumed initial boundary layer

thickness. The initial boundary layer thickness for all the computations

presented here was 10 per cent of the diameter of the cylinder. A transverse

velocity field compatible with the assumed streamwise velocity field was

computed at the initial station.

Figure 2 shows a vector plot of the secondary velocity field twenty

cylinder diameters downstream of the initial station for three yaw angles: 50,

100 and 15. For purposes of clarity, only a part of the computational domain

is shown in the figures. In all the cases the transverse flow rolls up intq a

vortex on the leeward side of the cylinder. This roll-up of the flow is caused

by the transport of low momentum boundary layer fluid from the windward side

around the cylinder to the leeward side. The low momentum fluid rolls up into a

vortex on the leeward side of the cylinder. As would be expected, the strength

of the vortex increases with yaw angle. Further, with the increase in yaw angle

a smaller secondary vortex is formed close to the cylinder surface. The

strength of this secondary vortex also increases with yaw angle.

Figure 3 shows a contour plot of the computed pressure field associated

with the transverse velocity field shown in Fig. 2 for the three yaw angles. At

the 50 yaw angle the transverse velocity field is weak and correspondingly

causes no significant distortions of the transverse pressure field. At the 10'

yaw angle, the primary vortex on the leeward side of the cylinder is

sufficiently strong to cause a significant low pressure region to form at the

vortex core. The pressure field associated with the primary vortex distorts the

pressure field around the cylinder. At the 150 yaw angle, the increase in

strength of the primary vortex decreases the pressure at the vortex core further

and causes more significant distortions of the pressure field. Further, the

secondary vortex closer to the leeward surface is sufficiently strong for

additional low pressure pockets to form on the leeward side. The low pressure

regions at high yaw angles could be a source of cavitation in the flow.

Turbulent Flow Over a "Tear-Drop" Shaped Body

Computation of high Reynolds number turbulent flow over a tear-drop shaped

body at an angle of attack was used as a second test case. These computations

were used to develop the capability of the forward marching procedure to compute

high Reynolds number turbulent flow fields over realistic body shapes.

-10-



Geometry routines in the PEPSIG computer code have been modified to provide

the capability to describe complex body shapes and generate a suitable

computational grid. Figure 4 shows a tear-drop shaped body generated by the

geometry routines. The body is axisymmetric with a NACAO025 thickness

distribution. The geometry routines are also capable of handling elliptic

cross-sections.

The flow field around a submerged tear-drop shaped body, shown in Fig. 4,

at an angle of attack of 100 was computed using the forward marching procedure.

Initially, to check capability to handle the body shape, laminar flow at a

Reynolds number of 15000, based on the length (L) of the body, was computed.

Since these results are qualitatively similar to the turbulent flow computations

to be presented, for brevity the laminar flow computations are not shown here.

High Reynolds number turbulent flow over the tear-drop body at an angle of

attack of 100 was also computed. The Reynolds number based on the length of the

6body was IxIO . The computations were started on the body 0.02L downstream of

the leading edge with an initial thin boundary layer (boundary layer thickness

of 0.O1L). Crossflows compatible with the assumed streamwise velocity boundary

layer profile at the starting station were computed with an iterative starting

procedure. The final streamwise station of the computation was 0.98L. Results

of the computations at three streamwise stations (x/L = 0.34, 0.66, 0.98) are

presented in this section. For purposes of clarity, only a part of the

computational domain is shown in the figures that follow. The input streamwise

pressure gradient was set to zero in the computations.

Figure 6 shows contours of the computed pressure field at the three

streamwise stations. At x/L = 0.34, the pressure field contours show

acceleration of the flow along the windward side followed by deceleration down

the lee side. The adverse transverse pressure gradient causes the crossflow to

separate on the lee side and begin to roll-up into a vortex. At x/L = 0.66, the

pressure field associated with the rolled-up vortices forms two low pressure

regions on the lee side. At x/L = 0.98, the vortices have moved away from the

body showing a region of interaction between the low pressure vortex center and

the body. This pressure field results in a sideward force on the body.

Computed pressure perturbations are of the order of 5% to 10% of the freestream

pressure.

Figure 7 shows a vector plot of the transverse velocity field at

x/L = 0.34. The figure also shows close-ups of the transverse flow close to the

-II -
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body surface. The lee side flow shows transverse flow reversal and the initial

formation of a vortex. The windward side flow shows the thin boundary layers

that need to be and have been resolved by the computations. Figure 8 shows the

transverse velocity field at x/L = 0.66. The vortices on the lee side are

clearly seen. A close-up of the flow near the body surface shows detail of the

flow structure, the reversal of transverse velocity and the roll-up of the

vortex. Figure 9 shows the transverse velocity field at x/L = 0.98, the final

computation station. The flow field is dominated by the vortices on the lee

side. A close-up of the flow field near the body surface reveals detail of the

flow structure and the flow field resolved by the computation.

The computations presented demonstrate the capability of the forward

marching procedure to compute high Reynolds number turbulent flow over submerged

bodies at an angle of attack. The computations also demonstrate the capability

to handle complex body shape and resolve the different length scales involved in

the flow field. The present computations were carried out using 183,000 grid

points (using half-plane symmetry) and required 520 seconds of computer time on

a Cray. The computations are very economical considering the details of the

flow field they provide.

4. CONCLUSIONS

The feasibility of computing the flow around a submerged body at different

attitudes using the forward marching computation procedure has been

demonstrated. Important features of the flow field have been captured in the

computations. These features include the roll-up of the flow on the lee side

into a pair of vortices. Distortion of the primary flow field and the pressure

field by the vortices have been computed. Computations of the pressure field

show low pressure regions at the center of the vortices. These low pressure

regions could be a source of cavitation and noise. Computed pressure fields

also show the effect of the vortices on the pressure field around the body. The

capability to handle realistic body shapes and compute high Reynolds number

turbulent flow fields has also been demonstrated. The computation procedure is

very economical considering details of the flow field provided. All tasks

proposed under this initial effort were successfully completed.

-12-
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5. FUTURE WORK

Computation of the flow field over a submerged body using the forward

marching procedure needs to be quantitatively verified by comparisons with

available experimental data. Several tasks have been identified for this

purpose and constitute current and future efforts under this program. These

tasks would complete development of the forward marching procedure to compute

flows over submerged bodies in maneuver.

I
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