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Section I

Introduction

The Structural Vibration and Acoustics Branch has initiated a program to
study the dynamics and control of Large Space Structures (LSS). This Large
Space Structures Technology Program (LSSTP) is intended to enable the
Flight Dynamics Laboratory to instrument, test, and analyze large space
structures on the ground in order to predict their behavior in space. Since
the testing is to be done in a ground based laboratory, i.e. under 1-g
acceleration, the experiments must be designed so as to counteract this
gravitational effect. One proposal is to use soft suspension systems. Long
cables can provide pendulum support with low frequency for horizontal

*. motion, but, for a pendulum, the restraint in the vertical direction is rigid.
One way to provide soft restraint vertically, while maintaining the pendulum
approach, is to counter balance the test model.

The simplest counter-balanced suspension system is the classic Atwood's
machine. [' ] This consists of two masses m1 and m2 connected by an

inextensible, flexible wire of negligible mass, draped over a frictionless,
massless pulley, which in turn is rigidly suspended from an overhead support.
The motion of the two masses is assumed to be constrained to the vertical
direction: either there is no motion, the situation that occurs when the two
masses are equal and there is no initial velocity, or, as one mass rises the
other falls.

In previous reports 12],[3], the Atwood's configuration was studied when
A" the one mass, mi, remained constrained to move vertically but the other

mass, m2, was swung as a pendulum. The results described in these two

reports may be summarized as follows: after deriving the equations of
motion, these were programmed and run on a digital computer using a
Runga-Kutta-Fehlberg [4] routine. The first numerical experiments assumed

.. the two masses m1 and m2 were equal. As one normally does with a

* 1
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pendulum, the mass m2 was displaced through an initial angle eo , released
with zero initial velocity, 60(0) = 0 and the subsequent motion studied.

Several runs were made , taking successive values for 00 of 0.01,0.10, 0.20,
and 0.50 radians. In all four cases, the mass m1 initially dropped ever so
slightly and then rose monotonically. Obviously, this is equivalent to a
lengthening of the pendulum arm. As the pendulum arm increased, the
amplitude of swing decreased.

While not concerned per se with counter-balanced suspension
systems, material of collateral interest may be found in [5],[6].
These two references treat problems whereby a swinging mass is
being hoisted by a winch.

It is intuitively obvious that if the mass m1 is made slightly greater than
m2 that this monotonic lengthening of the pendulum arm with time would be

slowed and that if m1 were made much greater than m2, the length of the

pendulum arm would actually decrease. Thus, there must be some critical
relation between m, and m2 for which the length of the pendulum arm is

either constant or a periodic function of time. Further numerical
experiments [2] indicated that this relationship is:

m1 =m 211.000+7.451x10 8 e +0.250 Eo2 ]

It was found using a least square fit to data points corresponding to e0 =0.1,

0.2, 0.3, 0.4, and 0.5 radians.

In this report, a theoretical derivation of the relationship between m1 and

m2 is obtained under the added restriction, however, that the initial angular

displacement e0 is small. The technique used is classical perturbation

theory[
71
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Section II
The Mathematical Statement

The geometry of the configuration studied is given in Figure 1. From this
geometry, assuming that the masses of the pulley and the wire are negligible
and that the radius of the pulley may be neglected also, the differential
equations describing the motion of the mass m2 are:

p O+2pt0+gsine =o (1)

(m 1 + m 2) p -m2p6 2 + m'g- m2g cose = 0 (2)

where dots indicate differentiation with respect to the time t. Equations 1
and 2 may be simplified slightly if we observe that by letting p = pg , both
equations contain g as a factor and we may divide through by it. This is
equivalent to choosing units so that g = 1. Furthermore, by using the small
angle approximation, these equations then become:

p0 + 2P6 + E=0 (3)

(m 1 + m 2 ) p - 2p62 +(Mi1-m 2 ) + ,2m2 E2 = 0 (4)

Case i) Constant p.

We prove now that there is no solution of Equations 3 and 4 for which
p =p,=constant. Actually, we shall show that assuming that p = constant
leads to a contradiction. Using this assumption, Equations 3 and 4 become

P o + 0 =0 (3.1)

_I 2 _ IM I 02=0 (4.1)',;." m~2P0 2 -m -2) 1/ 22 =0 41

3
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Differentiate Equation 4.1 with respect to the time t and divide through by
m2 to get:

2p o 0 - 00 = 0 (5)

If 0 0, then Equation 3.1 implies that 0 = 0 and Equation 4.1 then implies
that ml= m2, the classic Atwood's machine case with equal masses. For this

classic example there is indeed a solution p = po, a constant. If 0 0, then

Equation 5 implies that

2po 0 = 0 (6)

Equations 3.1 and 6 are incompatible. There is, therefore, no solution of
Equations 3 and 4 for which p is constant.

We proceed now to discover the relationship between m1 and m2 for which

p(t) and 0(t) are periodic solutions of Equations 3 and 4.

Case ii) The General Case.

The perturbation technique requires that Equations 3 and 4 be modified
and rewritten as follows:

p = E [m2p -(m1 -m2)- !/m2 )2] (7)

p 0 + E =-2P0 (8)

where we have introduced a parameter E and written m1=m 1/(ml+m 2) and
m2=m 2/(m1+m2). In Equations 7 and 8, we change the time variable tto a

- pseudo-time t by means of the formula t= v'--t and get

p"= c[m2Pe '2 + W(m2-m1) - /m 2W E2] (9)

p0 "+we =-2p (10)

4
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where the ' indicates differentiation with respect to t. Assuming that

p,e,w and m1 are analytic functions of E:

p =r 0 + Er 1I + E2r 2 + . .
= 00+ E 1 + E2o2 +...

0= W0 + EW1 + E 2 W2 + ,

m 1 = I o- + +E2 L2

We introduce these expansions into Equations 9 and 10 and collect terms
in like powers of E. Since E is an arbitrary parameter, each coefficient of

the powers of E must be zero. This results in setting up an infinite system
of pairs of second order differential equations which can be solved
successively and recursively. The first set of pairs is obtained by setting
E=0. The two equations obtained are:

r= 0 (11)

ro e o "+ wo  = -2ro'o"0 (12)

The solution of Equation 11 is ro = ro, a constant, since we assume as an

initial condition that ro "(0) = 0. The solution of Equation 12 then becomes

00 = 00 cos (kt) (13)

where 60 is the initial angular displacement, k2 = W/r 0 and we have assumed

that 00 '(0) = 0. It will turn out that w. plays no role in the final form of the

formulas for p (t) and 0 (t). In terms of the physical variables, k2 = g/p (0).
If Equation 9 is differentiated with respect to the parameter E and then E

is set equal to zero, we obtain:

V
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r M r - 0+m2wo(1- 0/-02) (14)

When the values of Eo and 00 ,as given from Equation 13 and its derivative,

are substituted into Equation 14, and remembering that ro = ro , a constant,

then, after some algebraic manipulation, Equation 14 may be written as:

r1 //= . 0 -[o+m 2+ (1/4)m 2 0- (3/)m2 0 cos(2kt)] (15)

Since we are seeking a oeriodic solution for r, the secular term in the
general solution of Equation 15, the term that would give rise to a quadratic
increase or decrease with time in r1 , will be eliminated if we set:

(/)62 (16)i ' P'o~ = M2 + ( 1/4)M 2 e0216

Otherwise, r1 will contain a term of the form (_- + M2 + (1/4)m 2 002 )t2/2

' and, depending on the relative magnitude chosen for ito and (m2+( /)m 26o 2),

r1 increases or decreses quadratically with time. The solution of Equation

1 5, for the initial conditions r1 (0) = rC0) = 0, is:

r 1 = (3/16)r0m 260
2( cos (2kt) - 1) (17)

When Equation 10 is differentiated with respect to E and then E is set
equal to zero, we obtain:

ro 0 "+o = -r1 0 o-wl e -2rl 0 (18)

Since ro , 60 and r1 are known, we substitute their respective values into the

right-hand side of Equation 18 to obtain:

ro W e + (15/32)M2%2 wo]cos(kt)+
0 1 0 1= +fk (532 0~

[(15/32)m 2 602 Wo]COs (3kt)} (19)

4



We are interested in obtaining the particular solution of Equation 19 that

excludes the secular term. This is done by choosing

W1 =-(15/32)m 2 e 0
2W0  (20)

With this done, the particular solution of Equation 20, with initial conditions
0 1 (0) = 01 '(o)= 0, is:

e1 = (15/256)eo(m 2 o2)[cos (kt) -cos (3kt)] (21)

Note that if w is not chosen as in Equation 20, then the solution for e1

will go to infinity with time. We interpret this by saying that the
mathematical procedure fails. Thus, in order to retain mathematical
viability, we must pick wu as given in Equation 20.

If we were to proceed no further, we would have the following

approximate solutions to Equations 3 and 4 (after setting E = 1):

p = r0[1 + (3/16)m 2A (cos (2kt) - 1)] (22)

0 = 60{cos (kt) + (15/256)(m 2 60
2)[cos (kt) - cos (3kt)]) (23)

where mI= M 2 + ( 1/4)m 2 0 2 (24)
% = Wel- (15/32)m 2 60o2] (25)

k2 = W0/ro (26)

We proceed to get the next higher order terms in the expansions for

- p,e,ml ,and w.

By equating the coefficients of E2 from both sides of Equation 9, we get

r2 =-W4L I + Wk -m2)] + M 2[rl 0'2 + ?roEo 0,]

0m2[W 102 + w P o00 ] (27)

7



After substituiting the several quantities already found for their respective
values as given in the right-hand side of Equation 27, it may be rewritten as:

r2  =(9/512)M220 4WO [4 cos (2kt) + 9 cos (4kt)] (28)

where, in order to preclude the introduction of a secular term in r2 , we had

set:

KL = (63/512)m 2 E4 (29)

The solution of Equation 28, subject to the initial conditions r2 (0) = r2 '(0) =

0, is:

r r (9/213 )(m 2 e )2 ro[25 - 16 cos (2kt)- 9 COS (4kt)] (30)

By equating the coefficients of E2 from both sides of Equation 10, we get:

.. r0 + w 0 + 2r 0) +

r0 2 +1O + 1 1 1 1
[r 2 0 0+ W2 o00 + 2r 2 '0" =0 (31)

After substituting the values already found for r0 , o,r,1, , 0 ,.) 1 and their

derivatives where appropriate, we get:

r 0 ,0, + , 0 02 = (9/2 14)m 2
2 005Wo[163 cos (3kt) - 291 cos (5kt) ] (32)

and where, in order to preclude the introduction of a secular term in 02, we

have set:

I 2= (9/128)m 2
2 00

4 WO (33)

The value of 02 , subject to the initial conditions 02(0) = 02'(0) = 0, found by

integrating Equation (32) is:

8



0 2 = (9/217)M 22 62~ [ 66 COS (kt) -163 COS (3kt) + 97 COS (5kt)] (34)

Summarizing the results obtained thus far, we see that after setting E=
1, we get the following approximate solutions for p(t) and 0)(t):

p(t) = ro 1 + (3/16)M 2 62 (o 2t I

(9/213)M 2 2 ()04(25-16 COS (2kt)-9 cos (4kt)] (35)

* 0(t) = 0 jcos (kt) + (15/256)m 260
2[ COS (kt) - COS (3kt)] +

(9/217)M 2 
2 E)24 [ 66 COS (kt) -163 COS (3kt) + 9700OS (skt)]}, (36)

where
i M 2+ (1 /-I)m 2 E0

2 + (63/512)M2 
2)0 (37)

W = c 0[1i- (15/32)m% + (9/128) M2 ( 4] (38)

Since t = (w)- t, p Mt =* p (W -t) , 0(t) 4 0 (W- t) ,i.e. in formulas

(35) and (36) replace t by w -t. Finally,

p W) =gp(W-)

and
6 (t) = 0(w t)

9



Section III

Discussion

An understanding of the results presented in the previous section may be
enhanced by a numerical example. Before doing this, however, we want to
recall the relationships:

p (t) = gp(t) and t = /-t

These imply that p = g p = g p"/w . Using these we can calculate the
acceleration acting on the mass m1 . We do this first using the approximate

solutions given by Equations 22 and 23. In particular, we examine Equation
22 and take the second derivative with respect to t to get:

p'"(t) =-(3/4) m 2e 0 2W 0 oCS (2kt) (39)

and where we have used k2 = wo/r o . Then, using the value of w as given
in Equation 25:

+ = -{(3/4)[ m2 E01/ [1- (15/32)m 2 %2] }cos(2kt) (40)

Remembering that r= 1 - m2, we solve Equation 24 for m2 and substitute

that value into Equation (40) to get:

1 = -[24eo;'/(64 - 7Eo 2)] cos(2kt) (41)

For values of Eo of interest, say not to exceed 0.1 radians, the expression

within the [...] in Equation 41 is a monotonically increasing function of 6 and

will therefore attain its maximum value at the end-point of the interval of

10



interest. If we take that to be 0 < 0 0.1 radians, then for 0 = 0.1,

p/ (t) = -.0037541 g cos (2kt) (42)

Thus, the acceleration of the mass m1 is only, at most, 0.00375 times the

acceleration of gravity, a very small quantity. While the mass m1 does not
move as if it were in free space, it is subject to a gravitational influence
that is only .00375 times the effect it would normally sense on earth.

The description given above is based on using only two terms in the
expansion for p (t). Some change in the calculated value of the acceleration
of the mass m1 should be expected if three terms are used in the expansion

for p (t). While it is possible to carry out these computations
algebraically, no new insight into the motion is gained. Accordingly, so as
not to get lost in a maze of algebraic manipulation and symbolism, we limit
our discussion to a numerical example, indicating along the way how other
numerical examples may be handled.

We start with Equation 35 and calculate:

p"(t) = WO (M2 (602) [A1 cos (2kt) + A2 cos (4kt)] (43)

where:
A1 = [-(3/4) + (9/128) m 26o 2]

A2 = (81/512) M2 0
2

and again we have used k2=wo/ro. Then:

(t) = A0[A1 cos (2kt) + A2 cos (4kt)] (44)

where:
AO = (m2e02 Wo)/ W

or:

11



A-0 = MT 2 0 o2/[1-(15/32)m 2E 0
2 +(9/128)M12

2 04 ]

where the value of w is taken from Equation 38.

The acceleration is stationary when 2kt1 = 0 +n-r and when cos (2kt 2) =

-A1/(4A 2). For these values of t1, the maximum value of the acceleration

cannot exceed IA0 g[ IA1 I + IA21] ; for values of 00 of interest, the magnitude
of A1/(4A 2) is greater than 1 and there is no real value for t2.

In order to calculate values for A0 , Al , and A2 , we need to know m2 0o2 .

For a given value of 60 , say 00 = 0.1 radians, and remembering that m1 + m 2

=1, we find, using Equation 37, that m2 = .4993742479515557. We then find

that Ao = 5.0054505 x 10 3 , Al = -.74964888, A2 = 7.9002567 x 10-4 and the

maximum value of the acceleration is at most 3.7483759 x 10-3 g.

A comparison of the results when 2 or 3 terms are used in the
determination of the acceleration of m1 indicates that the difference is so

small, of the order of 5.7 x 10-6 g, as to be negligible. For all practical
purposes, the solution to the problem is given by the Equations 22 - 26 and
Equation 41.

When the fundamental frequency of the system is compared to the
frequency of a pendulum of length p (0), there is a change in frequency given
by the multiplicative factor [(64 + 8e02)/(64 - 7602)]1/2. For eo = 0.1 radians,

this factor is 1.0011725.

The solution to Equations 1 and 2 as given by Equations 22-26 or, if you
prefer, by Equations 35-38, are periodic solutions. As already noted, to
obtain a periodic solution for p it was necessary to carefully adjust the
ratio of the two masses mi and m2. If values of m1 and m2 different from

those determined by means of Equation 22 (or Equation 37) are used, then the
solution for the pendulun arm p (t) will contain an additional term involving

12



t 2. The case for m1 = m2 was studied in reference [8]

If a value of w different from the ones given in Equations 25 or 38 is used,
then the mathematical process fails because secular terms, which physically
and experimentally we know do not have meaning, are introduced into the
equation for e , Equations 23 or 36.

13



Section IV

Conclusions

A theoretical description of an Atwood's pendulum machine is given.
Implicit in these calculations were the assumptions that the pulley is
frictionless and that its radius could be neglected. Also, the wire connecting
the two masses is assumed to be perfectly flexible, inextensible and of
negligible mass. The following results were deduced:

(1) If the ratio of the two masses are chosen as prescribed, then the
vertical motion of the mass ml , which is the only motion possible for this
mass, is periodic;

(2) Equivalently, the change in length of the pendulum arm associated
with the swinging of the mass m2 is exactly the same as the change in length
of the wire supporting m1 except that as the one increases the other

V decreases;

(3) If the two masses are not picked as prescribed so as to insure
periodic motion, then the motion of m1 consists of the superimposition of
two motions:

(a) an accelerated motion as if the mass m1 were in a
gravitational field of magnitude < g, the magnitude of this deviation from g
depending on just how much the two masses differ from the ratio required
for the periodic motion, and

(b) the periodic motion superimposed (just added onto) the motion
described in (a);

(4) While the conclusions (1),(2), and (3) given above were obtained by
considering only two terms in the expansion of the relevant functions, the
effect of using three terms in these expansions was shown to modify the
conclusions only quantitatively, not qualitatively, and the change was of an

14



order less than 1%.

In mathematical terms, this periodic solution is referred to as a limit
cycle; it is, however, unstable. Any set of conditions that differ ever so
slightly from the ones needed to establish the limit cycle will produce a
trajectory that increasingly diverges from the limit cycle and this
translates into the statement that the pendulum arm goes either to zero or
to infinity[9]' 01 o].
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List of Symbols

Sm 1 = mass 1
S 2 = mass 2

rn = reduced mass1 = ml/(ml+m 2)

m 2 = reduced mass 2 = m2/(ml+m 2)

t = real time, seconds
t = pseudo-time
60 = initial angular displacement

6o = initial angular velocity

p = length of pendulum arm, meters
.9 = angular displacement of pendulum arm; two symbols are used to

make the notation uniform
p = p/g = length of pendulum arm in a system of units in which g = 1
w = a parameter relating t and t; eventually shown to be a factor

specifying frequency
=E a parameter used to establish asymptotic expansion

r i = a term in the expansion of p

0 i = a term in the expansion of E0

Wi = a term in the expansion of w

K = a term in the expansion of m,
ro = initial length of pendulum arm in system of units for which g =1

k = a parameter relating to frequency in the system in which g = 1;

k2 = w/ ro
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