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NONLINEAR THEORY OF THE ORBITRON MASER
IN THREE-DIMENSIONS

I. INTRODUCTION

An early application in which electrostatic focussing was used to impart a periodic oscillation on

electron trajectories was by Watkins and Wadal who employed a coaxial waveguide in which the central

element was a four-conductor transmission line. A dc voltage applied between the inner and outer con-

ductors gave rise to a radial electric field which balances the centrifugal force on the electrons and per-

mits orbital motion about the central conductor. Maser amplification is possible when the rotational

phase of the electrons is in synchronism with the phase of the waveguide modes 6f the system.

, Recently Alexeff and Dyer 2 have conducted an extensive series of experiments for a configuration in

which the central conductor was a single wire, and emission was found at relatively low efficiency (an

optimized experiment found emission at 30 GHz with an efficiency of about 5%).

Numerous theoretical analyses of the linear stability of the interaction have been conducted based

upon a perturbation about an equilibrium in which the electrons execute circular trajectories about the

central conductor and the bulk beam is an annulus. 2- 6 These studies have shown that the Orbitron

maser has the potential for producing extremely large growth rates (i.e., short e-folding lengths).3 4

However, the difficulty encountered with configurations based upon circular electron trajectories is that

high frequency operation (> 30 GHz) requires relatively high voltages. In order to circumvent this

problem. Burke et a17 proposed a configuration in which the trajectories are highly eccentric ellipses in

which the electrons pass extremely close to the central conductor. In such cases, resonant interactions

with large growth rates can occur at relatively high frequencies for moderate voltages if the central wire

i% thin and the orbital eccentricity is high.

Manuscript approved March 5, 1987.
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While the linear theory of the Orbitron Maser has been amply studied, no nonlinear analyses have

heretofore appeared which provide estimates of the interaction efficiencies. It is our purpose in this

*paper to develop a fully three-dimensional nonlinear analysis of the Orbitron Maser to study the evolu-

tion of the system through the linear regime of the interaction to saturation. This study will lead to an

accurate calculation of the interaction efficiency in Orbitron Maser and a realistic assessment of its

potential as a high power and high efficiency amplifier, particularly at high frequencies. To this end, a

set of nonlinear coupled differential equations is derived in Sec ii which governs the self-consistent

evolution of either the TE, TM or TEM modes as well as the trajectories of an ensemble of electrons.

Further, the electron trajectories are treated in sufficiently general manner as to include arbitrary eccen-

tricities, hence we treat both circular and elliptic orbits. Boundary conditions appropriate for either the

TE, TM or TEM modes are applied to treat the effects of the finite waveguide geometry. The space

charge effects are neglected in the analysis and it will be applicable in the tenuous beam limit. The

nonlinear dispersion relation derived in Sec Ii, however, includes collective effects through the dielec-

*tric response of the plasma to the waveguide mode. In addition, since we are interested in the amplifier

configuration, only single mode propagation is considered. This permits an average over a wave period

to be performed which eliminates the fast-time scale phenomena from the formulation and results in an

increase in the computational efficiency. The numerical solution of the coupled equations in given in

Sec III for a few sample cases. The efficiency of the amplifier is found to be small (<6%). The con-

straints which appear in the orbitron amplifier operation at high frequency due to the break-down elec-

tric field and the requirement of an extremely thin inner conductor wire are also discussed. A sum-

mary and discussion are given in Sec IV, where efficiency enhancement schemes are indicated.

II. PHYSICAL MODEL: GENERAL EQUATIONS

The physical configuration we employ is shown in Fig. 1. It consists of an axis encircling electron

neam propagating axially tilrough a coaxial waveguide of circular cross-section with inner radius r, and

tL~, r,tdius r,. The electrons are radially confined by balancing the centrifugal force against the radial

clcctr. field produced h applying a dc v oltage between the two conductors. If the space charge effects

i c ncg.,-ctcd. ihcn the dc. clectrostatic potential in the configuration of Fig. I is gi,en by

~2
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= In (r/rj) (1)

and the d.c. electric field is

E0 (r) - *-e (2)
In(r 2/r) r

where i,, ii, and e, denote the unit vectors in r,O and z coordinates, respectively.

(a) Equilibrium Orbits

The charateristics of the steady-state orbits of the electrons acted on by the conservative potential

46(r) in Eq. (1) were calculated by Burke at aC)71 in the nonrelativistic limit. The relativistic Lagrangian

is given by

L= -moc 2 1 (i2 + r' 2 + i 2) + eo, (3)

where m and e are, respectively, the rest mass and the magnitude of the charge of an electron. Here

c = I/.J0-E0 is the speed of light in vacuum, Ato is the vacuum permeability and 40 is the vacuum

dielectric constant. In Eq. (3), the dot over a quantity denotes time derivative. The Hamiltonian is

H = mo c2  - e 4,, (4)

where
'I + 2 ) -1/2

= jI - 2 (r2 + r' 2 (5)

Since, the Lagrangian does not involve time explicity and is independent of 0 and z, the three constants

of motion for the steady-state orbits are H, P, and P, where

P.= r p m, y r2 0, (6a)

P= i M , z, (6h)

2 1 + + + P2 + eVo r
m1 c2 p:2 +1+ + + in-. (6c)

r I In(r 2/r ) r,

In Eqs 6c. p, = m, -yr. ihe angular momentum term in tEq. (6c provides an outward radial force

which dominates at small r and the electrostatic potential provides an inward force which dominates at

large r Thus the orbits have an inner and outer radial turning point, r,, and r,,, respectively Since

p, is zero at each turning point, r,n and r,,,, are the roots of the equation

3



e VICJ 112
C Pr 1IH - el'0  -r .2 4 _2 z2 cP 0 7

c ,- 1 In (r 2 r 1) r, -m cC p r2  0.(7

For the special case of circular orbits (rn = r,,,, - ro) both pr and 8 H are zero. Thus, from

Eqs. (6a) and (60), we obtain the following relation between the azimuthal rotation frequency fl, and

the radius ro

=v 7 c ____ (8)

ro I:( r2/ri)

In the nonrelativistic case,"' t Eqs. (7) and (8), respectively, take the forms

P.2  P2 V
Ho - 0_ -V ___ In-= 01 (7a)

2m0  2mor2  in (r 2/r I) r,

and

= c _______(8a)

ro11In (r2/r1)

where HO, H - mo c. In Ref. (7), it is shown that the characteristics of the equilibrium orbits in

the nonrelativistic case can be described by a single parameter

=r rmu/rr1, (9)

tor given values of the constants H~p: and P, When (,r 1. the two characteristic frequencies il r (the

radial oscillation frequency) and 11, (azimuthal oscillation frequency) are expressed as integrals for

which there are no closed form solutions. An electromagnetic wave can interchange energy with an

electron near synchronous condition w = 1 11 ,, + n 11 , + Kvwhere cu is the wave frequency, k the

wa%,e %,ector and i--. the axial velocity of the electons.

(b) RF Fields:

The coaxial waveguide can propagate TE. TM or TEM modes. The lowest order mode is 1kM

%herc the electric field is radial. Therefore, the TEM mode cannot exchange energy with electrons

nio% ig in circular orhits I F or PM modes. howe .er. can interact %kith electrons in circular orbits. The

r~idi~ition field v ill he determined hN sol%,ing the Max~ell's equations for the Iector potential (S A (r.0

V A 8 , A 8 J (rt), (10)

-. 11hjeL t to the aUxillary condition V h~ A =0 In l-q (10) (S .1 is the source current Since the space

* ctharge fields are neglected, the boundary conditions ait the wa~.eguide wall can be satisfied by expanding

4
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the vector potential in terms of the orthonorma) basis functions of the empty guide. Thus, we write

the vector potential of the radiation field for TE modes in the form

8 A (r,t) = -L1 A,, (z) e/n (r,O) e'u1 
A(z~d:, -w + C.~* c.I

The transverse basis functions e, in Eq. (11) are represented by

ein (r,G) = C1,n k, l Z, (kI, r) - einr iZn(kI.r) I e"0  (12)

where

Z1, (r) = J,(ir)- J1..(kin r 1)Yi(kr,13

and J,,n and Y/n are, respectively, the I-th order Bessel functions of the first and the second kind. ZM.,

JI and Y/,, denote, respectively, the first derivative of Z,,, J, and Yn. k/ns are the roots of the equa-

tion

Z, (k, r 2) =0, (14)

and the normalization constant C,,, is

I5 II _____1/2__(15)

Cl '2 2 x - 12) Z, (X~ 2 x - ,2) Z,2(, 12
'.khere x = A,,,r,. The basis functions satisfy the orthonormal property

f *"e, e,,, dS = 81 8n. (16)

~hee 4. -r, is the cross-secaonal area of the waveguide. It is assumed that the mode

amnplitude and the wave vector A (z) are both slowly varying functions of z such that

&~ d:

I r I M modes, the vector potential is given by

8 A (r. A 8 Ain AA,(Z) e -I " I ikne )IC fk ( + c. (16)

,Ahere thc transverse and the longitudinal basis functions are respectively.

e':' C ki ,Z,,(,( 1 r) + Z,( , i (171

rk,

Jt~d

e 7C ,,/ Ik I v(



In Eqs. (16)-(18), k1n are the roots of the equation

Zl,(klr 2) = 0, (19)

where

J1(k1l r1)
Z =, = J,(k, r) -y(ktnr ) Y,(klr). (20)

Y, (k,, r I)

The normalization constant C,, for TM modes is given by

C11 =1 [ 1/2 ( 1
7' /2 x Z' (x2)- x? Z,2(x 1) jt/ (21)

such that

fA In e1,n ds = ,, 5, . (22)

and

f l( e ll, ds = 1 8,, . .i

The vector potential of the wave field for TEM modes may be written as

(z~fAL Id: .1)

8 A(rt) = 2 eTEM 8 A (z)e'  + c.c. (23)

where

1 1M (24)eTiM = e I 2rln(r2/r1) r

such that

LK etriM * eTtM dS = 1. (25)

The vector potential for TE (Eq. II) and TEM (Eq. 23) modes satisfy the condition V A = 0 exactly

whereas TM modes (Eq. 16) satisfy this relation if the variation of ,A,, with z is ignored.

The microscopic source current, 8J. can be written as the sum over individual particle trajectories

L -. i~t- .,(- x ,,t,,))
FJ(r,t)= e n X, v,(.xI ,, I(Z8 -, (,, ,)) 8(x- x, (:x, ,.t,,,)) (26)

N , x im I: Zx1!Wi

where vz.x is the velocity of the i-th electron at position z which entered the interaction region

at time t,,, and the transverse position x,, and

9+

twn
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The system is assumed to be quasi-static in the sense thai :ne particles which enter the interaction

region at times to separated by integral multiples of a wave period will execute identical trajectories. As

a result, vj(z,xjo,,to) = vj(z,xjotjO + 27rN/w) for integer N. The discrete sum over particles can be

replaced by an integration over initial conditions, and we may write Eq. (26) in the form

fo rb ~ -1  8( - r(Z,Xo, to))
T (r) to)b 8(t - (Z,Xo,to)I v(z,xoto) 8(x - x(z, xo, to) , (27)8 J-r bf dS O art (O) to Irt (t(zo)'to

where /b = nb e v: 0 A b is the electronic current, Ab is the cross-sectional area of the beam and

T = L/v:o (L = length of the interaction region), o r and o-, describe the distribution of the initial

conditions subject to the normalization

Lb dS0 
0
'T (r 0 0) =1, (28)

1 J dto -, (o) = 1, (29)

where dSo = ro dro d~o. If the electron beam has initially a non-zero emittance, then the expression

(27) will also involve an average over the initial velocity distribution.

Substitution of the vector potential (Eqs. 11, 16, 23) and the source current (Eq. 27) in Eq. (10)

leads to the following equation for the slowly varying amplitude and wave vector k(z) which are

obtained by averaging over a wave period and making use of the ortho-properties of the basis functions.

For TE modes, we obtain

d 2 a,, + 2 2e 1h 0, T + + 13/Wi

-__ +_ - 2 a - m H  < > (30)
2 " X) - 2 e) b aH, < (30)

1 d a, H, < > (31)

where

a,= C, ki, e 8AImoc. (32)

1 he dimensionless quantities , and 4 in Eqs. (31) and (32) are defined as _= w r:/c.

= A.r. r, 13, = v/c,3, = v,,/c and t = z/r:, respectively.

Similiry. 14r TM modes we ha,e

- ( I" X- , I ,,

2elh 1, 1 - Z, ," t ( 1 ,/A) (A,, r) sin T1,
-1, < . (33)

Si 7
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and

2IX + j 112dI ~21/ as,,
~ 2 elb

Hn <(3, W+ + 69 T7- - (ki,/k) ZI, (kt, r) cos ,1>. (34)

In Eqs. (30)-(34), Hl,,T ± and W,' are mode dependent quantities defined asXI 2c

-Xx R TE mode

= (x,2 - 12) Z,2 (Xn)_ - 12) Z2 (Yin)
Hin = C12 X12 n In35)

n TM mode (35)
71xT2 Z 2q (x1.) - Y12 Z'2 (Yi)l

where -yi, = kI,rj and xi, for TE and TM modes are solutions of Eqs. (14) and (19), respectively.

Also,

IZI, (ki, r)sin
Xlnr

IZI, ( ki, r )
Ti cs +1 ,

W1= Zj, (klr) sin T, (36)

WI= Z1, (k, r cos N4',.

where 'r is the phase slippage between the beam and the radiation field given by

S= d'- +- ' (37)

-is the normalized azimuthal rotation frequency of the electron. Finally, the notation
c dt

,.... < ..... > describes the average of the beam electrons over the axial phase and the cross-section i.e.,

< F> = J d~o T . (P 0 ) J do() rodro (rI (ro,0 0)F, (38)

where 'I, = wit,. An average over the initial beam velocity distribution is also required to treat the

non-zero emittance case It should be noted that average in Eq. (38) includes the overlap of the elec-

tron beam wiih the transverse mode structure of the radiation field and the 'filling-factor' is introduced

in the theory in a self-consistent manner.

N.?
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In the case of the TEM mode, we obtain

d2 a W elb 2r2,(d -'--- - [ ] I(3Ar cs'(39

Arto moc3In 
2

and

2X1/2  X1/ 2A) - elb < r2 (3. sin '4'>, (40)de moc 3 1n (r 2 /rl )  r

where

A', 1 e SA
I a- 

(41)
- 27rln (r 2/r 1 ) moc r 2

,= f X )d' (42)

The time averaged power flow (i.e. The Poynting flux) P,, in the waveguide can be expressed in

terms of the normalized amplitude by the following relations

r m2 c5 . T-oe

r EomO c  . O) 1+ 2 (T moeP - - 2em2  H, a,, (TE mode)

7rE0 I
2 
c
5 X

irem, 2 1I at, , (TM mode)
W 2e 2  H, X

P. 2 W X " In (r2/r) a2 • (TEM mode) (43)

Although, the self-fields of the electron beam is neglected in the formulation, the nonlinear dispersion

relations in Eqs. (33) and (39) include collective effects through the dielectric response of the plasma

to the waveguide mode. Hence, the system will slowly evolve from a vacuum waveguide mode to a

fully self-consistent dielectrically-loaded waveguide mode.

c. Orbit Equations:

The source terms in the wave equation will be calculated by solving the electron-orbit equations in

the presence of the static and RF fields. Since we are considering an amplifier configuration, it is con-

venient to integrate the equations of motion in z and we write the Lorentz force equations in the form

dp__vd - e (E0 + 8E,,) - e v x 8 B1 ,1 , (44)

9
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i where

8 E,, - and 8 Bt, = V x A,,.

Substitution of the appropriate form of the vector potential yields the following normalized equation of

motions for the TEI, mode

dUr r2 V0  + x,., go Z , (ktr) cos T'I -( W - T3 ) - a ,

dal, rrI

+ ,3 T ' + r2 Uf (45)
d yr

,du, r Ur + (1 - x[4. Z1, (ki~r) cos\P a,,

+ W dal, (46)
~~~~~~[3: T,-0 "- Ika,,J3 d T j++ioWj (7

where

1)o= eVo _ (48)
M11c

2  In (r 2/r1 )

The dimensionless quantities Ur,, and u. are defined as u, = pr/moc, uo = p"/tImc and u. = p:/moC,

respectively.

For the TMI, mode, we have

" . ,hr r2 Vo r2u 2  x,,
r + y r-I X

.: + ,3: , , (49)

il r2  10H + -j + "1 T , a,

+ 13 7- dal, (50)

,dii-. - +1 ((+ , + r}csI 11 + r(2
tt ':B : -- . = )( + "- J3, T , + f3. K1t - - Zia (k ,,r) cos \P j al,,

dau

1 /3: (13, 14 1 3,, T1' dal ( 1

i.."-.I or the TIN mode, we obtain

[>.'.

-.'":d 6r , +" r , s in + l r , c o s i f d a r , u ,2

' + d f r3 a + d 
+ - - '- ,( 2



Sdu, (53)
d

3
y yr

du. Xsin cosT da 1
9a (54)

d6.r r d,6

In addition, we have for all modes

S _ = Ut/,, (55)

= UAll = (56)

From Eqs. (37) and (42) we also have

d1, I - -, (TE and TM modes) (57)
d 16 /: OZ:

and

dP , - _/3. (TEM mode) (08)

where , = rir,. Both the linear and the nonlinear evolution of the orbitron amplifier are included in

the formulation through Eqs. (30)-(42) for the fields and Eqs. (45)-(58) for the particles. For particle

motion in equilibrium circular orbits, the synchronous condition for the beam-wave interaction is

dP,
X3- + III,. Under this condition, - = 0 from Eq. (57). Hence, IV, is a slowly varying func-

tion of z near synchronism. For eccentric orbits, however, the synchronism occurs, when

= + I1I,, + sil, and - -0. This results in rapid variation of I with z. For TEM mode. the

dz

interaction occurs only with eccentric orbits as mentioned before. In the numerical solution of' the dif-

1erencnl quatons, a smaller step-size will he required for the eccentric orbits in comparison to thai for

the .ircu lar ,rhits to resolve the rapid variation of IV with z.

• Ill. 'st NERI(C:\I SINII ILATION

I he :,ct 4,, coupled differential equations derived in Sec. II is solved numerically. In the amplilicr

C!,1 gu1 rt II ,. d ,,ingl! wive of frequency (o is injected into the system at z = 0. The Maxwell's Iq,,

"-;! I : -3 .- nd I-.o, (39-40) can he converted to a set of three first order dirferenti:d eqol-l,

, .d,1 ,d I II 'n o the ,vstcin of equations to he solved consists of 6,N' - 3 first ordc

~rd~r:,x di~ft.:.'nial e umions, where ', is the total number f electrons. We employ the roodilied

I. I

$N.

rW 
'rW 0



version (Gill's method) of the fourth-order Runge-Kutta algorithm for numerical solution of the dif-

ferential equations. The average of the form shown in Eq. (38) which occur in the Maxwell's equations

are performed by means of an N-th order Gaussian quadrature techniques in each of the variables

r0 ,0 0,xP0 . Hence, NT = N 3. For the examples shown in this section, a choice of N = 10 is found to

provide an accuracy of better than 0.1%.

The initial conditions on the radiation field are chosen such that da/d = 0 at = = 0 and

S(Z = 0) = -xl with .,/ = 0 for the TEM mode. The initial amplitude a (z = 0) is calculated

from the input signal power using Eqs. (43). The initial state of the electrons is chosen to model the

injection of an axisymmetric, monoenergetic beam of zero emittance. The non-zero emittance effects

can, however, be included in a straight-forward manner but requires the injection of a very large

number of particles to sample the initial velocity distribution. We assume that the beam has an uni-

form distribution i.e., (r, (' 0 ) = I in the range 0 < APO < 2 7T. We will consider two different forms of

the transverse distribution function o- I(r 0 ,0 0) depending on the mode of the injection of the beam.

When the beam is injected into the steady-state circular orbits, we assume a uniform cross-sectional dis-

tribution i.e., (r (ro,0 0 ) = 1/.4b for 0 < 00 < 2 7r and Rmn r0 < Rmax. For injection into eccentric

orbits, we use the distribution assumed in Ref. (7)

(,r (r)cc I .1 (59)
r11  P, P, e V0  ro

___ -2m_ - In-
H- 2mor( 2m(, In (r 2/r1 ) r,

for r, < r,, r,,,, and uniform in N, in the range 0 to 2 7r. In addition, we have to specify the applied

d c %oltage ,. the beam current I,. I/,) = eV4 (beam energy). P. (initial axial momentum) and P,

(initial angular momentum). Sometimes, it is more convenient to specify ,r = r t,r, t = P I/P.

and r,,,,, in stead of //I. P., and P,,. In the nonrelativistic case, the following relations hold between

- these two sets of parameters as derived by Burke et al' '

= r..... In(r/ri) IT -I

V- = i, Ht ,, - P. = 2mi,/ (I + c, (60)

1 -, t e +, r., Inr

Inr rr I - Ir

1 12[%



In the limit n - I (i.e., circular orbits) the term 0 Here P, is the magnitude of the

transverse component of the momentum.

The neglect of .he space charge effects can be justified if the current 1b is less than

I, < < 2 7rr0  cS: V °

In (r 2/rl)

so that the maximum electric field of an annular beam of electrons is small compared to the applied

electric field. A restriction also applies on the bias voltage V. To avoid the break-down condition,

r, l[ < Er Ir- 100r, (in cm) In-(kV), where Eb, (- 100 kV/cm) is the break-down field. For a
rl rl

given r2, the factor rIn-- attains a maximum value of r, when In- = I (i.e., r1 = r2/2.718) lhc
rl r i  (ie ,r = r,2 71 ) 1le

rotational frequency 11,, of the electrons in circular orbits should satisfy the condition

< l, rI < -- 2.i12 (GHz). Hence r, is \,er'

7Tr 2 TT r,,4rn 1 ' 2~ 7T ~ rh ..%/P (in cm)

small for high frequency operation. As a result, V0 (and H0 in Eq. 60) will be small unless the ratio

r2/rl is large. For example, r, < 0.00364 cm for f, = 35 GHz and r2/ri > 8.5 x 10'' to get I _ -- It

kV. Such a large value of r2/r 1 , however, decreases the overlap integrals between the electron orhits

and the transverse mode structure of the radiation field with a consequent reduction in the interaction

strength. Thus, high frequency, high efficiency operation of the orbitron amplifier in the fundamental

mode is not feasible. A larger value for r, can be utilized by operating at higher harmonics of 11, and

higher order radiation modes but a slotted inner conductor i.e., magnetron-type structure "ill Ic

required to increase the interaction efficiency. The slotted wave guide structure will be discussed inl i

subsequent paper.

We now show the results of our calculations for the two lowest order modes, namely 1/l, and

TEM. We first consider the TEi, mode propagation with electron injection in steady-state Circulir

orbits The evolution of the waveguide mode is shown in Fig. 2. The frequency of the wave ,

t,.,/cA:, =I 0)6 (2.317 Gllz) and the input power is 0 01W. The inner and outer radii of the conduttoi,,

irt. rcspcttively. 0.2 cm and 4 0 cm. The cut-off frequency t,,,,) is 2.186 (Ill. The initial radius . i,,

()f the ,electron beam is taken as 0.426 cm and the position (t,.'I..*) were chosen by a 10-point (iu lusnii

weighting. The d.c. voliage 1' between two conductors is 53.7 kV. The beam voltage 1" = 32 5 kV ,
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found from Eq. (O) for a = 1.5 and (r = I. The beam current /h is 0.5 A and the beam power

P, = 16.25 kW. The growth of the wave mode is approximately exponential after an initial transient

region k,,- < 30. During the linear phase of the interaction the growth rate |" I d a1, is 0.16
li. dz

dB/cm, and an increase is observed prior to saturation at A,: -- 124.0. The radiation power at satura-

tion is 1008 W for an efficiency of Yj - 6.2%. The electron bunching is very weak in the orbitron. This

is seen from the simulation of the distribution of the electons in real space as well as in momentum

space at various axial positions. The radiation power grows mostly at the expense of the potential

energy of the electrons. The particle-, move to lower values of r causing an increase in the orbital fre-

quencv. As a result, the electrons fall out of resonance quickly and the power saturates at a low level

yielding a small efficiency.

The efficiency at saturation (Yjp,) versus frequency is shown in Fig. 3 for different values of

,, = 51.5. 53.7, 56.0 and 59.0 kV with the other parameters being the same as in Fig. 2. The beam

voltages corresponding to the j;,-ve valucs of the d.c. voltage are respectively, 31.19, 32.52, 33.92 andI, E j7 kV. In curve (aZ o2 Fig. 3, the beam line intersects the waveguide dispersion curve at two fre-

quencies resulting i t broad-band response. The bandwidth at half-maximum is about 10"/. The other

three curv,:s represent below 'grazing condition' (beam line and dispersion curve are tangetial). The

peak efficiency attains the highest value ( k .6/ below grazing at V 51 5kV. The efficiency--
decreases very rapidly to zero as V,) goes below 51 5 kV For 1, > 51 5kV also, Yj decreases hut slowly

to 5 4",, at ,, = 59kV. The bandwidth, however, increases ais rises above 51 5 kV Although. -)

increase, as the beam line moves below grazing, the grov, th rate decreases as can be interred from Fig

4 where the interaction length corresponding to i,, is plotted as a function of frequency for the \ari-

N, ous cases considered in Fig 3 The efficiency was not calculated for I , > 59.0kV. since the beam line

intersects the backward wave region of the dispersion curve These charicteristics of the orbilron are in

.?

c ommon with the other List wave de%ices such as gyrotron and [ H:

I he 'variation ( if' the efficienc vith beam energy is shown in Fig 5 where -q versus frequenc is

plottred at different values t Io lie paralie ters ,,*I ar.r and r,, are chosen such that the heam line i,

ihov'c ir,,i/ing in e ch case lhc effi~ enc , i,, not a sCnsiti e function (it the bcan energ , 1 he efi-

cieric increases from, 4,/, to 6/ asw s, In1creases from 10 k% to 06) k\

14
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We now turn to the case of the TEM mode. In this case, the numerical simulation models an

electron beam injected at :=0 into elliptic orbit with eccentricity or = 5. The complete spectrum of

efficiency versus frequency is shown in Fig. 6 for two values of V, 10 kV and 10.64 kV. Other

parameters chosen are r, = 5.0 cm. r, = 0.05 cm. 1 = 13.5 kV, I4 = 0.5A.a = 1.5. The input signal

power is 0.01 W'. The outer turning points for the two values of Vh are found from Eq. (60) to be

r,,,. = 0.496 cm and 0.577 cm, respectively. The peak efficiency =- 5.04'% with a bandwidth of

3. 5",, The frequency (w..,k) for peak efficiency is a sensitive function of the beam voltage as seen

Irom Fig o where w,, ri/c shifts from 2.075 to 1.775 as Vh increases from 10 kV to 10.69 kV. The

grow th rate at ,)r,,( = 2.075 (1 952 (tl) is Fr, = 0 52 (0.9 dB/cm).

The efficiencies of the TE11 and TEM modes are comparable but the bandwidth is larger for the

TE 11 mode. The growth rate, however, is higher for the TEM mode. The TEM mode has the disad-

vantage of haing no cut-off frequency and resonant interaction occurs with both forward and backward

* waves. Special methods"' have to be adopted to suppress the backward wave oscillations.

The bunching of the electron beam and the efficiency of the interaction may be improved greatly

b. using a slotted inner conductor' 2 (i.e., magnetron-type structure) in the coaxial waveguide. The

large gradient of the E-field in such a structure may focus the axis encircling beam to the decelerating

region Ol the radiation fields and maintain bunching over a longer interaction length. The slotted struc-

ture has the further advantage of operation at higher harmonics of the orbital frequency.

IV. St NIMARN AND DISCUSSION

,ke have developed a self-consistent three-dimensional theory of the orbitron maser in the amph-

Icr .oniguration with an axially injected beam in a coaxial waveguide with circular cross-section. The

thcor , has bcen de ,eloped for all modes of polarization (TE, TM, TEM) of the radiation field and for

clc. tron Orhit, wAith arbitrary eccentricity. The saturation efficiency of the orbitron in its sinplest form

i" " d to, hc small. The efficiency (q) for the TE 11 mode is about 6"/,, with [, = 53.7 k%. K 32 5

\ ind 5. 0 ,.\ while the growth rate in the linear region is 0.16 dB/cm. The efficiency decreases to

4 "; , a -,wer ' ,;aC, of V., = 15.7 kV and [P = 9.33 kV for a growth rate of 0.14 dB/cm The effi-

cione.. t',r It-M mode ci comparable to that of the TV mode but the growth rate is higher For the

* 15



TEM mode, 4.0% with V0 = 13.5 kV, Vb = 10kV and Ib = 0.5A. The growth rate is 0.9 dB/cm.

The TEM mode, however, has the disadvantage of having no cut-off frequency and resonant interaction

leads to excitation of both forward and backward waves. In the case of the TE or TM mode, the physi-

cal parameters can be chosen so that only forward wave amplification occurs. Careful design will be

necessary to suppress the backward wave oscillation in TEM mode.

Since the bunching of' the beam is very small in the present form of the orbitron amplifier,

methods have to devised to improve the bunching and the efficiency of the interaction. The use of a

slotted inner conductor may enhance the bunching due to focussing action of the large gradient in the

E-field in such a configuratioon. Another way of maintaining the beam-wave resonance over longer

interaction length is to taper the inner conductor i.e.. reduce the radius along the axis so [hat orbital

frequency of the electron remains constant as its radius decreases due to loss of energy

The results in this paper have been calculated for frequencies in the range I (Jll to 10 Gllz by

considering the interaction with the fundmental orbital frequency With an axiall, injected beam. the

interaction in the fundmental orbital frequency is not suitable for the generation of high powrer, high

frequenc. radiation because of two contradicitory requirements. The radius of the inner conductor

should be %ery small for high frequency but a larger radius is required to keep the electric ficld below

the breakdown limit when a high d.c. voltage is applied between the tw o conductor,, Iligh Irequcnc,

radiation ma, be generated bh utili/ing resonance with the higher harmonics of the o)rht,i trCquerhkN

This may he achieled either by using eccentric orhiis in "smoth hoic' toa\il %,acguide otl b using

circular orbits in a coaxial guide with a slotted inner c(;nduct or In the first method, the eftienc\ is

not e pected to he higher then in the fundamental An enhancementl of ellltltL T i, Cslr.ted in the

j, rtsecond method for reasons stated earlier lhc second altern.iti\c %ill be in estigi ,lg MAtl iL trc puh-

A(KNON I.IEI)INI'NT
,, J

I he .JL i ) r s i r :L ra 1 CftL) I ) i k I Pa ~r ker ain d I r Pa r~ P k Iti r nia n~ hIn 11t iI i is uo' ts Nloo1n I he

\A,,)rk " ,i, stjjljptr',-! , illh ' ()1ilt.. (d N a\,,dl R c , l h
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