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Lagrangian Multipliers and Superfluous Variables

1. Introduction
This paper uses superfluous coordinates and the "constraint jiggling"

approach (usually introduced when performing displacements violating con-
straints in order to compute the forces of constraint) to develop a new form for
Lagrangian Multipliers. As a part of the development, this paper generates
unified equations combining a new variant of the Euler-Lagrange equations with
a new closed form expression for these multipliers in terms of the superfluous
coordinates and the boundary conditions. These results elucidate the mechanism
by which the constraints determine the Lagrangian Multiplier, and their role in
the Euler-Lagrange equations with constraints. This approach facilitates the
computations for the following reasons:

(a) Finding the inverse functions requires the solution (at worst) of a system
of n equations in 3s coordinates, where the 3m-m independent coordinates
are treated as known constants and no derivatives are involved. Once
done, the dependent coordinates xn,,. , z. and their derivatives can be
replaced in the constrained form of the Euler-Lagrange equations derived
in the paper by 1, ..., 9. and their derivatives, so these equations will now
contain only the independent *.n-m coordinates and their derivatives. The
standard treatment requires the solution of a system of 3n differential equa-
tions and m algebraic equations in 3n+m variables.

(b) Once these Euler-Lagrange equations are solved, the Lagrange Multipliers
are obtainable without further solution of equations.

(c) The inversion can often be performed by inspection, as is the case in the
example cited in the paper.

(d) A good choice of coordinates may trivialize some of the m equations when
computing the inverse functions.

2. Statement of the Problem
We assume that there are m particles traveling in 3-dimensional space, sub-

ject to m smooth independent holonomic constraints
l, ',• ,#h;~ c, for a , 1-.. ..m()

We treat this problem in the 3s-dimensional configuration space of the ,n parti-
cle system, by concatenating the m s-dimensional position vectors into one vec-
tor in R". Since the constraints are assumed to be smooth, the constraint force
corresponding to constraint surface
I, • • • X*z.At-C.
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must be co-linear with

V&1- s. - - -E-(X1. -3.;t) ,

where t is the k' canonical unit vector in R n. Therefore, the total constraint force f
must be a linear combination of the f..

We also assume that the constaint forces ( and gradients ) are locally linearly
independent along the trajectory of the system in configuration space.

Note that all vectors in this paper that do not involve time will be R ' dimen-
sional, whereas vectors that do-involve time will be R' * dimensional.

3. Results to be proved
The following discussion will:
(1) Derive a new expression for the Lagrangian multipliers

[a [O L 8L 0,I

where the uriy, ... , v,,.+, ... ,.-3;t) are the inverse functions
of the m constraint functions f.(z,, ... , Z3.;t), where
76MI UZI, ... ,s;t), for a 1, ... , m.

(2) Derive a new variant of Lagrange's equations, using
the superfluous coordinates.

(3) Show that the xp(t) are components of a generalized
constraint force in RU.

4. Finding the Dependent Coordinates and Relating them to the
Independent Coordinates

Let (z, ... zs.i) be an arbitrary point of R3, +. We next want to find the
dependent coordinates, and show that we can relate them ( in a neighborhood
of (z, ... zsL) ) to the independent coordinates. The dependent coordinates
are also referred to as " superfluous " in some of the physics literature. We
have assumed that the m constraints are independent, and therefore have
assured that there are 3n - m independent coordinates. We will intentionally
remain vague about the exact meaning of "neighborhood" in R3 8, but a good dis-
cussion may be found in the first cited reference.

Note that while it is usually possible ( discussion of "usually" deferred ) to
relate the dependent to the independent variables, this can only be done locally
( therefore the "neighborhood" ). Variables that are dependent in one area
could in principle be independent elsewhere. In any case, the functional expres-
sions relating the dependent to the independent variables may only have local
validity. In the examples, it is shown that in some cases, this locality is not
much of a problem, because the neighborhoods are really enormous. The paper
will generally assume some neighborhood N in which the discussion takes place.
The Inverse Function Theorem' provides the necessary conditions for the
existence of the m dependency relations ( the "usually" mentioned above a and
for the existence of neighborhood N.

2
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We start by defining a function that is a set of 3n coordinate transformations with
time as an added coordinate. We next show that a certain determinant ( its Jacobian )
is non-zero in a neighborhood of &jr.... .. ). This condition is required by the
Inverse Function Theorem. This theorem will then justify the existence of the inverse
coordina transformations and the appropriate neighborhood N.

We pick a point z.. and we assume that the w constraint functions
f.rA x.....s.:t) for a -1.... m are independent, i.e. have gradients 'f . .
which are linearly independent at the point. Hince the matrix

0/us "'" urns

i t-, "'" 23a

hu m independent columns ( or equivalently has rank m.
By relabeling the variables if necessary, we may assume that the leftmost m
columns are linearly independent, so that

f Of 0~i0 _ ... 5Z_..

dot ... ... ... 004.
0. O f. ,

Since the determinant is a continuous function, we can rind a neighborhood
of (zl,. . . zs.;L) in which the determinant is non-zero. In other words, we have
a neighborhood of (z,... zs.;L) in which the the leftmost ,, columns of the
matrix are linearly independent.

We now define

. . . ...... Is.;t)
I==,. . , ,;t) _

Fx,. X.t M .I.(Z,, .'' 3 ,.;0).

where

( .. . , ;t) " 2J. for " m + , . ... 3n.

3



The Jacoblan of F is the (3*+1) by (s+1) determinant

Of1 t Of l OfI
" t Of Of

0z 0
dot s f -det .......... . o.

a s, a s$. a= t O f. . . O f. .

0 .. 0 1 last ... as.

Therefore the Jacoblan of F is non-zero in the aforementioned neighborhood of
( , .. Z ;L).

Define .- f.(si, .... x 3 ;t), for a - 1,.... m.
The Inverse Function Theorem now allows us to conclude that there are 3n+1
functions

s(yl, • ,u-.,g. , ... ,s;t) for. - 1 3%+

1) Possessing continuous partial derivatives.
2) Defined on points (11 ... 1 ,oz,..1,... ,::6;t) in F[N], the image of some

neighborhood N of (z,, . .

In addition, these functions satisfy the important ( inverse ) condition
I.(l ,( 1 . ;t) , . . f e((= , . .- , .3 ;t), X. . , • -• . . ;t ) - .

for a = 1, ... ,3*+1, where zs,, - t.

These functions are the required .inverse transformations, and will be ise'l
extensively in the rollowing sections.

Recall that f.4t,s.,;t) - c, tora- ..... n, due to the constraints.
Therefore211 - th(CI, . . .. 9mw+1, • S3•0=,;) - #6(Z. + ., - ,;t ,

for k<m, Zh depends on x.+ , 23

o [for k>m, g, is the projection whose value is z,'

These observations are crucial to the rest of the argument.
Note that since the gi functions associated with the independent coordi-

nates are projections, only the m functions associated with the dependent coor-
dinates must be found. Note also that these functions may sometimes be found
by inspection, as may be seen in the example cited later in the text. Even when
these functions must be derived by solving equations, the 3n-m independent
coordinates may be treated as known constants, so only an m x m system must
be solved. Lastly, a good choice of coordinates may trivialize some of the
remaining m equations.

S. Path Variation and Coordinate Independence

The next argument depends on Hamilton's Principles. We will use
Hamilton's Principle in N to obtain generalized Euler-Lagrange equations for
the x particle system with the stated constraints.

4



Recall that
1.z.m +,, . .,so) for am w ... ,,

so z • •, z are functions of the independent coordinates z. , .... . .

We define

,, L(i,.. , = ,,,, ,o ., ,;t) P • zs.,,, , 230,41+P, , r ;t).

, a#.
Also note that or,- "- ozj, and that the path variations in Hamilton's

Principle satisfy the condition

iz -,L (SZ,) for i - m+, ... 3

Analogously, we define 6j. - so we can compute that
,,.._, (,1.)

[! V&o. + -3. &1i 01 dt 7 Li- 8Lz

3 a , d 30

We now use Hamilton's Principle on LI, for points (2,+t, ... ,zs,;t), where
(S, ... , zs.;t) is in neighborhood N.

0mifdt L (z,..,, . , Z3 .... ,3;t)
t I

-dt O---o.+ 9L6--' + -, JL 6 + dL 6 .

-fd 1 E- -4, E -;~

ow + -r * @1-! . oi

82 L 3% aL 3L a
fdt L-F,-r,-xy+ --. x+ , -6:

69 jux ., j

t I' *L 3a~ alu 30 da ~, L

82 I aI 2 -
+ -- ax.. L.+

+ 0 DL

5
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We now recall the following observations:
for j -, m+1 ... ,3n

2) 5l,} - 0
3) 6z'(tg) - 0.

We use the above observations while integrating the i term by parts in the
equation preceding the observations to obtain:

"2 3. 'al. " L f

0J , . Ozj. E _2tL

oai azi D A aTj .j.

N e. t'or - + I +i L .E~~jm A~ aj ax, O..,8z* it a Dxj it, DiJJ

e 8L d e D a rNote that the term E-- - ivcancels out, and we now have the equality
.li dt O x,)

1omfd 0+ 1 0- at 6 JJ zti a dajJ

Now the s fr j - mx1 . p. .3 are independent ( while the 6x... Eaw
were not ), and we ma conclude hat for points in N

aL _d (.LL) I D L -~ (d L llipfr. 0 forj- =m+,. .3n.

We will now use this equation to motivate our formula for the Lagrangian Mul-
tipliers and to derive the usual expression for the Lagrangian Equations with
constraints.

6. Deriving the Expression for the Lagrangian Multiplier
Let us rewrite the previous equations in the form

d ~ ~ D ']_LL 0 L IL~7t a .. a +L EI.[L1- 2 -- 0 (2)0-i Z+ ~[D. ax Dzi, x

forj - m+1,... ,3n which is valid for points (z,, ... , 3 ,;t) in N.
Now let

~~~~~~~~~,, ( 1 , . . s, ; , , ,( ,. ,; ,, , .. ,= ;)
] i I ('rS ;tI , .ZI .3;),m I . ,mz. or;t-)

Therefore w._ -0, for j - m+1, . 3n,

since no change in z, affects the value of G,.
Also, recall that f f xt, .,,;), for a = i, in.

6



It follows that

80 . =- 8gf fp a .

or- - -, - -
8,, p8 8 i8a =. 0_1 f axi/'

Combining this result with equation (2), we see that for j - m+1... , 3n

't a, j- ax, dt gj , a X , I
(&aL~ d(L taga

E 't f, OL [ OL -L &. I- 9 3
"-II I I a

So if we define

X'OM -, 0 - J ' ..,. (4) ,

we note that xp(t) is the yo component of the generalized force in coordinates
Ni,.., i corresponding to the m-dimensional force ±- [ - in the

dt (

.t.-z coordinates. Recail cliac r, a . .. :re -.he diependent oordiiate I.e.

the coordinates that are functions of z,,,,... z 3. due to the constraints).
We now summarize the results of the last two sections by combining the

equations for the Euler-Lagrange equations and the multiplier equations:

3- 8L 'j L Ig ap X"' o I,. m

t a -l, a , - .... - 0 for - +I .. 3

7. Interpreting the Lagrangian Multiplier
We can interpret the meaning of d. f -A' by appealing to a basic result in

Lagrangian Mechanics, if we assume smooth constraints and conservative forces.

Recall that if .. q-,)., ,-t). 3 are the components of the total force on
particle q, then 11 is the total force in configuration space, and we have 6

d8 k.fork -1...3n, (6)

where T is the kinetic energy.

7
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Now Q* - F + R., where Fb is the k" component of the 3n-dimensional external
force and Rb the k'h component of the 3n-dimensional smooth constraint force.
We assumed conservative forces, therefore there is a potential V such that

0v V

We proceed to define LmT-V as usual, so by (6),

dt 7.-b L--m R, forkI,. .. 3n.

Utilizing this result for the first m variables only, we see that
X,(t) - E a,

so the Lagrangian Multiplier appears to be the portion of the total generalized
constraint force due to the dependent coordinates. However, since the con-
straints are smooth, the constraint force has zero components in the directions
corresponding to the independent coordinates, and therefore the components
corresponding to the dependent coordinates in fact determine the total force of
constraint. Note that the equations (5) combining the multipliers and the
Euler-Lagrange equations have the constraint force on the right hand side.

S. Showing Multipliers Satisfy the Usual Constrained Euler-Lagrange
Equations

Now for j - m+1,. ..., 3n and points in N, we immediately have by (3) and the
definition of xo(t):
d .L I- 8L f.t .a 0
dt ai, c , ai $

Now for-i, . .-.,m:
Again, fora-1, ... ,m
I Z(I,, . . . .Z ;t) .... .fa(s1,. .. , ). +,, •••, .;) - X.

so if 0 # a, 21 does not affect the value
of g=. It follows that:
_at a O. %_

P ayO s, -X1

- 6.,, the Kronecker delta.
Therefore we see that

t (ozt aj 0 -1a1d ( a )_ a _L 8L ,1..0."
.' (ALl - [dOl OL, ]

it BJ8, dt as, as,

Combining the results for j and -1, we have

d L OL - ',(a-0, for k-1,...,3.itla j as, ask
This is the usual form of the constrained Euler-Lagrange equations.

g. Relating the Forces of Constraint and the Lagrangian Multipliers

We showed that a I -- - - R,, the ka component of the constraint
dt OZ ask8:

force when the external forces are conservative and when the constraints are

8
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smooth. Therefore, R, -~. ,---_ - XD,,,).~ We can rewrite this in 3n

dt LBk zihJ8 1Za

dimensional space as f= Y (O)lfp, which coincides with another popular

expression for the constraint force.
This expression makes physical sense because smooth constraints

must be co-linear with the gradients of the constraint equations.

10. Example for Constrained Time-Independent Two-Dimensional
Motion

Now for an example of single particle motion in two dimensions. Let a
bead slide frictionlessly along a wire whose shape is given by the equation y=z- .
Let the constraint equation ( in the article's notation ) be

0 - - (,,g) -2-4.

Define

= (rJX2

The Jacobian of F is 2zj, so the Inverse Function Theorem applies when z,#o.
The Inverse Function Theorem only guarantees the existence of an inverse func-
tion but doesn't provide its form. We need a function g satisfying
g(f(Xl,z2),z2) - xi. This is equivalent to finding a function g satifying
g(z2-z,2) , z. Note that

X2-(x2- = X, if X, < 0

where
I if X>0

agn(z) - 0 if z=O
-1 if Z<0

So we define two functions

,(Y,Z2) M gn(.-Y)V,2-3-
94 Y4x2) a agn (Y -h) "V7 , 2-Y11

where Y = f (zl,Z2) -

The reader can easily show that if z, > 0 then g(f(zt,22),2) X

We define the neighborhood N, by N, - {(=Xz2): zj > 0 }, where g, is defined on

F[N] U (V(f:,z 2 ),Z2)1(Z,1 z2)EN}. Note also that g, is differentiable on F[NIJ.
Correspondingly, if zi < 0 then g4(f(zI,Z 2),X2) - Z1.

We define the neighborhood N2 by N2 W {(z1,z2): X < 0 }, where g2 is defined on
F[N21 - {(Y(zl,2),z 2):(z1,X2 )(N 2}. Again, 02 is appropriately differentiable on FINj.

Note that both of these neighborhoods are in fact quite large. In the rest
of this section, we will use g interchangeably for either g, or 92 , depending on
whether (Y,z42) F[NI] or (Y,Z2)e F[N 2].

9
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We see that

1 2( ". --L--mz4--z1-mz 2 .

2'

The reader can show that since x, is the dependent variable

d ( aJ aLTt ai ,,

and

2z,

This is the same value for x as would be obtained from the usual constrained
Euler-Lagrange equation

d _jl __ Lx _X.!L o
dt (aiL JL ax.

with the constraint equation z 2-x, - 0.

We see that for z, - 0, x is undefined, as should have been expected from
the necessity for the exclusion of such points in the definition of N, and N..

11. Example of Constrained Time-Dependent Two Dimensional
Motion (No Gravity)

Let an infinite rod with a pivoted end at the origin of a plane be rotating
in the plane with frequency w about the origin. Let a bead slide frictionlessly
on that rod.
The constraint equations are

Z-rcos Wt = 0 m C
y-rsin wt - 0 = C2.

We translate to the article's notation as follows:
I 0 fl(x 11 xZ2 , 3 ;t) - X1 -X 3Cos wjt

Y2 2 fZ(,x-2,X s;t) - z 2-Xsin wt.
Note that z, and x2 may be chosen the dependent variables, upon examination
of the Jacobian.

We next define
( , , .( , 2,x3;t)

f42(xi,gZ 3;t)
F(x,,x 1 3;t) - X

t

z2 - x2 sin wt

The Jacobian of F is equal to i, for all points (X,x2 ,x3 ;t), so
we may choose N n {( 1,x 1.,Z3;t)}.

10



We need to find functions 9(Yl,Y2,zs;t) and g2(y,y 2 ,: 3;t) satisfying
g1(fl(: 1 ,:2 3z3;t),(il,:,Z3;t),z3;t) - 9(: 1-: 3cos Wt,z 2-XSin wt,z,;t) = Z and

The obvious choices are
g(i,nzs;t) - l+x 3coe wt and

92(l1F2X3t)- fte-:ain wt.
It is easily seen that ol and g2 are appropriately diferentiable
and that the required conditions

!f(S,1(,z 22:';t),12 (l,:,, 3;t),zs;t) - :.

are satisfied.

Since L - Lm +i2), we see that
d [~ OL O" l '-3- m M,

for k - 1,2.
Consequently,

-i 8L -9L 8g,dO .t ail axo, ay,"'

+ ( 8L aL a_

Using the fact that V, m 01 O, we see that
, cos wt. We may ,ise this fact o compute and obtain

,X1(t) = M"3cos it-2mwz3sin wt-nw2cos ,t.
Analogously,

x2 M- d L-j8L 8gi

+ d L a "L 8 2
~da 8i j 2 I: J812

Proceeding as before, we see that
X-2(t) - Mz2:,..,,2.4 ,, so since -

Y2 " C2 0, we have that
z2 - 3sin wt.

We can now show that

'\2(t) - mi 3+2mwi,cos wt
-mW2 

3sin Wi.
Now the usual constrained Euler-Lagrange equations are:

d (L '~ L tf f
dl a il ,J ax x
and

-I- -- X 1 (t)--. 2 ()-' -0dt a ' 2  8:2 8:2 a8 -2with constraints

0 - l-:,3 coe wt and -

0 - Z,-X3Sin Wt

I1.

,- 'i,



The reader can show that we get the same equations for )X1(t) and '\ 2 (t), so theJ
two methods are equivalent.

Note that the functions 11,92 were obtained by inspection, so that the mul-
tiplier values were obtained essentially without solving equations.
12. Example Comparing the Standard and New Approaches

By way of illustration, let's compare the solution processes required to
obtain the equations of motion and forces of constraint for a particle of mass in
moving on a surface defined by the constraints

Ij(Xj1X21xs) M 2zj* 2Z3 = C1 P'0

and

f2X1X2X3 M- 1+Z2 - C

subject to the potential

V(z1 ,Z2,X3) - -kZ2Z2+S

We define new coordinates by y, - f1 ( 1 z, 3  and Y2 - f4 2(,z 3). The
Lagrangian now has the form

L(Z1,,Z 8 1 ,Z''2,z3) _L m( g -Lk (Xa,2+Z2).

It may easily be shown that

d )r I L 7 _7 M in,+kz,

d (aIL __M_ Z2kdt ai2 J ' 2  mzk 2

d [_ a mx3+kZ3

The standard formulation provides the equations

oM- ( mi+kx2 )-XXZn-X2

X1+2 m C2,

which requires solving 5 equations in 5 unknowns.
The formulation in this paper requires the computation of the inverse func-

tions in (say) N, - ((Xl,22,x):1 >.T2, the case for N2 a {(XI,z2.z3)1Z,<Z2} is identical
except for interchanging the definitions of the functions described below.
The inverse functions, obtained by solving two equations in two unknowns are:

M142,a) 2 2

12



and

2
2-(l,12,zs) - 2

Note that z, - jj(yyz3), z2 - gg(y 1,Y2,X3), and

We now compute all first order partial derivatives of g9,g2, and g3 evaluated
at (ej,c2,zS and substitute these values in the new equations, immediately
obtaining the following system of equations:

X_ C2_-4cl/ _ ] C2 - 4 cl/ zs f1

2 2 2 2 - --I0 (mzlj+zj) (CI 2 2 c2 2./X34 c1 /2 fijI (mi 2 ) ( 2-4 / [c 2 2c 1 / 3 fL

o - (mz~kzi) C [ 2 cz]h (mii+kZ2 ) X3 c 2 4ir] +z+.

We see that this approach involved finding two inverse functions by solving
a 2 by 2 system of equations, and then computing somewhat harder derivatives
than was required in the standard case. On the other hand. these equations
contain only z, and its Jerivatives once z, "nd z° and their cieriv.ativps Are
replaced by ,(c,,c, 3) and j, c,,c,,,) and their ierivativws. in .aidiLion (.
Lagrange Multipliers were available immediately. Therefore. we see that soiving
the equations to obtain inverses and substitution of the inverse functions and
their derivatives for the dependent coordinates and their derivatives replaces
solving a more complex system of equations.

13. Conclusion

This paper has related the Lagrangian multipliers to superfluous coordi-
nates, and has derived a new equation combining a variant of the Euler-
Lagrange equation with a new closed form for the multipliers in the process.
Since the new multiplier equation lead to the usual form of the Euler-Lagrange
equations, the new form for the multiplier must indeed yield the same value as
the usual Lagrangian multiplier.

The author feels that this approach improves one's understanding of the
meaning of the multipliers and the role of (and relationship to) superfluous coor-
dinates. In addition, this approach facilitates the computation of the Lagrange
Multipliers by reducing the complexity of the equations that must be solved, as
was the case in the example discussed.
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