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on angle of attack, control surface deflections and body rates. It appears
that linear control methods may be inadequate in these cases. In this
paper we consider several nonlinear control approaches. A decoupling
controller is derived and shown to be well-defined (nonsingular).
Conditions for constraint avoidance are derived. Stability is analyzed in
the presence of estimation errors. A minimum-time control law which takes

constraints into account is derived, resulting in a bang-bang controller.
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1. INTRODUCTLON

1.1 The Autopilot Design Problem

The design of an autopilot to control a short range air-to-air weapon
is a complex process due to the nature of the plant, the control mechanism,
and the available measurements. The plant can be considered to be the
vehicle itself with its associated aerodynamic and inertial properties and
the rocket motor. The control mechanism, an actua;ion system for
controlling movable tail surfaces, is also considered part of the plant.
The measurement devices are assumed to be three angular rate and three
translational acceleration devices. The difticulty in controlling the

plant can be summarized in terms of the following seven factors:

(1) The plant is time-varying. The rotational and translational motion
of the vehicle can be described in terms of a set of noni.aear differential
equations with time variable coefficients. These equations can be
linearized about an operating point, but this operating point will vary
with time. The aerodynamic forces and moments are functions of speed (V),
angle-of-attack (a) and side-slip (8), fin deflections (¢), dynamic
pressure (qgp), and body angular rates (p,q,r). Of these, only fin deflec-
tion and the rates are available directly from measurement. The other
quantities are unmeasured states of the system (e.g, V, @, 8 or equiva-
lently Vg, Vy, Vz in body coordinates) or functions of the states
(e.g., q9 = 1/2p(h) V2, where h = altitude). Clearly the estimation of the

system states is advantageous in developing a control strategy. Knowledge

of the system states will aid in the estimation of other system parameters,
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most notably the aerodynamic coefficients., Another time variable aspect of
the plant is the inertial properties. As the rocket motor burns, there are

variations in mass, c.g. locations, and moments of inertia.

(ii) The plant.is nonlinear in the sense that the forces and moments
are nonlinear functions of the system states. For example, the dynamic
pressure is proportional to the square of the velocity. A more troublesome
nonlinearity for the autopilot designer is the nonlinear nature of the aero-
dynamics. The aerodynamic moment coefficients Cy and C, are in general,

. - functions of a and 8, Mach number (M,) and fin deflection (§). Variations
with angle-of-attack, e.g. dCy/da, affect the airframe stability. If this
slope is negative, the open loop airframe tends to be stable. Otherwise,
the transform function will have poles in the right half-plane. The nonli-
near nature of the Cp curve is shown by the example in Figure 1l.1. Notice
that at low angles-of-attack the vehicle is stable but becomes unstable

between 5 and 10 degrees. Then it becomes stable again above 15 degrees.

(iii) The plant is uncertain. In particular, several aerodynamic para-

meters such as moment coefficients, dynamic derivatives, nonlinear deriva-

tives based on wind-tunnel and aero prediction methods do not have high
accuracy. The estimates of these coefficients can be improved using pre-

vious flight test data, but a certain amount of uncertainty will always be

i
l present in the parameter estimates. This requires use of either robust
t control design which can accommodate parameter uncertainties or adaptive

control design which reduces uncertainties using on-line parameter

estimation.
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(iv) The plant has coupled inputs and outputs. Equivalently, the three

autopilot channels (roll, pitch and yaw) or axes of motion are coupled. The
coupling comes about through kinematic, aerodynamics, e.g., Cra(Mpy,a),
bank-to-turn guidance law and actuator. In classical design, this coupling

is ignored.

(v) The plant can be unstable. As discussed under the nonlinear nature

of the aerodynamics, the vehicle may be stable or unstable, depending on
the operating point. The stability of the plant affects the type of
control strategy, the need for robustness in that strategy, and the
required accuracy of the estimation. In addition to the possible unstaple
poles due to Cpq, tail control yields non-minimum phase zeros in the
aerodynamic transfer function due to the force on the tail, i.e., Cus.
This can be particularly troublesome when using classical design tech-

niques, especially at low dynamic pressure flight conditions.

(vi) The system constraints are significant. These constraints include
the finite bandwidth, slew rate, deflection and torque of the actuator and
the quality of the measurements available from the sensors. For the sen-
sors to be reasonable in cost, the quality of the output in terms of range,
scale factor errors, and nolse will be limited. The quality of the

measurements directly affects the accuracy of the state and parameter esti-

mates.

-3-
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Figure 1.l Nonlinear “acire of Airtrame Aerodynamics

(vii) The design requirements are severe. Due to the short flignt

times involved with the short range air-to-air mission, the required ~eipu:
system bandwidths are high. These short flight times, coupled wizn niznis
maneuverable targets, vield requirements for high missile acceleratio:s
angles-of-attack. These high a's aggravate the problem of nonlinear ic: -

dynamics and coupling.

In summary, the autopilot design problem can be expressed as a proo.:-
of state and parameter estimation, as well as the design or tne contro.

system for a nonlinear coupled mulivariable system with constraints.

1.2 Bank-to-Turn Steering

Current missiles using skid-to=-turn (STT) steering have pertormance

limitations; for example, angle of attack and turn maneuverability are
restricted as a result of vaw/roll cross coupling which teads ©) rotac= - |
airframe away from the desired aaneuver plane. These undesirable torjuc-

increase with angle of attack and 1dav exceed tne trim capadbility (Trans ..,
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1985). Large angles of attack in STT missiles can result in large sideslip
angles which in turn cause large vortex wake asymmetries. These large wake
asymmetries can result in unwanted roll and yaw moments which may be large

enough to exceed the trim capability of the control system.
L

In order to alleviate these undersirable effects, bank-to-turn (BTT)
steering has been developed and has recently received much attention. In
this type of steering, the control system continuously banks the missile so
as to minimize the angle of sideslip and, hence, the asymmetry of its vor-
tex wake. The res. .t of this is that the missile can be maneuvered at

higher angles of attack, increasing its lift capability (see, e.g. Froninag,

1985). BTT designs can reduce weight and drag while maintaining high
maneuverability. Even though BTIT steering appears desirable from these
aspects, there are currently no high performance antiair missiles within
the U.S. arsenal using this technology (Arrow, 1985). Flight tests and
detailed simulation results on BTT steering have not achieved total
response times currently available with existing STT configurations. The
most significant characteristic which impacts the achievable response time
is the dynamic coupling primarily due to nonzero missile body rates and
accelerations (Arrow, 1985). A number of BTT configurations have been
developed. Perhaps the most challenging one from a control point of view
is the monoplanar single inlet configuration in which angle of attack is
restricted to a small negative number or a large positive number. In this
configuration, very large lift forces can be attained. However, the rull
angle may have to be changed 180° in response to a4 command from the

gulidance systeam.
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Current autopilot designs for BTT steering typically utilize linear or
linearized control design techniques. Williams, et al (1985) countered the
effects of nonlinearities by freezing roll rates and using a linear-
quadratic-gaussian design methodology at each fixed roll rate. By
including actuator dynamics, the resulting state vector dimension was 10
for the pitch/yaw channel and 2 for the roll channel. Coupling from

pitch/yaw to roll was treated as a disturbance term in the roll dyramics.

Hardy (1985) performed an autopilot design for a BTT missile using pole
assignment. The equations of motion were linearized, resulting in a fourth
- - order pitch axis model and an eighth order roll/yaw axis model. Dixon and
Klabunde (1985) used linear design methods to develop a lateral autopilot
using gains scheduled as a function of angle of attack. Chung and Shapiro

(1982) used a linear modal synthesis approach.

Another example of the classical approach is the design study by
Rockwell under Eglin AFB sponsored "Interlaboratory Air-to-Air Technologyv”
(ILAAT). These included analytical studies with two different airframes
(Emmert et. (1976, 1978). The initial studies, dating from 1976, employed
a dither adaptive approach for state / parameter identification. By
dithering the airframe in yaw at a frequency in the range of 10-13 Hz, an
estimate of dynamic pressure was generated. This estimate was used to
schedule the gains of the pitch and roll rate loops to maintain the desired
bandwidth, independeat of flight condition. This was successful, because
the gain of the aerodynamic transfer function (r/3;) is roughly propor-
tional to qpy. The acceleration loops were also scheduled as a function ot

q0, although the aerodynamic gain was proportional to speed (V) rather

-6-
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than V¢. Scheduled limits on commanded acceleration were used to limit
angles—of-attack and side-slip. The dither adaptive approach had the
advantage of requiring no interface with the launch aircraft and only two

accelerometers.

In a later design, (Emmert et.al. (1978)) the dither adaptive approach
was again employed, but a velocity estimate was generated based on an added
axial accelerometer. A rough estimate of o and 3 was also developed. The
velocity estimate assured closer control of acceleration loop bandwidth and
a more linear acceleration loop gain schedule. However, the dither adap-
tive design has a number of shortcomings which can be overcome with modern
control approaches. First, the bandwidth of the system is limited by
system nonlinearities and non-minimum phase zeros of the aerodynamic
transfer function, particularly at low dynamic pressures. The zeros are
also functions of flight condition, thrust level and c.g. location and cdn
vary by a factor of l0 in frequency. Secondly, a significant amount of
yaw/roll coupling exists in spite of a high bandwidth roll rate loop. It
is desirable to lower the rate loop bandwidtns which aftfect actuator
requirements, while minimizing coupling between channels. This cannot be

achieved effectively with classical control design which relies on high

B W -V owoEy

gains to produce decoupling. Reduced rate loop bandwidths will also alle-

bRk

viate the computational burden on the digital processor. Thirdly, it is
desirable to improve the robustness of the autopilot and provide some

degree of fault tolerance.

Several authors have utilized nonlinear transformations in flight

control and attitude control systems. Meyer, Su and Hunt (1984) found that

-7 -
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a nonlinear helicoptor model could be linearized via a nonlinear transfor-
mation, since it was in the class of equivalent linear systems (Su, 1982) .
Dwyer (1984) derived linearizing transformations for the rigid body atti-
tude control problem and solved several particular cases (rest-to-rest and
detumbling) using linear quadratic control theory. One problem with these
approaches is that control and state constraints become generally more
complex in form and are not easily handled. Thus, if constraints are taken

into account, these methods tend to conserve complexity.

Decoupling is another technique which leads to nonlinear controls. In

BTT steering, the kinematic and inertial coupling of the roll and yaw

systems during combined pitch and roll maneuvers is significant. The
problem is to maintain a small sideslip angle, and one way to accomplish
this is to use cross~feed signals between the axes to decouple the yaw and
roll control axes. Froning and Gieseking (1973) used decoupling for a
linear BTT model. Reed, et al, (1985) developed a noninteracting
controller for a BTT missile which decoupled the roll, pitch and yaw axes
and used simulations to study the performance. Their feedback law was
based on a quadratic performance index. Unfortunately, decoupling also

tends to conserve complexity.

Solution of the general optimal control problem in missile autopilot
design seems intractable. The inclusion of Euler angles to include body-
fixed constraints in an inertial formulation generates a tire-varying,
nonlinear two-point-boundary-value problem which appears to make a real-
time solution impossible with current cumputer technology (Gupta, et al,

1981).

-8-
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1.3 Nonlinear Control Decoupling via Feedback

The missile dynamics are nonlinear and it is very desirable to consider
control designs that apply to nonlinear problems. Pointwise linearization
followed by gain scheduling is the most common technique for coatrolling
nonlinear systems, but it 1is not very effective for highly maneuverable
systems which rarely operate around a steady state condition. One of the
most promising techniques for nonlinear control design is based on the use
of nonlinear feedback in such a way that the closed loop system has the
desired behavior. For missile autopilot design one would like to achieve
fast decoupled response between guidance commands and acceleration outputs
so that the autopilot would follow the guidance commands accurately.

Notice that with 3 control inputs, one can decouple only 3 output channels,
The most appropriate ones for missile autopilot design will be angle of
attack and sideslip (a, 8) and roll (9), which are closely related to pitcn

and yaw accelerations for a BTT missile.

The problem of control decoupling via feedback together with the clo-
sely related problems of disturbance decoupling and invariance has arisen
in many engineering applications, including missile and aircraft control
problems. Since Rozenoer's (1963) initial work, the subject of control
decoupling via feedback has been extensively developed, and a reasonably
large body of literature currently exists. Some papers which have been
important milestones are Wonham and Morse (1970), Tokamaru and Iwai (197.},
Majumdar and Chaudhury (1972), and Isidori et al. (198l). In addition t»

this theoretical work, several applications to problems of aircraft coatr..

-9~
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have been studied including Singh and Schy (1978) and work by G. Meyer

(1981) on the design of an autopilot system for the Bell UH-IH helicopter.

The basic idea behind the theory of control decoupling is quite simple:

Suppose there is given a nonlinear control system of the form

x = f(x) + ) gl(x) + u, gz(x)
yi = hy(x) (i=1,2)
We wish to consider modifications of the system dynamics using feedback

controls u = a(x) + B(x)v such that

X = E(x) +v, g (x) + v, g, (x) (r.1)
1 =1 2 °2
yi = hi(x) (i=1,2) (1.2)
where
f = f +JL1 aj gj
- 2
81 =3k Bji &;j

The decoupling problem is to find a and B such that v{ controls yj and only
yi. (That is, we want v) to have no influence on the output y; and

vice-versa).

Techniques for finding a and B in the case in which f and the hi's are
linear and the gi's are independent of x are well known and may be found in
Wonham (1970). For nonlinear systems, considerably less is known and
although the beginnings of the theory date back to 1962, many aspects

remain to be understood.

T et A e
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L. Rozonoer (1963) obtained conditions necessary for invariance (i.e.
independence of the output upon the input) in nonlinear system, by using a

variational method similar to the Pontryagin's optimality priciple.

H. Tokumaru and Z. Iwai (1972), and A. Majumdar and A. Chaudry (1972),
independently have applied the variational method used by Rozonoer to
obtain necessary conditions for non-interacting control, for linear time-
variant systems (1968) and for nonlinear systems (1971). A concrete design
for control decoupling feedback for the automatic piloting of a mine hunter

- - boat was given by E. Daclin (1980).

All theoretical work mentioned above neglected the existence of
constraints on controls in virtually every real-life situation (e.g., a
limit on control deflections, acceleration rates, etc). The effects of
such contraints have been studied by D. Hanson and F. Stengel (198l), par-

ticularly for system with two degrees of freedom.

A different approach to the problem was used by R. Su, G. Meyer and L.
Hunt k1983), who used nonlinear transformations to reduce the nonlinear
problem to the linear one, which can be treated by standard methods, as ina
Wonham (1970). The main drawback here is that it is not generally possible
to carry out this type of linearization; there are both algebraic and topo-
logical obstructions which are essentially the same ones that are encounted

1f one were to try to do nonlinear decoupling directly.

An important application of control decoupling theory to the problem ot

aircraft dynamics was given by S. Singh and A. Schy, (1980). These authors

-11-
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derive a feedback for a simplified aircraft model in which certdin aerody-

namic forces had been ignored.

l.4 Summary of Report

In this report we consider the general problem of developing efficient
attitude transfer maneuvers in response to guidance commands, in order to
meet desired translational accelerations., Throughout, we consider a very
general missile configuration and develop techniques which should be appli-

.- cable to a wide class of BTT missiles. The problem formulation includes
nonlinearities which are significant at high body rates and at high angles
of attack. In addition, constraints on angle-of-attack, control surface
deflections and body rates are included. Using several reasonable assump-
tions, we study the problem analytically and develop several nonlinear
control strategies using both decoupling control and time optimal controi
methods. Decoupling controllers are presented using two control modes; ()
body rates as controls, (2) control surface deflections as coantrols. In
all cases, the controller is nonsingular if the missile is not in a stalled
flight condition and not on a constraint boundary. Explicit conditions for
avoidance of constraint boundaries are derived, which may be used to set
key autopilot design parameters such as time constants. The controllers
are shown to be quite robust to estimation errors. A ainimum-time

controller which includes constraints on both controls and angle-of-attack

is developed and an example is given.
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2. EQUATIONS OF MOTION:
We make several assumptions in order to obtain the equations of motion:
(i) the missile is a rigid body
(ii) the body axes are the principal axes of inertia
(iii) the principal moments Iyy and I,, are equal

(iv) gravitational acceleration is neglected.

The assumed inertial properties simplify the analysis in the sequel.

The design methodology holds for arbitrary inertial properties, however.

With these assumptions we have:

Translation
m (U + qw - £v) = Fx (2.1)
m (v + ru - pw) = Fy (2.2)
m (w+ pv - qu) = F, (2.3)
where:

Fx» Fy, F; are the external forces, due to thrust and aerodynamics,

resolved into body axes

u, v, w are the inertial velocity components, resolved into body axes.
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P, q, T are the body angular rates, in body coordinates

m is the vehicle mass, assumed constant

4, Vv, w are the time derivatives of u, v, w

Rotation
L= Iy P (2.4)
M= Iyy q - (Iyy - Ixx) rp (2.53)
N = Iyy r + (Iyy - Ixx) qp (2.6)
where:

L, M, N are the resultant moments about the vehicle center of gravity,

resolved along body axes

Ixx» lyy are the principal moments of inertia (Ixyx < Lyy)

5, &, r are the time derivatives of p, q, r measured in body

coordinates

Since we will be principally concerned with controlling the angle ot
attack (a) and angle of sideslip (8), it is more convenient to work

directly with them. Using the definitions

tana = w/u R

tanB = v/u (2.8)
we get

- F -

a =q + AL Fxstox _ (p cosx + r sina) cosa tang {(2.9)

mV cosd
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Fycos8 - Fysing

mV cosa + (p cosd + q sing) tana coss (2.10)

fa-r+
where V is the velocity:
v = (uz <+ vz -+ wZ)l/Z

The terms involving F,, Fy, F, are the rates of changes of flight path
angle which will be much smaller that the body angular rates. Therefore,

we will neglect them; the resulting equations are

a =q - (p cosa + r sina) cosa tang (2.11)

B = -1 + (p coss + q sind) tana cos8. (2.12)

The angles o and 8 are shown in figure 2.1.

This figure suggests that if the missile trolls while maintaining zero
pitch and yaw rates (q = r = () the velocity vector rotates in the missile
frame, around the x-axis, thus describing a cone, This intuition is con-
fimed by the following calculation. Setting q = r = 0 in (2.11) and (2.12)

we obtain

tana | cos¢(t) -sin¢g(t) tana(Q)

tanB sin¢(t) coso(t) tanz(0) | ,
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Figure 2.1 Definition of Angles for Monoplanar
Missile Configuration (from Arrow (1985)).
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)
t .
L
where ¢(t) = [pdt is the roll in time t. .
0 N
*
1
¢
The moments L, M, N are assumed to be generated solely by aerodynamic for- Al
{
ces. Thus we will neglect, for example, thrust misalignment effects. The
..
assumed aerodynamic moment equations are: /
\l
) M= Mg g+ Mg oMy dg (2.14) :;
N=Npr+ N3y s+ Ng O (2.13) ;
f
where: ,

Lp, Mq>» Np are the aerodynawmic damping coefficients

Lz, Ng are angular acceleration derivatives with respect to »
My is the pitch moment coefficient
Lo, My, Ng are the control moment coefficients

These aerodynamic coefficients are, in general, complex functions of Macn X
number, «, o, dp, 9q and op. In this paper, we will generally assume that
they are known functions of their arguments and that the arguments are '

known.

In order to simplify the following analysis we will use the following

notation

-17-
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o

by

9 = (9 x) x]T y
I.f

w=[pqr)T :“
!

4

"

-

u = [65 8q 0p]T

R

where x| = tan a, x3 = tan 3.

Then the equations of motion may be written in the form

O = Kg w (2.16) %

w=Fy 0+ F,w+ Bu (2.17) '

where

“X] X2
-(1 + x2)

LT Sl

(2.19)

) -,

L v v »

o ST P

-
-

(2.20)

-

USSR ot g% o g

‘I-.D 'l " ~
" Ay

)
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N

s

- ~ e

Mg = Mg Lyy a/tan @, Lg = Lg Iyx s/tan 3, A

Ng = Ng Iyy 8/tan 8, Lp = Lp Ixy, Ay

- - My

Mq = Mg Lyy, Np = Np Iyy :.'.‘

_ -

Ls 0 0 \

- Y

B = 0 Mg 0 (2.21) .3

- bt

0 0 No J

o . . . >
where Lg = Lg Ixx, Mg = Mo Lyy, Ng = Ng Lyy, and k = 1 - Ixy/Iyy 2
14

In designing control strategies it will sometimes be useful to keep in A
mind the overall behavior of the attitude, in particular the overall angle- 9

of-attack, for stability reasons. Define (see Figure 2.1l)

aTZ = tanla + tanls (2.22)

which is the magnitude squared of the overall angle-of-attack, since i anu

8 are measured in orthogonal directions. Then, from (2.16) and (2.18).

S %y e vy Ty A

-E%- (ap2) = 2(l+tan2a + tan28) (qtana - rtans) (2.23)

I3
" Ve

so that

>0 ; q/r > tans/tanaz

3
E%— (GTZ) =0 ; q/r = tans/tana (2.24) :
<0 ; q/r < tans/tana X
L
bt
Q
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3. AUTOPILOT OBJECTIVES

The objectives of the autopilot are to attain commanded accelerations
along the body y and z axes in a minimum time, without violating a set of
constraints., This is accomplished via an attitude transfer maneuver, sub-

ject to certaln constraints:

(Cl) the control surface deflections and deflection rates are subject

to hard constraints, due to mechanical limitations

(C2) che angle of sideslip (3) must be kept suitably small; this is a

soft constraint

(C3) body attitude rates are subject to soft constraints, dependent on

actuator dynamics and control effectiveness.
In addition, autopilot design includes the following requirements:
(1) provide dynamic stability for the airframe
(11) body motion should be minimized

(111) maintain sufficient bandwidth to respond to low-frequency guidance

commands but not so high as to respond to high-frequency noise

(iv) avoid resonance with other missile components, including airframe

bending modes, actuators and instruments

(v) achieve time response rapid enocugh to maintain guidance loop sta-

bility in the presence of noise and errours.

‘,'-

e

- -

v -

s 1"{‘f.lt‘;

T AT o o

Vrrrsdid

A5y

"t Y Rt
':Aj:. AM](‘.‘
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These functions must be performed over a wide range of altitudes, Mach
No., dynamic pressure and roll angles. 1In this study we have concentrated
on the generic comstraints (Cl) - (C3), but have also considered (i), (ii)
and (v). The requirements (iii) and (iv) require a specific missile con-

figuration, which was beyond the scope of this study.

The autopilot maneuver is sometimes divided into two separate maneuvers:

1) A roll/yaw maneuver to null the component of commanded acceleration
along the body y axis. This places the commanded acceleration in

the body x - z plane.
2) A pitch maneuver to achieve the desired acceleration.

The roll/yaw maneuver uses a commanded roll angle ¢, which satisfies

tan %’;ﬁ (3.1)

where ay., a;. are the commanded accelerations. The pitch maneuver is per-

formed to meet the total commanded acceleration:

Zq o + 2 8q = (aya + az)l/2 (3.2)

where Z,, Zs are the z axls acceleration coefficients.

Eq (3.2) may be solved for a, given ayc, azc and employing (2.14) to meet
desired terminal conditions (e.g., M=0). The division into two separate
maneuvers 1s often done for simplicity of design. It is more efficient,

however, to combine maneuvers, since this enables us to attain the desired
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attitude in less time in most cases. Throughout this study we have con-

sidered combined maneuvers only.

4. ATTITUDE MANEUVERS USING BODY RATES AS CONTROL

In typical missile systems the actuator bandwidths are much higher
than the desired autopilot bandwidths. Generally, autopilot bandwidths are
5-10 Hz while actuator bandwidths are 30 Hz or more., Bandwidth separation
is usually greatest for the roll channel. Although actuator dynamics need
to be included in detailed simulations, we can neglect them to do an
approximate analysis. Total maneuver times may be greater than one secona;
under these conditions the rate control loop will be much faster than the
attitude control loop so that the actuator dynamics can be neglected. With
this assumption, the vehicle dynamics are given by (2.16) only, viewing .
as the control. The control dynamics are governed by (2.17). By using 4
feedback law we can easily achieve a stable rate loop. The feedback
signals for the rate loop are the body rates measured, for example, by a

set of strapdown gyros. This design is straightforward.

To illustrate a possible design approach, consider the rate dynamics

given by (2.17) with the control
u =ug + Glweg - w) (4.1)

where w. is the commanded rate and G is a control gain matrix to be deter-

mined. By defining 6w = 4 - w., with w. dssumed constaant, we obtain
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E‘:—(Sw)speo+r‘wwc+suo + (F, - BG) Su

If we set
-1

ugp = - B (Fy @ + Fy we) (%.2)
then

4 (sw) = (F, - BG) 0w (4.3)

dt W ’

so that the closed - loop rate controller dynamics are given by F_ - BG.

The rate loop may be uncoupled by setting

FN-BGSA,» (_/‘.:.)

where

A, = diag (l/rp, l/rq, L/ty)

is the desired actuator dynamic matrix. A, must be selected to be within

the bandwidth allowed by the actual lags in the actuator response.

This gives, for G,

D -

-~
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-1
G =B (Fy, = Ay)
by 1
Ly - —
P rp
- 0 0
0 Mg -—1—
Tq
. .- (4.5)
Ms 5
o 1
Np - —
0 S -
0 o
The control then becomes
us=-Bt [Fyu+ Fyw+dy (sg = )] (4.6)

which is nonlinear in both v and w.

4.1 Decoupling Control

Now consider the problem of attaining a desired attitude o(ty) = ..

at an unspecified terminal time t¢ starting from the initial state :()) =

at t=0. We can meet the attitude constraint by picking a time history . (t

such that

- - A e TR . At A Wt S At Rt o A A NN TN N AT e
K .‘Lu‘l,; -‘0,.!.-..0-6-. e !'-‘ ~'$\‘.' ‘\\ . ‘ .o.c...g, \.“- ""\" \ "\ v \“ '~ \ NN \"-‘ N
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[

"

.,

t ':
Af 9(t) dt = 9, - g (4.7) i
¢

t

o ]

Once we have chosen 9(t), the control is calculated as :
‘Q

-1 . y
w=Ks © (4.8) 3

4.1.1 Control Using Constant Rates

If we assume a constant value of v during the maneuver interval, then t

. 1 i
9= (¥ -90) 2
f (409) -~
.
and the resulting control is o
1t )

w = —'t—- K@ (@c - k:'o) (4.1u)
"
f &
1
h
'l
. "

If we let QO = [vy, vq, VB]T then the resulting rates are

p = VQ (Aoll) :
i
1 2 / ]
q = x2 v +—5 | (1+x2) vq - x| x2 vg3 (4.12) ;
- d
4
L = x| vy + —%— X] X vy = (l+x}2) vg (4.13) N
= N
~
where D = 1 + x;2 + x2, N
W

=25-

B R A S R R A TR RNy

oo Py
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d
The body rates will produce the desired values ¢ = v,, T (tana) = vy,

d .
I (tand) = vg or, equivalently, a = vy / (1 + xlz), g =vg / (1 + x2).

Clearly, for tgy sufficiently small, p, q, or r will exceed the capability
of the missile, so tf needs to be selected so that none of the body rate
constraints are violated. I[f we assume that | 9. - o' < n,l tanx. - cana'
<1, | tanB, - tanb’ ¢ ¢ then it follows that the rate constraints are met

if

(1) " < Lf Pmax

(11) me + 1+ 22 <ty qpax (4.14)
(i1i) m + 3 € € tf rpax
Since ppax 1s generally larger than qpax Or rgax and € is generally less
than 0.25, condition (iii) dominates, with the result that the constant -
rate control can be met 1f tyf rpay > 4. For example, 1f rgax = 2 rad/sec,

then tg > 2 sec is required.

We can now make a further simplifying assumption, namely, that 3 = J at
the beginning of the maneuver and the commanded value is zero. With this

assumption x3 = ¢, vg = 0 and the pitch and yaw rates simplify to

Vv,
17 T+x2
r = Xl Vo

which yields, from (l6), il = v,, Or x| = tan i) + vyt., We have, tinally

-2h-
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)
- ~a_ 4. )
q 1 + (tanag + vatl)2 (4.15) :
‘
r = (tanag + vqt) vg N
g
These rates are well-behaved. Yaw rate r is a linear function of time. |
Pitch rate q is always of the same sign. In addition q obeys the differen- §
tial equation ‘ﬁ
4
a = - 2 tana g2 X
- - It
For a BTT maneuver, we would typically find that tana > 0 during the entire "
v
maneuver, so that q would be monotonically decreasing during the maneuver, !
4.1.2 Control Using Exponential Rates
If we set y
v = Ay (9e - ©) (44in) o]
where Ay = diag (1/tp, 1/1q, l/1y3) then the body rates (assuming T, >> 7, h
Ty > Tqr T >> 1) are
w = Ky~ ag (8¢ - 9) (4.17) :
N

and the solution of (4.11) is
9(t) = e~Mgt 9(0) + (I - e~Ayt) o (440 %)

Assuming 9. = (9., tana., 0] T we obtain

e - b :
p = ez (4.19) hY
f@ |\

A

...... SACICR PN A AC RO
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1 tand, . tana
qQ = p tang + (4.20)
2 Ty
| +(tana )
seco
1 tana
+
2 T3
seca
L 4‘(l:aml )
tana tans tana. ~ tana
T =ptana + =T 3+ tan? 3 Ty (4.21)
+ 1 tang
2 Tg

(tand)
1 +
seca

In order to achieve these conditions, it is necessary that the body
rate limits are not exceeded. By imposing these rate limits, we actually

set lower bounds on the time constants. For exdmple, since| ¢c - ;’ < 1,

k|

the roll rate constraint | p| < ppax will be met if 1, > ———. let us
max

assume that during the autopilot maneuver the following constraints are met
| tana' <1
| tana, - tanu' <1
| tand | < ¢

Then the pitch rate constraint will be met it

ne
+ L

T, T < 9max

and the yaw rate constraint will be met if

n 2¢

< Tpax

Ty

-(p" ?’.

-
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where
B G
T Ta TS

Note that T, and 13 have the same effect on meeting the constraints.
As an example, suppose ppax = 200°/sec, Qqgax = fpax = 100°/sec, € = 0.1763
(3 € 10°). Then only the pitch and yaw constraints are active and the
allowable region for (l/t,, 2/t) is shown in Figure 4.1. It appears for
this case that a good compromise solution is at the upper right corner ot

the allowable region (1, = 2.17 sec, 1/2 = 0.676 sec).

A set of less conservative conditions for determining whether the bud;
rate constraints are met is to use the closed - form solution (4.18) in the
rate equations (4.19) - (4.21). If we assume that 9. is fixed and start
the maneuver at t = 0 with v(0) given, then, assuming 8. = 0

t/ta
tan a(t) = e (tana(0) - tana.) + tana.

‘C/Ts
tan B(t) = e tans (Q)

Substituting these into (4.19) - (4.21) yield explicit solutions for p(t),
q(t), r{ct), t>0. Depending on the initial conditions and commanded angies,
q(t) and r(t) may attain maximum absolute values after the start of the

maneuver, However, p(t), q(t), r(t) eventually go to zero exponential.y.

This control concept is essentially equivalent to a predictive

controller in which a specified output trajectory (from the current Jutput

$, 3, 8 to the desired final output) is followed as closely as possibdle,

subject to the system and control constraints. Since the trajectory and

-30-
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control are known in the future (for the deterministie case), it is
straightforward to pick the trajectory (L.e. Ay) so as to meet all of cthe
constraints. In a more general setting, an exponential path may not be
adequate for simultaneous avoidance of constraints and minimum-time
maneuvers so that a more complex path satisfying (4.7) may need to be
congstructed. In this case, some ideas from robotics on minimum-time
trajectory planning under path constraints (see, e.g., Rajan (1985), sahar
and Hollerback (1985), Sontag and Sussman (1985)) may be relevant., An
alternate approach is to limit the controls according to the given
constraints; this yields piecewise nonlinear controls which must be deter-
mined using an algorithmic approach such as Model Algorithmic Control

(Rouhani and Mehra (1982)).

4.1.3 Inclusion of Rate Loop Dynamics

The nonlinear control law of (4.19) - (4.21) assumes that the desired
body rates are met instantaneously or, at least, that the rate control loop
time constants are much smaller than the autopilot time constants. [n an
actual migssile this may not always be true. In particular, since a rapid
autopilot response is desired it may be necessary to use time constants

which approach those of the rate loop dynamics.

We assume a first-order lag model for the rate loop dyndamics in the

form

- = “‘3 (‘)C - W) (420

(cf (4.5)), where w. is the input to the rdte loop. Here, tor simpli-

city, we will use i = (l/r7,) [, where -, 1> the rdte loop time constaat,

-31-
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assumed identical in all three channels.
Then
- . .
QO = e (Kgw) 9 + Kg A, (wc - w) (4.23)
Now we require that the dynamics satisfy
U+ AT+ M(O -0 =0 (4.24)

where A and M are specified positive - definite matrices picked to yield tne

desired closed-loop response. Here, for simplicity we choose

A= 20wy I (4.25)
2
M=uwy I (4.26)

which yield identical damped, second-order responses for p, tana and tans
with frequency wg and damping ratio ;. Substituting (4.25), (4.26), (.25

and (2.16) into (4.24) yields, for the input wc:

2 -1
we = w0¢ T4 Kg (B¢ = 9)

+ [ I - 2%uytg [ - 13v ] w (+.27)
where
-1 3
v = K, PO (Kyw) Ky (4.28)
. ‘)O
A8 w) —= =, U - 3 («¢c = 2), which is a first-order response
-32-
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w0
equivalent to (4.16) with Ay =7 I. A8 1, = 0, w —= ..
The elements of ¥ are

vip = vp2 =93 = 0
vop = p{-x3] / D

+ qlxyxg (D + 1 +x32)] /D

+ t[1-D + x22 (x1x3 + x;2 =~ x32)] / D (4.29)
: v22 = pl=xyx2 (D+1)] / D
| +qlx] D+ (1+x)2)(1+x22) x1} / p

+ r[-D - x12 (l+x3x2)] x3 / D (a.30)
v23 = p{l+x2 (1+D)] / D

+ qx1xp (1+x22)] / D

+ r{1+x92 (1+x1x3)] x; / D (4.31)

w3l = plx2] / D
- qlx)2 (D+x2)] / D
+ r[(x;+x2) 1+x12) + x; (1-x22)] xp / D (4.32)
v32 = pl-x32 (D+1) -1] / D
+ qlx;2xp (1+x12)] / D
+ rlxpxy (~x}2 - x;3 +x2)] /D (+.33)
v33 = plxyx2 (D+1)] / D
+ qlxy (D - x;2x32)] / D

+ r{=2D + x12 (l+x|x2) + x1x2] xp / D (4.34)

Two types of physical constraints must be taken into account here. First,

| the body rate constraints | p| < ppax, | 9| < amax» | | < rpax must be met.

A S R P R B R L L LR TR T
A T I ACA  A  A T RS
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Second, the autopilot dynamics will meet the linear constraint equation
(4.22) only up to a certain value of lws - wl; beyond this, saturation
effects will start to occur. In order to study the effects of constraints
more closely assume that (4.22) holds for | p. - p| ¢ dp,i dc - q| < dq,

Te = | € dy. In addition we will assume, for simplicity, that xp = 0,

which is approximately true for a BTT missile. Then:

2
Pc = P =wg Ta (9c = 9) = 25w0 Tap (4.35)

qc = 9 = (wg T3 cos a) (tana. - tana) - 24wyTaq

- 14 [rp + (2q2 - pl + rl) sina cosa] (4.30)

re - = (wg Tg tana) (¢ - 9) = 25wgTa
+ Ty [pqsecza + (psina - rcosa) gsina] (%.37)
Note that the body rate errors (p. - p, qc - q, rc —- r) depend linearlyv oun
Now we make the following reasonable assumptions which should be alwavs me:
in practice:l Pc -~ @l <1, 0<a<45, 0 < ac < 43°. Then the desired
response of (4.24) 1s guaranteed if the following three conditions are

simultaneously satisfied:
(1)  mug? + 26wy ppax < dp / Ta (4.38)

(11) ”02 + 2600 qpax * (Pmax * rmax)2 /2 (4.39)

+ qpax? < dq / Ta

2
(114) mwg + 2%wp Tpax * 2.5 Pmax 9max (4.49)
+ 0.5 dmax Tmax < dr / 1,

These equations can be used in autupilot system design to set upper limizs

[%

on wgy and ¢, given specified values of tne rate loop dynamic limits (dp,

YUY
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Vg N R

dy), rate loop time constant (74) and body rate limits (Pmax» 9maxs Fmax) -

As a numerical example, a typical missile might have the following para-

meter values: dp = dq = dp = 10 rad/sec, T4 = 0.10 sec, ppax = 5 rad/sec,
Qmax = Tmax = 2 rad/sec. In addition, assume a damping ratio of 0.50. h
\
Then we get the following conditions:
(1) mwg? + 5 wg < 100 4
i (11) wg? + 2 wg < 71.5 :;
(111) mwg? + 2wg < 73
‘ '
T condition (iii) dominates, giving wg < 4.51 rad/sec tj
b\
bA
4,1.4 Stability Analysis .
The decoupling control of (4.8) always exists, since Ky 1s nonsingular. t
Thus as long as ¢ is finite, w is finite. If the constraints are not
violated, then the desired path {9(t) te (0, te¢)} satisfying (4.7) will be Ry
followed with no error in the deterministic case. This is one advantage ot :f
the decoupling control concept and the use of a desired reference path. .
:I
.
1f, however, the state O is not perfectly known, the control will be in I
error and an instability in closed loop may result. In order to study this )
possibility, define the state error as -f
::
- .
e =u -0 (4.41) e
'
P
o’
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where é is the state estimate used by the controller. Consider the expo-
nential rate case (4.16). The resulting control is
w =Ky (8) Ag (9c - 9) (4.42)

Then, to first-order, the closed-loop dynamics are

6 = [ I+ Kg(9) Eg(o, e)] Ag (9¢ = 9 = e) (4.43)
where
3 -1 9 -1
Eg(9, e) = 3% Ko (9) el + 3% Kg (9) ey (4.44)

and e} = X} - x|, e = X3 - X2. The roll error ey does not appear since K.
is independent of ¢. The closed-loop stability now depends on the behavior

of the time-varying matrix

M(©, e) = Kg(©) Eg(9, e) (4.45)

If all eigenvalues of I+M (Y,e) are in the right half plane, then stabi-
lity is assured, in the sense that any deviations from the desired path
will tend to decay to zero exponentially in the absence of future distur-

bances or errors. The driving term -ig e can cause an offset. If e is a

constant then at steady-state (v = Q), v = Vs = e,

If we write M(v,e) in the form

Cgak gk g.% 8.6 gt

- -
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i
M(O, e) = Mj(9)e) + Mp(9)ey (4.46) :
then 4
- o 0 0 ] K
(2 2) (1 2)
x1(2 + x2 x2(1 - x|
Mp(8) = | -xx) - 5 -
o 2) 2 (6.47) :
xa(l + X3 X1 %2 )
'(1+x22) - D D Y
u 1 :
-0 0 0 7 :
: (1 2) ’
X] X X + X
MZ(U) = 1+xl2 ___5_2— - _1_.1_)__2_._
(4.48) .
2 2 .
xp(l - x2 ) x2(2 + x] ) y
X1x2 = D D N
L 4
In order to analyze the stability of (4.43), assume Ay = }/; I. Then X
»
one stable pole is at s = -1/;, corresponding to the roll channel. The
other two poles are stable if the following two conditions are simulta-
neously met:
(1) eTx < 1 + xTx (4.49) p
t
(11) (e1xp = ezx)? + 2eTx < 1 + xTx (4.50) '
[
v
b
where el = (e e3), xT = (x| x3). !

These conditions can be given a geometrical interpretation by viewing -

and x as vectors in RZ (note that they have orthogonal components spa-

« Vg -‘\.‘\'\'ﬁ\'n v e % Ry ’.
o ] e e P e R
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tially). If ug is the angle between e and x then we have equivalent

conditions:
(1) vei Ixl cos 9g < 1 + Iixi? (4.51)
(11) nenl wixu2 sinzee + 2 llel H#xd cosgg < | + ixu? (4.52)

where lel2 = eTe, etc. The most conservative bound on lel for stability
may be found by maximizing the left hand sides of (4.51) and (4.52) with
respect to 9. We find that 9 = 0 maximizes in either case and that

(4.52) dominates yielding

1 + ixl

et < 7%l

(4.53)

The right hand side of (4.53) is bounded below by 1. Thus, the final

result is that stability is guaranteed if lel < l. This is equivalent to

saying that the sum of the squared errors in angle-of-attack and angle cf-

sideslip estimates must be less than | rad?, a condition which should

always be met in practice. Recall, however, that (4.53) is the result of a

linearized analysis and holds only for iel sufficiently small.

The overall conclusion is that the decoupling control law (4.42)
appears to be extremely robust for the dynamical model of (2.16). Now we
consider the stability of the controller of section 4.1.3, which included

the rate loop dynamics. In this case (%.22) holds but the commanded rate

of (4.27) becomes

v s & -

R Y 8

o _ & v s 2R
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X
.’
"
- - A 3
we = wgl T, xel(e)(ec -~ 9) ::
11 - 280 T, 1 - 1,0(8)] @ (4.54) 3
W
Inserting (4.54) into (4.23) and keep only the first-order error teras
yields, .
“
4
. l ~
9+ | 2lwgl + MQ + EQ + QKy MKy ] W :
+ wg? (I + M) (9 - 9)
= (=1 - 20ugl-Q) Kgey - wol e (4.53) :
a ]
where :
L]
0
3 0
Q = x5 (Kgw) 2
)
e — L3
0 0 0 N
~
=| 0 2X|q=X2r  ~p=X|Tr {4.56) :
»
0 p+x24q Xjq-2x3r
b,
- 29 3Q X
EQ Py, e + 3)(2 e) ;
o 0 0 |
= 0 2qe] - rep -re] (4.57) .
LY
0 qer qe) - 2rej
R
I
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M has been defined in (4.45), and e, = @ - 5. The rate estimation
error e, could be caused by rate gyro errors, for example. We find that
the attitude dynamics are driven by both the attitude error e and the rate
error e,., Further, the stability of the attitude maneuver now depends on
the body rates as well as attitude. However, it 1s interesting to note
that the matrix Q, which contains the body rates, appears only multiplied
by M in the dynamics. Thus if rates are small, the system is more stable.
It is also interesting that the rate error e, does not effect stability

- - properties; it affects only the magnitude of the offset from the desired

path linearly.

The steady~state attitude error is found by setting 9 = v = Q in

(4.55), ylelding

O - 3, = -&—37— (1-M) ( Ti“ I1-25001-Q)Kye, - (I-M)e (4.58)

where we have assumed M < < I, or (I+M)~l = I-M. The effect of rate error

e decreases as w( increases and as 1, increases. In normal operation,

w
body rate errors will probably have a smaller effect on attitude offset
than attitude error, since body rates will be measured by relatively

accurate rate gyros.

The analysis of stability of (4.55) becomes complex algebraically and

difficult to interpret. We can, however, study a special case in detail.

Assume that I9i < < | and detine

€ = qe; - rej (4.59)

If we write (4.55) in the form
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¢

. R

O+ g v+ Wgus=d (#e0J) s

then the characteristic equation

(
‘!

sl -1 {

0 ’

= '\

We sI+Ag >

L}
]
>3

factors to the form t
<

(s + ZCmos+w2) (s4 + ajy s + ars? +a] s +ag) =0 ’

kA

i

where :f
:
a3 = 4gug + 3¢ |
]

) v

ay = 2(2%wgy + €) (guwy + ) + 2uwp t

o

a] = wp 2 aj 24

4 ":

apg = W (8

0 0 e

>

It follows that (4.55) is stable if ; > 0, which is true by design, an: s

it A
qe] - rep + Guwg > O (4.581) oo

~

so that stability 1s enhanced by increasing 3 and ., so long as our oo, :
(4.55) remains valid. Note that high body rates will tend to destabiiize ~
the closed-loop system, although this depends on the signs of the body {
1

rates and the errors in estimates of a and 8. This result suggests tha: o
'

\

one could enhance stabilization at high body rdtes by biasing the estimniz- - "
¢)

of a and # so as to keep the left hand side of 4.6l positive. "
\..

N
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4.2 Control Accounting for Rate Constraints Directly

In practice, the attainable body rates will in many cases be the
limiting factor in quickly acttaining the desired attitude. Here we discuss
a simple suboptimal control strategy which explicitliy takes the body rate
constralints into account. We will assume chac] p‘ < Pmax»' q| < Qpaxs
' rl € Ipax and consider the same attitude transfer problem as before. A key
consideration in control design is how to keep 3 sufficiently small
throughout the maneuver. I[f a time-optimal control problem is set up,
using constraints on 3, the resulting optimality conditions are quite
complex, since they involve state constraints (see, e.g. Maurer, 197+) and
a two-point boundary-value problem must be solved on-line. We can elimi-
nate this complexity by assuming that 3 = 0 throughout the attitude
transfer maneuver. This assumption will be approximately true in most

cases. With this assumption, the dynamics become

x| = (1 +x12) q (4.01)

r =x;p (8 = 0) (%.62)
The minimum ~ time pitch maneuver is

9 = qgax sgn(ac - ag)
which yields tana(t) = tan (ap + qt) and a transfer time t¢ =| 3. - 39| /Smux.
The roll/yaw maneuver involves checking the constraints at each time point,
since x| changes with time. At each time point during the maneuver either
the roll coanstraint or the yaw constraint (or both) will be active. The

resulting rates are

v N e PR RS W R PR W R T I T T N ST Ty R T -7\ ’ ‘ ) ~ A A
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a

p = sgn(d. - 9) min (Ppax, Tmax / 1x11) (4.63) ]

r = sgn(x; p) min (rpax» I x1| Pmax) (4.64) A

~Z

Roll rate p is set to zero when ¢ reaches ¢.; pitch rate q is set to "

"

zero when 3 reaches a,. These will generally occur at different times. 4
Inspection of this maneuver suggests that further improvement may be .
possible in cases where large roll maneuvers but only small pitch maneuvers f;
are required. 1In this case, allowable roll rate magnitudes can be t‘
increased {f a is first decreased in magnitude and then subsequently ~
T {ncredsed in magnitude to its final value. This can be seen more expli- k”
citly by formulating an appropriate minimum-time control problem. E
4.2.1 A Minimum-Time Control Law i
~

:

Consider the dynamical system comprised of (4.6!) aad ; *r / xp, t.e., ?

8 =0, If we view q and r as controls the variational Hamiltonian for E
the minimum-time problem is (e.g., Athans and Falb, 1966): E;
»,

Ha=1+ A q (1 +x2) +2;r/x; (3.65) A

The minimizing controls are :,

) 5505

*
* .

4" = = dgax sgn (1)) (4.60) 3
bt

. X x \y
. . - \}
£ = = Caax sga (A2/x() (3.67) w
1

* * th

where the optimal costates 4y and A; satisty the tuler-lLagrange equatins :
~

~
8

b

~

~

N

1
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AAAAAQ'JAA\NNAZBﬁ&Af:AmA



' '-"‘-’\u'\

b

(4

ScientificSystems
. * . *
M a2 - 2qh (" At e et A /M, A () = g (4.63)
x *
AT = 0 ; Ax(tg) = ¢ (<+h9)

where sgn(.) is +1 for a postive argument, -l for a negative argument ard
otherwise, and ¢|, ¢) are constants to be deteruined to meet Che rejulred
terminal conditions and to satisfy H(t) = J for all t. The time-miaimizing
path is characterized by pitch angle * and angle-of-attack 1%. We wi.i
assume at the moment that a®™(t) > U along the optimal path, Then

t *
o¥(t) = 6 (e* / X1) dt + 3y (+.7 o

t
a*(t) = i q* dt + 1,

with ¢*(tg) = by a*(tg) = ac and x|* = tan a*(ct). 1f we integrate bacx-

ward along the optimal path, assuming qQ* and r* are constant, we tiad

* fr—
* r sina
C = - . L T
¢ ( ) pc q* sina(t) ("‘- )
* 2 *
cos a (t) .
Ale) = | | ca| rpax cot a*(t) -1 e (4.72)

We can now characteri/e the solution of the minimum-timne problem. Siace -
assume that a*(t) > 0 for t ¢ (0, tg), t* is constant tor t ¢ (o, te).
However, q* may change sign. However q* can only switch from = qqax 2»

+ Qpax, not vice versa. Thus, if time permits, a* is first reduced to

increase roll rate, and then is increased tu its final value.
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We hdave dassuzed here that the optimal path does not violate the
constraint a*(c) > 0, but the constraint was not explicitly included in the
problea formularion. If 1*(t) becomes too small the roll rate constraint
will be violated. The cunscrainc‘ p‘ < Pgax ¢4t be lacluded via the state

constraint a1 > g4 where

= tan ( —max. ) (4.73)

The o»ptimal paths may :untain ar:s along the constraiiat boundary, depending
on the constraint values and desired terminal state. If the state is on
the constrainc houadary, it comes off it the time which allows the teruiaiil

angle-of-attack constraint to met.

[t we include the roll rate constrain:‘ t/¢] | < Ppax explicitly, ta=
problem formulation changes. Wriziig the consteoalat 45 s(x), ) & ), whor

l +

> = 0 ¢ | = Ygax, the Hamiltonian becomes (Bryson & Ho, 1975):
H= 1+ a3q (1 +x32) X)) o/xp + us (4.7%)

where 4 > U for s = ) (on the constraint boundars) 1t u = ) tor s o )
£z dooadary), 097 <h2 oounddry, the optlaality <)nditisas are the same

bhefore. On the boundar; w: have

I r*l ’l x1*| Pamax UREY

[n additron, = coadicionm
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. * * *
gi‘ A2 4 M ggn ( 3 *-—) (3.76)
* *
] 1 Xy
= 0
must be satisfied, ylelding
* *
p* = - Ay sgn ( ; *—) (4.77)
1
> 0
* *

where A3 (t) = ¢, as before. The resulting =2jaation frc Ay Ls

O 9q | «
Al = - ox
1
* * x % -
=2 = 2.q X7 ALT; Ap (tg) =y Che

The optimal controls aust ainimize the Hamiltonian

* *
H=1+ Xl q(l + ?(12) * ¢ Ppax S&‘l('—_:l") (4797
Thus
. *
9" = = qmax s3n (A]) (4.3
as before, and
e* = - xl* Paax 344 (2n) Taly

wnicn ylelds, on the boundary

.,, PO RNy
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P = = Pgax >81 (%)) (ea325 3

Integrating (3.67) backward from terminal time tg using constant 7*

gives, on the boundary

:1 (t) = ¢ °°82“:(C) (+.53) 3
cos=a '
where a1, = a* (tp). f
Two examples of minimum time maneuvers are shown in Figures 4. and ?
4,3. 1In each case, the maximum roll rate was 4 rad/sec, the maximun pi:zcn
R and yaw rates were 1.0 rad/sec and the final desired angle-of-attack was . ;
*d
degrees. The desired roll maneuver was 90 degrees. In the first case 27~ :
initial angle-of-attack was assumed to be zero, which yielded an inizial \
boundary arc (p = 4 rad/sec), followed by a control-constrained path E
(r = | rad/sec) starting at tgo = 0.196 sec. The (minimum) elapsed rime E
was 0.445 sec. The pitch rate was | rad/sec, starting at tgo = J.%36 se- ;
(the possibility of switching the sign of q over the initial 0.009 sec:n:- E
was neglected in view of physical lags in a real system). :
In the second example, the initial angle-of-attack was 25 degrees; tre S
¢

remaining parameters were unchanged. I[n this case, the minimum - tide pi:

includes two arcs off the boundary and an interior boundary arc for :Ine

roll channel. The pitch channel includes a pitch-down amaneuver (q = -. -

rad/sec) for the first half and a pitchup maneuver (q = l) for the secund \
v

half. The reduction in angle-of-attack allowed the rull rate to be 2

increased to its maximum possible value, thus reducing transtfer time. -

Elapsed maneuver time was J.+98 sec. Note that a maneuver made withou:

reducing angle-of-attck would require J.733 sec.
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5. FULL DECOUPLING CONTROL

Qur objective is to control the components of © independently.
Introducing the output y = @, our objective is to attain the commanded out-
put y(tg) = yq at the unspecified final time tg¢. 1In addition, we wish to

achieve the condition

y(t) = 0; t » g (5.1)
i.e., the angles ¢, a, 3 are held constant from the end of the present
maneuver until the beginning of the next maneuver. From (2.16):

y =K, w (5.2)

so that (5.1) is satisfied if w(t) = 0; t » tf, From (2.17), this requires

-1
u(t) = - B Fy u; t > ¢
Prior to the terminal time tg¢, we can develop a decoupling controller as

follows.

In order to introduce the control u, we need to take another derivative ot

y which yields

y = Fy o+ Ew w + Bu (3.3)

where

-~

F\.'J = K‘J Fd (5-4)
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Fo = Ko Fy + 55 (Ko w) Ko (5.5)
B =Ky B _ (5.6)

It is clear that we can control y explicitly via u if B is non-~

singular. The determinant of B is

l Bl = - | B | (1 + tan? a + tan? B) (5.7)
=-|8D

Thus, we can decouple the control problem ifl BI # 0. From (2.21)
| BI = 0 only if one or more of the control derivatives is zero, that is,
if one or more of the body axis torques is not controllable through contro!l

surface deflections. The conclusion is that a nonlinear decoupling contr..

exists if rthe missile is physically controllable, a condition which must >c¢

met for any steering law. The condition of physical controllability is

equivalent to the condition that non-zero torques can bz applied indepen-

dently to all three axes, which will hold if the missile is not in a stal.-.:

flight condition and actuator torque limits are not exceeded.

Now suppose we wish to achieve

§(c) = g(t) (5.%)

From (5.3), we find that the decoupling coatrol is

u=8"1 (g ~Fyu-F, 4 (5.9)
Substituting (5.9) into (2.16) and (2.17) gives the dynamics of the close:-

loop system under decoupling control:
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"
o = Ky (5.19) J
bkl - ! [3—@(&-) w)JKg s (5.11) ,
]
. 3
= Ko'g - v :

where the elements of y are given in (4.29) - (4.34).

This controller is closely related to the linear - equivalent control

methodology (see, e.g., Su (1982), Meyer, et al (1984)), in which 3 nonli-
near dynamical system is converted into a linear system via nonlinear

transformations, If we define 1

t [
x)(t) = 6 Kg(a(t))w(t) dr '
,
x2(t) =  Kg(0(r))w(r)
or, equivalently, x; = J, x2 = v, then the dynamics are in the linear, 3
time-invariant canonical form :
P
Id
:
- b
x| 0 1 x| 0 | v y
= + y
X2 v X9 L \
where 5

v = Kg [Bu+ Fg 0 + F, .

Ko

= g(t) (cf(5.8))
and the actual control u can be fiund 4s 4 tunccion of the linear - egJdi

lent control v and the states X], X3 via known nmemoryless nonlinear trdan--
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formations. This is essentially the result of Su (1982) applied to the
missile autopilot problem. Reed, et al (1985) obtained essentially the
same result and then solved a quadratic optimal control problem. Dwyer
(1984) used the same approach to solve large - angle rigid body rotational
maneuver problems. Although these approaches lead to attractive dynamical

models, the problem of control under constraints is not resolved. In

essence, the nonlinearities are pushed into the control and it is not at
all clear how {actual) constraints on u map into constraints on v. Thus,
while these methods simplify the dynamics, they tend to preserve complexity
in control constrained problems. However, there is an apparent advantage
to these approaches, namely, that the complexity now resides in a singie
expression, relating the original and linear - equivalent controls via a
nonlinear, memoryless transformation. Another potential disadvantage is

that any state constraints have to be nonlinearly transformed to be ade-

quately handled.

5.1 A Decoupling Controller With Exponential Response

We can use the results so far to design a decoupling controller to give
a desired response characteristic. For example, suppose we wish to obtain

a response with the following dynamics

O+ A O+ W (2 -0) =20 (5.12)
where
A = dlag (2;‘»\D®, z;aua, 2;5&5) (Sclj)

2 2 2
W = diag (wp, Wy, w:,) (5.14)
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with Gps Gar 5B the desired damping ratios for the roll, pitch and yaw
channels, respectively and Wy, Wy, W the desired frequencies. The solu-
tion of (5.12) is a set of uncoupled damped second-order systems of the

form

Zwy(0) + w(0)

sin&t] (5.15)
w

z(t) = e Cvt [w(O) cosat +
o =w V1 - g2

which has poles at - ¢uw # j .
Then

g(t) = = A - W(O - 9.)
and the decoupling control satisfies

-1 9 -

Ko Bu=Woe-(W+KgFg)o - [a+ Ky Fy Kg + 55 (Kew)] Kgo  (5.16)

In order to interpret this control law, we write out the control components
explicitly, assuming 8, = 0:
o0p = —— [02 (pe - 9) ~ L - (254 wp + Lp) pJ (5.17)
p wy (¢¢ P g tang Sy Wo p/ P 2.

Ly

0q = :l— [wé cosza (tana. - tana) - Mg tana
Ly 9%
6

(kp - (p + r tana) cosza) (p tana - r)

- (255 wg + Mg + 2q tana) q] (5.18)
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2 2 = -
- —é— [w¢ tana (9. - ») + (wg = Ny) tand - (244 wy + Np) p tana

+ (k + secza) P qQ+ (253 wg + Ne + qtana) (p tana - r)] (5.19)
In order to ilnsure that the amplitude and rate constraints on ép, 6q and dy

are met, simulations using actual numerical values of the stability deriva-

tives are required.

In order to analyze this case further we will assume that 8 = 0. Then

p tana = r and we have:

roll
L 6p = wg (9c = ») = (25w + Lp) p
piecn
Mg 6q = w& cos?a (tana. - tana) - ¥, tana

- (254uwq + ﬂq + 2q tana) q

Nog §p = wg tana (¢ - 9) - (2;¢u¢+§t) p tana

+ (k + secza) P q
where all terms are torques in rad/sec?.

We can derive a set of sufficient conditions for full application ot
decoupling control under constraints with severdl assumptions. Assume the

following constraints:
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(1) control deflections

| 651 < Spmaxs | 8q | < Sqmaxs | 8¢ < Srmax

(i1i) control effectiveness

‘ idl > I.-dmirl" &0' > lr1<‘3m:l.m| Nd' > Nomin

(iii) rate damping

' Lpl < l:ptnax»l ﬁql < ﬁqmax’| ﬁr' < Nrmax

(iv) moment coefficients

| % | < Hagax

(v) body rates

lp'<pmax:|q|<qmax»|r|<rmax
(vi) attitude
| ¢ = 9| < 7, tana. - tana| <1 , 3 =0,

0 <a<g /4
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This leads to the following sufficient conditions for full decoupling

control:

(a) m “g + Pmax max(20¢we, = Lpmax-2%pwp) < Lomin Spmax

(b) mi + nqmax + qpax max(z;a“u» - ﬂqmax = Z;JNQ) < ﬁamin quax

(e) "“g *+ (k + 2) Ppax dmax * Pmax BaX (23gwp, = Sp - 23,u5)

< Noemin Ormax

-
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Here we have assumed that the missile is statically stable, which requires
Lp <0, Mg <O N <O. If conditions (a), (b), (c) are met, then it is
guaranted that the decoupling controller will not cause any of the
constraints (1) - (vi) to be exceeded, so that the roll, pitch and yaw

channels will be fully decoupled.

5.2 Stability

We can analyze the stability of the exponential decoupling controller

in a similar fashion as used in Section 4.l.4. Define

Epw = Fu = Fy (5.21)

Epg = f"e - Fy (5.22)

Rg = (Ko - Ko) Kg' (5.23)
-1

Rg = (B - B) B (5.24)

Then, analagous, to (5.12) we can write the closed-loop dynamics as

O+ Ng 0+ Wg0=d (5.25)

where

he = A + Kg Efy Kgl + (A+Q) BRg +EQ -~ Rg(A+Q)

- Ko Rg [K(;I (A+Q) + wa[)l] (5.26)

I~
~i
~

-1
We = W+ Kg Epy - RgW - Ky Rg (Fy + Ky W) (5.

=57 -
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d = (I -Kg Rg K3+ - Rg) WO = (W + Kg Fg) e
- [Kg Fy + (A + Q) Kyl e (5.28)

Note that the matrix Q, which is linear in the body rates q and r, can
have a significant effect on stabllity for high rates. Note that Rg and Ry
are composed of terms which are essentially errcr ratios, and thus are less

than one in magnitude for moderate percentage errors. Also, the elements

of Ky and K;lare less than one in magnitude, except for the (1,1) elements
which are equal to one. We can qualitatively conclude that this controller
appears robust to estimation errors, and that the most critical error terms
are those involving Q in A,. Note also that stability should be enchanced
by increasing 7 and wg up to a point, since this increases the positive-
definitiness of Ag and we. If the values of wg and ¢ are too low, then the

error terms are likely to dominate the dynamics, leading to instability.
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Y A A « ! o -‘ v(' o -r' .r .~ ", .' Ol .', B I AN R R A RS TR R ER AR

SRR
sty e




Scientific Systems

REFERENCES

Aggarwal, R.K. and Moore, C.R. (1984), “"Near - Optimal Guidance Law for a
Bank-to-Turn Missile”, Proc. Joint Auto. Contr. Conf., San Diego, CA, p

1408.

Athans, M. and Falb, P. (1966) Optimal Control; MC Graw-Hill, New Yorx

Arrow, A. (1985), "Status and Concerns for Bank-to-Turn Control of Tactica. w

Missiles”, Proc. Workshop on Bank-to-Turn Controlled Terminal Homing

Missiles, Baltimore, MD.

Baillieul, J., Levi, M. and Mehra, R.K. (1982), “Bifurcation and Feedback }

in Alrcraft Dynamics”, Final Report on Contract NO0OO14-82-C-0075,

Sclientific Systems, Inc.

Caughlin, D. and Bullock, T. (1984), "Bank-to-Turn Control”, Proc.

Automatic Control Conf, San Diego, Jun, p. 1406.

Chung, J.C. and Shapiro, E.Y. (1982), "Modal Synthesis of Missile Autopil,t

Control Law”, Proc. Amer. Contr. Conf., Arlington, VA, pp ll66~1171.

Daclin, E. (1980), "Application of Multivariable Predictive Control

Techniques to a Deminer Boat"' Aug. Proceed. JACC.

Dixon, J.G. and Klabunde, R.R. (1985), "Lateral Autopilot Design for a Hizn
Performance Bank-to-Turn Missile Using State Space Techniques™' Prouc.

Workshop on Bank-to-Turn Controlled Terminal Homing Missiles, Baltimore,

MD.

'."’-.-t'{;'..";““‘.;_' N q



ScientificSystems

Dwyer, T.A. (1984), "Exact Nonlinear Control of Large Angle Rotational

Maneuvers”, LEEE Trans. Auto. Cont., Vol. AC-29, No. 9, p. 769.

Eomert R.I., et. al. (1976), "Bank-to-Turn Steering For Tactical Missiles”,
Reoprt No AFATL, TR-76-150, Missile System Division, Rockwell Internation,

(Confidential).

Emmert, et. al. (1978), “"Interlaboratory Air-to-Air Technology (ILAAT)",

Final Report, Rockwell International under Eglin contract F08635-76-C-0220.

Emmert, R.I. and R.D. Ehrich (1978), "Strapdown Seeker Guidance For
Air-to-Surface Tactical Weapons”, Missile Systems Division, Rockwell

International.

Falb, P.L. and Wolovitch, W.A. (1967), "Decoupling in the design and
Synthesis of Multivariable Control Systems”, IEEE Trans. Auto. Contr. Vol.

AC-12, No 6.

Froning, H.D. (1985), "Aerodynamic Design of Slender Missiles for

Bank-to-Turn Flight at High Angles of Attack”, Proc. Workshop on

Bank-to-Turn Controlled Terminal Homing Missiles, Baltimore, MD.

Froning, H.D. and Gieseking, D.C. (1973), "Bank-to-Turn Steering for Highly

Maneuverable Missiles™, AIAA Guidance and Control Conf, Key Biscayne, FL.

Gupta, N.K., Fuller, J.Ww. and Riggs, T.L. (1981), "Modern Control Theory
Methods for Advanced Missile Guidance”, TR-RG-81-20, U.S. Army Missile

Command, Redstone Arsenal, AL.

-0 -

(B W m e e % Y PP SR BN SR T TR W TR SO T RGP Y SO ML T D D o N WL L N N Lt e el N ST
0 T AT T Lh i e I K Ll ol vV, Al a N h A X B WL Nal A a vy Py

LY

YR I

e T TRU I IR T N J

- o gh Y
-

‘I'l(.‘



Toh B e gt Vet Pado it oiay ety - o s pdpe S22 2,82 82 82 b'a’ “BY gl val N aR Sl e @ o ‘at Pad 8.8 420 600 G 8 ¢

ScientificSystems
Hanson, G.D. and Stengel, R.F. (1981), "Effects of Displacement and Rate

Saturation on Statistically Unstable Aircraft”, AIAA Control Conf.

Hardy, S.R. (1985), “Preliminary Design of a Coordinated Bank-to-Turn

Missile Autopilot Using the Pole Assessment Technique”, Proc. Workshop on

Bank-to-Turn Controlled Terminal Homing Missiles, Baltimore, MD,

Isodori, A., Krener, A.J., Gori~-Giorgi, C., and Monaco, S., (198l)
"Nonlinear Decoupling via Feedback: A Differential Geometric Approach”,

IEEE Trans. Auto. Control, Vol AC-26, pp 331-345.

Majumdar, A.K. and Chaudry, A.K. (1972), "On the Decoupling of Nonlinear

Systems”, Intl. J. Contr., Vol 16, No. 4, pp 705-718.

Maurer, H., (1977), "On Optimal Control Problems with Bounded State
Variables and Control Variables Appearing Linearly”, SIAM J. Contrul ind

Optimization, Vol. 15, No. 5, p. 345.

Meyer, G. Su, R. and Hunt, L.R. (1984), .cation of Nonlinear
Transformations to Automatic Flight Control”, Automatica, Vol. 2y, No. .,

p. 103.

Meyer, G. (1981), "The Design of Exact Nonlinear Model Followers”™, Proc.

Joint Auto. Contr. Conf., #FA-3A.

Nesline, F.W. and Nesline, M.L. (1984), "How Autopilot Requirements

Constrain the Aerodynamic Design of Homing Missiles”, Pruc. American Contr.

Conf., San Diego, CA, pp 716-730.

-f]-

B A R B R TR

»

.....

o a a

"'“‘ B ¥ W R s .0

P SNl g

488



ScientfficSystems

Nijmeijer, H. and VanderSchaft, A.J. (1984), “Controlled Invariance for

Nonlinear Systems: Two Worked Examples”, LEEE Trans Auto Cont., Vol. AC-29,

No. 4, p. 36l.

Rajan, V.T. (1985), "Minimum-Time Trajectory Planning”, Proc LEEE Robotics

and Automation Conf., St. Louis.

Reed, J.D., Liefer, R.K. and Shelton, L.C. (1985), "A Modern Control Design

for Bank-to-Turn Missile Autopilots™, Proc. Workshop on Bank-to-Turn

Controlled Terminal Homing Missiles, Baltimore, MD.

Rouhani, R. and Mehra (1982), "Model Algorithmic Control (MAC); Basic

Theoretical Properties”, Automatica, Vol. 18, No 4, pp 401-414.

Rozonoer, L.I. (1963), "A Variational Approach to the Problem of

Invariance”' I and 1l. Automatika i telemekhanika, Vol. 24, No. 6 and Vol.

24, No. 7.

Sahar, G. and Hollerback, J.M. (1985), “"Planning of Minimum - Time
Trajectories for Robot Arms”, Proc. IEEE Robotics and Automation Conf. St.

Louls, pp 751-758.

Singh, S.N., and Schy, A.A., (1978) "Nonlinear Decoupled Control Synthesis

for Maneuvering Aircratt”, Proc. IEEE Conf. on Decision and Control, pp

360-370.

Singh, S.N., and Schy, A.A., (1980) "Output Feedback Nonlinear Decoupled

Control Synthesis and Observer Design for Maneuvering Aircrafct”, Int. J.

Control, Vol, 31, No. 4, pp 781-806.

% _w e -

A I IR



R LA U L LN U LA A L A L A M AU AL AN A R AN A LI R AT R R A AN K Y ET RO O Dol Vap ot bt Sat ta8 oy cat el tpd tal Cal,tataiat tal,tah, caN tab gt gt

i
s
)
,
-t

—

ScientiticSystems
Sontag, E.D. and Sussman, H.J. (1985), "Remarks on the Time-QOptimal Control ,
of Two-Link Manipulators”, Proc. LEEE Decision and Contr. Conf, Ft.

Lauderdale, pp 1646-1652.

Su, R. (1982), "On the Linear Equivalents of Nonlinear Systems”, Systems

and Control Letters, July, p. 48.

Su, R., Meyer, G., Hunt, L. (1983), "Global Transformations of Nonlinear

Systems”, [EEE Trans. oun Auto. Control, Vol.'AC-28, l, pp 24-30.

Tokumaru, H. and Iwai, Z. (1972), “Noninteracting Control of Nonlinear

Multivariable Systems”, Intl. J. Contr., Vol 16, No. 5, pp 945-953. )

Transue, J.R. (1985), “An Air-Force Overview -~ Bank-to-Turn Air-to-Air

Technology”, Proc. Workshop on Bank-to-Turn Controlled Terminal Homing

Missiles, Baltimore, MD. .

Williams, D.E., Friedland, B. and Madiwak, A. (1985), "Bank=-to-Turn

Autopllot Design Using Modern Control Theory”, Proc. Workshop on <

Bank=-to-Turn Controlled Terminal Homing Missiles, Baltimore, MD.

Wonham, W.M. and Morse, A.S., (1970), "Decoupling and Pole Assignment in

Linear Multivariable Systems: a Geometric Approach”™, SIAM J., Control,

Vol. 8, pp l-18. 3

-63-

o, .P.I'-'.(I._r— r.r.( «, Lo AT A P 2 O T T L e R S . N . .
mmmw&.&wh s ' v M:AL(*LJ.A.&.J:A o AIJ.A"(..IJ. -I.Aikf.i-‘_l..x-;.\‘-q:x:A-I-:-q-f-



3

g

$<p 6 p I

L)

'

dig 0ig 8

e et

MIELAPI LM S VU RO

31

W AT LN AW A

PR

v

(P

-

EE WS ) A A X A | [l ] Vet RO A ol Rt WS s a7 2 028 G W=7, *x "2%2 ¢




