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ABSTRACT

Bank-to-turn steering is attractive in terms of potential performance

improvements over skid-to-turn steering. In order to fully realize this

performance, attitude maneuvers in response to guidance system commands will

sometimes take place at high body rates and angle-of-attack, where the

dynamics are nonlinear. The problem is further complicated by constraints

on angle of attack, control surface deflections and body rates. It appears

that linear control methods may be inadequate in these cases. In this

paper we consider several nonlinear control approaches. A decoupling

controller is derived and shown to be well-defined (nonsingular).

Conditions for constraint avoidance are derived. Stability is analyzed in

the presence of estimation errors. A minimum-time control law which takes

constraints into account is derived, resulting in a bang-bang controller.
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1. INTRODUCTION

1.1 The Autopilot Design Problem

The design of an autopilot to control a short range air-to-air weapon

is a complex process due to the nature of the plant, the control mechanism,

and the available measurements. The plant can be considered to be the

vehicle itself with its associated aerodynamic and inertial properties and

the rocket motor. The control mechanism, an actuation system for

controlling movable tail surfaces, is also considered part of the plant.

The measurement devices are assumed to be three angular rate and three

translational acceleration devices. The difficulty in controlling the

plant can be summarized in terms of the following seven factors:

(i) The plant is time-varying. The rotational and translational motion

of the vehicle can be described in terms of a set of noni:lear differential

equations with time variable coefficients. These equations can be

linearized about an operating point, but this operating point will vary

with time. The aerodynamic forces and moments are functions of speed (V),

angle-of-attack (a) and side-slip (a), fin deflections (6), dynamic

pressure (qo), and body angular rates (p,q,r). Of these, only fin defLec-

tion and the rates are available directly from measurement. The other

quantities are unmeasured states of the system (e.g, V, a, s or equiva-

lently Vx, Vy, V z in body coordinates) or functions of the states

(e.g., qo - I/2p(h) V2 , where h - altitude). Clearly the estimation of the

system states is advantageous in developing a control strategy. Knowledge

of the system states will aid in the estimation of other system parameters,

-1-
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most notably the aerodynamic coefficients. Another time variable aspect of

the plant is the inertial properties. As the rocket motor burns, there are

variations in mass, c.g. locations, and moments of inertia.

(ii) The plant is nonlinear in the sense that the forces and moments

are nonlinear functions of the system states. For example, the dynamic

pressure is proportional to the square of the velocity. A more troublesome

nonlinearity for the autopilot designer is the nonlinear nature of the aero-

dynamics. The aerodynamic moment coefficients Cm and Cn are in general,

functions of a and 8, Mach number (Mn ) and fin deflection (6). Variations

with angle-of-attack, e.g. aCm/aa, affect the airframe stability. If this

slope is negative, the open loop airframe tends to be stable. Otherwise,

the transform function will have poles in the right half-plane. The nonli-

near nature of the Cm curve is shown by the example in Figure 1.1. Notice

that at low angles-of-attack the vehicle is stable but becomes unstable

between 5 and 10 degrees. Then it becomes stable again above 15 degrees.

(iii) The plant is uncertain. In particular, several aerodynamic para-

meters such as moment coefficients, dynamic derivatives, nonlinear deriva-

tives based on wind-tunnel and aero prediction methods do not have high

accuracy. The estimates of these coefficients can be improved using pre-

vious flight test data, but a certain amount of uncertainty will always be

present in the parameter estimates. This requires use of either robust

control design which can accommodate parameter uncertainties or adaptive

control design which reduces uncertainties using on-line parameter

estimation.

-2-
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(iv) The plant has coupled inputs and outputs. Equivalently, the three

autopilot channels (roll, pitch and yaw) or axes of motion are coupled. The

coupling comes about through kinematic, aerodynamics, e.g., CZ(MHn,a),

bank-to-turn guidance law and actuator. In classical design, this coupling

is ignored.

(v) The plant can be unstable. As discussed under the nonlinear nature

of the aerodynamics, the vehicle may be stable or unstable, depending on

the operating point. The stability of the plant affects the type of

control strategy, the need for robustness in that strategy, and the

required accuracy of the estimation. In addition to the possible unstabLe

poles due to Cma, tail control yields non-minimum phase zeros in the

aerodynamic transfer function due to the force on the tail, i.e., Cnd.

This can be particularly troublesome when using classical design tech-

niques, especially at low dynamic pressure flight conditions.

(vi) The system constraints are significant. These constraints include

the finite bandwidth, slew rate, deflection and torque of the actuator dnd

the quality of the measurements available from the sensors. For the sen-

sors to be reasonable in cost, the quality of the output in terms of range,

scale factor errors, and noise will be limited. The quality of the

measurements directly affects the accuracy of the state and parameter esti-

mates.

-3-
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Figure 1.. 1onliiear iatire of Airframe Aerodynamics

(vii) The design requirements are severe. Due to the short flLgnc

times involved with the short range air-to-air mission, the required -eipC

system bandwidths are high. These short flight times, coupled wi:n nignli

maneuverable targets, yield requirements for high missile acceleratt)::.

angles-of-attack. These high V's aggravate the problem of nonlinear ic:

dynamics and coupling.

In summary, the autopilot design problem can be expressed as a proz.-

of state and parameter estimation, as well as the design or the contr,.

system for a nonlinear coupled mulivariable system with constraints.

1.2 Bank-to-Turn Steering

Current missiles using skid-to-tur- (STT) steering have performance

limitations; for example, angle of attack and turn maneuverability are

restricted as a result of yaw/roll cross coupling which tends t) riti:

airframe away from the desired maneuver plane. Ehese undesirable torc."<-

increase with angle of attack and -ay exceed tne trim capability (Tr ,

*-4-
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1985). Large angles of attack in STT missiles can result in large sideslip

angles which in turn cause large vortex wake asymmetries. These large wake

asymmetries can result in unwanted roll and yaw moments which may be large

enough to exceed the trim capability of the control system.
*

In order to alleviate these undersirable effects, bank-to-turn (BTT)

steering has been developed and has recently received much attention. In

this type of steering, the control system continuously banks the missile so

as to minimize the angle of sideslip and, hence, the asymmetry of its vor-

tex wake. The rest Lt of this is that the missile can be maneuvered at

higher angles of attack, increasing its lift capability (see, e.g. Fronig,

1985). BTT designs can reduce weight and drag while maintaining high

maneuverability. Even though BTT steering appears desirable from these

aspects, there are currently no high performance antiair missiles within

the U.S. arsenal using this technology (Arrow, 1985). Flight tests and

detailed simulation results on BTT steering have not achieved total

response times currently available with existing STT configurations. The

most significant characteristic which impacts the achievable response time

is the dynamic coupling primarily due to nonzero missile body rates and

accelerations (Arrow, 1985). A number of BTT configurations have been

developed. Perhaps the most challenging one from a control point of view

is the monoplanar single inlet configuration in which angle of attack is

restricted to a small negative number or a large positive number. In this

configuration, very large lift forces can be attained. However, the roll

angle may have to be changed 180* in response to a command from the

guidance system.
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Current autopilot designs for BTT steering typically utilize linear or

linearized control design techniques. Williams, et al (1985) countered the

effects of nonlinearities by freezing roll rates and using a linear-

quadratic-gaussian design methodology at each fixed roll rate. By

including actuator dynamics, the resulting state vector dimension was 10

for the pitch/yaw channel and 2 for the roll channel. Coupling from

pitch/yaw to roll was treated as a disturbance term in the roll dynamics.

Hardy (1985) performed an autopilot design for a BTT missile using pole

assignment. The equations of motion were linearized, resulting in a fourth

order pitch axis model and an eighth order roll/yaw axis model. Dixon and

Klabunde (1985) used linear design methods to develop a lateral autopilot

using gains scheduled as a function of angle of attack. Chung and Shapiro

(1982) used a linear modal synthesis approach.

Another example of the classical approach is the design study by

Rockwell under Eglin AFB sponsored "Interlaboratory Air-to-Air Technology

(ILAAT). These included analytical studies with two different airframes

(Emmert et. (1976, 1978). The initial studies, dating from 1976, employed

a dither adaptive approach for state / parameter identification. By

dithering the airframe in yaw at a frequency in the range of 10-13 Hz, an

estimate of dynamic pressure was generated. This estimate was used to

schedule the gains of the pitch and roll rate loops to maintain the desired

bandwidth, independent of flight condition. This was successful, because

the gain of the aerodynamic transfer function (r/3r) is roughly propor-

tional to q0. The acceleration loops were also scheduled as a function ot

q0 , although the aerodynamic gain was proportional to speed (V) rather

~-6-
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than V2 . Scheduled limits on commanded acceleration were used to limit

angles-of-attack and side-slip. The dither adaptive approach had the

advantage of requiring no interface with the launch aircraft and only two

accelerometers.

In a later design, (Emmert et.al. (1978)) the dither adaptive approach

was again employed, but a velocity estimate was generated based on an added

axial accelerometer. A rough estimate of a and was also developed. The

velocity estimate assured closer control of acceleration loop bandwidth and

a more linear acceleration loop gain schedule. However, the dither adap-

tive design has a number of shortcomings which can be overcome with modern

control approaches. First, the bandwidth of the system is limited by

system nonlinearities and non-minimum phase zeros of the aerodynamic

transfer function, particularly at low dynamic pressures. The zeros are

also functions of flight condition, thrust level and c.g. location and can

vary by a factor of 10 in frequency. Secondly, a significant amount of

yaw/roll coupling exists in spite of a high bandwidth roll rate Loop. It

is desirable to lower the rate loop bandwidtns which affect actuator

requirements, while minimizing coupling between channels. This cannot be

achieved effectively with classical control design which relies on high

gains to produce decoupling. Reduced rate loop bandwidths will also alle-

viate the computational burden on the digital processor. Thirdly, it is

desirable to improve the robustness of the autopilot and provide some

degree of fault tolerance.

Several authors have utilized nonlinear transformations in flight

control and attitude control systems. Meyer, Su and Hunt (1984) found that

-7-
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a nonlinear helicoptor model could be linearized via a nonlinear transfor-

mation, since it was in the class of equivalent linear systems (Su, 1982)

Dwyer (1984) derived linearizing transformations for the rigid body atti-

tude control problem and solved several particular cases (rest-to-rest and

detumbling) using linear quadratic control theory. One problem with these

approaches is that control and state constraints become generally more

complex in form and are not easily handled. Thus, if constraints are taken

into account, these methods tend to conserve complexity.

Decoupling is another technique which leads to nonlinear controls. In

BTT steering, the kinematic and inertial coupling of the roll and yaw

systems during combined pitch and roll maneuvers is significant. The

problem is to maintain a small sideslip angle, and one way to accomplish

this is to use cross-feed signals between the axes to decouple the yaw and

roll control axes. Froning and Gieseking (1973) used decoupling for a

linear BTT model. Reed, et al, (1985) developed a noninteracting

controller for a BTT missile which decoupled the roll, pitch and yaw axes

and used simulations to study the performance. Their feedback law was

based on a quadratic performance index. Unfortunately, decoupling also

tends to conserve complexity.

Solution of the general optimal control problem in missile autopilot

design seems intractable. The inclusion of Euler angles to include body-

fixed constraints in an inertial formulation generates a tirte-varying,

nonlinear two-point-boundary-value problem which appears to make a real-

time solution impossible with current computer technology (G;upca, et al,

1981).

-8-
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1.3 Nonlinear Control Decoupling via Feedback

The missile dynamics are nonlinear and it is very desirable to consider

control designs that apply to nonlinear problems. Pointwise linearization

followed by gain scheduling is the most common technique for controlling

nonlinear systems, but it is not very effective for highly maneuverable

systems which rarely operate around a steady state condition. One of the

most promising techniques for nonlinear control design is based on the use

of nonlinear feedback in such a way that the closed loop system has the

desired behavior. For missile autopilot design one would like to achieve

fast decoupled response between guidance commands and acceleration outputi

so that the autopilot would follow the guidance commands accurately.

Notice that with 3 control inputs, one can decouple only 3 output channels.

The most appropriate ones for missile autopilot design will be angle of

attack and sideslip (a, 6) and roll ( ), which are closely related to pi:c:n

and yaw accelerations for a BTT missile.

The problem of control decoupling via feedback together with the cLo-

sely related problems of disturbance decoupling and invariance has arisen

in many engineering applications, including missile and aircraft control

problems. Since Rozenoer's (1963) initial work, the subject of control

decoupling via feedback has been extensively developed, and a reasonably

large body of literature currently exists. Some papers which have been

important milestones are Wonham and Morse (1970), Tokamaru and iwai (1972),

Majumdar and Chaudhury (1972), and Isidori et al. ([981). In addition t)

this theoretical work, severdl applications to problems of aircraft coiitr.

-9-
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have been studied including Singh and Schy (1978) and work by G. Meyer

(1981) on the design of an autopilot system for the Bell UH-IH helicopter.

The basic idea behind the theory of control decoupling is quite simple:

Suppose there is given a nonlinear control system of the form

x - f(x) + u1 g1 (x) + u2 g2(x)

Yi - hi(x) (i-l,2)

We wish to consider modifications of the system dynamics using feedback

controls u - a(x) + B(x)v such that

x f-(x) + v 1 gl(x) + v2 -2(x) (1.1)

yi - hi(x) (i=t,2) (1.2)

where

2
f+JL aj gj

- 2
gi 'jil Bji gj

The decoupling problem is to find a and B such that vi controls yj and only

yi. (That is, we want vj to have no influence on the output Y2 and

vice-versa).

Techniques for finding a and B in the case in which f and the hi's are

linear and the gi's are independent of x are well known and may be found in

Wonham (1970). For nonlinear systems, considerably less is known and

although the beginnings of the theory date back to 1962, many aspects

remain to be understood.

VV -10-
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L. Rozonoer (1963) obtained conditions necessary for invariance (i.e.

independence of the output upon the input) in nonlinear system, by using a

variational method similar to the Pontryagin's optimality priciple.

H. Tokumaru and Z. lwai (1972), and A. Majumdar and A. Chaudry (1972),

independently have applied the variational method used by Rozonoer to

obtain necessary conditions for non-interacting control, for linear time-

variant systems (1968) and for nonlinear systems (1971). A concrete design

for control decoupling feedback for the automatic piloting of a mine hunter

boat was given by E. Daclin (1980).

All theoretical work mentioned above neglected the existence of

constraints on controls in virtually every real-life situation (e.g., a

limit on control deflections, acceleration rates, etc). The effects of

such contraints have been studied by D. Hanson and F. Stengel (L981), par-

ticularly for system with two degrees of freedom.

A different approach to the problem was used by R. Su, G. Meyer and L.

Hunt (1983), who used nonlinear transformations to reduce the nonlinear

problem to the linear one, which can be treated by standard methods, as in

Wonham (1970). The main drawback here is that it is not generally possible

to carry out this type of linearization; there are both algebraic and tcpo-

logical obstructions which are essentially the same ones that are encounted

if one were to try to do nonlinear decoupling directly.

An important application of control decoupling theory to the problem of

aircraft dynamics was given by S. Singh and A. Schy, (1980). These authors

-11- d.
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derive a feedback for a simplified aircraft model in which certain aerody-

namic forces had been ignored.

[.4 Summary of Report

In this report we consider the general problem of developing efficient

attitude transfer maneuvers in response to guidance commands, in order to

meet desired translational accelerations. Throughout, we consider a very

general missile configuration and develop techniques which should be appli-

cable to a wide class of BTT missiles. The problem formulation includes

nonlinearities which are significant at high body rates and at high angles

of attack. In addition, constraints on angle-of-attack, control surface

deflections and body rates are included. Using several reasonable assump-

tions, we study the problem analytically and develop several nonlinear

control strategies using both decoupling control and time optimal control

methods. Decoupling controllers are presented using two control modes; (1)

body rates as controls, (2) control surface deflections as controls. In

all cases, the controller is nonsingular if the missile is not in a stalled

flight condition and not on a constraint boundary. Explicit conditions fir

avoidance of constraint boundaries are derived, which may be used to set

key autopilot design parameters such as time constants. The controllers

are shown to be quite robust to estimation errors. A minimum-time

controller which includes constraints on both controls and angle-of-attack

is developed and an example is given.

-12-
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2. EQUATIONS OF MOTION:

We make several assumptions in order to obtain the equations of motion:

(i) the missile is a rigid body

(ii) the body axes are the principal axes of inertia

(iii) the principal moments tyy and Izz are equal

(iv) gravitational acceleration is neglected.

The assumed inertial properties simplify the analysis in the sequel.

The design methodology holds for arbitrary inertial properties, however.

With these assumptions we have:

Translation

m (u + qw - rv) - Fx (2.1)

m (v + ru - pw) - Fy (2.2)

m (w + pv - qu) a Fz  (2.3)

whe re:

Fx, Fy, Fz are the external forces, due to thrust and aerodynamics,

resolved into body axes

u, v, w are the inertial velocity components, resolved into body axes.

' - -1 3-
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p, q, r are the body angular rates, in body coordinates

m is the vehicle mass, assumed constant

d, 0, 4 are the time derivatives of u, v, w

Rotation

L - Ixx p (2.4)

M - I q - (Iyy - Ixx) r p (2.3)

N - Iyyr + (Iyy - Ixx) q p (2.6)

where:

L, M, N are the resultant moments about the vehicle center of gravity,

resolved along body axes

Ixx , Iyy are the principal moments of inertia (Ixx < Lyy)

p, q, r are the time derivatives of p, q, r measured in body

coordinates

Since we will be principally concerned with controlling the angle or

attack (a) and angle of sideslip ( ), it is more convenient to work

directly with them. Using the definitions

tana - w/u (2.7)

tan8 - v/u (2.8')

we get

* q + mV -OSi - (p cosi + r sin j) cosa tan 2.9)

a -q W
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FcoS -Fs n + (p cos6 + q sind) tana coso (2.10)

where V is the velocity:

V = (u2 + v2 + w
2 ) 11 2

The terms involving Fx, FY, Fz are the rates of changes of flight path

angle which will be much smaller that the body angular rates. Therefore,

we will neglect them; the resulting equations are

= q - (p cosa + r sina) cosa tan6 (2.11)

- - r + (p cosd + q sin8) tana cosa. (2.Li)

The angles a and 6 are shown in figure 2.1.

This figure suggests that if the missile rolls while maintaining zero

pitch and yaw rates (q - r - U) the velocity vector rotates in the missile

frame, around the x-axis, thus describing a cone. This intuition is con-

fimed by the following calculation. Setting q - r - 0 in (2.11) and (2.12)

we obtain

tana costp(t) -sin,(t) cnLO

-15-
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Figure 2.1 Definition of Angles for Monoplanar
Missile Configuration (from Arrow (1985)).
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t
where (P(t) - fpdt is the roll in time t.

0

The moments L, M, N are assumed to be generated solely by aerodynamic for-

ces. Thus we will neglect, for example, thrust misalignment effects. The

assumed aerodynamic moment equations are:

L - Lp p + Ld + LO 0p (2.13)

M Mq q + Ma a + AG 0q (2. 4)

N = Nr r + N6 o + NO 0r (2.5)

where:

Lp) Mq, Nr are the aerodynamic damping coefficients

La, Na are angular acceleration derivatives with respect to z

Ma is the pitch moment coefficient

LO, M6, N6 are the control moment coefficients

These aerodynamic coefficients are, in general, complex functions of Macn

number, u, d, 0p, Oq and Or- In this paper, we will generally assume thai

they are known functions of their arguments and that the arguments are

known.

In order to simplify the following analysis we will use the following

notation

-17-
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[x1 x2I T

w - [p q rIT

U M [6p 6 q Or]T

where x, - tan a, x 2 - tan 3.

Then the equations of motion may be written in the form

= K0  (2.16)

- Fe 0 + Fw w + Bu (2. 7)

whe re

10 0

KU9 -x 2  I+xt2 -x I x 2

2(2.L8)

xL X2 -(0 + x2)

O 0 Ld

F 0 a  0 (2. 19)

o 0 N

Lp 0 0

F, 0 Mq -kp (2.2)) r

0 -kp Nr

where

,'

-18-
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- Ma Iyy a/tan a, La - L6 8  xx o/tan a,

N8 - N8 Iyy a/tan 6, Lp a Lp IxX

M q - 11q Lyy, Nr -Nr Iyy

L6 0 000
B 0 M6 0(2.21)

0 0 N0

where L6 - L6 Ixx, M0 - Mo yy, N6 = N6 lyy, and k = I - Ixx/lyy

In designing control strategies it will sometimes be useful to keep ii

mind the overall behavior of the attitude, in particular the overall angle-

of-attack, for stability reasons. Define (see Figure 2.1)

a2 - tan 2 a + tan 2 d (2._)

which is the magnitude squared of the overall angle-of-attack, since I an,

6 are measured in orthogonal directions. Then, from (2.ib) and (2.18).

d (aT2) 2(+tan2a + tan2) (qtana - rtano) (223)dt

so that

>0 ; q/r > tanb/tanj

dt (aT2 ) -0 ; q/r = tano/tana (2._)

dtt

<0 ; q/r < tano/tana
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3. AUTOPILOT OBJECTIVES

The objectives of the autopilot are to attain commanded accelerations

along the body y and z axes in a minimum time, without violating a set of

constraints. This is accomplished via an attitude transfer maneuver, sub-

ject to certain constraints:

(C) the control surface deflections and deflection rates are subject

to hard constraints, due to mechanical limitations

(C2) the angle of sideslip (6) must be kept suitably small; this is a

soft constraint

(C3) body attitude rates are subject to soft constraints, dependent on

actuator dynamics and control effectiveness.

In addition, autopilot design includes the following requirements:

(i) provide dynamic stability for the airframe

(ii) body motion should be minimized

(iii) maintain sufficient bandwidth to respond to low-frequency guidance

commands but not so high as to respond to high-frequency noise

(iv) avoid resonance with other missile components, including airframe

bending modes, actuators and instruments

(v) achieve time response rapid enough to maintain guidance loop sta-

bility in the presence of noise and errors.

-20-
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These functions must be performed over a wide range of altitudes, Mach

No., dynamic pressure and roll angles. In this study we have concentrated

on the generic constraints (Cl) - (C3), but have also considered (i), (ii)

and (v). The requirements (iii) and (iv) require a specific missile con-

figuration, which was beyond the scope of this study.

The autopilot maneuver is sometimes divided into two separate maneuvers:

1) A roll/yaw maneuver to null the component of commanded acceleration

along the body y axis. This places the commanded acceleration in

the body x - z plane.

2) A pitch maneuver to achieve the desired acceleration.

The roll/yaw maneuver uses a commanded roll angle pc which satisfies

tan Oc ayc (3.[)
azc

where ayc, azc are the commanded accelerations. The pitch maneuver is per-

formed to meet the total commanded acceleration:

Za a + Z6 
6q 0 (ayc + azc)1/2 (3.2)

where Z.,,, Z5 are the z axis acceleration coefficients.

Eq (3.2) may be solved for a, given ayc, azc and employing (2.14) to meet

desired terminal conditions (e.g., M-O). The division into two separate

maneuvers is often done for simplicity of design. It is more efficient,

however, to combiie maneuvers, since this enables us to attain the desired

-21-
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attitude in less time in most cases. Throughout this study we have con-

sidered combined maneuvers only.

4. ATTITUDE MANEUVERS USING BODY RATES AS CONTROL

In typical missile systems the actuator bandwidths are much higher

than the desired autopilot bandwidths. Generally, autopilot bandwidths are

5-10 Hz while actuator bandwidths are 30 Hz or more. Bandwidth separation

is usually greatest for the roll channel. Although actuator dynamics need

to be included in detailed simulations, we can neglect them to do an

approximate analysis. Total maneuver times may be greater than one secona;

under these conditions the rate control loop will be much faster than the

attitude control loop so that the actuator dynamics can be neglected. With

this assumption, the vehicle dynamics are given by (2.16) only, viewing

as the control. The control dynamics are governed by (2.17). By using A

feedback law we can easily achieve a stable rate loop. The feedback

signals for the rate loop are the body rates measured, for example, by a

set of strapdown gyros. This design is straightforward.

To illustrate a possible design approach, consider the rate dynamics

given by (2.17) with the control

u = u0 + G(wc - w) (4.1)

where *c is the commanded rate and G is a control gain matrix to be deter-

mined. dy defining 6 j - ,c, with 'c assumed constant, we obtain

-22-
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d ( 6 Fe + Fw wc + Buo + (F, - BG) 5 -
dt

If we set

u 0 - (FU O + Fw wc) (4.2)

then

d (6w) (Fw - BG) Ou (4.3)

so that the closed - loop rate controller dynamics are given by F, - BC.

The rate loop may be uncoupled by setting

F- BG = (4.4)

whe re

A= diag (l/Tp, i/Tq, L/Tr)

is the desired actuator dynamic matrix. A, must be selected to be within.

the bandwidth allowed by the actual lags in the actuator response.

This gives, for G,

-23-
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G - I(FW - )

!L p T P

0 0

L

0kp 
(4.5)

M M 6

Nr T
0 kp

N0 N0

The control then becomes

u = - B- I [FU o + F, w + A, (c -w)]

which is nonlinear in both 0 and w.

4.1 Decoupling Control

Now consider the problem of attaining a desired attitude j(tf) =

at an unspecified terminal time tf starting from the initial state (j) =

at t-0. We can meet the attitude constraint by picking a time history -

such that

-4-
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; (t) dt - - vo (4.7)

Once we have chosen ;(t), the control is calculated as

-1.
w - Ke 0 (4.8)

4.1.1 Control Using Constant Rates

If we assume a constant value of u during the maneuver interval, then

1 ( Qc - UO)
f (4.9) .

and the resulting control is

1 -1= - -j (Uc - ) (4.1u)

f

If we let 0 - [vo, v., vd]T then the resulting rates are

p = v (4.11)

q - X2 v. +-- (+x2) va - x X2 v (.2)

r xi vo + D [xi x 2 v- (l+x1
2 ) v (4.13)

where D - I + x1
2 + x2

2 .
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d
The body rates will produce the desired values 0 - v., (tan) = v,

d
(tan8) - vB or, equivalently, a - v. / (I + x1

2 ), v 8 / (1 + x2
2).

Clearly, for tf sufficiently small, p, q, or r will exceed the capability

of the missile, so tf needs to be selected so that none of the body rate

constraints are violated. If we assume that j 'c - ;1 , j tancc - tanal

r. I, tan8c - tano ; e c then it follows that the rate constraints are met

if

(1) IT 4 tf Pmax

(ii) ff E + I + 2 e2 4 tf qmax (4.14)

(iii) n + 3 c 4 tf rmax

Since Pmax is generally larger than qmax or rmax and e is generally less

than 0.25, condition (iii) dominates, with the result that the constant -

rate control can be met if tf rmax - 4. For example, if rmax - 2 rad/sec,

then tf > 2 sec is required.

We can now make a further simplifying assumption, namely, that ,, at

the beginning of the maneuver and the commanded value is zero. With this

assumption x2 - 0, v8 - 0 and the pitch and yaw rates simplify to

q - v
I + x12

r , x1 vp

which yields, from (16), x1 - v,, or x I - tan i0 + vt. We have, finaIlv

-2 6- -r
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Vp (4.15)q"|+ (tana0 + vat)2

r - (tana0 + vat) v-

These rates are well-behaved. Yaw rate r is a linear function of time.

Pitch rate q is always of the same sign. In addition q obeys the differen-

tial equation

2 tana q

For a BTT maneuver, we would typically find that tana > 0 during the entire

maneuver, so that q would be monotonically decreasing during the maneuver.

4.1.2 Control Using Exponential Rates

If we set

$ - A, (Oc - a) (.

where A - diag (1/Tz, i/ta, I/To) then the body rates (assuming T; >>

Tj >> Tq, Td >> T) are

- y1 
AO (Uc -(4.17)

and the solution of (4.11) is

d(t) - e-Aat U(0) + (I - e-A t) jc (4. j)

Assuming Oc [;c, tanac, 01 T we obtain

;-

-- I-

-27-
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tanac -tanca

q = p tano + (4.20)

t ana

I tani

2 Ta

S+(.sec- -

tana tand tana c - tana (
r = p tanc + sec z a + tanL (4.2 1)

+ 1 tand

( tand 2

In order to achieve these conditions, it is necessary that the body

rate limits are not exceeded. By imposing these rate limits, we actually

set lower bounds on the time constants. For exdmple, since PC - I 7

the roll rate constraint I P1 < Pmax will be met if T; > Let uPmax

assume that during the autopilot maneuver the following constraints are mt t

tana

tano - tanu g 1

tan3 i ".

Then the pitch rate constraint will be met it

+ 2 < qmax
T T

and the yaw rate constraint will be met if

T + < rmax

....
/.

-2 8- "



EA ~ ScientificSyst*MS

bK o K
41 41 to K

.0 ~ . ~ 4

o eaxoL 17 C

N 29



Scientific Systems

whe re

2 1 I

Note that Tc and T3 have the same effect on meeting the constraints.

As an example, suppose Pmax = 200°/sec, qmax - rmax " 100°/sec, e - 0.17b3

(6 4 10°). Then only the pitch and yaw constraints are active and the

allowable region for (l/To, 2/T) is shown in Figure 4.1. It appears for

this case that a good compromise solution is at the upper right corner it

the allowable region (Tp - 2.17 sec, T/2 - 0.676 sec).

A set of less conservative conditions for determining whether the bud.;

rate constraints are met is to use the closed - form solution (4.18) in the

rate equations (4.19) - (4.21). If we assume that dc is fixed and start

the maneuver at t - 0 with 0(0) given, then, assuming 6c = 0

-t/ t.

tan a(t) = e (tana(O) - tanac) + tanac

tt

tan 6(t) - e tan6(O)

Substituting these into (4.19) - (4.21) yield explicit solutions for pkt),

q(t), r(t), t>O. Depending on the initial conditions and commanded angles,

q(t) and r(t) may attain maximum absolute values after the start of Lhe

maneuver. However, p(t), q(t), r(t) eventually go to zero exponentialy.

This control concept is essentially equivalent to a predictive

controller in which a specified output trajectory (from the current iutpu:

, a, d to the desired final output) is followed as closely as possible,

subject to the system and control constraints. Since the trajectory a:nd

-30- -
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control are known in the future (for the deterministie case), it is

straightforward to pick the trajectory (i.e. Ai) so as to meet all of the

constraints. In a more general setting, an exponential path may not be

adequate for simultaneous avoidance of constraints and minimum-time

maneuvers so that a more complex path satisfying (4.7) may need to be

constructed. In this case, some ideas from robotics on minimum-time

trajectory planning under path constraints (see, e.g., Rajan (1985), Sahar

and Hollerback (1985), Sontag and Sussman (1985)) may be relevant. An

alternate approach is to limit the controls according to the given

constraints; this yields piecewise nonlinear controls which must be deter-

mined using an algorithmic approach such as Model Algorithmic Control

(Rouhani and Mehra (1982)).

4.1.3 Inclusion of Rate Loop Dynamics

The nonlinear control law of (4.19) - (4.21) assumes that the desired

body rates are met instantaneously or, at least, that the rate control Loop

time constants are much smaller than the autopilot time constants. In an

actual missile this may not always be true. In particular, since a rapid

*autopilot response is desired it may be necessary to use time constants

which approach those of the rate loop dynamics.

We assume a first-order lag model for the rate loop dynamics in the

form

, ,a ( c - -) ( .2)

(cf (4.5)), where c is the input to the rate loop. Here, tor simpli-

city, we will use ''a (' L a , where -, i the rate Loop time constint,

-31-
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assumed identical in all three channels.

Then

Cd
oo --- (Kow) 0 + K Aa (wc - w) (4.23)

Now we require that the dynamics satisfy

o + A d + M - c) = 0 (4.24)

where A and M are specified positive - definite matrices picked to yield tne

desired closed-loop response. Here, for simplicity we choose

A - 2;o 1 (4.25)

2M - wo0 1 (4.26)

which yield identical damped, second-order responses for ;, tana and tan,

with frequency w0 and damping ratio ;. Substituting (4.25), (4.26), (..'

and (2.16) into (4.24) yields, for the input wc:

-1

Wc . "-02 Ta KV (c - J)

+ [ I - 2 oTa I - Ta w ] (4.27)

where

,,- % K(, ) (4.28)

AS 0
As ua -- ' ®, , -" ( c - :) . whizh is a r rst-order response
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equivalent to (4.16) with Ae - I. As Ta 0, - c

The elements of * are

'I. "  W12 =  '13 = 0

*21 - Pt-xI] / D

+ q[xlx 2 (D + I + x 2
2 )] / D

+ rjl-D + x 2
2 (xlx 2 + x1

2 
- x2

2 )) / D (4.29)

022 = P[-X1 X2 (D+I)] / D

+ q[x 1 D + (L+x,2 )(1I+x 2
2 ) X1 ] / D

+ r[-D - x1
2 (1+xlx 2)] x2 / ( 4.3)

P23 = P[I+x2 2 (I+D)] / D

+ q(xjx 2 (I+x2
2)] / D

+ r[l+x 2
2 (1+xlx 2)J xI / D (4.31)

Y31 - p[x21 / D

-q[x 1
2 (D+x2

2 )j D

+ r[(xi+x2) 1+x1
2 ) + x, (1-x2 2 )I x2 I D (4.32)

'V32 = P[-xj 2 (D+j) -11 / D

+ q[xl 2x 2 (I+x, 2 )] / D

+ r 1xlx 2 (-X1 2 - x1 3 + x2
2 )1 / D (4.33)

w'33 - Pfxjx2 (D+I)J / D

+ q(x i (D - x1
2x2

2 )] / D

+ r[-2D + x 1
2 (1+xlx 2 ) + xlx2] x2 / D (4.34)

Two types of physical constraints must be taken into account here. First,

the body rate constraints PI < Pmax, q < qmax, j r < rmax must be met.
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Second, the autopilot dynamics will meet the linear constraint equation

(4.22) only up to a certain value of 1wc - A; beyond this, saturation

effects will start to occur. In order to study the effects of constraints

more closely assume that (4.22) holds for j Pc - P I dp, qc - q ( dq,

rc - rl dr. In addition we will assume, for simplicity, that x2 = U,

which is approximately true for a BTT missile. Then:

2
Pc - P - WO Ta (Oc - 0) - 2;WO Tap (4.35)

2 2
qc - q = (WO Ta Cos a) (tanac - tana) - 2;WOTaq

- Ta [rp + (2q 2 - p2 + r 2 ) sina cosl .(.3t)

2

rc - r (WO Ta tana) (O - ) -
2 WO~a r

+ Ta [pqsec 2 + (psin - rcosa) qsincL] (4.37)

Note that the body rate errors (Pc - p, qc - q, rc - r) depend linearLy -n

Now we make the following reasonable assumptions which should be always mu

in practice: J pc - 91 4 i( , 0 < a < 450, 0 < ac < 45". Then the desired

response of (4.24) is guaranteed if the following three conditions are

simultaneously satisfied:

i) W0
2 + 2;O Pmax < dp / Ta (4.36)

(ii) W02 + 2wo0 qmax + (Pmax + rmax)2 / 2 (4.39)

+ qmax 2 < dq / Ta

2

(iii) n0 + 24w0 rmax + 2.5 Pmax qmax (4.49)

+ 0.5 qmax rmax < dr / Ta

These equations can be used in autopilot system design to set upper Limit,

on wo and 4, given specified values of tie rate Loop dynamic limits (dp,

-34-
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dr), rate loop time constant (Ta) and body rate limits (Pmax, qmax, rmax).

As a numerical example, a typical missile might have the following para-

meter values: dp - dq = dr - 10 rad/sec, Ta = 0.10 sec, Pmax 5 rad/sec,

qmax ' rmay= 2 rad/sec. In addition, assume a damping ratio of 0.50.

Then we get the following conditions:

(1) n02 + 5 wo < 100

(ii) W0
2 + 2 w0 < 71.5

(iii) Wu0
2 + 2w0 < 73

condition (iii) dominates, giving w0 
< 4.51 rad/sec

4.1.4 Stability Analysis

The decoupling control of (4.8) always exists, since KO is nonsingular.

Thus as long as Q is finite, w is finite. If the constraints are not

violated, then the desired path 'c(t) te (0, tt)} satisfying (4.7) will be

followed with no error in the deterministic case. This is one advantage of

the decoupling control concept and the use of a desired reference path.

If, however, the state 8 is not perfectly known, the control will be in

error and an instability in closed loop may result. In order to study this

possibility, define the state error as

e - - (4.41)
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where 6 is the state estimate used by the controller. Consider the expo-

nential rate case (4.16). The resulting control is

-1
W = KO~ (as) AO (ac -))(4.42)

Then, to first-order, the closed-loop dynamics are

O [ I + K0 (O) EK(U, e)] AO (dc - 0 - e) (4.43)

where

EK(E, e) 7- Kj (U) el + . 2  K0 (- )I e2  (4.44)

and el - x1 - x1 , e2 - x2 - x2 . The roll error eo does not appear since K.

is independent of *. The closed-loop stability now depends on the behavior

of the time-varying matrix

M(O, e) = KO(O) EK(O, e) (4.45)

If all eigenvalues of I+M (O,e) are in the right half plane, then stabi-

lity is assured, in the sense that any deviations from the desired path

will tend to decay to zero exponentially in the absence of future distur-

bances or errors. The driving term - ,e can cause an offset. If e is a

constant then at steady-state (c - 0), o oc -e.

If we write M(O,e) in the form
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M(6, e) = MI1()ej + H2(0)e 2  (4.46)

then

0 0 0

2 2
xj(2 + x2 ) x2(I - x1 )

M13)= -XlX 2  D D

2 2 (4.47)

0 2) x 2 (l + x2 ) xlx 2
D D

0 0 0

2 2
X] x2 x(I + xI )

M2 M I xl- D D (4 .48 )

2 2
xl0 - X2 ) x2(2 + xj )

- D D

In order to analyze the stability of (4.43), assume A(, / I. Then

one stable pole is at s = -l/T, corresponding to the roll channel. The

other two poles are stable if the following two conditions are simulta-

neously met:

(M) eTx < I + xTx (4.49)

(ii) (elx 2 - e2xl) 2 + 2eTx < I + xTx (4.50)

where eT - (eI e2), xT = (xi x2).

These conditions can be given a geometrical interpretation by viewing

and x as vectors in R2 (note that they have orthogonal components spa-
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tially). If de is the angle between e and x then we have equivalent

conditions:

(i) lei 1x1 cos e < I + jxW 2  (4.51)

(ii) 1lel 2 ilxO 2 sin 2ee + 2 tell lxg cosde < I + IIxL 2  (4.52)

where We1 2 - eTe, etc. The most conservative bound on lieu for stability

may be found by maximizing the left hand sides of (4.51) and (4.52) with

respect to Oe" We find that Oe = 0 maximizes in either case and that

(4.52) dominates yielding

2
< + 1lxii (-

tlell < 2 lxi (4.53)

The right hand side of (4.53) is bounded below by 1. Thus, the final

result is that stability is guaranteed if ilell < 1. This is equivalent to

saying that the sum of the squared errors in angle-of-attack and angle er-

sideslip estimates must be less than I rad 2 , a condition which should

always be met in practice. Recall, however, that (4.53) is the result of a

linearized analysis and holds only for Jell sufficiently small.

The overall conclusion is that the decoupling control law (4.42)

appears to be extremely robust for the dynamical model of (2.16). Now we

consider the stability of the controller of section 4.1.3, which included

the rate loop dynamics. In this case (4.22) holds but the commanded rate

of (4.27) becomes
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-1EWC = W02 Ta K0 ( )(Gc

+ [ I - 2 W0 Ta I - Ta(O)] w (..54)

Inserting (4.54) into (4.23) and keep only the first-order error terms

yields,

j + L 2C.o0 + M + EQ + QK. K MKI

+ W02 (I + M) (0 0)"

( j I - 2;wol-Q) Ke, - wO2 e

where

Q ."- (Kow)

0 2xlq-x2r -p-xlr (4.5b)

0 P+x2q xlq-2x 2 r

EQ= -!- e1 + 2 e2

0 0 0

0 2qej- re2  -rej (4.57)

0 qe2  qej - 2re 21
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M has been defined in (4.45), and e- - . The rate estimation

error e. could be caused by rate gyro errors, for example. We find that

the attitude dynamics are driven by both the attitude error e and the rate

error e.. Further, the stability of the attitude maneuver now depends on

the body rates as well as attitude. However, it is interesting to note

that the matrix Q, which contains the body rates, appears only multiplied

by M in the dynamics. Thus if rates are small, the system is more stable.

It is also interesting that the rate error e, does not effect stability

properties; it affects only the magnitude of the offset from the desired

path linearly.

The steady-state attitude error is found by setting 6 = = 0 in

(4.55), yielding

U - ac (I-M) I_-2, 0I-Q)K~e, - (l-M)e (4.58)
W'2 Ta

where we have assumed M < < 1, or (I+M) -1 4 I-M. The effect of rate error

e. decreases as w0 increases and as Ta increases. In normal operation,

body rate errors will probably have a smaller effect on attitude offset

than attitude error, since body rates will be measured by relatively

accurate rate gyros.

The analysis of stability of (4.55) becomes complex algebraically and

difficult to interpret. We can, however, study a special case in detail.

Assume that iI< < I and define

- qel - re2  (4.59)

If we write (4.55) in the form

'w
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S+ Ae ; + We d - d

then the characteristic equation

sI -1
-o L

We sI+Ae

factors to the form

2 ,
(s2 + 24 0s+wO) (s4 + a3 s3 + a2s

2 + al s + aO ) 0

where

a3 - 4;w 0 + 3e

2

a2 - 2(2;wo + e) (,Wj + E) + 2w0

a l - o 2 a 3

4
ao - 0'

It follows that (4.55) is stable it > 0, which is true by design, an

if

qej - re2 + ¢wo > 0 (4.'1)

so that stability is enhanced by increasing ; and -if, so long as our -

(4.55) remains valid. Note that high body rates will tend to destabilize,

the closed-loop system, although this depends on the signs of the body

rates and the errors in estimates of a and 6. This result suggests tla:

one could enhance stabilization at high body rdtes by biasing the est. i:

of a and so as to keep the left hand side of 4.bI positive.
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4.2 Control Accounting for Rate Constraints Directly

In practice, the attainable body rates will in many cases be the

limiting factor in quickly attaining the desired attitude. Here we discuss

a simple suboptimal control strategy which explicitly takes the body rate

constraints into account. We will assume thatl P1 ' Pmax, j q I qmax,

rI r rmax and consider the same attitude transfer problem as before. A key

consideration in control design is how to keep 6 sufficiently small

throughout the maneuver. If a time-optimal control problem is set up,

using constraints on 4, the resulting optimality conditions are quite

complex, since they involve state constraints (see, e.g. Maurer, 1974) and

a two-point boundary-value problem must be solved on-line. We can elimi-

nate this complexity by assuming that o - 0 throughout the attitude

transfer maneuver. This assumption will be approximately true in most

cases. With this assumption, the dynamics become

(I + x12 ) q (4.0,)

r xi p - ) (!.b2)

The minimum - time pitch maneuver is

q , qmax sgn(c - aO)

which yields tana(t) = tan (a0 + qt) and a transfer time tf - I3 c - '0 iqnax.

The roll/yaw maneuver involves checking the constraints at each time point,

since xj changes with time. At each time point during the maneuver either

the roll constraint or the yaw constraint (or both) will be active. The

resulting rates are

-42-N
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p - sgn( c - )min (Pmax, rmax / 1x11) (4.63)

r - sgn(xl p) min (rmax, j xl Pmax) (4.64)

Roll rate p is set to zero when reaches pc; pitch rate q is set to

zero when a reaches ac. These will generally occur at different timei.

Inspection of this maneuver suggests that further improvement may be

possible in cases where large roll maneuvers but only small pitch maneuvers

are required. In this case, allowable roll rate magnitudes can be

increased if a is first decreased in magnitude and then subsequently

increased in magnitude to its final value. This can be seen more expli-

citly by formulating an appropriate minimum-time control problem.

4.2.1 A Minimum-Time Control Law

Consider the dynamical system comprised of (4.61) and r / xj, i.e.,

= 0. If we view q and r as controls the variational Hamiltonian for

the minimum-time problem is (e.g., Athans and Falb, 1966):

1 + AL q ( + x1
2) + A2 r/xj (4.65)

The minimizing controls are

q qmax sgn (1 )

r - rma x sgn (42/Kj) (x.b7)

where the optimal costates Aj and A2  satisfy the Euter-Lagrange equat),ir,

-43-%
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*t *

- 2 q x1  A I r X2 / x1 *2  kl(tf) - c.

A2  - 0 ; A2 (tf) - c 2 .9)

where sgn(.) is +1 for a postive argument, -1 for a negative argameuic i ..

otherwise, and cl, c2 are constants to be deter-ained to meet t:,e rejuired

terminal conditions and to satisfy H(t) - U for all t. The time-mintmiz- .

path is characterized by pitch angle ;* and angLe-of-attack i*. We wi,"

assume at the moment that a*(t) > 0 along the optimal path. Then

t * ",
( 6 (r* / x1 ) dt + (.

t *
-L(t q* dt +a,

with p*(tf) OC, a*(tf) - ac and xj* tan a*(t). If de integrate back-

ward along the optimal path, assuming q* and r* are constant, we fi:id

c*(t) PC q* log sin((t.

4.
cos a (t)

X 1(t) = c 2  rmax cOt '*(t) - L

We can now characteriae the solution of the minimuri-tL-e problem. Slice

assume that a*(t) > 0 for t e (J, tf), r* is constant for t t (o, tt).

However, q* may change sign. However q* can only switch from - qmax

+ qmax, not vice versa. Thus, if time permits, a* is first reduced to

increase roll rate, and then is Increased to its final value.

'..
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We have assumed here that the optimal path does 10t violate the

constraint a*(t) > 0, but the constraint was not explicitly included in the-

problem formulation. If '*(t) becomes too small the roll rate constraint

will De violated. The constraint i P1 
< Pmax c"& be iacluded via the state

constraint a > imin where

rw

=min tan ( - ) (4.73)
Pma x

The )ptimal paths may ,t.it ir -:s ilong the c)nstr.i it boundary, dependi-'g

on the constraint values and desired terminal state. If the state is on

the constrtint hoidar/, it comes off it the time which allows the ter-ai.ii

angle-of-attack constraint to met.

4.2.2 Inclusion )f Roll {ite Cnstritit

If we include the roll rate constraint r1< 1 < Pmax expliciLty, t- -

problem for-aulation change-. Wrt i IJ t : t t 1:t -; s(;, r) -A, LI A. -' 

I nac, th,- +imiLt rtan becomes (Bryson & Ho, 1975):

H I + \lq ( I + , !) + 2 r/xL +  5 (-i. 7-4)

where i > fur s= 0 (on the constraint b)undr.,u) iil j ) K- ,r

t' 1 - .d r; . tei ootindary, the optnalit! -),diti)ns are the same t-

before. On the boundar/ wc have

Ln addi t:,),i, i - ,,it r i ,

.°

"I
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aH rA
+ -~sgn

must be iatisfied, yielding

X 2  rg (4. 77)

where A 2 (t) c2, as before. The res.uLtiiv, -p[1ttoi ~I:r Al Ls'

Ox

2 q IUf l4

The optirnaL co qt ro' I-; r -a t iimize the Hamiltriian

H 1 + X I q(I + x12 ) 2  p

Thus

q -qmax sgn (x1)

as before, aind

4nit,-n yLedi~, oni the boundari
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P - Pmax g: *'2)

IntegrAting (4.67) backward from terminal time tf using constant 1"

gives, on the boundary

k(t) - coI x* C ( . 3)
cos-a(t

COS -(L,
C

where ac *

Two examples of minimum time maneuvers are shown in Figures 4.2 and

4.3. In each case, the maximum roll rate was 4 rad/sec, the maximum pi:cr

and yaw rates were 1.0 rad/sec and the final desired angle-of-attack was

degrees. The desired roll maneuver was 90 degrees. In the first cas -

initial angle-of-attack was assumed to be zero, which yielded an ini:ial.

boundary arc (p - 4 rad/sec), followed by a control-constrained path

(r - I rad/sec) starting at tgo - 0.196 sec. The (minimum) elapsed :time

was 0.445 sec. The pitch rate was r tad/sec, starting at tgo - J.436

(the possibility of switching the sign of q over the initial 0.009 se-::" .1,

was neglected in view of physical lags in a real system).

In the second example, the initial angle-of-attack was 25 degrees; tr.

remaining parameters were unchanged. In this case, the minimum - time )i-

includes two arcs off the boundary and an interior boundary arc fir tn

roll channel. The pitch channel includes a pitch-down maneuver (q -,

rad/sec) for the first half and a pitchup maneuver (q - 1) for the sec.:

half. The reduction in angle-of-attack allowed tne roll rate to be

increased to its maximum possible value, thus reducing transfer time.

Elapsed maneuver time was ).,498 sec. Note that a maneuver made witho l:

reducing angle-of-attck would require J.733 sec.

%%
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5. FULL DECOUPLING CONTROL

Our objective is to control the components of 0 independently.

Introducing the output y = 0, our objective is to attain the commanded out-

put y(tf) = Yd at the unspecified final time tf. In addition, we wish to

achieve the condition

y(t) = 0; t - tf (5.1)

i.e., the angles ;, a, are held constant from the end of the present

maneuver until the beginning of the next maneuver. From (2.16):

=K u (5.2)

so that (5.1) is satisfied if w(t) = 0; t > tf. From (2.17), this requires

-1

u(t) - B FU j; t - tf

Prior to the terminal time tf, we can develop a decoupling controller as

follows.

In order to incroduce the control u, we need to take another derivative of

y which yields

y = F0 a + Fu w + Bu (5.3)

where

= - (5.4)
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F = K F + (KU w) KO

It is clear that we can control y explicitly via u if B is non-

singular, The determinant of B is

- B j (1 + tan 2 a + tan 2 =) (3.7)

I D= -j B D

Thus, we can decouple the control problem ifj B1 * 0. From (2.21)

BI 0 only if one or more of the control derivatives is zero, that is,

if one or more of the body axis torques is not controllable through control

surface deflections. The conclusion is that a nonlinear decoupling contor

exists if the missile is physically controllable, a condition which must _e f..

met for any steering law. The condition of physical controllability is W

equivalent to the condition that non-zero torques can b2 applied indepen-

dently to all three axes, which will hold if the missile is not in a staL>--:

flight condition and actuator torque limits are not exceeded.

Now suppose we wish to achieve

y(t) - g(t)

From (5.3), we find that the decoupling control Is

u F [g -F U - (5.)

Substituting (5.9) into (2.16) and (2.17) gives the dynamics of the clse_-

loop system under decoupling control:

-51-
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Q -

where the elements of p are given in (4.29) - (4.34).

This controller is closely related to the linear - equivalent control

methodology (see, e.g., Su (1982), Meyer, et al (1984)), in which a nonii-

near dynamical system is converted into a linear system via nonlinear

transformations. If we define

t
X1 (t) - f KU-(c(T))uW(T) dT

0

x2(t) - (()

or, equivalently, x1 - 6, x2 = o, then the dynamics are in the linear,

time-invariant canonical form

;1 = 0 1 x1 + v

x2  0 0 x2

where

v Ka [Bu + Fa u + F,. j

+ K.) K.,.

- g(t) (cf(5.6))

and the actual control u can be tjunj is ,i runction of the linear -

lent control v and the states xK, x) via known memoryless nonlinear tran-

I
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formations. This is essentially the result of Su (1982) applied to the

missile autopilot problem. Reed, et al (1985) obtained essentially the

same result and then solved a quadratic optimal control problem. Dwyer

(1984) used the same approach to solve large - angle rigid body rotational

maneuver problems. Although these approaches lead to attractive dynamical

models, the problem of control under constraints is not resolved. In

essence, the nonlinearities are pushed into the control and it is not at

all clear how (actual) constraints on u map into constraints on v. Thus,

while these methods simplify the dynamics, they tend to preserve complexity

in control constrained problems. However, there is an apparent advantage

to these approaches, namely, that the complexity now resides in a single

expression, relating the original and linear - equivalent controls via a

nonlinear, memoryless transformation. Another potential disadvantage is

that any state constraints have to be nonlinearly transformed to be ade-

quately handled.

5.1 A Decoupling Controller With Exponential Response

We can use the results so far to design a decoupling controller to give

a desired response characteristic. For example, suppose we wish to obtain

a response with the following dynamics

~+ A 6+ W (d - W'c) =0 (5.12)

where

A - diag (2;, 2 , 2;6wS) (5.13)

2 2 2
W - diag (wp, a, (5.1)
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with , , ; the desired damping ratios for the roll, pitch and yaw

channels, respectively and w , wa, wa the desired frequencies. The solu-

tion of (5.12) is a set of uncoupled damped second-order systems of the

form

z(t) - e-  [j(o) cos:t + ;WY(O) + 0(o) sint] (5.15)

which has poles at - € * j t.

Then

g(t) - - A; - W(8 - 0c)

and the decoupling control satisfies

K B u - W Oc - (W + K- FO) ( - [A + KU F KO[ +- (Kew)] K-w (5.16)

In order to interpret this control law, we write out the control components

explicitly, assuming 6c - 0:

_.I [2 (Oc - P) - Ets tano - (2;, wP + Ep) p] (5.17)

I [w2 C02(
q 2 (tanac - tana) - a tana

M6

- (kp - (p + r tanca) cos c) (p tana - r)

- (2;"a "a + Rq + 2q tana) q] (5.18)

-54-
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- [w tana ((c -p) + (w - N ) tan6 - (2; 0 + Nr) p tana
N6

+ (k + sec 2a) p q + (2C6 wB + Rr + qtana) (P tana - r)] (5.19)

In order to insure that the amplitude and rate constraints on 6p, 6q and 6r

are met, simulations using actual numerical values of the stability deriva-

tives are required.

In order to analyze this case further we will assume that a = 0. Then

p tana - r and we have:

roll

L6 6p 2 - ) - (2;; + Lp) p

pitch

2 26q W2 cos a (tanac - tana) - tana

- (2 aw + R + 2q tana) q

yaw

RO 6r = - tana (Oc -P)-(2;Ow+r) p tn

+ (k + sec 2n) p q

where all terms are torques in rad/sec 2 .

We can derive a set of sufficient conditions for full application ot

decoupling control under constraints with several assumptions. Assume the

following constraints:

-55-
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(i) control deflections

I 6p 6pmax, I 6q max i6r I< 6 max
(ii) control effectiveness

E 1 > Edmin' I O I > M6min, N 6 > Ndmin

(iii) rate damping

Ip I < LpmaxI Mq < qmax' I r I < Rrmax

(iv) moment coefficients

< Ramax

(v) body rates
r

I P I < Pmax, I q I < qmax, I " < rmax

(vi) attitude

I *c - < i , Itanac - tanaI <I , 6 0,

0 < a < 1/4

This leads to the following sufficient conditions for full decoupling

control: %

(a) n w2 + Pmax max(2¢iw, - Lpmax24p) < Lomin 6pmax

(b) w2 + %max + qmax max(2;aWU, - Mqmax - 2;,wa) < Momin Oqmax

(c) ff.2 + (k + 2) Pmax qmax + Pmax max (2 , - Nr - 2;,P)

< iomin 6 rmax

-56-
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Here we have assumed that the missile is statically stable, which requires

L p < 0, Mq < 0 Nr < 0. If conditions (a), (b), (c) are met, then it is

guaranted that the decoupling controller will not cause any of the

constraints (i) - (vi) to be exceeded, so that the roll, pitch and yaw

channels will be fully decoupled.

5.2 Stability

We can analyze the stability of the exponential decoupling controller

in a similar fashion as used in Section 4.1.4. Define

EFw - F - Fw (5.21)

EFO - Fe - FO (5.22)

RK - (Ke -Ke) Ke (5.23)

RB- (B - B) B (5.24)

Then, analagous, to (5.12) we can write the closed-loop dynamics as

U+ Ae U, + We U =d (5.25)

where

Ae - A + KO EFw KV + (A+Q) RK +EQ - RK(A+Q)

- K0 RB [KOI (A+Q) + FKe 1 (5.26)

We W + K EFO - RKW - Ku RB (Fj + K- W) (5.27)
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d - (I- K RBKV RK ) W C - (W+ Ka F) e

- [K Fw + (A + Q) KJ ew (5.28)

Note that the matrix Q, which is linear in the body rates q and r, can

have a significant effect on stability for high rates. Note that RK and RB

are composed of terms which are essentially error ratios, and thus are less

than one in magnitude for moderate percentage errors. Also, the elements

of k% and K lare less than one in magnitude, except for the (1,1) elements

which are equal to one. We can qualitatively conclude that this controller

appears robust to estimation errors, and that the most critical error terms

are those involving Q in Ae. Note also that stability should be enchanced

by increasing ; and w0 up to a point, since this increases the positive-

definitiness of Ae and -e" If the values of w0 and C are too low, then the

error terms are likely to dominate the dynamics, leading to instability.
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