
AD-A1S3 686 PROGRMMING LANGUAGES AND SOFTWARE ENOINEERING(U) 1/1
MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE
V R 9ASIL! ET AL. 36 APR 87 AFOSR-TR-87-S939

UUELSSFIFIEDF49E2S-65-K-BS F/G±12/5 NL

I';mlmmmlm

J3..

111111-5 1.0 -LA 1 .6

g~~~fl~1 m.5 II .

......... PFILE CLEMSECU*tM, ~SIFdN 6K OFTgPAE ,

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION / .IA FAEPORL,.,

Approve T1p.(;F EPR,

AD-A 183 060 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TK- 87 90930
6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

1T,4traty f m~r ndJ_______ AFOSR/NM
6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

College Park, Md. 20742 A2U.
Bldg 410
BollingAFB 1p ,fl, 2 .

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL g. PROCUREMENT INSTRUMENT IDENFTIF'TTION NUMBER

ORGANIZATION (If applicable)

AFAR NM F49620-85-K-0008
8c. ADDRESS (City, State, and ZIP Code) 100.. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Bidg 40 3 6443 ELEMENT NO. NO. NO. ACCESSION NO.
_ _ _ _ _ _ _ _ ___Y DO 20332- 61102F 2304 A3

11. TITLE (Include Security Classification)

Programming Languages And Software Engineering

12. PERSONAL AUTHOR(S)

Vietor R Basili. ohn D. Gannon, Marvin V. Zelkowitz
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT

Fina1 FROM]/1/J_ TO 2/27I 4/30/87
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This effort dealt with seveal issues critical to the improvement of software engineerin
techniques. A notion of abstraction for use in formal program specification was developed.
A systematic way of building large programs by integrating reusable components was studied.
An empirical study comparing the effects of three code reading techniques of three
PASCAL programs seeded with different sets of faults was executed. Finally, in the area
of advanced programming environments, improvements were made in the effectiveness of
language-based environments, in the efficiency of language-based editors through the use
of nonlocal productions, and in automatic inference of user data types. More n .thrt_
published references and papers resulted from this effort.

SSAERJUL 3 1987 i
20. DISTRIBUTIO N IAVAILABILITY O F ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIO N 1 LJ.. IO"UNCLASSIFIEDIUNLIMITED 0-- SAME AS RPT. O]DTIC USERS -w

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c OFFICE SYMBOLI

-Capt. John Thomas (202)767-5026 NM

DO FORM 1473,84 MAR 83 APR edition may be used untI exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

AFOSR-Tht. 87-0930

TECHNICAL SUMMARY

AFOSR GRANT F49620-85-K-0008
January 1, 1985 - February 28, 1987

Principal Investigators:

Victor R. Basili

John D. Gannon

Marvin V. Zelkowitz

Date: April 30, 1Q87

008
vot, and/or

April 29, 1987 2

This report represents the technical summary of AFOSR grant F49620-85-K-
0008 to the Department of Computer Science of the University of Maryland for the
period January 1, 1985 until February 28, 1987. Copies of all relevant papers have
been previously forwarded to AFOSR as they appeared. As a large multi-person
grant, some of this represents work that has been completed, and some of it
represents congoing research just begun.

1. Data Abstraction
Because large-scale software development is a struggle against internal program

complexity, the modules into which programs are divided play a central role in
software engineering. Modules that encapsulate complex data types are perhaps the
most important sequential programming-language idea to emerge since the design of
ALGOL 60. Such a module serves two purposes. First, in its abstraction role, it
allows the programmer to ignore the details of operations (procedural abstraction)
and value representations (data abstraction) in favor of a concise description of their
meaning. Second, encapsulation is a protection 'mechanism isolating changes in one
module from the rest of a program. The first role helps people to think about what
they are doing; the second allows program changes to be reliably made with limited
effort.

The essence of data-abstraction is captured by a diagram showing the relation-
ship between a concrete world, the objects manipulated directly by a conventional
programming language, and an abstract world, objects that the programmer chooses
to think about instead of the more detailed program objects. Within each world, the
items of interest are operations mapping objects to (possibly different) objects. The
two worlds are connected by a representation function that maps from concrete to
abstract.

A data-abstraction theory must define correctness, intuitively the property that
the programmed concrete operations do properly mirror the abstract maps in our
minds. A theory also defines a proof method, a means of establishing the correctness
of any particular module.

In the data-abstraction diagram:

April 29, 1987 3

{abstract states- m -abstract states}

t t
A A

{concrete states) -] -concrete states}

the abstract function is m, the representation mapping is A, and the concrete opera-
tion is the meaning of some procedure P, written [P]. We say that the diagram com-
mutes if and only if beginning in the lower left corner and passing in both possible
direp Wins gives the same result whenever the abstract path is defined; that is, A o m
CLP o A. In the view that the abstract function is a specification, a commuting
diagram corresponds to a correct implementation with "don't care cases: when the
abstract function m is undefined, the program function [P] may take any value.

We have developed a formal semantics of modules and its corresponding proof
theory, and have been integrating our ideas into projects designed to evaluate the
efficacy of these ideas. In addition, we have investigated the tradeoffs in representing
abstract objects directly or indirectly. The former method leads to better accessing
code at the cost of more re-compilations if changes are made to an object's concrete
representation, while the latter method mimimizes re-compilations at the expense of
access time [GANN87a].

2. Module Interconnection Issues

The ability to interconnect modules and reuse older modules is becoming of
increasing importance as software grows larger and more complex. Two studies have
begun on addressing this important topic.

2.1. Program Specifications

During the past year, we have formalized a notion of abstraction for use in for-
mal program specification. W6 formalized abstractions as functions called "abstrac-
tion functions." Our abstraction functions are useful for specifying properties about
objects which can be viewed in many abstract ways. We developed two example
specifications using abstraction functions and characterized the domains for which
abstraction functions are generally useful. We found that abstraction functions are
generally useful in the specification of user interfaces. All of this work is aimed at the
goal of making formal specification and verification a practical part of software
development. We hope that our abstraction functions will make it easier to formally

: - T ,., , r ~m-w., , .ep~ n N . , , "'-l

April 29, 1987 4

specify programs that have complex user interfaces. We also made an effort to
develop our specifications and specification techniques so that they will be manipul-
able by automated verification systems. This, we believe, is very important to the
eventual practical use of formal specification and verification.

2.2. Software Construction with Reusable Modules

We are doing research on the systematic way of building large programs by
integrating reusable components. The main goal of the research is to use the general
components without modification but with adaptation. In order to show the effective
way of constructing programs we planned to build a prototype system that supports
building process. To do this we follow several steps:

1. Classify the general purpose components.
2. Decide specification method and structure for the reusable components.
3. Decide the organization of components library.
4. Find the way of searching the components with partial specification.
5. Search the interconnection problems and the consistency problem that

may occur during the integration of separately built components.
6. Build components for some problem domain.
7. Do experimentation.

Last year we performed an extensive survey of current research efforts for reusa-
bility in general and components reuse; we also searched for possible direction. Then
we decided a research plan to build a prototype system that supports software system
builder (i.e., designer) in integrating the reusable components into a large program.
[JO087] The prototype system will consist of 1) a library of reusable modules, 2)
tools to support the creation, cataloging and searching the reusable modules, and 3)
connection supporting tools with adaptation and consistency checking facility.

3. Code Reading Studies

The two code reading studies, the "How ReadingEffects-Cleanroom" and the
"HowSpecificationEffectsReading" studies, were done during the Fall of 1986.
The first study tries to compare the effect of code reading to the effect of code read-
ing followed up by functional testing. The second study tries to analyze the effect of
code reading based on stepwise abstraction depending on whether the code reader
does the stepwise abstraction with or without the original specification.

An empirical study comparing the effect of three code reading techniques (code
reading with specification, code reading without specification, and code reading with
specification followed by functional testing) on three PASCAL programs (an abstract
data type, a text formatter, and a database maintainer) seeded with different sets of
faults (only hard faults which is intended to simulate the situation after system test,
hard+medium faults which is intended to simulate the situation after unit test, or
hard+medium+easy faults which is intended to simulate the situation after compila-
tion) was executed with thirty-two subjects at the University of Maryland. The
length of the programs (in LOC) was 140 (abstract data type), 220 (text formatter),

April 2, 1987 5

and 500 (database maintainer). The number of faults was (2: hard, 4: hard+medium,
7:hard+medium+easy) for the abstract data type, (3, 6, 9) for the text formatter, and
(4, 7, 12) for the database maintainer. The study consisted of three sessions. Each
subject (students of a software engineering course) used worked with each code read-
ing technique, each program, and each fault profile once. For example, if a subject
applied code reading technique "1" to program "2" with fault profile "3" in session
1, he/she might have applied code reading technique "2" to program "3" with fault
profile "1" in session 2, and code reading technique "3" to program "1" with fault
profile "2" in session 3. The statistical approach chosen was a fractional factorial
design. This formal statistical approach enables the distinction of differences in the
impact of the three code reading techniques on different programs and fault profiles,
while allowing for variation in the ability of the individuals testing or in the programs
being tested.

The results of the "HowReading EffectsCleanroom" study can be
summarized as follows:

1) Only for one program (the abstract data type) code reading followed by functional
testing detected a (statistically significantly) higher number of faults compared to
just code reading.

2) Code reading was significakntly more effective in terms of fault detection rate
(number of faults detected per hour).

3) Functional testing applied after code reading was much more effective than indi-
cated by earlier studies [BASI8Se]. Almost all faults missed by code reading were
detected by functional testing.

The results do not give a strong indication that code reading followed by functional
testing produces better results (in terms of number of faults detected) than just code
reading. However, independent of the quality of code reading, functional testing
applied after code reading seems to be much more effective than applied in isolation.
Therefore, it might be concluded that code reading is a very good preparation for
code reading.

The results of the "HowSpecificationEffectsReading" study can be sum-
marized as follows:

1) Code reading without specification resulted in more faults being detected than code
reading with specification.

2) Code reading without specification is about two times more expensive than code
reading with specification.

Overall, it can be concluded that reading without the specification is more effective
and expensive.

In addition, a couple of additional observations should be mentioned:

p i!

April 29, 1087 6

1) The effectiveness of (all types of) code reading is better in the case of few faults
(just hard faults) and in the case of a (relatively) high number of faults
(hard+medium+easy faults). A medium number of faults (hard+medium faults)
generally resulted in the lowest effectiveness. One possible explanation is that
human beings expect a certain level of faults (x faults per LoC); whenever, they
find significantly less or more faults they get into some kind of exception mode
and try harder. To a certain extent this result is supported by weaker results of
the same type from an earlier study. In the "When ToRead" study [ROMB86I
no significant difference has been detected between the different fault profiles.
One of the reasons might be that we included too many syntax faults in this pre-
vious study. However, when we looked at the results from the "WhenTo Read"
study again, a similar pattern (although not significant from a statistical point of
view) was recognized: code reading applied to a small or high number of faults
resulted in detecting a higher percentage of faults than applied to a medium
number of faults.

2) The effectiveness of code reading by stepwise abstraction depends heavily on
experience. This result is supported by similar results from all previous code
reading experiments.

In conclusion: Results from these two studies support many results from prior code
reading studies [BASI85e], [ROMB86]. In addition, code reading seems to be most
effective after compilation or after system test. There is no strong empirical support
for recommending code reading being followed up by functional testing; however,
functional testing might be more effective if preceded by code reading as a prepara-
tion technique. Finally, code reading by stepwise abstraction can be significantly more
effective if the abstraction process is performed without knowledge of the original
specification.

4. Environment Models
Advanced programming environments will play an important role in achieving

significant increases in programmer productivity; consequently, research in program-

ming environments is of major importance. Under this grant we have made progress
in several areas: increasing the effectiveness of language based environments, improv-
ing the efficiency of language-based editors through use of nonlocal productions, pro-
gramming environments that automatically infer user data types, and semantics-
based programming environments. We summarize below work carried out in each of
these areas under the AFOSR grant.

4.1. Environment Development

During this grant, development of the SUPPORT environment matured. The
interaction among the various windows and facilities - program generator, parser,
internal editor, interpreter - became stable. A major task during 1985 was the tran-
sporting of the system to an IBM PC. This project demonstrated the use of

April 29, 1987 7

environments on machines as small as the PC. Some of the facilities had to be
redesigned to take into account the architectural features of the Intel 8088 family of
microprocessors [ZELK85c]. In spite of the small machine size, SUPPORT runs
efficiently on a 256K PC and can process a 600 line program. In a 640K machine,
programs up to 3,000 lines can be processed. This shows that such small machines
can be used effectively as single user workstations.

Beginning January of 1986 the system was used in the introductory program-
ming class of computer science majors for their use in building Pascal programs. The
effectiveness of this system in a real user environment was measured [ZELK87b].
Syntax editing is most accepted by inexperienced users, and the issues of navigation
and code modification are paramount issues for acceptance.

Based upon this early evaluation, work began on specifying a hierarchy of editing
features where syntax editing can provide an effective improvement of productivity.
A six level hierarchy was proposed consisting of text editing, text inclusion, syntax.
editing, macro processing, knowledge processing and data flow analysis. Each level
provides more power to the system, and a full implementation of all six levels pro-
vides a powerful specifications language model for text generation [ZELK87a]. Work
on this area is continuing.

Along with the programming environment, a diagnostic run time system - Drs. -
has been built for program testing. A basic design of this system has been the use of
higher level Pascal syntax as a command language. Drs. allows users to investigate
the runtime data stack, execute Pascal statements from the command level, trace
variables and to display the source program in various ways. This work resulted in a
M.S. thesis for B. Kowalchack, and a paper on the system was published (KOWA871.

Work began on a natural language extension to the SUPPORT system. The idea
behind this extension is to use artificial intelligence techniques in the design phase of
program development. A user is expected to write a design comment, as in:

:Sort A in ascending order using a bubble sort;
and the system will respond by producing the Pascal code that implements this com-
ment. It is expected that such techniqties can greatly improve the efficiency of expert
programmers. An early paper on the topic was produced and more work is expected
[ZELK85b].

Analysis of program structure was furthered by the Ph.D. research of William
Bail [BAIL85]. He developed a mathematical model of program structure based upon
the prime program decomposition of the resulting fiowgraph. This model differs from
previous models in that it considers both the syntactic structure of the program as
well as data structure dependencies, and thus makes it possibly better amenable for
analyzing object oriented designs. A technical report was written outlining the basic
model. Further work will continue in 1986 refining this model with respect to real
programs.

April 29, 1987 8

4.2. Efficiency issurs in advanced programming environments

The first research endeavor supported has been the study of nonlocal productions
as a means to achieving high responsiveness and efficiency in language-based editors.
Results from this research have been encouraging; a paper is being readied for sub-
mission to the ACM Transactions on Principles of Programming Languages based on
the work. The goal is to make possible the automatic generation of highly efficient
programming environments. In this approach, one describes the syntax and semantics
of a programming language in a high-level, declarative notation, and from this
description a programming environment is automatically generated. A problem of
this approach has been that the resulting environments were not efficient enough to
provide satisfactory speed of response to users. The approach of nonlocal productions
has proved to be a convenient extension to the description language that results in
significant improvements in system response time to users. Nonlocal productions
have been defined using a technique call graph projection. Efficient incremental
updating of semantic information can be achieved by a generator-time analysis of the
possible dependencies of attributes in the description of the programming language.

In several language-based editors, designers have opted for nonlocal information
flow as a part of incremental static semantic analysis. A user's program is typically
represented as a parse tree decorated with static semantic information, and the tree is
threaded with links that permit information to propagate in a single step from one
place in the tree to another place that may be far from the first. Nonlocal informa-
tion flow appears to be necessary to achieve reasonable interactive responsiveness in
such systems. However, most of the approaches have been somewhat heuristic or ad
hoc. Of the more rigorous approaches, there have been a variety of restrictions that
authors have found necessary to impose. None of the approaches is wholly satisfac-
tory for all applications; the approach presented here is a generalization and reformu-
lation of the priority-relation technique first discussed in [JOHN85]. Our research is
based on a new definition of nonlocal attribute grammars based on graph projections.
The new definition provides the twin advantages of being natural for writers of attri-
bute grammars (the notation is almost identical to the standard notations for attri-
bute grammars) and offering a clean mathematical basis for studying incremental
semantics in the presence of nonlocal dependencies. A new general incremental
update algorithm was developed and analyzed as a graph coloring problem. This
technique provides the basis for an optimal priority-based incremental update
scheme. This work represents the culmination of work by the authors over the past
few years to combine the efficiency of the nonlocal approach with the advantages of
rigor found in Reps's approach to incremental semantics.

A graph coloring approach provides the basis for a very general optimal
priority-based incremental update scheme. Nonlocal productions have been used by
several authors, and priority-based evaluation has been adopted by at least two
groups: Zadeck, and the present authors. In neither case, however, was an optimal
algorithm for incremental updating presented and proved. The technique of nonlocal
productions has proved successful as an engineering solution to provide efficient

v V .m a ' ' "' " ' -" 3

April 29, 1087 9

LBE's, but optimality results have remained elusive. The work described here con-
trasts with that of Reps, in which only upward remote references are permitted and
operations proportional to parse tree depth are required, and that of Hoover in which
dynamic, evaluation-time measures are employed.

Our priority calculation algorithm for projection-based nonlocal attribute gram-
mars is patterned on Knuth's characteristic graph computation algorithm. Just as a
characteristic graph is the smallest of a potentially infinite set of graphs that all share
a particular structural property, we define a notion of rendezvous ancestor graphs
that are associated with grammar symbols. Assume that in some parse tree there is
an attribute that has N > = 2 distinct paths to some other attribute. If a subtree of
a node is replaced by the appropriate rendezvous ancestor graph for that node, there
still will be N distinct paths between the two attributes. This path information is
precisely what is needed for computation of priorities. Just as graph projection is
used on the compound dependency graph of an attribute gr.ammar to contain nonlo-
cal dependencies, projection can be employed in deriving and using rendezvous ances-
tor graphs. It was the pleasing symmetry of this construction that convinced us of
the appropriateness of a projection-based approach to nonlocal productions.

4.3. Automated type inference in programming environments

A language-based editor is a full-screen interactive text editor that has pro-
grammed into it knowledge of a particular programming language. As a programmer
enters or modifies his program, the editor provides constant feedback about the state
of syntactic and static semantic correctness of the program. Thus, functions normally
reserved to a compiler are integrated into the text editor. Until recently language-
based editors have assumed a fairly passive role in the process of consistency check-
ing; declarative information provided by the user was compared to uses. For
instance, if an identifier is declared to be an array variable, the editor checks whether
it is used correctly. In [JOHN86] it was demonstrated that a language-based editor
can assume a much more active role. That work reported on a system that was
implemented. MOE is a language-based editor that performs active, type inference as
the user enters his program. Instead of relying on the user to provide type informa-
tion, MOE makes determinations as to the types of all constructs in the user's pro-
gram. If inconsistent uses are noted, they are highlighted to Indicate the presence of
errors. As a simple example, if the same identifier is used in a context that requires a
boolean value and in another context that requires an integer value then a type
conflict is noted. The presence of a rich type structure in the language makes the
incremental type inference problem nontrivial. MOE attempts by counting usage fre-
quencies to infer the intended type of each component of the user's program. If a
conflict is detected, error highlighting is made more noticable for the minority asser-
tion if there is one. The presumption is that if an identifier is used frequently as, say,
an integer and only once as a boolean then the error is probably the latter usage and
the boolean use will be highlighted at a higher intensity than the integer usages.

April 29, 1987 10

MOE has successfully demonstrated the feasibility of incorporating an active
style of automated type inference into language-based text editors.

4.4. A semantics-based programming environment

Most current programming environments focus primarily on issues of syntax and
static or compile-time semantics. A new project was initiated to explore the possibil-
ity of creating a programming environment around a denotational definition of the
semantics of a programming language. Program testing and maintenance are of criti-
cal importance in the software life-cycle, and and environment that is designed to
support this phase of the life-cycle based on a semantic understanding of the pro-
gramming language is an interesting prospect. Initial results based on theoretical
investigations and an experimental implementation have been promising [JOHN87I.

Denotational definitions have had a major impact on programming languages.
Understanding of mathematical foundations of programming languages has made for
better engineered languages. We hypothesize that program development and testing
can similarly benefit from a rigorous mathematical basis. The new research environ-
ment will thus provide information with which to assess our hypothesis.

The environment is based on GL, a language designed to support interactive
experimentation with denotational semantics of programming languages. GL is an
expressional langualre that might best be described as an implementation of lambda
calculus augmented with several useful basic data types including -values.

A unique aspect of the GL environment is that it presents a visible, user-
accessible implementation of the continuation semantics of GL. The user is expected
to understand a denotational definition of GL, and to interact with the system in
terms of that definition. In particular, if a computation is temporarily halted the
expremion continuation extant at that point can be interactively captured and later
applied to other values and stores. The implementation of this feature is via a pair of
routines called setjmpup and longjmpup that provide what might be called a partial
continuation facility. A partial continuation is a function over stores or store/value
pairs that represents execution of a partially executed program from its current state
to some later state possibly before its halt state. The semantics of partial continua-
tions is interesting, and GL contains continuations and partial continuations as first-
clas objects.

The GL environment is fairly complete; it has an experimental polymorphic type
inference mechanism that supports self-application and reports likely sources of user
error in a robust manner, and it has a flexible breakpoint and trace facility that per-
mits program execution to be observed and controlled at a variety of levels of granu-
larity.

The environment is designed around a continuation semantics for GL, and the
user of the environment interacts with the computer in terms of this denotational
definition. At any point when execution of a program has been stopped, the user can
interactively obtain a continuation for the computation in progress and bind it to an
identifier in the programming environment. The captured continuation can then be

April 29, 1987 11

applied to a variety of arguments in an exploratory manner. The use of continua-
tions as first-class objects in a programming language is extremely useful; the
language Scheme exemplifies this principle.

The normal mode of use is for users to capture continuations in their programs
at various interesting points and apply them in a flexible, interactive way to a variety
of arguments and stores. Since GL permits functions to be used as fully general
first-class objects, applications of captured continuations can be imbedded in arbi-
trary GL program fragments. A user could thus easily write a small program to
apply a given continuation to all odd integers between 100 and 1000, and algorithmi-
cally determine if his program behaves as desired under those circumstances.

Efficient implementation of an interactive continuation-based environment
required a novel approach to the internal design of the execution component of the
system. The GL environment provides a Read-Eval-Print loop that permits recursive
invocations of itself. Thus the runtime activation record stack consists of an activa-
tion of Read followed by some number of invocations of Eval, another activation of
Read followed by more invocations of Eval, etc. From the point of view of implemen-
tation a continuation is simply a sequence of Eval activation records between two suc-
cessive activations of Read.

As mentioned above we implementated two procedures that implement what
might be called partial continuations. The routines are called setjmpup and
longjmpup to suggest an analogy with the Unix system calls setjmp and longjmp.
Setjmpup captures a continuation from after its point of call to the completion of one
of its ancestors in the called-by relation. This is accomplished by capturing some
number of activation records off the top of the runtime stack. Longjmpup evaluates
such a continuation by concatenating a vector of activation records onto the runtime
stack. This mechanism provides an efficient way to implement dynamically obtain-
able continuations; if the user assigns the continuation of a function he is executing to
a variable, the object assigned to the variable is the stack of Eval frames down to the
previous Read frame. This technique has proved to be feasible within a relatively
low-level implementation language (Pascal) and to be sufficiently efficient.

5. Published References
(1) [BAIL85] Bail, W.G. and M.V. Zelkowitz. Program complexity using hierarchical

abstract computers, Computer Science Technical Report TR-1593, University of
Maryland, (Deceml,-.r, 1985).

(2) [BASI85a] Basili, V.R. and D.H. Hutchens. System Structure Analysis: Cluster-
ing with Data Bindings, IEEE Transaction8 on Software Engineering, 11, 8,
(August 1985), pp 749-757.

(3) [BASI85b] Basili, V.R., and R.W. Selby. Data Collection and Analysis in
Software Research and Management, NATO Advanced Study Institute on The
Challenge of Advanced Computing Technology to System Design Methods,
(August, 1985).

April 29, 1987 12

(4) [BASI85c] Basili, V.R., R.W. Selby, and F.T. Baker. Cleanroom Software
Development: An Empirical Evaluation. University of Maryland Technical
Report TR-1415, (February 1985).

(5) [BASI85d] Basili V. R. and R. W. Selby, Calculation and use of an environment's
characteristic software metric set, ACM/IEEE 8th International Conference on
Software Engineering, London Eng, (August, 1085) 386-390.

(6) [BASI85e] Basili V. R. and R. W. Selby, Jr., Comparing the Effectiveness of
Software testing Strategies, Dept. Com. Scd., Univ. Maryland, College Park,
Tech. Rep. TR-1501, May 1985.

(7) [BASI86a] Basili V. R., R. W. Selby, Jr., and D. Hutchens, Experimentation in
Software Engineering, IEEE Transactions on Software Engineering, (July 1986).

(8) [BASI86b] Basili V. R. and R. W. Selby, Jr., Four Applications of Software Data
Collection and Analysis Methodology, in Software System Desing (J. Skwirzynski.
editor), Springer-Verlag Lecture Notes in Computer Science, Vol. F22, 1986.

(9) [BAS187] Basili V. R. and D. Rombach, Tailoring the Software Process to Project
Goals and Environments, 9th International Conference on Software Engineering,
Monterey, CA, (March 1987).

(10) [DAY85I Day, J.D., and J.D. Gannon, A test oracle based on formal
specifications, Proceedings of SOFTFAIR II, (December 1985), 126-130.

(11) IDUNL85] Dunlop D." D. and V. R. Basili, Generalizing specifications for uni-
formly implemented loops, ACM Transactions on Programming Languages and
Systems 7, 1 (January, 1985) 137-158.

(12) [GANN85 Gannon, J.D., R.G. Hamlet, and H.D. Mills. Functional semantics of
modules, Formal Methods and Software Development, Proceedings of the Interna-
tional Joint Conference on Theory and Practice of Software Development (TAP-
SOFT), volume 2, Lecture Notes in Computer Science, 186, Springer-Verlag,
(March 1985), 42-59.

(13) [GANN86] J.D. Gannon, Testing tools using formal specifications and coverage
metrics, Proceedings of Software-Testsysteme, Bremen, Germany, (June 1986),
5-11.

(14) [GANN87a] J.D. Gannon and M.V. Zelkowitz. Two implementation models of
abstract data types, Journal of Computer Languages 12, 1 (January, 1987), (to
appear).

(15) [GANN87b] J.D. Gannon, R.G. Hamlet, and H.D. Mills, Theory of modules,
IEEE Trans. Soft. Eng. (January, 1987), (to appear).

(16) [JOHN85] Johnson, G. F. and C. N. Fischer, A Meta-Language and System for
Nonlocal Incremental Attribute Evaluation in Language-Based Editors, Proc. of
the Twelfth ACM Symposium on Principles of Programming Languages, (Janu- P
ary, 1985), 141-151.

1 g

April 29, 1987 13

(17) [JOHN86 Johnson, G. F. and J. A. Walz, A Maximum Flow Approach to Ano-
maly Isolation in Unification-based Incremental Type Inference, Proc. of the
Thirteenth ACM Symposium on Principles of Programming Languages, (Janu-
ary, 1986), 44--57.

(18) [JOHN87] Johnson, G. F., GL - A Denotational Testbed with Contintuations
and Partial Continuations as First-class Objects, Proc. of the ACM Conference
on Interpreters, (June 1987).

(19) [JO0871 Joo B. G., Software Development Using Reusable Components", Propo-
sal for Ph.D. Dissertation Research(Draft), March 1987.

(20) [KOWA87] Kowalchack B. and M. V. Zelkowitz, Drs.: A language oriented diag-
nostic runtime system, 2nd Conference on the Role of Language in Problem Solv-
ing, Elsevier Science Publishers (1987) 377-389.

(21) [LIN851 Lin, K.-J., and J.D. Gannon. Atomic remote procedure call, IEEE
Trans. Soft. Eng. 11, 10, (October 1985), 1126-1135.

(22) [MILL87aI H.D. Mills, V.R. Basili, J.D. Gannon, and R.G. Hamlet. Teaching
principles of computer programming. Proceedings ACM 15th Annual Computer
Science Conference, St. Louis, (February 1987).

(23) [MILL87b] H.D. Mills, V.R. Basili, J.D. Gannon, and R.G. Hamlet. A first course
in computer science: mathematical principles for software engineering. Proceed-
ings of the SEI Conference on Software Engineering Education, Pittsburgh,
(April 1987), (to appear).

(24) [ROMB86] Rombach H. D., V. R. Basili, and R. W. Selby, Jr., The Role of Code
Reading in the Software Life Cycle, Proc. of the Ninth Minnowbrook Workshop
on Software Performance Evaluation, Blue Mountain Lake, New York, August
5-8, 1986.

(25) [WEIS85 Weiser, M.D., J.D. Gannon, and P.R. McMullin, Comparison of struc-
tural test coverage metrics, IEEE Software 2, 2, (March 1985), 80-85.

(26) [ZELK85a] Zelkowitz M. V. et al., The still unnamed production programming
oriented research tool (SUPPORT) environment, IBM AEP Conference, Alexan-
dria VA, (June, 1985), 97-112.

(27) [ZELK85b] Zelkowitz M. V. et al., The SUPPORT Pascal programming environ-
ment, 8th Minnowbrook Workshop, Blue Mountain Lake NY, (July, 1985).

(28) [ZELK85c] Zelkowitz M.V., et al. The engineering of environments on small
machines, IEEE International Conference on Computer Workstations, San Jose,
CA, (November, 1985), 61-69.

(29) [ZELK85d] Zelkowitz M.V., B. Kowalchack, and P. Forcheri. A knowledge-
based design facility, Computer Science Technical Report TR-1594, University of
Maryland, (December, 1985).

(30) [ZELK86] Zelkowitz M. V. and B. Kowalchack, A knowledge based design facility
for a syntax sensitive editor, 9th Minnowbrook Workshop on Software

1!_

April 29, 1987 14

Performance Evaluation, Blue Mt. Lake, NY (August, 1986).

(31) [ZELK87a] Zelkowitz M. V., An editor for program design, IEEE Compcon, San
Francisco CA (February, 1987) 242-246.

(32) [ZELK87b] Zelkowitz M. V., B. Kowalchack, D. Itkin, L. Herman, A SUPPORT
tool for teaching computer programming, Software Engineering Institute Confer-
ence on Software Engineering Education, Pittsburgh, PA (May, 1987) (to appear)

,. : . '. .. %&I• ,

C 1

". %'/-~) . "s-, ,. .,

..

'0 X,,

OOFI

