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SECTION 1 

INTRODUCTION 

Government acquisition programs follow a standardized 
development cycle, ranging from concept exploration and system 
definition through to implementation and fielding.  The results of 
early cycle phases are captured in a sequence of progressively more 
detailed system descriptions, characterizing system functional 
requirements, architectural specifications, and multiple design 
iterations. 

For the large and complex computer and communications systems 
commonly needed today, it is becoming increasingly difficult to 
maintain and analyze the information contained in developmental 
system descriptions.  Analysis encompasses verification of system 
descriptions with respect to completeness, consistency, technical 
and economic feasibility.  Comparative analysis is also critical, 
both of variants at a given development phase and of system 
descriptions across cycle stages.  Additional recurring acquisition 
problems include information accessibility and refinability, and 
reusability of fragments of existing system descriptions.  These 
problems are not unique to the Government sector:  support problems 
for large system engineering projects are ubiquitous. 

A variety of computerized automation tools already exist to 
support system development activities, including simulation and 
design, document preparation, and project management.  Unfortunately, 
existing tools, taken individually, are often sharply restricted in 
functionality and may require significant programming expertise. 
More seriously, existing tools are extremely difficult to integrate. 
Simulators and design tools, for example, generate and operate on 
formal system models or model fragments, whereas document preparation 
tools manipulate textual descriptions of systems. 

This paper describes MITRE's Systems Environment for Intelligent 
Modeling and Analysis of Requirements (SEIMOAR), an acquisition 
support tool based on artificial intelligence (AI) technologies. 
SEIMOAR addresses the problems of maintenance, analysis capabilities, 
and tool integration by capturing and manipulating early acquisition 
cycle system descriptions in the form of symbolic models. 



Symbolic models provide explicit representations of system 
architectural structures, functionality, and behaviors.  System 
design constraints (e.g., performance requirements, maintainability, 
cost and size relationships, reliability and quality factors), can 
also be stored as symbolic structures.  Symbolic representation and 
reasoning techniques provide significant advantages over conventional 
data bases and programming techniques in terms of data compaction, 
model expressiveness, and general capabilities for manipulating 
models. 

Integrability problems are addressed by requiring all such 
developmental models to be cast in a uniform representational format. 
Such models will obviously vary in the level of detail (e.g., overall 
system capabilities expressed as a collection of functions versus an 
allocation of functions to specific hardware and software components 
proposed in a contractor's design), but not in the kinds of symbolic 
structures used to represent such information.  Moreover, all tools 
required for acquisition support will be constructed on the basis of 
this common modeling structure.  As noted above, automated tools are 
needed to facilitate generation, maintenance, revision, review, and 
analysis activities on system development information. 

SEIMOAR employs a modeling library approach for the creation of 
symbolic system descriptions.  New systems are very rarely totally 
unique; typically,.they copy or copy and adapt functions and 
components from existing systems.  SEIMOAR exploits this fact by 
incorporating a modeling library consisting of reusable templates 
describing generic structural and functional system elements. 
Templates are represented via frames, which are AI data structures 
that symbolize objects or object classes in terms of a set of 
attributes and relations. 

In the SEIMOAR prototype, the modeling library describes 
prototypical functions and components for military Communications, 
Command, Control, and Intelligence (C I) systems.  Example system 
elements templates include signal processing functions and local area 
networks, characterized by attributes such as security requirements 
and network protocols.  Alternative libraries would be used to 
support different systems engineering applications domains. 

Developmental system models are generated through a simple 
copy-and-edit strategy:  users select and then customize generic 
library templates, thus representing particular application system 
model elements.  Customization proceeds by supplying values to 
template-defined attributes, or by defining new attributes and then 
supplying values.  The customized templates are connected together to 
form a comprehensive model by various relations (e.g., structural 
connectivity, functional flow, class-subclass and class-instance 



Links).  In AI parlance, system models in SEIMOAR consist of 
knowledge bases containing structured collections of customized 
templates. 

In addition to representing system architectural structure and 
functionality, SEIMOAR system models capture system behaviors, the 
sequences of events involving system components and data objects that 
implement particular functions.  SEIMOAR incorporates a discrete time 
functional simulator shell for dynamic behavioral modeling of system 
functionality. 

Briefly, users construct behavioral models by providing a 
specification of flows (e.g., function sequencing and branching), 
executable procedures associated with individual functions that 
describe the desired actions on model objects (i.e., system elements 
and data objects), and iconic animations of these actions.  ScIMOAR 
also incorporates a menu-driven scenario generator to produce 
sequences of test events (e.g., arriving messages or signal pulses). 
The simulator uses these ingredients to cycle through applications of 
functional actions to alter model system element and test data object 
states over time. 

The remainder of this report is divided into three major 
sections.  The first establishes the project context:  the portions 
of the acquisition process Co be addressed by SEIMOAR are explained; 
general problems in the acquisition process are summarized; existing 
automation tools are analyzed with respect to their inability to 
resolve current acquisition problems; and finally, a strategy to 
resolve acquisition process and tooling problems is put forward. 

The second section reviews the results of the SEIMOAR project to 
date.  Project logistics and test vehicles are outlined, followed by 
a description of the Al-based development environment tools used to 
implement SEIMOAR.  The major architectural features of the system 
prototype are then explained in details  the modeling library for 
structures and functions, and the behavioral simulator shell.  The 
explanations incorporate exampLes from the test vehicle system model 
and scenarios that suggest SEIMOAR's intended usage. 

The third section summarizes limitations in the current version 
of SEIMOAR, accompanied by design sketches of planned remedies and 
enhancements.  Planned improvements include enhancing the user 
interface, broadening the representational scope of current library 
templates, refining the implementation of the base representation 
model, and introducing automated static and dynamic analysis 
capabilities. 



Appendix A provides a brief tutorial on standard AI knowledge 
representation techniques.  Since sections 3 and 4 rely heavily on 
the terminology and concepts set forth in the appendix, newcomers to 
AI are advised to review appendix A before reading the indicated 
sections.  Appendix B describes and compares two prominent commercial 
AI system building shells. 
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SECTION 2 

BACKGROUND INFORMATION 

2.1  DEVELOPMENTAL PHASES OF ACQUISITION PROGRAMS 

What are the automation needs in the early phases of systems 
acquisition?  Some initial background information outlining the 
structure of the procurement process is required in order to frame an 
answer. 

The first major milestone in an acquisition program is the 
specification of functional requirements for a proposed system.  The 
document that sets out this information is called a System/Segment 
Specification (SSS).  Its ingredients and format are spelled out in 
the current Department of Defense acquisition process specification, 
DOD-STD-2167.  Figure 1 depicts a tree graph that represents the 
categories of information (i.e., paragraph headings), of the SSS. 

The SSS summarizes the results of a process of system concept 
definition and exploration.  It defines the basic purpose of the 
system, together with a detailed characterization of desired 
functional capabilities, qualitative and quantitative performance 
needs.  In addition, the specification delineates requirements for 
interfacing to related, existing systems, quality and reliability 
factors, logistics, environmental operating conditions, and other 
design implementation constraints.  Requirements are developed by 
government customers (e.g., the U.S. Air Force), sometimes in 
conjunction with a supporting acquisition organization such as MITRE. 

The next phase in the process is to select contractors to design 
and construct the system in question.  Source selection is based on a 
comparative analysis of proposals solicited from potential system 
developers, performed by an acquisition organization.  Proposals 
outline contractors' projected technical, methodological, and project 
management approaches to the problems and needs set out in the 
functional decomposition specifications. 

Following source selection, the winning contractor produces a 
sequence of specification and design products for formal review and 
analysis by the customer and its acquisition agents.  The contractor 
products describing software aspects of systems up to the 
implementation phases include:  Software Requirements Specifications 
(SRS), Software Top Level Design Documents (STLDD), and Software 
Detailed Design Documents (SDDD).  Separate interface description 
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documents are prepared for each specification or design phase.  Each 
acquisition phase also calls for project management documentation, 
describing schedules, cost and sizing data, policies, procedures, and 
methodologies. 

To elaborate briefly, the SRS presents a definition of an 
overall system architecture and configuration allocation:  the SRS 
allocates functions among specific hardware and software subsystems 
or components, respectively called Hardware and Computer System 
Configuration Items (HWCIs, CSCIs).  The STLDD constitutes a 
preliminary software specification, which defines data structures and 
establishes control and data flows between CSCIs and HWCIs.  The SDDD 
characterizes software to a finer-grained level of detail, breaking 
down CSCIs into modules of pseudocode or a program description 
language (PDL).  In short, the SDDD delineates the internal structure 
and organization of specific software subsystems. 

It should be clear that this kind of iterative specification and 
design process is not unique to Government organization programs. 
Large computer system development proceeds similarly in industrial, 
financial and other sectors as well.  Moreover, the structured design 
cycle sketched here is followed whether systems are contracted 
externally or constructed in-house.  If systems are procured, system 
design is performed by contractors; otherwise, this role is performed 
by internal development organizations.  Thus while this paper reports 
on a system development support tool in the context of Government 
acquisition programs, the results are generalizable to most system 
development environments. 

2.2  RECURRING PROBLEMS IN THE CURRENT ACQUISITION PROCESS 

Acquisition support encompasses generation of SSSs, source 
selection, and review and analysis of subsequent contractor system 
development products.  A variety of problems recur chronically in 
carrying out these activities within the acquisition process as it is 
currently structured: 

Inaccessibility 

It is difficult to selectively retrieve, arrange, and display 
the contents of system descriptions.  In other words, system 
descriptions are not readily browsed or navigated. 

Nonmanipulability 

System description information is not in forms suitable for 
direct experimentation, revision, and refinement.  One important 



aspect of manipulability is the capability to comprehend or 
understand systems by examining their (simulated) behavior under 
controlled stimuli.  Another dimension of manipulability is the 
capability to preserve appropriate structures and relations when 
system concepts are modified.  Both aspects are important in 
exploring requirements or design variations, and in refining system 
descriptions. 

Unanalyzability 

System description information is generally not in forms 
suitable for direct application of analytical tools. 

Nonreusability 

System description information is not in forms suitable for 
being extracted and adapted, piecemeal from existing systems, to be 
incorporated into specifications and designs of new systems. 

2.3  CURRENT AUTOMATION TOOLS AND THEIR LIMITATIONS 

A variety of automation tools for acquisition support already 
exist:  document preparation tools, such as word processing and 
graphics generation systems; program management aids, such as project 
task decomposition and scheduling tools; behavioral analysis tools, 
such as simulators; and design tools, such as structured analysis and 
design systems.  Unfortunately, these tools do not address the 
problems listed above very effectively.  In trying to devise a better 
approach, it is instructive to look closely at the deficiencies of 
current tooling. 

Document preparation systems have serious functional limitations. 
Word processors basically index and operate on character strings. 
Keyword searches, for example, depend on exact or near exact 
character string matches.  A keyword search based on "architecture," 
though, will miss references to "topology," despite the close 
semantic overlap of the two phrases.  Similarly, a search on 
"computer" will fail to retrieve references to "processor," 
"workstation," and "mainframe." Moreover, keyword searches will not 
work at all for information encoded in tables and diagrams. 

System developers and reviewers, however, need to extract and 
organize system descriptions using semantic rather than syntactic 
references — concepts, generalized classes and relationships between 
system elements or element classes.  Moreover, given the 
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importance of information summaries in tables and diagrams, it is 
critical that graphic as well as textual references be accessible and 
retrievable. 

The mechanical, syntactic character of document processing tools 
also precludes system description reusability.  Document portions can 
certainly be mechanically copied and ported.  However, this rote 
duplication of form generally requires subsequent manual adaptation 
of content.  For complex CSCIs, manual tracking of the consequences 
of modifications to components that are closely coupled is difficult 
and tedious.  Reproductory tools based on semantic information about 
system descriptions would provide superior adaptive capabilities: 
automated customization tools would perform, or at least enumerate 
and advise on revisions needed to preserve completeness and 
consistency. 

Current structured analysis and design tools have more 
reasonable semantic strength:  they operate in terms of abstractive 
classes and relations, such as inputs, outputs, functions, and 
precedence relations.  Unfortunately, such tools generally only 
capture partial system models for specific system development phases 
(e.g., design).  Such tools usually do not support explicit 
representation of, nor reasoning about, logistics, quality and 
reliability factors, and other critical design implementation 
constraints. 

Simulation tools are similarly limited in scope.  Moreover, 
these tools often require programming expertise, making them 
unsuitable for a general acquisition community.  Modeling tools that 
are not difficult to use are often highly restrictive, narrow purpose 
systems, such as network performance modelers.  This reflects the 
usual tension in tool design between ease of use as opposed to 
programmable functionality. 

Perhaps the most serious problem with existing tools is that 
they are not integrated or, for that matter, integrable.  Structured 
analysis and design tools are effective for system design efforts, 
but not for initial requirements generation, configuration 
allocation, or traceability between those phases and design.  Formal 
analysis is either performed manually or through piecemeal automated 
tooling, again operating on partial system models.  This fragmentary 
approach generally precludes comparative analysis either between 
variant designs or requirements or between system descriptions from 
different stages of the system development cycle. 

The important thing to note in the above critique is that 
individual tools are deficient in different respects.  In particular, 
word processors, most project management tools, and graphics 



preparations systems have serious functional inadequacies, whereas 
design and modeling tools suffer primarily from restrictive scope and 
integrability problems.  The following explanation for this 
distinction provides the primary motivation for the SEIMOAR project. 

The functional capabilities of all computer-based tools derive 
from their mechanical manipulations of syntactic (data) structures. 
The critical difference between current document processors and 
simulators, structured design systems and knowledge-based tools lies 
in their internal interpretations of the objects that they 
manipulate. 

Word processor operations on character strings model 
manipulations of words.  (Similarly, graphics program operations on 
icons model manipulations of pictures.) Thus, the immediate 
interpretation of operations is in terms of their effect on language 
(pictorial) elements; the additional interpretation of words to a 
particular domain (e.g., systems acquisition), is totally incidental 
and outside the scope of the semantics of the tooling.  Tool users 
must explicitly impose this interpretation, and direct tool 
operations manually (e.g., keyword searches on synonymous phrases). 

In contrast, knowledge-based systems, simulators, and design 
tools operate on symbolic tokens that represent system elements, 
features or relations among elements.  Consequently, an immediate 
interpretational correspondence exists between tool activities and 
domain activities (e.g., behavioral simulations, design 
manipulations).  Tool constraints and capabilities directly reflect 
the semantics of system model structures and manipulations. 

The tokens that knowledge-based systems, simulators, and design 
tools operate on are not words in acquisition documentation, but 
formal symbolic representations of system models or model fragments. 
This explains the integrability limitations of such tools with 
respect to word processors and graphics systems; the latter tools 
process raw text and diagrams rather than symbolic models. 

2.4  SEIMOAR'S STRATEGY — MODEL-BASED ACQUISITION SUPPORT 

The problems in the current acquisition process and tooling can 
now be seen to be reflections or manifestations of an underlying flaw 
in the procurement process.  The products that drive the current 
acquisition process are textual (and graphic) descriptions of system 
models.  These are the items that are generated and transmitted 
between acquisition customers (or agents) and the contractors who 
develop and implement systems. 

10 



Documentation, of itself, is an unsuitable vehicle for system 
development activities; it records only the results of specification 
and design processes.  Documentation is not the actual product of 
concept definition, requirements specification or design development. 
System models, or model fragments are.  Accordingly, specification 
and design analysis and review need to be performed on these products 
directly.  In short, concrete symbolic system models should be the 
objects that are generated by, manipulated by, and transmitted 
between acquisition customers and contractors. 

Given this diagnosis, it follows that effective automation for 
acquisition support requires a model-based approach.  This strategy 
depends on two sets of ingredients:  a sequence of symbolic system 
description models, cast in a uniform or canonical representational 
framework, and an integrated tool set for generating, exploring, 
refining, analyzing, and comparing such models. 

Clearly, the two sets of elements are closely coupled:  the form 
and content of the tooling presupposes a specific^ representational 
framework, while actual system models cannot be constructed and 
manipulated without the tooling.  This coupling seems to be 
characteristic of integrated environment architectures:  it is 
necessary to determine both the kinds of information that must be 
represented, simpliciter, and the kinds of activities and operations 
that are going to be performed on that information. 

How, exactly, does this model-based approach address the 
acquisition support issues described earlier? 

Accessibility 

Requirements, specifications, and design descriptions are cast 
as models (actually individual knowledge bases), which can be 
browsed or explored by abstractive reference and retrieval.  System 
elements are now represented by model entities rather than 
uninterpreted tokens (e.g., character strings, icons). 

Moreover, referencing and manipulation of system elements and 
relations in symbolic models can now be accomplished in terms of 
pointing and other operations on graphic icons.  In conventional 
development environments, icons (e.g., Macintosh graphics), are token 
bitmaps; on par with simple character strings, they lack any semantic 
(abstractive center) within the tool context.  In contrast, 
model-based representations can explicitly associate icons with 
particular symbolic model elements (e.g., components or functions). 
These links support internal semantic interpretations, whereby 

11 



operations on iconic tokens (e.g., pointing, connecting) are 
translated into model element manipulations (e.g., referencing, 
structural linkage). 

Manipulability 

Behavioral portions of symbolic system models can be used to 
drive simulations of system performance, both qualitative and 
quantitative, based on controlled test stimuli.  Equally important, 
explicit constraint relationships imposed on symbolic model elements 
guarantee maintenance of consistency when model features are permuted 
or perturbed in exploring system variants (e.g., alternative system 
architectures or functional requirements). 

Analyzability 

System descriptions, now cast as symbolic models within a 
canonical representational framework, can be operated on by a uniform 
set of analytical tools.  This is the value of integrability — one 
model, cast in a single representational format, is accessible to any 
tool that presupposes that format.  Moreover, if analytical results 
preserve that format, such output can be manipulated by further tools 
(e.g., as in UNIX pipes). 

Reusability 

System description fragments, now cast as pieces of symbolic 
models can be extracted and adapted using model manipulation tools. 
Specifically, model elements describing generic classes of functions 
or components can be specialized to subclasses suitable to given 
system applications. 

SEIMOAR embodies this modeL-based approach to system 
development.  It provides a uniform representational framework for 
expressing symbolic models of system structural, functional, 
behavioral and contextual (i.e., design constraint) information. 
SEIMOAR will also incorporate an integrated tool set, based on this 
framework, for generating, manipulating and analyzing symbolic system 
models. 

Tools are being designed to perform completeness, consistency, 
and technical feasibility (e.g., performance verification) analyses. 
Symbolic model system descriptions will be assessed both individually 
and comparatively (i.e., across models representing different 
development stages).  Other planned utilities include sizing and 
costing estimation tools for system descriptions at functional 

12 



requirements and specification phases, and tools for exploring model 
variants at a given developmental stage (e.g., alternative 
architectures, functional decompositions). 

In short, SEIMOAR is intended to constitute a strongly automated 
acquisition support environment that will facilitate requirements 
definition and assessment of contractor (or in-house developer) 
deliverables.  The phases of system development that SEIMOAR 
addresses are specification through early (high-level) design. 
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SECTION 3 

SEIMOAR 

3.1  SEIMOAR PROJECT HISTORY 

The initial version of SEIMOAR was implemented using KEE 
(Version 2.1, Intellicorp), a commercial AI system-building tool 
hosted on a Symbolics LISP minicomputer.  The choice of environment 
was straightforward, given the decision to adopt a symbolic 
model-based approach to acquisition support:  LISP machines provide 
the best available combination of development utilities, memory 
capacity and symbolic processing power. 

Time and staffing constraints dictated the use of a commercial 
tool shell for system prototype development.  MITRE already possessed 
a license for KEE, thus determining a specific choice of commercial 
development environment.  Project resources did not cover purchase of 
SIMKIT, a companion product to KEE that provides discrete event 
simulation capabilities.  Consequently, a custom-built dynamic 
simulator was constructed and incorporated into SEIMOAR. 

To date, the SEIMOAR project, has expended roughly eight 
staff-months of technical effort:  the two project staff members 
learned how to use KEE, designed and implemented the SEIMOAR tool, 
inclusive of the dynamic simulator shell, and constructed a 
functional requirements model for a test application system.  The 
author designed and implemented most of the SEIMOAR shell and the 
test application system model.  A junior associate working half-time 
on the project implemented SEIMOAR's graphics and current user 
interface. 

3.2 SEIMOAR TEST VEHICLES 

A functional requirements specification for a modest-sized (100K 
SLOC) military communications system (MCS) was selected as an 
application test vehicle.  The goal of the test vehicle program is to 
enhance local communications capabilities for an existing distributed 
Command and Control System. 

o 

Each MCS site is to consist of multiple workstations, coupled 
via a local area network to a central processor hosting an automated 
message handling system (AMH).  The AMH, the core of MCS test 
vehicle, automatically logs and distributes messages to site users. 
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Message review, drafting, and sending capabilities are also 
specified for the AMH.  Additional MCS functionality pertains to 
maintainability, workstation capabilities, AMH operations support, 
security, statistics, and testing. 

SEIMOAR was developed by analyzing the MCS functional 
requirements.  Representational needs were determined based on the 
kinds of information found in the specification and the kinds of 
anticipated activities (e.g., generation, review and refinement, 
analysis) involving that data.  This constitutes a reversal of the 
tool's intended mode of operation, which is to construct and 
manipulate system models using the tool's capabilities.  Preexisting 
functional requirements were employed to avoid having to combine 
initial tooling design and implementation work along with 
construction of a new system specification. 

In the development process, valuable insight was gained into the 
adequacy of the MCS functional requirements themselves.  Several 
important errors and ambiguities were uncovered, the most important 
of which are reviewed in section 3.7.  This exercise thus helped to 
substantiate the claimed value of SEIMOAR as a system development 
environment:  the representational framework enforces a uniform 
methodology that highlights ambiguities, omissions, and 
inconsistencies in evolving system descriptions. 

The MCS functional requirements are unusually detailed for an 
initial system definition.  In addition to a characterization of 
desired functionality, a high-level system architecture and a partial 
configuration allocation are stipulated.  Typically, such information 
is provided by the contractor rather than by the customer, and 
somewhat later in the acquisition cycle.  SEIMOAR's capability to 
encode such data helps to validate the tool's design, despite the 
initial, restricted development basis of a single acquisition 
product. 

It is anticipated (cf section 4) that the representational 
apparatus assembled to capture and manipulate functional requirements 
system information will have to be extended somewhat to model 
subsequent system descriptions in the acquisition cycle.  Project 
plans call for exercising the tool against functional requirements, 
specifications, and early design phases of further system 
acquisitions.  This strategy will serve to define requisite 
extensions and to provide substantive confirmation of the basic 
adequacy of SEIMOAR's modeling approach and representational 
framework. 
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3.3 KEE DEVELOPMENT ENVIRONMENT 

Knowledge Engineering Environment (KEE, Intellicorp) is a hybrid 
tool for building AI systems.  Hybrid shells incorporate elements 
extracted from several distinct knowledge representation models or 
paradigms within a single, integrated framework.  KEE relies on a 
basic frames language that has been augmented to support capabilities 
borrowed from object-oriented and rule-based technologies as well. 
The following description pertains to KEE Version 2.1.  A 
supplemental explanation of standard artificial intelligence 
representation techniques (e.g., frames), is provided in appendix A 
of this report.  Appendix B compares KEE with Automated Reasoning 
Tool (ART, Inference Corp.), a competitor commercial shell. 

KEE frames, called units, have the normal internal structures, 
slots and facets.  Frames can be linked by class-subclass and 
class-member relations.  KEE's inheritance mechanisms are unusually 
rich.  Slots are categorized into two types, OWN and MEMBER, 
corresponding to class and instance attributes, respectively. 
Instance slots (not slot values) are inherited from class to subclass 
or member frames, but class slots are not.  Thus, a descriptor 
appropriate only to classes (e.g., GREATEST-AGE, CLASS-POPULATION) 
need not be inherited by subclass or member frames from class units. 

KEE allows for multiple inheritance of slots.  This means that a 
class can inherit MEMBER slots from multiple superclasses.  Zetalisp 
Flavors provides an analogous capability (i.e., metaclass mixir.s). 
This capability is extremely useful in cases where generic attributes 
are naturally partitioned among different superclasses.  For example, 
graphics attributes (bitmaps, mouse behaviors) are naturally grouped 
according to an image object class, while domain model constituent 
attributes are best organized about structural entity classes. 
Multiple inheritance enables selective combination of both kinds of 
properties in a single class, or separate property class ascription, 
as necessary. 

Propagation of VALUES facet data from class to subclass and 
member units is regulated by an INHERITANCE facet.  KEE provides 
about a dozen standard inheritance relations and supports user 
programmed ones as well.  For example, OVERRIDE.VALUES specifies 
transmission of class values to subclasses or members as defaults, 
which can be overridden by explicit subclass or member data (e.g., 
GREEN is the default VALUES datum for COLOR for all instances of 
GRANNY.SMITH.APPLES, unless explicitly overridden.  UNIQUE blocks 
transmission of superclass values, while UNION combines superclass 
values with any explicitly supplied data for the inheriting frame. 
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KEE provides a special (Boolean) language for the VALUECLASS 
facet, which flags admissible or legal data classes for the VALUES 
facet.  For example (ONE.OF argl arg2 ...) expresses the restriction 
that candidate data for the VALUES facet must match the member 
arguments.  Two cardinality slots allow specification of maximum and 
minimum allowable number of data items for the VALUES facet, while a 
COMMENT facet allows slot-level documentation.  User-defined facets 
are also available. 

KEE frames support two kinds of procedural attachments, methods 
and active values.  Methods are implemented at the slot level, as 
LISP code stored in the method's VALUES facet. Method slots have a 
special INHERITANCE facet mode to support transmission of code 
between frames along class-subclass and class-member links.  Methods 
are activated by using a KEE function that sends a message consisting 
of the method slot name and appropriate arguments to the relevant 
frame.  This model of communication and code execution is borrowed 
from object-oriented knowledge representation models and programming 
languages. 

Frame-based procedural attachments, called active values or 
demons, attach to frame slots.  As expected, KEE implements demons at 
the facet level.  Predefined facets allow the definition of LISP 
functions that are activated, as needed, when slot VALUES data items 
are added, removed, or retrieved. 

KEE implements rules (and rule classes) via frames.  A rule frame 
has slots that contain a first-order predicate calculus 
representation of rule premises (if clauses) and conclusions (then 
clauses).  The contents of these slots are operated upon by KEE's 
built-in rule inference engines.  Both backward and forward chaining 
mechanisms are provided.  Invocation of either rule engine requires 
the specification of a particular rule class (i.e., as the functional 
argument).  Rule classes constitute KEE's mechanism for partitioning 
large rule bases into manageable subsets that can be examined 
selectively. 

The rule calculus itself is not particularly intuitive, but KEE 
users actually read, write, and edit rules using an "external-form" 
slot, which employs a simple English-like rule language.  The rule 
engines can also be invoked interactively, for knowledge base queries 
and manipulations, using a special declarative language.  KEE 
contains utility functions for converting between frame, predicate 
calculus, and the declarative language representations. 

In addition to these basic representation and reasoning 
capabilities, KEE supplies various system development environment 
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facilities:  a strong user interface and tools for building custom 
application interfaces (e.g., menus, windows, mouse pointers, bitmap 
graphics editor), incremental compilation, debugging and monitoring 
capabilities such as rule traces and breakpoints, and language-based 
editors.  Moreover, KEE utility functions for manipulating knowledge 
bases are available to applications programmers.  Another helpful 
utility is KEE's graphic tree browser, which depicts the units and 
their class relations for the specified knowledge base. 

KEE graphics are also implemented through the frames system. 
Image classes are created that point to icons generated through a 
bitmap graphics editor.  Instance frames can then be created, 
associating icon instances with particular windows and window 
coordinates.  KEE also allows for composite icon image classes and 
instances, called panels.  Panels constitute the equivalent of a 
graphic macro, by combining multiple icons in specific, fixed 
relations (spatial and computational) to one another. 

Finally, KEE provides a special class of icons, known as active 
images, that constitute a graphic variant of demons.  Active images 
are icons that attach to frame slots.  Their coupling is dynamic: 
modifications to slot VALUES data items are reflected in icon 
appearance.  For example, changes in a thermometer reading change a 
corresponding object's temperature slot datum.  This capability is 
extremely useful for graphic depictions of simulations.  A subclass 
of active images, called actuators provide two-way coupling: 
actuator icon changes (i.e., from mouse actions), are reflected in 
frame slot data changes, as well as the converse. 

3.4  LIBRARY-BASED SYSTEM MODELING IN SEIMOAR 

A central methodological tenet of the SEIMOAR project was that 
system description generation and analysis activities should be 
driven by modeling libraries. 

MITRE's primary expertise is in acquisition of C I systems. 
These systems constitute a relatively well-defined class:  new 
designs generally consist of variations on a small number of standard 
subsystems and components (e.g., sensors, platforms, and processors), 
coupled together by one of a relatively few kinds of architectural 
configurations (e.g., network topologies or bus structures).  Thus, 
new systems typically copy or copy and adapt fairly generic bands of 
functions, components, and interconnections.  Consequently, the 
application domain is inherently well-suited to description and 
design methods employing templates. 
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Templates, in this context, are simply prototypical system model 
elements, characterized in terms of idealized, generic properties and 
relations.  Examples include physical characteristics of model 
elements (e.g., size, weight), internal structures, (e.g., components 
connected together), and operational descriptors (e.g., purpose, 
capacity, processing speed). 

SEIMOAR's current modeling library represents C I functions, 
systems, hardware and software components using templates implemented 
in terms of KEE frame classes (unit classes).  For other application 
domains amenable to the library-based development approach (e.g., 
weapons or commercial data processing systems), appropriately 
different frame template collections would be substituted in place of 
SEIMOAR's present library. 

System models in SEIMOAR are comprised of knowledge bases 
containing collections of frames.  System model generation using 
SEIMOAR proceeds according to a simple copy-and-edit strategy: 
generic library templates are copied into a system model knowledge 
base and customized by incorporating characteristics specific to 
capabilities or structures desired in the new system. 

3.4.1  Template Customization — General Scenarios and Examples 

Template customization can take place in two ways.  First, 
templates might simply be filled in by supplying data for slot VALUES 
facets.  A second form of customization is to modify the template 
itself by adding slots, and then supplying data items to fill the new 
slots' VALUES facets. 

An example of model element generation from the application test 
vehicle is illustrated below.  Figure 2 displays slots representing 
some of the attributes that characterize communications interfaces as 
a general class.  Note that the KEE unit header contains class and 
knowledge base pointers, and that some slots are created by, and 
maintained for KEE itself.  TRANSMISSION.CODE illustrates a value 
class restriction, indicating that either or both BLOCK and 
CONTINUOUS are admissible data for the VALUES facet for this 
descriptive attribute. 

Figure 3 displays a more specialized interface template, which 
adds attributes that characterize hardware and software requirements 
for the seven-layer ISO model of network protocols.  Many, though 
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not all communications interfaces can be characterized by supplying 
values to such a template. The ISO.MODEL.COMMUNICATIONS.INTERFACES 
template inherits the attributes of its superclass, COMMUNICATIONS. 
INTERFACES and adds the seven protocol layers as properties. 

Depending on the application system, one of three courses of 
action might be followed in creating a communications interface.  If 
the ISO template were adequate, an acquisition support user would 
copy the template into the system description knowledge base, rename 
the unit, create instances of the unit, and fill in appropriate data. 
Class instances are created following template copy and adaptation 
because multiple individuals (e.g., LAN interface units) appear both 
in single systems and multiple copies of systems (e.g., computer 
networks). 

Alternatively, the ISO model might have to be refined into 
further specialized subclasses (e.g., DECNET interfaces), which fill 
in the ISO model attribute VALUES facets with specific data.  The 
resulting template, DECNET.INTERFACES, would still be sufficiently 
general to be broadly useful.  New templates, once validated by 
SEIMOAR support personnel, would be added to the modeling library. 
The copy and edit procedure described above would then be followed 
for constructing the system model description. 

Third, it might be the case that no suitable template is 
available (e.g., if the ISO model were unsuitable).  In this case, 
the user would develop a new template subclass of COMMUNICATIONS. 
INTERFACES and add it to the library, following the template 
verification procedure.  The copy and edit procedure would then be 
followed once again. 

In both of the last two scenarios, the modeling library 
accumulates new templates over time as users model new systems and 
components or functions that can be generalized to serve across C I 
acquisitions.  It is important to note that SEIMOAR, like most 
library systems, accommodates change primarily through addition. 
Restructuring of existing library units is ill-advised:  changing the 
composition of the source templates upon which earlier system models 
depend after the fact destroys the baseline that drives analysis 
utilities (section 4.1.6). 

Figures 4a, 4b, and 4c reveal how templates are customized in 
order to describe components in the test vehicle system, the MCS 
message-handling system.  Individual MCS sites are connected to the 
AUTODIN network via message exchange systems, called AMPEs.  There 
are four different subclasses of AMPE exchanges.  Information 
describing interfaces between MCS sites and particular subclasses of 
AMPE exchanges (e.g., LDMX), is localized to that subclass frame. 
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The figures are divided into two halves.  The right side shows the 
ISO Model Communications Interfaces class template from the model 
library.  The left side displays an MCS functional requirement 
(knowledge base unit) resulting from the customization of the 
interfaces template.  The new unit represents the class of interfaces 
between MCS sites and (the class of) AMPE exchanges. 

Note that data has been filled in for several slot VALUES 
facets, along with reference documentation and descriptions.  In 
addition, several new slots have been added, which contain 
specialized information that was not provided for in the generic 
template.  INTERFACE.TYPE, for example, specifies a particular AMPE 
standard to which contractor interfaces must correspond. 

A second slot, MESSAGE.TYPE, was added in because the 
MCS-to-AMPE communications interface is specifically restricted to 
message traffic, as opposed to data packets or continuous data 
streams.  This contextual restriction in the application domain 
necessitates a specification of the types of messages that the 
AMPE.INTERFACES is expected to support.  Note also that the data for 
the VALUES facet for MESSAGE.TYPE is a structured list, whose form is 
described in the slot COMMENT facet.  Data has been organized into 
lists because message typing requires three pieces of information for 
a complete specification - a type name, a format reference, and a 
description of message handling activities that the interface is 
expected to support. 

Finally, note that many slots (e.g., ISO software protocol 
layers, FUNCTIONALITY), have not been filled in.  Functional 
requirements models do not generally provide this level of 
specificity - it is up to the contractor (or developer), in 
subsequent system model products, to come up with a design that 
prescribes suitably detailed data.  It is also important to realize 
that data will often be supplied at the superclass or subclass levels 
(e.g., AUTODIN. INTERFACES, LDMX.INTERFACES).  Depending upon the 
generality and inheritability of the information, it may or may not 
show up at the AMPE.INTERFACES level.  Browsing utilities must 
reflect this fact, and automatically examine neighboring superclass 
and subclass units. 

3.A.2 Organization of Templates — Library and System Models 

SEIMOAR library templates have been created for a variety of 
system model elements, including hardware objects (e.g., keyboards), 
software objects (e.g., compilers), and system or subsystem objects 
(e.g., communications networks, diagnostic equipment).  Templates can 
be used to encode functionality as well as structural information. 
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Individual functions and function classes can be characterized in 
terms of subfunctions and options.  Functions can also be organized 
into hierarchical class taxonomies, reflecting increasing abstraction 
towards the root class FUNCTIONS. 

Figures 5 displays some of SEIMOAR's initial generic functions. 
Figure 6 displays detailed structure of one subclass of word 
processing functions. Other broadly useful classes of C I functional 
templates include data base services, system statistics, security 
services, signal generation, transmission, detection, and processing. 

Word processing library templates constitute sources for general 
purpose user support or utility functions in a requirements model. 
In the MCS application, for example, word processing functional 
templates are ingredients in the specification of capabilities for 
drafting and editing outgoing messages and for responding to incoming 
messages. 

Having identified specific structures and functions for a 
system, it is important to indicate relationships among these model 
elements.  Figure 7 displays a skeleton tree on which specification 
units are organized.  SEIMOAR's core relations at present are the 
class-subclass and class-instance relations defined in KEE 2.1.  In 
addition, sequencing and conditional branching relations among 
functions, typically depicted in functional flow diagrams, are 
currently encoded in the form of forward-chaining rules.  In the MCS 
test vehicle, for example, these relations prescribe the succession 
of message processing functions that the AMH applies to incoming or 
outgoing messages.  Sequencing and branching relations constitute 
important ingredients for the behavioral simulator, as will be seen 
later. 

SEIMOAR associates icons with structural templates, allowing 
users to construct block, diagram illustrations of system 
architectures.  The icons are mousable, with button-activated methods 
that drive display of internal structures of moused components.  For 
example, given a block diagram display of MCS at a system level 
(figure 8a), mousing the MCS.WORKSTATION icon activates a display of 
the internal structures (figure 8b) specified for the workstation 
(e.g., buses and components).  Figure 8c is an iconic display 
depicting the HOST.PROCESSOR.  The mouse function is inherited by the 
lower level icons for retrieval of further detailed substructures, if 
they are available in the system model. 

27 



V) (A 

5 g 
O   "•. ": 
Z   <2 O 

111 

en 
c 
o 

•H 
•U 
U 
c 
p 

u 
0) 
C 
01 

e> 

U 
M 
•H 

2 

in 
OJ 
u 
3 
00 

28 



" 9 

3 
3    * 

(5 

Si 

as? 
29 
>- cc 

§31 

iii       9 11 
29 
i- cc 

iii °5f 
_ <u  c 

s = 3 

«!3j 
E 3 £ 

ill 
II § i gslf 

sis sll sill 
Sis   Els   |l8s 
5 5 2 

It ^  w 
a « 2 ill 

o j 

Ml 
sis 

if 
I5 

Is 
He 

£?$ a e = 
o - > 
5 

II 

£ 
H 

03 
U 

X3 

GO 
R 
O 
•H 
•u 
U e 
3 

C* 

c c 

td 
n 
0) 
c 
cu 
o 

H 

0) 
V-i 

D 
H 

•rl 

29 



.C 
0. 
cd 
M 
o 

<u 
<u 
H 
H 

a) 
T3 
o 

I 
(A 

CO 
O 

0) 

•H 

30 



-. 

! 

I c — 

a f 
1       % 
J             <                                  • 

M
es

sa
g

e : 
D 
0) 

1 
* 
5 
Z                                          _ 
5                           fc 

o 

I 

3                                         " < 

- 
5 c 

• E E 

5 

5 

E 

D 

5 < 
-J 

I 

? cl 
LJ 

> u 
J 

1 
I 

! 
9 
E 

1 I 

U                  L 

S 
v) 
U 

o 
o 

0) 
> 
QJ 

S 
QJ 
^> 
K 
>. 

W 

en 
U 

CT! 

CO 

OJ 

3 
DC 

•H 
fa 

31 



2 
O QC 

O 
CO 
CO 

\> Ul 
jg O tt» O 

OC 
Q. S O > 

DC 

5 o 
s 
UJ 

| 
s 

y X 
UJ 

••s D 
< DC 
*Z < 
CO o 

CO oc 
2 

>- 
UJ 

* ^ 

< 
> 
cc 
o 

•» S 
0 UJ 
U S ce o H 

o 
< 

5 Z 

fr- > 
ig < 

_l 
Q. 
CO 
Q 

u 

n3 

4 u 
o 
H 
CQ 

C 
O 

•H 
•ui 
cfl 
4J 

St 
u 
O 

CO 
U 
£ 

00 

cu 

•H 

32 



e 
u 
60 

c 
o 
u 

o 
tfl 
co 
cu 
u 
o 
U 
c 

•J] 

o 
1 

u 
oc 

01 
u 
0 
&c 

•H 

33 



3.5  BEHAVIORAL SIMULATION — ARCHITECTURE AND EXAMPLES 

In acquisition contexts, behavior refers to the collections of 
event sequences that take place within systems, which realize 
specific functional capabilities.  That is, functions act to induce 
one or more changes of state into the system, its component 
structures, and the data objects that the system is supposed to be 
processing. 

SEIMOAR incorporates a discrete time functional simulator to 
support dynamic modeling of system behaviors.  Currently, SEIMOAR's 
simulator is a custom-built object-oriented shell that features a 
synchronous clock mechanism suitable for modeling sequential 
execution of functions.  The simulator is implemented by a set of 
frame units and attached utility methods in the modeling library. 

Figure 9 illustrates the architecture for SEIMOAR's simulator 
shell.  The simulator is run by (object-oriented style) methods, 
activated by messages sent out from shell units representing a system 
clock and a centralized activity handler. 

When a new application model knowledge base is created, this 
shell is incorporated into that system description.  The user 
supplies two forward-chaining rule bases and a collection of function 
frames incorporating methods for simulating system behavior to 
reflect functional actions.  The rule bases and the functions are the 
application-specific items that are needed to characterize system 
behaviors to the simulation shell.  Figure 10 displays some of the 
frames representing MCS AMH functions. 

Briefly, an off-line scenario generator allows users to build 
test exercises.  Each test scenario consists of a set of events to be 
injected into the system model, at predetermined times.  The 
injection of events causes the system model to respond with a set of 
programmed behaviors, corresponding to the ordered actions of system 
functions. 

For the MCS application, the generator constructs a test 
scenario, consisting of a collection of (model) incoming messages 
from the AUTODIN network.  Messages can be partitioned into multiple 
segments, which can be interspersed, noncontiguously, with other 
messages.  AUTODIN messages have a precedence attribute (i.e., 
relative urgency), and a variety of other message fields (e.g., 
keywords, text, originator, subject), as shown in figure 11. 

Aside from a simple identifying label, the critical event 
attribute required to drive the simulator is the TIME.OF.ARRIVAL 
slot, which indicates the injection time into the simulation. 
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Because the simulator models sequential processes, the generator 
monitors TIME.OF.ARRIVAL slot data for test events and ensures unique 
injection times for each event belonging to a given test scenario. 
The test vehicle MCS AMH functional requirements model also requires 
that events (i.e., arriving message objects), have an AUTODIN 
precedence slot value assignment.  The generator enforces this 
constraint by blocking event creation until a value is supplied, and 
by issuing a suitable explanatory warning to the user. 

The main control loop method, activated through a SEIMOAR main 
menu selection, cycles a global clock, (unit) that polls the activity 
handler.  The activity handler has its own poll cycle method, which 
basically consists of four message calls.  The first message is sent 
to the simulation scenario.  If the scenario contains any events 
whose time of arrival matches the global clock time, those events are 
removed from the scenario and injected into the activity handler 
system state slot.  This slot is simply a list consisting of all the 
objects (e.g., signals, messages), currently being processed by the 
system model. 

The second and third message calls invoke two forward-chaining 
rule bases.  The first rule base encodes an algorithm describing the 
prioritization behavior of the activity handler.  In other words, 
this rule base figures out which object in the activity handler 
system state slot has the highest processing priority. 

In the MCS application, prioritization consists of three rules 
(figure 12), which in turn call upon custom-written LISP list 
processing functions.  The rules are weighted and written using dummy 
variables in such a fashion as to guarantee a specific sequence of 
rule firings.  The net result is to identify the message unit 
currently in the AMH with the highest urgency for processing, based 
on time of arrival, designated message precedence, and current 
processing state of the message. 

The third method takes the highest priority object and 
determines the appropriate processing to perform on it by calling 
another forward-chained rule base.  This second knowledge base 
contains rules that encode functional flows, the pattern of 
sequencing and conditional branching that determines what action to 
perform next on the given object.  This knowledge base amounts to a 
functional state transition network. 

Several sample rules for the MCS AMH system are shown in 
figure 13.  The initial antecedent clause is used simply to bind a 
dummy variable to the appropriate message object unit.  Determination 
of the next function to apply to an object is based on the previous 
function and on the message's state.  Some of these state variables 
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(e.g., whether to activate manual, automatic, or urgent message 
distribution modes of processing), depend on changes of state 
effected by preceding functions (e.g., profile matching function). 

The fourth message call causes actual functional behavior in the 
system model to be performed.  Specifically, the message activates a 
method associated with the particular function selected by the 
function sequencing knowledge base to be applied to the object 
selected by the object prioritization knowledge base. 

Methods are supplied by SEIMOAR users assembling functional 
requirements or other system description models.  Each method, 
consisting of LISP and KEE functions, induces state changes in the 
simulator, the system model, and data object units:  new objects can 
be created; objects can be inserted or removed from the activity 
handler system state slot; and simulator, system component, and data 
object attributes can be altered.  All of these changes correspond to 
the sequence of events that represent the implementation of the 
actions of particular functions. 

Code characterizing the behavior for a typical system function, 
acknowledging AMH receipt of a message back to the AUTODIN, is 
displayed in figure 14a.  Figure 14b displays the code that drives 
the iconic animation of the behavioral simulation.  The action of the 
receipt acknowledgment function in the MCS AMH functional 
requirements system model is depicted through the creation of a 
special acknowledge object, which represents the transmission, along 
the MCS-AMPE interface back to the AUTODIN, of successful message 
receipt.  The new object is named by appending a string to the 
received message name.  A message to the new object tracer monitor is 
sent, along with KEE function calls that update the states of 
simulator and data objects.  Figure 14c depicts a snapshot of the 
iconic animation sequence for this function. 

Basically, the simulator reflects changes of state in model data 
objects or system elements in terms of changes to KEE unit slot 
VALUES data items.  Complicated behaviors are readily captured, as 
can be illustrated by sketching the sequence of modeling actions for 
AMH message distribution.  Model AUTODIN message units have slots for 
message ID, keywords, exercise nicknames, and other descriptors.  The 
MCS AMH model contains several model user and system support 
accounts, each containing its own descriptors.  The profile match 
function compares AUTODIN message keyword and exercise nickname field 
contents against account values.  If matches occur, flags are set 
that drive subsequent message distribution activities, manual, 
automatic, or urgent routing.  Model user account message summary 
queues are created and filled, as appropriate.  Figures 15a and b 
display simulation methods for message profile matching and 
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automatic distribution functions.  Similarly detailed behaviors are 
established for collation of multiple AUTODIN message segments and 
other complex functions. 

The generality of a simulator shell oriented toward modeling 
individual functions makes it possible to develop behavioral models 
at all prescribed levels of design description, modeling system, 
component, and subcomponent processes as appropriate.  In normal 
functional requirements, for example, behavior is specified fairly 
abstractly, in terms of changes of state at a system level (e.g., 
moving from completion of one function to the next prescribed 
action).  Functional specifications are deliberately written to 
minimize presuppositions concerning particular design implementations 
in order to leave contractors as free as possible to devise their own 
architectural strategies.  Subsequent specifications and design 
descriptions characterize functional actions at a much finer-grained 
level, in terms of changes of state of data objects and individual 
hardware and software components. 

Figure 16 shows the simulator trace, a collection of windows 
that provide a visual interface to simulator events.  The current 
test scenario name is shown, together with the clock cycle, current 
data object (message) being handled, current function, new objects 
created during the simulation run, and a general trace of activity. 
An interrupt monitor allows simulator action to be suspended at any 
clock pulse, whereupon the unfinished scenario events can be edited 
or the knowledge base containing the system model and active data 
objects can be browsed. 

The SEIMOAR simulator provides the capabilities to reflect 
modeled behaviors visually in a window displaying icon animation 
sequences.  Graphic utility methods stored in the model library move 
icons signifying data objects across the screen horizontally or 
vertically between icons representing system model structures. 

For example, in the test vehicle system model, message arrival 
is represented by a box icon (incoming message) displayed initially 
below the AMPE.EXCHANGE icon and then reappearing successively lower 
along a channel icon (MCS.AMPE.INTERFACE) before disappearing at the 
HOST.PROCESSOR icon.  At this point, a bitmap showing the internal 
structure of that component is displayed, and the icon traverses a 
bus before disappearing at the HOST.PROCESSOR.SYSTEM.MEMORY icon. 
The capability to cycle through bitmaps and animation sequences, 
which corresponds conceptually to changing levels of descriptive 
detail, is extremely useful in illustrating complex behaviors. 
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3.6  SIMULATOR EXTENSIBILITY 

An attractive feature of the object-oriented simulator 
architecture is its extensibility.  The simulator shell can easily 
be modified to support nested activity models.  The clock would poll 
a super-handler unit on each time cycle, which then decides which 
activity handler to activate, which then determines and executes a 
function. 

Rather than modeling the AMH alone, for example, the super- 
handler could model the HOST.PROCESSOR, which might activate either 
the AMH handler, a message statistics handler, or some other 
application resident in the host. 

This extension could be implemented through a simple 
modification to the clock polling method:  the addition of a super 
handler unit and other handlers, and the addition of a knowledge 
base coding the super-handler prioritization control.  All handlers 
determine their own activities, through reasoning based on purely 
internal structures (viz., prioritization and sequencing knowledge 
bases).  The superhandler prioritization knowledge base, like the 
(AMH) handler control knowledge base, reflects the operational 
behavior of that system element. 

3.7  DISCOVERING REQUIREMENTS ERRORS USING THE SIMULATOR 

Although there is no intelligent support for dynamic analysis 
at present, the process of describing and simulating functional 
behavior provides an excellent consistency check on model 
characterizations.  Two examples from modeling experiments with the 
MCS AMH functional requirements are relevant here. 

The message prioritization algorithm specified in the 
requirement assigns preferential weighting for messages requiring 
receipt processing, higher AUTODIN precedences, and FIFO queueing. 
On simulating functional behaviors, it was found that the system 
would not know AUTODIN precedences of messages until the information 
extraction function was executed.  However, the prioritization 
algorithm assumed that the AMH knew this information upon message 
arrival, rather than three functions later.  In other words, the 
prioritization algorithm was inconsistent with actual function 
sequencing. 

A second problem surfaced in coding function sequencing from 
the requirements functional flowchart.  It turned out that the 
flowchart combined two incompatible points of view:  all automated 
message processing functions are depicted from the point of view of 
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a message proceeding through a prescribed flow sequence.  Once 
messages were distributed to users, however, the flow chart shifted 
to the point of view of a user selecting functions to perform on 
individual messages stored in their summary queue.  This second 
perspective, thus, is of a user acting on multiple messages.  An 
explicit user model is required to simulate the AMH capabilities 
here, and the requirements omitted any description of users, their 
needs, and likely behaviors.  Moreover, implicit heterogeneity such 
as this constitutes poor design methodology for flowcharts. 
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SECTION 4 

SEIMOAR FOLLOW-ON WORK 

Work to date on SEIMOAR has been of a proof-of-concept nature, 
exploring the functional capabilities of knowledge-based acquisition 
support environments.  Functional and structural information for an 
unusually detailed C I system functional specification was captured 
successfully using the template approach.  The behavior of the same 
test vehicle was successfully modeled using a generalized discrete 
time functional simulator.  Ideas for constructing a highly visual 
user interface to structural and behavioral information using icons 
and iconic animation were validated.  Most importantly, all of these 
capabilities were derived from a single, uniform representational 
framework, and integrated within a single development environment, 
in line with the initial model-based strategy described earlier. 

However, the resulting system is rather fragmentary, skeletal, 
and of limited utility to its intended audience.  This is typical of 
proof-of-concept system experiments.  The objective for subsequent 
effort is to elaborate the current SEIMOAR system into a full-scale 
acquisition support prototype.  The specific goals of next year's 
work are twofold:  first, to extend the functional capabilities of 
the tool, and second, to develop a coherent interface that is 
suitable for a general acquisition support user community.  It is 
hoped that within 24 months, the prototype will be taken as the 
basis for a functional specification for a production system to be 
let out on contract. 

A significant amount of effort has already gone into the 
planning and design of both the functional enhancements and user 
interface.  Time and staff constraints prevented actual 
implementation in the initial project phases.  Nevertheless, a 
review of current plans and design strategies will help to convey a 
picture of the potential of the SEIMOAR system in acquisition 
support. 

The review is divided into three parts.  The first section 
covers extensions to the basic representational framework.  In 
addition, new static analysis functions are discussed.  These extend 
the acquisition support capability well beyond simple generation of 
system models.  The second section describes planned extensions to 
SEIMOAR's simulator and dynamical analysis functional enhancements. 
The third and final section covers development plans for a 
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comprehensive user interface to SEIMOAR.  The interface is intended 
to make the tool and its capabilities accessible to a general 
acquisition support community. 

4.1  STRUCTURAL AND FUNCTIONAL REPRESENTATION EXTENSIONS 

4.1.1  Filling in the Model Library 

The MCS functional requirements modeling exercise helped to 
validate the library-based strategy for system description 
construction in principle.  The effectiveness of copy-and-edit 
strategies in practice depends directly on the richness of the 
available store of generic C I templates.  Little if any gain in 
productivity is achieved if system model creators are forced to 
generate more than a few abstracted structural and functional 
templates. 

It is very important, therefore, to populate the library with a 
good initial stock of C I structural and functional templates.  The 
overall structure of SEIMOAR's library is depicted in figure 17.  At 
present, the library itself resembles more of a card catalog than 
the library:  most of the unit classes contain few if any attributes 
and relations.  Current plans are to conduct intensive interviews 
with acquisition support specialists, in order to define and 
characterize suitable library elements. 

Some of the templates shown in the figure are reserved for 
future experimentation on automated reasoning.  For example, a 
branch of the library taxonomy contains units storing information 
that will regulate reasoning across different levels of description. 
The idea is that template unit slots can be tagged with facets which 
type the associated attribute or relation as belonging to one or 
more levels of description.  Reasoning within or across specific 
levels can then automatically be restricted to appropriate slots, by 
mechanically sorting slots by facet values. 

4.1.2 Configuration Allocation, Function Traceability and 
Structural Decomposition 

Representational capabilities will have to be extended if 
SEIMOAR is to support acquisition activities through preliminary 
design descriptions (STLDD).  Two features of particular importance 
are traceability and configuration allocation.  Automation of 
traceability information is one of the most urgent needs in 
acquisition efforts for large systems.  Traces must first be 
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generated in preparing system descriptions.  They must be 
modifiable, in the sense that changes to a user requirement or 
configuration allocation or design decision should be percolated 
through the traces, with consistency and completeness monitoring 
capabilities in the process. 

SEIMOAR mechanisms for representing and reasoning about 
traceability and configuration allocation have been drawn up, but 
have yet to be implemented.  The designs are actually quite simple. 
As noted earlier, KEE's frame representation language includes 
facets that implement procedural attachments, called active values 
or demons, for individual frame slots.  Active values provide an 
ideal mechanism for automating consistency and completeness 
maintenance operations in the face of system model alterations. 
SEIMOAR will utilize active values to couple together the contents 
of VALUES facets for appropriate slot pairs. 

For example, configuration allocation can be represented in 
terms of two complementary slots:  a FUNCTIONALITY slot attaching to 
C I structural templates, such as hardware and software component 
unit classes, and a CONFIGURATION.ALLOCATION slot attaching to C3I 
functional templates.  Active values will ensure that additions or 
deletions from particular component unit FUNCTIONALITY slots will be 
mirrored in the appropriate functional unit CONFIGURATION.ALLOCATION 
slots. 

Traceability can be modeled similarly.  The only complication 
is that cross-indexing is required for slots of functional units for 
each combinatorial pairing of system descriptions.  Function units 
for functional requirements, for example, will have a collection of 
traceability slots, one each pointing to functional units in source 
selection, configuration allocation, and preliminary design models. 
The inverse relations will be represented by complementary slots for 
functional units in each of those models, pointing back to 
functional requirements function units. 

Finally, the same representational and reasoning mechanism will 
coordinate structural decompositions across models.  The main system 
unit COMPONENT.STRUCTURES slot will be paired with the SYSTEM.UNIT 
slot pointer for component structure units in the configuration 
allocation.  Similar relations will correlate decomposition from 
configuration allocation model component units to subcomponents and 
software modules in preliminary design description models. 
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4.1.3  Data and Control Flows 

In order to capture preliminary design descriptions, SEIMOAR 
will be extended to represent data and control flows among software 
components and data objects.  Some sort of structured analysis and 
design tooling framework (e.g., Yourdon, Ross, Entity-Relation- 
Attribute model) will be employed.  SEIMOAR, it was noted earlier, 
is only intended to provide acquisition support through preliminary 
design descriptions.  EASE, a companion MITRE support environment 
for ADA*-based systems, is being developed to handle system models 
from preliminary design description through actual software 
implementation.  EASE and SEIMOAR will interface at the preliminary 
design description stage, through a common representation of data 
and control flows.  This commonality will allow two-way transmission 
of STLDD models. 

4.1.4  Reimplementation of Function Sequencing Information 

SEIMOAR's present representation of function sequencing 
information is going to be overhauled.  Currently, each function is 
associated with a forward rule, which indicates the conditions under 
which that function is to be invoked.  This representation is 
unfortunate in several respects.  First, it is difficult to 
determine sequencing, unless all the rules are examined or an actual 
behavioral simulation is run.  Second, it is inappropriate to store 
functional relations separately from the functions themselves, since 
those relations contribute to the characterization of functions. 
The third issue pertains to the efficiency of the simulator as it is 
currently implemented.  KEE's forward rule engine operates fairly 
slowly with a large rule base:  indexing is only done by rule 
classes, not by rule clause variables.  It is possible to partition 
the function sequencing rule base into subclasses.  The problem with 
this strategy is that it incurs additional overhead processing 
costs, namely additional inferencing to identify the pertinent 
subclass of rules to invoke at particular stages of the simulation. 

Accordingly, SEIMOAR will incorporate sequencing information 
into the functions themselves.  Each function will contain a 
SUCCESSORS and a PREDECESSORS slot.  The VALUES facet of these slots 
will be a list of lists.  Each sublist will consist of the name of a 
possible predecessor or successor function together with a list of 
the conditions, formerly rule antecedents, that regulate branching. 
The user will only have to supply SUCCESSORS information:  an active 
value will invert the list to fill in values for PREDECCESSORS 
automatically.  The message formerly sent by the simulator activity 

*Ada is a trademark of the Department of Defense. 
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method chat will be applied to the SUCCESSORS list to determine 
proper branching.  This design solves all three problems with the 
previous implementation noted above. 

4.1.5  CJI World Knowledge and SEIMOAR Semantics 

Presently, most of the data items filled in for slot VALUES 
facets are simply character strings.  The list of IMPLEMENTATION. 
REQUIREMENTS VALUES data items for the AMPE.INTERFACES unit class, 
for example, are simple tokens.  As the library fills up with 
templates (e.g., dealing with communications, functions, purposes), 
these tokens will be transformed into pointers into the model 
library knowledge base.  The AMPE.INTERFACES HARDWARE.REQUIREMENTS 
VALUES facet datum, MODEMS, refers to a model system component class 
with significant descriptive detail.  In essence, the templates 
store application token semantic contents, or interpretations, in 
support of generalized symbolic reasoning and manipulation. 

The importance of this architecture and modeling strategy 
should not be underestimated.  Doug Lenat, at MicroElectronics and 
Computer Technology Corporation (MCC), is attempting to construct an 
encyclopedic knowledge base, intended to capture general world 
knowledge.  His system, called CYC, is similar in principle, though 
obviously significantly more ambitious in scope, to SEIMOAR1s 
modeling library.  Lenat's intention is to use CYC to solve the 
shallowness and brittleness problems associated with current expert 
systems.  Shallowness refers basically to heuristic knowledge, 
(e.g., as expressed in rules), that is not grounded by explicit 
domain models.  Brittleness refers to the rather abrupt degradation 
of expert system performance at the periphery of their distinctive 
area of competence. 

One serious problem in Lenat's strategy is that he has not yet 
addressed the distribution of communication and control capabilities 
between CYC and expert systems that it is supposed to service.  In 
contrast, SEIMOAR is beginning to implement a specific integration 
strategy.  Reasoning has to be directed by the application system 
side; otherwise CYC (or SEIMOAR) would have to know how to control 
reasoning in systems that employed an arbitrary number of different 
knowledge representation and inferencing schemes.  Nevertheless, 
some mechanism must be instituted for retrieving information, when 
available, from the resource knowledge base.  In SEIMOAR, this 
function is performed by data value tokens, treated as semantic 
pointers into the modeling library. 
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4.1.6 Static Analysis 

Analyzability probably represents the greatest opportunity 
offered by the model-based approach to the acquisition support 
effort.  Analysis in the acquisition support context encompasses the 
evaluation and comparison of design descriptions with respect to 
completeness, correctness, consistency, and feasibility.  Analytic 
capabilities can be divided into static and dynamic categories. 
Dynamic analysis will be discussed in connection with planned 
enhancements to SEIMOAR's simulation capabilities. 

Static analysis is defined here to refer to the verification of 
completeness, consistency, and technical feasibility of system 
structures and functions.  It is intended that SEIMOAR support three 
kinds of static analysis:  comparisons among variant system 
descriptions (e.g., alternative requirements or configuration 
allocations); comparisons of system model elements with respect to 
component or functional characterization standards; and perhaps most 
important, comparisons of system models from different stages of the 
program cycle (e.g., requirements vs preliminary design 
descriptions). 

One important kind of static analysis of variant models from 
the same acquisition phase is sizing and costing estimation:  given 
a set of functional - requirements- or requirements plus a specific 
high level architecture and configuration allocation, what is the 
expected size and cost of a system and its components? 

SEIMOAR will soon incorporate a static completeness and 
consistency checking capability.  The use of library templates for 
system model construction, via a copy-and-edit strategy, has already 
been described.  Templates can also be construed as minimal, correct 
or "debugged" design standards.  System models can be verified with 
respect to completeness and consistency simply by comparing system 
model elements and structures against corresponding library 
standards. 

Consistency checking in this context guarantees that VALUES 
facet contents of structural and functional system model units 
conform to legal or admissible data values prescribed by library 
templates.  Consistency checking can also apply to relational 
attributes:  templates can prescribe legal kinds of connections 
between system structures, functions, and between structures and 
functions.  Structural constraints pertain to interface requirements 
(e.g., that nothing can couple directly to a local area network 
except a LAN interface unit).  Functional constraints include 
temporal precedence relations (e.g., functions to save or retrieve 
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information cannot be performed unless preceded by an appropriate 
information creation function).  An example of the third class would 
be a configuration allocation proscription (e.g., that data 
manipulation functions must be allocated jointly to hardware and 
software elements). 

SEIMOAR's completeness checking capability will verify that 
system model structural and functional elements have minimally 
adequate characterizations.  In concrete terms, template attributes 
will be tagged by facets identifying them as necessary, sufficient, 
or optional descriptors with respect to each stage in the system 
development cycle.  A mechanical pattern-matcher will then check 
model elements against the templates to ensure that attributes that 
are collectively necessary and sufficient to characterize system 
components or functions (at a given development stage) have been 
specified.  For example, the specification of a computer might 
require a description of display, keyboard, processor(s), bus, main 
and secondary storage, printer, and power supply in order to qualify 
as complete. 

Admittedly, completeness and consistency as defined above do by 
no means constitute verification in any strict, formal sense.  Still 
the automation of even limited static analysis capabilities such as 
these constitute a significant step in acquisition support. 

4.2  BEHAVIORAL SIMULATOR ENHANCEMENTS 

The two most urgent extensions to SEIMOAR's current behavioral 
modeling functionality are the incorporation of a concurrent or 
parallel processing simulator framework and the inclusion of 
quantitative modeling capabilities. 

4.2.1  Simulation of Concurrent Processes 

The initial MCS AMH functional requirements test vehicle did 
not specify explicitly that system architecture might involve any 
parallel processing.  Moreover, the description of functionality was 
highly sequential.  Consequently, it was decided to implement 
initial discrete time functional simulation capability based on a 
sequential processing model.  It can be expected, however, that C I 
systems in the future will depend increasingly on concurrent 
processing architectures. Heavy data loads and acceptable system 
response times make this technology design shift almost inevitable. 
It is important, therefore, that SEIMOAR's simulation capabilities 
be extended to cover concurrency modeling. 
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One of the primary objectives of SEIMOAR follow-on work is to 
address this modeling need.  The new simulator shell will employ an 
object-oriented architecture, in common with the sequential process 
modeler.  It is expected that the latter's unique system clock and 
activity handler will be replaced by a collection of activity 
handlers, each of which incorporates its own private clock.  The 
control architecture for this arrangement (viz., synchronization, 
management of task assignments), has not yet been determined. 

4.2.2 Quantitative (Performance) Modeling 

In the first phase of the SEIMOAR project, attention was 
confined to schematic and qualitative modeling.  Functionality was 
defined and subsequently modeled in terms of one or multiple units 
(e.g., workstations).  Typically, system descriptions call out an 
exact number or a full capacity complement (e.g., thirty).  Nothing 
in KEE or SEIMOAR precludes exhaustive rather than schematic system 
modeling. 

The absence of quantitative modeling capability is a more 
serious limitation.  The current simulator framework expends one 
time unit for the execution of any single function on one or more 
data objects.  Consequently, SEIMOAR does not currently support 
specification or simulation-based validation of performance 
requirements (e.g., capacity or processing rates).  Clearly, 
performance is a critical ingredient in techrtical feasibility 
analysis (e.g., can a proposed design meet the designated response 
constraints?). 

Fortunately, the simulator framework of SEIMOAR can easily be 
adapted to accommodate quantitative modeling.  Current plans are to 
install a TIME.EXPENDED attribute in each functional unit.  The data 
stored here will either be a simple number or a numerical function, 
representing the amount of time required to accomplish function 
execution.  It is important to be able to use a numerical function, 
because time expended might depend on system variables and 
properties of the relevant data objects.  The simulator clock 
advance method will then be adapted to increment by a single time 
unit if no TIME.EXPENDED value is available, or to increment 
simulated time by the supplied or computed value.  It will also be 
necessary to alter the modeling library to reflect performance 
constraints on functions and on system components. 
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A.2.3 Scenario Generator Extensions 

The current scenario generator for the simulator needs to be 
generalized and enhanced.  At present, the generator is tailored to 
constructing and editing a specific class of events, namely AUTODIN 
message objects arriving at the AMH.  What is clearly needed is an 
event editor that is generalized to create arbitrary kinds of 
events.  The editor is currently driven by a hand-coded list of 
attributes associated with AUTODIN.MESSAGES, together with a 
TIME.OF.ARRIVAL slot required by the simulator.  The new editor will 
determine by itself the appropriate slots, contained in a system 
model data object unit class that the user is prompted to select. 
The editor will be guided in this task by slot facet labels inserted 
at the time of creation of application data object classes (e.g., 
mail objects). 

Another enhancement to the scenario generator will be needed 
primarily only for large-scale simulations.  The current editor 
creates events individually, by explicit menu prompts to the user 
for each object.  This approach is only adequate when small numbers 
of events have to be generated, on the order of several dozen.  For 
larger test scenarios, it is desirable to have a generalized bulk 
event generation capability, in which the user specifies 
distributions of event attribute values and a statistical 
distribution of intervals between event TIME.OF.ARRIVALS.  The 
generator would then create a scenario by constructing a suitable 
event population via stochastic methods. 

A.2.4 Dynamic Analysis 

Dynamic analysis capabilities, grounded in system simulations, 
evaluate behavior and quantitative performance.  SEIMOAR is intended 
to support two kinds of dynamic analysis.  The first involves 
comparisons of alternate system behavioral descriptions at a given 
stage of the acquisition process, (e.g., requirements, source 
selection, preliminary designs).  The second class, more difficult 
than the first, compares behavior across acquisition stages, in 
order to verify completeness and consistency of more detailed 
behavioral descriptions with respect to earlier ones (e.g., user 
functional requirements). 

The basis for dynamic analysis capabilities will be behavioral 
simulation event logs.  The simulator shell will be extended to 
provide a configuration option that exercises two distinct 
behavioral models from a given set of test scenarios.  The results 
of each modeling run, consisting of a sequence of events, will be 
stored in history logs.  Thus, dynamic analysis utilities will be 
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based on comparisons of system events in response to identical 
stimuli. 

In this context, completeness amounts to comparing the two logs 
to determine whether corresponding kinds of events are present. 
Consistency, similarly, involves comparisons of multiple logs to 
determine whether corresponding kinds of events occur in 
corresponding sequential order. 

The most difficult kind of dynamic analysis is expected to be 
the comparison of behavioral models across different phases of 
system development, such as functional requirements vs preliminary 
design. Such models express system functionality with different 
degrees of resolution.  Behavior at the requirements level involves 
changes of state defined in the system as a whole.  In contrast, 
behavior in a preliminary design model refers to changes of state in 
system components or modules.  As a result, it becomes extremely 
difficult to map events from one behavioral simulation model onto 
events from another. 

Current plans are to try to simplify this mapping problem by 
exploiting a feature of the simulator architecture:  each function 
in a behavioral model has an explicit correspondence to a specific 
set of events.  Users program this information explicitly in order 
to simulate the action of functions in the first place.  The idea, 
then (figure 18), is to match functions across different system 
models and use that correspondence to map manageable subsets of 
events from one model onto subsets from the other. 

Unfortunately, it turns out that the mapping of functions 
across system descriptions can be fairly messy.  The acquisition 
standards only require that a traceability matrix be maintained 
throughout system development.  This matrix indicates what functions 
in various contractor products cover the user's original 
functionality requirements.  Generally, this mapping is not a simple 
one-to-one correspondence.  In fact, in the worst case, it is a 
many-to-many mapping (figure 19).  It is hoped that the literature 
on program verification and mathematical fields such as topology and 
set theory will provide some formal assistance in solving this 
problem. 

4.3 USER INTERFACE ISSUES 

The current user interface for SEIMOAR consists of KEE user 
interface capabilities for system model (knowledge base) creation, 
modification, and browsing, and a menu-driver with special graphic 
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displays and traces for the simulator. A full-fledged interface, 
customized for a general acquisition support user community is being 
planned.  It is assumed that the users are expert in system design 
and analysis but not in artificial intelligence representations and 
programming techniques. 

Experimentation with icons in the first version of SEIMOAR has 
resulted in an improved understanding of appropriate implementation 
and use of icons in the interface.  The initial version of SEIMOAR 
maintains icons as distinct units in a knowledge base separate from 
the main system model.  Utility methods are used to link icons to 
model components.  The connections between graphic icons bear no 
relation to connections between component units that they represent. 
Icons can be connected, via mouse-activated methods, to icons 
representing substructures of the moused icons.  No capability to 
access the component data structure by mousing the linked icon was 
provided. 

4.3.1  Incorporating Icons into Library Templates 

In follow-on effort, icons will be incorporated directly into 
model library templates, not only for system components but for 
functions as well.  Multiple inheritance will be employed to mix a 
specialized image class into functional and structural library 
templates. Thus, each template will have two sets of attributes, 
those characterizing a C I function, system, or system component 
object class and those characterizing graphic objects that 
correspond to those classes. 

4.3.2  Structure and Function Editors 

Icons will be used to drive a capability to browse system 
models.  More important, graphic relations among icons will 
correspond directly to relationships among associated components and 
functions:  model relationships (e.g., allocation, architectural 
decomposition, traceability, function sequencing), will all be 
specifiable via iconic structure and function editors. 

This list sounds deceptively ambitious.  In fact, the 
underlying implementation mechanisms are few in number and simple in 
design.  Basically, the image class mixin discussed in 4.3.1 will 
incorporate mouse button functions.  For example, buttoning the 
mouse on a structural icon will invoke a menu offering architectural 
decomposition, allocation, or data/control flow editing options. 
Actions will then be performed on the appropriate component unit (or 
unit class) slots.  Similar options for allocation, traceability, 
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sequencing, and functional flow editing activities will be provided 
when users mouse on functional icons. 

Thus a single set of editor functions will accommodate several 
model generation activities.  The mouse buttoning context (i.e., the 
kind of template moused or menu option selected), determines the 
functionality and slots to be modified by the generalized editor 
mechanisms.  It is also simple to guarantee that the editors permit 
only semantically correct operations.  For example, the structural 
decomposition editor can be constructed to guarantee that system 
components are only connectible in legal (i.e., domain-sensible), 
configurations.  The real drivers here are library structural 
template slots, which will be designed with facets (e.g., 
OK-CONNECTIVITY), that enumerate admissible connections between 
structural classes.  The editor has only to check the moused data 
entry against these value constraints.  Similar semantic 
capabilities can be designed into the other structural and 
functional editors mentioned above. 

A.3.3 Declarative Specification of Behavior and Animation 

Another interface requirement for a general acquisition user 
community is that function behaviors be declaratively specifiable. 
SEIMOAR currently requires explicit programming to characterize the 
state changes in model objects which represent function actions and 
the state changes required for underlying simulator mechanics.  The 
new interface will solicit user menu selections.  The menu options 
will identify the relevant objects to be changed, the slots to be 
changed, and the altered values.  SEIMOAR will convert these menu 
choice entries into appropriate LISP and KEE utility function calls 
to change the system, data, and simulator model object states. 

A similar menu-based interface will facilitate programming of 
iconic animations for functional behaviors.  It is not clear at this 
time how much of the animation can be programmed directly from the 
behavioral description and how much users will have to declare 
explicitly. 

4.3.4 Automated System Model Initialization 

Another interface requirement is to automate some of the 
initial mechanics of system model setup.  The setup capability will 
create a new knowledge base, and copy in an overall skeleton of 
units, with appropriate methods and attributes inherited from 
library templates, to start building models.  The units will include 
the graphic image mixin described above.  In addition, the 
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initialization function will copy over the behavioral simulator and 
SEIMOAR user interface. 

In addition, SEIMOAR will incorporate a template copier 
function that automatically copies a specified template, and 
establishes a pointer to the source template for subsequent static 
analysis utilities.  This copy function, specialized from KEE to 
SEIMOAR, automatically creates the pointers required to drive the 
planned static analysis capabilities.  Additional variants of KEE 
utility functions, adapted to purposes specific to SEIMOAR, will 
further customize the user interface to the tool. 

4.3.5 Model-driven Document Generation 

It turns out, not too surprisingly, that the SEIMOAR models of 
C I system requirements and contractor system descriptions do not 
correspond very well to the DOD specification format.  DOD 
documentation disperses references to system elements and features 
across a variety of contexts (paragraphs).  The KEE frame-based 
representation, in contrast, emphasizes compactness and aggregation 
of references to a constrained number of data structures. 
Nevertheless, the DOD standard is extremely uniform in structure, as 
are SEIMOAR's system models.  This suggests that a mapping or 
translation capability is feasible for converting system models into 
military standard acceptable views, either within KEE or in the form 
of explicit documentation. 

The grounds for this capability, as always, would be 
identifying tags (i.e., 2167 paragraph numbers for each topic in 
figure 1), inserted at unit and slot levels, via a KEE method that 
drives a label selection menu.  Appropriate categories of 
information can be collected using these tags (e.g., paragraph 3.3 
of SSS) and displayed, printed, or stored in ASCII (and graphics) 
files.  The mediating interface is an English(like) front-end 
parser, that converts KEE frame data into complete English sentences 
complete with "snails." 

The document generation capability will not be added to SEIMOAR 
for some time, in view of the implementation requirements for more 
urgent features and functions noted above.  Nevertheless, it is 
important to identify this particular avenue of tool evolution, and 
the availability of current "natural language" processing AI 
technology to implement such a capability. 
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SECTION 5 

SUMMARY 

The initial version of SEIMOAR constitutes a proof-of-concept 
investigation into a knowledge-based approach to acquisition support 
(or in-house system development).  SEIMOAR is intended to facilitate 
the construction and analysis of models representing functional 
requirements and contractor system development products through 
preliminary design description.  Initial tooling efforts resulted in 
a modeling library, containing generic templates for C I system 
components and functions, and a sequential processing discrete time 
functional behavior simulation shell.  SEIMOAR was designed through 
analysis of functional requirements for a test vehicle C I system, 
an automated message-handling system.  SEIMOAR successfully 
supported creation of structural, functional, and behavioral models 
of the test vehicle. 

"Knowledge" is distributed across a variety of structures in 
SEIMOAR:  the underlying development environment and the basic 
knowledge representation superstructure (frames, demon and method 
procedural attachments); C I expertise encoded in modeling library 
templates; specification and design information in system model 
knowledge bases; the discrete event simulator; and the planned 
pattern-driven analysis utilities. 

SEIMOAR was implemented on top of KEE, a commercial AI hybrid 
tool shell.  The primary representational elements include frames, 
rules, object-oriented procedural attachments, and graphic icons. 
KEE's interface programming features are used in SEIMOAR to 
facilitate easy, visually-oriented exploration of complex system 
model structures, functions, and behaviors. 
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APPENDIX A 

KNOWLEDGE REPRESENTATION MODELS EXPLAINED 

This appendix provides a brief overview of two of the most 
popular kinds of artificial intelligence representational 
frameworks, rules and frames.  This information is intended to help 
novices understand terminology and basic concepts referenced in the 
body of this report.  This review is quite skeletal and abbreviated: 
for more leisurely, comprehensive, and skillful introductions, the 
interested reader is urged to study the introductory texts and 
articles that are available in ever-increasing numbers. 

The original AI representation framework for expert systems 
relies on data structures called production rules.  Briefly, rules 
encode situation-action knowledge in the form of conditional rules. 
Rule antecedents, or "if clauses," encode triggering patterns. 
Examples might include medical or equipment test results, signal 
patterns, or observable phenomena such as overt patient appearance 
or weather conditions.  Rule consequents, or "then clauses," encode 
responses to triggering patterns.  Actions might be inferences, such 
as diagnostic deductions based on symptom patterns, or specific 
behaviors, such as the prescription of medication, the issuance of 
particular repair, configuration, or control instructions. 

Rule-based systems generally rely on one or both of two kinds 
of reasoning models.  In forward chaining inferences, reasoning 
proceeds from premises to conclusions (i.e., given the presence of 
the former in the knowledge base, the conclusions are asserted).  In 
backward chaining, the conclusion is posited as a hypothetical or 
goal, and the engine then attempts to establish the premises, which 
may have to be taken as intermediate goals, and so on.  The goal is 
asserted into the knowledge base only if the premises are all 
verified. 

A more recent and increasingly popular kind of representational 
model is based on the notion of frames.  Frames are data structures 
that represent classes of objects (e.g., message processing 
functions, computers), or individual members or instances of classes 
(e.g., message collation function, workstationl23).  Frames 
aggregate together information describing individuals or classes in 
substructures called slots.  Slots represent attributes or 
relations, and are somewhat analogous to field names in a 
conventional data base dictionary. 
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A frame representing the class people, for example, might 
contain slots encoding properties, such as HEIGHT, AGE, RACE, 
GREATEST-AGE WORLD-POPULATION, predicates (true-false properties) 
such as ALIVE?, and relations, such as SIBLINGS, FATHER, MOTHER. 
Loosely speaking, properties and predicates characterize individuals 
or classes, while relations represent links or pointers between 
individuals and classes.  Note that HEIGHT, AGE, RACE, and ALIVE? 
refer to properties of persons, or individual members of the class 
PEOPLE, while GREATEST-AGE and WORLD-POPULATION refer to attributes 
of a class as a whole (the oldest member and the total number of 
members). 

Frame slots in turn have descriptors, which are called facets. 
The most important facet is called the VALUES facet, which contains 
data items representing particular values of slots.  For example, 
the VALUES facet for the slot COLOR for the class frame COAL might 
contain the datum BLACK.  Thus, VALUES facets are analogous to data 
fields in individual records. 

Slots are often equipped with facets other than VALUES.  One 
important facet, called OK-VALUES or VALUECLASSES, characterizes 
legal data or data classes for slot VALUES facets (e.g., numbers vs 
symbols, names of people, (1 or 2 or 3)).  This facet is useful for 
ensuring qualitative correctness of information entered into a 
knowledge base (e.g., appropriate value range and uniqueness of 
employee salaries).  OK-VALUES facets encode semantic constraints on 
slot values symbolic entries. 

One of the most important characteristics of frame-based 
representations is the notion of inheritance.  The ability to define 
class, subclass, and individual frames, with appropriate relations 
between these entities is known as abstraction.  Abstraction makes 
it possible to associate information (or information types) common 
to many individuals or classes with a more generic class.  This 
results in substantial data compression — information that would 
otherwise be repeated extensively is coded once, at an appropriate 
level of commonality (class abstraction).  For example, all kinds of 
fruit, and all instances of those kinds, have certain properties 
(e.g., color, size, weight), in common. 

Frames-based (and object-oriented) representational models 
support abstraction using two mechanisms, class relations and 
inheritance.  Class relations, notably class-subclass and 
class-member, link two frames together.  Successive class-subclass 
relations among a set of frames establishes a class hierarchy.  The 
standard biological taxonomy system is a good example. 
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Class relations drive inheritance.  Inheritance here basically 
amounts to information sharing.  Information can be shared either 
between a frame representing a general class and others representing 
specialized subclasses, or between a class frame describing 
prototypical members and frames representing particular individuals 
belonging to the class.  In virtue of inheritance relations, any 
information ascribed to the general class mammals holds true of any 
subclasses, such as cows or whales. 

Class attributes and relations often have nominal or expected 
values (e.g., the typical VALUES of COLOR of GRANNY.SMITH.APPLES is 
the datum GREEN).  Inheritance ensures that assignments of VALUES 
data to class attributes are assumed as defaults by individual 
members (or subclasses).  Typically, if an individual deviates from 
the prototypical "default" or nominal characteristics in one or more 
respects, those individual differences (i.e., attribute values) 
replace or override" the inherited attributes. 

Frames are very good at representing static structures and 
relations between objects or classes, but poor at representing 
procedural information (e.g., programs).  Two kinds of procedural 
attachments are used to rectify this shortcoming, active values and 
methods. 

Active values are pieces of LISP code contained in special slot 
facets, which are invoked, as relevant, when items are added, 
deleted, or replaced in the slot's values facet.  Active values are 
useful in safeguarding knowledge base consistency (e.g., 
guaranteeing appropriate adjustments to departmental budgets 
whenever member employee salaries are modified or staff sizes 
adjusted). 

Active values, also called demons, reflect slot-level 
procedural information.  It is also important to represent frame- 
level procedures, which pertain to operations on, or communications 
between frames.  To meet this need, some frame systems incorporate 
methods, frame-level procedural attachments borrowed from object- 
oriented knowledge models.  Briefly, pieces of code are attached to 
frame class or instance slots.  This code is activated by sending a 
message to the desired frame, consisting of the name of the method 
and any necessary arguments.  Nothing needs to be known about the 
internal structure of the method itself except its name and the 
arguments it needs.  This characteristic is known as encapsulation. 

Objects are very similar to frames except that they lack 
facets.  Object-based systems support classes, class instances, 
attributes (class and instance variables), and inheritance of 
attribute values.  Given that active values are normally implemented 
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via facets, unless some programming tricks are played with methods 
(known as "wrappers"), object-based systems typically do not support 
slot-level procedural attachment. 

Frames and rules can be combined into hybrid systems.  The most 
popular approach is to embed frames in rules.  That is, rule clauses 
make reference to frames and frame slot values in much the same way 
as conventional programming applications retrieve and add 
information to data base records.  Typically, rule antecedents 
pattern match on frame slot values, comparing or testing retrieved 
values against one another or test standards.  Rule consequents, 
similarly, modify the contents of frame slot values, reflecting 
diagnostic inferences or control actions on system models. 

Alternatively, rules can be embedded in frames. In this model, 
frames are arranged in a hierarchy, reflecting a flow of activities 
or control. Within a given frame, a restricted subset of rules can 
be activated, to drive rule-based reasoning. In this model, frames 
partition rules into indexed subsets, corresponding to the relevant 
rules to reason with respect to specific activities. This model has 
not been used very often, but it has some interesting possibilities. 
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APPENDIX B 

KEE AND ART — COMPARISONS AND LESSONS LEARNED 

One of the purposes of the SEIMOAR project was to evaluate the 
use of the best available commercial AI system building shells.  KEE 
(Intellicorp) was selected because of economics.  (MITRE already 
owned a license and a copy of the program and subsequent copies are 
discounted substantially.)  The author has also had experience with 
KEE's leading competitor, a tool called ART.  This appendix provides 
a summary comparative analysis of the two tools, together with an 
overall personal assessment of the value of commercial shells. 

KEE is an advanced AI programming shell currently running on 
LISP minicomputers (LMI, Symbolics, Xerox, TI).  KEE combines a 
powerful high-level representation language with multiple control 
strategies (e.g., rules, active values, methods, VALUECLASS facets), 
for managing reasoning about encoded knowledge.  User-supplied LISP 
code is readily embeddable in KEE data structures.  The program 
provides a variety of tools for building sophisticated user 
interfaces, most notably graphic icon libraries and editors, menus, 
windows, and mouse pointers.  Finally, KEE integrates the above 
features with a powerful development environment:  language editors, 
browsers for both application and KEE (system) structures, and 
program monitors and debuggers.  In short, KEE provides a generic 
but flexible support environment for rapid prototyping of expert 
systems and other AI applications. 

KEE basics are easy to learn and use, whether or not one is 
intimately acquainted with artificial intelligence.  Theoretical and 
practical familiarity with the tool are facilitated through lecture 
notes and well-documented walkthrough tutorials involving small 
training knowledge bases. 

Some caveats accompany the use of a hybrid tool such as KEE. 
First, nontrivial applications of KEE require a basic competence in 
writing LISP code (e.g., for designing methods and demons).  Second, 
the backward-chaining rule system and rule-based inference 
monitoring aids, while quite powerful, are complex.  Familiarity 
with goal-driven reasoning and some significant effort are needed to 
master these aspects of KEE.  The rule trace and debugging 
capabilities are powerful, but also quite numerous and often 
bewildering.  Third, KEE (Version 2.1), lacks important 
representation and reasoning mechanisms that are available in a 
competitor hybrid AI tool called ART (Automated Reasoning Tool, 
Inference Corp., Los Angeles, CA). 
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ART's architecture rests on a base declarative language derived 
from the predicate calculus, which incorporates a frame-like 
construct known as a schema.  Schemata have slots, which in turn 
take on values.  Schemata can be connected through standard 
set-theoretical relations (class-subclass, class-member), supporting 
information inheritance.  However, schemata lack facets and 
procedural attachments of any kind.  Consequently, ART's data 
structures are passive, while KEE's frames, in virtue of demons and 
methods, are active.  ART's primary reasoning mechanisms are 
backward and forward chaining rule inference engines.  ART also 
provides graphics and language editors, program monitors, and so 
forth, although none of these features are as powerful as KEE's. 

ART's strongest feature is a representational model known as 
viewpoints or possible worlds.  Possible worlds support an inference 
mechanism called hypothetical reasoning.  In effect, possible worlds 
drive the capability to generate multiple, alternative "what-if" 
models in parallel, allowing comparisons between the different 
hypothetical simulations.  ART's rule-based approach to hypothetical 
reasoning provides a natural vehicle for activities such as 
planning, scheduling, and forecasting.  These complex tasks 
typically involve large numbers of interacting variables and 
knowledge that takes the form of constraints (e.g., any job shop 
schedule at plant Z that calls for more than 1000 manhours of labor 
per week is unimplementable, and should be discarded). 

Possible worlds also ground truth-maintenance systems (TMS), a 
popular approach to the problem of nonmonotonicity.  In monotonic 
models, information simply accumulates.  For example, many kinds of 
static classification tasks take input evidence and incrementally 
refine identification to increasingly more specific categories.  No 
assertions or intermediate inferences are ever falsified or 
retracted.  In contrast, nonmonotonic models are dynamic, involving 
information that changes over time.  For example, in a battlefield 
management scenario, the movements of friendly and enemy forces 
often result in situations wherein reasoning and decisions based on 
earlier field positions and trends might become obsolete or 
otherwise invalidated.  A TMS enables a decision support system to 
trace and retract all such unreliable inferences and conclusions, 
irrespective of the complexity of the prior chain of reasoning.  It 
is extremely difficult to deal with hypotheticals and 
nonmonotonicity using KEE, which lacks possible worlds structures. 

New versions of KEE and ART have been released recently.  KEE 
Version 3.0 addresses most of the representational and reasoning 
shortcomings of Version 2.0 (TMS, possible worlds, user-definable 
relations, hypothetical and temporal reasoning, improved 
backward-chaining).  However, the complexity of KEE's 
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representational architecture has increased correspondingly.  The 
new capabilities are not as easily integrable within KEE's 
frame-based system as they were in ART's underlying propositional 
representation.  Moreover, just as KEE has improved its functional 
capabilities, ART appears to have improved its capabilities (demon 
and method procedural attachments), its efficiency, and its user 
interface. 

Licensing and training costs for ART and KEE are expensive. 
Moreover, ART and KEE, like all tools, often constrain and inhibit 
implementation of design, as well as facilitate application 
development.  Weighed against these costs, however, are considerable 
advantages:  powerful, prefabricated development environments, 
externally supplied documentation, training, consultation, 
enhancements, and product control. 

The costs of not using commercial tooling must also be 
appreciated:  loss of in-house tooling expertise due to designer 
staff turnover, overhead and uncertain availability for customized 
tooling and support, nonexistence of documentation, brittleness of 
resulting systems to nondesigners, low code reusability, and so 
forth.  Customized tooling tends to be no less constraining and 
inhibiting upon occasion as commercial systems.  Weighed against the 
access to source code is the absence of documentation and product 
assurance methods and standards. 

My personal verdict at this point is this:  both tools are 
eminently suitable for rapid prototyping and proof-of-concept 
experimentation.  I have no experience using the tools for 
full-scale production systems.  Consequently, it is not clear to me 
that commercial tools will support application scaling and system 
performance requirements. 

This does not imply that commercial shells should be abandoned 
when embarking upon development projects for large scale or 
performance critical systems.  Rather, it means that rapid 
prototyping up through early design must be followed by a formal 
assessment of the adequacy of the commercial tool for production 
system requirements as opposed to an optimized, custom built version 
of the system.  In either case, the commercial tool will have served 
its purpose as an early development, top-down design vehicle. 

(Amortized over multiple projects, a commercial shell is more 
cost-effective than internally developed project-dedicated tooling. 
By the implementation phase, system development calls for bottom-up 
rather than top-down methodology.  At this point, single pass custom 
tooling is more likely to involve acceptable time and cost.  Using 
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customized tooling throughout the development cycle, which generally 
involves one or more major redesigns, is a much more expensive 
proposition.) 
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