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SECTION 1

INTRODUCTION

Government acquisition programs follow a standardized
development cycle, ranging from concept exploration and system
definition through to implementation and fielding. The results of
early cycle phases are captured in a sequence of progressively more
detailed system descriptions, characterizing system functional
requirements, architectural specifications, and multiple design
iterations,

For the large and complex computer and communications systems
commonly needed today, it is becoming increasingly difficult to
maintain and analyze the information contained in developmental
system descriptions. Analysis encompasses verification of system
descriptions with respect to completeness, consistency, technical
and economic feasibility. Comparative analysis is also critical,
both of variants at a given development phase and of system
descriptions across cycle stages. Additional recurring acquisition
problems include information accessibility and refinability, and
reusability of fragments of existing system descriptions. These
problems are not unique to the Government sector: support problems
for large system engineering projects are ubiquitous.

A variety of computerized automation tools already exist to
support system development activities, including simulation and
design, document preparation, and project management. Unfortunately,
existing tools, taken individually, are often sharply restricted in
functionality and may require significant programming expertise.

More seriously, existing tools are extremely difficult to integrate.
Simulators and design tools, for example, generate and operate on
formal system models or model fragments, whereas document preparation
tools manipulate textual descriptions of systems.

This paper describes MITRE's Systems Environment for Intelligent
MOdeling and Analysis of Requirements (SEIMOAR), an acquisition
support tool based on artificial intelligence (AI) technologies.
SEIMOAR addresses the problems of maintenance, analysis capabilities,
and tool integration by capturing and manipulating early acquisition
cycle system descriptions in the form of symbolic models.




Symbolic models provide explicit representations of system
architectural structures, functionality, and behaviors. System
design constraints (e.g., performance requirements, maintainability,
cost and size relationships, reliability and quality factors), can
also be stored as symbolic structures. Symbolic representation and
reasoning techniques provide significant advantages over conventional
data bases and programming techniques in terms of data compaction,
model expressiveness, and general capabilities for manipulating
models.

Integrability problems are addressed by requiring all such
developmental models to be cast in a uniform representational format.
Such models will obviously vary in the level of detail (e.g., overall
system capabilities expressed as a collection of functions versus an
allocation of functions to specific hardware and software components
proposed in a contractor's design), but not in the kinds of symbolic
structures used to represent such information. Moreover, all tools
required for acquisition support will be constructed on the basis of
this common modeling structure. As noted above, automated tools are
needed to facilitate generation, maintenance, revision, review, and
analysis activities on system development information.

SEIMOAR employs a modeling library approach for the creation of
symbolic system descriptions. New systems are very rarely totally
unique; typically,.they copy or copy and adapt functions and
components from existing systems. SEIMOAR exploits this fact by
incorporating a modeling library consisting of reusable templates
describing generic structural and functional system elements.
Templates are represented via frames, which are AI data structures
that symbolize objects or object classes in terms of a set of
attributes and relations.,

In the SEIMOAR prototype, the modeling library describes
prototypical functions and components_for military Communications,
Command, Control, and Intelligence (c31) systems. Example system
elements templates include signal processing functions and local area
networks, characterized by attributes such as security requirements
and network protocols. Alternative libraries would be used to
support different systems engineering applications domains.

Developmental system models are generated through a simple
copy-and-edit strategy: wusers select and then customize generic
library templates, thus representing particular application system
model elements. Customization proceeds by supplying values to
template-defined attributes, or by defining new attributes and then
supplying values. The customized templates are connected together to
form a comprehensive model by various relations (e.g., structural
connectivity, functional flow, class-subclass and class-instance
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links). In AI parlance, system models in SEIMOAR consist of
knowledge bases containing structured collections of customized
templates.

In addition to representing system architectural structure and
functionality, SEIMOAR system models capture system behaviors, the
sequences of events involving system components and data objects that
implement particular functions. SEIMOAR incorporates a discrete time
functional simulator shell for dynamic behavioral modeling of system
functionality.

Briefly, users construct behavioral models by sroviding a
specification of flows (e.g., function sequencing and branching),
executable procedures associated with individual functions that
describe the desired actions on model objects (i.e., system elements
and data objects), and iconic animations of these actions. SZIMOAR
also incorporates a menu-driven scenario generator to produce
sequences of test events (e.g., arriving messages or signal pulses).
The simulator uses these ingredients to cycle through applications of
functional actions to alter model system element and test data object
states over time.

The remainder of this report is divided into three major
sections. The first establishes the project context: the portions
of the acquisition process to be addressed by SEIMOAR are explained;
general problems in the acquisition process are summarized; existing
automation tools are analyzed with respect to their inability to
resolve current acquisition problems; and finally, a strategy to
resolve acquisition process and tooling problems is put forward.

The second section reviews the results of the SEIMOAR project to
date. Project logistics and test vehicles are outlined, followed by
a description of the AI-based development environment tools used to
implement SEIMOAR. The major architectural features of the system
prototype are then explained in detail: the modeling library for
structures and functions, and the behavioral simulator shell. The
explanations incorporate examples from the test vehicle system model
and scenarios that suggest SEIMOAR's intended usage.

The third section summarizes limitations in the current version
of SEIMOAR, accompanied by design sketches of planned remedies and
enhancements. Planned improvements include enhancing the user
interface, broadening the representational scope of current library
templates, refining the implementation of the base representation
model, and introducing automated static and dynamic analysis
capabilities.



Appendix A provides a brief tutorial on standard AI knowledge
representation techniques. Since sections 3 and 4 rely heavily on
the terminology and concepts set forth in the appendix, newcomers to
AI are advised to review appendix A before reading the indicated
sections. Appendix B describes and compares two prominent commercial
AI system building shells.



SECTION 2

BACKGROUND INFORMATION

2.1 DEVELOPMENTAL PHASES OF ACQUISITION PROGRAMS

What are the automation needs in the early phases of systems
acquisition? Some initial background information outlining the
structure of the procurement process is required in order to frame an
answer.

The first major milestone in an acquisition program is the
specification of functional requirements for a proposed system. The
document that sets out this information is called a System/Segment
Specification (SSS). 1Its ingredients and format are spelled out in
the current Department of Defense acquisition process specification,
DOD-STD-2167. Figure 1 depicts a tree graph that represents the
categories of information (i.e., paragraph headings), of the SSS.

The SSS summarizes the results of a process of system concept
definition ‘and exploration. It defines the basic purpose of the
system, together with a detailed characterization of desired
functional capabilities, qualitative and quantitative performance
needs. In addition, the specification delineates requirements for
interfacing to related, existing systems, quality and reliability
factors, logistics, environmental operating conditions, and other
design implementation constraints. Requirements are developed by
government customers (e.g., the U.S. Air Force), sometimes in
conjunction with a supporting acquisition organization such as MITRE.

The next phase in the process is to select contractors to design
and construct the system in question. Source selection is based on a
comparative analysis of proposals solicited from potential system
developers, performed by an acquisition organization. Proposals
outline contractors' projected technical, methodological, and project
management approaches to the problems and needs set out in the
functional decomposition specifications.

Following source selection, the winning contractor produces a
sequence of specification and design procucts for formal review and
analysis by the customer and its acquisition agents. The contractor
products describing software aspects of systems up to the
implementation phases include: Software Requirements Specifications
(SRS), Software Top Level Design Documents (STLDD), and Software
Detailed Design Documents (SDDD). Separate interface description
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documents are prepared for each specification or design phase. Each
acquisition phase also calls for project management documentation,
describing schedules, cost and sizing data, policies, procedures, and
methodologies.

To elaborate briefly, the SRS presents a definition of an
overall system architecture and configuration allocation: the SRS
allocates functions among specific hardware and software subsystems
or components, respectively called Hardware and Computer System
Configuration Items (HWCIs, CSCIs). The STLDD constitutes a
preliminary software specification, which defines data structures and
establishes control and data flows between CSCIs and HWCIs. The SDDD
characterizes software to a finer-grained level of detail, breaking
down CSCIs into modules of pseudocode or a program description
language (PDL). In short, the SDDD delineates the internal structure
and organization of specific software subsystems.

It should be clear that this kind of iterative specification and
design process is not unique to Government organization programs,
Large computer system development proceeds similarly in industrial,
financial and other sectors as well. Moreover, the structured design
cycle sketched here is followed whether systems are contracted
externally or constructed in-house. If systems are procured, system
design 1is performed by contractors; otherwise, this role is performed
by internal development organizations. Thus while this paper reports
on a system development support tool in the context of Government
acquisition programs, the results are generalizable to most system
development environments.

2.2 RECURRING PROBLEMS IN THE CURRENT ACQUISITION PROCESS

Acquisition support encompasses generation of SSSs, source
selection, and review and analysis of subsequent contractor system
development products. A variety of problems recur chronically in
carrying out these activities within the acquisition process as it is
currently structured:

Inaccessibility

It is difficult to selectively retrieve, arrange, and display
the contents of system descriptions. In other words, system
descriptions arz not readily browsed or navigated.

Nonmanipulability

System description information is not in forms suitable for
direct experimentation, revision, and refinement. One important
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aspect of manipulability is the capability to comprehend or
understand systems by examining their (simulated) behavior under
controlled stimuli. Another dimension of manipulability is the
capability to preserve appropriate structures and relations when
system concepts are modified. Both aspects are important in
exploring requirements or design variations, and in refining system
descriptions.

Unanalyzability

System description information is generally not in forms
suitable for direct application of analytical tools.

Nonreusability

System description information is not in forms suitable for
being extracted and adapted, piecemeal from existing systems, to be
incorporated into specifications and designs of new systems.

2.3 CURRENT AUTOMATION TOOLS AND THEIR LIMITATIONS

A variety of automation tools for acquisition support already
exist: document preparation tools, such as word processing and
graphics generation systems; program management aids, such as project
task decomposition and scheduling tools; behavioral analysis tools,
such as simulators; and design tools, such as structured analysis and
design systems. Unfortunately, these tools do not address the
problems listed above very effectively. In trying to devise a better
approach, it is instructive to look closely at the deficiencies of
current tooling.

Document preparation systems have serious functional limitations.
Word processors basically index and operate on character strings.
Keyword searches, for example, depend on exact or near exact
character string matches. A keyword search based on "architecture,"
though, will miss references to '"topology," despite the close
semantic overlap of the two phrases. Similarly, a search on
“"computer" will fail to retrieve references to "processor,"
"workstation," and "mainframe.'" Moreover, keyword searches will not
work at all for information encoded in tables and diagrams.

System developers and reviewers, however, need to extract and
organize system descriptions using semantic rather than syntactic
references —-- concepts, generalized classes and relationships between
system elements or element classes. Moreover, given the



importance of information summaries in tables and diagrams, it is
critical that graphic as well as textual references be accessible and
retrievable.

The mechanical, syntactic character of document processing tools
also precludes system description reusability. Document portions can
certainly be mechanically copied and ported. However, this rote
duplication of form generally requires subsequent manual adaptation
of content. For complex CSCIs, manual tracking of the consequences
of modifications to components that are closely coupled is difficult
and tedious. Reproductory tools based on semantic information about
system descriptions would provide superior adaptive capabilities:
automated customization tools would perform, or at least enumerate
and advise on revisions needed to preserve completeness and
consistency.

Current structured analysis and design tools have more
reasonable semantic strength: they operate in terms of abstractive
classes and relations, such as inputs, outputs, functions, and
precedence relations. Unfortunately, such tools generally only
capture partial system models for specific system development phases
(e.g., design). Such tools usually do not support explicit
representation of, nor reasoning about, logistics, quality and
reliability factors, and other critical design implementation
constraints.

Simulation tools are similarly limited in scope. Moreover,
these tools often require programming expertise, making them
unsuitable for a general acquisition community. Modeling tools that
are not difficult to use are often highly restrictive, narrow purpose
systems, such as network performance modelers. This reflects the
usual tension in tool design between ease of use as opposed to
programmable functionality.

Perhaps the most serious problem with existing tools is that
they are not integrated or, for that matter, integrable. Structured
analysis and design tools are effective for system design efforts,
but not for initial requirements generation, configuration
allocation, or traceability between those phases and design. Formal
analysis is either performed manually or through piecemeal automated
tooling, again operating on partial system models. This fragmentary
approach generally precludes comparative analysis either between
variant designs or requirements or between system descriptions from
different stages of the system development cycle.

The important thing to note in the above critique is that
individual tools are deficient in different respects. In particular,
word processors, most project management tools, and graphics
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preparations systems have serious functional inadequacies, whereas
design and modeling tools suffer primarily from restrictive scope and
integrability problems. The following explanation for this
distinction provides the primary motivation for the SEIMOAR project.

The functional capabilities of all computer-based tools derive
from their mechanical manipuiations of syntactic (data) structures.
The critical difference between current document processors and
simulators, structured design systems and knowledge-based tools lies
in their internal interpretations of the objects that they
manipulate.

Word processor operations on character strings model
manipulations of words. (Similarly, graphics program operations on
icons model manipulations of pictures.) Thus, the immediate
interpretation of operations is in terms of their effect on language
(pictorial) elements; the additional interpretation of words to a
particular domain (e.g., systems acquisitioen), is totally incidental
and outside the scope of the semantics of the tooling. Tool users
must explicitly impose this interpretation, and direct tool
operations manually (e.g., keyword searches on synonymous phrases).

In contrast, knowledge-based systems, simulators, and design
tools operate on symbolic tokens that represent system elements,
features or relations among elements. Consequently, an immediate
interpretational correspondence exists between tool activities and
domain activities (e.g., behavioral simulations, design
manipulations). Tool constraints and capabilities directly reflect
the semantics of system model structures and manipulations.

The tokens that knowledge-based systems, simulators, and design
tools operate on are not words in acquisition documentation, but
formal symbolic representations of system models or model fragments.
This explains the integrability limitations of such tools with
respect to word processors and graphics systems; the latter tools
process raw text and diagrams rather than symbolic models.

2.4 SEIMOAR'S STRATEGY -- MODEL-BASED ACQUISITION SUPPORT

The problems in the current acquisition process and tooling can
now be seen to be reflections or manifestations of an underlying flaw
in the procurement process. The products that drive the current
acquisition process are textual (and graphic) descriptions of system
models. These are the items that are generated and transmitted
between acquisition customers (or agents) and the contractors who
develop and implement systems.
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Documentation, of itself, is an unsuitable vehicle for system
development activities; it records only the results of specification
and design processes. Documentation is not the actual product of
concept definition, requirements specification or design development.
System models, or model fragments are. Accordingly, specification
and design analysis and review need to be performed on these products
directly. In short, concrete symbolic system models should be the
objects that are generated by, manipulated by, and transmitted
between acquisition customers and contractors.

Given this diagnosis, it follows that effective automation for
acquisition support requires a model-based approach. This strategy
depends on two sets of ingredients: a sequence of symbolic system
description models, cast in a uniform or canonical representational
framework, and an integrated tool set for generating, exploring,
refining, analyzing, and comparing such models.

Clearly, the two sets of elements are closely coupled: the form
and content of the tooling presupposes a specifig representational
framework, while actual system models cannot be constructed and
manipulated without the tooling. This coupling seems to be
characteristic of integrated environment architectures: it is
necessary to determine both the kinds of information that must be
represented, simpliciter, and the kinds of activities and operations
that are going to be performed on that information.

How, exactly, does this model-based approach address the
acquisition support issues described earlier?

Accessibility

Requirements, specifications, and design descriptions are cast
as models (actually individual knowledge bases), which can be
browsed or explored by abstractive reference and retrieval. System
elements are now represented by model entities rather than
uninterpreted tokens (e.g., character strings, icons).

Moreover, referencing and manipulation of system elements and
relations in symbolic models can now be accomplished in terms of
pointing and other operations on graphic icons. In conventional
development environments, icons (e.g., Macintosh graphics), are token
bitmaps; on par with simple character strings, they lack any semantic
(abstractive center) within the tool context. In contrast,
model-based representations can explicitly associate icons with
particular symbolic model elements (e.g., components or functions).
These links support internal semantic interpretations, whereby
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operations on iconic tokens (e.g., pointing, connecting) are
translated into model element manipulations (e.g., referencing,
structural linkage).

Manipulability

Behavioral portions of symbolic system models can be used to
drive simulations of system performance, both qualitative and
quantitative, based on controlled test stimuli. Equally important,
explicit constraint relationships imposed on symbolic model elements
guarantee maintenance of consistency when model features are permuted
or perturbed in exploring system variants (e.g., alternative system
architectures or functional requirements).

Analyzability

System descriptions, now cast as symbolic models within a
canonical representational framework, can be operated on by a uniform
set of analytical tools. This is the value of integrability -- one
model, cast in a single representational format, is accessible to any
tool that presupposes that format. Moreover, if analytical results
preserve that format, such output can be manipulated by further tools
(e.g., as in UNIX pipes).

- Reusability

.

System description fragments, now cast as pieces of symbolic
models can be extracted and adapted using model manipulation tools.
Specifically, model elements describing generic classes of functions
or components can be specialized to subclasses suitable to given
system applications.

SEIMOAR embodies this model-based approach to system
development. It provides a uniform representational framework for
expressing symbolic models of system structural, functional,
behavioral and contextual (i.e., design constraint) information.
SEIMOAR will also incorporate an integrated tool set, based on this
framework, for generating, manipulating and analyzing symbolic system
models.

Tools are being designed to perform completeness, consistency,
and technical feasibility (e.g., performance verification) analyses.
Symbolic model system descriptions will be assessed both individually
and comparatively (i.e., across models representing different
development stages). Other planned utilities include sizing and
costing estimation tools for system descriptions at functional

12



requirements and specification phases, and tools for exploring model
variants at a given developmental stage (e.g., alternative
architectures, functional decompositions).

In short, SEIMOAR is intended to constitute a strongly automated
acquisition support environment that will facilitate requirements
definition and assessment of contractor (or in-house developer)
deliverables. The phases of system development that SEIMOAR
addresses are specification through early (high-level) design.
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SECTION 3

SEIMOAR

3.1 SEIMOAR PROJECT HISTORY

The initial version of SEIMOAR was implemented using KEE
(Version 2.1, Intellicorp), a commercial AI system-building tool
hosted on a Symbolics LISP minicomputer. The choice of environment
was straightforward, given the decision to adopt a symbolic
model-based approach to acquisition support: LISP machines provide
the best available combination of development utilities, memory
capacity and symbolic processing power.

Time and staffing constraints dictated the use of a commercial
tool shell for system prototype development. MITRE already possessed
a license for KEE, thus determining a specific choice of commercial
development environment. Project resources did not cover purchase of
SIMKIT, a companion product to KEE that provides discrete event
simulation capabilities. Consequently, a custom-built dynamic
simulator was constructed and incorporated into SEIMOAR.

To date, the SEIMOAR project, has expended roughly eight
staff-months of technical effort: the two project staff members
learned how to use KEE, designed and implemented the SEIMOAR tool,
inclusive of the dynamic simulator shell, and constructed a
functional requirements model for a test application system. The
author designed and implemented most of the SEIMOAR shell and the
test application system model. A junior associate working half-time
on the project implemented SEIMOAR's graphics and current user
interface.

3.2 SEIMOAR TEST VEHICLES

A functional requirements specification for a modest-sized (100K
SLOC) nilitary communications system (MCS) was selected as an
application test vehicle. The goal of the test vehicle program is to
enhance local communications capabilities for an existing distributed
Command and Control System.

Each MCS site is to consist of multiple workstations, coupled
via a local area network to a central processor hosting an automated
message handling system (AMH). The AMH, the core of MCS test
vehicle, automatically logs and distributes messages to site users.
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Message review, drafting, and sending capabilities are also
specified for the AMH. Additional MCS functionality pertains to
maintainability, workstation capabilities, AMH operations support,
security, statistics, and testing.

SEIMOAR was developed by analyzing the MCS functional
requirements. Representational needs were determined based on the
kinds of information found in the specification and the kinds of
anticipated activities (e.g., generation, review and refinement,
analysis) involving that data. This constitutes a reversal of the
tool's intended mode of operation, which is to construct and
manipulate system models using the tool's capabilities. Preexisting
functional requirements were employed to avoid having to combine
initial tooling design and implementation work along with
construction of a new system specification.

In the development process, valuable insight was gained into the
adequacy of the MCS functional requirements themselves. Several
important errors and ambiguities were uncovered, the most important
of which are reviewed in section 3.7. This exercise thus helped to
substantiate the claimed value of SEIMOAR as a system development
environment: the representational framework enforces a uniform
methodology that highlights ambiguities, omissions, and
inconsistencies in evolving system descriptions.

The MCS functional requirements are unusually detailed for an
initial system definition. In addition to a characterization of
desired functionality, a high-level system architecture and a partial
configuration allocation are stipulated. Typically, such information
is provided by the contractor rather than by the customer, and
somewhat later in the acquisition cycle. SEIMOAR's capability to
encode such data helps to validate the tool's design, despite the
initial, restricted development basis of a single acquisition
product.

It is anticipated (cf section 4) that the representational
apparatus assembled to capture and manipulate functional requirements
system information will have to be extended somewhat to model
subsequent system descriptions in the acquisition cycle. Project
plans call for exercising the tool against functional requirements,
specifications, and early design phases of further system
acquisitions. This strategy will serve to define requisite
extensions and to provide substantive confirmation of the basic
adequacy of SEIMOAR's modeling approach and representational
framework.
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3.3 KEE DEVELOPMENT ENVIRONMENT

Knowledge Engineering Environment (KEE, Intellicorp) is a hybrid
tool for building AI systems. Hybrid shells incorporate elements
extracted from several distinct knowledge representation models or
paradigms within a single, integrated framework. KEE relies on a
basic frames language that has been augmented to support capabilities
borrowed from object-oriented and rule-based technologies as well.
The following description pertains to KEE Version 2.1. A
supplemental explanation of standard artificial intelligence
representation techniques (e.g., frames), is provided in appendix A
of this report. Appendix B compares KEE with Automated Reasoning
Tool (ART, Inference Corp.), a competitor commercial shell.

KEE frames, called units, have the normal internal structures,
slots and facets. Frames can be linked by class-subclass and
class-member relations. KEE's inheritance mechanisms are unusually
rich. Slots are categorized into two types, OWN and MEMBER,
corresponding to class and instance attributes, respectively.
Instance slots (not slot values) are inherited from class to subclass
or member frames, but class slots are not. Thus, a descriptor
appropriate only to classes (e.g., GREATEST-AGE, CLASS-POPULATION)
need not be inherited by subclass or member frames from class units.

KEE allows for multiple inheritance of slots. This means that a -
class can inherit MEMBER slots from multiple superclasses. Zetalisp
Flavors provides an analogous capability (i.e., metaclass mixins).
This capability is extremely useful in cases where generic attributes
are naturally partitioned among different superclasses. For example,
graphics attributes (bitmaps, mouse behaviors) are naturally grouped
according to an image object class, while domain model constituent
attributes are best organized about structural entity classes.
Multiple inheritance enables selective combination of both kinds of
properties in a single class, or separate property class ascription,
as necessary.

Propagation of VALUES facet data from class to subclass and
member units is regulated by an INHERITANCE facet. KEE provides
about a dozen standard inheritance relations and supports user
programmed ones as well. For example, OVERRIDE.VALUES specifies
transmission of class values to subclasses or members as defaults,
which can be overridden by explicit subclass or member data (e.g.,
GREEN is the default VALUES datum for COLOR for all instances of
GRANNY.SMITH.APPLES, unless explicitly overridden. UNIQUE blocks
transmission of superclass values, while UNION combines superclass
values with any explicitly supplied data for the inheriting frame.
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KEE provides a special (Boolean) language for the VALUECLASS
facet, which flags admissible or legal data classes for the VALUES
facet. For example (ONE.OF argl arg2 ...) expresses the restriction
that candidate data for the VALUES facet must match the member
arguments. Two cardinality slots allow specification of maximum and
minimum allowable number of data items for the VALUES facet, while a
COMMENT facet allows slot-level documentation. User-defined facets
are also available.

KEE frames support two kinds of procedural attachments, methods
and active values. Methods are implemented at the slot level, as
LISP code stored in the method's VALUES facet. Method slots have a
special INHERITANCE facet mode to support transmission of code
between frames along class-subclass and class-member links. Methods
are activated by using a KEE function that sends a message consisting
of the method slot name and appropriate arguments to the relevant
frame. This model of communication and code execution is borrowed
from object-oriented knowledge representation models and programming
languages.

Frame-based procedural attachments, called active values or
demons, attach to frame slots. As expected, KEE implements demons at
the facet level. Predefined facets allow the definition of LISP
functions that are activated, as needed, when slot VALUES data items
are added, removed, or retrieved.

KEE implements rules (and rule classes) via frames. A rule frame
has slots that contain a first-order predicate calculus
representation of rule premises (if clauses) and conclusions (then
clauses). The contents of these slots are operated upon by KEE's
built-in rule inference engines. Both backward and forward chaining
mechanisms are provided. Invocation of either rule engine requires
the specification of a particular rule class (i.e., as the functional
argument). Rule classes constitute KEE's mechanism for partitioning
large rule bases into manageable subsets that can be examined
selectively.

The rule calculus itself is not particularly intuitive, but KEE
users actually read, write, and edit rules using an "external-form"
slot, which employs a simple English-like rule language. The rule
engines can also be invoked interactively, for knowledge base queries
and manipulaticns, using a special declarative language. KEE
contains utility functions for converting between frame, predicate
calculus, and the declarative language representations.

In addition to these basic representation and reasoning
capabilities, KEE supplies various system development environment
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facilities: a strong user interface and tools for building custom
application interfaces (e.g., menus, windows, mouse pointers, bitmap
graphics editor), incremental compilation, debugging and monitoring
capabilities such as rule traces and breakpoints, and language-based
editors. Moreover, KEE utility functions for manipulating knowledge
bases are available to applications programmers. Another helpful
utility is KEE's graphic tree browser, which depicts the units and
their class relations for the specified knowledge base.

KEE graphics are also implemented through the frames system.
Image classes are created that point to icons generated through a
bitmap graphics editor. Instance frames can then be created,
associating icon instances with particular windows and window
coordinates. KEE also allows for composite icon image classes and
instances, called panels. Panels constitute the equivalent of a
graphic macro, by combining multiple icons in specific, fixed
relations (spatial and computational) to one another.

Finally, KEE provides a special class of icons, known as active
images, that constitute a graphic variant of demons. Active images
are icons that attach to frame slots. Their coupling is dynamic:
modifications to slot VALUES data items are reflected in icon
appearance. For example, changes in a thermometer reading change a
corresponding object's temperature slot datum. This capability is
extremely useful for graphic depictions of simulations. A subclass
of active images, called actuators provide two-way coupling:
actuator icon changes (i.e., from mouse actions), are reflected in
frame slot data changes, as well as the converse.

3.4 LIBRARY-BASED SYSTEM MODELING IN SEIMOAR

A central methodological tenet of the SEIMOAR project was that
system description generation and analysis activities should be
driven by modeling libraries.

MITRE's primary expertise is in acquisition of c31 systems,
These systems constitute a relatively well-defined class: new
designs generally consist of variations on a small number of standard
subsystems and components (e.g., sensors, platforms, and processors),
coupled together by one of a relatively few kinds of architectural
configurations (e.g., network topologies or bus structures). Thus,
new systems typically copy or copy and adapt fairly generic bands of
functions, components, and interconnections. Consequently, the
application domain is inherently well-suited to description and
design methods employing templates.
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Templates, in this context, are simply prototypical system model
elements, characterized in terms of idealized, generic properties and
relations. Examples include physical characteristics of model
elements (e.g., size, weight), internal structures, (e.g., components
connected together), and operational descriptors (e.g., purpose,
capacity, processing speed).

SEIMOAR's current modeling library represents c31 functions,
systems, hardware and software components using templates implemented
in terms of KEE frame classes (unit classes). For other application
domains amenable to the library-based development approach (e.g.,
weapons or commercial data processing systems), appropriately
different frame template collections would be substituted in place of
SEIMOAR's present library.

System models in SEIMOAR are comprised of knowledge bases
containing collections of frames. System model generation using
SEIMOAR proceeds according to a simple copy—and-edit strategy:
generic library templates are copied into a system model knowledge
base and customized by incorporating characteristics specific to
capabilities or structures desired in the new system.

3.4.1 Template Customization -- General Scenarios and Examples

Template customization can take place in two ways. First,
templates might simply be filled in by supplying data for slot VALUES
facets. A second form of customization is to modify the template
itself by adding slots, and then supplying data items to fill the new
slots' VALUES facets.

An example of model element generation from the application test
vehicle is illustrated below. Figure 2 displays slots representing
some of the attributes that characterize communications interfaces as
a general class. Note that the KEE unit header contains class and
knowledge base pointers, and that some slots are created by, and
maintained for KEE itself. TRANSMISSION.CODE illustrates a value
class restriction, indicating that either or both BLOCK and
CONTINUOUS are admissible data for the VALUES facet for this
descriptive attribute.

Figure 3 displays a more specialized interface template, which

adds attributes that characterize hardware and software requirements
for the seven-layer ISO model of network protocols. Many, though
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not all communications interfaces can be characterized by supplying
values to such a template. The ISO.MODEL.COMMUNICATIONS.INTERFACES
template inherits the attributes of its superclass, COMMUNICATIONS.
INTERFACES and adds the seven protocol layers as properties.

Depending on the application system, one of three courses of
action might be followed in creating a communications interface. If
the ISO template were adequate, an acquisition support user would
copy the template into the system description knowledge base, rename
the unit, create instances of the unit, and fill in appropriate data.
Class instances are created following template copy and adaptation
because multiple individuals (e.g., LAN interface units) appear both
in single systems and multiple copies of systems (e.g., computer
networks).

Alternatively, the ISO model might have to be refined into
further specialized subclasses (e.g., DECNET interfaces), which fill
in the ISO model attribute VALUES facets with specific data. The
resulting template, DECNET.INTERFACES, would still be sufficiently
general to be broadly useful. New templates, once validated by
SEIMOAR support personnel, would be added to the modeling library.
The copy and edit procedure described above would then be followed
for constructing the system model description.

Third, it might be the case that no suitable template is
available (e.g., if the ISO model were unsuitable). In this case,
the user would develop a new template subclass of COMMUNICATIONS.
INTERFACES and add it to the library, following the template
verification procedure. The copy and edit procedure would then be
followed once again.

In both of the last two scenarios, the modeling library
accumulates new templates over time as users model new systems ang
components or functions that can be generalized to serve across C°I
acquisitions. It is important to note that SEIMOAR, like most
library systems, accommodates change primarily through addition.
Restructuring of existing library units is ill-advised: changing the
composition of the source templates upon which earlier system models
depend after the fact destroys the baseline that drives analysis
utilities (section 4.1.6).

Figures 4a, 4b, and 4c reveal how templates are customized in
order to describe components in the test vehicle system, the MCS
message—handling system. Individual MCS sites are connected to the
AUTODIN network via message exchange systems, called AMPEs. There
are four different subclasses of AMPE exchanges. Information
describing interfaces between MCS sites and particular subclasses of
AMPE exchanges (e.g., LDMX), is localized to that subclass frame.
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The figures are divided into two halves. The right side shows the
ISO Model Communications Interfaces class template from the model
library. The left side displays an MCS functional requirement
(knowledge base unit) resulting from the customization of the
interfaces template. The new unit represents the class of interfaces
between MCS sites and (the class of) AMPE exchanges.

Note that data has been filled in for several slot VALUES
facets, along with reference documentation and descriptions. In
addition, several new slots have been added, which contain
specialized information that was not provided for in the generic
template. INTERFACE.TYPE, for example, specifies a particular AMPE
standard to which contractor interfaces must correspond.

A second slot, MESSAGE.TYPE, was added in because the
MCS-to-AMPE communications interface is specifically restricted to
message traffic, as opposed to data packets or continuous data
streams. This contextual restriction in the application domain
necessitates a specification of the types of messages that the
AMPE.INTERFACES is expected to support. Note also that the data for
the VALUES facet for MESSAGE.TYPE is a structured list, whose form is
described in the slot COMMENT facet. Data has been organized into
lists because message typing requires three pieces of information for
a complete specification - a type name, a format reference, and a
description of message handliag activities that the interface 1is
expected to support.

Finally, note that many slots (e.g., ISO software protocol
layers, FUNCTIONALITY), have not been filled in. Functional
requirements models do not generally provide this level of
specificity - it is up to the contractor (or developer), in
subsequent system model products, to come up with a design that
prescribes suitably detailed data. It is also important to realize
that data will often be supplied at the superclass or subclass levels
(e.g., AUTODIN. INTERFACES, LDMX.INTERFACES). Depending upon the
generality and inheritability of the information, it may or may not
show up at the AMPE.INTERFACES level. Browsing utilities must
reflect this fact, and automatically examine neighboring superclass
and subclass units.

3.4.2 Organization of Templates -- Library and System Models

SEIMOAR library templates have been created for a variety of
system model elements, including hardware objects (e.g., keyboards),
software objects (e.g., compilers), and system or subsystem objects
(e.g., communications networks, diagnostic equipment). Templates can
be used to encode functionality as well as structural information.
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Individual functions and function classes can be characterized in
terms of subfunctions and options. Functions can also be organized
into hierarchical class taxonomies, reflecting increasing abstraction
towards the root class FUNCTIONS.

Figures 5 displays some of SEIMOAR's initial generic functions.
Figure 6 displays detailed structure of one subclass of word
processing functions. Other broadly useful classes of C’I functional
ternplates include data base services, system statistics, security
services, signal generation, transmission, detection, and processing.

Word processing library templates constitute sources for general
purpose user support or utility functions in a requirements model.
In the MCS application, for example, word processing functional
templates are ingredients in the specification of capabilities for
drafting and editing outgoing messages and for responding to incoming
messages.

Having identified specific structures and functions for a
system, it is important to indicate relationships among these model
elements. Figure 7 displays a skeleton tree on which specification
units are organized. SEIMOAR's core relations at present are the
class-subclass and class-instance relations defined in KEE 2.1. 1In
addition, sequencing and conditional branching relations among
functions, typically depicted in functional flow diagrams, are
currently encoded in the form of forward-chaining rules. In the MCS
test vehicle, for example, these relations prescribe the succession
of message processing functions that the AMH applies to incoming or
outgoing messages. Sequencing and branching relations constitute
important ingredients for the behavioral simulator, as will be seen
later.

SEIMOAR associates icons with structural templates, allowing
users to construct block diagram illustrations of system
architectures. The icons are mousable, with button-activated methods
that drive display of internal structures of moused components. For
example, given a block diagram display of MCS at a system level
(figure 8a), mousing the MCS.WORKSTATION icon activates a display of
the internal structures (figure 8b) specified for the workstation
(e.g., buses and components). Figure 8c is an iconic display
depicting the HOST.PROCESSOR. The mouse function is inherited by the
lower level icons for retrieval of further detailed substructures, if
they are available in the system model.
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3.5 BEHAVIORAL SIMULATION -- ARCHITECTURE AND EXAMPLES

In acquisition contexts, behavior refers to the collections of
event sequences that take place within systems, which realize
specific functional capabilities. That is, functions act to induce
one or more changes of state into the system, its component
structures, and the data objects that the system is supposed to be
processing.

SEIMOAR incorporates a discrete time functional simulator to
support dynamic modeling of system behaviors. Currently, SEIMOAR's
simulator is a custom-built object-oriented shell that features a
synchronous clock mechanism suitable for modeling sequential
execution of functions. The simulator is implemented by a set of
frame units and attached utility methods in the modeling library.

Figure 9 illustrates the architecture for SEIMOAR's simulator
shell., The simulator is run by (object-oriented style) methods,
activated by messages sent out from shell units representing a system
clock and a centralized activity handler.

When a new application model knowledge base is created, this
shell is incorporated into that system description. The user
supplies two forward-chaining rule bases and a collection of function
frames incorporating methods for simulating system behavior to
reflect functional actions. The rule bases and the functions are the
application-specific items that are needed to characterize system
behaviors to the simulation shell. Figure 10 displays some of the
frames representing MCS AMH functions.

Briefly, an off-line scenario generator allows users to build
test exercises. Each test scenario consists of a set of events to be
injected into the system model, at predetermined times. The
injection of events causes the system model to respond with a set of
programmed behaviors, corresponding to the ordered actions of system
functions.

For the MCS application, the generator constructs a test
scenario, consisting of a collection of (model) incoming messages
from the AUTODIN network. Messages can be partitioned into multiple
segments, which can be interspersed, noncontiguously, with other
messages. AUTODIN messages have a precedence attribute (i.e.,
relative urgency), and a variety of other message fields (e.g.,
keywords, text, originator, subject), as shown in figure 11,

Aside from a simple identifying label, the critical event
attribute required to drive the simulator is the TIME.OF.ARRIVAL

slot, which indicates the injection time into the simulation.
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Because the simulator models sequential processes, the generator
monitors TIME.OF.ARRIVAL slot data for test events and ensures unique
injection times for each event belonging to a given test scenario.
The test vehicle MCS AMH functional requirements model also requires
that events (i.e., arriving message objects), have an AUTODIN
precedence slot value assignment. The generator enforces this
constraint by blocking event creation until a value is supplied, and
by issuing a suitable explanatory warning to the user.

The main control loop method, activated through a SEIMOAR main
menu selection, cycles a global clock (unit) that polls the activity
handler. The activity handler has its own poll cycle method, which
basically consists of four message calls. The first message is sent
to the simulation scenario. If the scenario contains any events
whose time of arrival matches the global clock time, those events are
removed from the scenario and injected into the activity handler
system state slot. This slot is simply a list consisting of all the
objects (e.g., signals, messages), currently being processed by the
system model.

The second and third message calls invoke two forward-chaining
rule bases. The first rule base encodes an algorithm describing the
prioritization behavior of the activity handler. In other words,
this rule base figures out which object in the activity handler
system state slot has the highest processing priority.

In the MCS application, prioritization consists of three rules
(figure 12), which in turn call upon custom-written LISP list
processing functions. The rules are weighted and written using dummy
variables in such a fashion as to guarantee a specific sequence of
rule firings. The net result is to identify the message unit
currently in the AMH with the highest urgency for processing, based
on time of arrival, designated message precedence, and current
processing state of the message.

The third method takes the highest priority object and
determines the appropriate processing to perform on it by calling
another forward-chained rule base. This second knowledge base
contains ruies that encode functional flows, the pattern of
sequencing and conditional branching that determines what action to
perform next on the given object. This knowledge base amounts to a
functional state transition network.

Several sample rules for tne MCS AMH system are shown in
figure 13. The initial antecedent clause is used simply to bind a
dummy variable to the appropriate message object unit. Determination
of the next function to apply to an object is based on the previous
function and on the message's state. Some of these state variables
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(e.g., whether to activate manual, automatic, or urgent message
distribution modes of processing), depend on changes of state
effected by preceding functions (e.g., profile matching function).

The fourth message call causes actual functional behavior in the
system model to be performed. Specifically, the message activates a
method associated with the particular function selected by the
function sequencing knowledge base to be applied to the object
selected by the obj)ect prioritization knowledge base.

Methods are supplied by SEIMOAR users assembling functional
requirements or other system description models. Each method,
consisting of LISP and KEE functions, induces state changes in the
simulator, the system model, and data object units: new objects can
be created; objects can be inserted or removed from the activity
handler system state slot; and simulator, system component, and data
object attributes can be altered. All of these changes correspond to
the sequence of events that represent the implementation of the
actions of particular functions.

Code characterizing the behavior for a typical system function,
acknowledging AMH receipt of a message back to the AUTODIN, is
displayed in figure l4a. Figure l4b displays the code that drives
the 1conic animation of the behavioral simulation. The action of the
receipt acknowledgment function in the MCS AMH functional
requirements system model 1s depicted through the creation of a
special acknowledge object, which represents the transmission, along
the MCS-AMPE interface back to the AUTODIN, of successful message
receipt. The new object is named by appending a string to the
received message name. A message to the new object tracer monitor is
sent, along with KEE function calls that update the states of
simulator and data objects. Figure l4c depicts a snapshot of the
iconic animation sequence for this function.

Basically, the simulator reflects changes of state in model data
objects or system elements in terms of changes to KEE unit slot
VALUES data items. Complicated behaviors are readily captured, as
can be illustrated by sketching the sequence of modeling actions for
AMH message distribution. Model AUTODIN message units have slots for
message ID, keywords, exercise nicknames, and other descriptors. The
MCS AMH model contains several model user and system support
accounts, each containing its own descriptors. The profile match
function compares AUTODIN message keyword and exercise nickname field
contents against account values. If matches occur, flags are set
that drive subsequent message distribution activities, manual,
automatic, or urgent routing. Model user account message summary
queues are created and filled, as appropriate. Figures 15a and b
display simulation methods for message profile matching and
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automatic distribution functions. Similarly detailed behaviors are
established for collation of multiple AUTODIN message segments and
other complex functions.

The generality of a simulator shell oriented toward modeling
individual functions makes it possible to develop behavioral models
at all prescribed levels of design description, modeling system,
component, and subcomponent processes as appropriate. In normal
functional requirements, for example, behavior is specified fairly
abstractly, in terms of changes of state at a system level (e.g.,
moving from completion of one function to the next prescribed
action). Functional specifications are deliberately written to
minimize presuppositions concerning particular design implementations
in order to leave contractors as free as possible to devise their own
architectural strategies. Subsequent specifications and design
descriptions characterize functional actions at a much finer-grained
level, in terms of changes of state of data objects and individual
hardware and software components.

Figure 16 shows the simulator trace, a collection of windows
that provide a visual interface to simulator events. The current
test scenario name is shown, together with the clock cycle, current
data object (message) being handled, current function, new objects
created during the simulation run, and a general trace of activity.
An interrupt monitor allows simulator action to be suspended at any
clock pulse, whereupon the unfinished scenario events can be edited
or the knowledge base containing the system model and active data
objects can be browsed.

The SEIMOAR simulator provides the capabilities to reflect
modeled behaviors visually in a window displaying icon animation
sequences. Graphic utility methods stored in the model library move
icons signifying data objects across the screen horizontally or
vertically between icons representing system model structures.

For example, in the test vehicle system model, message arrival
is represented by a box icon (incoming message) displayed initially
below the AMPE.EXCHANGE icon and then reappearing successively lower
along a channel icon (MCS.AMPE.INTERFACE) before disappearing at the
HOST.PROCESSOR icon. At this point, a bitmap showing the internal
structure of that component is displayed, and the icon traverses a
bus before disappearing at the HOST.PROCESSOR.SYSTEM.MEMORY icon.
The capability to cycle through bitmaps and animation sequences,
which corresponds conceptually to changing levels of descriptive
detail, is extremely useful in illustrating complex behaviors.
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3.6 SIMULATOR EXTENSIBILITY

An attractive feature of the object-oriented simulator
architecture is its extensibility. The simulator shell can easily
be modified to support nested activity models. The clock would poll
a super-handler unit on each time cycle, which then decides which
activity handler to activate, which then determines and executes a
function.,

Rather than modeling the AMH alone, for example, the super-
handler could model the HOST.PROCESSOR, which might activate either
the AMH handler, a message statistics handler, or some other
application resident in the host.

This extension could be implemented through a simple
modification to the clock polling method: the addition of a super
handler unit and other handlers, and the addition of a knowledge
base coding the super-handler prioritization control. All handlers
determine their own activities, through reasoning based on purely
internal structures (viz., prioritization and sequencing knowledge
bases). The superhandler prioritization knowledge base, like the
(AMH) handler control knowledge base, reflects the operational
behavior of that system element.

3.7 DISCOVERING REQUIREMENTS ERRORS USING THE SIMULATOR

Although there is no intelligent support for dynamic analysis
at present, the process of describing and simulating functional
behavior provides an excellent consistency check on model
characterizations. Two examples from modeling experiments with the
MCS AMH functional requirements are relevant here.

The message prioritization algorithm specified in the
requirement assigns preferential weighting for messages requiring
receipt processing, higher AUTODIN precedences, and FIFO queueing.
On simulating functional behaviors, it was found that the system
would not know AUTODIN precedences of messages until the information
extraction function was executed. However, the prioritization
algorithm assumed that the AMH knew this information upon message
arrival, rather than three functions later. In other words, the
prioritization algorithm was inconsistent with actual function
sequencing.

A second problem surfaced in coding function sequencing from
the requirements functional flowchart. It turned out that the
flowchart combined two incompatible points of view: all automated
message processing functions are depicted from the point of view of
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a message proceeding through a prescribed flow sequence. Once
messages were distributed to users, however, the flow chart shifted
to the point of view of a user selecting functions to perform on
individual messages stored in their summary queue. This second
perspective, thus, is of a user acting on multiple messages. An
explicit user model is required to simulate the AMH capabilities
here, and the requirements omitted any description of users, their
needs, and likely behaviors. Moreover, implicit heterogeneity such
as this constitutes poor design methodology for flowcharts.

49



SECTION 4

SEIMOAR FOLLOW-ON WORK

Work to date on SEIMOAR has been of a proof-of-concept nature,
exploring the functional capabilities of knowledge-based acquisition
support environments3 Functional and structural information for an
unusually detailed C’I system functional specification was captured
successfully using the template approach. The behavior of the same
test vehicle was successfully modeled using a generalized discrete
time functional simulator. Ideas for constructing a highly visual
user interface to structural and behavioral information using icons
and iconic animation were validated. Most importantly, all of these
capabilities were derived from a single, uniform representational
framework, and integrated within a single development environment,
in line with the initial model-based strategy described earlier.

However, the resulting system is rather fragmentary, skeletal,
and of limited utility to its intended audience. This is typical of
proof-of-concept system experiments. The objective for subsequent
effort is to elaborate the current SEIMOAR system into a full-scale
acquisition support prototype. The specific goals of next year's
work are twofold: first, to extend the functional capabilities of
the tool, and second, to develop a coherent interface that is
suitable for a general acquisition support user community. It is
hoped that within 24 months, the prototype will be taken as the
basis for a functional specification for a production system to be
let out on contract.

A significant amount of effort has already gone into the
planning and design of both the functional enhancements and user
interface. Time and staff constraints prevented actual
implementation in the initial project phases. Nevertheless, a
review of current plans and design strategies will help to convey a
picture of the potential of the SEIMOAR system in acquisition
support.

The review is divided into three parts. The first section
covers extensions to the basic representational framework. In
addition, new static analysis functions are discussed. These extend
the acquisition support capability well beyond simple generation of
system models. The second section describes planned extensions to
SEIMOAR's simulator and dynamical analysis functional enhancements.
The third and final section covers development plans for a
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comprehensive user interface to SEIMOAR. The interface is intended
to make the tool and its capabilities accessible to a general
acquisition support community.

4,1 STRUCTURAL AND FUNCTIONAL REPRESENTATION EXTENSIONS

4.1.1 Filling in the Model Library

The MCS functional requirements modeling exercise helped to
validate the library-based strategy for system description
construction in principle. The effectiveness of copy-and-edit
strategies in practice depengs directly on the richness of the
available store of generic C-I templates. Little if any gain in
productivity is achieved if system model creators are forced to
generate more than a few abstracted structural and functional
templates. .

It is very important, therefore, to populate the library with a
good initial stock of C’I structural and functional templates. The
overall structure of SEIMOAR's library is depicted in figure 17. At
present, the library itself resembles more of a card catalog than
the library: most of the unit classes contain few if any attributes
and relations. Current plans are to conduct intensive interviews
with acquisition support specialists, in order to define and
characterize suitable library elements.

Some of the templates shown in the figure are reserved for
future experimentation on automated reasoning. For example, a
branch of the library taxonomy contains units storing information
that will regulate reasoning across different levels of description.
The idea is that template unit slots can be tagged with facets which
type the associated attribute or relation as belonging to one or
more levels of description. Reasoning within or across specific
levels can then automatically be restricted to appropriate slots, by
mechanically sorting slots by facet values.

4,1.2 Configuration Allocation, Function Traceability and
Structural Decomposition

Representational capabilities will have to be extended if
SEIMOAR is to support acquisition activities through preliminary
design descriptions (STLDD). Two features of particular importance
are traceability and configuration allocation. Automation of
traceability information is one of the most urgent needs in
acquisition efforts for large systems. Traces must first be
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generated in preparing system descriptions. They must be
modifiable, in the sense that changes to a user requirement or
configuration allocation or design decision should be percolated
through the traces, with consistency and completeness monitoring
capabilities 1in the process.

SEIMOAR mechanisms for representing and reasoning about
traceability and configuration allocation have been drawn up, but
have yet to be implemented. The designs are actually quite simple.
As noted earlier, KEE's frame representation language includes
facets that implement procedural attachments, called active values
or demons, for individual frame slots. Active values provide an
ideal mechanism for automating consistency and completeness
maintenance operations in the face of system model alterations.
SEIMOAR will utilize active values to couple together the contents
of VALUES facets for appropriate slot pairs.

For example, configuration allocation can be represented in
tgrms of two complementary slots: a FUNCTIONALITY slot attaching to
C’I structural templates, such as hardware and software componeng
unit classes, and a CONFIGURATION.ALLOCATION slot attaching to C°I
functional templates. Active values will ensure that additions or
deletions from particular component unit FUNCTIONALITY slots will be
mirrored in the appropriate functional unit CONFIGURATION.ALLOCATION
slots.

Traceability can be modeled similarly. The only complication
is that cross—-indexing is required for slots of functional units for
each combinatorial pairing of system descriptions. Function units
for functional requirements, for example, will have a collection of
traceability slots, one each pointing to functional units in source
selection, configuration allocation, and preliminary design models.
The inverse relations will be represented by complementary slots for
functional units in each of those models, pointing back to
functional requirements function units.,

Finally, the same representational and reasoning mechanism will
coordinate structural decompositions across models. The main system
unit COMPONENT.STRUCTURES slot will be paired with the SYSTEM.UNIT
slot pointer for component structure units in the configuration
allocation. Similar relations will correlate decomposition from
configuration allocation model component units to subcomponents and
software modules in preliminary design description models.
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4.1.3 Data and Control Flows

In order to capture preliminary design descriptions, SEIMOAR
will be extended to represent data and control flows among software
components and data objects. Some sort of structured analysis and
design tooling framework (e.g., Yourdon, Ross, Entity-Relation-
Attribute model) will be employed. SEIMOAR, it was noted earlier,
is only intended to provide acquisition support through preliminary
design descriptions. EASE, a companion MITRE support environment
for ADA*-based systems, is being developed to handle system models
from preliminary design description through actual software
implementation. EASE and SEIMOAR will interface at the preliminary
design description stage, through a common representation of data
and control flows. This commonality will allow two-way transmission
of STLDD models.

4.1.4 Reimplementation of Function Sequencing Information

SEIMOAR's present representation of function sequencing
information is going to be overhauled. Currently, each function 1is
associated with a forward rule, which indicates the conditions under
which that function is to be invoked. This representation is
unfortunate in several respects. First, it is difficult to
determine sequencing, unless all the rules are examined or an actual
behavioral simulation is run. Second, it is inappropriate to store
functional relations separately from the functions themselves, since
those relations contribute to the characterization of functions.

The third issue pertains to the efficiency of the simulator as it 1is
currently implemented. KEE's forward rule engine operates fairly
slowly with a large rule base: 1indexing is only done by rule
classes, not by rule clause variables. It is possible to partition
the function sequencing rule base into subclasses. The problem with
this strategy 1s that it incurs additional overhead processing
costs, namely additional inferencing to identify the pertinent
subclass of rules to invoke at particular stages of the simulation.

Accordingly, SEIMOAR will incorporate sequencing information
into the functions themselves. Each function will contain a
SUCCESSORS and a PREDECESSORS slot. The VALUES facet of these slots
will be a list of lists. Each sublist will consist of the name of a
possible predecessor or successor function together with a list of
the conditions, formerly rule antecedents, that regulate branching.
The user will only have to suppiy SUCCESSORS information: an active
value will invert the list to fill in values for PREDECCESSORS
automatically. The message formerly sent by the simulator activity

*Ada is a trademark of the Department of Defense.
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method that will be applied to the SUCCESSORS list to determine
proper branching. This design solves all three problems with the
previous implementation noted above.

4.1.5 C3I World Knowledge and SEIMOAR Semantics

Presently, most of the data items filled in for slot VALUES
facets are simply character strings. The list of IMPLEMENTATION.
REQUIREMENTS VALUES data items for the AMPE.INTERFACES unit class,
for example, are simple tokens. As the library fills up with
templates (e.g., dealing with communications, functions, purposes),
these tokens will be transformed into pointers into the model
library knowledge base. The AMPE.INTERFACES HARDWARE.REQUIREMENTS
VALUES facet datum, MODEMS, refers to a model system component class
with significant descriptive detail. In essence, the templates
store application token semantic contents, or interpretations, in
support of generalized symbolic reasoning and manipulation.

The importance of this architecture and modeling strategy
should not be underestimated. Doug Lenat, at MicroElectronics and
Computer Technology Corporation (MCC), is attempting to construct an
encyclopedic knowledge base, intended to capture general world
knowledge. His system, called CYC, is similar in principle, though
obviously significantly more ambitious in scope, to SEIMOAR's
modeling library. Lenat's intention is to use CYC to solve the
shallowness and brittleness problems associated with current expert
systems. Shallowness refers basically to heuristic knowledge,
(e.g., as expressed in rules), that is not grounded by explicit
domain models. Brittleness refers to the rather abrupt degradation
of expert system performance at the periphery of their distinctive
area of competence.

One serious problem in Lenat's strategy is that he has not yet
addressed the distribution of communication and control capabilities
between CYC and expert systems that it is supposed to service. In
contrast, SEIMOAR is beginning to implement a specific integration
strategy. Reasoning has to be directed by the application system
side; otherwise CYC (or SEIMOAR) would have to know how to control
reasoning in systems that employed an arbitrary number of different
knowledge representation and inferencing schemes. Nevertheless,
some mechanism must be instituted for retrieving information, when
available, from the resource knowledge base. In SEIMOAR, this
function is performed by data value tokens, treated as semantic
pointers into the modeling library.
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4,1.6 Static Analysis

Analyzability probably represents the greatest opportunity
offered by the model-based approach to the acquisition support
effort. Analysis in the acquisition support context encompasses the
evaluation and comparison of design descriptions with respect to
completeness, correctness, consistency, and feasibility. Analytic
capabilities can be divided into static and dynamic categories.
Dynamic analysis will be discussed in connection with planned
enhancements to SEIMOAR's simulation capabilities.

Static analysis 1s defined here to refer to the verification of
completeness, consistency, and technical feasibility of system
structures and functions. It is intended that SEIMOAR support three
kinds of static analysis: comparisons among variant system
descriptions (e.g., alternative requirements or configuration
allocations); comparisons of system model elements with respect to
component or functional characterization standards; and perhaps most
important, comparisons of system models from different stages of the
program cycle (e.g., requirements vs preliminary design
descriptions).

One important kind of static analysis of variant models from
the same acquisition phase is sizing and costing estimation: given
a set of functional.requirements or requirements plus a specific
high level architecture and configuration allocation, what is the
expected size and cost of a system and its components?

SEIMOAR will soon incorporate a static completeness and
consistency checking capability. The use of library templates for
system model construction, via a copy-and-edit strategy, has already
been described. Templates can also be construed as minimal, correct
or "debugged" design standards. System models can be verified with
respect to completeness and consistency simply by comparing system
model elements and structures against corresponding library
standards.

Consistency checking in this context guarantees that VALUES
facet contents of structural and functional system model units
conform to legal or admissible data values prescribed by library
templates. Consistency checking can also apply to relational
attributes: templates can prescribe legal kinds of connections
between system structures, functions, and between structures and
functions. Structural constraints pertain to interface requirements
(e.g., that nothing can couple directly to a local area network
except a LAN interface unit). Functional constraints include
temporal precedence relations (e.g., functions to save or retrieve
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information cannot be performed unless preceded by an appropriate
information creation function). An example of the third class would
be a configuration allocation proscription (e.g., that data
manipulation functions must be allocated jointly to hardware and
software elements).

SEIMOAR's completeness checking capability will verify that
system model structural and functional elements have minimally
adequate characterizations. In concrete terms, template attributes
will be tagged by facets identifying them as necessary, sufficient,
or optional descriptors with respect to each stage in the system
development cycle. A mechanical pattern-matcher will then check
model elements against the templates to ensure that attributes that
are collectively necessary and sufficient to characterize system
components or functions (at a given development stage) have been
specified. For example, the specification of a computer might
require a description of display, keyboard, processor(s), bus, main
and secondary storage, printer, and power supply in order to qualify
as complete.

Admittedly, completeness and consistency as defined above do by
no means constitute verification in any strict, formal sense. Still
the automation of even limited static analysis capabilities such as
these constitute a significant step in acquisition support.

4.2 BEHAVIORAL SIMULATOR ENHANCEMENTS

The two most urgent extensions to SEIMOAR's current behavioral
modeling functionality are the incorporation of a concurrent or
parallel processing simulator framework and the inclusion of
quantitative modeling capabilities.

4.2.1 Simulation of Concurrent Processes

The initial MCS AMH functional requirements test vehicle did
not specify explicitly that system architecture might involve any
parallel processing. Moreover, the description of functionality was
highly sequential. Consequently, it was decided to implement
initial discrete time functional simulation capability based on a
sequential processing model. It can be expected, however, that C”I
systems in the future will depend increasingly on concurrent
processing architectures. Heavy data loads and acceptable system
response times make this technology design shift almost inevitable.
It is important, therefore, that SEIMOAR's simulation capabilities
be extended to cover concurrency modeling.
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One of the primary objectives of SEIMOAR follow-on work is to
address this modeling need. The new simulator shell will employ an
object-oriented architecture, in common with the sequential process
modeler., It is expected that the latter's unique system clock and
activity handler will be replaced by a collection of activity
handlers, each of which incorporates its own private clock. The
control architecture for this arrangement (viz., synchronization,
management of task assignments), has not yet been determined.

4,2.2 Quantitative (Performance) Modeling

In the first phase of the SEIMOAR project, attention was
confined to schematic and qualitative modeling. Functionality was
defined and subsequently modeled in terms of one or multiple units
(e.g., workstations). Typically, system descriptions call out an
exact number or a full capacity complement (e.g., thirty). Nothing
in KEE or SEIMOAR precludes exhaustive rather than schematic system
modeling.

The absence of quantitative modeling capability is a more
serious limitation. The current simulator framework expends one
time unit for the execution of any single function on one or more
data objects. Consequently, SEIMOAR does not currently support
specification or simulation-based validation of performance
requirements (e.g., capacity or processing rates). Clearly,
performance is a critical ingredient in techrdical feasibility
analysis (e.g., can a proposed design meet the designated response
constraints?).

Fortunately, the simulator framework of SEIMOAR can easily be
adapted to accommodate quantitative modeling. Current plans are to
install a TIME.EXPENDED attribute in each functional unit. The data
stored here will either be a simple number or a numerical function,
representing the amount of time required to accomplish function
execution. It is important to be able to use a numerical function,
because time expended might depend on system variables and
properties of the relevant data objects. The simulator clock
advance method will then be adapted to increment by a single time
unit if no TIME.EXPENDED value is available, or to increment
simulated time by the supplied or computed value. It will also be
necessary to alter the modeling library to reflect performance
constraints on functions and on system components.
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4.2.3 Scenario Generator Extensions

The current scenario generator for the simulator needs to be
generalized and enhanced. At present, the generator is tailored to
constructing and editing a specific class of events, namely AUTODIN
message objects arriving at the AMH. What is clearly needed is an
event editor that 1is generalized to create arbitrary kinds of
events. The editor is currently driven by a hand-coded list of
attributes associated with AUTODIN.MESSAGES, together with a
TIME.OF.ARRIVAL slot required by the simulator. The new editor will
determine by itself the appropriate slots, contained in a system
model data object unit class that the user is prompted to select.
The editor will be guided in this task by slot facet labels inserted
at the time of creation of application data object classes (e.g.,
mail objects).

Another enhancement to the scenario generator will be needed
primarily only for large-scale simulations. The current editor
creates events individually, by explicit menu prompts to the user
for each object. This approach is only adequate when small numbers
of events have to be generated, on the order of several dozen. For
larger test scenarios, it 1s desirable to have a generalized bulk
event generation capability, in which the user specifies
distributions of event attribute values and a statistical
distribution of intervals between event TIME.OF.ARRIVALS. The
generator would then create a scenario by constructing a suitable
event population via stochastic methods.

4,2,4 Dynamic Analysis

Dynamic analysis capabilities, grounded in system simulations,
evaluate behavior and quantitative performance. SEIMOAR is intended
to support two kinds of dynamic analysis. The first involves
comparisons of alternate system behavioral descriptions at a given
stage of the acquisition process, (e.g., requirements, source
selection, preliminary designs). The second class, more difficult
than the first, compares behavior across acquisition stages, in
order to verify completeness and consistency of more detailed
behavioral descriptions with respect to earlier ones (e.g., user
functional requirements).

The basis for dynamic analysis capabilities will be behavioral
simulation event logs. The simulator shell will be extended to
provide a configuration option that exercises two distinct
behavioral models from a given set of test scenarios. The results
of each modeling run, consisting of a sequence of events, will be
stored in history logs. Thus, dynamic analysis utilities will be
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based on comparisons of system events in response to identical
stimuli,

In this context, completeness amounts to comparing the two logs
to determine whether corresponding kinds of events are present.
Consistency, similarly, involves comparisons of multiple logs to
determine whether corresponding kinds of events occur in
corresponding sequential order.

The most difficult kind of dynamic analysis is expected to be
the comparison of behavioral models across different phases of
system development, such as functional requirements vs preliminary
design. Such models express system functionality with different
degrees of resolution. Behavior at the requirements level involves
changes of state defined in the system as a whole. In contrast,
behavior in a preliminary design model refers to changes of state in
system components or modules. As a result, it becomes extremely
difficult to map events from one behavioral simulation model onto
events from another.

Current plans are to try to simplify this mapping problem by
exploiting a feature of the simulator architecture: each function
in a behavioral model has an explicit correspondence to a specific
set of events. Users program this information explicitly in order
to simulate the action of functions in the first place. The idea,
then (figure 18), is to match functions across different system
models and use that correspondence to map manageable subsets of
events from one model onto subsets from the other.

Unfortunately, it turns out that the mapping of functions
across system descriptions can be fairly messy. The acquisition
standards only require that a traceability matrix be maintained
throughout system development. This matrix indicates what functions
in various contractor products cover the user's original
functionality requirements. Generally, this mapping is not a simple
one-to-one correspondence. In fact, in the worst case, it is a
many-to-many mapping (figure 19). It is hoped that the literature
on program verification and mathematical fields such as topology and
set theory will provide some formal assistance in solving this
problem.

4.3 USER INTERFACE ISSUES

The current user interface for SEIMOAR consists of KEE user
interface capabilities for system model (knowledge base) creation,
modification, and browsing, and a menu-driver with special graphic
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displays and traces for the simulator. A full-fledged interface,
customized for a general acquisition support user community is being
planned. It is assumed that the users are expert in system design
and analysis but not in artificial intelligence representations and
programming techniques.

Experimentation with icons in the first version of SEIMOAR has
resulted in an improved understanding of appropriate implementation
and use of icons in the interface. The initial version of SEIMOAR
maintains icons as distinct units in a knowledge base separate from
the main system model. Utility methods are used to link icons to
model components. The connections between graphic icons bear no
relation to connections between component units that they represent.
Icons can be connected, via mouse-activated methods, to icons
representing substructures of the moused icons. No capability to
access the component data structure by mousing the linked icon was
provided.

4.3.1 Incorporating Icons into Library Templates

In follow-on effort, icons will be incorporated directly into
model library templates, not only for system components but for
functions as well. Multiple inheritance will be employed to mix a
specialized image class into functional and structural library
templates. Thus, each tsmplate will have two sets of attributes,
those characterizing a C’°I function, system, or system component
object class and those characterizing graphic objects that
correspond to those classes.

4.3.2 Structure and Function Editors

Icons will be used to drive a capability to browse system
models. More important, graphic relations among icons will
correspond directly to relationships among associated components and
functions: model relationships (e.g., allocation, architectural
decomposition, traceability, function sequencing), will all be
specifiable via iconic structure and function editors.

This list sounds deceptively ambitious. In fact, the
underlying implementation mechanisms are few in number and simple in
design. Basically, the image class mixin discussed in 4.3.1 will
incorporate mouse button functions. For example, buttoning the
mouse on a structural icon will invoke a menu offering architectural
decomposition, allocation, or data/control flow editing options.
Actions will then be performed on the appropriate component unit (or
unit class) slots. Similar options for allocation, traceability,
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sequencing, and functional flow editing activities will be provided
when users mouse on functional icons.

Thus a single set of editor functions will accommodate several
model generation activities. The mouse buttoning context (i.e., the
kind of template moused or menu option selected), determines the
functionality and slots to be modified by the generalized editor
mechanisms. It is also simple to guarantee that the editors permit
only semantically correct operations. For example, the structural
decomposition editcr can be constructed to guarantee that system
components are only connectible in legal (i.e., domain-sensible),
configurations. The real drivers here are library structural
template slots, which will be designed with facets (e.g.,
OK-CONNECTIVITY), that enumerate admissible connections between
structural classes. The editor has only to check the moused data
entry against these value constraints. Similar semantic
capabilities can be designed into the other structural and
functional editors mentioned above.

4,3.3 Declarative Specification of Behavior and Animation

Another interface requirement for a general acquisition user
community is that function behaviors be declaratively specifiable.
SEIMOAR currently requires explicit programming to characterize the
state changes in model objects which represent function actions and
the state changes required for underlying simulator mechanics. The
new interface will solicit user menu selections. The menu options
will identify the relevant objects to be changed, the slots to be
changed, and the altered values. SEIMOAR will convert these menu
choice entries into appropriate LISP and KEE utility function calls
to change the system, data, and simulator model object states.

A similar menu-based interface will facilitate programming of
iconic animations for functional behaviors. It is not clear at this
time how much of the animation can be programmed directly from the
behavioral description and how much users will have to declare
explicitly.

4.3.4 Automated System Model Initialization

Another interface requirement is to automate some of the
initial mechanics of system model setup. The setup capability will
create a new knowledge base, and copy in an overall skeleton of
units, with appropriate methods and attributes inherited from
library templates, to start building models. The units will include
the graphic image mixin described above. In addition, the
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initialization function will copy over the behavioral simulator and
SEIMOAR user interface.

In addition, SEIMOAR will incorporate a template copier
function that automatically copies a specified template, and
establishes a pointer to the source template for subsequent static
analysis utilities. This copy function, specialized from KEE to
SEIMOAR, automatically creates the pointers required to drive the
planned static analysis capabilities. Additional variants of KEE
utility functions, adapted to purposes specific to SEIMOAR, will
further customize the user interface to the tool.

4.3.5 Model-driven Document Generation

It turns out, not too surprisingly, that the SEIMOAR models of
C’I system requirements and contractor system descriptions do not
correspond very well to the DOD specification format. DOD
documentation disperses references to system elements and features
across a variety of contexts (paragraphs). The KEE frame-based
representation, in contrast, emphasizes compactness and aggregation
of references to a constrained number of data structures.
Nevertheless, the DOD standard is extremely uniform in structure, as
are SEIMOAR's system models. This suggests that a mapping or
translation capability is feasible for converting system models into
military standard acceptable views, either within KEE or in the form
of explicit documentation.

The grounds for this capability, as always, would be
identifying tags (i.e., 2167 paragraph numbers for each topic in
figure 1), inserted at unit and slot levels, via a KEE method that
drives a label selection menu. Appropriate categories of
information can be collected using these tags (e.g., paragraph 3.3
of SSS) and displayed, printed, or stored in ASCII (and graphics)
files. The mediating interface is an English(like) front-end
parser, that converts KEE frame data into complete English sentences
complete with "shalls."

The document generation capability will not be added to SEIMOAR
for some time, in view of the implementation requirements for more
urgent features and functions noted above. Nevertheless, it is
important to identify this particular avenue of tool evolution, and
the availability of current "natural language" processing AI
technology to implement such a capability.

64



SECTION 5

SUMMARY

The initial version of SEIMOAR constitutes a proof-of-concept
investigation into a knowledge-based approach to acquisition support
(or in-house system development). SEIMOAR is intended to facilitate
the construction and analysis of models representing functional
requirements and contractor system development products through
preliminary design description. Initial tooling efforts resulted in
a modeling library, containing generic templates for C”I system
components and functions, and a sequential processing discrete time
functional behavior simulation shell. SEIMOAR was designed through
analysis of functional requirements for a test vehicle C’I system,
an automated message-handling system. SEIMOAR successfully
supported creation of structural, functional, and behavioral models
of the test vehicle.

"Knowledge" is distributed across a variety of structures in
SEIMOAR: the underlying development environment and the basic
knowledge representation sgperstructure (frames, demon and method
procedural attachments); C’I expertise encoded in modeling library
templates; specification and design information in system model
knowledge bases; the discrete event simulator; and the planned
pattern-driven analysis utilities.

SEIMOAR was implemented on top of KEE, a commercial AI hybrid
tool shell. The primary representational elements include frames,
rules, object-oriented procedural attachments, and graphic icons.
KEE's interface programming features are used in SEIMOAR to
facilitate easy, visually-oriented exploration of complex system
model structures, functions, and behaviors.
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APPENDIX A

KNOWLEDGE REPRESENTATION MODELS EXPLAINED

This appendix provides a brief overview of two of the most
popular kinds of artificial intelligence representational
frameworks, rules and frames. This information is intended to help
novices understand terminology and basic concepts referenced in the
body of this report. This review is quite skeletal and abbreviated:
for more leisurely, comprehensive, and skillful introductions, the
interested reader is urged to study the introductory texts and
articles that are available in ever-increasing numbers.

The original AI representation framework for expert systems
relies on data structures called production rules. Briefly, rules
encode situation-action knowledge in the form of conditional rules.
Rule antecedents, or "if clauses," encode triggering patterns.
Examples might include medical or equipment test results, signal
patterns, or observable phenomena such as overt patient appearance
or weather conditions. Rule consequents, or '"then clauses," encode
responses to triggering patterns, Actions might be inferences, such
as diagnostic deductions based on symptom patterns, or specific
behaviors, such as the prescription of medication, the issuance of
particular repair, configuration, or control instructions.

Rule-based systems generally rely on one or both of two kinds
of reasoning models. In forward chaining inferences, reasoning
proceeds from premises to conclusions (i.e., given the presence of
the former in the knowledge base, the conclusions are asserted). In
backward chaining, the conclusion is posited as a hypothetical or
goal, and the engine then attempts to establish the premises, which
may have to be taken as intermediate goals, and so on. The goal is
asserted into the knowledge base only if the premises are all
verified.

A more recent and increasingly popular kind of representational
model is based on the notion of frames. Frames are data structures
that represent classes of objects (e.g., message processing
functions, computers), or individual members or instances of classes
(e.g., message collation functinon, workstationl23). Frames
aggregate together infornation describing individuals or classes in
substructures called slots. Slots represent attributes or
relations, and are somewhat analogous to field names in a
conventional data base dictionary.
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A frame representing the class people, for example, might
contain slots encoding properties, such as HEIGHT, AGE, RACE,
GREATEST-AGE WORLD-POPULATION, predicates (true-false properties)
such as ALIVE?, and relations, such as SIBLINGS, FATHER, MOTHER.
Loosely speaking, properties and predicates characterize individuals
or classes, while relations represent links or pointers between
individuals and classes. Note that HEIGHT, AGE, RACE, and ALIVE?
refer to properties of persons, or individual members of the class
PEOPLE, while GREATEST-AGE and WORLD-POPULATION refer to attributes
of a class as a whole (the oldest member and the total number of
members).

Frame slots in turn have descriptors, which are called facets.
The most important facet is called the VALUES facet, which contains
data i1tems representing particular values of slots. For example,
the VALUES facet for the slot COLOR for the class frame COAL might
contain the datum BLACK. Thus, VALUES facets are analogous to data
fields in individual records.

Slots are often equipped with facets other than VALUES. One
important facet, called OK-VALUES or VALUECLASSES, characterizes
legal data or data classes for slot VALUES facets (e.g., numbers vs
symbols, names of people, (1 or 2 or 3)). This facet is useful for
ensuring qualitative correctness of information entered into a
knowledge base (e.g., appropriate value range and uniqueness of
employee salaries). OK-VALUES facets encode semantic constraints on
slot values symbolic entries.

One of the most important characteristics of frame-based
representations is the notion of inheritance. The ability to define
class, subclass, and individual frames, with appropriate relations
between these entities is known as abstraction. Abstraction makes
it possible to associate information (or information types) common
to many individuals or classes with a more generic class. This
results in substantial data compression -- information that would
otherwise be repeated extensively is coded once, at an appropriate
level of commonality (class abstraction). For example, all kinds of
fruit, and all instances of those kinds, have certain properties
(e.g., color, size, weight), in common.

Frames-based (and object-oriented) representational models
support abstraction using two mechanisms, class relations and
inheritance. Class relations, notably class-subclass and
class-member, link two frames together. Successive class-subclass
relations among a set of frames establishes a class hierarchy. The
standard biological taxonomy system is a good example.
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Class relations drive inheritance. Inheritance here basically
amounts to information sharing. Information can be shared either
between a frame representing a general class and others representing
specialized subclasses, or between a class frame describing
prototypical members and frames representing particular individuals
belonging to the class. In virtue of inheritance relations, any
information ascribed to the general class mammals holds true of any
subclasses, such as cows or whales.

Class attributes and relations often have nominal or expected
values (e.g., the typical VALUES of COLOR of GRANNY.SMITH.APPLES is
the datum GREEN). Inheritance ensures that assignments of VALUES
data to class attributes are assumed as defaults by individual
members (or subclasses). Typically, if an individual deviates from
the prototypical "default" or nominal characteristics in one or more
respects, those individual differences (i.e., attribute values)
replace or override" the inherited attributes.

Frames are very good at representing static structures and
relations between objects or classes, but poor at representing
procedural information (e.g., programs). Two kinds of procedural
attachments are used to rectify this shortcoming, active values and
methods.

Active values are pieces of LISP code contained in special slot
facets, which are invoked, as relevant, when items are added,
deleted, or replaced in the slot's values facet. Active values are
useful in safeguarding knowledge base consistency (e.g.,
guaranteeing appropriate adjustments to departmental budgets
whenever member employee salaries are modified or staff sizes
ad justed).

Active values, also called demons, reflect slot-level
procedural information. It is also important to represent frame-
level procedures, which pertain to operations on, or communications
between frames. To meet this need, some frame systems incorporate
methods, frame-level procedural attachments borrowed from object-
oriented knowledge models. Briefly, pieces of code are attached to
frame class or instance slots. This code 1s activated by sending a
message to the desired frame, consisting of the name of the method
and any necessary arguments. Nothing needs to be known about the
internal structure of the method itself except its name and the
arguments it needs. This characteristic is known as encapsulation.

Objects are very similar to frames except that they lack
facets. Object-based systems support classes, class instances,
attributes (class and instance variables), and inheritance of
attribute values. Given that active values are normally implemented
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via facets, unless some programming tricks are played with methods
(known as "wrappers"), object-based systems typically do not support
slot-level procedural attachment.

Frames and rules can be combined into hybrid systems. The most
popular approach is to embed frames in rules. That is, rule clauses
make reference to frames and frame slot values in much the same way
as conventional programming applications retrieve and add
information to data base records. Typically, rule antecedents:
pattern match on frame slot values, comparing or testing retrieved
values against one another or test standards. Rule consequents,
similarly, modify the contents of frame slot values, reflecting
diagnostic inferences or control actions on system models.

Alternatively, rules can be embedded in frames. In this model,
frames are arranged in a hierarchy, reflecting a flow of activities
or control. Within a given frame, a restricted subset of rules can
be activated, to drive rule-based reasoning. In this model, frames
partition rules into indexed subsets, corresponding to the relevant
rules to reason with respect to specific activities. This model has
not been used very often, but it has some interesting possibilities.

72



APPENDIX B

KEE AND ART ~- COMPARISONS AND LESSONS LEARNED

One of the purposes of the SEIMOAR project was to evaluate the
use of the best available commercial AI system building shells. KEE
(Intellicorp) was selected because of economics. (MITRE already
owned a license and a copy of the program and subsequent copies are
discounted substantially.) The author has also had experience with
KEE's leading competitor, a tool called ART. This appendix provides
a summary comparative analysis of the two tools, together with an
overall personal assessment of the value of commercial shells.

KEE is an advanced AI programming shell currently running on
LISP minicomputers (LMI, Symbolics, Xerox, TI). KEE combines a
powerful high-level representation language with multiple control
strategies (e.g., rules, active values, methods, VALUECLASS facets),
for managing reasoning about encoded knowledge. User-supplied LISP
code is readily embeddable in KEE data structures. The program
provides a variety of tools for building sophisticated user
interfaces, most notably graphic icon libraries and editors, menus,
windows, and mouse pointers. Finally, KEE integrates the above
features with a powerful development environment: language editors,
browsers for both application and KEE (system) structures, and
program monitors and debuggers. In short, KEE provides a generic
but flexible support environment for rapid prototyping of expert
systems and other AI applications.

KEE basics are easy to learn and use, whether or not one is
intimately acquainted with artificial intelligence. Theoretical and
practical familiarity with the tool are facilitated through lecture
notes and well-documented walkthrough tutorials involving small
training knowledge bases.

Some caveats accompany the use of a hybrid tool such as KEE.
First, nontrivial applications of KEE require a basic competence in
writing LISP code (e.g., for designing methods and demons). Second,
the backward-chaining rule system and rule-based inference
monitoring aids, while quite powerful, are complex. Familiarity
with goal-driven reasoning and some significant effort are needed to
master these aspects of KEE. The rule trace and debugging
capabilities are powerful, but also quite numerous and often
bewildering. Third, KEE (Version 2.1), lacks important
representation and reasoning mechanisms that are available in a
competitor hybrid AI tool called ART (Automated Reasoning Tool,
Inference Corp., Los Angeles, CA).
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ART's architecture rests on a base declarative language derived
from the predicate calculus, which incorporates a frame-like
construct known as a schema. Schemata have slots, which in turn
take on values. Schemata can be connected through standard
set-theoretical relations (class-subclass, class-member), supporting
information irheritance. However, schemata lack facets and
procedural attachments of any kind. Consequently, ART's data
structures are passive, while KEE's frames, in virtue of demons and
methods, are active. ART's primary reasoning mechanisms are
backward and forward chaining rule inference engines. ART also
provides graphics and language editors, program monitors, and so
forth, although none of these features are as powerful as KEE's.

ART's strongest feature is a representational model known as
viewpoints or possible worlds. Possible worlds support an inference
mechanism called hypothetical reasoning. In effect, possible worlds
drive the capability to generate multiple, alternative "what-if"
models in parallel, allowing comparisons between the different
hypothetical simulations. ART's rule-based approach to hypothetical
reasoning provides a natural vehicle for activities such as
planning, scheduling, and forecasting. These complex tasks
typically involve large numbers of interacting variables and
knowledge that takes the form of constraints (e.g., any job shop
schedule at plant Z that calls for more than 1000 manhours of labor
per week is unimplementable, and should be discarded).

Possible worlds also ground truth-maintenance systems (TMS), a
popular approach to the problem of nonmonotonicity. In monotonic
models, information simply accumulates. For example, many kinds of
static classification tasks take input evidence and incrementally
refine identification to increasingly more specific categories. No
assertions or intermediate inferences are ever falsified or
retracted. In contrast, nonmonotonic models are dynamic, involving
information that changes over time. For example, in a battlefield
management scenario, the movements of friendly and enemy forces
often result in situations wherein reasoning and decisions based on
earlier field positions and trends might become obsolete or
otherwise invalidated. A TMS enables a decision support system to
trace and retract all such unreliable inferences and conclusions,
irrespective of the complexity of the prior chain of reasoning. It
is extremely difficult to deal with hypotheticals and
nonmonotonicity using KEE, which lacks possible worlds structures.

New versions of KEE and ART have been released recently. KEE
Version 3.0 addresses most of the representational and reasoning
shortcomings of Version 2.0 (TMS, possible worlds, user-definable
relations, hypothetical and temporal reasoning, improved
backward-chaining). However, the complexity of KEE's
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representational architecture has increased correspondingly. The
new capabilities are not as easily integrable within KEE's
frame-based system as they were in ART's underlying propositional
representation. Moreover, just as KEE has improved its functional
capabilities, ART appears to have improved its capabilities (demon
and method procedural attachments), its efficiency, and its user
interface.

Licensing and training costs for ART and KEE are expensive.
Moreover, ART and KEE, like all tools, often constrain and inhibit
implementation of design, as well as facilitate application
development. Weighed against these costs, however, are considerable
advantages: powerful, prefabricated development environments,
externally supplied documentation, training, consultation,
enhancements, and product control.

The costs of not using commercial tooling must also be
appreciated: loss of in-house tooling expertise due to designer
staff turnover, overhead and uncertain availability for customized
tooling and support, nonexistence of documentation, brittleness of
resulting systems to nondesigners, low code reusability, and so
forth. Customized tooling tends to be no less constraining and
inhibiting upon occasion as commercial systems. Weighed against the
access to source code is the absence of documentation and product
assurance methods and standards.

My personal verdict at this point is this: both tools are
eminently suitable for rapid prototyping and proof-of-concept
experimentation. I have no experience using the tools for
full-scale production systems. Consequently, it is not clear to me
that commercial tools will support application scaling and system
performance requirements.

This does not imply that commercial shells should be abandoned
when embarking upon development projects for large scale or
performance critical systems. Rather, it means that rapid
prototyping up through early design must be followed by a formal
assessment of the adequacy of the commercial tool for production
system requirements as opposed to an optimized, custom built version
of the system. In either case, the commercial tool will have served
its purpose as an early development, top-down design vehicle.

(Amortized over multiple projects, a commercial shell is more
cost-effective than internally developed project-dedicated tooling.
By the implementation phase, system development calls for bottom-up
rather than top-down methodology. At this point, single pass custom
tooling is more likely to involve acceptable time and cost. Using
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customized tooling throughout the development cycle, which generally
involves one or more major redesigns, is a much more expensive
proposition.)
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