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OF PHYSICAL AND GEOMETRIC FACTORS ON THE IMPEDANCE OF
E C OELECTROCHEMICAL POWER SOURCES

B. D. Cahan, M. L. Daroux and E. B. Yeager

The Chemistry Department and the Case Center
for Electrochemical Sciences,

Case Western Reserve University,
Cleveland, Ohio, 44106

INTRODUCTION:

Only a relatively small amount of work has been published [1-3] on
the transient response of high power battery systems in the short time
domain (O.lps-10ms). Most laboratory studies deal with scaled down versions
of large cells that are in practice usually employed to provide standby
power or for applications in which continuous operation is required, rather
than for pulse generation. In the present work, the impedance of an
individual elementary cell has been calculated over a wide range of
frequencies in order to show the effects of various physical and geometric
factors that are significant at short discharge times.

The geometry chosen for the present calculations is the semi-
infinite parallel plate cell with infinitely thick solid electrodes; a
configuration commonly referred to in the electronics literature as a strip-
line. Such a cell is illustrated schematically in Fig. 1. In order to carry
out the impedance calculation this battery cell has been modelled as a
transmission line containing uniformly distributed values of resistance,
capacitance and inductance; quantities that can be determined directly from
the physical characteristics chosen for the model. The transmission line
can be analysed as a distributed network of differential elements [4], each
having the equivalent circuit shown in Fig. 2. Its electrical
characteristics can then be expressed in terms of a characteristic impedance
Zo , an attenuation constant a, and a phase shift .

- rs+JwLs 1/2 .... (1)

[gp+JCpJ ,

where rs is the series resistance, gp is the shunt conductance, Ls is the .......
series inductance, and Cp is the shunt capacitance, all per unit length.

The propagation constant 7 for the transmission line shown in Fig.
2 is given by the expression Codes

7 -y (r. + JwLs).(gp + jwCp) ]1/2 .... (2) .or(2) !or
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TMe propagation constant can also be written in terms of its real and

Imaginary parts, as

a + a jP ..(3)

The real part, a, is the attenuation constant and is related to the
penetration length of the perturbation (along the z axis in Figure 1). P is
the phase constant. The attentuation constant is given by the expression

a - rs/2Zb + £iZ0/2 ... (4)

For a particular frequency all but l/e of the total current is drawn from a
distance 1/6 from the terminals. This distance is referred to as the
penetration length. The ratio of currents between points 0 and X, separated
by a distance x, for a wave going from 0 to X, is

ix / 10 - -M..(5

In the corresponding time domain, this implies that at short times almost
all the current is generated within about one penetration length (i.e.*, in
the regions closest to the current collection terminals). Regions further
along the z axis in Fig. 1 make little or no contribution. The utilization
increases with time, but for short times a cell need have a length of only
on the order of 2 or 3 times the penetration length in order to show the
behaviour of a semi-inifite cell.

The above treatment yields the impedance as a function of
frequency, but what is preferred in practice is the current/voltage
response as a function of time when a cell or battery is placed on load. In
principle it should be possible to compute the transient response by
multiplying the impedance function by the transform of the perturbation and
carrying out an inverse transformation on the product. This will be the
subject of a future paper.

ESTIMATION OF PARAMETERS

There are four parameters, r, g ,Ls and Cpin the lumped network
representation of a unit section of transmI~sion line shown in Fig. 1. The
physical components of such a cell are illustrated schematically in Fig. 1,
and the corresponding equivalent circuit is given in Fig. 3. In order to
calculate the impedance, Fig. 3, the equivalent circuit representation of
the physical components, must be translated into the form of Fig. 1.

The values of the parameters in Fig. 3 can be obtained from the
physical properties chosen for the modal as follows: r5 and Lg are modified
by the skin effect (5). The magnetic field resulting from current flow in a
cell configured as a transmission line confines the current to the outer
layer (skin) of the conductors. This is seen at high frequencies as an
exponential decrease in current density in a conductor as the distance away
from the surface increases. The equivalent skin depth, d, is defined as that
depth over which a current density equal to 0.707 of the surface current
density can be considered to be distributed uniformly.
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, " ,,•d -1/(o*4)1/2- ....(6

where a in the conductivity in iQ'.m "1 . f is the frequency in Hz, and p is
the permeability in HenrLes.3- l . Thus, oven for an infinitely thick plate,
at high frequencies all but 1/e of the current will be carried by a depth d
of the outer region.*

The series inductance arises from the geometry of the conductors
and is given, when the skin depth d (or the thickness of the electrodes
themselves for finite thickness electrodes) is small with respect to the
cell width W. by

L. - 1.255xl0 "6 .u/W .... (7)

where u is the electrode spacing, and L has units of Henries/n. The series
resistance for the infinitely thick electrodes assumed is dominated by the
skin effect resistance rsk, which is given by

rsk - 3.974xlO3.pml/2 .fl/2/W .... (8)

where ft is the resistivity of both electrodes in 0-m, and rsk has units of
0/m. In the present model it is assumed that all plates and current
collectors are infinitely thick, so rs is determined solely by rsk which in
turn depends on the skin depth and on the conductivity of the electrodes
(i.e. the calculations assume the best case). For example, the skin depth
for copper at 6xlO5Hz is 0.6m and the resistance increases above that
calculated using equation (7) as the plate thickness approaches and becomes
smaller than this value. It should be noted that for electrodes of lover
conductivity (because of either intrinsic cqnductivity or porosity) the
skin depth increases in proportion to the square root of the resistivity. In
consequence, the effective resistance will only increase in proportion to
the square root of an increase in electrode resistivity.

It should be noted that rsk is a function of frequency although
by definition a real resistance is frequency invariant, yet the phase angle
remains zero. This is in apparent contradiction of the Kramers-Kroenig
relations [7], but it msot be recognised that rsk is only an effective
resistance and is a result of the nonuniform distribution of current density
into a conductor at AC frequencies.

The parallel components comprise terms for the electrode
interfaces in series with terms for the electrolyte. The interfacial
components are represented by the parallel combination of a FaradaLc
resistance, rF, and a double-layer capacitance, Cdl. The electrolyte terms
are the Ohmic resistance, rE , and in parallel the dielectric capacitance,
CZ, where [5]

CE - C.Co./u .... (9)

*NOTE: The skin depth is often surprisingly small. Sixty hertz power

transmission lines are rarely larger than two skin depths in diameter
(dCu(60Hz] - 6ms). Increasing the diameter of the wire decreases the
resistance in proportion to the circumference rather than to the cross-
sectional area. [6]
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s8 the dielectric constant of the electrolyte, and CE is in units of

Faeads/ 2 . In the model discussed here, the interface is considered to be
smooth.

The series impedances for the interfaces and for the electrolyte
mst then be combined in series and then converted to a complex admittance
of the form sp + jwCp for use in equation (3). It should be noted that gp
and Cp here do not correspond to any simple physical quantities.

RESULTS AND DISCUSSION:

The strLp-line cell shown in Fig. 1 has been modelled as a
transmission line. The impedance per unit width and length has been computed
as a function of frequency for different values of electrode and electrolyte
conductivity and cell thickness. For the purposes of these initial
calculations, the case where no Faradaic processes are occurring has been
considered; that is the Faradaic resistance, rF in Fig. 3, has been
considered to be infinite. A constant, frequency-independent double-layer
capacitance of 5OuF/cm2 has been used, and it has been assumed that the
electrodes are infinitely thick so that the series resistance is equal to
rsk. The cell is assumed to be infinitely long, although only a small
fraction of this length will actually be able to deliver current to a load
at short times or high frequencies. The penetration length has been
calculated as a function of frequency for each set of conditions.

The results are presented as Bode plots for log Z, the logarithm
of the modulus of the complex impedance (equivalent to log 1Z01), the phase
angle 0, and the penetration length (equal to 1/a - equation (5)).

Depending on the values of the physical variables chosen for
the calculation, the equivalent circuit shown in Figure 2 can be simplified
to yield a number of limiting cases. If wLs and WCp are small with respect
to rs and g,, respectively, then the characteristic impedance, Zo. will be
resistive In nature. If wLs and uCP are large with respect to r. and g
then the circuit will reduce to an LC network and Zo will again ge
resistive. If wC is small with respect to gp only then the circuit reduces
to an RL network and Zo will show a positive phase shift, while if wL is
small with respect to rs only then the circuit reduces to an RC network and
Zo has a negative phase shift. The results of the calculations presented
here indicate that, depending on the frequency range of interest and the
values of the physical variables chosen, a number of these different
limiting cases as well as intermediate behaviour will be observed with real
cells.

Figure 4 is a set of Bode plots calculated for electrode
resistivities ranging from 1.7xlO 6 to 1.7x10-1 O.cm. It may be noted that
Cu has a resistivity of 1.7x10.6 G.cm. The cell thickness is 0.01cm, while
the electrolyte resistivity has been set high at 1.0x10 1 0 O.cm. This latter
value gives the limiting case where wCp is large with respect to gp. Figure
4 shows that at high frequencies, for the lower values of pM, wLs is much
greater than the series resistance, rs , and the behaviour of the cell
approaches that of a pure LC strip line. (It can be seen from equation (1)
that if rs-gp-O, then the jw factors cancel and Z. becomes wholly real.) Z

4



approaches a constant, purely resistive, value of about 50l (determined
largely by the values chosen for the cell thickness and the electrolyte
dielectric constant), while 0 tends to zero.

For more resistive electrodes and at lover frequencies, the
contribution from the series resistance term is larger, and the overall
behaviour becomes capacitative. The impedance increases, while U tends to -
450. For Cu, for example, Z begins to increase at a frequency of about
lO6Hz. It might be expected that as rs becomes dominant at low frequencies
(since rsk decreases in proportion to only the square root of f) and/or as
the resistivity of the electrode increases, the behaviour of the
transmission line would approach that of an RC network. For this case the
Kramers-Kroenig relations [4J predict that when 9 goes to -450. log Z should
decrease with frequency with a slope of -1/2. However Figure 4 shows that
the computed value of log Z only decreases with a slope of -1/4. The
probable explanation for this behaviour is that not only the values of the
circuit components but also the equivalent circuit representation that is
applicable changes with frequency. This result provides a further
illustration of the necessity of predicting the time or frequency dependent
behaviour of distributed systems from computations based on a complete
model, rather than on intuitive extrapolations from steady state behaviour.
It is not in general valid to replace a distributed network by a single
simple equivalent circuit. In the model used here, rs continues to change
with frequency because an infinite electrode thickness has been assumed. If
instead, a finite plate thickness is assumed, then once the skin depth
exceeds this thickness (at low frequencies - see equation (8)), rs should
tend to a constant value and the slope of log Z should tend to -1/2.

The penetration lengths are also shown in Fig. 4, and it can be
seen that for this case of a highly resistive electrolyte they are
relatively large over almost the whole frequency range. At low frequencies
they decrease by less than an order of magnitude as the electrode
resistivity increases by six orders of magnitude. At the higher frequencies
electrode resistivity has almost no effect on the penetration length.*

Figure 5 shows the same calculation as that shown in Figure 4
performed for a cell thickness of 0.1 cm. It can be seen that the resulting
set of Bode plots have the same shape, but that the impedance curves have
been shifted upwards (to higher impedances), and both the log Z and the 9
curves have been translated to the left, i.e. to lower frequencies. The
penetration length is increased slightly at lower frequencies. These changes
in the limiting behaviour are the result of the order of magnitude decrease
in the dielectric capacitance of the cell corresponding to the order of
magnitude increase in electrode spacing. Because this quantity is much
smaller than the double-layer capacity, it dominates the value of Cp. (See
Figure 3.) The limiting value of Z increases because C p decreases and also
because Ls increases with the increase in spacing (equation (1)).

NO~iTE: The calculation above corresponds to the case of a cell having a
highly-resistive (e.g. nonaqueous) electrolyte and indicates that
significant currents can still be drawn. The calculation also applies to a
capactitor having a configuration corresponding to this strip line, whichI
will also demonstrate resistive behaviour at high frequencies and a

significant increase in impedance at low frequencies.

5
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Figure 6 shows the effect of varying the electrolyte resistivity
over the range 10-2 to 103 O.cm when the electrodes are highly conductive.
The cell thickness is 0.1 cm, and PH is 1.7xlO"6 0.cm. Over a wide frequency
range, from 102 to 108 Hz depending on the value of PE, gp is much larger
than wCp and the transmission line shows a positive phase shift. This region
is characterised by log Z increasing with increasing frequency with a slope
of 1/2, while the phase angle tends to +450. This is the behaviour expected
for an IR stripline. The frequency at which this behavior is seen depends on
the value of PE, shifting to lower frequencies as PE increases. At still
lower frequencies rs becomes large with respect to wLs , and log Z reaches a
constant value (about 0.002 0) characteristic of purely resistive behaviour.
Correspondingly, 0 decreases to zero.

At frequencies above the LR region wC p becomes increasingly
significant, and as it exceeds gp the behaviour of the line again becomes
resistive (see the discussion of an LC network above). Log Z tends to a new
limiting value, almost two orders of magnitude greater, and 0 decreases to
zero.

Figure 6 also shows that the penetration length is strongly
dependent on the electrolyte resistivity, decreasing as PE decreases.

Figure 7 shows the effect of electrolyte resistivity when the
electrodes have a relatively low conductivity. Again PE ranges from 10-2 to
103 0.cm, while the electrode resistivity is 3.5x10" 3 fl-cm, corresponding to
an electrode material such as carbon. The electrolyte thickness is 0.1 cm.

Over limited frequency ranges, the behavior of the cell can be
described by simplified versions of the equivalent circuit shown in Fig. 2,
and these are illustrated in Fig. 7 for the curve corresponding to an
electrolyte resistivity of 102 0-cm. At high frequencies (region E), this
transmission line behaves like an LC network and Zo has the characteristics
of a pure resistance (see equation (1)). Log Z is constant, and the phase
shift, 0, approaches zero. As the frequency decreases (region D) WCp becomes
less than gp and the behavior becomes that of the LR circuit shown. The
impedance decreases, and 0 becomes positive. As the frequency continues to
decrease (region C) wLs becomes comparable to rs and the equivalent circuit
tends to become purely resistive as shown (region B). At the lowest
frequencies shown (region A) the interfacial terms begin to become
important. Here wCdl starts to become the dominant parallel component and
the impedance increases again, while 0 becomes negative. This may be a
consequence of the assumption of infinitely long plates and infinitely thick
electrodes. As the skin depth continues to increase with decreasing
frequency, the penetration length may become limiting. It should be noted
that the Kramers-Kroenig relationship does not hold here either, since a
depends on rs which is frequency dependent.

As in the previous example the penetration length is dominated,
particularly at high frequencies, by PE. The effect of the lower value for
PH appears as a slight decrease in the penetration length at low
frequencies.

From the examples above, it may be concluded that at high
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frequecios/short times the behaviour of the simple cell modelled here is
limited by the impedance resulting from the physical geometry of the cell
components. These factors must therefore be given strong consideration when
designing batteries for high-power short-duration pulse applications. The
continuation of this work is now in progress to extend the model to take
into account the effects of the electrochemical interface and more complex
cell geometries.

SUMMARY

1. The impedance resulting from the physical geometry of the components
will limit the high frequency/short time performance of a cell and must
therefore be considered in addition to the electrode kinetics in designing
short duration pulse batteries.

2. In order to take these effects into account in estimating battery
performance, it is necessary to model the battery as a complex distributed
network. The behavior of these networks does not follow intuitive concepts
applicable to steady-state behaviour or to systems that can be uniquely
represented by a simple equivalent circuit. Depending on the condition
chosen, any of the variables considered, i.e., electrode resistance,
electrolyte resistance, or cell thickness, can affect the performance of a
cell.

3. The calculated values of penetration length indicate that at short
times/high frequencies current can only be drawn from the regions closest to
the terminals of most conventional large battery cells, so that only a
fraction of their total power is available. This problem becomes greater as
the size of the battery is increased since the ratio of 1/a to cell
dimensions becomes increasingly unfavorable. Transients measured for small
test cells should not necessarily be expected to scale as the cell/battery
size is increased.
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