
Technical Report

CMU/SEI-87-TR-11
ESD-TR-87-112

Carnegie-Mellon University

Software Engineering Institute

Characterizing the Software
Process:
A Maturity Framework

Watts S. Humphrey

\

AD/UM15

Technical Report
CMU/SEI-87-TR-11

ESD-TR-87-112
June 1987

Characterizing the Software Process:
A Maturity Framework

Watts S. Humphrey
The Software Process Feasibility Project

The Software Process/External Operations Program

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Melton University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler ^
SEI Joint Program Office

This work was sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center. Attn: FDRA. Cameron Station. Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services. U.S. Department of Commerce.
Springfield. VA 22161.

Table of Contents
1. Introduction 1
2. Software Development Processes 1
3. An Ideal Software Process 2
4. Process Maturity Levels 3

4.1. The Initial Process 3
4.2. The Repeatable Process 4
4.3. The Defined Process 5
4.4. The Managed Process 6
4.5. The Optimized Process 7

5. People in the Optimized Process 7
6. The Need for the Optimized Process 8
7. Conclusion 9

CMU7SEI-87-TFM1

Characterizing the Software Process:
A Maturity Framework

Abstract

Improvement in the performance of software development organizations is an essen-
tial national need. The improvement process has five basic elements: 1 - an under-
standing of the current status of the development process, 2 - a vision of the desired
process, 3 - a prioritized list of required improvement actions, 4 - a plan to accom-
plish these actions, and 5 - the resources and commitment to execute the plan. This
paper addresses the first three of these elements by providing a model for software
organizational improvement. The structure of this model provides five maturity
levels, identifies the key improvements required at each level, and establishes a
priority order for implementation. This model has been tested with a number of or-
ganizations and found to reasonably represent the status and needs of actual soft-
ware development groups.

1. Introduction

The Software Engineering Institute of the Carnegie-Mellon University was established in Decem-
ber 1984 to address the well recognized need for improved software in U. S. Department of
Defense operations. Today, software costs are growing at approximately 12% per year and the
demand for more function is growing even faster [3]. Software is a major and increasing portion
of U.S. DoD procurement costs and software severely affects the schedules and utility of many
weapons systems developments.

This paper describes the initial results of an SEI project to provide the U.S. Department of De-
fense with a means to characterize the capabilities of software development organizations. The
software process maturity framework which has been developed can be used both by the Depart-
ment of Defense and by software organizations to assess their own capabilities and identify the
most important areas for improvement.

2. Software Development Processes
An important initial step in addressing software problems is to treat the entire development task
as a process which can be controlled, measured, and improved. For this purpose, we define a
process as that sequence of tasks which, when properly performed, will produce the desired
result. Clearly, a fully effective software process must consider the interrelationships of all the
required tasks, the tools and methods used, and the skill, training, and motivation of the people
involved.

The basic principle of software process management is that if the development process is under
statistical control, a consistently better result can only be produced by improving the process. If
the process is not under statistical control, no progress is possible until it is [1]. Statistical control

CMU/SEI-87-TR-11

means that if the work is repeated in roughly the same way, it will produce approximately the
same result.

To improve their software capabilities, organizations need to take five basic steps:

1. understand the current status of their development process

2. develop a vision of the desired process

3. establish a list of required process improvement actions in order of priority

4. produce a plan to accomplish these actions

5. commit the resources to execute the plan

This paper addresses these points by providing a framework for characterizing the status of a
software process into one of five maturity levels. There are several reasons for using this matur-
ity structure:

I.The maturity levels were selected to reasonably represent the actual historical
phases of evolutionary improvement of real software organizations.

2. Each maturity phase should represent a level of software process improvement
which is reasonably achievable from the prior level.

3. Each maturity level should suggest interim improvement goals and progress meas-
ures.

4. A set of immediate improvement priorities should be readily apparent once an
organization's status in this framework is known.

This process maturity structure is intended for use in conjunction with an assessment method-
ology and a management system [3,4,6]. Assessment provides a way to identify the
organization's specific maturity status and the management system establishes a structure for
actually implementing the priority actions needed to improve the organization.

Preliminary tests of this methodology have been conducted with some 35 development projects in
ten industrial and government software development organizations. These early results indicate
that the model reasonably represents the state of the organizations and provides a mechanism to
rapidly identify the key improvement issues they face.

3. An Ideal Software Process
While there are many potentially useful improvements that one can visualize, it is worthwhile to
examine the characteristics to be expected from a truly effective software process. First, it would
be predictable. That is, cost estimates and schedule commitments would be met with reasonable
consistency and the quality of the resulting products would generally meet the users needs.

W. Edwards Demming, in his work with the Japanese after World War II applied the concepts of
statistical process control to industry [1]. While there are important differences, these concepts
are, in important ways, just as applicable to software as they are to automobiles, cameras, wrist
watches, and steelmaking. A software development process which is under statistical control will,
for example, produce the desired results within the anticipated limits of cost, schedule and quality.

CMU/SEI-87-TR-11

The basic principle behind statistical control is measurement. As Lord Kelvin said about a century
ago: "when you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but
you have scarcely in your thoughts advanced to the stage of science" [2).

4. Process Maturity Levels

The five levels of process maturity which have been defined are:

1. Initial - until the process is under statistical control, no orderly progress in process
improvement is possible.

2. Repeatable - a stable process with a repeatable level of statistical control is
achieved by initiating rigorous project management of commitments, cost,
schedule, and change.

3. Defined - definition of the process is necessary to assure consistent implemen-
tation and to provide a basis for better understanding of the process. At this point, it
is probable that advanced technology can be usefully introduced.

4. Managed - following the defined process, it is possible to initiate process measure-
ments. This is where the most significant quality improvements begin to appear.

5. Optimized - with a measured process, the foundation is in place for continuing
improvement and optimization of the process.

While there are many other elements to these maturity level transitions, the basic objective is to
achieve a controlled and measured process as the scientific foundation for continuous improve-
ment.

4.1. The Initial Process
The Initial Process could property be called ad hoc or chaotic. Here, the organization typically
operates without formalized procedures, cost estimates, and project plans. Tools are not well
integrated with the process or uniformly applied. Change control is lax and there is little senior
management exposure or understanding of the problems and issues. Since problems are often
deferred or even forgotten rather than solved, software installation and maintenance often
present serious problems.

While organizations at the Initial Process may have formal procedures in place for project control,
there is no management mechanism to assure that they are used. The best test is to observe
how such an organization behaves in a crisis, if it abandons established procedures and reverts
to merely coding and testing, it is likely to be at the Initial Process. In essence, if the process is
appropriate, it must be used in a crisis and if it is not appropriate, it should not be used at all.

One key reason why organizations behave in this chaotic fashion is that they have not gained
sufficient experience to understand the consequences of such behavior. Since many effective
software actions such as design and code reviews or test data analysis do not appear to directly
support shipping the product, they seem expendable. It is much like driving an automobile. Few
drivers with any experience will continue driving for very long when the engine warning light

CMU/SEI-87-TR-11

comes on, regardless of their rush. Similarly, most drivers starting on a new journey will, regard-

less of their hurry, pause to consult a map. They have learned the difference between speed and
progress. In software, coding and testing seem like progress but they are often only wheel
spinning. While they must be done, there is always the danger of going in the wrong direction.
Without a sound plan and a thoughtful analysis of the problems, there is no way to know.

Organizations at the Initial Process can advance to the Repeatable Process by instituting basic
project controls. The most important are:

1. Project Management. The fundamental role of a project management system is to
insure effective control of commitments. This requires adequate preparation, clear
responsibility, a public declaration, and a dedication to performance [4]. For soft-
ware, this starts with an understanding of the magnitude of the job to be done. In
any but the simplest projects, a plan must then be developed to determine the best
schedule which can be met and the anticipated resources required. In the absence
of such an orderly plan, no commitment can be better than an educated guess.

2. Management Oversight. A suitably disciplined software development organization
must have corporate oversight. This includes review and approval of all major
development plans prior to their official commitment. A quarterly review is also
conducted of facility-wide process compliance, field quality performance, schedule
tracking, cost trends, computing service, and quality and productivity goals by proj-
ect. The lack of such reviews typically results in uneven and generally inadequate
implementation of the process as well as frequent over commitments and cost sur-
prises.

3. Product Assurance. A product assurance group is charged with assuring man-
agement that the software development work is actually done the way it is sup-
posed to be done. To be effective, the assurance organization must have an inde-
pendent reporting line to senior management and sufficient resources to monitor
performance of all key planning, implementation, and verification activities. This
generally requires an organization which is between 5% and 10% of the size of the
development organization.

4. Change Control. Control of changes in software development is fundamental to
business and financial control as well as to technical stability. To develop quality
software on a predictable schedule, the requirements must be established and
maintained with reasonable stability throughout the development cycle. Changes
will have to be made, but they must be managed and introduced in an orderly way.
While occasional changes are essential, historical evidence demonstrates that the
vast bulk of changes can be deferred and phased in at a subsequent point. If
change is not controlled, orderly testing is impossible and no quality plan can be
effective.

4.2. The Repeatable Process
The Repeatable Process has one important strength over the Initial Process: it provides a reason-
able measure of commitment control. This is such an enormous advance over performance at
the Initial Process that the people in the organization tend to believe they have mastered the
software problem. They do not realize that their strength stems from their prior experience at

doing similar work. Organizations at the Repeatable Process thus face major risks when they are
presented with new challenges. Examples of the changes that represent the highest risk at this
level are the following:

CMU/SEI-87-TR-11

1. Every new technology provides a mix of risks and benefits. Unless the risks are
understood and addressed in an orderly way, they will likely cause serious and
unanticipated problems. In the Repeatable Process, new tools and methods will
likely impact the way the process is performed, thus destroying the relevance of the
intuitive historical base on which the organization relies. Without a defined process
framework in which to address these risks, it is even possible for a new technology
to do more harm than good.

2. When the Repeatable Process organization must develop a new kind of product, it
is entering new territory. For example, a software group that has experience devel-
oping compilers will likely have serious problems if assigned to write a control pro-
gram. Similariy, a group that has developed small self-contained programs will not
understand the interface and integration issues involved in larger scale projects.
These changes again destroy the relevance of the intuitive historical basis on which
the organization relies.

3. Major organization changes can also be highly disruptive. In the Repeatable Proc-
ess organization, a new manager has no orderly basis for understanding what is
going on and new team members must learn the ropes through word of mouth.

The key actions required to advance from the Repeatable to the Defined Process are the follow-
ing:

1. Establish a process group. This is a technical group with exclusive focus on im-
proving the software development process. In most software organizations the
people are entirely devoted to product work. Until someone is given a full time
assignment to work on the process, little orderly progress can be made in improving
it. The specific responsibilities of process groups include defining the development
process, identifying technology needs and opportunities, advising the projects, and
conducting quarterly management reviews of process status and performance.
Typically, the process group should be about 1% to 2% the size of the development
organization. Because of the need for a nucleus of skills, groups smaller than
about four professional are unlikely to be fully effective.

2. Establish a software development process architecture which describes the tech-
nical and management activities required for proper execution of the development
process [5]. The architecture is a structural decomposition into tasks, which each
have entry criteria, functional descriptions, verification procedures, and exit criteria.
The decomposition continues until each defined task is performed by an individual
or single management unit.

3. If they are not already in place, introduce a family of software engineering methods
and technologies. These include design and code inspections, formal design meth-
ods, library control systems, and comprehensive testing methods. Prototyping
should also be considered together with the adoption of modem implementation
languages.

4.3. The Defined Process
With the Defined Process, the organization has achieved the foundation for major and continuing
progress. For example, the development group, when faced wit' ? crisis, will likely continue to
use the defined process. The foundation has now been established for examining the process
and deciding how to improve it.

As powerful as the Defined Process is, it is still only qualitative. That is, there is little data to
indicate what is going on or how effective the process really is. There is considerable debate

CMU/SEI-87-TR-11

about the value of software measurements and the best ones to use. This uncertainty generally
stems from a lack of process definition and the consequent confusion about the specific items to
be measured. With a defined process, one can focus the measurements on specific tasks and
items. The process architecture is thus an essential prerequisite to effective measurement.

In advancing from the Defined to the Managed Process, the key steps are the following:

1. Establish a minimum basic set of process measurements to identify the quality and
cost parameters of each process step.

2. Establish a process data base with the resources to manage and maintain it.

3. Provide sufficient process resources to analyze this data and advise project mem-
bers on the data's meaning and use.

4. Assess the relative quality of each product and inform management where quality
targets are not being met. This is typically done by the assurance organization.

4.4. The Managed Process
In advancing all the way from the Initial to the Managed Process, software organizations will
typically experience substantial quality improvements. The greatest potential problem with the
Managed Process is the cost of gathering data. There are an enormous number of potentially
valuable measures of software development and support, but such data is expensive to gather
and maintain.

Data gathering should be approached with care and each piece of data carefully defined in ad-
vance. Productivity data is generally meaningless unless explicitly defined. For example, the
simple measure of lines of source code per expended development month can vary by over two
orders of magnitude depending on the interpretation of the parameters. The code count could
include only new and changed code or all shipped instructions. For modified programs, this can
cause a factor of ten variation. Similarly, counted lines may be used directly or converted to
equivalent assembler code, varying again by factors of up to seven [8]. Management, test, docu-
mentation, and support personnel may or may not be counted when calculating labor months
expended. Again, the variation can run at least as high as seven [9].

When the different groups gathering data do not use identical definitions, the results are not
comparable, even if comparing them made sense. The tendency with such data is to use it to
compare several groups and put pressure on those with the lowest ranking. This is an unfor-
tunate misapplication of process data. First, it is rare that two projects are comparable by any
simple measures. The variations in task complexity caused by different product types can
exceed five to one. Similarly, the cost per line of code of small modifications is often two to three
times that for new programs. The degree of requirements change can make an enormous dif-
ference as can the design status of the base program in the case of enhancements.

Process data must not be used to compare projects or individuals. Us purpose is to illuminate the
product being developed and to provide an informed basis tor improving the process. When such
data is used by management to evaluate individuals or teams, the reliability of the data itself will
deteriorate. The fifth amendment is based on sound principles since few people can be counted
on to provide reliable data on their own performance.

CMU/SEI-87-TR-11

The two fundamental requirements tor advancing from the Managed to the Optimized Process

are:

1. Provide automatic support for gathering process data. Some data can not be
gathered by hand and all manually gathered data is subject to error and omission.

2. Turn the management focus from the product to the process.

4.5. The Optimized Process
The step from the Managed to the Optimized Process involves a paradigm shift. Up to this point,
software development managers are largely focused on their product efforts and will typically only
gather and analyze data that directly relates to product improvement. With the Optimized Proc-
ess, the data is available to actually tune the process itself. With a little experience, management
will soon see that process optimization can produce major quality and productivity improvements.

As an example of what can be done to optimize the process, errors can be identified and fixed far
more economically by using code inspections than through testing. While there is little published
data, a useful rule of thumb is that it takes about one to four working hours to find and fix a bug
through inspections while typical function or system test requires about 15 to 20 labor hours per
bug fixed [7]. It is thus clear that testing is not a good way to find and fix bugs. On the other
hand, it would be unwise to eliminate testing completely since it provides a useful check against
human frailties.

With the data that is available with the Optimized Process, new perspectives are apparent regard-
ing testing. For most projects, a little analysis will make it clear that there are two distinctly
different activities involved. The first is the removal of bugs. To reduce this cost, inspections
should be emphasized together with any other techniques which are found to be cost effective.
The role of functional and system testing should then be changed to one of finding symptoms that
are further explored with more economical methods.

With the Optimized Process, the organization has the means to identify the weakest elements of
the process and fix them. At this point in process improvement, data is available to justify the
application of technology to various critical tasks and numerical evidence is available on the
effectiveness with which the process has been applied to any given product.

At this point, one no longer needs reams of paper to describe what is happening since simple
yield curves and statistical plots provide clear and concise indicators. It is now possible to assure
the process and, by using it, have confidence in the quality of the resulting products.

5. People in the Optimized Process

Clearly, any software development process is dependent on the quality of the people that imple-
ment it. Even with the best people, however, there is always a limit to what they can accomplish.
When they are already working 50 to 60 hours a week, it is hard to see how they could handle the
vastly greater challenges of the future. The Optimized Process helps in several ways:

1. It provides management with the means to understand where help is needed and
how to best provide the people with the support they require.

CMU/SEI-87-TR-11 7

2. With an Optimized Process, the professionals can communicate in concise quanti-
tative terms. This facilitates the transfer of knowledge and minimizes the likelihood
of reinventing the wheel.

3. An enormous amount of effort is generally expended in fixing and patching other
peoples' mistakes. The Optimized Process provides the framework for the profes-
sionals to understand their work performance and to understand how to improve it.
This results in a highly professional environment and substantial productivity bene-
fits.

The Optimized Process provides a disciplined environment for professional work. In spite of the
undoubted advantages, many programmers are naturally nervous about the impact it will have on
them. There is considerable comfort in informal processes and a natural reluctance to change to
a more structured environment. While this is understandable, a formal process should not be
seen as threatening. There is an enormous difference between a disciplined environment and a
regimented one. Discipline is normal and natural in high technology. Semiconductors can not be
designed without precise instrumentation and environmental control. This discipline enables cre-
ativity, for it is difficult for semiconductor designers to be creative when using private tool kits or
working in a sloppy environment. The same is true for bioengineering, high energy physics,
medical research, astronomy, and meteorology, to name a few. Process discipline provides the
freedom for the most talented software professionals to be creative by freeing them from the
many crises that others have created.

6. The Need for the Optimized Process

There are many examples of disasters which have been caused by software bugs. They range
from expensive missile aborts to enormous financial losses. As the computerization of our soci-
ety continues, the public risks of poor quality code will become untenable unless orderly steps are
taken to improve our software processes.

Not only are our systems being used in increasingly sensitive applications but they are also
becoming much larger and more complex. While proper questions can be raised about the size
and complexity of current systems, they are human creations and they will, alas, continue to be
produced by humans with all their failings. While many of the currently promising technologies
will undoubtedly help, there is an enormous backlog of needed function which will inevitably
translate into vast amounts of code. More code means increased risk of error and, when coupled
with more complexity, these systems will become progressively less testable. The risks will thus
increase astronomically as we become more efficient at producing prodigious amounts of new
code.

In addition to being a management issue, quality is also an economic one. It is always possible
to do more inspections or to run more tests, but it costs both time and money to do so. It is only
with the Optimized Process that the data is available to understand the costs and benefits of such
work. The Optimized Process thus provides the foundation for significant advances in software
quality along with simultaneous improvements in productivity.

To meet the needs of society for increased system functions while simultaneously addressing
these risks, we must move rapidly to the Optimized Process. There is no other way.

8 CMU/SEI-87-TR-11

7. Conclusion

This software development process maturity model has been found to reasonably represent the
actual ways in which software development organizations improve. It provides a framework for
assessing such organizations and identifying the priority areas for immediate improvement. It
also assists in identifying where advanced technology can be of most value in improving the
software development process.

The Software Engineering Institute is using this model as a foundation for a continuing program of
assessments and software process development efforts. This work is being updated and will be
made available for public comment and use.

Acknowledgment
Much of the early work on software process maturity was suggested by my prior colleagues at
IBM. I am particularly indebted to Ron Radice and Jack Harding for their insights and support. In
addition, William Sweet of SEI and Martin Owens, Tom Probert, and Herman Schultz of the
MITRE Corporation have made valuable contributions to this work. I am also indebted to my
colleagues at the SEI for their helpful comments and suggestions, particularly Rodger Blair, Larry
Druffel, and Greg Hansen.

CMU/SEI-87-TR-11

References

[1] W. Edwards Demming, Quality, Productivity, and Competitive Position, Cambridge, MA: Mas-
sachusetts Institute of Technology Center for Advanced Engineering Study, 1982.

[2] J. R. Dunham and E. Kruesi, The Measurement Task Area," IEEE Computer, vol. 16, no. 11,
November 1983.

[3] W. S. Humphrey, The IBM Large-Systems Software Development Process: Objectives and
Direction," IBM Systems Journal, vol. 24, no. 2,1985.

[4] W. S. Humphrey, Managing for Innovation - Leading Technical People, Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[5] R. A. Radice, N. K. Roth, A. C. O'Hara, Jr., and W. A. Ciarfella, "A Programming Process
Architecture," IBM Systems Journal, vol. 24, no. 2,1985.

[6] R. A. Radice, J. T. Harding, P. E. Munnis, and R. W. Phillips, "A Programming Process Study,"
IBM Systems Journal, vol. 24, no. 2,1985.

[7] M. L. Shooman and M. I. Bolsky, "Types, Distribution and Test and Correction Times for
Programming Errors," Proc. of the 1975 International Conference of Reliable Software, New York,
IEEE, 1975, DD347-357.

[8] M. L. Shooman, Software Engineering: Design, Reliability, and Management, McGraw-Hill,
New York, 1983.

[9] R. W. Wolverton. The Cost of Developing Large-Scale Software," IEEE Transactions on
Computers, June, 1974.

10 CMU/SEI-87-TR-11

UNCLASSIFIED, UNLIMITED
SECURITY CLASSIFICATION Of THIS PAGE

REPORT DOCUMENTATION PAGE
1. REPORT SECURITY CLASSIFICATION

UNLIMITED, UNCLASSIFIED
2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE t>. OE

N/

lb. RESTRICTIVE MARKINGS

NONE
3. DISTRIBUTION/AVAILABILITY OF REPORT

UNCLASSIFIED, UNLIMITED, DTIC, NTIS

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-87-TR-ll

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ESD-TR-87-112

6« NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.
5b. OFFICE SYMBOL

(If applicable)

SEI

7«. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c AOORESS (City. State and ZIP Code)

CARENGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City, State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HANSCOM, MA 01731

m. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JPO

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628 85 0003
8c. AOORESS (City, State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)
CHARACTERIZING THE SOFTWARE

PROGRAM
ELEMENT NO.

63752F

> A MATl TY FRAMEWORK

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

WATTS S. HUMPHREY
13*. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM . . . TO

14. OATE OF REPORT (Yr., Mo.. Day)
JUNE 1987

15. PAGE COUNT
16

16. SUPPLEMENTARY NOTATION

N/A

COSATI CODES

FIELD GROUP SUB. GR

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

IMPROVEMENT IN THE PERFORMANCE OF SOFTWARE DEVELOPMENT ORGANIZATIONS IS AN ESSENTIAL
NATIONAL NEED. THE IMPROVEMENT PROCESS HAS FIVE BASIC ELEMENTS: 1) AN UNDERSTANDING
OF THE CURRENT STATUS OF THE DEVELOPMENT PROCESS, 2) A VISION OF THE DESIRED PROCESS,
3) A PRIORITIZED LIST OF REQUIRED IMPROVEMENT ACTIONS, 4) A PLAN TO ACCOMPLISH
THESE ACTIONS, AND 5) THE RESOURCES AND COMMITMENT TO EXECUTE THE PLAN. THIS
PAPER ADDRESSES THE FIRST THREE OF THESE ELEMENTS BY PROVIDING A MODEL FOR SOFTWARE
ORGANIZATIONAL IMPROVEMENT. THE STRUCTURE OF THIS MODEL PROVIDES FIVE MATURITY
LEVELS, IDENTIFIES THE KEY IMPROVEMENTS REQUIRED AT EACH LEVEL, AND ESTABLISHES
A PRIORITY ORDER FOR IMPLEMENTATION. THIS MODEL HAS BEEN TESTED WITH A NUMBER
OF ORGANIZATIONS AND FOUND TO REASONABLY REPRESENT THE STATUS AND NEEDS OF ACTUAL
SOFTWARE DEVELOPMENT GROUPS.

20. OISTRI8UTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED Q SAME AS RPT. §3 OTIC USERS Q

22«. NAME OF RESPONSIBLE INDIVIDUAL

KARL H. SHINGLER

DO FORM 1473, 83 APR

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22b TELEPHONE NUMBER
(Include Area Code)

412 268-7630
22c OFFICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS FAGE

SECURITY CLASSIFICATION OF THIS PAGE

