OTC FILE COPY

C

\div
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISSERTATION

W. Jerry Bowman
 Captain, USAF

AFIT/DS/ENY/87

SIMULATED HEAT-PIPE VAPOR DYNAMICS

DISSERTATION

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
W. Jerry Bowman

Captain, USAF

May 1987

Approved for public release; distribution unlimited

SIMULATED HEAT-PIPE VAPOR DYNAMICS

W. Jerry Bowman, B.S.. M.S.E.
Captain, USAF

Approved by:

Date

Acknowledgements

The purpose of this research was to obtain further understanding of heat-pipe vapor dynamics. Numerical investigations of steady state and transient phenomena as well as experimental investigations of steady-state behavior were performed.

The project was sponsored by the Power Technology Group. Air Force Aero-Propulsion Laboratory of the Air Force Wright Aeronautical Laboratories. Wright-Patterson Air Force Base, Dayton, Ohio. I greatly appreciate their constant support, especialiy when my computer account ran dry, The project also received unofficial sipport from the Aerodynamics Branch, Air Force Flight Dynamics Laboratory, WPAFB. Dr. Joe Shang provided priceless support during the numerical portions of the research.

I would like to thank the members of my research committee who aided me during the ordeal. Dr. Jerry Beam, Dr. Alan Lair, Dr. Milton Franke, and Dr. Tom Mahefkey. I would also like to thank the Dean's representative, Dr. Eric Jumper, for his help in editing the final drafic of this document. Special thanks goes to Dr. James Hitchcock who on a dally basis sat in counsel with me and shared his infinite wisdom. "Without his support this project may have never been completed. If it tad, it could never have been as good.

Table of Contents

Yage
Acknowledgments iv
List of Figures vii
Notarion ix
Abstract xiii
I. Introduction 1
History and Operation of Heat Pipes 1
Literature Review 3
Objective of This Research 15
II. Experimental Approach 18
Simulated Heat pipe 18
Porous-Wall Heat-Pipe Simulator Design 20
Frictionless, One-Dimensional, Compressible Flow with Mass Injection/Extraction 21
Pressure and Temperature Measurements 24
Data Acquisition 24
Mass-Flow-Rate Measurements 24
Air Supply Hanifold 27
Porous Pipe 27
Pipe Calibration 28
Installation of Porous Pipe in the Manifold 29
Pressure Taps 31
Velocity Measurements 32
Turbulence Measurements 33
III. Experimenral Results 35
Axial Pressure Data 35
Velocity Data 38
Effect of Velocity Probe on Flow Field 45
Turbulence Measurements 45
IV. Mathematical Flow Description 51
Governing Equations 51
Closure Relations 54
Boundary Conditions 56
Reynolds-Averaged Navier-Stokes Equations 59
Turbulence Model 62
Transition Region Model 66
V. Numerical Solution Technique 68
Explicit MacCormack Method 68
Computer Code 71
Physical Grid 73
VI. Numerical Results 74
Transient Results 74
Steady-State Solution 82
Friction Coefficients 88
Term Size 108
VII. One Dimensional Numerical Model 116
Governing Equations 116
Solution Technique 117
Results 126
VIII. Conciusions and Recommendations 125
Conclusions 125
Recommendations 126
Appendix A: Raw Experimental Data 128
Appendix B: Navier-Stokes Computer Code 150
Appendix C: Raw Numerical Data 180
Appendix D: One-Dimensional Model Computer Code 203
Bibllography 269
Vita 214

List of Figures

1.1 Basic Heat Pipe 2
1.2 Example of a Velocity Profile in a Heat Pipe with Flow Reversal 5
2.1 Porous Pipe Concept 19
2.2 Pipe Size Limitations 20
2.3 Sample Axial Pressure Distribution for Ideal One-Dimensional Vapor Flow in a Heat pipe 22
2. 4 Control Volume for Force Balance 23
2.5 Air Supply Manifold 27
2.6 Porous Pipe Calibration Manifold 29
2.7 35 Micron Porous Pipe Calibration Results 30
2.8 Porous Pipe End Seals 31
2.9 Pressure Tap Locations 32
2.10 Yelocity Rake 32
3.1 Effect of Increasing Mass Flow Rate on Pressure 36
3.2 Experimentally Measured Velocity Profiles, $m=0.031 \mathrm{bm} / \mathrm{sec}$ 39
3.3 Experimentally Measured Velocity Profiles, $\mathrm{m}=0.09 \mathrm{lbm} / \mathrm{sec}$ 40
3.4 Experimentally Measured Velocity Profiles $m=0.151 \mathrm{bm} / \mathrm{sec}$ 41
3.5 Experimentally Measured Velocity Profiles, $m=0.301 \mathrm{bm} / \mathrm{sec}$ 42
3.6 Experimentally Measured Velocity Profiles, $m=0.401 \mathrm{bm} / \mathrm{sec}$ 43
3.7 Effect of Velocity Rake on Flow 46
3.8 Turublence Intensity During Transition From Laminar to Turbulent Flow 48
3.9 Transition From Laminar to Turbulent Fiow 49
3.10 Turbulence Vs. Reynolds Numbers in the Condenser 50
5.1 Program Flow Chart 72
6.1 Pressure History Early in the Transient 76
6.2 Extended-time Pressure History During the Transient 77
6.3 Velocity Fields 79
6.4 Velocity Fields 80
6.5 Numerical and Experimental Pressure Data 83
6.6 Numerical and Experimental Velocity Data 85
6.7 Radial Velocity Contour plot 87
6.8 Element of Fluid Used For Force Balance 89
6.9 Comparison of Friction Calculation Methods 91
6.10 Friction Coeffirient Vs. Reynolds Number 97
6. 11 Effect of Compressibility on Friction Coefficient in Evaporator 99
6. 12 Condenser (suction) Friction Coefficient Curve Fit Results 101
6.13 Comparison with Different Models 103
6. 14 Momentum Flux Factor versus Mach Number (Common Aspect Ratio) 106
6.15 Momentum Flux Factor versus Mach Number (Common Reynolds Number) 107
6.16 Comparison, Term Sizes For Different Mass Flows 110
6.17 Effect of Aspect Ratio on Term Size 113
6.18 Velocity Field and Term Size Contour Plots. 115
7.1 Comparison of 1-D Frictionless Models 121
7.2 1-D Model With Smooth Pipe Friction 123
7.3 1-D Model With Improved Friction Model 124
A. 1 Velocity Rake and Pressure Tap Locations 129

Notation

A
A

AR

B
C
cv
c_{p}
d
E

EC
e
\vec{F}
L
pipe area
porous pipe property (Eq 2.12)
aspect ratio (Eq 6.27)
porous pipe property (Eq 2.12)
coefficient of discharge (Eq 2.6)
specific heat at constant volume (Eq 4.22)
specific heat at constant pressure (Eq 4.24)
speed of sound (Eq 5.8)
pipe inside diameter
orifice plate hole diameter
specific total energy (Eq 4.14)
Eckert number (Eq 6.6)
specific internal energy
thermal expansion coefficient (Eq 2.5)
axial terms, Navier-Stokes eqs (Eq 4.15)
axial terms, turbulent Navier-Stokes eqs (Eq 4.49)
friction coefficient (factor) (Eq 6.1)
arbitrary variable
turbulent friction coefficient
radial terms, Navier-Stokes Eqs (Eq 4.15)
radial terms, turbulent Navier-Stokes eqs (Eq 4.49)
extra terms, Navier-Stokes eq (Eq 4.15)
extra terms, turbuient Navier-Stokes eqs (Eq 4.49)
flow coefficient (Eq 2.6)
thermal conductivity
total pipe length


```
\beta
\betad
\gamma ratio of specific heats (Eq 4.25)
I fraction of transition to turbulent flow (Eq 4.59)
\Delta t
    time step (Eq 5.6)
|tcFL stability time step (Eq 5.7)
\lambda second coefficient of viscosity (Eq 4.16)
\lambdat eddy viscosity (second coefficient) (Eq 4.49)
\mu first coefficient of viscosity
\mu
\xi blowing distribution parameter (Eq 6.6)
|
\rho density
\sigma
~
    viscous stress tensor (Eqs 4.8 to 4.11)
Tw wall shear stress (Eq 6.1)
\sigmaij stress tensor (Eq 4.4)
\phi momentum flux factor (Eq 6.22)
\Omega extent of the transition region (Eq 4.61)
```

a
b

E
£
j
k
\bar{k}
n
\bar{n}
0
p

T
t
t,i
t,f
$\dot{\mathrm{m}}$
*
$+$
-

Mach number equation (Eq 7.1)
total pressure equation (Eq 7.1)
condeaser entrance (Eq 6.15)
pertaining to friction term (Eq 7.1)
radial gria index (Eq 5.1)
axial grid index (Eq 5.1)
axial grid index, corrector step (Eq 7.12)
time iteration (predictor step) (Eq 5.1)
time iteration (corrector step) (Eq 5.2)
condition at upstream end of evaporator (Eq 2.1)
predictor step (Eq 7.10)
turbulent (Eq 6.15)
turbulent (Eq 7.18)
Initiation of turbulence (Eq 4.60)
full transition to turbulent flow (Eq 4.60)
change in mass flow rate term (Eq 7. 1)
chuked flow condition (Eq 2.3)
normalized variable (Eq 6.5)
time averaged variable (Eq 4.39)
fluctuation about time averaged value (Eq 4.57)
mass averaged value (Eq 4.40)
fluctuation about mass averaged value (Eq 4.30)

Abstract

This dissertation describes work done to establish functional relationships for friction coesficients that can be used in simple, one-dimensional heat-pipe vapor models. Expressions for friction coefficients were derived that can be used to design heat pipes for compressible-flow situations (Mach numbers $2 s$ high as one) with very large mass injection/extraction rates (radial Reynolds numbers

In order to establish these relationships, a simulated heat pipe was studied. Pressure variations axially and velocity variations axially and radially along the simulated heat pipe were experimentally measured. Turbulent transition in the heat pipe was also experimentally studied. The experimental data was used to show that numerical solutions gave valid results.

Vapor flow in the simulated heat pipe was numerically modeled. The compressible, non-steady, axisymmetric, Navier-Stokes equations were solved numerically using MacCormack's explicit finite difference method. The friction coefficient expressions developed using the numerical data were shown to give excellent results when - used in a one-dimensional model to predict flow dynamics resulting from mass infection/extraction.

I. Introduction

This introductory chapter is divided into three sections. First, a brief history of heat pipes will be presented along with a brief description of how they operate. Next, literature relating to heat pipe vapor flow will be reviewed. Lastly, an outiine of the research reported in this work will be presented.

History and Operation of Heat Pipes
A heat pipe is a device which, without moving mechanical parts, is able to transport large amounts of energy over a significant distance with a small temperature difference. The energy transfer is achieved by means of the evaporation of fluid at one location and condensation of the vapor at a different location. Capillary forces in a wick aid in returning the iiquid to the evaporator region. The first recorded use of a device similar to a beat pipe was by Perkins in 1897 (1:1.2). Perkins' pipes are wickless heat pipes. They rely on gravitational forces to return the liquid from the condenser to the evaporator.

In 1942 Gaugler invented a heat pipe that worked in a similar manner to a Perkins pipe except that the working Eluid was circulated with the aid of a wick. : Even though the idea had been around since 1942, it wasn't until 1963 that Grover and his co-workers at the Los Alamos Laboratory began serious research on these davices. It was this group that first introduced the term neat pipe. Firom 1963 on, the amount of research done on heat pipes grew quickly with work
now being done in nearly all developed nations (1:1,2).
A heat pipe has four parts: a container, a wick, a vapor region and a working fluid. A typical container is a right circilar cylisder with a large length to diameter ratio enclosing the wick, working fluid, and yapor region. One end of the heat pipe is called the evaporator and the other end is called the condenser. The evaporator and condenser can be separated by an adiabatic region (Figure 1.1).

Pigure 1.1 Basic Heat Pipe
is the evaporator end of a heat pipe is heated, working fluid evaporates from the wick. The pressure in the evaporator end of the heat pipe rises above the pressure in the condenser. The vapor responds to the pressure gradient and flows from the evaporator to the condenser. To maintain
the condenser at a lower pressure than the evaporator, vapor is condensed. As vapor condenses, the resulting liquid must be returned to the evaporator. If the liquid does not return, the evaporator drys out and the cycle stops. Capillary forces in the wick aid in transporting the liquid from the condenser to the evapurator.

Literature Review

The available literature pertaining to heat-pipe vapor dynamics, and the closely related topic of flow in pipes with mass extraction/injection at the pipe wall. is discussed in this section. The literature is grouped into the following categories 1) steady laminar flow in pipes with mass injection/extraction, 2) steady heat-pipe vapor dynamics, 3) experimental studies, 4) transient heat-pipe studies, and 5) the effect cf mass injection/extraction an steady turbulent flow in pipes.

Laminar Flow in Pipes With Mass Injection/Extraction. In 1953, ten years before the name heat pipe was coined, research on the fluid dynamics of flow in porous pipes with mass injection/extraction at the wall began. Since 1953 several analytical studies have been ;erformed to help better understand these phenomena. Articles (2).(4)-(9), describe studies in incompressible, laminar flow in porous tubes with uniform mass transfer at the walls. Berman (2) was the first to solve the Navier-Stokes equations for a channel having a rectangular cross-section and two equally porous and opposite walls. With the assumption of uniform
extraction (suction) at the walls, an exact solution of the flow equations was obtained. He found that the velocity profile deviates from the Hagan-Poiseuille parabola (3:85-87), being flatter at the center of the channel and steeper in the region close to the walls. The degree of deviation is dependent on a radial Reynolds number. The radial Reynolds number is a Reynolds number based on the velocity of the flow through the channel wall and the hydreulic diameter.

$$
\begin{equation*}
\operatorname{Re}_{w}=\frac{\rho_{0} V_{0} D}{\mu} \tag{1.1}
\end{equation*}
$$

Where ρ_{0} is the fluid density, v_{0} is the radial (extraction) velocity at the wall. D is the hydraulic diameter and μ is the fluid viscosity.

Brady (4) studied the effect of the inlet velocity profile on incompressible flow in a porous channel with uniform extraction. He showed that above a critical radial Reynolds number of 2.3 (a positive radial Reynolds Number corresponds to mass extraction from the pipe), the structure of the flow throughout the entire tube was influenced by the inlet profile. This result is of interest to heat-pipe designers in that it points out the importance of sciving the evaporator and condenser problems simultaneously.

Friedman and Gillis (5) studied steady-state. axisymmetric flow of an incompressible liquid in a straight pipe with absorbing walls. They used a vorticity-stream-function approach to solve the coupled

Navier-Stokes equations. They studied the class of problems with axial Reynolds numbers ranging from 0 to 500 and radial Reynolds numbers ranging from to -20 (a negative value corresponds to mass injectiond Unlike a heat pipe, the pipe they studied was open at both ends. They did include in their study cases where total absorption occured. Total absorption is when all of the fluid entering the inlet of the pipe is extrected through the pipe wali. Total absorption cccurs in all heat pipes because the down stream end of the pipe is blocked. In heat pipes, all eluid entering the condenser must be condensed onto the condenser wall/wick. For the total absorption case, Fredman and Gillis noticed flow reversals along the extraction surface (Figure 1.2).

Figure 1.2 Example of a Velocity Profile in a Heat pipe with Flow Reversal

Kinney (6) numerically determined the friction and heat-transfer characteristics for fully-developed, laminar flow, in circular porous tubes. He assumed a constant
property fluid and $\operatorname{mniform}$ wall mass transfer. He presented friction factor results for radial Reynolds numbers from -4.618 to 20 . The tubes studied were open at both ends. Kinney, extrapolating from his results, estimated that at a radial Reynolds number of $\mathbf{- 4 . 6 2 6}$ the friction factor would be zero. This would correspond to an onset of flow reversal in the pipe.

Rathby (7) analytically studied laminar flow in pipes and rectangular ducts with mass injection/extraction. Equations representing the friccion coefficient were presented for both geometries for radial Reynolds numbers in the range of -20 to 48 . Where earlier authors had predjcted a decrease in friction with small extraction rates in pipes, he found that for duct flow, in a region with an adverse pressure gradient, the velocity profile became flatter with a steeper gradient near the wall. This led to an increase in Eriction.

Some interesting results of the above studies have been summarized by Terrill and Thomas (8). They found that two distinct analytical solutions to the governing differential equations exist for radial Reynolds numbers in the range of 0.0 to 2.3046 and for radial Reynolds numbers between 9.1645 and about 50. No analytical solutions could be found in the range of 2.3046 to 9.1845 . Where the two solutions existed, at least one of the solutions predicted flow reversal in the pipe's mass extraction region.

Most recently R. M. Terrill (9), (10) has solved the
incompressible, laminar Navier-Stokes equations for axisymmetric flow in a porous tube with non-uniform infection/extraction. The result was used to obtain a fully-developed solution for flow in a porous pipe with axially varying injection/extraction. Prior to these works, all researchers had limited their work to uniform eztraction or injection.

Heat-Pipe Vapor Dynamics. Since 1963 a body of Iiterature has developed about heat pipes. Five International Heat pipe conferences have been held. Three books on heat pipe design and theory are now available (1).(11).(12). Numerous papers have been written about the different aspects of heat-pipe operation including the dynamics of vapor flow which is the topic of this research.

The first major paper on heat pipes was written by Cotter in 1965 (13). Cotter based his vapor flow analysis on the work of Yuan and Finkeistein (14) for radial Reynolds numbers much less than one and on the work of Knight and McInteer (15) for radial Reynolds numbers much greater than one. Both analyses assumed incompressible laminar flow with uniform injection/extraction. Yuan and Finkelstein (14) showed that the pressure gradient would be close to that obtained for Hagan~Poiseuille flow (3:85-87) where the velocity profile is parabolic. The gradient would be siightly larger for the case of evaporation (mass injection) and smaller for condensation (mass extraction). For large radial Reynolds numbers, Knight and McInteer (15) showed
that the velocity profiles couid no longer be assumed to be close to parabolic. They developed an expression for the axial pressure gradient at high radial Reynolds numbers which was experimentally verified by Wageman and Guevara (16).

Since that time other authors have used incompressible flow models. Bankston and Smith (17) solved the twodimensional, incompressible Navier-Stokes equations for steady-flow in a heat pipe. They used a vorticity-stream-function approach so that radial pressure gradients would not be ignored and so that flow reversals could be permitted. They concluded that for radial Reynolds numbers larger than 2, accurate prediction of axial pressure loss requires the solution of the complete two-dimensional equations. For small radial Reynolds numbers, simpler approaches could be used. They limited their study to laminar flow in heat pipes.

Van Ooijen and Hongenborm (18) studied vapor flow in a flat-plate heat pipe. The vapor region was a rectangular channel. The lower plate contained the wick, evaporator and condenser. The top plate of their heat pipe was assumed to be an adiabatic wall. For their numerical work they assumed steady, incompressible, two-dimensional, larinar flow. They concluded that for small radial Reynolds numbers (less than 25) accurate pressure and velocity profiles could be obtained by using the simple Hagan-Poiseuille flow model (i.e., parabolic velocity profile). For larger radial

Reynolds numbers, a more complicated approach was needed. In a later article, (19), Van Ooijen and Hoogenborm compared experimental pressure data they obtained for flow in a flat plate heat pipe with their numerical results reported in Ref (18) (discussed above). The comparison was fair.

The effects of compressibility on flow with mass injection/extraction have also been studied. One-dimensional, frictionless, compressible-flow models have been developed by several authors. Levy (20) studied the behavior of vapor in the evaporator section of a heat pipe using a steady, one-dimensional, compressible-flow analysis. He was interested in knowing if gas dynamic choking could limit heat-pipe performance. He studied two vapor models, a perfect-gas model and an equilibrium two-phase model, and compared his results with the experimental data of Kemme (21) obtained from a horizontal sodium heat pipe. Levy concluded that at low vapor pressures sonic velocities could be obtained at the entrance to the heat-pipe condenser thus limiting the amount of energy transport achievable by a heat pipe.

Bystor and Popov (22) were also interested in the compressibility effect in supersonic flows of high temperature heat pipes. They developed a steady. one-dimensional. frictionless, compressible model to study these effects. In their model they also compared the two gas models studied by Levy. They found that assuming thermodynamic equilibrium of the two phase flow was valid

[^0]that made boundary-layer assumptions.
Recently Busse and Prenger (26) wrote a computer code. AGATHE, which was intended to evaluate the vapor flow in axially-symmetric, vapor-limited heat pipes. They used a steady, two-dimensional. compressible, boundary-layer model which assumed that the vapor was an isothermal perfect gas. Their program was the first to model both laminar and turbulent flows, Upon comparing their results with experimental and numerical resuits from other sources $(\mathbb{1} 17)$. (27) c.f. belowl, they concluded that their model did a good job of predicting pressure recovery in heat pipes. Since Busse and Prenger published their paper, Haug and Busse (27) have further validated the model with the latest experimental heat-pipe vapor data that was available.

Experimental Results. Although some data is

available, review of the heat-pipe literature reveals that the experimental data available to validate numerical models are still incomplete. It should be noted that the available data are in two forms: actual heat-pipe data; and similated heat-pipe data employing air flow with injection/extraction in porous-wall pipes. Wageman and Guevara (16) were among the first to act on the need to experimentaily validate early theoretical studins. They simulated a heat-pipe evaporator by injecting air through a porous-wall pipe. They found that their experimental results closely matched the laminar flow theory of Yuan and Finkelstein (14) even for axial Reynolds numbers up to 100.000 , where turbulence
should have been well established. In their work, no Mach numbers above 0.16 were attained nor $d \pm d$ they study the effects of mass extraction.

The most widely referenced experiment is that done by Quaile and Levy (28). They simulated a heat-pipe condenser In a similar way to the condenser studied by Wageman and Guevara (16). They measured axial pressure drop in a porous pipe as well as radial variations in the axial velocity at several axial locations. They found that extraction caused the flow to become turbulent at axial Reynolds numbers lower than 2000 which generally denotes the lower limit of the region of turbulent flow. They observed transition at axial Reynolds numbers lower than 370 when the radial Reynolds number was 6. Transition refers to the region in a flow Eield where the flom is changing from fully laminar to fully turbuient.

Experiments on flow in a porous pipe with extraction (i.e., simulated heat-pipe condensers) have also been reported by Aggarwal. Hollingsworth and Hayhew (29). They measured the pressure gradient obtained with air flow in a porous tube of circular cross-section with a fully-developed turbulent profile at the entrance of the mass extraction region and with uniform mass extraction through the pipe wall. Their experiments corered inlet axial Reynolds numbers ranging from 11.000 to 101,060 (inlet axial Reynolds number refers to the Reynolds number based on mean axial velocity and pipe diameter at the entrance to the pipe) with
a ratio of the transverse velocity 3 t the wall to the mean axial velocity at the inlet ranging from 0 to about 0.027. The form of the velocity profile was found to depend upon extraction rate, becoming more flat at modest rates of extrection, but less flat at high rates. Extraction also caused the relative turbulence level to increase at all radii, except for some reduction in the region of the wall at very low rates of extraction. Friction-coefficient values for flow with extraction are graphically presented in the paper. At a fixed axial Reynolds number, friction-coefficient values were found to increase markediy with suction as compared to typical non-porous pipe friction coefficients (for example, at an axial Reynolds number of 89,600, the friction coefficient was as high 3510 times the expected turbulent rough pipe friction coefficient).

Transient Heat-Pipe Studies. During the literature review, no papers were found that model non-steady vapor flow in heat pipes. Three papers, one by Beam (30), one by Chang (31) and the last by Colwell (32) all presented studies on transient heat-pipe operation; however, their work was aimed at understanding transient wick phenomena. At the Fourth Symposium on Space Nuclear Power Systems, Albuquerque, New Mexico, January 1987, five papers (33)-(37) were presented on work currently being done to model heat-pipe transients. All of the models discussed were still in the development stages. The majority of the models being considered assume the vapor flow is one-dimensional.

Turbulence Studies. Several of the previously-mentioned articles discussed the existence of turbulence in heat-pipe vapor flow. The articles that will now be discussed (38)-(42), (44),(45) pertain specifically to the modeling of turbulence in regions of mass injection/extraction or with adverse/favorable pressure gradients.

Five of the papers (38)-(42) proposed modifications to the Van Driest dampening factor, Ref (43), used in conjunction with Prandtl-mixing-length theory of turbulence modeling. Van Driest introduced a useful modification to Prandtl's-mixing-length theory which provides a continuous velocity and shear distribution for turbulent flow near a wall. The Van Driest dampening factor (a value used in Van Driest's model) relates to the thickness of the laminar sublayer. The same general trends were noted in all papers. They suggested that a favorable pressure gradient (accelerating flow) saused an increase in the dampening factor. This is manifest in a thicker laminar sublayer which leads to lower skin-friction as compared to flow over a flat plate. The reverse was noted for an adverse pressure gradient (decelerating flow?, that is the dampening faciur was decreased. All five papers also concluded that mass extraction had a similar effect to that of a favorable pressure gradient while mass injection had a similar effect to that of an adverse pressure gradient. Each paper presented a silghtly different formula for moditying the Van

Driest dampening factor to account for these effects. All five papers limited their range of study to small mass transfer rates and small pressure gradients.

Brosh (44) experimentaliy studied turbulent flow in a tube with mass extraction. He verified the trends relating to extraction discussed above; however, he noted that this was only true in very long pipes after fully-developed flow had been established. In pipe entrance regions the opposite trend prevailed: i.e.. mass extraction caused a thin laminar sublayer which lead to higher skin friction as compared to flow over a flat plate. He stated that the flow seems to be much more complez than oziginally thought; that more experimental work, especially in the transition zone, was clearly indicated.

The most recent attempt to model turbulent flow in a pipe with extraction was by Eroshenko, Ershov, and Zaichik (45). They chose to deviate from Prandtl-mixing-length theory, feeling that a more complex model was needed. In their paper a three-parameter model of turbulence was used. Upon comparing their results with the experimental data of Aggarwal et. al. (29) they felt that a fairly satisfactory description of the flows' turbulence characteristics was obtained with the three-parameter turbulence model.

Objective of This Research

The main thrust of the present work was to establish functional relationships for friction coefficients that can be used in simple, one-dimensional formulations to model
heat-pipe performance in operating regions not formerly well understood. These regions include compressible-flow situations where Mach numbers can approach one somewhere in the pipe, Such regimes are usually brought on by large mass injection/extraction rates: thus the friction coefficient relations must be able to account for such rates.

In order to establish reliable relationships a simulated heat pipe was studied. Pressure variations axially and velocity variations axially and radially along the simulated heat pipe were experimentally measured. The experimental data was used to show that numerical solutions (C.E. below) gave valid results.

To gain more detailed information about the flow field being studied, vapor flow in the simulated heat pipe was numerically modeled. The compressible, non-steady, axisymmetric Navier-Stokes equations were solved numerically. The compressible form of the equations was used because of the vapor density changes in heat pipes at high Mach numbers and during power trarsients. MacCormack's explicit finite-difference method was used to solve the equations.

From the results of the numerical simulations, expressions for friction coefficients were derived that can be used by heat-pipe designers to design heat pipes for compressible-flow situations with very large mass injection/extraction rates (radial Reynolds numbers from 106 to 29,006$)$. The expressions developed were stown to
give excellent results when used in a one-dimensional model to predict flow dynamics.

II. Experimental Approach

The goal of the experimental portion of the present work was to gain a better understanding of vapor dynamics in a heat pipe at Mach numbers near one. This goal was achieved by measuring the vapor pressure and velocity distributions in a simulated heat pipe operating in the sonic range, and by trying to characterize the turbulence patterns encountered. These data formed the basis for comparison with the numerical model of vapor behavior discussed in detail in a later chapter. In this chapter a discussion on how the heat-pipe vapor flow was simulated will be given. Following this, the experimental set up is discussed. Finally a discussion is given on how turbulence was measured.

Simulated Heat Pipe

It is well documented that measurement of vapor dynamics in actual heat pipes presents a number of experimental difficulties (c.f. below). Following the work of Wageman and Guevara (16) and Quale and Levy (28), an alternative to studying vapor dynamics in a heat pipe is to simulate heat-pipe vapor flow by blowing air through a porous pipe to model an evaporator, and extracting the air via suction through a different section of the porous plpe to simulate a condenser. Figure 2.1 is a schematic representation of this idea. Such a system is relatively simple to build and test, and has been shown (Ref (16)

Figure 2.1 Porous Pipe Concept
and (28)) to closely model heat-pipe vapor dynamics.
Because heat pipes are carefully sealed from their environment, it is difficult to measure the velocity field in the vapor region. For the porous pipe set up, velocity probes can be easily introduced into the vapor region to measure the gas velocity. Because heat pipes are able to operate at very low pressures with very small axial pressure variations, pressure measurements can be hard to make. Since the porous pipe is operated at higher pressures with larger pressure changes, this problem is avoided. Finally. with the porous pipe, no complicated heating and cooling equipment is needed, nor is a liquid return mechanism (like the wick in a heat pipe) required. For all the above reasons, a porous-wall heat-pipe simulator was used to obtain the required data for this study.

Porous-Wall Heat-Pipe Simulator Design

The first consideration in the porous-pipe design was the compressed air supply available for the testing. At AFIT, compressors were available that could continuousiy supply $1 \mathrm{lbm} / \mathrm{sec}$ of air at $1 g 0$ psig. The pressure sink was the laboratory atmosphere. Choked mass flow rate versus upstream pipe pressure for various sizes of pipes are plotted in Figure 2.2, along with the operating limits of the pressure supply. Figure 2.2 assumes that air enters the upstream end of the pipe at 560 R , and that one-dimensional, compressible flow relations for flow with mass injection/extraction (c.i. below) were valid. Such considerations led to the selection of a 0.650 inch inside diameter porous pipe for use in the experiment.

Figure 2.2 Pipe Size Limitation

Frictionless, One-Dimensional, Compressible Flow with Mass

Injection/Extraction

Property variations with Mach number for frictionless, one-dimensional, compressible flow with simple gas injection may be found following Shapiro (46), by

$$
\begin{align*}
& \frac{p}{P_{0}}=\frac{1}{1+\gamma M_{a}^{2}} \tag{2.1}\\
& \frac{T}{T_{0}}=\frac{1}{1+\frac{\gamma-1}{2} M_{a}^{2}} \tag{2.2}\\
& \frac{\rho}{\rho_{0}}=\frac{p T_{0}}{P_{0} T} \tag{2.3}\\
& \frac{\dot{m}}{\dot{m}^{-}}=\left[\frac{1+\frac{\gamma-1}{2} M_{a}^{2}}{1+\frac{\gamma-1}{2}}\right]^{\frac{1}{2}}\left[\frac{1+\gamma}{1+\gamma_{M a}^{2}}\right] \tag{2.4}
\end{align*}
$$

where p is the pressure, T is the temperature, ρ is the density, \dot{m} is the mass flow rate, Ma is the Mach number and γ is the ratio of specific heats. The subscript "on refers to the upstream pipe conditions ($\mathrm{Ma=}=\varnothing$) and the subscript ${ }^{n=n}$ refers to choked flow (Ma=1.0). Sample pressure distributions for a pipe with uniform injection and extraction are shown in Figure 2.3 by curves 1. 2. 2A, and 2B.

In a cylindrical heat pipe, mass addition in the evaporator causes the axial mass flow rate to increase down the pipe. This results in a decrease in pressure. As mass is removed in the condenser, the mass flow rate desreases and the pressure increases. If friction is ignored, the pressures at the tuo ends of the pipe must be equal.

Figure 2.3 Sample Axial Pressure Distributions for Ideal One-Dimensional Vapor Flow in a Heat Pipe

A force balance performed on the control volume containing the heat-pipe vapor region shows that only friction can cause the end pressures to be different (Figure 2.4).

Curve 1 in Figure 2.3 illustrates the axial variation of pressure in a heat pipe for the case where sonic velocities are never attained. As mass injection/extraction increased, Curve 2, the axial velocity in the evaporator increases until sonic velocity is achieved at the entrance to the condenser (heat pipe throat). For Curve 2, a pressure ratio of 0.417 is reached at the condenser entrance. As the sonic flow enters the condenser, mass extraction can cause the flow to either deccelerate (Curve 2A) or accelerate (Curve 2B).

For Curve 2A the flow is subsonic in the condenser. As the flow slows, the pressure in the condenser rises. Assuming no friction, the pressure must rise to the

Abstract

evaporator entrance pressure. Complete pressure rise is called total pressure recovery. For Curve $2 B$, the flow accelerates, becoming supersonic in the condenser entrance region. As the flow accelerates, the pressure decreases.

Because the flow velocity must be zero at the end of the condenser, the flow must deccelerate somewhere in the condenser. The flow decceleration is initiated by a shock, It is interesting to note that there is no unique shock location if the flow is assumed to be frictionless, and the mass extraction distribution for the subsonic and supersonic cases are the same. The pressure fump across the shock causes the pressure to increase to the subsonic pressure for the given mass flow rate for any shock location in the condenser. After the shock, once again, total pressure recovery occures. If friction is considered. the condenser end pressure would be less than the evaporator end pressure. The larger the frictional forces, the larger the pressure drop between the ends of the pipe.

Figure 2.4 Control Volume for Force Balance

Pressure and Temperature Measuremenrs
All pressure measurements were made using a T-type Scanivalve, from Scanivalve Corporation. A Model PDCR42 differential pressure transducer with a pressure range of 0-100 psig was used in the Scanivalve. The pressure measurements were accurate to within 0.2 psi. This system allowed for 36 pressure measurements with the one pressure transducer. The disadvantage of the system was that only steady-state or slowly changing pressures could be measured. The pressure transducer was calibrated using two 100 inch mercury manometers connected in serles as a standard.

Data Acquisition
Data acquisition was done via an S-igø based computer. Pressure transducer input into the computer was digitized through a Dual Systems Control model AIM12 analog-to-digital card in the computer. An offset option on the card and amplification were set so signals from 9 to +100 mililvolts could be read with a resolution of 0.024 millivolts. Shielded cables were used to reduce noise introduced to the system. Noise was further reduced by averaging 30 data samples. Once the data had been read and averagec by the computer, it could be displayed on a monitor, stored on disk. or processed as desired.

Mass-Flow-Rate Measurements
The total mass flow rate entering the test section was measured using a square edged orifice. Ten feet (40 pipe
diameters) of straight pipe preceded the orifice plate. Mree (3) feet (12 pipe diameters) of straight pipe were down stream of the orifice. When the orifice plate was installed, the inside of the pipe was inspected. The pipe inside had to be ground with a hand grinder to remove weld siag from where the pipe was welded to the orifice plate flanges. The grinding process left the inside of the pipe smooth and free from obstructions. Upstream of the orifice plate the pipe diameter was 3.062 ± 0.062 inches. The downstream pipe diameter was 3.056 ± 0.002 inches. Orifice plates with hole diameters varying from 0.25 inches to 1.0 inches were used. Orifice plate holes were varied so that for a given mass flow rate an easily measured pressur drop across the orifice was created. The holes also had to be varied so that the flow would not be choked at the orifice hole.

Flange taps and a water manometer were used to measure the pressure differential across the orifice plate. The following expressions were used to calculate the mass flow rate (47):

$$
\begin{equation*}
\dot{m}=0.5202\left(\frac{C Y d^{2} F_{3}}{\sqrt{1-\beta_{d}^{4}}}\right) \sqrt{\rho_{1}\left(p_{1}-p_{2}\right)} \tag{2.5}
\end{equation*}
$$

where m is the measured mass flow rate in $1 \mathrm{bm} / \mathrm{sec}, p_{1}$ and p_{2} are the upstream and down stream pressures in psia, p_{1} is the upstream density in lbm per cubic foot, β_{d} is the ratio of diameters d/D where d is the orifice plate diameter in inches, D is the inside pipe diameter in inches, C is the
coefficient of dischaı. \therefore i is a compressibility expansion factor, and F_{a} is the metal's thermal expansion factor. The discharge coefficient is given by

$$
\begin{equation*}
c=K \sqrt{1-\beta_{d}^{4}} \tag{2.6}
\end{equation*}
$$

where K is the flow coefficient defined as

$$
\begin{equation*}
K=K_{0}\left(1+\frac{A}{R e}\right) \tag{2.7}
\end{equation*}
$$

Where Re is the axial Reynolds number and K_{0} is the limiting value of K for any specific value of D and β_{d}. when Re becomes infinitely large. It is defined as

$$
\begin{equation*}
K_{0}=K_{0}\left(\frac{10^{6} d}{10^{6} d+5 A}\right) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{align*}
K_{t}= & .5993+\frac{.007}{D}+\left(.364+\frac{.076}{\sqrt{D}}\right) \beta_{d}^{A} \\
& +.4\left(1.63-\frac{1}{D}\right)\left[\left(.07+\frac{.5}{D}\right)-\beta_{d}\right]^{\frac{5}{2}} \\
& -\left(.009+\frac{.034}{D}\right)\left(.5-\beta_{d}\right)^{\frac{3}{2}}+\left(\frac{65}{D^{2}}+3\right)\left(\beta_{d}-.7\right)^{\frac{3}{2}} \tag{2.9}
\end{align*}
$$

and

$$
A=d\left(830-5000 \beta_{d}+9000 \beta_{d}^{2}-4200 \beta_{d}^{3}+\frac{530}{\sqrt{D}}\right)
$$

The axial Reynolds number can be expressed in terms of mass flow rate as

$$
\begin{equation*}
\mathrm{Re}=\frac{48 \dot{\mathrm{~m}}}{\pi \mu \mathrm{D}} \tag{2.16}
\end{equation*}
$$

Finally, the compressibility factor, Y, is given by

$$
\begin{equation*}
Y=1-\left(.41+.35 \beta_{d}^{4}\right) \frac{x}{\gamma} \tag{2.11}
\end{equation*}
$$

where x is the differential pressure ratio $\frac{\Delta p}{p_{1}}$ and y is the ratio of specific heats for the gas.

A1r Supply Manifold

A manifold was designed and built to supply air to the porous pipe as shown conceptually in Figure 2.1. Figure 2.5 is a detailed sketch of the manifold used. Fortyeight valves allowed for metering flow in/out of 12 chambers axially along the pipe. The valves were used in an attempt to control the axial distribution of the air to and from the pipe.

Porous Pipe

Inexpensive polyethylene porous pipe produced by porex Technologies was selected for the experiment because of its uniform properties. A design pressure drop across the pipe
of 30 psi was selected. The higher the pressure drop used, the more uniform the extraction and injection in the pipe; however, too large of a pressure drop would restrict flow to an extent that sonic flow could not be achieved in the pipe core. The final test configuration had a one foot long evaporator and a one foot long condenser. The porus plpe had an inside diameter of 0.650 inches and an outside dameter of 1.00 inches with an average pore size of 35 microns.

Pipe Calibration
Muskat (48) states that for the flow of a compressible gas through a porous medium, the mass flux ipv) can be related to the pressure difference acrose the porous medium by tine expression:

$$
\begin{equation*}
\Delta\left(p^{2}\right)=A(\rho v)^{2}+B(\rho v) \tag{2.12}
\end{equation*}
$$

Four samples of 35 micron porous pipe were installed in the manifold shown in Figure 2.6. $\Delta\left(p^{2}\right)$ and ρv were measured for each sample of pipe for various mass flow rates. The results are shown in Figure 2.7 .

Using least-squares techniques to curve fit che experimental data in Figure 2.7. the constants A and B in Equation (2.12) were found to be 3.639×10^{9} and 1.7915×10^{8}, respectively. Determination of the constants A and B was needed for the injection and extraction boundary conditions used in the computer model (c.f. Chapters IV,V). The flow Characteristics varled for the four samples by $\pm 8 \%$.

Figure 2.6 Porous Pipe Calibration Manifold

The samples were selected from different parts of a three foot section of pipe. One sample from each end and two samples were selected from the middie. A final calibration coefficient was needed so the experimental and numerical nass flow rates kould be the same. It was found that a factor of 1.07 times the mean value represented by Eq (2.12) best described the mass flow rate.

Installation of the Porous Pipe in the Manifold

To prevent air from blowing between the ends of the porous pipe and the pipe manifold wall (to force all air to go through the porcus pipe) great care was taken to insure good seals between the pipe and the manifold wall. Figure 2.8 111ustrates how the seals were made.

CURVE FIT OATA
$A=3.636 E+09$
$B=1.701 E+08$
© sample 1
O sample 2
a sample 3

- sample 4

Figure 2.735 Micron Porous Pipe Calibration Results

Figure 2.8 Porous Pipe End Seals

As can be seen from Figure 2.8, whonever ina poz wus pipe mas butted up against a wall, a grove wes cut in the manifold to hold the porous pipe. The grove had an o-ring in it and was alsc filled with a silicone-base sealent that further inhibited leaks.

Pressure Taps

Pressure caps were insealled in the porous pipe by cementing li2 inch leng 0.069 inch outside diameter stainless stee] tubes force fit into 0.058 inch diameter drill roles resuliting in a snug fit. The stainless steel tube was inserted into the porous pipe so that its end was flush with the inside of the porous plpe. The pressure taps were located as shown in Figure 2.9. The actual pressure tap locztions are given in Appendix A, Figure A.1.

Figure 2.9 Pressure Tap Locations

Velocity Measurements

Seven total pressure tubes were combined to form a rake that was used for velocity measurements. The rake is shown in Figure 2.10.

Figure 2.10 Velocity Rake

During the experiment, the rake was located so that the ends of the total pressure probes were adjacent to one of the static pressure ports (thus velocity profiles could be measured at any of 15 locations along the pipe). The axial velocities were calculated using the following equations.

$$
\begin{gather*}
u=M a \sqrt{\gamma R T} \tag{2.13}\\
\frac{p_{\mathrm{e}}}{p}=\left(1+\frac{\gamma-1}{2} M_{a}^{2}\right)^{\frac{\gamma}{\gamma-1}} \tag{2.14}\\
\frac{T_{0}}{T}=1+\frac{\gamma-1}{2} M_{2}^{2}
\end{gather*}
$$

Where p_{s} is the stagnation pressure, p is the static pressure, T_{0} is the total temperature, and Ma is the Mach number.

Turbulence Measurements
To measure the effect of injection, extraction, and pressure gradient on the flow field's turbulence, the velocity rake was replaced by a not-film anemometer. A Model 195@, constant temperature anemometer manufactured by TSI Incorporated was used with a TSI 1212.10 hot-film anemometer. A TSI Model 1076 digital voltmeter was used to measure the mean voltage (velocity) values while a B\&K* Precision Dual Time Base Oscilloscope model 1579 a was used to visualize the fluctuating velocity component. A second TSI Model 1076 digital voltmeter was used to find the RMS (root-mean square) of the fluctuating voltage (velocity).

The anemometer was limited to the center line of the test section by a lateral support which was attached to the probe to ensure it did not come in contact with the pipe wall. The support was located four inches from the end of the probe. This prohibited measurements closer than four inches from the downstream and of the test section.

III. Experimental Results

The purpose of the experiment was to gather data to be used to validate the numerical models. First, the experimental pressure and velocity data will be presented. Next, the effect of the velocity rake and hot-film anemometer on the flow field will be discussed. Lastly, the results of the turbulence studies will be presented.

Axial Pressure Data

One of the primary goals of this research was to gain a better understanding of the effect of injection and extraction on the wall shear stress and thus the pressure variations in a compressible flow. Figure 3.1 shows how the pressure varied axially along the simulated heat pipe (c.f. Chapter II). The cases shown represent five typical cases with different mass flow rates. The pressure varied due to shear-stress as well as mümentum effects. From the discussion of ideal (shear-stress free) flow with mass injection/extraction (c.f. Chapter II). the pressure at the end of the pipe matched that at the beginning. This had to be the case because, without shear stress, no other forces were present to make the end pressures other than equal. In ideal flow, pressure variations are due only to momentum (acceleration/deceleration) effects. In Figure 3.1, then, it is clear that shear is present and such "friction" eifects are manifest in the pressure drop between the pipe ends. The friction pressure drop increases with mass flow

Figure 3.1 Effect of Increasing Mass Flow Rate on Pressure
rate. Momentum effects can be seen in all of the cases shown. Most interesting is the highest mass-flow-rate case. In the evaporator region, $\varnothing<2 / L$ く $\varnothing .5$, the pressure drops with increasing $2 / L$ as the fluid accelerates due to mass addition. At the end of the evaporator, the pressure ratio was very close to 0.416 , the pressure ratio predicted by frictionless flow theory. This corresponds to sonic velocity at the "throat" (evaporator/condenser function) and choked flow. Theoretically, the mass removal in the condenser can either decelerate or accelerate the flow (c.f. Chapter II). For the highest mass-flow-rate case shown, the pressure continues to drop in the entrance region of the condenser. Referring again to the discussion in Chapter II, this corresponds to the flow continuing to accelerate to supersonic velocities. For the four subsonic cases shown, the mass removal caused the flow to decelerate and the pressure ratio to rise. For the supersonic case, the sharp increase in pressure between $2 / L$'s of 0.63 and 0.72 is due to a normal shock which is required to deccelerate the flow before it reaches the pipe end.

Because of the compressible nature of the flow. non-uniform mass injection and removal occur along the pipe studied. In Chapter II it was shown that the amount of wall mass transfer depends on the pressure difference across the pipe wall as described by Equation (2.12). As mass was added in the evaporator, the flow accelerated down the pipe and the pressure dropped (Figure 3.1). Because the external
pressure was constant along the pipe and the internal pressure varied axially along the pipe, the mass injection and removal varied along the pipe. The mass injection was smallest near the upstream end of the evaporator and highest near the evaporator/condenser junction. Similarly, the mass removal was smallest at the condenser/evaporator function and greatest at the downstream end of the condenser.

In the evaporator the effect of the increasing mass injection was to increase the rate of pressure drop axially along the pipe. An attempt was made to create a flow 3ituation witn uniform mass injection and extraction. This was done by axially varing the external pressures along the outside of the test section. This turned out to be difficult to do: however, the trend of approaching uniform mass transfer was to linearize the pressure variation in the evaporator. Smaller changes were noted in the condenser pressure distribution, probably due to larger Eriction forces affecting the pressure in that region.

Velocity Data
The velocity rake described in Chapter II was used to measure the radial variation in the axial velocity at different axial locations along the test section. Figures 3.2 through 3.6 are the velocity results which correspond to the five axial pressure distributions shown in Figure 3.1. The five profiles shown are at axial locations of 7. 11. 13 3/8, 17 3/8, and $213 / 8$ inches (measured from the upstream end of the pipe).

Figure 3.6 Experimentally Measured, Velocity Profiles $\dot{\mathrm{m}}=0.40 \mathrm{lbm} / \mathrm{sec}$

The velocity rake was 0.010 inches narrower than the inside diameter of the porous pipe. Thus, the radial location of the velocity probes was known to within 0.010 inches.

By examining Figures 3.2 through 3.6, several velocity rirends can be noted. The most obvious trends are 1) increasing veiocities occur at higher mass flow rates and 2) the axial variation in the velocities was increasing throwin the svaporator and then derressing in the condenser. The supersodic case (Figure 3.6) does not indicate supersonic velocities. This is believed to be due to experimental error caused by the velocity rake influencing the flow field. Studies conducted with a hot-film anemometer indicated that small disturbances in the supersonic evaporator flow would cause the flow to become subsonic. As will be discussed later, the velocity probe also affected the static pressures measured along the pipe. This would be another source of error in the implied velocity measurements.

The last observation to be discussed relates to the effect of mass injection and removal on the velocity profiles. In four out of the five cases shown, the velocity profiles in the condenser, when compared to those in the evaporator, are flatter in the center of the pipe with steep gradients near the pipe wall. Iater this will be shown to be due in part to turbulence in the condenser (as compared to laminar flow in the evaporator) and in part due to the
mass removal in the condenser.

Efiect of Velocity Probe on Fion Field
As inserred from the above discussion, the velocity probe and the not-film anemometer affected the flow field. Figure 3.7 demonstrates how the axial pressure distribution was affected dy the velocity probe. These pressure disturbances can be divided into two parts, that caused by the velocity raice and that caused by the probe shaft. When the velocity rake was in a region of large air velocities it would disturb the flow more than the probe shaft. Longer lengths of shaft produced greater pressure disturbances than shorter lengtins.

Turbulence Measurements
When numezicajly modeling the problem it was observed that a totally-turbulent flow model would over predict the friction pressure loss, while a totally-laminar model under predicted the presshre loss ithis has also been noted by Busse (26)]. To understand which parts of the flow were turbulent and whych were laminar 1 hot-film anemometer was user to measure turbulence levels. A digital volt meter measured the RMS of the hot-film's alternating voltage output. It was foind that the RMS of the alternating voltage was constant and small in the evaporator, consistent with the intergretation of laminar flow. As the hot-film anemometer was moveri into the condenser region, the RMS of the alternating volisige rose sharply over a small but

Figure 3.7 Effect of Velocity Rake on Flow
defined length of the pipe, indicating a region of transition in character of the flow from fully laminar to fully turbulent.

Figure 3.8 gives some representative examples of the measurements made. In Figure 3.8, the RHS of the alternating voltage moasured is normalized with respect to the RMS of the alternating voltage measured in the fully turbulent region. For all cases studied (up to Reynolds numbers based on pipe diameter of $1,900,090)$, the flow was always laminar in the evaporator region [Wageman and Guevara (16) observed a similar phenomenon!. This is believed to be due to the strong favorable pressure gradient in the evaporator. From Figure 3.8 it can also be seen that once the flow enters a region with an adverse pressure gradient In the condenser, the flow becomes turbulent. Except in the supersonic case (c.f. below), the transition region always started at the entrance to the condenser $(Z / L=0.5$ in Figure 3.8) near the pipe wall and then stretched down stream toward the center of the flow shannel where it was measured by the hot-film anemometer. At higher flow rates, transition in the center of the flow channel moved down stream. Figure 3.9 illustrates what the flow field may look like.

Such a description of the character of the flow is consistent with the fact that at higher flow velocities the beginning of the transition region moved down stream at the center of the pipe.

Figure 3.9 Turbulence Character of the Flow

All of the turbulence data followed the above trend except for the case where the flow became supersonic in the condenser. For the supersonic case the flow remained totally laminar until the shock was reached and then transition to turbulent flow abruptly occurred (i.e. no extended "transition region appeared to be present).

A second set of turbulence experiments was conducted to determine the axial Reynolds number . Eq (2.1g), at which the condenser flow wocid remain laminar. With the hot-film anemometer located in the condenser at the location $2 / L=$ 0.67, the system flow rate was decreased until the flow became laminar. Figure 3.19 contains the results. As can be seen, at axial Reynolds numbers below about 12,000 the flow was laminar. When the axial Reynolds number was 12.000, the Mach number at the simulated heat pipe's throat was 0.06, well in the subsonic range.

IV. Mathematical Flow Description

The flow field to be modeled is mathematically described in this chapter. The chapter is divided into five sections. First the general continuity, momentum and energy equations are presented in both vector and cylindrical form. Second, the closure relations needed to complete the set of equations will be presented. Third, the boundary conditions which relate to steady and transient simulated heat-pipe operation will be described, Fourth, the Reynolds-Averaged continuity, momentum and energy equations that were used for describing the turbulent flow will be developed. Lastly, there will be a discussion of how turbulence modeling was accomplished.

Governing Equations

The equations governing the motion of an unsteady, compressible, viscous gas with no body forces and no heat sources are derived from conservation laws of mass, momentum and energy (49:181-206).

The continuity equation in conservation form and using vector notation is:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{div}\{\vec{\rho} \mathbf{V}\}=0 \tag{4.1}
\end{equation*}
$$

Where ρ is the density, t is time, and \vec{V} is the velocity vector. When written in cylindrical coordinates, the equation becomes

$$
\begin{equation*}
\frac{\partial p}{\partial t}+\frac{1}{r} \frac{\partial\{r \rho v\}}{\partial r}+\frac{\partial\{\rho u\}}{\partial z}=0 \tag{4.2}
\end{equation*}
$$

Where r is the radial position, z is the axial position, v is the radial velocity and u is the axial velocity. The azimuthal terms have been eliminated from the general cylinarical continuity equation. Throughout the rest of this paper, cylindrical will refer to the general cylindrical form of an equation minus the azimuthal terms. Conservation of momentum in conservation form and using vector notation is

$$
\begin{equation*}
\frac{\partial\{\rho \vec{V},}{\partial t}+\operatorname{div}\{\rho \vec{V} \vec{V}\}=\operatorname{div}\{\bar{\gamma}\}-\operatorname{grad}\{p\} \tag{4.3}
\end{equation*}
$$

Where p is the pressure, and \bar{T} is the viscous stress tensor defines by

$$
\begin{equation*}
\overline{\mathbf{T}}=\mu\left[\nabla \overrightarrow{\mathbf{V}}+\nabla \overrightarrow{\mathbf{V}}^{\mathbf{T}}\right]+\lambda \operatorname{div}\{\overrightarrow{\mathbf{V}}\} \bar{\Pi} \tag{4.4}
\end{equation*}
$$

μ is the viscosity, λ is the second coefficient of viscosity and $\tilde{\eta}$ is the unit normal tensor defined by

$$
\bar{\eta}=\left[\begin{array}{lll}
1 & 0 & 0 \tag{4.5}\\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

When written in cylindrical coordinates, Equation (4.3) becomes

$$
\begin{equation*}
\frac{\partial\{\rho v\}}{\partial t}+\frac{1}{r} \frac{\partial\left\{r \rho v^{2}\right\}}{\partial r}+\frac{\partial\{\rho u v\}}{\partial z}=\frac{1}{r}\left[\frac{\partial\left\{r \sigma_{r r}\right\}}{\partial r}+\frac{\partial\left\{r \sigma_{z r}\right\}}{\partial z}\right]-\frac{\sigma_{00}}{r} \tag{4.6}
\end{equation*}
$$

$\frac{\partial\{\rho u\}}{\partial t}+\frac{1}{r} \frac{\partial\{r \rho u v\}}{\partial r}+\frac{\partial\left\{\rho u^{2}\right\}}{\partial z}=\frac{1}{r}\left[\frac{\partial\left\{r \sigma_{r z}\right\}}{\partial r}+\frac{\partial\left\{r \sigma_{z z}\right\}}{\partial z}\right]$

The stress terms are defined as

$$
\begin{align*}
& \sigma_{: r}=-p+2 \mu \frac{\partial v}{\partial r}+\lambda\left[\frac{1}{r} \frac{\partial\{r v\}}{\partial r}+\frac{\partial u}{\partial z}\right] \tag{4.8}\\
& \sigma_{\bullet r}=-p+2 \mu \frac{v}{r}+\lambda\left[\frac{1 \partial\{r v\}}{\partial r}+\frac{\partial u}{\partial z}\right] \tag{4.9}\\
& c_{z z}=-p+2 \mu \frac{\partial u}{\partial z}+\lambda\left[\frac{1 \partial\{r v\}}{r \partial r}+\frac{\partial u}{\partial z}\right] \tag{4.16}\\
& \sigma_{r z}=\sigma_{z r}=\mu\left[\frac{\partial r}{\partial z}+\frac{\partial u}{\partial r}\right] \tag{4.11}
\end{align*}
$$

Conservation of energy in conservation form, assuming no internal energy generation and no radiation heat Eransfer, can be writien as

$$
\frac{\partial}{\partial t}\left\{\rho\left[e+\frac{v^{2}}{2}\right]\right\}+\operatorname{div}\left\{\rho \vec{V}\left[e+\frac{v^{2}}{2}\right]\right\}=-\operatorname{div}[p \vec{V}]
$$

$$
\begin{equation*}
+\operatorname{div}[\bar{\tau} \cdot \overrightarrow{\mathrm{v}}]+\operatorname{div}[\vec{q}] \tag{4.12}
\end{equation*}
$$

Where is the internal energy per unit mass, and \vec{q} is the conduction heat transfer per unit area. When written in cylindrical coordinates, the equation becomes

$$
\begin{align*}
& \frac{\partial[\rho E]}{\partial t}+\frac{\partial}{\partial z}\left\{\rho u E-v \sigma_{z z}-u \sigma_{z r}+a_{z}\right\} \tag{4.13}\\
&+\frac{1}{r} \frac{\partial}{\partial r}\left\{r\left[\rho V E-v \sigma_{r r}-v \sigma_{r z}+a_{r}\right]\right\} \Rightarrow 0
\end{align*}
$$

where.

$$
\begin{equation*}
E=e+\frac{1}{2}\left\{u^{2}+v^{2}\right\} \tag{4.14}
\end{equation*}
$$

Equations (4.2), (4.6), (4.7) and (4.13) are the governing equations for the problem in conservation form. They can be written in vector form as

$$
\begin{equation*}
\frac{\partial \vec{U}}{\partial t}+\frac{\partial \vec{F}}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\{r \vec{G}\}=\frac{\vec{H}}{r} \tag{4.15}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \vec{U}=\left[\begin{array}{l}
\rho \\
\rho u \\
\rho v \\
\rho E
\end{array}\right] \quad \vec{F}=\left[\begin{array}{l}
\rho u \\
\rho u^{2}-\sigma_{z z} \\
\rho u v-\sigma_{z r} \\
\rho u E-u \sigma_{z I}-u \sigma_{z r}+q_{z}
\end{array}\right] \\
& \vec{G}=\left[\begin{array}{l}
\rho v \\
\rho u v-\sigma_{r z} \\
\rho v^{2}+\sigma_{t I} \\
\rho y E-v \sigma_{i r}-v \sigma_{r z}+q_{r}
\end{array}\right] \quad \vec{H}=\left[\begin{array}{c}
0 \\
0 \\
-\sigma_{\theta v} \\
0
\end{array}\right]
\end{aligned}
$$

Closure Relations

Upon examining equation (4.15), it can be seen that additional relations are needed to form a closed set of equations.

Stokes analogy can be used to relate the second coefficient of viscosity to the viscosity.

$$
\begin{equation*}
\lambda=-\frac{2}{3} \mu \tag{4,16}
\end{equation*}
$$

Fourier's law of heat concluction can be used to represent the energy flux as a function of temperature.

$$
\begin{align*}
& a_{r}=-k \frac{\partial T}{\partial r} \tag{4.17}\\
& \mathbf{G}_{z}=-k \frac{\partial T}{\partial z} \tag{4.18}
\end{align*}
$$

Where k is the thermal conductivity of the fluid.

The viscosity and thermal conductivity can be expressed as functions of temperature. For example, Sutherland's formula for viscosity is given by

$$
\begin{equation*}
\mu=C_{1} \frac{T^{3 / 2}}{T+C_{2}} \tag{4.19}
\end{equation*}
$$

where C_{1} and C_{2} are constants for a given gas. The Prandtl number

$$
\begin{equation*}
P_{r}=\frac{c_{p} \mu}{k} \tag{4.20}
\end{equation*}
$$

can be used to find the thermal conductivity onca the viscosity and specific heat at constant pressure are known. This is possible if Prandti number is assumed to be constinte shich is a fair assumption for most gases.

The additional relationships come from assuning that tiiz vapor is a perfect-gas. The perfect gas equation of state is

$$
\begin{equation*}
p=p R T \tag{4.21}
\end{equation*}
$$

where R is the gas constant. Also for an perfect gas. e $=$ e(T), or the internal energy is a Eunction of temperature only. The following relations hold true for a perfect gas.

$$
\begin{align*}
& c_{v}=\frac{d \bar{u}}{d T} \tag{4.22}\\
& c_{v}=\frac{R}{\gamma-1} \tag{4.23}
\end{align*}
$$

$$
\begin{align*}
& c_{p}=\frac{\gamma R}{\gamma-1} \tag{4.24}\\
& \gamma=\frac{c_{p}}{c_{y}}
\end{align*}
$$

where c_{v} and c_{p} are the specific neats at constant volume and presscue, respectively, and γ is the ratio of specific heats defined by Equation (4.25). Using Equations (4.22) to (4.25). Equation (4.21) can be rewritten in the forms:

$$
\begin{align*}
& \rho=[\gamma-1] \rho e \tag{4.26}\\
& T=\frac{[\hat{r}-1]}{R} \tag{4.27}
\end{align*}
$$

These last expressions complete the set of equations.
Equation (4.15) presented earlier applies to many cylindrical prob?ems. The boundary conditions which apply to a given probiem distinguish it from other problems which use Equation (4.15). Next the boundary conditions which apply to a heat pipe will be described.

Bounciary Conditions

At the ends of the simulated heat pipe, both the radial and axial velocity components were assumed to be zero, or

$$
\begin{equation*}
u[r, 0]=u[r, l]=v[r, 0]=v[r, L]=0 \tag{4.28}
\end{equation*}
$$

Where $[$ is the length of the heat pipe.
The axdal pressure gradient at the heat pipe-ends was handled in one of two different ways. One way was to set it equal to zero.

This technique has been reported to aid in the numerical stability of Einite-difference solutions and is a good assumption because the axial pressure gradient should be 3mall at the heat.-pipe ends. It gave the same results as the second method described below. A more complicated approach was to solve Equation (4.7), the axial momentum equation, for the axial pressure gradient term and then estimate the pressure gradient by approximating the expression using finite differences at $z=\sigma$ and $z=L$.

$$
\begin{equation*}
\frac{\partial p}{\partial z}=-\frac{\partial\left\{p u^{2}\right\}}{\partial z}+\frac{4}{3} \mu \frac{\partial^{2} u}{\partial z^{2}} \tag{4.36}
\end{equation*}
$$

This method required more computer $t i m e$ and did not improve the results. For this reason, the quicker, simpler approach was used.

The fourth boundary condition needed at the pipe ends was that for the total energy. The temperature was assumed to have no axial gradient at the pipe ends.

$$
\begin{equation*}
\frac{\partial T}{\partial z}[r, 0]=\frac{\partial T}{\partial z}[r, L]=0 \tag{4.31}
\end{equation*}
$$

Along the length of the heat fipe, the "no-slip" condition for the axial component of velocity was ussumed to apply (i.e., mass injection/extraci:ion was assumed to be in the radial direction only). This ied to the expression

$$
\begin{equation*}
u[R, Z]=0 \tag{4.32}
\end{equation*}
$$

Where R is the radius of the vapor space. The radial velocity component at the wall was dependent on the rate of vapor injection or extraction at the wall and could be varied axially along the pipe. The variation was specified as a funtion of position and time. This was done by specifying the pipe's outside enviornment pressure (source and sink pressure). The radial velocity at the wall was found from Equation (4.33).

$$
\begin{equation*}
\Delta\left(p^{2}\right)=A(\rho v)^{2}+B(\rho v) \tag{4.33}
\end{equation*}
$$

\bar{A} and B are properties of the porous pipe, $A\left(p^{2}\right)$ is the inside wall pressure squared minus the outside pressure squared. Further detalls on the above equation can be found elsewhere (48:55-119).

The radial pressure gradient at the wall was found in a similar manner to the axial pressure gradient at the heatpipe ends. One method was to set it equal to sero.

$$
\begin{equation*}
\frac{\partial p}{\partial r}[R, z]=0 \tag{4.34}
\end{equation*}
$$

The other alternative was to isolate the radial pressure gradient term in the radial momentum Equation (4.6) and then evaluate the expression at the heat pipe wall.

$$
\begin{equation*}
\frac{\partial p}{\partial r}=-\rho v \frac{\partial v}{\partial r}+\frac{4}{3} \mu\left(\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}-\frac{v}{r}+\frac{\partial^{2} v}{\partial z^{2}}\right) \tag{4.35}
\end{equation*}
$$

Both methods gave comparable results, thus the first, which used the least amount of computer, time was picked.

Along the axis of symmetry, symmetry boundary conditions were applied to all variajles.

$$
\begin{equation*}
\frac{\partial \rho}{\partial r}=\frac{\partial u}{\partial r}=\frac{\partial v}{\partial r}=\frac{\partial E}{\partial r}=0 \tag{4.36}
\end{equation*}
$$

An alternative to applying the symmetry boundary condition to the radial velocity was to set the radial velocity equal to zers along the pipe's center line. Both methods were tried. The symmetry condition gave the better results probably because of the numerical grid picised to handle the singular point in the governing equations at the centerine ($x=0$). In order to avoid the singular point, a grid network was constructed which straddied that point. When using the no radial velocity method, the radial velocity at the rodes closest to the centerline was set equal to zero. This prohibited mass from entering or leaving the center most section of the pipe. With the symmetry boundary condition, this problem was avoided. It was also observed that with the symmetry boundary condition, the radial velocity at the center of the pipe was always zero. Thus, the one boundary condition achieved both goals.

Rejnolds-Averaged Navier-Stokes Equations
For turbulent flow problems, an averaging process is used to solve for the mean motion which was of primary
interest. According to Cebeci and Smith (50:49) this averaging is valid for both steady and unsteady flows, provided that the interval over which the average is taken is long in comparision with the reciprocal of the mean frequency of the turbulenes.

Cebeci and Smith (50:47-61) introduced an averaging procedure which leads to a convenient form of the equations. The dependent variables are written in terms of time averaged mean and fluctuating terms

$$
\begin{align*}
& \rho=\bar{\rho}+\rho^{\prime} \\
& p=\bar{p}+p^{\prime} \\
& \sigma=\bar{\sigma}+\boldsymbol{\sigma}^{\prime} \tag{4.37}\\
& \boldsymbol{q}=\bar{q}+q^{\prime}
\end{align*}
$$

and mass averaged mean and fluctuating quantities

$$
\begin{align*}
& u=\tilde{u}+u^{\prime \prime} \\
& v=\tilde{v}+v^{\prime \prime} \\
& v=\tilde{e}+e^{\prime \prime} \tag{4.38}\\
& k=\tilde{k} \\
& \mu=\tilde{\mu} \\
& \lambda=\tilde{\lambda}
\end{align*}
$$

Note that the momentum and energy transport coefficients have been assumed to have no fluctuating components.

For any variable, E, the time average is defined as

$$
\begin{equation*}
\bar{f}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} d t \tag{4.39}
\end{equation*}
$$

In mass averaging, the mass flux is written as a single term and the mean velocity is defined as

$$
\ddot{u}=\frac{\bar{\rho} \bar{u}}{\bar{\rho}}
$$

Expressions similar to Equation (4.49) may also be written for the radial velocity and the internal energy. Upon substituting the variables, In terms of mean and fluctuating quantities, into Equations (4.2). (4.6), (4.7) and (4.13) and time averaging, the following mean flow equations result:

$$
\begin{equation*}
\frac{\partial \bar{\rho}}{\partial t}+\frac{1}{r} \frac{\partial\{r \bar{\rho} \tilde{u}\}}{\partial r}+\frac{\partial\{\bar{\rho} \tilde{u}\}}{\partial z}=0 \tag{4.41}
\end{equation*}
$$

$$
\frac{\partial\left\{\overline{\rho v^{\prime}}\right.}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r_{i}}\left\{r\left[\overline{\rho v^{2}}+\overline{\rho v^{\prime \prime 2}}\right]\right\}+\frac{\partial}{\partial z}\left\{\overline{\rho u v}+\overline{\rho u^{\prime \prime} v^{\prime \prime}}\right\}=
$$

$$
\frac{1}{r}\left[\frac{\partial}{\partial r}\left\{r\left[-\bar{p}+2 \tilde{\mu} \frac{\partial \tilde{v}}{\partial r}+\tilde{\lambda}\left(\frac{1}{r} \frac{\partial\{r \tilde{v}\}}{\partial r}+\frac{\partial \tilde{u}}{\partial z}\right)\right]\right\}+\frac{\partial}{\partial z}\left\{r \tilde{\mu}\left(\frac{\partial \tilde{v}}{\partial z}+\frac{\partial \tilde{u}}{\partial r}\right)\right\}\right]
$$

$$
\begin{equation*}
-\frac{1}{r}\left\{-\bar{p}+2 \tilde{\mu} \frac{\tilde{v}}{r}+\tilde{\lambda}\left[\frac{1 \partial\{r \tilde{r}\}}{\partial r}+\frac{\partial \tilde{u}}{\partial z}\right]\right\} \tag{4.42}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial\{\overline{p u}\}}{\partial} & +\frac{1}{\partial r} \frac{\partial}{\partial r}\left\{r\left[\bar{\rho} \tilde{u} \tilde{v}+\overline{\rho u^{\prime \prime} v^{\prime \prime}}\right]\right\}+\frac{\partial}{\partial z}\left\{\bar{\rho} \tilde{u}^{2}+\overline{\rho u^{\prime \prime 2}}\right\}=\frac{1}{r}\left[\frac { \partial } { \partial r } \left(r \tilde { \mu } \left[\frac{\partial \tilde{v}}{\partial z}\right.\right.\right. \\
& \left.\left.\left.+\frac{\partial \tilde{u}}{\partial r}\right]\right)\right]+\frac{\partial}{\partial z}\left(-\bar{p}+2 \tilde{\mu} \frac{\partial \tilde{u}}{\partial z}+\tilde{\lambda}\left[\frac{1 \partial\{r \tilde{v}\}}{r \partial r}+\frac{\partial \tilde{u}}{\partial z}\right]\right) \quad \text { (4.43) } \tag{4.43}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial[\bar{\rho} \tilde{E}]}{\partial t} & +\frac{\partial}{\partial z}\left\{\tilde{\rho u} \tilde{E}+\overline{\rho_{n}^{\prime \prime} E^{\prime \prime}}-\tilde{u} \bar{\sigma}_{2 z}-\tilde{u} \bar{\sigma}_{z 1}+\bar{a}_{z}\right\} \\
& +\frac{1}{\partial} \frac{\partial}{\partial r}\left\{r\left[\bar{\rho} \tilde{V} \tilde{\rho} \overline{\rho v^{\prime \prime} E^{\prime \prime}}-\tilde{v} \bar{\sigma}_{i r}-\tilde{v} \bar{\sigma}_{r z}+\bar{q}_{1}\right]\right\}=0 \tag{4.44}
\end{align*}
$$

where $\tilde{E}=\tilde{e}+\frac{1}{2}\left(\tilde{u}^{2}+\tilde{v}^{2}\right)$. In the development of Equation (4.44), the following terms were assumed to be small enough to ignore.

$$
\begin{aligned}
& \frac{\rho u^{\prime \prime}}{2}\left(u^{\prime 2}+v^{\prime 2}\right) \\
& \frac{\rho u^{\prime \prime}}{2}\left(\frac{u^{\prime 2}+v^{\prime \prime 2}}{\bar{\rho}}\right)
\end{aligned}
$$

Eq (4.41) to (4.44) differ from their laminar counterparts in that they contain the additional terms:

These terms represent the effect of the turbulent fluctuations on the mean motion.

Turbulence Model

The turbulent fluctuating averages are additional unknowns for which there are no corresponding equations. The equations must be closed by appropriate expressions for the unknowns. Most methods to date have been based upon the eddy viscosity concept. In this method, the Reynolds stress
is modeled as being proportional to the laminar stress of the mean flow, with the coefficient of proportionality being defined as the eddy viscosity. For example:

$$
\begin{align*}
& \overline{\rho v^{\prime \prime 2}}=2 \tilde{\mu} \frac{\partial \tilde{v}}{\partial r}+\tilde{\lambda_{t}}\left(\frac{1}{r} \frac{\partial\{r \tilde{v}\}}{\partial r}+\frac{\partial \tilde{u}}{\partial z}\right) \\
& \overline{\rho u^{\prime \prime}}=2 \tilde{u_{t}} \frac{\partial \tilde{u}}{\partial z}+\tilde{\lambda}_{t}\left[\frac{1}{r} \frac{\partial\{r \tilde{v}\}}{\partial r}+\frac{\partial \tilde{u}}{\partial z}\right] \tag{4.47}\\
& \overline{\rho u^{\prime \prime} v^{\prime \prime}}=\tilde{\mu}_{t}\left[\frac{\partial \tilde{v}}{\partial z}+\frac{\partial \tilde{u}}{\partial r}\right]
\end{align*}
$$

A similar eddy conductivity (k_{t}) for heat flux can be defined as

$$
\begin{align*}
& \overline{\rho u^{\prime \prime} e^{\prime \prime}}=\gamma \frac{\mu_{t}}{P_{r_{t}}} \frac{\partial \widetilde{e}}{\partial z} \\
& \overline{\rho v^{\prime \prime} e^{\prime \prime}}=\gamma \frac{\mu_{t}}{P_{r_{t}}} \frac{\partial \widetilde{e}}{\partial r} \tag{4.48}
\end{align*}
$$

$$
P_{r_{t}}=\frac{c_{p} \mu_{t}}{k_{t}}=0.9
$$

Upon substituting Equations (4.47) and (4.48) into Equations (4.41) through (4.44) the Reynolds-averaged cylindrical Navier-Stokes equations may be written as

$$
\begin{equation*}
\frac{\partial \vec{U}_{t}}{\partial t}+\frac{\partial \vec{F}_{t}}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\left\{r \vec{G}_{t}\right\}=\frac{\vec{H}_{t}}{r} \tag{4.49}
\end{equation*}
$$

where

$$
\vec{U}_{t}=\left[\begin{array}{l}
\bar{\rho} \\
\bar{\rho} \widetilde{u} \\
\bar{\rho} \tilde{v} \\
\bar{\rho} \tilde{E}
\end{array}\right] \quad \vec{F}_{t}=\left[\begin{array}{l}
\bar{\rho} \tilde{u} \\
\bar{\rho} \tilde{U}^{2}-\bar{\sigma}_{2 z} \\
\bar{\rho} \tilde{u} \tilde{v}-\bar{\sigma}_{2 r} \\
\bar{\rho} \tilde{U} \tilde{E}-\tilde{u} \bar{\sigma}_{2 z}-\tilde{u} \bar{\sigma}_{2 t}+\bar{q}_{z}
\end{array}\right]
$$

$$
\vec{a}_{i}=\left[\begin{array}{l}
\bar{\rho} \tilde{v} \\
\bar{\rho} \tilde{u} \tilde{v}-\bar{\sigma}_{i z} \\
\bar{\rho} \tilde{v}^{2}+\bar{\sigma}_{i t} \\
\bar{\rho} \tilde{v} E-\tilde{v}_{i n}-\tilde{v}_{i z} \bar{u}_{r z}+\bar{a}_{r}
\end{array}\right] \quad \vec{H}_{t}=\left[\begin{array}{c}
0 \\
0 \\
-\bar{\sigma}_{00} \\
0
\end{array}\right]
$$

and where

$$
\begin{aligned}
& \bar{\sigma}_{\mathrm{r}}=-\bar{p}+2\left[\tilde{\mu}+\mu_{\mathrm{t}}\right] \frac{\partial \tilde{v}}{\partial r}+\left[\tilde{\lambda}+\lambda_{\mathrm{t}}\right]\left[\frac{1}{r} \frac{\partial\{r \tilde{v}\}}{\partial r}+\frac{\partial \tilde{u}}{\partial z}\right] \\
& \bar{\sigma}_{\bullet \bullet}=-\bar{p}+2 \tilde{\mu} \frac{\tilde{v}}{r}+\tilde{\lambda}\left[\frac{1 \partial\{r \tilde{v}\}}{r \partial r}+\frac{\partial \tilde{u}}{\partial z}\right] \\
& \bar{\sigma}_{z z}=-\bar{p}+2\left[\tilde{\sim}+\mu_{t}\right] \frac{\partial \tilde{u}}{\partial z}+\left[\tilde{\lambda}+\lambda_{t}\right]\left[\frac{1 \tilde{r}\{\tilde{v}\}}{\partial r}+\frac{\partial \tilde{u}}{\partial z}\right] \\
& \bar{\sigma}_{i z}=\bar{\sigma}_{z r}=\left[\tilde{\mu}+\mu_{t}\right]\left[\frac{\partial \bar{v}}{\partial z}+\frac{\partial \tilde{u}}{\partial r}\right] \\
& \tilde{E}=\tilde{e}+\frac{1}{2}\left\{\tilde{u}^{2}+\tilde{v}^{2}\right\} \\
& q_{z}=-\left(\frac{\tilde{\mu}}{P_{s}}+\frac{\mu_{t}}{P_{r_{t}}}\right) \frac{\partial e}{\partial z} \\
& q_{r}=-\left(\frac{\widetilde{\mu}}{P_{r}}+\frac{\mu_{t}}{P_{r_{i}}}\right) \frac{\partial e}{\partial r}
\end{aligned}
$$

A model proposed by Baldwin and Lomax (51) was used to model the eddy viscosity. The turbulence model proposed by Baldwin and Lomaz is patterned after that of Cebeci and Smith (50) with modifications that avoid the necessity for finding the edge of the bourdary layer. It is a two-layer algebraic eddy viscosity model in which μ_{t} is given by

$$
\mu_{t}= \begin{cases}\left(\mu_{t}\right)_{\text {inner }} & y \leq y_{c r} \tag{4.50}\\ \left(\mu_{t}\right)_{\text {outer }} & y>y_{c r}\end{cases}
$$

where y is the normal distance from the wall and $y_{c r}$ is the smallest value of y at which μ_{t} values from the inner and outer formulas are equal.

The Prandti-Van Driest formulation is used in the inner region

$$
\begin{equation*}
\left(\mu_{t}\right)_{\text {inner }}=\left.\rho\right|^{2}|\omega| \tag{4.51}
\end{equation*}
$$

where $1=k y\left[1-\exp \left\{\frac{-y^{+}}{A^{+}}\right\}\right]$and $|\omega|$ is the magnitude of the vorticity

$$
\begin{equation*}
|\omega|=\sqrt{\left(\frac{\partial \widetilde{v}}{\partial z}-\frac{\partial \widetilde{u}}{\partial r}\right)^{2}} \tag{4.52}
\end{equation*}
$$

also

$$
\begin{equation*}
y^{+}=\frac{\sqrt{\rho_{w} \tau_{w}}}{\mu_{w}} y \tag{4.53}
\end{equation*}
$$

For the outer region

$$
\begin{equation*}
\left(\mu_{t}\right)_{\text {outer }}=K C_{c p} \rho F_{m} F_{k}(y) \tag{4.54}
\end{equation*}
$$

where K is the Clauser constant, $C_{c p}$ is an additional constant, and

$$
F_{w}=\left\{\begin{array}{c}
y_{\max } F_{\max } \tag{4.55}\\
\text { or } \\
c_{w k} y_{\text {max }} \frac{U_{\text {dif }}}{F_{\max }}
\end{array}\right\} \text { smallest }
$$

The quantities $F_{\text {max }}$ and $y_{\text {max }}$ are determined from the function

$$
\begin{equation*}
F(y)=y|\omega|\left[1-\exp \left(\frac{-y^{+}}{A^{+}}\right)\right] \tag{4.56}
\end{equation*}
$$

The quantity $F_{\text {max }}$ is the maximum value of $F(y)$ that occures in a profile and $y_{\text {max }}$ is the value of y at which it occurs. The function $F_{k}(y)$ is the Klebanoif intermittency factor
given by

$$
\begin{equation*}
F_{k}(y)=\left[1+5.5\left(\frac{C_{k} y}{y_{\max }}\right)^{6}\right]^{-1} \tag{4.57}
\end{equation*}
$$

The quantity $U_{\text {dif }}$ is the difference between the maximum and minimum total velocity in the profile (i.e., at a fixed z station)

$$
\begin{equation*}
u_{d i f}=\left(\sqrt{u^{2}+v^{2}}\right)_{\max }-\left(\sqrt{u^{2}+v^{2}}\right)_{\min } \tag{4.58}
\end{equation*}
$$

The second term in $U_{\text {dif }}$ is taken to be zero fexcept in wakes).

The constants appearing in the foregoing relations were determined by requiring agreement with the Cebeci formulation for constan: pressure boundary layers at transonic speeds. The values determined are

$$
\begin{aligned}
& A^{+}=26 \\
& C_{C p}=1.6 \\
& C_{k}=0.3 \\
& C_{w k}=0.25 \\
& k=0.4 \\
& K=0.0168 \\
& P_{r}=0.72 \\
& P_{r_{t}}=0.9
\end{aligned}
$$

Transition Region Model
Based on the experimental measurements presented in Chapter III, the flow was found to always be laminar in the
evaporator and usually turbulent in the condenser. A transition region model was needed to model the change from fully laminar to fully turbuient flow.

The model used was that of Dhawan and Narasimha (52). The transition region model is

$$
\begin{equation*}
r(\bar{x})=1-\operatorname{Exp}\left(-0.412 \bar{x}^{2}\right) \tag{4.59}
\end{equation*}
$$

where \bar{X} is the normalized streamwise coordinate in the transition region

$$
\begin{equation*}
\bar{x}=\left[\left(x-x_{i, 1}\right) / \Omega\right] \quad x_{t, 1}<x<x_{t, i} \tag{4.60}
\end{equation*}
$$

$x_{1, i}$ and $x_{2, f}$ denote the initial and final locations of the transition zone. Ω is a measure of the extent of the transition region defined by

$$
\begin{equation*}
Q=\quad x_{\Gamma=3 / 4}-x_{\Gamma=1 / 4} \tag{4.61}
\end{equation*}
$$

In the above mentioned model. three parameters are required, namely $x_{t_{1}}, x_{\Gamma=1 / 4}$ and $x_{\Gamma=3 / 4}$. For the present purpose, these parameters were obtained irom experimental data.
V. Numerical Solution Technique

The numerical approach that was used to solve the system of equations developed in chapter IV will be discussed in this chapter. The general solution procedure was that developed by MacCormack in 1969 (53). It is known as the Explicit MacCormack Method. The general procedure used by MacCornack will be described in the first part of this chapter. The presentation is paraphased from the presentation by Anderson, Tannehill and Pletcher (49:482-485). After the method has been described, the computer code that was used to solve the problem will be outlined. Lastly, the finite-difference grid that was used for the problem solution will be introduced.

Explicit HacCormack Method

When the Kaçormack scheme is applied to the compressible Navier-Stokes equation given by Equation (4.15) the following aigorithm results:

Predictor:

$$
\begin{align*}
U_{j, k}^{\overline{n+1}}=U_{j, k}^{n}+\frac{\Delta t}{\Delta z}\left(F_{j, k+1}^{n}-F_{j, k}^{n}\right) & -\frac{1}{r} \frac{\Delta t}{\Delta r}\left[r\left(G_{j+i, k}^{n}-G_{i, k}^{n}\right)\right] \\
& +\Delta t H_{j, k}^{n} \tag{5.1}
\end{align*}
$$

Corrector:

$$
\begin{align*}
& \qquad \begin{aligned}
& u_{j, k}^{n+1}=\frac{1}{2}\left[U_{j, k}^{n}+U_{j, k}^{\overline{n+1}}-\frac{\Delta t}{\Delta z}\left(F_{j, k}^{\overline{n+1}}-F_{j, k-1}^{n+1}\right)-\frac{1}{s} \frac{\Delta t}{\Delta r}\left\{r\left(G_{j, k}^{\overline{n+1}}-G_{j-1, k}^{\overline{n+1}}\right)\right\}\right. \\
&\left.+\Delta t\left(H_{j, k}^{n}+H_{j, k}^{\overline{n+1}}\right)\right]
\end{aligned} \\
& \text { where } z=k \Delta z \text { (5.2) and } r=j \Delta r \text {. This explicit scheme is } \tag{5.2}
\end{align*}
$$

second-order accurate in both space and time. In the present form of this scheme, forward differences are used for all spatial derivatives in the predictor step while backward differences are used in the corrector step.

The derivatives appearing in the viscous terms of \vec{F} and \vec{G} must be differenced correctly in order to majntain second-order accuracy. This is accomplished in the following manner. The z derivative terms in \vec{F} are differenced in the opposite direction to that used for $\frac{\partial \vec{F}}{\partial z}$ while the r derivatives are approximated with central differences. Likewise, the r derivative terms appearing in \vec{G} are differenced in the opposite direction to that used for $\frac{\partial \vec{G}}{\partial r}$, while the cross-derivative terms in \vec{G} are approximated with central differences. For example, jonsider the following term in \vec{F} which corresponds to the 2 -momentum equation

$$
\begin{equation*}
F_{3}=p u y-\mu \frac{\partial u}{\partial r}-\mu \frac{\partial v}{\partial z} \tag{5.3}
\end{equation*}
$$

In the predictor step, given by Equation (5.1), the term is differenced as

$$
\begin{equation*}
\left(F_{3}\right)_{j, k}^{n}=(\rho u v)_{j, k}^{n}-\left[\left(\frac{u_{j+1, k}^{n}-u_{j-1, k}^{n}}{2 \Delta r}\right)+\left(\frac{u_{j, k}^{n}-u_{j, k-1}^{n}}{\Delta z}\right)\right] \mu \tag{5.4}
\end{equation*}
$$

while in the corrector step, given by Equation (b.4), the term is differenced as

$$
\begin{equation*}
\left\{F_{3}\right\}_{j, k}^{\overline{n+1}}=(\rho u v)_{j, k}^{\overline{n+1}}-\left[\left(\frac{u_{i+1, k}^{\overline{n+1}}-u_{j-1, k}^{\overline{n+1}}}{2 \Delta r}\right)+\left(\frac{u_{j, k+1}^{\overline{n+1}}-u_{j, k}^{\overline{n+1}}}{\Delta z}\right)\right] \mu \tag{5.5}
\end{equation*}
$$

Because of the complexity of the compressible

Navier-Stokes equations, as yet, it has not been possible to obtain a closed-form stability expression for the MacCormack scheme applied to these equations; however, the following empirical formula can normally be used

$$
\begin{equation*}
\Delta t \leq \sigma(\Delta t)_{C F L} \tag{5.6}
\end{equation*}
$$

 inviscid CFL condition

$$
\begin{equation*}
(\Delta t)_{C F L}=\left(\frac{|u|}{\Delta z}+\frac{|v|}{\Delta r}+c \sqrt{\left(\frac{1}{\Delta z}\right)^{2}+\left(\frac{1}{\Delta r}\right)^{2}}\right) \tag{5.7}
\end{equation*}
$$

and c is the local speed of sound

$$
\begin{equation*}
c=\sqrt{\frac{\gamma p}{\rho}} \tag{5.8}
\end{equation*}
$$

Before each iteration the time step can be computed for each grid point using Equation (5.6). The smallest of these time steps is then used to advance the solution over the entire mesh.

After each predictor and corrector step, the primitive variables (ρ, u, v, e, p, T) are found by decoding the \vec{U} vector

$$
\vec{U}=\left[\begin{array}{l}
U_{1} \tag{5,9}\\
U_{2} \\
U_{2} \\
U_{4}
\end{array}\right]=\left[\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho E
\end{array}\right]
$$

[^1]\[

$$
\begin{align*}
& \rho=U_{1} \\
& u=\frac{U_{2}}{U_{1}} \\
& v=\frac{U_{3}}{U_{1}} \\
& E=\frac{U_{4}}{U_{1}} \\
& e=E-\frac{1}{2}\left(u^{2}+v^{2}\right) \tag{5.10}\\
& p=p[\rho, e] \\
& T=T[\rho, e]
\end{align*}
$$
\]

For both the predictor and corrector sweeps, artifical damping (a numerical smoothing term) was calculated and added to the problem variables. This damping was necessary to ensure a stable solution. The technique used for determining the amount of damping was that presented by MacCormack and Baldwin (54). The method uses a damping term that is proportional to the second derivative of pressure and is of significant magnitude only in regions of pressure oscillation, where truncation error is already adversely affecting calculation.

Computer Code
Figure 5.1 is a flow chart of the computer code used. The code was written by Dr. Joe Shany of the Flight Dynamics Laboratory, Wright Patterson Air Force Base. Appendir A contains a listing of the code.
define= constants and parameters \downarrow read flow data and control variables calculate remaining flow variaties \downarrow
initialize flow field SUBROUTINE PREAMB \downarrow
read physical grid's coordinates old problem new + read flow data from earlier problem \downarrow
transform physical grid \longleftrightarrow to computational grid \downarrow find time step to be used \downarrow

save flow data and grid for later use

Figure 5.1 Program Flow Chart

Fhysical Grid

Initially: the grids mred took advantage of early heatpipe vapor fiow solutinns by clustering grid points into areas where large g*adients were expected. Numerical experitaents were performed to compare the gria with slustering to a uniform grid. The mon-uniform grid had round off errors larger then those found with the uniformgrid by four oiders of magnitude. The uniform-grid solutions seemed to gire more stable results despite the coarse grid in the regions of large gradients. The grid used for most of the calculations had uniform spacing with 96 axial grid pointis and 85 radial grid points.

VI. Numerical Results

The results of the numerical simulation will be discussed in this chapter. First, there will be a discussion of the solution to the unsteady problem. Secondly, the steady-state solutions obtained will be compared with the experimental results. The numerical results were used to estimate friction coefficients that can be used in one dimensional models. The third section of this chapter will describe how this was done and present the results obtained. The chapter will be concluded with a discussion of the applicability of boundary-layer assumptions to heat-pipe vapor flow problems.

Transient Results
One of the original objectives of this research was to better understand the transient vapor dynamics of a heat pipe. The heat-pipe transient modeled was equivalent to an instantaneous lowering of the condenser environment temperature while maintaining the evaporator environment temperature at a constant value. Recause the experimental results were for a porous pipe with air injected or extracted through its wall, the actual transient modeled consisted of instantaneousiy lowering the condenser's external manifold pressure while maintaining the evaporator's external manifold pressure constant. The transient modeled would be equivalent to the heat-pipe transient described if the heat-pipe wall had no thermal capacitance and thus provides a "worst-case" situation.

Figures 6.1 and 6.2 represent the pressure response to the transient. The pressures at three locations in the pipe are plotted during the transient. The three locations are 1) the evaporator end of the pipe, 2) the center of the pipe, i.e., the evaporator-condenser junction, and 3) the condenser end of the pipe. All three points were on the pipe's center line.

As the transient began, mass was removed from the condenser end of the pipe along the entire region. This caused a drop in the condenser pressure. As the condenser's external pressure dropped, an expansion wave moved radially from the wall to the pipe's center iine. Upon reaching the center of the pipe, the expansion wave reflected as a compression wave. Upon reaching the outside wall, the compression wave reflected ofe the pipe wall as an inward moving expansion wave. These radially moving compressinn and expansion waves can be seen for quite some time in the two lower pressure plots. They are seen superimposed on the overall condenser pressure drop. More important than the radially moving waves are those that move axially in the pipe. Shortly after the trar lent began. a series of expansion waves began moving from the condenser region toward the evaporator. Also, a compression wave began traveling from the downstream end of the evaporator into the condenser. From Figure 6.2. it can be seen that when the different waves reached the ends of the pipe, the evaporator end pressure began to drop and the condenser end pressure

Figure 6.1 Pressure History Early in the Transient

Figure 6.2 Extended-time Pressure History During the Transient
stopped falling and began to rise. As can be seen from Figure 6.2, the pressure waves eventually diminish and steady state was reached. A check was performed to determine if the tire for the expansion and compression waves to move the length of the pipe, as predicted by the numerical results, was realistic. Assuming the axial expansion wave was moving at sonic velocity, it should reach the evaporator end of the pipe about 0.9 ms after the transient began. This corresponds well with the results shown in Figure 6.2.

Figures 6.3 and 6.4 are velocity plots for different instancs in time during the transient. They show how the expansion and compression waves affect the velocity field in the pipe. The times on Figures 6.3 and 6.4. A to C, correlate with the time scales in Figures 6.1 and 6.2. Figure 6.3A is an expanded view of the condenser. Most of the fluid motion is radially out of the condenser. The expansion wave from the evaporator has moved about $1 / 7$ of the way into the condenser. The resulting flow from the evaporator into the condenser can be seen in the figure. In Figure 6.3B the expansion wave has moved tyice as far into the condenser. The fluid is still stationary in the upstream end of the evaporator. The blank region in figure 6.3B corresponds to stagnant flow. In Figure 6.3C the axial expansion and compression waves have still not reached the pipe ends. At the end of the condenser, the radial flow can be seen to split and move both inward and outward. This may

be due to the radial expansion and compression waves that are still dominant in this region. In Figure 6.4A the axial expansion and compression waves have reached the ends of the pipe. It is interesting to note that at this time the mass moving from the evaporator into the condenser is not all leaving the condenser through the wall. Some of the mass stays in the condenser, helping to raise the condenser pressure to its steady-state distribution. In Figure 6.4B the flow can be seen to continue to develop. In Figure 6.4C steady-state flow is almost reached. It is interesting to contrast the radial variations in velocity between Figure 6.4C and Figure 6.4B. At the later times, the velocity profiles are approaching more of an internal pipe flow profile which has a definite boundary layer region. Earlier in the transient (Figures 6.4A and 6.4B) the velocity profiles are very flat.

Froin Figure 6.2 it can be seen that after about 3.2 ms . the vapo: transient has almost reached the steady-state value. This time is much faster than the time for a heat-pipe wall to respond to a transient. For example, a 1/32 inch thick sheet of copper with a convection heat transfer coefficient of 10øø Btu/hr-ft ${ }^{2}-F$ has a characteristic response time on the order of 0.24 seconds (assuming a lump parameter model). As a result of the difference between the response times of the vapor and the wall, the vapor is essentially always in steady state when compared to the wall. Thus, we may infer that for most
numerical heat-pipe models, it is a good assumption to use a steady heat-pipe vapor model in conjunction with a transient heat-pipe wall model.

Steady-State Solution

The experimental part of this research consisted of measuring steady-state spatial pressure and velocity variations in a simulated heat-pipe vapor region. This section will compare the steady-state numerical results to the experimental measurements. First the pressure data and then the velocity data will be compared.

Pressure Profiles. Figure 6.5 contains the numerically-determined pressures and the experimentally-measured pressures for three cases. The numerical simulations (solid lines) closely matched the experimental results. The maximum Mach numbers obtained in the flow fields for the three cases were $0.175,0.635$, and 1.70. For all three cases axial pressure drops where observed as the flow accelerated in the evaporator region due to mass injection at the wall. For the two subsonic cases, the pressure rose as it decelerated in the condenser due to mass removal. In the supersonic case, mass removal caused a further acceleration of the air in the condenser until a normal shock was encountered. Bystrov and Popov (22) reported observing a similar phenomena by infering the presence of the shock from temperature measurements on the inside of a sodium heat pipe. After the shock, tha pressure increased as the flow slowed down. The total frictisral

Figure 6.5 Numerical and Experimental Pressure Data
pressure loss is the Aifference between the pressures at the upstream end and down stream end of the pipe. if no friction was present, rotel pressure recovery would occur and the two end pressures would have been equal (c.f. Chapter II). It can be seen from Figure 6.5 that the amount of friction increazes with flow rate (or Mach number).

From the experimentri deta, for the low mass flow rate cases studied, the evaporator and condenser manifold pressures were uniform over the exterior of tine porous pipe. As the mass flow rate increased, however, the flow resistance into the diEferent chambers caused an axial variation in the manifold pressures. For example, in the evaporator manifold the pressure would decrease from the upstream end of the pipe to the center of the pipe, the evaporator/condenser function. This was because more flow was trying to go through the porous pipe near the downstream end of the evaporator where there was a lower internal pressure. The higher flow races through the camber valving (c.f. Figure 2.2) caused a larger f assure drop and thus a lower manifold presssure on the porous pipe. This same phenomenon was noticed in the condenser manifoid. There the pressure would increase from the entrance of the condenser to the end of the condenser. To obtair accurate internal pressure variations, the experimentally measired external pressure distribution had to be used as a boundary condition.

Velocity Profiles. Figure 6.6 illustrates a sample of
the velocity results obtained. The three radial variations in the axial velocities shown are for three different axial positions along the pipe. The middle line is for the Incation $X / L=0.29$ or about halfway down the evaporator. The upper most 1 ine is for the location $X / L=0.56$ or slightly down stream from tie evaporator/condenser junction. The lower curve is for $X / L=0.89$ or near the down-stream end of the condenser. The agreement between the numericai and experimental results is good. The numerical results were best for the evaporator region. In the condenser, the turbulence and mass eztraction at the wall cause a very flat velocity profile in the center of the pipe with a sharp velocity gradient at the wall. Because of the relative coarseness of the numerical grid, the sharp velocity gradient along the condenser wall could not be resolved as well as it was in the evaporator.

Numerical studies indicated that by increasing the number of radial gric points, the condenser velocity profile could be more accurately predicted. The problem with doubling the number of grid points was that four times as much computer time was needed to obtain a solution. To obtain the quality of results sought for this work, 25 radial grid points gave sufficient results without requiring excessive computer time.

Figure 6.7 illistrates how the radial velocity varies throughout the flow field for a maximum Mach number of 9.635. It is interesting to note that the maximum or
0t $x \nexists$ əวuefsta teṭpey
minimum radial velocity at a given axial location doesn't always occur at the pipe wall as might be expected. As the fluid moves radially toward the center of the pipe in the evaporator, the radial mass flow rate must decrease, becoming zero at the pipe center. It is believed that near the pipe wall the flow area decreases faster than the the mass flow rate. This causes the radial velocity to increase for a short distance. The abnormal behavior noticed in the condenser region is dxe to transient effects that were still present when the data in Figure 6.7 was obtained.

Friction Coefficients

Once the numerical solutions were shown to be valid. they were used to predict friction coefficients that could be used in simpler, one dimensional models. The friction coefficient found is defined by the equation

$$
\begin{equation*}
f=\frac{2 T_{w}}{\bar{\rho} \bar{U}^{2}} \tag{6.1}
\end{equation*}
$$

where T_{w} is the shear stress at the pipe wall, $\bar{\rho}$ is the average density and $\bar{U} i s$ the average velocity. This rection of chapter VI will describe how the friction coefficients were calculated. Also, useful functional representations of the data will be presented.

Kethod of Calculation. Two methods were used to approximate the friction coefficient defined by Equation (6.1). The two methods used different techniques for finding the wall shear stress. The most straightforward method approximated the shear stress at the wall with the
finite difference formula

$$
\begin{equation*}
\tau_{w}=-\left.\mu \frac{\partial u}{\partial r}\right|_{r=R}=-\mu \frac{3 u_{1}-4 u_{2}+u_{3}}{2 \Delta r} \tag{6.2}
\end{equation*}
$$

Where u_{1}, u_{2}, and u_{3} were axial velocities at the pipe wall. one grid point from the wall and two grid points from the wall, respectively. This method worked best for the evaporator region where the experimentai and numerical velocity profiles matched the closest. In the condenser, this method was suspected of underestimating the shear stress because of the error in the numerical velocity gradient results near the pipe wall.

In the second method, the shear stress at the pipe wall was approximated using a force balance on an eiement of fluid in the pipe. Figure 6.8 shows a typical fluid element studied.

Figure 6.8 Element of Fluid Used For Force Balance

The force balance took the form

Time Rate	Rate of		Rate of		
of change	Flow of		Flow of		Sum of the
of Momentum	Momentum	-	Homentum	+	corces on
in the	into the		out of the		the Element
Element	Element		Element		

Symbolicaily this can be written as

$$
\begin{gather*}
\frac{\partial M}{\partial t}=\left.2 \pi \int_{0}^{R} \rho u^{2}\right|_{k} d r-\left.2 \pi \int_{0}^{R} \rho u^{2}\right|_{k+1} d r+2 \pi \int_{0}^{R} p_{k} r d r \tag{6,3}\\
-2 \pi \int_{0}^{R} p_{k+1} r d r-T_{w} 2 \pi R \Delta x
\end{gather*}
$$

or

$$
\begin{gather*}
T_{w}=\frac{-1}{R \Delta x} \int_{0}^{R}\left(\left.\rho u^{2}\right|_{k+1}-\left.\rho u^{2}\right|_{k}+p_{k+1}-p_{k}\right) r d r \tag{6.4}\\
-\frac{1}{2 \pi R \Delta x} \frac{\partial M}{\partial t}
\end{gather*}
$$

The wall shear stress in Equation (6.4) was found by numerically integrating the pressure and velocity results from the numerical simulation. Simpson's rule was used for the numerical integration.

When calculating the friction coefficient, the momentum balance was used for the condenser region and the velocity gradient method was used for the evaporator. Figure 6.9 compares the two methods for calculating friction coefficient.

A great deal of time was spent studying and comparing the two methods of finding the friction coefficient.

Several factors led to using a combination of methods. From

Figure 6.9 Comparison of Friction Calculation Methods
the studies, it was found that either method could have been used in the evaporator region. If the numerical results used to calculate the friction were sufficiently steady (close to a steady-state solution), both methods gave the same result. Because the velocity gradient method was iess adversely effected by small non-steady terms, that method was used for calculations in the evaporator region. This resulted in a large savings in computer time because only a near steady-state solution was required.

The two different methods predicted results that varied by about a factor of 10 in the condenser region. It was felt that the coarse numerical grid (25 radial nodes) gave inaccurate near-wall velocity results in the condenser. This led to an under estimation of the shear stress when the velocity gradient method was used. Finer grid systems were studied. As more grid points were clustered near the wall, the velocity gradient method results converged toward the momentum method results. In another study, an overall force balance was performed on the control volume containing the vapor region. The integral of the wall shear stress along the pipe was compared to the pressure drop between the two pipes ends. The velocity gradient method under-predicted the pressure drop (over 95\% error) indicating that insufficient friction was being estimated along the pipe. The momentum method accurately predicted the pressure drop (less that 0.1% error). This, along with the grid study, stengthened the selection of the momentum balance method for
finding friction coefficients in the evaporator. As will be seen later, the large friction coefficient values predicted by the momentum method compare favorably with research done by others in this area. It will also be shown that they are needed if accurate results are to be obtained from one-dimensional models (c.f. Chapter VII).

Functional Dependence. Before presenting the results of the friction coefficient calculations, the motivation for selecting the variables used in representing the functional form of the friction coefficient data will be discussed. The equations to be studied are Equations (4.2) through (4.13) developed in Chapter IV. The dimensionless variables chosen were:

$$
\begin{array}{lll}
\mathrm{z}^{+}=\frac{z}{\mathrm{R}} & \mathrm{r}^{+}=\frac{\mathrm{r}}{\mathrm{R}} & \mathrm{u}^{+}=\frac{\mathrm{U}}{\bar{U}} \\
{\mathrm{v}^{+}=\frac{\mathrm{V}}{V_{0}}}^{\mathrm{v}^{+}=\frac{\rho}{\rho_{0}}} & \mathrm{p}^{+}=\frac{\mathrm{P}}{\rho_{0} V_{0} \bar{U}} \\
\mathrm{~T}^{+}=\frac{T}{T_{0}} & \mathrm{e}^{+}=\frac{T}{T_{0}} &
\end{array}
$$

where $\bar{U}=a \operatorname{local}$ mean axial velocity. R is the pipe radius. Vo is the local blowing or suction velocity at the pipe wall and ρ_{0} is the local fluid density at the pipe wall. After substituting these dimensionless variables into Equations (4.2) through (A.13), the dimensionless continuity. momentum, and energy equations shown below resulted.

$$
\begin{aligned}
& \xi \frac{\partial}{\partial z^{+}}\left(\rho^{+} u^{+} \frac{\rho_{0}}{\bar{\rho}}\right)-2 \rho^{+} u^{+} \frac{\rho_{0}}{\bar{\rho}}+\frac{1}{r^{+}} \frac{\partial}{\partial r^{+}}\left(r^{+} \rho^{+} v^{+}\right)=0 \\
& \xi u^{+} \frac{\partial}{\partial z^{+}}\left(\rho^{+} u^{+} \frac{\rho_{0}}{\bar{\rho}}\right)-2 \rho^{+} u^{+} \frac{\rho_{0}}{\bar{\rho}}-u^{+} \frac{R e}{R e_{w}} \frac{\rho_{0}}{\bar{\rho}} \frac{\partial \rho^{+}}{\partial z^{+}}+\rho^{+} v^{+} \frac{\partial u^{+}}{\partial \mathbf{r}^{+}}= \\
& -\frac{\partial p^{+}}{\partial z^{+}}+\frac{2}{R e_{w}} \frac{1}{r^{+}} \frac{\partial}{\partial r^{+}}\left(r^{+} \frac{\partial u^{+}}{\partial r^{+}}\right)+\cdots \cdot \\
& \frac{\operatorname{Re}_{w}}{\operatorname{Re}} \frac{\bar{\rho}}{\rho_{0}} \rho^{+} v^{+} \frac{\partial v^{+}}{\partial r^{+}}+\rho^{+} u^{+} \frac{\partial v^{+}}{\partial z^{+}}=-\frac{\partial p^{+}}{\partial z^{+}}+ \\
& \rho^{+} v^{+} \frac{\partial e^{+}}{\partial{r^{+}}^{+}}+\rho^{+} u^{+} \frac{\operatorname{Re}}{\operatorname{Re}} \frac{\rho_{w}}{\bar{\rho}} \frac{\partial e^{+}}{\partial z^{+}}=\frac{R e_{w}}{\operatorname{Re}} \frac{\bar{\rho}}{\rho_{0}} \frac{\bar{T}}{T_{0}} E c \gamma_{p^{+}}\left[\xi \frac{\partial}{\partial z^{+}}\left(\mathrm{P}^{+} u^{+} \frac{\rho_{0}}{\bar{\rho}}\right)\right. \\
& \left.-2 \rho^{+} u^{+} \frac{\rho_{0}}{\bar{\rho}}-\frac{R e}{R e} \frac{\rho_{0}}{\bar{\rho}} \frac{\partial \rho^{+}}{\partial z^{+}}\right]+4 \gamma \frac{E c}{R e_{w}} \frac{\bar{T}}{T_{0}}\left(\frac{\partial u^{+}}{\partial r^{+}}\right)^{2} \\
& +\frac{2 \gamma}{\operatorname{Re}_{w} P_{r}} \frac{1}{{ }^{+}} \frac{\partial}{\partial r^{+}}\left(r^{+} \frac{\partial T^{+}}{\partial r^{+}}\right)+\cdots \\
& \xi=\frac{-2 \int_{0}^{z^{+}} R e_{w} d z^{-}}{R e_{w}}, \quad \operatorname{Re}=\frac{\bar{\rho} \bar{u} D}{\mu}, \quad R e_{w}=\frac{\rho_{0} v_{0} D}{\mu}, \\
& \mathrm{Ec}_{\mathrm{c}}=\frac{\gamma-1}{2} \mathrm{Ma}^{2}, \quad \operatorname{Pr}=\frac{\mathrm{C}_{\mathrm{p}} \mu}{k}
\end{aligned}
$$

From these equations it can be seen that in general

$$
\begin{equation*}
u^{+}=u^{+}\left(z^{+}, r^{+}, \operatorname{Re}, \operatorname{Re}_{w}, M a, \operatorname{Pr}\right) \tag{6.7}
\end{equation*}
$$

By non-dimensionalizing and combining Equations (6.1) and (6.2) it can be shown that

$$
\begin{equation*}
f \times R e=-\left.4 \mu \frac{\partial u^{+}}{\partial r^{+}}\right|_{r^{+}=1} \tag{6.8}
\end{equation*}
$$

thus in general

$$
\begin{equation*}
f=f\left(z^{\frac{+}{+}}, \operatorname{Re}_{e}, \operatorname{Re}_{w}, M a, \operatorname{Pr}_{r}\right) \tag{6.9}
\end{equation*}
$$

Upon examining the friction coefficient results that follow, one of the tasks was establishing the functional relationship between f and the five dimensioniess groups shown in Equation (6.9). This was simplified by studying the results of earlier researchers. First, because all of the cases studied in this work used air as a working fluid, the Prandtl number could be assumed to be nearly constant. Thus, ro exiction coefficient dependence on Prandtl number was expected. Kinney (6) has shown that in the evaporator. the friction coefficient becomes independent of the radial Reynolds number at large values of blowing. Because this work was done at very high values of blowing. Kinney's assumption applies here also. The last assumption that was used in developing the functional relationship for friction
coefficient was that in the evaporator the friction coefficient was inversly proportional to the axial Reynolds number. Kinney (5) showed that this is also true for laminar flow in pipes with blowing

Results. Eleven numerical simulations were run using the two-dimensional Navier-Stokes code. For the different simulations, aspect ratios varying from L/D $=12$ to L/D $=96$ were modeled. Also the maximum flow velocity in the systems was varied from a Mach number if 0.1 to 1.0. The flow fields generaied hy the numerical simulation were used to estimat.e the friction coefficient as described above. Figure 6.10 is a plot of friction coefficient versus axial Reynolds number. The raw data is included as Appendix C.

The results in Figure 6.10 can be divided into three regions. Region 1 is the lower clusteriag of points. These points represent the friction coefficirnts predicted in the evaporator region. Region 3 of the data is most of the upper clustering of points. These data points represent the friction coefficients in the fully-developed turbulent flow region in the condenser. The Region 2 data is the friction coeffcient data where the flow is transitioning from laminar to turbulent in the condenser inlet region. In Region 2 the friction coefficient data is independent of axial Reynolds number. This is because the high-axial-Reynolds-number (much higher than 2000) laminar flow entering the condenser quickly transitions to turbulent flow.

Yuan and Finkelstein (14) and Kinney (\leqslant) were the first
©

Figure 6.10 Friction Coefficient Vs. Reynolds Number
to study lamj - incompressible flow in pipes with blowing. They showed that blowing caused a slight steepening jn the velocity gradients at the pipe wall, whicn resulted in an increase in frict :on coefficient. Their results can be represented using the expression

$$
\begin{equation*}
f \times \operatorname{Re}=16\left(1.2337-0.2337 e^{0.0363 R e_{w}}\right) \tag{6.10}
\end{equation*}
$$

where Rew is the radial Reynolds number defined as

$$
\begin{equation*}
R e_{w}=\frac{\rho_{0} V_{0} D}{\mu} \tag{6,11}
\end{equation*}
$$

The data in Region 1 of Figure 6.10 very closely matches the expression predicted by Kinney. The only variation is for large Mach numbers. For large Mach numbers, a compressibility affect needs to be included in the friction model that accounts for a rise in friction coefficient with Mach number. Figure 6.11 show how the friction coefficient in the evaporator region varies with Mach number. The least squares representation of the data including the compressibility affect is

$$
\begin{equation*}
f \times R e=16\left(1.2337-0.2337 e^{0.0363 R e_{w}}\right) e^{\frac{.6 M_{a^{2}}}{5}} \tag{6.12}
\end{equation*}
$$

where Ma is the Mach number based on the local mean velocity.

The data in Region 3 of Figure 6.10 were studied to

Figure 6.11 Effect of Compressibility on Friction Coefficients in Evaporator
find a convenient way of representing them functionaily. The compressible effects were assumed to be the same as in the evaporator. The friction data in the condenser can be functionally represented as

$$
\begin{gather*}
f=f^{*}\left[1+55 \operatorname{Re}^{0.1}\left(\frac{V_{0}}{\bar{U}}\right)^{0.9}\left(\frac{2 L_{c}}{D}\right)^{0.1} e^{\frac{G \mathrm{Ma}^{2}}{5}}\right] \tag{6.13}\\
f^{*}=\frac{0.046}{\operatorname{Re} 1_{5}} \tag{6.14}
\end{gather*}
$$

where L_{c} is the length of the condenser. This expression predicts the friction coefficient for fully-developed turbulent flow in a pipe with suction at the pipe wall. Figure 6.12 is a graph of the friction coefficient calculated using Equations (6.13) and (6.14) compared with the friction coefficient found from the numerical experiment described above.

The Region 2 numerical data represents friction coefficients for the region where the flow is transitioning from laminar to turbulent and from a region of blowing to a region of suction. This type of behavior has been modeled by Dhawan and Narasimha (52). Equation (6.15) is a modified form of their expression which closely models the friction coefficient in the condenser entrance region.

$$
\begin{equation*}
f=f_{T}+\left(f_{E}-f_{T}\right) e^{-0.412 \bar{x}^{2}} \quad x_{t, 1}<x<x_{t, f} \tag{6.15}
\end{equation*}
$$

where $\bar{x}=\left[\left(x-x_{i, 1}\right) / \Omega\right], \Omega=x_{\Gamma=3 / 4}-x_{\Gamma=v_{4}}$

Figure 6.12 Condenser (suction) Friction Coefficient Curve Fit Results
and f_{E} is the friction coefficient at the entrance to the condenser and f_{T} is the fully-developed, suction, friction coefficient (Equation (6.13)). The other values shown in Equation (6.15) were defined in the last section of Chapter IV and relate to the location and width of the transition region.

Comparison With Other Results. As mentioned earlier the friction coefficient expression found for the laminar, evaporator section of the pipe has also been reported by other authors. The first to develop such an expression were Yuan and Finkelstein in 1956 (14). They predicted that as mass injection increased, the friction coefficient would increase from the non-blowing friction coefficient. They showed that for laminar incompressible flow with large blowing rates the friction coefficient would approach

$$
\begin{equation*}
t=\frac{2 \pi^{2}}{R c} \tag{6.16}
\end{equation*}
$$

As was shown earlier this agrees very favorably with the results found by this research for small Mach numbers.

Aggarwall. et. al. (29) studied the effect of extraction on friction coefficients in porous pipes. In their experiments, the pipe inlet axial Reynolds numbers varied from 11, 600 to 101, 900 . Their experimental results for axial Reynolds number equal to 80.060 are compared with the results of this research in Figure 6.13.

Another comparison can be made. Kinney and Sparrow (41) analytically studied the effect of suction on turbulent
flow in a pipe. Their results are also shown in Figure 6.13. They limited their work to axial Reynolds numbers varying from 10,000 to 150.000 and blowing parameters -w to g.92.

The data used to develop the model presented in this paper was for axial Reynolds numbers between 20,000 and 2.30ø.0日g and for blowing parameters between 0.015 and 2.0. This represents both larger blowing parameters and axial Reynolds numbers than studiea by Aggarwal or Kinney.

The difference in the three sets of results, in the region where they overlap, is due to different models used for finding the non-blowing turbulent friction coefficient. Aggarawal et. al. were studying a rough pipe and thus used the Colebrook-white semi-empirical relation

$$
\begin{equation*}
\frac{1}{f^{* 1 / 2}}=3.48-4 \log \left(\frac{k}{R}+\frac{9.35}{R e f^{* 1 / 2}}\right) \tag{6,17}
\end{equation*}
$$

taking the roughness parameter $k / R=0.0913$. Kinney and Sparrow used the Blausius friction law.

$$
\begin{equation*}
f^{*} \frac{0.079}{\operatorname{Re}^{1 / 4}} \quad 5,000<\operatorname{Re}<30,000 \tag{6.18}
\end{equation*}
$$

This research used the high-axial-Reynolds-number, turbulent, non-blowing friction coefficient expression

$$
\begin{equation*}
f^{\bullet}=\frac{0.046}{R e v_{s}} \quad 30,000<\operatorname{Re}<1,000,000 \tag{6.19}
\end{equation*}
$$

Momentum-Flux Factor. When a one-dimensional approach is used to solve a flow problem, the axial momentum at a
given location, k, is calculated using the expression

$$
\begin{equation*}
M_{k}=\left.A \bar{\rho} \bar{U}^{2}\right|_{k} \tag{6.26}
\end{equation*}
$$

In reality, the axial momentum is

$$
\begin{equation*}
M_{k}^{*}=\left.\int_{A} \rho u^{2} d A\right|_{k} \tag{6.21}
\end{equation*}
$$

The ratio of $\frac{M_{k}}{M_{k}}$ will be defined as the momentum flux factor. In equation form, the momentum flux factor (ϕ) is defined as

$$
\begin{equation*}
\phi=\frac{\overline{\rho u^{2}}}{\overline{\bar{\rho} \bar{U}^{2}}} \tag{6.22}
\end{equation*}
$$

The momentum flux factor is useful in understanding the shape of the velocity proifle in a pipe. For example, Poiseuille flow in a pipe has a momentum flux factor of 1.33. The flatter the velocity profile, the smaller the momentum flux factor. Slug flow has a value of l.0. Below will be a brief discussion of how suction, blowing and compressibility effects influence the momentum flux factor for flow in porous pipes.

Figures 6.14 and 6.15 will be used throughnut the discussion. They are graphs of momentum flux factor versus Mach number. Figure 6.14 compares three cases where the pipe aspect ratio was constant; however, the rate of injection and extraction varied. Figure 6.15 compares three cases with approximatly the same maximum axial Reynolds

Figure 6.14 Momentum Flux Factor Versus Mach Number (Common Aspect Ratio)

Figure 6.15 Momentum Flux Factor Versus Mach Number (Common Reynolds Number)
number but with varing pipe aspect ratios.
Several general trends can be seen. Laminar. incompressible flow with large blowing rates produces flow with a momentum flux factor of 1.2337. This was also observed by Yuan and Finkelstein (14). As the Mach number increases in the laminar evaporator flow, the momentum flux factor decreases as a result of the flattening of the velocity profile. As was observed earlier, the flatter velocity profile corresponds to larger friction coefficient values which were seen at higher Mach numbers in the evaporator.

As the flow enters the condenser (a region with suction) and the flow transitions to turbulent flow, the velocity profiles become even flatter (smaller momentum fiux factors). The very flat velocity profiles in the condenser correspond to large friction coefficients. From Figure 6.15 it is interesting to note the effect of pipe diameter on the shape of the velocity profiles. As the aspect ratio increases (small diameter pipe) flatter velocity profiles result. At the end on the condenser, the velocity profile becomes less flat due to pipe-end effects. For the large diameter pipe, flow reversal was seen at the end of the condenser. These effects result in very large values of momentum flux factor at the pipe ends.

Term Size
To date, there has been disagreement as to when the full Navier-Stokes equations need to be used and when

Prandtl's boundary-layer equations will yield adequate and less-expensive solutions to heat-pipe vapor-flow problems (25). (26). This section of Chapter VI will describe a study that was performed to help better understand this problem. It will be shown that for short (fat) heat pipes or for pipes with large blowing rates the boundary-layer assumptions are not valid

The problem was addressed by first solving for the vapor flow field in a simulated heat pipe using the full Navier-Stokes solution technique. Once the solution was obtained, finite-difference techniques were used to approximate the size of the different terms in the continuity and momentum equations. To save computer storage, only the absolute value of the largest values calculated for each term were saved. Figure 6.16 is a sample of the results obtained. Figure 6.16 shows 5 different data sets corresponding to 5 different mass flow rates in a pipe 24 inches long and 2 inches in diameter (aspect ratio of 12). The terms are numbered. The numbers correspond to the following terms in the continuity and momentum equations.

$$
\begin{equation*}
\frac{\partial \rho u^{z}}{\partial z}+\frac{1 \partial r \rho u r}{r \partial r}=-\frac{\partial p}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu \frac{\mu u}{\partial r}\right)+\ldots \tag{6.23}
\end{equation*}
$$

Figure 6.16 Comparison, Term Sizes for Different Mass Flows

$$
\frac{\partial \rho v^{2}}{\partial r}+\frac{\partial \rho u v}{\partial z}=-\frac{\partial p}{\partial r}+\cdots
$$

(14)
(7)
(15)

It can be seen from Figure 6.16 that for increasing axial Reynolds numbers, the terms increase in size.

The steady-state boundary-layer equations in cylindrical coordinates are

$$
\begin{align*}
\frac{\partial \rho u}{\partial z} & +\frac{1}{r} \frac{\partial r \rho v}{\partial r}=0 \tag{6.24}\\
\frac{\partial \rho u^{2}}{\partial z}+\frac{1}{r} \frac{\partial r \rho u v}{\partial r} & =-\frac{\partial p}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu \frac{\partial u}{\partial r}\right) \tag{6.25}\\
\frac{\partial p}{\partial r} & =0 \tag{6.26}
\end{align*}
$$

Thus, the boundary-layer assumptions assume that only the terms 1. 2. 3. 16. 11, and 13 in Figure 6.16 should be significant. From the figure, it can be seen that terms 7, 14, and 15 from the radial momentum equation are not small.

To gain further insight into the problem the Navier-Stokes equations were non-dimensionalized. The dimensionless variables chosen are

$$
\begin{array}{ll}
U=\text { maximum axial velocity } & u^{+}=\frac{u}{U} \\
V=\text { average suction velocity } & \mathbf{v}^{+}=\frac{v}{V} \\
L=\text { pipe length } & z^{+}=\frac{z}{L} \\
D=\text { pipe diameter } & \mathbf{r}^{+}=\frac{r}{D} \\
D_{0}=\text { source air density } & \rho^{+}=\frac{\rho}{\rho_{0}} \\
& \mathbf{p}^{+}=\frac{p}{\rho_{0} U^{2}} \\
\text { Aspect Ratio } & A R=\frac{L}{D}
\end{array}
$$

$$
\text { Blowing parameter }=\quad \beta^{\prime}=\frac{V}{U}
$$

The resulting steady continuity and momentum equations can be ablureviated as

$$
\begin{align*}
& \frac{\partial{\rho^{+}}^{+}}{\partial{z^{+}}^{+}}-\frac{1}{2 r^{+}} \frac{\partial r^{+} \rho^{+} r^{+}}{\partial r^{+}}=0 \tag{6.28}\\
& \frac{\partial \rho^{+} u^{+}}{\partial z^{+}}+\frac{1}{2 r^{+}} \frac{\partial}{\partial r^{+}}\left(r^{+} \rho^{+} v^{+} u^{+}\right)=\ldots \tag{6.29}\\
& \beta^{\prime} \frac{\partial \rho^{+} v^{+} u^{+}}{\partial z^{+}}+\ldots \tag{6.30}
\end{align*}
$$

The blowing parameter and the aspect ratio were related using conservation of mass.

$$
\begin{aligned}
& \text { Mass flow through }=\text { Mass flow at the } \\
& \text { the wall center of the heat pipe }
\end{aligned}
$$

or

$$
\begin{align*}
\frac{\rho \pi D L V}{2} & =\frac{\rho \pi D^{2} U}{4} \tag{6.31}\\
\beta^{\prime} A R & =0.5
\end{align*}
$$

From Equation (6.30) it can be seen that the two terms in Equation (6.36) are of order β^{\prime} and $\frac{\beta^{\prime}}{2}$. This means that for large blowing rates or for small aspect ratios, the boundary-layer assumptions, which ignore these terms, are not valid. This theory was tested by finding how the term sizer varied for different pipe aspect ratios. The results of the stidy are illustrated in Figure 6.17. In Figure 6.17 the terms in question are normalized with respect to term *2, the axial transport of axial momentum term. It can be

seen that as the aspect ratio decreases the boundary-layer assumptions become less valid. In studying the flow fields for the small aspect ratio cases it was found that flow reversals occurred in the downstream end of the condenser (Figure 6.18A). It is felt that the ability to model this behavior is lost when the boundary-layer assumptions are made. Figure (6.18B) is a contour plot that shows how the normalized term * 7 varies throughout the flow field. From Figure 6.18 B it can be seen that the boundary-layer assumptions break down in the center of the pipe, between the evaporator and the condenser, and at the pipe ends.

VII One Dimensional Numerical Model

A simplified method for solving the simuiated heat-pipe vapor flow problem is described in this chapter. The chapter is divided into three sections. First, the governing equations solyed are presented. Secand, the solution technique is described. Third, the results obtained are presented.

Governing Equations
For this simplified solution, the flow was assumed to be compressible, one-dimensional, adiabatic, and steady. The form of equations emuloying influence coefficients presented by Shapiro (46) was used.

$$
\begin{equation*}
\frac{d M_{a}^{2}}{M_{a}^{2}}=F_{f, a} 4 f \frac{d x}{D}+F_{\dot{m}, a} \frac{d \dot{m}}{\dot{m}} \tag{7.1}
\end{equation*}
$$

where Ma is the Mach number, and the two influence coefficients are defined as

$$
\begin{align*}
F_{f, a} & =\frac{4 M_{a}^{2}\left(1+\frac{\gamma-1}{2} M_{a}^{2}\right)}{1-M_{a}^{2}} \tag{7.2}\\
F_{\dot{m}, \mathrm{a}} & =\frac{2\left(1+\gamma M_{a}^{2}\right)\left(1+\frac{\gamma-1}{2} M_{a}^{2}\right)}{1-M_{a}^{2}} \tag{7.3}
\end{align*}
$$

fis a friction coefficient defined early by Eq (6.1). γ is the ratio of specific heats, x is the axial coordinate, D is the hydraulic diameter, and \dot{m} is the mass flow rate. The rate of change of mass flow rate is dependent on the pressure difference across the pipe wall. (Eq 4.33), and can vary with axial location. Eq (7.1) can be solved exactly for the special case where $E=0$ (no friction) References
(20). (22). The frictionless solution is presented in Chapter II, Eqs (2.1) to (2.4). For the friction solution. a second expression was needed to relata the change in total pressure (PO) to the change in mass flow rate and to the friction coefficient. From Shapiro (46).

$$
\begin{equation*}
\frac{d P_{0}}{P_{0}}=F_{f, b} 4 f \frac{d x}{D}+F_{\dot{m}, b} \frac{d \dot{m}}{\dot{m}} \tag{7.4}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{f, b}=\frac{-\gamma M_{a}^{2}}{2} \tag{7.5}\\
& F_{m, b}=-\gamma M_{a}^{2} \tag{7.6}
\end{align*}
$$

Other useful relations are

$$
\begin{align*}
& \frac{T_{a}}{T_{b}}=\frac{1+\frac{\gamma-1}{2} M_{a}^{2}}{1+\frac{\gamma-1}{2} M_{a}^{2}} \tag{7.7}\\
& \frac{P_{b}}{D_{b}}=\frac{P_{o_{b}}}{P_{b_{a}}\left[\frac{T_{a}}{T_{b}}\right] \frac{\gamma}{\gamma-1}} \tag{7.8}\\
& \frac{\rho_{a}}{\rho_{b}}=\frac{P_{a} T_{b}}{D_{b} T_{a}} \tag{7.9}
\end{align*}
$$

These relate properties between two different locations, a and b, in the flow field.

Solution Technique
A marching technique was used to solve for the flow properties along the pipe. Initial properties were assumed at the upstream end of the pipe. Eqs (7.1) and (7.4) were integrated to find the Mach number and total pressure at
locations along the pipe. Once the Mach number and total pressure were known, Eqs (7.7) to (7.9) were used to find the temperature, static pressure, and density.

A predictor-corrector, finite-difference method of marching was used to obtain a solution or Eqs (7.1) and (7.4). First the influence coefficients were predicted based on the known Mach number at a previous solution location. Also, the change in mass flow rate between two grid points was predicted using Eq (4.33) with the pressure found at the last grid point and an external manifold pressure specified in the problem statement. Defining the grid points where properties were known with the subscript k and where they were sought by the subscrlpt $k+1$, Eqs (7.1) and (7.4) for the predictor step were

$$
\begin{align*}
& M a_{k+1, p}^{2}=M a_{k}^{2}+\exp \left\{F_{f, a} I_{k} 4 f_{k} \frac{\Delta x}{D}+F_{\dot{m}_{, a}} l_{k} \ln \left(\frac{\dot{m}_{k+1, p}}{\dot{m}_{k}}\right)\right\} \tag{7.10}\\
& P o_{k+1, p}=P O_{k}+\exp \left\{F_{f, b} l_{k} 4 f_{k} \frac{\Delta x}{D}+F_{\dot{m}, b} l_{k} \ln \left(\frac{\dot{m}_{k+1, p}}{\dot{m}_{k}}\right)\right\} \tag{7.11}
\end{align*}
$$

The corrector step in the solution repeated the above operations with the exception that the mass flow rate and the influence coefficients were re-calculated based on the average between the predicted and the previously known Mach number and static pressure

$$
\begin{equation*}
M_{a_{\bar{k}}}=\frac{M_{a_{k}}+M a_{k+1, p}}{2} \tag{7.12}
\end{equation*}
$$

$$
\begin{equation*}
p_{\vec{k}}=\frac{p_{k}+P_{k+1, p}}{2} \tag{7.13}
\end{equation*}
$$

$$
\begin{align*}
& M_{n_{k+1}}^{2}=M_{a_{k}}^{2}+\exp \left\{F_{f, a} f_{k} 4 f_{k} \frac{\Delta x}{D}+F_{m_{i, a}} I_{k} \ln \left(\frac{\dot{m}_{k+1}}{m_{k}}\right)\right\} \tag{7.14}\\
& P o_{k+1}=P o_{k}+\exp \left\{\left.\left.F_{f, b}\right|_{\bar{k}} 4 \xi_{k} \frac{\Delta x}{D}+F_{\dot{m}, b} \right\rvert\,-\frac{1}{k}\left(\frac{\dot{m}_{k+1}}{\dot{m}_{k}}\right)\right\} \tag{7.15}
\end{align*}
$$

Difficulties were encountered in solving the problem near Mach numbers of one. From a truncation error analysis, it was found that the lowest order truncation error term was of order $\frac{\Delta x}{\left[1-M_{3}^{2}\right]^{2}}$. Thus, as the Mach number approached unity, the truncation error became very large. To solve this problem, Δx was decreased faster than the Hach nur ber approached one. The expression

$$
\begin{equation*}
\Delta x=n\left[1-m^{2}\right]^{2} \tag{7.16}
\end{equation*}
$$

Where $n=0.010$ was used. Even though the truncation error was now less of a problem, the solution time increased rapidly when the flow velocity approached sonic velocity.

Another difficulty encountered was starting the matchirg technique. At the first grid location, the Mach number was always zero. Using zero in the predictor step of the solution predicted a Mach number of zero at the second grid point. This problem was overcome by assuming the flow was incompressible for the first step away from the upstream wall. This gave a non-zero Hach number at the second grid point that was used successfully to continue the marching process with the compressible model.

One more aspect of the solution method needs to be discussed before presenting the results. A starting internal pressure needad to be guessed to be used in finding the amount of mass injected through the wall. From this pressure subsequent pressures were found. The total mass injected and removed in the evaporator and condenser were determined by the external manifold pressure boundary conditions specified by the problem statement and the internal pressure distribution calculated by the marching scheme. If the starting internal pressure was quessed high, a problem of more mass removal than mass infected resulted. The opposite occurred if the initial pressure was guessed low. An iterative method was used to refine the initial pressure guess until the mass injected equaled the mass removed. The computer code used is included as Appendix C.

Results

During all of the numerical simulations, a porous pipe system with mass injection and mass removal like the one used for the two-dimensional Navier-Stokes solution technique and for the experimental portion of the research was modeled.

The first simulation assumed that there was no friction ($£=6$). This result was compared to the exact integration of Eq (7.1) for the no friction assumption and to the experimental data for the case studied. The results are shown in Figure 7.1. The two frictionless solutions compare favorably with each other; however, both models do a poor

Figure 7.1 Comparison, 1-D Frictionless Models
job of matching the experimental results, especially in the condenser region.

The second study conducted assumed that the friction coefficient needed in Eq (7.1) was the same as that used for non-blowing smooth pipe calculations. In the evaporator, the flow was assumed to be laminar or

$$
\begin{equation*}
f_{1}=\frac{16}{R e y} \tag{7.17}
\end{equation*}
$$

In most of the condenser the flow was assumed to be turbulent or

$$
\begin{equation*}
f_{t}=\frac{0.046}{R e^{1 / 5}} \tag{7.18}
\end{equation*}
$$

A smooth transition from the laminar region tc the turbulent region (Eq (6.15)) was used.

Figure 7.2 compares the experimental results to the smooth pipe friction solution. Adding the smooth pipe friction coefficients only slightly improved the results. It is clear that larger friction coefficient values are needed to match the experimental results.

The third simulation used the friction coefficient model developed using the two-dimensional computer code, reported in Chapter VI. Eqs (6.12). (6.13) and (6.15). Figure 7.3 compares the numerical results with the experimental data. Extremely good results were obtained.

Figure 7.2 1-D Model with Smooth Pipe Friction

Figure 7.3 1-D Model with Improved Friction Model

VIII. Conclusions and Recommendations

Conclusions
As z result of the numerical and experimental studies conducied, expressions for friction coefficient as functions of local axíl Reynolds number, Mach number, pipe aspect ratio, and radial Reynolds number were developed. The expressions were shown to give excellent results when pressures calculated using the friction coefficients in a one-dimensional model were compared with experimental data. The expressions are valid for Mach numbers up to one with maximum axial Reynolds numbers between 30.000 and 2.000.000; and for radial Reynolds numbers ranging from ± 190 to ± 20.999.

An interesting cutcome of this research was a better understanding of the effect of mass injection and suction and/or axial pressure gradients on transition from laminar to turbulent flow. It was observed that mass
injection/favorable pressure gradients caused flows to stay laminar. For all cases studied, the flow always remained laminar in the evaporator. Axial Reynolds numbers based on pipe diameters as high as $1.006,000$ where tested. In the condenser region, a region with mass removal and an adverse pressure gradient, the flow was found to stay laminar at axial Reynolds numbers less than 12,006. For most cases studied, the flow entering the condenser was laminar with an azial Reynolds number much larger than 12,000. For all of these cases the flow was observed to transition from fully
laminar to fully turisulent in the condenser entrance region.
An interesting edperimental and numerical observation We:s that supersonic velocities could be obtained as a result of mass removal from a constant area pipe.

One goal of this research was to better understand the vapor dynamics of heat-pipe transients. It was found that the simulated vapor transient phenomena occur very quickly when compared to the slow thermal response of heat-pipe walls, wicks and liquids. It is felt that a s'eady-state vapor model can be used in conjuction with a transient wall model when studying most heat-pipe transients.

A numerical study was conducted to help understand when boundary-layer assumptions can be made and when the full Navier-Stokes equations need to be solved. It was found that for large blowing parameters (above 0.02) or for pipes with small aspect ratios (L/R < 24) the boundary-layer assumptions are invalid. However, for most heat-pipe applications, the boundary-layer assumptions will give good results because most heat pipes have larger aspect ratios than 24. For pipes with small aspect ratios the boundary-layer assumptions are only invalid in small regions near the pipe ends and near the evaporator/condenser junction.

Recimmendations

There will always be more work that can be done to better understand heat-pipe vapor dynamics. Some ideas for further research are:

1) Intermediate radial Reynolds number, compressible flow experiments could be conducted to bet"er verify the friction coefficient expressions presented in Chapter 6 (Equations (6.12) and (6.13)).
2) The turbulence studies could be refined to better determine how and where turbulence begins. This would require measuring the turbulence in the pipe as a function of both radial and axial position, not just along the center line of the pipe as was done with this research. It would also be interesting to study what happens to a high-axial-Reynolds-number laminar flow leaving the evaporator when it enters an rdiabatic region.
3) Perform experiments to measure the transient flow behavior. Such work could be used to validate the transient portion of the numerical results. A movie of the transient flow behavior predicted by the numerical study might also be made to help visualize what happens during the transient.
4) Ultimately, the experimental and numerical work should be extended from the simulated heat pipe with air to an actual heat pipe involving an evaporating liquid.

APPENDIX A: Experimental Data

This appendix contains much of the raw experimental data obtained during the experimental portion of this research. . Each data file has a name made up of two parts. The name first tells the target mass flow rate for the data run. Next, the file name gives the location of the velocity rake when the data was taken. For examle, file MG3日A had a target mass flow rate of $0.030 \mathrm{lbm} / \mathrm{sec}$ of air and the velocity rake was in position A (at the upstream end of the evaporator).

Each data files contains the following information:

1) the actual system mass flow rate
2) 36 pressure measurements (psia).
3) for all data runs the supply air temperature was at $75 \mathrm{~F}+5 \mathrm{~F}$.

Figure B. 1 can be used to determine the velocity rake location, A through 0 , and locate where the 36 pressure measurements were made. In general, pressure measurements 1 - 2 where for the orifice plate, 3-8 for the evaporator manifold pressures, $9-23$ were for the inside of the porous pipe, 24 - 30 were for the velocity rake stagnation pressures, and $31-36$ were for the condenser manifold. Velocity rake locations A through O correspond to pressure taps 9 through 23, respectively. In Figure B.1, pressure taps 9 and 23 were at the ends of the test section. Taps 18 and 22 were 1 inch from the test secton ends. Taps 10-15 and 17-22 were 2 inches apart. Pressure tape 16 is $0.99 \varnothing$ was 24 3/8 inches.

Figure A. 1 Velocity Rake and Pressure Tap Locations

(1)	FILE:	MO, $\mathrm{OA}^{\text {A }}$		
	Mass flow rate (LBM/SEC)		2.908601E-02	
	PORT	PRESSURE	PORT	PRESSURE
	1	102.51,	19	18.71117
	2	98.16144	20	18.77452
	2	20.57509	21	18.7915
	4	20.37785	22	18.8157
	5	20. 2661	2	18.81501
	6	20.56544	24	18.99265
	7	20.40528	25	18.99722
	6	20.55941	26	19.00114
	9	19.02857	21	18.99205
	10	19.04751	28	18.989,8
	11	19.00\% 02	29	18.99592
	12	18.95477	د	18.99004
	12	18.89599	31	17.51)4
	14	18.77517	32	17.5055%
	15	18.62627	3s	17.51079
	16	18.5544 ;	24	17.50753
	17	18.56226	35	17.50557
	18	18.60929	56	17.50753
3	FILE:	MO, 0 B		
	MASS FLOW RATE (LBM/SEC) $=2.8599,6 \mathrm{E}-02$		$2.8599,6 \mathrm{E}-02$	
	PORT	PRESSURE	PORT	PRESSURE
	1	100.4989	19	18.62235
	2	96.206/5	20	18.69354
	,	20.25181	21	18.70594
	4	20.24528	22	18.72051
	5	20.23809	2	18.75076
	6	20.24005	24	18.92754
	7	20.28874	25	$18.925{ }^{1}$
	8	20.2394	26	18.92865
	9	18.929,	27	18.92/99
	10	18.92604	28	18.9>322
	11	18.89665	29	18.9,58
	12	18.86007	50	18.93583
	12	18.79084	31	17.45724
	14	18.69158	د2	17.4814
	15	18.55769	33	17.4592
	16	18.48193	34	17.5604j
	1%	18.49696	35	17.45462
	18	18.54157	36	1\%.48j36

FILE: MO,OCO			
MASS FLOW RATE (LBM/SEC) $=2.855925 \mathrm{E}-02$			
PORT	PRESSURE	PORT	PRESSURE
1	100.701 s	19	18.59:61
2	96.49411	20	18.66219
3	20.2s613	21	18.68047
4	20.2407	22	18.68962
5	20.2s287	2	18.69,54
6	20.25679	24	18.86922
7	20.25417	2.5	18.89469
8	$20.2 \leq 548$	26	18.89142
9	18.9129'7	27	18.88946
10	18.92016	28	18.89142
11	18.89665	29	18.90448
12	18.84897	j0	18.88489
12	18.78301	31	17.42981
14	18.6746	32	17.43177
15	18.54006	j	$1 \% .42589$
16	18.46561	34	17.42197
17	18.4806	25	$17.42,28$
18	18.528s	ك	17.41609

FILE: MO, OD
MASS FLUW RATE (LBM/SEC) $=2.845921 E-02$
PORT PRESSURE PORT PRESSURE

1	100.8757	19	18.624,
2	96.64367	20	18.66676
5	20.24528	21	18.6922s
4	20.25181	22	18.71513
5	20.24462	2)	18.70529
6	20.2」679	24	18.8620s
7	20.24658	25	18.92995
3	20.24462	26	18.9195
9	18.92146	27	18.92408
10	18.95061	28	:8.92995
11	18.9071	29	18.92995
12	18.86856	30	18.88554
13	18.79281	51	$17.465 \% 3$
14	18.69092	32	17.4592
15	18.55247	53	17.45854
16	18.47149	54	17.45s52
17	$18.50 \leq 49$	55	17.4592
18	18.556s9	56	17.46658

FILE: MOJOE			
MASS FLOW RATE (LBM/SEC) $=2.920515 \mathrm{E}-02$			
PORT	PRESSURE	PORT	PRESSURE
1	10.28218	19	18.78562
2	99.44542	20	18.84309
5	20.49149	21	18.8666
4	20.48692	22	18.88489
5	20.48627	2j	18.88097
6	20.48235	24	19.00375
7	20.47125	25	19.07951
8	20.47582	26	13.04845
9	19.1,568	27	19.12523
10	19. 13306	28	19.11804
11	19.10106	29	19.11955
12	19.06057	20	19.02792
13	19.0063%	31	17.57806
14	18.88685	32	17.59177
15	18.75166	35	17.59439
16	18.66088	34	17.58459
17	18.6759	55	$17.581 \leq 2$
18	18.74056	36	17.57937
EILE:	MOsOF		
MASS FLOW RATE (LBM/SEC) $=2.911141 \mathrm{E}-02$			
PORT	PRESSURE	PORT	PRESSURE
1	103.055	19	18.75884
2	98.72211	20	18.80591
3	20.42598	21	18.81958
4	20.43665	22	18.83852
5	20.42945	2 s	18.85158
6	20.45206	24	$18.895 \leq 4$
7	20.49149	25	19.0605%
8	20.4,605	26	19.04555
9	19.1089	27	19.10172
10	19.088	28	19.09976
11	19.08408	29	19.0932
12	19.0449	30	18.91167
13	18.97828	31	17.56108
14	18.85746	32	17.55128
15	18.6968	53	17.55192
16	18.61516	34	17.55585
17	18.64;25	55	$1 \% .5604 \mathrm{~s}$
18	18.70072	56	17.5454

FILE:	MO, OG		
MASS FLUW RATE (LbM/SEC) $=2.907956 \mathrm{E}-02$			
PORT	PRESSURE	PORT	PRESSURE
1	103. 0459	19	18.76668
2	98.72245	20	18.79346
5	20.447\%	21	18.85199
4	$20.44,16$	22	18.84048
5	20.45426	2s	18.85787
6	20.4412	24	18.78627
7	20.44,16	25	19.00506
¢	20.44969	26	19.01616
9	19.10629	27	19.09518
10	19.09845	28	19.09061
11	19.07298	29	19.09584
12	19.04165	20	18.85002
12	18.9'7j06	31	17.56696
14	18.87705	52	17.57153
15	18.72292	33	17.54932
16	18.60276	34	17.55193
17	$18.6 \leq 149$	35	17.55389
18	18.68962	s6	17.55063
FILE:	MO 30 H		
MASS FLOW	RATE (LBM/SEC) =	. 029847	
PORT	PRESSURE	PORT	PRESSURE
1	105.5638	19	18.89077
2	101.1382	20	18.94106
5	20.65542	21	18.96391
4	20.064301	22	18.97456
5	20.64627	25	18.97959
6	20.63د86	24	18.8620 S
7	20.6417	25	19.05404
8	20.65452	26	19.12457
9	19.27087	27	19.2369
10	19.27152	28	19.22188
11	19.2569	29	19.21145
12	19.18205	30	18.91036
13	$19.1 \leq 241$	31	17.66818
14	19.05208	32	17.66688
15	18.88881	33	17.67276
16	18.79607	34	$17.6564{ }^{\text {j }}$
17	18.77321	55	17.66557
18	$18.8091{ }^{\prime}$	36	17.65904

FILE	MO, OI		
MASS FLUW RATE (LBM/SEC)		2.9542,3E-02	
PORT	PRESSURE	PORT	PRESSURE
1	104.5095	19	18.84048
2	100.1103	20	18.89469
3	20.54047	21	18.90971
4	$20.5,721$	22	18.92799
5	$20.5 s 721$	23	18.95804
6	20.52088	24	18.89358
7	20.52545	25	18.98612
8	$20.5,067$	26	19.02792
9	19.17421	27	19.12502
10	19.1970'7	28	19.1400
11	19.14286	29	19. 11608
12	19.09584	20	18.87575
13	19.04559	31	17.6179
14	18.91885	32	17.61202
15	18.79542	33	17.61724
16	18.72488	34	17.61267
17	18.720 s 1	35	17.60745
18	18.75689	36	$17.611 \leq 7$

FILE: MOsOJ
$\begin{array}{lll}\text { MASS FLOW RATE (LBM/SEC) }= & 2.927578 \mathrm{E}-02 \\ \text { PORT PRESSURE } & \text { PORT PRESSURE }\end{array}$

FILE:	MO2OK		
MASS FLUW KATE (LBM/SEC) $=2.921422 \mathrm{E}-02$			
PORT	PRESSURE	PORT	PRESSURE
1	105. 071	19	18.76995
2	98.95495	20	18.82285
5	20.40s32	21	$18.828^{\prime} 2$
4	20.39287	22	18.85942
5	20.38895	23	18.85942
6	20.38575	24	18.86007
7	20.39549	25	18.87248
8	20.3935	26	18.8666
9	19.05184	27	18.90579
10	19.05249	28	18.87505
11	19.01028	29	18.88554
12	18.97306	30	18.85028
13	18.90971	51	$17.56,69$
14	18.79803	s2	17.55651
15	18.65174	33	17.55781
16	18.59884	34	17.5552
17	18.61843	35	17.54279
18	18.70921	36	17.54671

FILE: $\mathrm{NO} O \mathrm{CM}$
MASS FLOW RATE (LBM/SEC) $=2.861617 E .02$
PORT PRESSURE PORT PRESSURE

1	101.5929	19	18.65762
2	$97.1 \leq 871$	20	18.72162
3	20.2j48j	21	18.74644
4	20.23809	22	18.7980,
5	20.2s61s	22	18.75754
6	20.23679	24	18.81566
7	20.2,809	25	18.784 ¢ 1
8	20.22438	26	18.77648
9	18.88685	27	18.80978
10	18.89926	28	18.8026
11	18.86791	29	18.78889
12	18.83003	30	18.74121
15	18.77582	31	17.46246
14	18.6759	32	1\%.4716
15	18.54006	33	17.4703
16	18.47952	34	17.4605
17	18.50087	35	17.47422
18	18.57794	26	17.46507

FILE: MO」00
MASS FLOW RATE (LBM/SEC) $=2.99 ; 901 E-02$

PORT	PRESSURE	PORT	PRESSURE
1	101.3505	19	18.62888
2	96.67959	20	18.68831
3	20.24005	21	18.71901
4	20.2087	22	18.75207
5	20.21785	23	18.74121
6	20.19303	24	18.7288
7	20.19499	25	18.75729
8	20.20544	26	18.73142
9	18.8620,	27	18.77648
10	18.85354	28	18.7608
11	18.82742	29	$18.7790 y$
12	18.8058%	30	18.72684
$1 j$	18.75035	31	$17.46 j 11$
14	18.6439	32	$17.46 \leq 11$
15	18.51459	33	17.46116
16	18.45255	34	17.45985
17	18.46887	35	17.46116
18	18.55769	36	17.45201

FILE: MO60A
MASS FLOW RATE (LBM/SEC) $=6.04152 j E-02$
PORT PRESSURE PORT PRESSURE

1	110.596j	19	23.08687
2	91.864,6	20	23.31022
3	26. 25011	21	23.40819
4	26.33011	22	23.4957
5	26. 32684	25	23.52509
6	26.33991	24	24.15467
7	26.32664	25	24.172,
8	26.32795	26	24.1755\%
9	24.187s2	27	24.16645
10	24.18994	28	24.15467
11	24.11418	29	24.14487
12	23.97768	so	24.14683
12	2s.7556;	31	21.011,5
14	23.35855	s2	20.90816
15	22.87266	5	20.8951
16	22.53697	34	20.8964
17	22.58268	35	20.88792
18	22.75224	6	20.87s55

FILE: M090A

MASS FLUW RATE (LBM/SEC) $=8.91 \mathrm{I} 799 E-02$
PORT PRESSURE PURT PRESSURE

1	108.7409	19	25.85\%
2	58.76841	20	26.34513
5	s0.89j9	21	26.50448
4	50.87059	22	26.6978
5	30.86451	23	26.76703
6	30.85969	24	27.96957
7	,0.8,8,9	25	28.00202
8	30.82271	26	27.99941
9	28.06406	27	28.00267
10	28.07451	28	28.0079
11	$27.94,24$	29	28.00463
12	27.72511	50	28.0079
12	27. 24632	31	22.87592
14	26.62204	32	22.8785s
15	25.5947	33	22.872
16	24.89005	34	22.86578
17	24.98085	25	22.86482
18	25.25055	د6	22.8452s

FILE: M090C
MASS FLOW RATE (LBM/SEC) $=8.821221 E-02$
PORT PRESSURE PORT PRESSURE

1	$10 \% .6554$	19	25.85401
2	$58.2 s 875$	20	26.2680%
3	50.69862	21	26.40456
4	$s 0.70516$	22	26.55085
5	$30.70 \% 77$	$2 s$	26.6129
6	20.69144	24	27.65392
7	30.6934	25	$2 \% .89 s 61$
8	20.68491	26	27.95892
9	27.96087	27	$2 \% .97524$
10	27.96479	28	27.97198
11	$27.83 j 52$	29	$27.9824 s$
12	27.60364	30	27.71988
$1 s$	27.25007	$s 1$	22.81322
14	26.54759	$s 2$	22.81518
15	$25.5418 j$	$3 s$	22.81127
16	$24.8221 j$	34	22.82106
17	24.96254	$s 5$	$22.822 \leq 7$
18	25.50215	$s 6$	22.79167

FILE: MOYOG
MASS FLUW RATE (LBM/SEC) $=8.907914 \mathrm{E}-02$

PORT	PRESSURE	PORT	PRESSURE
1	108.6971	19	25.94609
2	58.78212	23	26. 9215
3	31.07807	21	26.52604
4	$31.08 \leq 5$	22	26.60776
5	31.05979	2s	26.73045
6	$3 i .15579$	24	26.59657
7	31.04607	25	27.61017
8	31.05105	26	27.65196
9	28.26717	27	28.23048
10	28.25868	28	28.13264
11	28.1522;	29	28.147
12	27.92887	30	26.82776
13	27.61212	د?	22.92817
14	26.97667	52	22.92686
15	26.00161	33	22.9249
16	24.93119	34	22.95209
17	25.05005	35	22.9 .143
18	25.41448	36	22.89421

FILE: MOYOI

MASS FLOW RATE (LBM/SEC) $=8.89^{\circ}(614 E-0.2$
PORT PRESSURE PORT PRESSURE

1	108.5756	19	$25.546,6$
2	58.72204	20	25.9585
5	30.99774	21	26.09565
4	17	22	26.25476
5	30.98599	23	26.28962
6	50.90175	24	25.79066
7	50.77895	25	26.74025
8	$30.6894{ }^{\circ}$	26	26.97406
9	27.84528	27	2\%.698.35
10	27.8028,	28	27.54028
11	27.6532\%	24	27.48543
12	27.59726	30	26.07606
13	27. 10467	31	22.59966
14	26.44244	s2	22.59509
15	25.54575	33	22.59575
16	24.97038	34	22.5964
17	24.92336	35	22.59052
18	25.02393	36	22.56505

FILE: MOGOK
MASS FLOW RATE (LBM/SEC) $=8.748751 \mathrm{E}-02$
PORT
PRESSURE

106.747	19
$57.7169 s$	20
30.37012	21
30.36228	22
$30.3616 s$	21
30.35771	24
30.345,	25
20.34465	25
$27.5 s j 1$	27
27.52265	28
27.4051	29
27.18435	30
26.86042	31
26.21909	32
25.30998	$3 د$
$24.699 s 5$	34
24.81756	35
25.1761	36

PRESSURE
25.67627 26.09569 26.26154 26. 58823 26.44636 26.23411 26.4718s 26.52016 27.09227 26.90,52 26.85585 26.28701 22.67,246 22.67216 22.67216 22.67758 22.67412 22.64864

FILE
M15A
MASS FLOW RATE (LBM/SEC) $=.1544902$

PORT	PRESSURE	PORT	PRESSURE
1	106.7526	19	29.925s9
2	103. 1276	20	51.22242
3	- 39.77156	21	31.64955
4	39.76418	22	32.25953
5	59.75096	23	32.4548
6	29.72826	24	35.69086
7	29.61797	25	35.74115
8	39.6799	26	55.75201
9	25.75552	27	$35.7,07$
10	35.74899	28	55.72809
11	35.4903	29	55.72874
12	34.9855	50	55.75527
12	24.27627	1	24.51724
14	32.48158	2	24.6739
15	29.58448	33	24.70002
16	27.14911	54	24.7268
17	27.4652	35	24.73725
18	28.s2271	56	24.03275

FILE: M15C
MASS FLOW RATE (LBM/SEC) $=.1542165$
PORT PRESSURE PORT PRESSURE

106.651	19	30.05078
103.0564	20	21.25508
39.74067	21	31.62212
39.74067	22	22.11455
59.72826	23	22.49791
$39.7021 s$	24	35.43681
$59.660,4$	25	$35.780,4$
39.66361	26	35.69086
35.73593	27	35.7196
35.79209	28	35.72939
25.52452	29	$35.701 \leq 1$
34.9274	30	35.52759
$34.1 s 912$	31	24.59096
32.42019	32	24.64843
29.55117	34	24.67128
27.22094	34	24.72553
27.4972	35	24.72027
28.45438	36	24.59879

FILE:
M15E
MASS FLUW RATE (LBM/SEC) $=.15,9294$

PORT	Pressure	PORT	PRESSURE
1	106.5791	19	29.95282
2	102.995	20	21.15054
s	39.17789	21	31.5s982
4	39.80467	22	21.97413
5	39.77529	23	32.16548
6	39.74594	24	34.48004
7	59.70756	25	د5. 25.877
8	s9.68581	20	35.41918
9	د5.7901s	27	35.75421
10	35.85062	23	د5.73527
11	35.5445\%	29	35.71699
12	35.05757	30	34.66486
13	34.32068	31	24.50409
14	s2.40321	$s 2$	24.60728
15	29.55509	3	24.63405
16	2\%.16413	34	24.65692
17	27.48545	35	$24.64 \leq 2$
18	28.42132	ر	24.54001

FILE: M15G
MASS FLOW RATE (LBM/SEC) $=.15,4545$

PORT	Pressure	PORT	PRESSURE
1	106.5511	19	$29.895 \leq 5$
2	102.9885	20	31.081s6
;	40.518	21	31.50129
4	40.52453	22	21.87878
5	40.35502	2	s2.0257?
6	40.52192	24	32.12303
7	40.51082	25	34.90062
8	40.22918	26	د4.95156
9	36.25505	27	36.2695
10	36. 27269	28	56.12713
11	36.09186	29	36.14084
12	35.6347	30	32.60567
13	34.89213	51	24.47405
14	35.58741	32	24.56157
15	30.9429	35	24.56875
16	27.07465	34	24.59487
17	2\%. 45998	35	24.59618
18	28. 30899	36	24.48 s 2

FILE: M15I
MASS FLOW RATE (LEM/SEC) $=.15 \mathrm{~s} 184$

PORT PRESSURE PORT
106.3708 19
102.814120
$40.02411 \quad 21$
$40.00 \leq 21$
40.00582
29.96599
39.950,1
39.94117
35.9521
35.97822
35.68435 35.18472 24.4944 ј2.875،9 s0. 28712
28.50688
28.65905
28.28418

19

22
23
24
25
26
27
28
29
50
31
32
3
34
35
56

PRESSURE
29.74056 50.87257 ± 1.24136 31.60448 د1.86572 $31.0350 j$ 32.62057 35.75054 35.81495 55.,29,05 $55.4 \leq 289$ 51.3021 24.44074 24.54981 24. 52569
24.54459
24.56745
24.44793

FILE: M15K
MASS FLOW RATE (LBM/SEC) $=.1534468$
PORT
PRESSURE
PORT

19
20
21
22
39.19\% 25
39.1796724
$39.12154 \quad 25$
$39.0915 \quad 26$
55.0」255 27
35.02928 28
$34.76955 \quad 29$
34.24165 so
33.46905
51.87486

51
52
29.29581 s3
$27.2490 s$ s s
$27.61084 \quad 35$
$28.60158 \leq 6$

PRESSURE

$$
\begin{aligned}
& 29.82285 \\
& s 1.01148 \\
& 31.55942 \\
& 31.91862 \\
& s 2.03291 \\
& 31.5137 \\
& 32.205 \leq 2 \\
& 32.35684 \\
& 34.12737 \\
& 35.50432 \\
& .33 .38958 \\
& 21.5666 \\
& 24.45315 \\
& 24.57006 \\
& 24.57659 \\
& 24.61447 \\
& 24.59422 \\
& 24.4845
\end{aligned}
$$

FILE:	M15M		
MASS ELOW	RATE (LBM/SEC) =	. 1554006	
PORT	PRESSURE	PORT	PRESSURE
1	106.4786	19	29.8849
2	102.914\%	20	51.17736
3	39.0464 j	21	51.68481
4	59.04121	22	s2.08711
5	29.02794	2s	د2.15112
6	39.01901	24	52.09887
7	58.9\%1902	25	$22.156,4$
6	28.956,1	26	$こ 2.15046$
9	24.85621	27	2.2'455
10	24.8856	28	32.23198
11	54.58975	29	s2.22622
12	34.07512	50	32.0s552
13	33.31754	51	24.37805
14	j1.69526	32	24.47862
15	29.08095	33	24.50475
16	27.01457	34	24.56287
17	27.35548	35	$24.5,9,6$
18	28.28809	$s 6$	24.4,095

FILE: M150
MASS FLOW RATE (LBM/SEC) $=.15,6,21$
PORT PRESSURE PORT PRESSURE

1
2
5
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
$106.2892 \quad 19$
19
20
21
22
25
24
58.9008
38.88251

25
38.86226

26
34.79221
34.76547

27
28
$54.4898 \leq 29$
35.9921730
33.2221831
s 1.61754 s?
29.0182533
$26.95514 \quad 34$
$27.2745 \quad 35$
35
30
29.78889 31.09703 21.66587 22.07862 32.14198 ≤ 2.140067
32.14198
52.15414
s2. 15242
$32.154,8$
32.16418
s2. 16091
24. 59764
24.50475
24.52695
24.55895
24.55504
24.45511

FILE: M40A			
MASS	BaTE (LBM/SEC)	. 2818	
PORT	PRESSURE	PORT	PRESSURE
1	112.7265	19	55.68415
2	. 89.57382	20	46.55082
3	77.27223	21	48.8106
4	7\%.0763	22	54.02291
5	76.98096	2'	55.67914
6	76.90846	24	11.3572
7	76.91826	25	71.22463
8	76.7432	26	71.20177
9	$71.1 د 52$	27	71.02675
10	71.25576	28	15.57765
11	70.67146	29	69.75428
12	69.39728	30	70.78836
12	67.10167	51	15.37765
14	61.85516	32	15.57553
15	50.78946	35	$16.26 \leq 24$
16	25. 20265	34	18.292s8
17	19.79841	25	19.30271
18	15.45838	36	19.41635

FILE: M40C
MASS FLOW RATE (LBM/SEC) $=.376195{ }^{\circ}$
PORT PRESSURE PORT PRESSURE
34.94943
46.00101
48.96081
55.19152
54.84188
70.40565
70.97188
71.32585
71.51664
15.37765
70.71915
71.27948
15.37765
15.6108
16.2776
18.43084
19.48297
19.417

1	112.5938	19	55. 26291
2	90.32814	20	46.60642
3	78.00826	21	50.40087
4	77.80255	22	53.57358
5	77.60923	2.	55.2481
6	7\%.33885	24	68.66582
7	77.09295	25	$71.154 i$
8	75.66682	26	71.1423
9	70.98880	27	71.82678
10	71.0261	28	15.27765
11	70.4899	29	70.33316
12	69.3163	30	68.20996
1 s	67.24666	31	15.37765
14	$61.45 \leq 75$	32	15.57096
15	50.48447	33	$16.222 \% 4$
16	25.10411	34	18.26626
17	$19.8 \leq 825$	55	19.51186
18	15.41685	36	19.25806

FILE:
MASS FLOW RATE (LDM/SEC) $=.3843844$
PORT
PRESSURE

PRESSURE

FILE: M40G
MASS FLOW RATE (LBM/SEC) $=.570752$
PORT PRESSURE PORT PRESSURE

1	112.0871	19	$J 4.73391$
2	90.31116	20	45.08211
5	78.91214	21	$49.0927 s$
4	$79.02,16$	22	52.06232
5	$79.128,1$	$2 s$	52.82514
6	79.18578	24	60.7362
7	79.28897	25	68.36566
8	79.095	26	69.24446
9	$7 د .89446$	27	$7 s .17018$
10	74.08124	28	15.37765
11	73.6267	29	72.03772
12	$72.5778 j$	30	62.21787
15	70.67734	31	15.57765
14	66.41593	32	15.52524
15	$58.0015 د$	33	16.19205
16	23.72674	34	18.14609
17	18.86514	35	19.19626
18	15.37765	36	19.15577

FILE:	$\mathrm{M4OH}$		
MASS FLUW RATE (LBM/SEC) $=.2715094$			
PORT	PRESSURE	PORT	Pressure
1	112.1955	19	54.51578
2	90.53598	20	44.73211
3	80.49197	21	49.50352
4	80.53246	22	51.53325
5	80.79565	22	51.99768
6	80.9602%	24	56.89846
7	$81.0,468$	25	68.51691
8	80.90472	26	69.91583
9	75.47428	21	74.74543
10	75.91838	28	69.61868
11	75.37501	29	75.60775
12	74.03944	50	60.41992
15	$72.16 \% 69$	31	15.37765
14	68.2165	32	15.38614
15	60.51004	33	16.07123
16	50.4159	34	18.02005
17	16.3501	55	19.08654
18	15.37765	36	19.05193
FILE:	M40I		
MASS FLOW	RATE (LBM/SEC) =	. 3912754	
PORT	PRESSURE	PORT	PRESSURE
1	114.0592	19	34.01616
2	89.95849	20	42.44886
3	78.7959	21	46.5594
4	78.54315	22	49.92073
5	78.37987	2	50.54194
6	78.34265	24	54.0647
7	78.17741	25	65.51728
8	77.72483	26	65.43564
9	71.69485	27	72.18205
10	71.49108	28	66.51911
11	70.75833	29	70.7433
12	69.43712	s0	54.96401
13	\$7.26625	31	16.04968
14	62.58462	52	15.46255
15	53.2'12	33	16.13458
16	42.78716	34	17.65432
17	45.94941	s5	18.5497
18	15.57765	36	18.4746

FILE:	M40K		
MASS FLOW	RATE (LBM/SEC) $=$. 3923856	
PORT	pressure	PORT	PRESSURE
1	112.2,86	19	41.5456
2	87.5125	20	43.0079
2	76.20966	21	46.15,83
4	76.3246	22	48.95951
5	76.45065	23	50.17164
6	76.51008	24	47.51568
7	76.59171	25	55.87572
8	76.4206	26	59.9588
9	70.3566%	2%	66.62036
10	70.46051	28	66.32515
11	69.8,028	29	65.85166
12	68.45332	30	50.18666
13	65.89935	31	15.38548
14	60.39249	32	16. 52789
15	49.25249	33	16.85, 3
16	24.76058	34	18.17552
17	19.30206	35	18.97421
18	29.45564	36	18.7613

FILE: M4OM
MASS FLUW RATE (LBM/SEC) $=. \leq 950864$

PORT	PRESSURE	PURT	PRESSURE
1	115.4299	19	$34.955 \leq 1$
2	88.66081	20	46.57311
3	76.65025	2!	52.95'106
4	76.41603	22	56.22708
5	76.25578	23	57.0761
6	75.96215	24	54.79421
7	75.74139	25	50.41387
8	75.4011 s	26	56.99773
9	69.25055	27	60.82418
10	69.30585	28	$59.46,14$
11	68.705	29	58.64541
12	67.38511	30	54.47876
1 s	65.04509	51	15.37765
14	59.8132	32	15.53439
15	48.96211	35	16.22666
16	24.73119	34	18.36161
17	19.29749	35	19.68281
18	15.37765	د6	19.77816

FILE:
M400
MASS FLOW RATE (LBM/SEC) $=.3937804$

PORT
PRESSURE
113.601
89.05919
$76.8144 i$

21
$76.61131 \quad 22$
$76.4304 \quad 23$
$76.15415 \quad 24$
75.905 s 25
$75.4338 \quad 26$
$69.26406 \quad 27$
69.29801
68.66191

28
67.32699

29
64.98762
59.74985 32
48.9164 3s
$24.71552 \quad 34$
$19.28508 \quad 35$
15.37765 36

PRESSURE
54.63157
46.33278
52.30556
57.03887
57.51628
$5 \% .45685$
57.51448
57.26158
57.1721
57.04279
56.87168
56.56922
15. 37765
15.52655
$16.195 \leq 1$
18.s27
19.69
19.85392

APPENDIX B: Navier-Stokes Computer Code

With the exception of the boundry conditions subroutine, the computer code contained in this appendix was written by Dr. Joe Shang of the Flight Dynamics Laboratory. Wright Patterson Air Force Base, Dayton, Ohio. It solves the compressible Navier-Stokes equations for axisymmetric flow situations. The main variables used in the program are defined below.

BETA Program variable, $\begin{aligned} & g=t i m e ~ a c c u r a t e ~ s o l u t i o n ~ \\ & \text { =accelerated solution }\end{aligned}$
CFL time step safety factor
CINF initial condition sonic velocity
CV constant volume specific heat
CX dampening factor (between σ and 5)
CY dampening factor (bewteen 0 and 5)
DETA radial direction node spacing
DT time step
DZETA axial direction node spacing
EP turbulent eddy viscosity
GAMMA ratio of specific heats
GAMM1 GAMMA - 1
IG $\quad 1$
ILE 1
ISHTHX dampening parameter: $\theta=$ no damping $1=$ damping

ISMTHY dampening parameter (same values as above)

JL. number of radial nodes
JLM JL - 1
KL number of axiai rodes
KLK KL - 1
NEND number of lact iteration
WI number of first iteration
PEX porous pipe environment pressure
PHIGH evaporator environment pressure
PINF initial pressure
PLOW condenser environment pressure
PR Prandtl number
PRT Turbulent Prandtl number
RC Ideal gas constant
RCV reciprocal of CV
REY axial Reynolds number
RHO density
RHOINF initial density
RHOE RHO for predictor step
RHOE density times total energy
RHOEP RHOE for predictor step
RHOU density times axial velocity
RHOUP RHOU for predictor step
RHOV density times radial velocity
RHOVP RHOV for predictor step
RL reference length
RLMBD combination of first and second coefficients of viscosity

RMU
first coefflcient of viscosity

0	RMINF	Initial value of RMU
	TCH	reference time
	TEX	porons pipe environment temperature
	TINF	initial reference temperaature
	THS1	total time variable
	TMS2	total time variable
	UINF	initial axial velocity
	VINF	initial radial velocity
	X	axial coordinates of grid
	XM	initial Mach number
	$\underline{\square}$	satial coordinates of grin

PRIGRAM MAIN

COMMJN / / DETA, DZETA,CV.RC,PR,PRT,GAMMA, EP(96,25,1),DTL(25), 1 GAMM1,CFL, BETA,UIVF, I INF, RHCINF,CINF,TINF, PINF,TW,OT,CX,CY,L, $2 \mathrm{JL,KL}, \mathrm{JL} M, K L M, I L E, I S M T H X, I S M T H Y, G A M M 2, R L, T M S 1$ COMMON /OEPP (RHOP (55,25,1), RHOUP (96, 25,1),RHOVP(9E,25,1), 1 RH OEP $(96,25,1)$
COMMON /DEP/ RHO (95,25,1),RHOU(96,25,1),RHOV(96,25,1),
1 RHCE $95,25,1)$
COMYON /DOF/ $X(96,25,1), Y(96,25,1)$
COYMON /TV/ ETY(96,25,:1), $2 T X(96,25,1)$
COMMDN /BV/ PEX(96),TEX(95)
$C V=4293$.
२C=1718.
GAMMA $=1.4$
GAMM1 $=$ GAMMA -1.0
GAMM2=2
$P R=0.73$
PRT $=0.95$
₹CV=1.1/CV
C
100 FORMAY(7E13.5)
101 FORMAT(2E15.9)
113 FORMAT(12I5)
500 FORMAT (. REYNOLDS NO. $=$ ••E15.7,
1 -REFERENCE LENGTH= '.F10.4/)

1 F10.4. © P INF $=0, F 10.2$, RMUINF $=0, E 15.7 /$)
52! FORMAT(' DETA=',E15.7, $102 E T A=1, E 15.7 /)$

 FORYATE LOCAL CFL TIME STEP CALCULATIDN (TIME=AARP):/)
 i :TMS2/YCH=•,E15.7, DTMAX=0.E15.7)
590 OOMATC J K X
1 U V H
$H \quad T$
Y/YL
P
RHO
505 FORMAT ($4 \mathrm{X}, 2 \mathrm{I} 3,1 \mathrm{I} 511.4$)
610 FORMAT (TE15.7)
c
C READ IN THE INPUT DATA
C
C
OPEN (UNIT=1,FILE='TAPE1",FORM='UNFORMATTED")
OPEN (UNIT=2,FILE=*TAPE2*,FORM=?UNFORMATTED')
OPEV (UNIT=3,FILE=9 TAPE3')
OPEN (UNIT=4,FILE=(TAPE4')
OPEN (UNIT=8,FILE='TAPE8')
OPEN (UNIT二9,FILE=(TAPE9•)
C

```
२EAJ(5,10)) REY,RL,PHIGH,PLOW,TEX(1)
२5AD(5,103) CX,CY,CFL,BETA
२EAJ(5,113) ISTART,ILE,IG
PEAD(5,110) NEND,JL,KL,ISMTHX,ISMTHY
```

C
$N I=1$
$T M S 1=0.0$
$\operatorname{TMS} 2=0.3$
C
C
PEAD IN THE RESTART DATA FROM PREVIOUS RUNS
IF(ISTART,NE•O) READ(1) NI,TMSI,TMS2,RHO,RHOU,RHOY,RHCE,
$: X, Y, Z, E P, P E X, T E X$
C
C
C
C
२EAD IN PIPE EXTERYAL ENVIRONMENT PRESSURE AND TEMP DATA
C
IF(ISTART•EQ.1) GO TO 3 J
$3025 \mathrm{~K}=1$, KL
PEX(K) =PHIGH* 144 .
$T E X(K)=T E Y(1)$
こONTINUE
20 こち K=KL/2+1, KL
- EX(K) $=$ PLOW*144
COITTINUE
CONTINUE
GENERRTING THE FREESTREAM INEORMATION
PI.VF=PEX(1)
TINF=TEX(1)
RHOINF=PINF/TINF/RC
RMUI*F $=2 \cdot 27 E-C 8 *$ SART (TINF**3)/(TINF+198.6)
CINF =SQRT (GAMMA*RC*INF)
VINF $=$ REY*RMUINF/RHOINF/RL
C
$J L M=J L-1$
KL.Y=KL-1
DETA=1.0/JL. 4
DZETA=1•1/KLM
c
C
ARITE OUT THE INPUT AND FLOW FIELD IVFORMATION
C
WRITE(4,500) REY,RL
dRITE(4,510) RHOINF,NINF,CINF,TINF,PINF,RMUINF
URITE(4,520\% DETA, OZETA
HRITE(4,530) GFL,CX,CY,BETA
HRITE(4,550) NEND,JL,KL
IF (BETA.NE.0.0) HRITF(6,550)

C

	C		
	C	INITILIZATION OF ALL DEPENDENT VARIABLES	
	C	***************************************	
		IF (ISTART.EQ* ${ }^{\text {(}) ~ C A L L ~ P R E A M B ~}$	
	C		
	C		
	C	READ IN THE GRID POIVTS IN CARTESIA V FRAYE	
	c	*****t*************t***********さ**********	
		IF(ISTART.EQ.1) G0 T0 32	
		$5031 \mathrm{~K}=1, \mathrm{KL}$	
		20 3i $\mathrm{J}=1, \mathrm{JL}$	
	31	२EAD(3,131) $\times(K, J, 1), Y(K, U, 1)$	
	32	CONTINUE	
	C		
	C INITIALIZE THE PREDICTOR VARIABLESC		
	こ		
		$303 \mathrm{~J}=1$: JL	
		90 $3 \mathrm{~K}=1$, KL	
		RHOP (K, $\mathrm{K}, 1)=$ RH0 ($K, J, 1$)	
		$\operatorname{RHOUP}(K, J, 1)=R H O U(K, J, 1)$	
		RHOEP (K, J, 1)=RHOE $(K, J, 1)$	
	3	EONTINUE	
C	C		
	4	CALL TRANS	
		CALL TMSTEP	
	C		
		DO 1 N=NI, NEND	
	C		
	c		
		IF($N / 10)$ (TVENEN) GOTC 5	
	c		
	$=$	DETERMINE THE ALLOWABLE TIME STEP SIZE (OT CFL)	
	C	**************************t********************	
		CALL TMSTEP CALL EDOY	
	c		
	c	CONTROL THE DATA FLCH AND DIFFERENCE OPERATORS	
	C	**	
	5	CALL PAGE	
	c		
		TMS2=TMS1 + DTL (2)	
		TMS I = TMS 2	
	C		
	C		
	1	CONTI HuE	
	C		

```
(M) C WRITE THE RESTART JATA INTO RESTART TAPE
C
    VEND=NEND +1
    HRITE(2) NEND,TMS1,TMS2,RHO,RHOU,RHOV,RHOE,X,Y,Z,EP
        1,PEX,TEX
    *******************t**************
C URITE OUT THE COMPUTED FLOW DATA
C ********************************
C
    HRITE(4.580) N,DTL(2),TMS2,TMS1,T,OTL(JLM)
C
C
    ₹RL=1.3/RL
    RUINF=1.0/CINF
C
c
DO 20 J=1,JL
C
    QH=1.J/RHO(K,J.1)
    J=RHOU(K,J,1)*RH
    V=RHOV(K,J,1)*RH
    N=U*RUINF
    T=(RHOE(K,J*i)*RH-j.5*(U**2+V**2))*RCV
    2=RHO(K,N,1)*RC*T
    x }=\times(K;|,I)*RR
    YB=Y(K,N:1)=RRL
    XM=SQRT((U**2+V**2)/(GAMAA*RC*T))
C
C बRITE(亏,50:) J,K,X(K,J,1),Y(K,J,1),YB,RHO(K,J,1!!
C LU,V,W,T,P,EP(K,U,1)
C HRITE(4,510) X(K,J,1),Y(K,U,1),U,V,P,T,RHO(K,J,1)
    #RITE(4,5in) XBI4,YP,U,V
C
    23 CJVTINUE
C
        STOP
        END
```

SUBROUTIVE PREAMB
COYHTN／／DETA，JZETA，CV，RC，PR，PRT，GAMMA，EP（95，25，1），DTL（25），
！GAMMI，CFL，BETA，UINF，VINF，RHOINF，CINF，TINF，FINF，TH，DT，CX，CY，L，
2 UL，KL，JLM，KLM，ILE，ISMTHX，ISMTHY，GA MM $2, R L, T M S 1$
COMHON／FLUET／
$1 \mathrm{G} 21(95,2), G 22(95,2), G 23(96,2), G 25(96,2), H(96)$ COMMON／FLUZT／F31（55）；F32（96），F33（9́），F $35(95)$ こOMMON．TTV／ETY（96，25，1），2TX（96．25，1） COMYON／DEP／RHO（95，25，1），RHOU（95，25，1），RHOV（96，25，1）， 1 RHOE（75，25，1）

1 RHJED $(95,25,1)$
COMMON／BV／PEX（Э6）TEX（96）
SPECIFIED INITIAL CSVDITIONS FOR THE FLJW FIELD
REINF＝RHOINF＊（CV＊TINF）

C
$301 \mathrm{~J}=1, \mathrm{JL}$
nO $1 \mathrm{~K}=1$, KL
RHO (K;J,I)=RHOINF
RHOP (K,U,1)=RHOINF
२ HOU(K,U,1)=0.0
$R+3 U P(K, \omega, 1)=0 . E$
२ HOV (K, J, 1) $=0$. ©
RHOUP $(K, J, 1)=0 .[$
२ ↔OE $(K, J, 1)=R E I N F$
RHOEP $(K, J, 1)=$ REINF
$E P(K, J, 1)=0$ 。
CONTINUE
SPECIFIED THE NOSLIP BOUNDARY CONDITION AND SURFACE TEMPERATURE
R4JHL=RHOINF
DO $2 K=I L E, K L$
$R \nrightarrow O E H=R H O H L * こ V * T E X(K)$
RHO $(K, 1 ; 1)=$ RHOWL
$\mathrm{R} \operatorname{HOU}(K, 1 ; 1)=0 . \mathrm{C}$
マHJV (K,1,1) $=0.0$
२HOE $(K, 1,1)=$ RHOEH
RHOP $(K, 1,1)=$ RHOHL
$R \not R 13$ UP $(K, 1,1)=0$. E
RHOVP $(K, 1,1)=0 . C$
RHOEP $\{K, 1,1$)=RHOEW
CONTINUE
c INItIALIzE the flll components
C
C
DO $3 \mathrm{~J}=1,2$
30 $3 \mathrm{~K}=1$, KL
C
E
$\mathbf{G 2 1 (k , d) = 3 . 3}$
$622(K, J)=0.0$
$623(K, J)=0.0$
$625(K, J)=0.0$
C
3 CONTINUE
C
DO $4 \mathrm{~K}=1$, KL
F31 $(x)=$?. 0
F32 $(k)=0.0$
$F 33(K)=0.0$
F35(K) $=0.0$
C
H(K) $=0.0$
c
4 CONTINUE
C
RETURN
ENO
SUBROUTINE TMSTEP
COMMON / / DETA, OZETA,CV,RC,PR,PRT, GAMMA, EP(96,25,1), DTL(25),
1 GAMM1,CFL, BETA,UI:AF,VINF,RHOINF,CINF,TINF,PINF,TH,OT,CX,CY,L,
2 JL,KL,JLM,KLM,ILE,ISMTHX,ISMTHY,GAMM2,RL,TMS1
COMMON /TV/ ETY(95, 25,1$), 2 T X(96,25,1)$
COMMON /DEP/ RHO(95,25,1),RHOU(95,25,1),RHOV(95,25,1),
1 RHOE (35:25,1)
JIMENSION UET (96),UІT(96),DTC(96),U(76),V(96),C(96)
c
c set up initial cfl time step value
JTC(1)=1.?
GAM:Y $=$ SAMMA* AMM1
OTCFL $=1.0$
RDET=1.0/DETA
RDRT=1.3/DZETA
c
$201 \mathrm{~J}=2, \mathrm{JLM}$
つO $2 \mathrm{~K}=2$,KLM
c
RH=1.0/RHO (K,U,1)
$J(K)=R H O U(K, J, 1) * R H$
$V(K)=R H O V(K, J, 1) * R H$
C(K)=SQRT(GAMM3*(RHOE(K, J,1)*RH-0.5*(U(K)**2+V(K)**2)))
c

```
JET(K)=ETY(K,J,I)&V(K)
JET(K)=ETY(K,J,1)*V(K)
```

C
C
2 continue
C
C SERFORM THE COMPARISON AND MODIFIEJ THE CFL TIME STEP
C
JTMIV=OTC(1)
$003 \mathrm{~K}=2$, KLM
OTMIN=AMINI(JTC(K);CTMIN)
CONTINUE
c
DTL(J) =DTMIN $=C F L$
C COMPARING DTMIN BET WEEN ADJACENT PLANES
JTCFL=AMIN1 (JTCFL,DTMIN)
C
1 CONTINUE
C
c
ADJUST DTCFL FOR VISCCUS EFFECT (TRAIL ANO ERROR)
$D T=C F L * D T C F L$
C
RETURN
ENO
SUBROUTINE BC
COMMON / / DETA,DZETA,CV,RC,PR,PRT,GAMMA,EP(96,25,1),OTL(25),
1 GAMMI, CFL, BETA,UINF,VINF,RHOINF,CINF,TINF,PINF,TH,DT,CX,CY,L,
2 JL, KL,JLM,KLM,ILE,ISMTHX,ISMTHY,GAMM2,RL,TMS1
COMMON /TV/ ETY(96,25,1),ZTX(96,25,1)
COMMON /DEP/ RHO(95,25,1),RHOU(95.25,1),RHOV(95,25:1),
1 RHJE(95.25.1)
COMMON /DEPP/ RHOP (36,25,1), RHOUP(75.25,1),RHOUP(95,25,1),
1 RHOEP(95,25,1)
COYYON /DV/R(96,25,1),U(96,25,1),V(96,25,1),W(i,1,1),
$1 \mathrm{P}(76,25,1), \mathrm{T}(96,25,1)$
COMMON /BV/ PEX(76):TEX(96)
COMMON /DOF/ X(95,25,1),Y(95.25,1)
つIMENSION PET (96),PZETAE(25), PZETAC(25)
C
C
₹ G=1.
$K 2=K L / 2+1$
$C A=3.5395+9$
CB=1.7315玉+8
$K M=48$
$K N=49$
IF(L.EQ.2) GOTO 1J
C
DTこ (K) =1. $5 /(A B S(J E T(K)) * R[E T+A B S(U Z T(K)) * R O Z T+$

$\begin{array}{rr}1 \mathrm{C}(K) * \operatorname{SQRT}((Z T X(K, J, 1) * R D Z T) * * 2+ \\ 2 r & (E T Y(K, J, 1) * R D E T) * * 2))\end{array}$
$\begin{array}{rr}1 & C(K) * \operatorname{SQRT}((Z T X(K, J, 1) * R D Z T) * * 2+ \\ 2 & (E T Y(K, J, I) * R D E T) * * 2))\end{array}$

C
8
continue

```
のロローロー
    JECODE THE PROBLEM VARIABLES TO THE PRIMATIYE VARIABLES
        00 4 JV=1,JL
        30 4 K=1, KL
        R(K,JV,1)=RHOP(K,JV,1)
        J(K,JV,1)=RHOUP(K,JV,1)/R(K,JV,1)
        V(K,JV,1)=RHOVP(K,JV,1)/R(K,JV,1)
        T(K,JV,1)=(RHOEP(K,JV,\)/R(K,JV,1)-).j*(V(K,JV,i)**2
    1 +U(K,JV,1)**2))/CV
        2(K,JV,I)=R(K,JV,1) &RC*T(K,JV,1)
        covTIVUE
C
C
C
    SUCTION AND INJECTICN GOUNDARY CONDITIONS
    RR=1.J/RC
    OO 1 K=1,KL
    FUDGE=1.3T
    R+)UP(K,1,1)=0,0
    {HJP(K,1,1)=(P(K,2,1)+RHOVP(K,1,1)*(V(K,2,1)-V(K,1,1)))
    1 /(RC*T(K,1,1))
    E=P(K,1,1)**2-PEX(K)**2
    OI=1
    IF(C &T. E) DI=-1
    C=ABS(C)
    RHOVP(K,1,1)=DI*(-CB+SQRT(CB**2+4**CA*C))/(2**CA)*FUDGE
    ₹^\EP(K;1,1)=RHOP(K,1,1)*(CV*TEX(K)+0.J*(RHOVP{K,1,i)
    1 /RHOP(K,1,1))**2)
    C3NTINUE
    OO 5 K=K2,KL
    RHOEP(K,1,i)=RHOP(K,1,i)*(CV*T(K,2,1)+j.5*(RHOVP(K,1,j)
    i /RH3P(K,1,1))**2)
    ELIMINATE THE SUCTION OF BLOWING AT THE CENTER OF THE PIPE
    RHJVP(KM,1,1)=0.5*RHOVP(KM,1,1)
    RHOVP(KN,1,1)=0.J*RHOVP(Ki,1,1)
    FAR FIELD BOUNDARY CCNDITIONS
        002 K=1,KL
        RHOP(K;JL,1)=RHOD(K,JLM,1)
        RHOUP(K,JL,I)=RHOUP (K,JLM,1)
        RHOVP(K,JL,1)=RHOVP (K,J!M,1)
        RHOVP(K,JLM,1)=0.0
        RHOEP(K,JL,1)=RHOEP (K,JLM,1)
        CONTIAUE
```

c
c
C
THE UPSTREAM AND DJWNSTREAM BOUNDARY CCNDITIONS
.
c
SO $3 \mathrm{~J}=1$, JLM
マHOP (1,J,1)=RHOP(2, J,1)*T(2,J,1)/T(1, J,1)
२ HOP $(1, J, 1)=(R(2, J, 1) * U(2, J, 1) * * 2+P(2, J, 1)) / R C / T(1, J, 1)$
$\mathrm{RHOUP}(1, \mathrm{~J}, 1)=0.3$
$\operatorname{RHOVP}(1, J, 1)=0 . \mathrm{C}$
c
C
C $\quad 2 H J P(K L, J, 1)=(R(<L Y, J, 1) * U(K L Y, J, 1) * * 2+2(K L M, J, 1)) / R C / T(K L M, J, 1)$ २ HOUP (KL, J,i) $=$? .?
$R \operatorname{HOUP}(K L, J, 1)=0.0$
RHOEP(KL, J,1)=RHOEP (KLM,J,1)*RHCP(KL,J,Z)/RHOP(KLM,J,i)
covtinue

```
GO TO 103
```

c

JECODE THE PRORLEM VARIAGLES TO THE PERIMATIVE VARIABLES
$0014 \mathrm{JV}=1$, JL
DO $14 \mathrm{~K}=1, \mathrm{KL}$
$R(K, J V, 1)=R H O(K, J V, 1)$
U(K,JV,1)=RHOU(K,JV,i)/R(K,JV,1)
$V(K, J V, 1)=R H O V(K, J V, 1) / R(K, J V, 1)$
$T(K, J V, 1)=(R H O E(K, J V, 1) / R(K, J V, 1)-7.5 *(V(K, J V, 1) * * 2$
$1+U(K, J V, 1) * * 2)) / C V$
P(K,JV,1)=R(K,JV,1)*RC*T(K,JV,1)
CONTINUE
甘RITE(8, 9) TYS1, $2(2, J L M, 1), P(48, J L 4,1), P(K L M, J L M, 1)$
=0RYAT(6E15.7)
c
C
c
c

```
RR=1.0/RC
    JO11 K=1,KL
    FUDGE=1.07
    २HOU(K,1,1)=0.0
    २HO (K,1,1)=(P(K,2,1)+RHOV(K,1,1)*(V(K,2,1)-V(K,1,1)))
1 /(RC*T(K,1,1))
    C=P(K,1,1)**2-PEX(K)**2
```

```
        OI=1
        IF(C.LT. C) DI=-1
        C=ABS(C)
        R+OV(K,1,1)=DI*(-CB+SGRT(CB**2+4.*CA*C))/(2**CA)*FUOGE
        RHOE(K,1;1)=RHO(K,1,1) # (CV*TEX(K) +.j.5*(RHOV(K,1,1)
        1/RHO(K,I,1))**2)
    1 1
C
C
    ELIMINATE THE SUCTION CF RLOHING IV THE MIDOLE OF THE PIPE
    2^JV(KM,1,1)=0.5*R+CV(KN,1,1)
    २HOV(KN,1,1)=[.!*RHOV(KN,1,1)
C }2017\textrm{K}=KM,K
C17 २H)\cup(K,1,1)=2.0*マH)V(K,1,1)
C
C
C FAR FIELJ BOUNOARY CCNDITIONS
C
C
20 12 K=1,KL
२HO (K,JL,i)=RHO(K,JLM,1;
2 HOU(K,JL,1)=RHOU(K,JLM,1)
RHOV(K,JL,1)=RHCV(K,JLM,1)
C 2HOV(K,JLM;1)=0.3
२ HOE(K,JL,I)=RHOE(K,ULM,1)
CJNTINUE
C
C
C
RR=1./RC
OO 13 J=1:JLM
C 2, (1,J,1)=2HO(2,J,1)*T(2,J,1)/T(1,J,1)
२HO (i,J,1)=(RHO(2,J,:)*U(2,J,1)**2+P(2,J,1))/RC/T(1,J,!)
२HJU(1,J,1)=0.0
२HOV(1,J,1)=C.C
C RHOE(1,J,1)= RHO<1,N,1)*CV*T(2,d,1)
२+OE(1;J,1)=2HOE(2,J,1)*RHJ(1,J,1)/RHO(2,J,1)
C
२HO (KL,J,1)=RHO(KLM,J,1)*T(KLM,J,:)/T(KL,J,1)
C 2 to (KL,J,1)=(RHO(KLM,J,1)*U(KLM,J,1)*+2+P(KLM,J,1))/RC/T(KLM,J,1)
२H)U(KL,J,1)=0.0
२40V(KL,J,1)=0.!
२HOE(KL,J,1)=RHOE(KLM,J,1)*RHO(KL,J,1)/RHO(KLM,J,1)
13 CONTINUE
C
103 RETURN
ENO
```

```
    3UBPJUTIVE TRANS
    COMMON / / DETA,OZETA,CV,RC,PR,PRT,GAMMA,EP(Э5,25,1),OTL(25),
1 GAMMI,CFL,BETA,SI'FF,VINF,RHOINF,CINF,TINF,PINF,TW,DT,CX,CY,L,
2 JL,KL,ULH,KLM,ILE&ISMTHX,ISMTHY,GAMM2,RL,TMSI
    COMMON /TV/ ETY(96,25,1),ZTX(96,25,1)
    COMMON /DOF/ X(96,25,1),Y(95,25,1)
DIMENSION YET (96,3)),DJ(96,30),
1 X2T(95,30),RDJ(95:30)
```

c
२DET=1.j/(2.0*DETA)
२DZT=1.0/(2.0*DZETA)
JLイ2=JLY-1
$K L M ?=K L Y-1$
C
C
C
GEYERATIVG DX/DTEA ANO DY/DTEA
c
C
C JVE-SIDE DIFEERENCIAG FCR J=1
C
DO $131 \mathrm{KV}=1, \mathrm{KL}$
$Y 巨 T(K V, 1)=(4.6 * Y(K V, 2,13 \cdots Y(K V, 3,1)-3.0 * Y(K V, 1,1)) * R J E T$
101
CJVTINUE
C
C
ONE-SIDE DIFFERENCIAG FCR $J=J L$
$20102 \mathrm{KV}=1 \mathrm{oKL}$
YET (KV,JL) $=-(4 . \Gamma * Y(K V, J L M ; 1)-Y(K V, J L M 2, j)-3.0 * Y(K V, J L, 1)) * R D E T$
102 CONTINUE
C
C CENTRAL DIFFERENCING FOR FIELD POINTS
$30133 \mathrm{JV}=2, \mathrm{JL} M$
$J P=J V+1$
$J M=J V-1$
$30134 \mathrm{KV}=1, \mathrm{KL}$
$Y E T(K V, J V)=(Y(K Y, J P, 1)-Y(K V, J M, 1)) \neq R D E T$
104 CONTINUE
133 CONTINUE
C
C GENERATIMG DX/DZETA AND DY/DZETA
c
C
C
C
3VE-SIDE DIFFERENCING FOR K=1
DO 201 JV=1, JL
$x Z T(1, J V)=(4.0 * x(2, J V, 1)-x(3, J V, 1)-3.3 * x(1, J V, 1 ;) * R O Z T$
201
CONTINUE

```
    C
    C ONE-SIDE DIFFERENCING FCR K=KL
    C
        30 202 JV=1,JL
        XZT(KL,JV)=-(4.f*X(KLM,JV,: )-X(KLM2,JV,1)-3.ごX(KLsJV,1))*RDZT
        202 CONTINUE
    c
        C CENTRAL OIFFERENCING FCR FIELD POI\TS
    C
        DO 203 JV=1,NL
        JO 204 KV=2,KLM
        KP=KV+1
        KM=KV-1
        XZT(KV,JV)=(X(KP,JV,1)-Y(KM,JV,1))*RDZT
    294 COVTINUE
    203 CONTINUE
C
c
C GEYERATING THE METRICS OF COORDINATES TRANSFORMATIJN
        DO 305 JV=1,JL
        J0 336 KV=1,KL
    C
        ZTX(KV,JV,1)=1.*/XZT(KV,JV)
        ETY(KV,JV,1)=1.:/YET(KV,JV)
C
    305 COVTINUE
    395 CONTINUE
C
RETURN
END
```

$$
L=2
$$

$$
0
$$

7
$3010 \mathrm{JV}=1, \mathrm{~J}$
3） 10 インニi，K！
C
२（KV，JV，1）＝RHOP（KV，JV，1）
$J(K V, J V, 1)=R H O U P(K V, J V, 1) / R(K V, J V, 1)$
V（KV，JV，1）＝RHOVP（KV，JV，i）／R（KV，JV，1）
T（KV，JV，1）$=($ RHOEP $(K V, J V, 1) / R(K V, J V, i)-3.5 *(U(K V, J V, 1) * * 2$
$1+V(K V, J V, 1\} * * 2)) / C V$
$3(K V, J V, 1)=R(K V, J V, 1) * R C * T(K V, U V, 1)$
c
continue
c
c
C
$3011 \mathrm{~J}=2, \mathrm{JLM}$
CALL LETA（J）
CALL LZETA（J）
CALL SUM（J）
11 CONTINUE
C
CALL BC
c
RETURN
ENO

```
SUBPOUTINE LETA(J)
こJMMON / / DETA,DZETA,CV,RC,PR,PRT,`AM44,EP(F5, 25,1),DTL(25),
1 GAA'1I,CFL,BETA,UIVF,VINF,RHOINF,CIVF,TINF,PINF,Tm,DT,CX,CY,L,
2 JL,KL,JLM,KLM,ILE,ISMTHX,ISMTHY,GAMM2,RI.,TMSL
    COMMON /FLUET/
1 S21(95,2),G22(95,2),G23(95,2),G25(96,2),H(96)
    ~0:40N /JY/ R(95,25,1),U(96,25,1),V(95,25,1),w(1,1,1),
1 P(75,2j,1),T(96,25,1)
    こOपMON//TV/ ETY(96,25,1),ZTX(96,25,1)
    COM:4ON /DOF/ X(CS,2E,1),Y(96,25,1)
    DIMENSION UET(56),UZT(95),VET(95),VZT(95),RMU(96),
1 २L43D(95),SMU(96),RK(F5),TAUXX(96),TAUXR(96),
2 TAURR(75),TX(95) ,TY(75),TET(96),TZT(75),DU0X(95),
3 DVJR(\nij)
```

C
2DET=1.3/DETA

C
C
C
C
C
C
C
$J V=L+M+J-3$
$J M=J+M-2$
$J P=J M+1$
$002 \mathrm{KV}=2, \mathrm{KLM}$
C
R PUU(KV) $=2.27 E-08 * S \bar{Q} R T(T(K V, J Y, 1) * * 3) /(T(K V, J V, 1)+198.5)$
$२ K(K Y)=G A M M A * C V-(R M U(K V) / P R+E P(K V, J V, 1) / P R T)$
२MU(KV) $=$ RMU(KV) +EP (Kレ, $K V, 1)$
₹LMBD (KV) $=-(2.213 .3) \star R M U(K V)$
$S M U(K V)=2 \cdot \vdots \otimes R M U(K V)+R L M E D(K V)$
C
2 CONTIVLE
c
$303 \mathrm{KV}=2$ ，KLM
C

C
२Y＝1．J／Y（KV，JV，1）
JUDY（KV）$=2 T X(K V, J V, 1) * U Z T(K V)$
DVDR（KY）$=E T Y(K V, J V, 1) * V E T(K V)$
C
TAUXX（KV）＝SMU（KV）＊DUDXRKV）＋RLNED（KV）＊（J（KV，JV，I）＊RY
$1+$ TVOR（KV））- P（KV，JV，1）
$T A \cup R R(K V)=S M U(K V) * D V D R(K V)+? L M B D(K:) *(\because(K V, J V, i) * R Y$
$1+J U D \times(\langle V))-P(K V, J V, 1 ;$
$T \nexists U \times R$（KV）$=R 4 \cup(K V) *(E T Y(K V, J V, I) * U E T(K V)+$
1 Z̈TY（KV；JV，I）＊VZT（KV））
C
CONTINUE
C
IF（JV•诰・す）GOTO2？
c
$2013 \mathrm{KV}=2, \mathrm{KLM}$
C
₹Y＝：○（Y（KV，J，1）
C

C
$H(K V)=(S M U(K V) * V R K V, J, 1) * R Y+R L M B D(X V) *(D U D X(K V)$
1 （UVOR（KV））－P（KVgJ，：））$\pm R Y$
C
10 こONTINUE
C
C
C GENERATING THE HEAT FLUX TERMS
C
23 DO $4 K Y=2, K L M$
C
$T X(K V)=Z T X(K V, J V, 1)=T Z T(K V)$
$T Y(K V)=\mathrm{T}_{\mathrm{T}} \mathrm{T} Y(K V, J V, 1) * T E T(K V)$
C
4 CONTINUE
C
C GEJERATING THE FLUX TERMS
C
50 5 KV＝2，KLM
c
C
G21（KV，M）$=R(K V, J V, 1)=V(K V, J V, 1) * Y(K V, J V, 1)$
$G 22(K V, M)=G 21(K V, M) * U(K V, U V, 1)-T A U X R(K V) * Y(K V, U V, 1)$
$G 23(K V, Y)=G 21(K V, Y)+V(X V, 3 V, 1)-T A U R R(K V) \pm Y(K V, J V, 1)$
G2j（KV；M）$=G 21(K V ; M) *(C V \neq T(K V, j V, 1)+? . j *(U(K V, J V, 1) * * 2+$
1 V 1 KY，JV，I）＊＊2））－（RK（KV）＊TY（KV）
$2+(U(K V, J V, 1) * T A U X R(K V)+V(K V, J V, 1)+T A U R R(K V)))+Y(K V, J V, 1)$
C
5 CONTINUE

C 1
c
．
こうりTIVUE
マETURN
END
SUBROUTINE LZETA(J)
COMMON / / DETA,DZETA,CV,RC,PR,PRT,GAMMA,EP(96,25,i),DTL(25),
1 GAYM1, CFL, BETA, UI:YF,VINF,RHOINF, CINF, TINF, PINF,TH,DT, CX,CY,L,
$2 \mathrm{JL}, \mathrm{KL}, \mathrm{JLM}, \mathrm{KLM}, \mathrm{ILE}, \mathrm{ISMTHX,ISMTHY}, \mathrm{GAMM2,RL}, \mathrm{TMS1}$
こOM40N /FLUZT/F31(95),F32(96),F33(75),F3ラ(96)
こOMMJN /JV/ R(96,25,1),U(96,25,1),V(75,25,1)gW(1,1,1),
1 P(35,25,1),T(95,25,1)
こJM4JN /TV/ ETY(95,25,1), 2TX(96,25,1)

1 RLMBD (36), SMU(96), RK 96), TAUXX (96), TAUXR (96),
2 TAURR(75), TX(96), TY(95), TET (95), TZT(96), OUDX (96),
3 DVJR(95)
RDET=1.0/(2.j*DETA)
२DZT=1.う/DZETA
$J P=J+1$
$J M=J-1$

DO1 KK＝1，KLM

FORTAARD \＆BACKHARD DIFFERENCING FOR PREDICTOR \＆CORRECTOR
$K V=K K+L-1$
$K M=K K$
$K P=K M+1$
＊＊＊＊＊＊＊＊＊
generating the sheap stress \＆heat flux teras
JET（KK）$=(U(K V,: I P, 1)-U(K V, J M, 1)) * R D E T$
VET $(K K)=(\because(K V, J P, 1)-V(K V, J M, 1))+R D E T$
TET $(K K)=!T(K V, J P, 1)-T(K V, J M, 1)) * R D E T$
UZT（KK）$=(U(K P, J, 1:-U(K M, J, 1)) * R D Z T$
$\forall Z T(K K)=(V(K P, J, 1)-V(K M, j, 1)) * R D Z T$
$T Z T(K K)=(T(K P, J, 1)-T(K M, J, 1)) * R D Z T$
geverativg the viscosity coeffs \＆heat conductivity
R MU $(K K)=2.27 E-G 8 * S Q R T(T(K V, J, 1) * * 3) /(T(K V, J, 1)+178 \cdot 5)$
PK（KK）$=6 A, Y M A * C V+(R M U(K K) / P R \nabla E P(K V, J, 1) / P R T)$
ZMU（KK）$=R M U(K K)+E P(K V, J, 1)$
$R L M B J(K K)=-(2.0 / 3.0) * R M U(K K)$
$5.4 U(K K)=2.0 * R M U(K K)+R L M B D(K K)$
continue
$302 K K=1, K L 4$
C
C
₹ Y=1.J/Y(KV,J.1)
C
DUDX(KK) $=2 T X(K V, J, 1) * U Z T(K K)$
DVDR(KK) $=E T Y(K V, J, 1) * V E T(K K)$
$T A U X X(K K)=S M U(K K) * D U D X(K K)+R L M B D(K K) *(V(K V, J, 1) * R Y$
1 +JVJR(KK))-つ(KV,J,:)
TAURR (KK) $=\operatorname{SMU}(K K) * \operatorname{IVOR}(K K)+2 L M B O(K K) *(V(K Y, J, 1) * マ Y$
1 +DUJX(KK):-D (KV,U,1)
$T A U X R(K K)=R M U(K K) *(E T Y(K V, J, 1) * U E T(K K)+$
1 ZTX(KV,Jo1)*VZT(KK))
c
C GENERATING THE HEAT FLUX TERMS
C
$T X(K K)=I T X(K V, J, 1)+T Z T(K K)$
$T Y(K K)=E T Y(K V, J, 1) * T E T(K K)$
C
CONTINUE
C
c
C
GENERATING THE FLUX TERMS
$303 K K=1, K L 4$
C
$K V=K K+L-1$
C
F31(KK) $=$ R(KV, J, 1) (1):ivy, J, 1)
$F 32(K K)=F 31(K K, j+j(K \forall, J, 1)-T A U X X(K K)$
F33(KK) $=F 31(K K) \pm V(K \cup, J, 1)-T A U X R(K K)$
F35(KK) $=F 31(K K) *(C V * T(K V, J, 1)+\Im .5 *(U(K V, J, 1) * * 2+$
! $V(K V, J, 1) * 2) i-R K(K K) * T X(K K)$
$2-(U(K V, J, 1) * T A U X X(K K)+V(K V, J, i) * T A U X R(K K))$
c
3 CONTINUE
RETURN
END

```
SUBROUTINE SUM(J)
こכ44JN / / DETA,DZETA,CV,RC,PR,PRT,GAMMA,EP(96,25,1), JTL(25),
1 GAYY1,CFL,BETA,JIVF,VINF,RHOINF,CIVF,TINF,PINF,TW,OT,CX,CY,L,
2 JL,KL,JLM,KLM,ILE,ISMTHX,ISMTHY,GAMM2,RL,TMS:
COMMJN/FLUET/
1 G21:75,2),G22(95,2),G23(76,2),G25(76,2),H(96)
    COM.10N /FLUZT/F31(35),F32(95),F33(75),F35(95)
    COMMON /TV/ ETY(95,25,1),2TX(96,25,:)
    COMMON./DEP/ RHO(95,25,1),RHOU(96,25,1),RHOY(96,25,1),
1 RHJE (95,25,1)
    COMMON /DEPP/ RHOP(55,25,1),RHOUP(95,25,1),RHOVP(5゙5,25,1),
1 RHOEP(96,25,1)
    こ0YMJN /DAMP/ ADJ1(55),ADO2(95),ADO3(75),AODS(96)
    CD\MJN /DOF/ X(95,25,1),Y(95,25,1)
```

 IF(BETA.NE.O.O) DT=DTL(J)
 २DET=1.0/DETA
 २DZT=1.J/DZETA
 C
IF(L.EQ.2) GO TO 10J
C
C
c
C
C
C
C
$301 K \mathrm{KV}=2, \mathrm{KLM}$
$K M=K V-1$
$२ Y=1,0 / Y(K V, J, 1)$

C
२HOP（KV，J，1）＝RHO（KV，J，1）－OT＊（（
1 ＋ETY（KV，J，1）＊RY＊（G21（KV，2）－G21（KV，1）））＊RDET＋（ZTX（KV，J，1）＊ $2(F 31(K V)-F 31(K M)))+R O Z T)$
C
RHOUP（KV，U，1）＝RHUU（KV，J，1）－DT＊（
$1+E T Y(K V, J, 1) * R Y *(G 22(K V, 2)=G 22, K V, 1)): * R D E T+(Z T X(K V, J, 1) *$
$2(F 32(K V)-F 32(K M))) * R D Z T)$
C
i CONTINUE
C
$302 K Y=2, K L M$
c
$K M=K V-1$
२Y＝1． $3 / Y(K V, 1,1)$
C
RHOVP（KV，J，1）＝RHJY（KV，J，1）－DT＊（
$1 \rightarrow E T Y(K V, J, 1) * R Y *(S 23(K V, 2)-G 23(K V, 1))) * R D E T+(Z T X(K V, J, 1) *$
$2(F 33(K V)-F 33(K M)))=R D Z T+H(K V))$
C
RHOEP（KV，J，1）＝RHOE（KV，J，1）－DT＋（（
1 ＋ETY（KV，J，1）＊RY＊（G25（KV，2）－G2SiKV，1）））＊RDET＋（ZTX（KV，J，1）＊
$2(F 35(K V)-F 35(K M))) * R D Z T)$
C
2 CONTINUE
c
c
C
c
DO $13 \mathrm{KV}=2, \mathrm{KL} M$
R HOP（KV，J，1）$=$ RHOP（KV，J，1）＋ADD：（KV） RHOUP（KV，J，1）＝RHOUP（KV，J，1）＋ADD2（KV） RHOVP（KV，J，i）$=$ RHOVP（KV，$, \mathrm{J}, 1)+$ ADD3（KV） RHOEP（KV，J，i）＝RHOEP（KV，J，i）＋ADD5（KV） CONTIVUE
c 50 T0 22．
c
c
c
C
$100503 \mathrm{KV}=2$ ，KLM
c
$K M=K V-1$

C

1 上TY（KV，J，1）＊RY＊（G21（KV，2）－G21（KV，1）））＊RDET
？＋（ $2 T X(K V, J, 1) *(F 31(K V)-F 31(K M)))$
3 ＊RD2T）
c
マłクU（KV，J，1）＝0．5＊（RHDU（KV，J，1）＋RHOUP（KV，J，1）－DT＊（
1 ETY（KV， 1,1$) * R Y *(G 22(K V, 2)-622(K V, 1))) * R D E T$
$2+(Z T X(K V, J, 1) *(F 32(K V)-F 32(K M)))$
$3 * R: 2 T)$
C
3 こJNTINUE
C
$004 \mathrm{KV}=2, \mathrm{KLM}$
c
$K M=K V-1$
$२ Y=1 . J / Y(K V, J, 1)$
C
RHOV（KV，J，1）＝0．5＊（RHOV（KV，J，1）＋RHOVP（KV，J，1）－DT＊（
1 ETY（KV，U，1）＊RY＊（G2 Z（KV，2）－G23（KV，1）））＊RDET
$2+(2 T X(K V, J, 1) *(F 33(K V)-F 33(K M)))$
$3 * R D Z T+H(K V)))$
C
२HDE $K V, J, 1)=0.5 *(R H O E(K V, U, 1)+$ FHOEP $(K V, J, 1)-D T *($（
1 ETY（KV，J，1）＊RY＊（G2 $5(K V, 2)-G 25(K V, 1))) * R D E T$
$2 \rightarrow(Z T X(K V, J, 1)=(F 35(K V)-F 35(K M)))$
3 （RDZT））
c
4 CONTINUE
c
IF(IS:THX.EQ.S).AVC.(ISMTHY.EQ.O)) GO TO 200
C
CALL DAMPING(J)
C
$0022 K V=2, K L M$
C
RHO (KV,J,I) $=$ RHO (KV,J,1) +ADD1 (KV)
२HJU(KV,J,1)=RHOU(KV,J,1)+ADD2(KV)
RHOV (KV,J,1)=RHDV(KV,J,1)+ADD3(KV)
RHOE $K V, J, 1$)=RHOE (KV,J,1)+ADD5(KV)
C
20 CONTINUE
C
230 PETURN
END
SUBQOUTINE DAMPING(J)
COMMON / / DETA, DZETA,CV,RC,PR,PRT,GAMMA,EP(95,25,1),DTL(25),
1 GAMMI, CFLsBETA,JINF,VIAF,RHOINF,CIVF,TINF,PINF,TH,DT,CX,CY,L,
$2 J L, K L, J L 4, K L M, I L E, I S M T H X, I S M T H Y, G A Y M 2, R L, T M S 1$
EOMMON /DEP/ RHO(95,25,1),RHOU(95,25,1),RHOV(96,25,1),
1 RHOS(95,25,1)

1 RHOEP(95,25,1)
COMMON /DAMP/ ADD1(55), ADD2(75),ADD3(Э5),ADO5(55)

$1 \mathrm{P}(95,2$ ラ, 1$), \mathrm{T}(96,25,1)$
COMM3N /TV/ ETY(95, 25,1), ZTX(96,25,1)
JIMEVSI 3N ADDG1 (76), ADOG2(95),ADOG3(96),
2 ADDG5(75), ADDH1 (95), ADDH2(96), ADOH3(96),
3 ADDH5(96),PD(95,2)
C
<LM2=KLY-1
GA:4YR =GAYMA*PC
२DET=1.ワ/DETA
RDZT=1. ©/DZETA
C
C SET DAMPING TERMS TO ZERO FOR END POINTS
DO $1 \mathrm{KV}=1 \mathrm{KL}$
C
$\operatorname{ADDG1}(K V)=0.0$
ADDG2 (KV) $=0.0$
$\operatorname{ADDG3}(K V)=0.0$
AODG5 (KV) $=0.3$
c
ADDH1 (KV) $=0.0$
$A D D H 2(K V)=C .0$
$\operatorname{ADDH} 3(K V)=0 . J$
ADOH5(KV) $=0.0$
C
1 CONTINUE

```
c
C *** GENERATIN: AOCG ***
C
IF((J.LE.2).OR.(J.GE.JLM)) GO TO 23O
C
C
        JV=J+M+L-3
        JP=JV+1
        JM=JV-I
C
        J) 12J KV=1,KL
        PJ(KV,M)= CY*(ABS(P(KV,JD,1)-2.?*P(KV,JV,1)+
        1 P(KV,JM,1))/(P(KV,JP,: )+2.j\starP(KV,JV,1)+P(KV,JM,1)))*
        2 (ASS(+ETY(KV,JV,1)*V(KV,JV,1))+
        J SJマT(GAMMR+T(KV,JV,I)*(ETY(KV,JV,:)**Z)))
    12J CONTINUE
    110 CONTINUE
C
    IF(L.EQ.2) GO TO 14J
C
C PREDICTDR
C
        JP=J+1
        JM=J-1
C
    OO130 KV=1,KL
C
        ADJGi(KV)=DT*(PD(KV,2)*(RHO (KV,JP,1)-RHO (KV,J,1))-
        1 PD(KV,1)*(PHO (KV,J,I)-RHO (KV,JM;1)))*ROET
        ADDG2(KV)=DT*(PD(KV;2)*(RHOU(KV,JP,1)-RHOU(KV,J,1))-
        1 PD(KV,1) +(RHOU(KV,J,1)-RHOU(KV,JM,1)))*RJET
        ADDG3(KV)=DT*(PD(KV;2)*(RHOV(KV,JP,1)-RHOV(KV,J,1))-
            1 PD(KV,1)*(RHOV(KV,J:1)-RHOV(KV,JM,1)))*RDET
            AOJG5(KV)=DT*(PU(KV,2)*(RHOE(KV,JP,:)-RHOE(KV,J,1))-
            1 P)(K: , ;'(RHOE(KV,U,1)-RHOE(KV,JM,1)))*RJET
C
    130 EONTINUE
C
        50 70 2j0
C
```

C
CORRECTOR
$140 \quad J P=J+1$ $J M=J-1$
C

C

$$
20150 \mathrm{KV}=1, \mathrm{KL}
$$

AODG1 (KV)=DT* (PD(KV,2)* (RHOP (KV,JP,1)-RHOP (KV,J,1))-
1 PD(KV,1)*(RHOP (KV,J,1)-RHOP (KY,JM,1)))*RDET ADDG2(KV) $=0 T *(P D(K V, 2) *(R H O U P(K V, J P, 1)-R H O U P(K V, J, i))-$ 1 PD(KV,1)*(RHOUP(KV,J,1)-RHOUP(KV,JM,1)))*RDET $\operatorname{ADOG} 3(K Y)=0 T \pm(P D(K V, 2) *(R H O V P(K V, J P, 1)-R H O V P(K V, J, 1))-$ 1 PD(KV,1):(RHOVP(KV,J,i)-RHOVP(KV,JM,i)))*RDET ADJラ5(KV) $=\eta T *(P O(K V, 2) *(R H O E P(K V, J P, 1)-R H U E P(K V, J, 1))-$ 1 PD(KV,1)*(R4OEP(KV,U,1)-RHDEP(KV,JM,1)))*PDET
C
150 CONTINUE
C
c
C *** GENERATING ADDH ***
C
$200 \quad 30210 \quad 4=1,2$ $00220 \mathrm{~K}=3, \mathrm{KL} M 2$
C
$K V=K+M+L-3$
$K P=K V+1$
$K M=K V-1$
C

```
ID(K,M)=Cx*(ABS (P(KP,J,1)-2.0*P(KV,N,1)*
1 P(KM,J,1))/(P(KP,J,1)+2.0*P(KV,\,1)+P(KH,\,1)))*
2 (ABS(ZTX(KV,J,1)*U(KV,J,1))+
3 SQRT(GAMMR*T(KV;J,1)*(2TX(KV,J,1)**2)))
```

C
220 :. MTINUE
210 CONTINUE
C
IF(L.EQ.2) GO TO 24)
C
C
C
$00230 \mathrm{KV}=3$ PKLM2
C
C

```
        AODH1(KV)=DT*(PD(KV,2)*(RHO (KP,J,1)-RHO (KV,J,1))-
        1 PO(KV,1)*(RHO (KV,J,1)-RHO (KM,J,i)))*RDZT
        ADOH2(KV)=DT*(PD(KV,2)+(RHOU(KP,J,1)-RHJU(KV,J,1))-
        1 PD(KV,1)* (RHOU(KV,J,1)-RHOU(KM,J,1)))*ROZT
        ADDH3(KV)=OT*(PD(KV,2)*(RHOV(KP,J,1)-RHOV(KV,J,1))-
        1 PD(KV,1)*(RHOV(KV,J,1)-RHOV(KM,J,1)))*RDZT
        AODH5(KV)=OT*(PD(KV,2)*(RHOE(KP,J,1)-RHOE(KV,J,1))-
        1 PD(KV,1)*(RHOE(KV,U,1)-RHOE(KM,J,1)))*RDZT
```

C
230 CONTINUE
240 DO 253 KV=3,KLM2

C
$K P=K V+1$
$K M=K V-1$
C
ADOHI (KV) $=\mathrm{DT} *(P O(K V, 2) *(R H O P(K P, J, 1)-R H O P(K V, J, 1))-$ 1 PJ (KV,1)*(RHOP (KV,J,1)-RHOP (KMgJ,1)))*ROZT AODH2(KV) $=\mathrm{DT}$ \& (PD(KV,2) $=(R H O U P(K P, J, 1)-R H O U P(K V, J, 1))-$ 1 PD(KV,1)* (RHOUP(KV,J,1)-RHOUP (KM,J,1)))*RDZT ADDH3 (KV) $=\mathrm{DT} *(\operatorname{PD}(K V, 2) *(R H O V P(K P, d, 1)-R H O V P(K V, J, 1))-$ 1 PD(KV,1)*(RHOVP(KV,J,1)-RHOVP(KM,J;1)))*RDZT $A D D H 5(K V)=D T *(P D(K V, 2) *(R H O E P(K P, J, 1)-R H O E P(K V, J, 1))-$ 1 PD (KV,1)*(RHOEP(KV, J;1)-RHOEP (KM;J;1)))*RDZT
C
250 CONTINUE
C
C
c
C
$30330310 \mathrm{KV}=1, \mathrm{KL}$
C
ADO1 (KV) $=$ ISMTHX*ADDG1 (KV): ISMTHY*ADDHI (KV) $A D D ?(K V)=I S M T H X * A D D G 2(K V)+I S M T H Y * A D O H 2(K V)$ ADO $3(K V)=I S M T H X * A D D G 3(K V)+I S M T H Y * A D D H 3(K V)$ ADD J (KV) $=$ ISMTHX*ADDG5(KV) +ISMTHY*ADOH5(KV)
C
310 CONTINUE
C
RETURN
ミNO
SUBROUTINE EDDY
COYYON / / DETA,DZETA,CV,RC,PR,PRT,GAMNA,EP(96,25,1),DTL(25),
1 GAMH1,CFL, BETA,UI:AF,VINF,RHOINF,CINF,TINF,PINF,TW,OT,CX,CY,L,
$2 \mathrm{JL}, \mathrm{KL}, \mathrm{JLM}, \mathrm{KLM}$,ILE, ISMTHX,ISMTHY,GAMM2,RL,TMS 1
COMYON /DEP/ RH)(95,25,1),RHOU(96,25,1),RHOV(96,25,1),
1 RHJE (95,25,1)
COMMON /DOF/ X(75,25,1),Y(95,25,1)
COMMON /TV/ ETY(96,25,1), ZTX(96,25,1)
COMMON JOV/ R(95,25,1),U(96,25,1),V(96,25,1),W(1,1,1),
1 P(35,2う,1); $\boldsymbol{T}(96,25,1)$
DIMENSION F(76,3n), JMAX(95), OMEGA(75,30),SL(7́a,30),
1 EPMAX(95), UET (96,3j), VET (95,30), UZT (95,30) \&VZT(95,30),
2 APLUS(95)
C
२MU=2.270E-CB*SQRT(TINF**3)/(TINF*198.5) K $3=\mathrm{KL} / 2$

C

$$
203 \mathrm{~J}=1, \mathrm{JL}
$$

$$
303 \mathrm{~K}=1, \mathrm{KL}
$$

$$
२ マ=1.2 / P H O(K, J, 1)
$$

$$
J(K, U, \Sigma)=R H O U(K, J, 1) * R R
$$

$$
V(K, J, 1)=R H O V(K, J, 1) * R R
$$

CONTINUE

```
GENERATING THE DERIVATIVES OF VELOCITY
```

POET=1. $2 /(2.0 * D E T A)$
₹DZT=1.0/(2.0*DZETA)
C
$304 \mathrm{~J}=2 . \mathrm{JLM}$
$304 K=2, K L: 4$
JET $(K, J)=(U(K, J+1,1)-U(K, J-1,1)) * R) E T$
$\forall E T(K, J)=(V(K, J+1,1)-V(K, J-i, 1)) * R J E T$
$J Z T(K, J)=(U(K+1, J, 1)-U(K-1, J, 1))=R D Z T$
$V Z T(K, J)=(V(K+1, J, 1)-\forall(K-1, J, 1)) * R D Z T$
CONTINUE
GENERATING THE VORTICITY OISTRIBUTI.ON
D0 $5 \mathrm{~J}=2, \mathrm{JLM}$
$305 \mathrm{~K}=2, \mathrm{KLF}$
DMEGA $(K, J)=S Q R T($
1 (ZTX(K,J,I)*VZT(K,J)
2 -ETY(K,J,1)*UET(K, J))**2)
CONTINUE
C
c
C
OJ=1, JL
D) $6 \mathrm{~K}=1, \mathrm{KL}$

CONTINUE
c
C GENERATING THE SJRFACE VORTICITY ANJ THE INJECTION/SUCTICN A+
RDET $=1.0 / D E T A$
C
$307 K=2, K L M$
OMEGA(K,1)=SQRT(1-ETY(K,1,1)*
1 (U(K,2,1)-U(K,1;1)) i**2)*RDET
TAU $=$ RMU OMEGA(KyI)
UTAU $=$ STRT (TAU/RHO (K,1, 1))
OPDX=(P\{K+1,1,1\}*P(K-1,1,1))*RDZT*ZTX(K,1,1)
دPLUS =R:MU/RHO $(K, 1,1) * * 2$ UYAU**3*DPDX
VPLUS $=-Y(K, 1,1) / J T A U$
APLUS (K) $=26.0$
CONTINUE

$$
\text { DO } 3 \mathrm{~J}=2, \mathrm{JLM}
$$

$$
208 \mathrm{~K}=2, \mathrm{KLM}
$$

c
C SUPRESS THE UNDERFLOA MESSAGE FROM EXPONENTIAL CALCULATIONS
c

```
YPB=SQRT(RHO(K,1,1) +OMEGA(K,1)/RMU) *SL(K,J)/APLUS(K)
YPB=AMINL (YPB,50.0)
EP(K,J,1)=RHO(K,J,1)*().40*SL.(K,J)*(1.こ-EXP(-YPB)))**2*OMEGA(K,J)
F(K,J)=SL(K,J)*(1.?-EXP(-YPE))*OMEJA(K,J)
```

C

C THE BALOAIN－LOMAX MJDEL WITH IVTERMITTENCY CORREこTIJN
c
c sEARCH THE MAX．EDOY VISCOSITY COEFF．FOR A J ARRAY
c
C
$009 \mathrm{~K}=2, \mathrm{KLM}$

OU2MAX＝0．3
FMAX＝0．0
C
c
50 $10 \mathrm{~J}=2, \mathrm{JLM}$
כUZ $=U(K, J, 1) * * 2+V(K, J, 1) * * 2$
DUZMAX $=$ AMAX1（DU2，DU 2 MAX）
FMAX＝AMAXI（F（K，J），FRAX）
c
10 CONTINUE
C
JMAX（K）$=0$
DO $40 \mathrm{~J}=2$ ，JLM
IF（JMAX（K）．NE．f） 60 TO 43
IF（F（K，J）．EQ．FMAX）J．MAX（K）＝J
40 COVTINUE
c
C1＝1．0E＋20
FWAKE $=S L(K, J M A X(K))+F(K, J M A X(K))$
IF（F（K，JMAX（K））©EGe O．0） 60 TO 41
F1＝3．25＊SL（K，JMAX（K））＊CU2MAX／F（K，JMAX（K））
41 FWAKE＝AMIN1（FWAKE FF 1）
ミPMAX（K）＝0．［336＊RHO（K，JMAX（K），1）＊FWAKE
c
9 CONTINUE

```
C SET THE MAX EDOY VISCOSITY FOR THE OUTER REGIC:%
C
    OO 11 K=2,KLM
C
C
C
C
ACCOUNT FOR THE TRINSITION FRON LAMIVAR IO TURBULENT FLOW
EF(K,J,1)=EP(K,c,1)*(1.2-EXP(-2.412*XBAF2))
IF (&(K,J,i).LT. XXTT) EP(K,J,I)=0.0
C
    12 CONTINUE
    11 CONTINUE
C
C COMPLETE THE EDOY VISCOSITY MATRIX
C
EP(1,JLM,1)=EP(2,JLM,1)
#P(KL,JLM,1)=EP(KLM,JLM,1)
C
    20
C
    EP(K,1,1)=0.0
    EP(K,JL,1)=EP(K,JLM,1)
30 30 J=1,JL
EP(KL,J,1)=EP(KLM,J,I)
EP(1,J,1)=EP(2,J,1)
C
RETURN
END
```


APPENDIX C: Raw Numerical Friction Coefficient Data

This Appendix contains the raw friction coefficient data discussed in Chapter VI. The table of data contai the following information 1) arial location (Z/L), 2) local axial Reynolds number (RE), 3) friction coefficient (F), 4) Mach number squared (MA2), 5) blowing parameter (V/U), and 6) the momentum flux factor (PHI). The pipe size and external manifold pressures can be determined from the table headings. The radial Reynolds number at any location can de found by multiplying the location's axial Reynolds number times the location's blowing parameter.

PIPE LENGTH＝ 2 FEET，INSIDE CIAHETER＝ 2 IN：HES SCLRCË PRESSIRE＝ 30 FSIA，SIAK PREJSURE＝ 15 PSIA

2／L	RE	F	MA2	v／u	PHI
． $1053 \mathrm{E}-01$	． $2700 E+04$	．10475－01	．2119E－05	－． $4319 \mathrm{E}+01$	．1271E＋01
． $2105 \mathrm{E}-01$	． $5541 E+04$	． 8954 E －02	．9101E－05	－． $2077 \mathrm{E}+01$	． $1232 \mathrm{E}+01$
． $3158 \mathrm{E} \sim 01$	． $8776 E+04$	． $2340 \mathrm{E}-02$	． 2254 E－04	－． $1233 \mathrm{E}+01$	． $1235 \mathrm{E}+01$
．4211E－01	．1227E＋05	．18：2E－02	．4405E－04	－． $5466 \mathrm{E}+00$	． 1230 E ＋01
－ $5253 \mathrm{E}-01$	． $1604 E+05$	． 138 L こ－02	．7519E－04	－． $7248 \mathrm{E}+00$	． $1229 \mathrm{E}+01$
－S316E－01	． $2016 \mathrm{E}+05$	．9528E－03	－1191E－05	－． $5757 \mathrm{E}+00$	． $1229 E+01$
． $7358 \mathrm{E}-01$	． $2464 E+05$	．85835－03	．1773E－03	－． $4713 \mathrm{E}+00$	．1228E＋01
． $8421 \mathrm{E}-01$	． 2953 E 05	．6903E－03	． 2558 E －02	－． $2932 E+00$	． 1229 E －01
．9474E－01	． $3488 \mathrm{E}+05$	．5735E－03	． 3567 E－03	－． $3332 \mathrm{E}+00$	． $1229 \mathrm{E}+01$
－1053E＋0の	． $4072 E+05$	．4965E－03	．4964E－03	－． $2856 E+00$	． $1230 E+01$
－1158E＋00	．4717E＋J5	． 4294 E－03	．6527E－03	－． $2468 \mathrm{E}+00$	－ $2230 \mathrm{E}+01$
－1253E＋00	． 5367 E＋05	． $3748 \mathrm{E}-03$	． 8450 E －03	－．2172E＋00	． $2230 \mathrm{E}+01$
． $1368 \mathrm{E}+00$	． $6014 E+05$	－33425－03	．1061E－02	－． $1941 E+00$	．1231E＋01
． $1474 \hat{c}+00$	． $6663 \mathrm{E}+35$	． $30: 1$ E～03	．1304E－02	－． $1754 \mathrm{E}+00$	． $1231 E+01$
－1579E＋00	． $7309 \mathrm{E}+05$	，2744E－03	．1570E－02	$\cdots .1 \leqslant 01 E+00$	． $1231 E+01$
－168ムE＋00	． $7960 E+05$	． 252 GF－03	．1864E－02	－．1472E＋00	． $1231 E+01$
． $1737 E+00$	． $8606 \mathrm{E}+05$	．2333E－03	－2185E－02	－． $1264 E+00$	． $1231 E+01$
． $1895 \dot{c}+00$	－ $9261 \overline{\mathrm{C}}+05$	．2169E－03	． $25298-02$	－． $1269 \mathrm{E}+00$	． $12315+01$
． $20005+00$	．9912E405	． $2026 \overline{6}-03$	． $2893 \mathrm{E}-02$	－． $1138 \mathrm{E}+00$	． $1231 E+01$
－2105 $2+00$	．1057Et06	．1973E－03	．330．0E－G2	－．1117E＋00	． $1231 E+01$
．2211E＋00	． $11228+06$	．1792E－03	． 3725 E－02	－． $1054 \mathrm{E}+00$	． $1231 E+01$
－ $2316 \mathrm{E}+\mathrm{CO}$	． $1199 \mathrm{E}+06$	．1693E－03	． 418 EE －02	－． $9576 \mathrm{E}-01$	． $1230 \mathrm{E}+01$
－ $2421 \overline{\mathrm{c}}+00$	．1254E＋06	．1604E－03	．4631E－02	－． $5480 \mathrm{E}-01$	． $1230 E+01$
－ $2526 E+00$	． $132 \mathrm{i} E+08$	．1525E－33	．5177E－02	－．SC23E－01	－1230E＋01
． $2632 \mathrm{E}+00$	． $1387 E+$ C6	．1452E－C3	－57：3E－02	－． $36 \geq 1 E-01$	． $1230 E+01$
． $2737 \mathrm{~F}+00$	．1454E＋06	－2387E－03	．629UE－02	－． $2243 \mathrm{E}-01$	． $1230 E+01$
－ $2842 E+00$	－1520E＋0E	．1326E－03	．6983E－02	－．7912E－01	． $1230 \mathrm{E}+01$
． $2947 E+00$	－1588E＋06	．1273E－03	．7525E－02	－．7594E－01	．1229E＋01
． $3053 \mathrm{E}+00$	－16E4E＋06	－1221E－03	．8176E－02	－．73：8E－02	－1230E＋01
－ $3158 \bar{i}+00$	． $1723 \mathrm{E}+06$	．1̇75E－03	．8886E－02	－．7046E－01	．1229E＋01
－ $3253 \mathrm{~F}+00$	－1788E＋06	．1130E－03	－959AE－02	－． $5814 E-01$	． $1229 \mathrm{E}+01$
． $33695+00$	． 1858 ¢ 06	． $1091 \mathrm{E}-03$	． $1038 \mathrm{E}-01$	－．6578E－01	．1229E＋01
． $3474 \dot{E}+00$	．1923E＋06	． $1052 \mathrm{E}-03$	．1115E－01	－．6381E－01	－1229E－01
－ $35785+60$	． $1995 E+06$	．1018E－03	．12c1E－01	－．6173E－01	． $1228 \mathrm{E}+01$
． $3684 \mathrm{E}+00$	．2060E＋06	．9929E－04	．1295E－01	－． $60068-01$	．1229E＋01
－ $5789 \mathrm{E}+00$	． $2133 E+06$	－ 5550 E－04	．1330E－01	－．5820E－03	． $1228 \mathrm{E}+01$
． $3895 E+00$	． 2137 E ＋CS	．9223E－04	．1469E－01	－． $5679 \mathrm{E}-01$	． $1228 \mathrm{E}+01$
． $4000 E+00$	－ 2272 EP 06	．8989E－04	． $1574 \mathrm{E}-01$	－． $55098-01$	． $1227 \mathrm{E}+01$
． $4105 E+00$	． $2336 \mathrm{E}+06$	．86845－04	．1669E－02	－．5391E－01	． $12288+01$
．4211E＋00	． $2414 \mathrm{E}+06$	．8492E－04	．1785E－01	－．5234E－01	． $12278+01$
－4316E＋00	． $2478 \mathrm{E}+06$	．8208E－04	． 18848 －01	－．5137E－01	． $1227 E+01$
－4421E＋00	． $2557 E+06$	． $3051 \mathrm{E}-04$	．2014E－01	－．4389E－01	． $1226 E+01$
． $45265+00$	． $2616 E+26$	． 7799 E－04	．2i17E－01	－． $4512 \mathrm{E}-01$	$.1226 \mathrm{E}+01$
． $4632 \mathrm{E}+00$	．2702E＋08	． $7670 \mathrm{E}-04$	．2261E－01	－．4770E－01	． 1225 E＋01
．4737E＋00	．275TE＋06	． $7570 \mathrm{E}-04$	． 2366 E－01	－． $4714 \mathrm{E}-01$	． 2224 E ＋01
． $4842 E+00$	． $2948 \mathrm{E}+06$	． 76 90E－04	． 2526 E－01	－．4576E－01	． $1218 \mathrm{E}+01$
．4947E400	． $28: 8 \mathrm{E}+0$ ó	．783EE－74	．26255－01	－．2271E～01	． $12146+01$

$.5158 E+00$	$.2893 E+06$	$.9424 E-04$	$.2614 E-01$	$.4007 E-01$	$.1208 E+01$
$.5263 E+00$	$.2798 E+06$	$.3015 E-02$	$.2431 E-01$	$.4191 E-01$	$.1212 E+01$
$.5368 E+00$	$.2754 E+06$	$.4937 E-02$	$.2357 E-01$	$.4255 E-01$	$.1201 E+01$
$.5474 E+00$	$.2664 E+06$	$.8117 E-02$	$.2192 E-01$	$.4441 E-01$	$.1197 E+01$
$.5579 E+00$	$.2614 E+06$	$.1209 E-01$	$.2109 E-01$	$.4527 E-01$	$.1185 E+01$
$.5634 E+00$	$.2530 E+06$	$.1647 E-01$	$.1965 E-01$	$.4714 E-01$	$.1178 E+01$
$.5789 E+00$	$.2475 E+06$	$.2085 E-01$	$.1880 E-01$	$.4822 E-01$	$.1169 E+01$
$.5895 E+00$	$.2395 E+06$	$.2499 E-01$	$.1753 E-01$	$.5013 E-01$	$.1163 E+01$
$.6000 E+00$	$.2338 E+06$	$.2873 E-01$	$.1668 E-01$	$.5143 E-01$	$.1155 E+01$
$.6105 E+00$	$.22611 E+06$	$.3234 E-01$	$.1555 E-01$	$.5344 E-01$	$.1151 E+01$
$.6211 E+00$	$.2201 E+06$	$.3550 E-01$	$.1472 E-01$	$.5497 E-01$	$.1145 E+01$
$.6316 E+00$	$.2127 E+06$	$.3943 E-01$	$.1370 E-01$	$.5713 E-01$	$.1142 E+01$
$.6421 E+00$	$.2064 E+06$	$.4155 E-01$	$.1289 E-01$	$.5894 E-01$	$.1138 E+71$
$.6526 E+00$	$.1991 E+06$	$.4486 E-01$	$.1197 E-01$	$.6132 E-01$	$.1136 E+01$
$.6632 E+00$	$.1927 E+06$	$.4777 E-01$	$.1120 E-01$	$.6345 E-01$	$.1133 E+01$
$.6737 E+00$	$.1856 E+06$	$.5051 E-01$	$.1036 E-01$	$.6 E 09 E-01$	$.1131 E+01$
$.6842 E+00$	$.1790 E+06$	$.5342 E-01$	$.9632 E-02$	$.6361 E-01$	$.1129 E+01$
$.6947 E+00$	$.1720 E+06$	$.5645 E-01$	$.8868 E-02$	$.7162 E-01$	$.1129 E+01$
$.7053 E+00$	$.1654 E+06$	$.5952 E-01$	$.8189 E-02$	$.7460 E-01$	$.1128 E+01$
$.7158 E+00$	$.1584 E+06$	$.6263 E-01$	$.7495 E-02$	$.7809 E-01$	$.1128 E+01$
$.7263 E+00$	$.1516 E+06$	$.8544 E-01$	$.6863 E-02$	$.8168 E-01$	$.1128 E+01$
$.7368 E+00$	$.1446 E+06$	$.6921 E-01$	$.6232 E-02$	$.8583 E-01$	$.1130 E+01$
$.7474 E+00$	$.1379 E+06$	$.7416 E-01$	$.5659 E-02$	$.9014 E-01$	$.1131 E+01$
$.7579 E+00$	$.1309 E+06$	$.7889 E-01$	$.5095 E-02$	$.9510 E-01$	$.1134 E+01$

PIPE LENGTH = 2 FEET, INSIDE CIAMETER = 2 INCHES SCURCE PRESSURE $=45 \mathrm{fSIA}$, SINK PRESSURE $=15 \mathrm{PSIA}$

I/L	RE	F	MA2	v/u	PHI
. $1053 \mathrm{E}-01$. $5252 \mathrm{E}+04$	-. $3415 \mathrm{E}-02$. $3884 \mathrm{E}-05$	-. $4295 E+01$	$.1344 \mathrm{E}+01$
. 2105E-01	. $1088 \mathrm{E}+05$. $3582 \mathrm{E}-03$. $1682 \mathrm{E}-04$	-. $2051 E+01$. $1271 E+01$
. $3158 \mathrm{E}-01$.1717E+05	.9966E-03	.4133E-04	-. $1318 \mathrm{E}+01$. $1243 E+01$
.4211E-01	. $2385 E+05$. $7347 \mathrm{E}-03$.8020E-04	-. $5453 \mathrm{E}+00$. $1236 E+01$
. 5263E-01	- $3129 \mathrm{E}+05$. 5672 E -03	- i 376E-03	-. $7225 \mathrm{E}+00$. $1233 \mathrm{E}+01$
.6316Eー01	. $3922 \mathrm{E}+05$.4973E-03	.2171E-03	-. $5749 \mathrm{E}+00$.1230E+01
. $7368 \mathrm{E}-01$.4798E+05	.4061E-03	. $3247 \mathrm{E}-03$	-. $4705 E+00$. $1230 E+01$
. $8421 \mathrm{E}-01$. $5759 \mathrm{E}+05$. 3440 E-03	.4675E-03	-. $3924 \mathrm{E}+00$. $1229 \mathrm{E}+21$
. 9474 E-01	. $6805 \mathrm{E}+05$. 2942 E-03	.65205-03	-. $3328 \mathrm{E}+00$. $12295+01$
. $1053 \mathrm{E}+00$. $7937 \mathrm{E}+05$. 2509E-03	. 8889 9-03	-. $2852 \mathrm{E}+00$. $1230 \mathrm{E}+01$
. $1158 \mathrm{E}+00$	- S192E+05	.2193E-03	.1193E-02	-.2466E+00	-1229E+01
. $1253 \mathrm{E}+00$. $1045 \mathrm{E}+06$. 1924 E-03	. 1545 E-02	-. $2171 \mathrm{E}+00$. $1229 \mathrm{E}+01$
$.1368 \bar{i}+00$.1172E+06	.1712E-03	.1942E-02	-. $1540 \mathrm{E}+00$. $1230 \mathrm{E}+01$
$.1474 E+00$. 1298 E+06	.1546E-03	. $2388 \mathrm{E}-02$	-. $1754 \mathrm{E}+00$	$.1230 E+01$
. $1579 \mathrm{E}+00$. 1425 E+06	.1411E-03	. 2880 E-02	-. $1601 \mathrm{E}+00$	$.1230 E+01$
$.1684 E+00$.1553E+06	. 1295 E-03	. 3423 E-02	-.1473E+00	$.1230 E+01$
.1789E+00	. $1680 \mathrm{E}+06$.1199E-03	.4012E-02	-. $1365 E+00$. $1230 \mathrm{E}+01$
. $18955+00$.1807E+06	.1116E-03	.4653E-02	- = 1271E+00	. $1229 \mathrm{E}+01$
$.2000 E+00$. $1935 E+06$. 1042 E-03	. $5343 E-02$	-.1190E+CO	-1'29E+01
. $2105 \mathrm{E}+00$. $2063 \mathrm{E}+06$. $9782 \mathrm{E}-04$.6088E-02	-. $11119 \mathrm{E}+00$	-1229E+01
. 2211E+00	. $2192 \mathrm{E}+06$. 9217E-04	.6883E-02	-. 1057E+00	. $1229 E+01$
$.2316 E+00$. $2320 E+0$ Ó	.8716E-04	.7736E-02	-. 100:E+00	-1229E+01
. $2421 E+00$. $2450 E+06$. 8260E-04	. $8641 E-02$	-.9516E-01	. $1229 E+01$
. $2526 E+00$. $2580 E+06$. $7853 \mathrm{E}-04$. 9610E-02	-. 9065E-01	. $1228 \mathrm{E}+01$
. $26325+00$	-2710E+06	. $7483 \mathrm{E}-04$.1063E-01	-. $8664 \mathrm{E}-01$. $1228 \mathrm{E}+01$
. $2737 \mathrm{E}+00$. $2842 \mathrm{E}+06$.7146E-04	.1172E-01	-. 2273 E-01	. $1228 \mathrm{E}+01$
. $2842 \mathrm{E}+00$	$.2973 E+06$. 6828 E-04	.1286E-01	-. 7 ¢53E-01	. $1228 \mathrm{E}+01$
. $2947 \mathrm{E}+00$	- $3106 E+06$. $6550 \mathrm{E}-04$.1408E-01	-.7652E-01	-12こ7E+01
. $3053 \mathrm{E}+00$. $3237 E+06$. 62895-04	.1535E-01	-.7376E-01	. $1227 E+01$
. $31585+00$. $3372 \mathrm{E}+06$.6054E-04	.1671E-01	-.7111E-01	. $1226 E+01$
. $3263 \mathrm{E}+00$. $3505 \overline{5}+06$. $5827 \mathrm{E}-04$.1811E-01	-.6879E-01	. $1226 \mathrm{E}+01$
. $3368 \mathrm{E}+00$. $3642 \mathrm{E}+06$. 5627 E-04	.1962E-01	-.6650E-01	. $1226 E+01$
. $3474 \mathrm{E}+00$	$.3774 E+06$. 5431 E-04	.2116E-01	-.t453E-01	. $1226 E+01$
. $3579 \mathrm{E}+00$. $3914 E+06$. 5256E-04	. 2285E-01	-.6253E-01	.1225E+01
. $3684 \mathrm{E}+00$. $4047 E+06$. $5082 \mathrm{E}-04$. 2454 E -01	-.6084E-01	. 1225 E+01
. $3789 \mathrm{E}+00$. $4189 E+06$. 4931 E-04	. $2641 \mathrm{E}-01$	-.590:E-01	. $1224 E+01$
. 3895 E+00	. $4322 E+06$.4772E-04	. 2825 E-01	-. 5764E-01	. $1224 E+01$
.4000E+00	. $4468 \mathrm{E}+06$.4642E-04	. 3034E-01	-.5E04E-01	. $1223 E+01$
.4105E+00	. $4600 E+06$. 4497 E-04	. $3233 \mathrm{E}-01$	-. 5484E-01	. $1223 E+01$
.4211E+00	. $4752 E+06$. $4383 \mathrm{E}-04$. $3467 E-01$	-. 5337E-01	-1222E+01
. $4316 E+00$. $4882 E+06$. $4254 \mathrm{E-04}$. $3682 \mathrm{E}-01$	-. 5237E-01	. $1222 E+01$
. $4421 E+00$. $5041 E+06$.4157E-04	. $3944 \mathrm{E}-01$	-.5100E-01	. $1221 E+01$
.4526E+00	- $5167 \mathrm{E}+06$.4050E-04	.4173E-01	-.5020E-01	$.1221 E+01$
. $4632 E+00$. $5335 E+06$. 3964 E-04	. $4469 E-01$	-.4890E-01	. $1219 \mathrm{~F}+01$
. $4737 E+00$. $5454 E+06$. 3941 E-04	. $4707 \mathrm{E}-01$	-.4832E-01	-1218E+01
. $4842 E+00$. $5633 E+06$. 3978 E-04	. 5036E-01	-.4707E-01	. $1213 E+01$
. $4947 E+00$. $5740 E+08$. 4087 E-04	. 5265E-01	-. $2338 \mathrm{E}-01$. 1209 E +01

PIPE LENGTH = 2 FEET, INSIDE CIAMETER $=2$ INCHES SUURCE PRESSURE $=75$ FSIA, SINK PRESSURE = 15 PSIA

2/L	RE	F	MA2	V/U	PHI
. $1053 \mathrm{E}-01$. 1054 E+05	-. $6353 \mathrm{E}-02$. $5744 E-05$	-. $4233 \mathrm{E}+01$. $1343 E+61$
.2105E-01	. $2134 \mathrm{E}+05$.6166E-03	. 3419E-04	-. $2052 \mathrm{E}+01$. $1227 E+01$
. 3158E-01	. $3342 E+05$.5681E-03	. $5873 \mathrm{E}-04$	-. $1320 E+01$. $1230 \varepsilon+01$
.4211E-01	. $4669 E+05$. 2778E-03	.1149E-03	-. $9431 E+00$. $12338+01$
. 5263E-01	.6112E+05	. $3243 \mathrm{E}-03$.1953E-03	-. $7225 \mathrm{E}+00$. $12278+01$
.6316E-01	. $7682 \mathrm{E}+05$. $2398 \mathrm{E}-03$. $3103 \mathrm{E}-03$	$-.5748 \mathrm{E}+00$. $1229 E+01$
.7368E-01	. $9806 E+05$. 2024E-03	.4645E-03	-. $4703 \mathrm{E}+00$. 1229 EP 01
.8421E-01	. $1126 E+06$.1783E-03	.6675E-03	$-.3526 E+00$. $12288+01$
. $9474 E-01$. $1330 E+06$.1486E-03	.9314E-03	-. 3 228E+00	. $1229 E+01$
. $1053 E+00$. $1552 \mathrm{E}+\mathrm{C} 6$. 1271 E-03	.1270E-02	-. $2853 \mathrm{E}+00$. $1229 E+01$
. $11585+0 C$. $1799 E+06$.1123E-03	.1707E-02	-. $2467 E+00$. $12298+01$
. $1263 E+00$. $2046 \mathrm{E}+06$. $9853 \mathrm{E}-04$.2212E-02	-. $2172 \mathrm{E}+00$. $1229 \mathrm{E}+01$
. $1368 E+00$. $2294 E+06$. 8805 E-04	.2783E-02	-. $1542 \mathrm{E}+00$. $1230 E+01$
. $1474 \mathrm{E}+00$. $2542 \mathrm{E}+06$.7950E-04	. 3424 E-02	-. $1756 \mathrm{E}+00$. $1229 E+01$
. 1579 Ė +0	. $2791 E+06$. 7242 E-04	.4133E-02	-. $1604 \mathrm{E}+00$. $1230 E+01$
$.1684 \hat{E}+00$. $3040 E+06$.6659E-04	.4516E-02	-. 1475E+00	. $1229 \mathrm{E}+01$
. $1789 \mathrm{E}+00$. $3290 \mathrm{E}+08$. 6167 E-04	. 5768E-02	$-.1368 E+00$. $1229 \mathrm{E}+01$
. $1895 E+00$. $3541 E+06$. 5750 E-04	.6659E-02	-. $1274 E+00$. $1229 E+01$
. $2000 \mathrm{E}+00$	c $3792 E+06$.5361E-04	. $7702 \mathrm{E}-02$	- $11194 \mathrm{E}+00$.1229E+01
. $2105 E+00$. $4044 E+06$. 5038 E-04	. 879 ЭE-02	-. $1123 E+00$. $1228 \mathrm{E}+01$
. $2211 E+00$. $4298 \mathrm{E}+06$. 4743 E-04	. 9352 E -02	$-.1061 E+00$	-1229E+01
. $2316 E+00$	- $5553 \mathrm{E}+06$.4483E-04	.1121E-01	-. $1005 E+00$. $1228 \mathrm{E}+01$
. 24218400	. $48088+06$. 4250 -04	.1254E-01	-.9560E-0i	. $12288+01$
. 2526 E+00	. 506:E+06	. 4045 E-04	.1397E-01	-.9110E-01	. $1227 E+01$
. $2632 \mathrm{E}+00$. $5322 \mathrm{E}+06$. 3854 E-04	.1548E-01	-.8713E-01	. $1227 \mathrm{E}+01$
. $2737 \mathrm{E}+00$. $5583 \mathrm{E}+06$. 3683 E-04	$.1710 E-01$	-.8344E-01	. 1226E+01
. $2842 E+00$. $5842 \mathrm{E}+06$. $3519 \mathrm{E}-04$. $1880 \mathrm{E}-01$	-.8C19E-01	. $1226 \mathrm{E}+01$
$.2947 E+00$. $6106 E+06$. 3377E-04	-20л4E-01	-. $7708 \mathrm{E}-01$. $1225 \mathrm{E}+01$
. $3053 \mathrm{E}+00$. $6366 \mathrm{E}+06$. $3241 \mathrm{E-04}$. 2254E-01	-.7437E-01	. 1225 E+0i
. $3158 \mathrm{E}+00$. $6635 \mathrm{E}+06$. $3120 E-04$. 2461E-01	-.7173E-01	. $1224 \mathrm{E}+01$
- $32535+00$. $6897 \varepsilon+06$, 3C02E-04	. 2673E-01	-.6945E-01	. $1224 \mathrm{E}+01$
. $3368 \mathrm{E}+00$. $7171 \mathrm{E}+06$. $2301 \mathrm{E}-04$. $2506 E-02$	-.6718E-01	. $1223 \mathrm{E}+01$
. $3474 \mathrm{E}+00$. $7435 E+06$.2799E-04	. $3142 \mathrm{E}-01$	-. $6525 E-01$. $1223 \mathrm{E}+01$
. $3579 E+00$. $7714 \mathrm{E}+06$.2708E-04	. 3404 E-01	-. $6327 E-01$. $1222 \mathrm{E}+01$
-3684E+00	. $7979 \mathrm{E}+06$. $2613 \mathrm{E}-04$. 3666 E-01	-.t164E-01	. $1222 \mathrm{E}+01$
. 3789 E+00	. $82665+06$. 2541 E-04	. 3960 E-01	-. 5988E-01	. $1221 E+01$
. $3895 \mathrm{E}+00$. $8531 E+06$. 2460E-04	.4251E-01	-. 5850E-01	. $1221 E+01$
. $4000 E+00$. $8827 E+06$. 2396E-04	.4584E-01	-. 5692E-01	. $1219 \varepsilon+01$
. $4105 E+00$. $9093 E+06$. 2325 E-04	. $4305 \mathrm{E}-01$	-. 5576E-01	. $1219 \mathrm{E}+01$
.4211E400	. $9400 E+06$. 2266E-04	. 5283E-01	-. 5431E-01	.1218E+01
. $43165+00$. $9663 \mathrm{E}+000$. 2206 E-04	. 5636E-01	-. 5336E-01	. $1217 \mathrm{E}+01$
. $4421 E+00$	- $9985 \mathrm{E}+06$. 2152E-04	.6067E-01	-. 5202E-61	. $1216 \mathrm{E}+01$
.4526E+00	.1024E+07	. 2106E-04	.6454E-01	-.5126E-01	.1215E+01
. $4632 \mathrm{E}+00$. $1058 \mathrm{E}+07$. $2056 \mathrm{E}-04$.6946E-01	-. 5000E-01	-1213E+01
.4737E+00	.1083E+07	. $2058 \mathrm{E}-04$. $7361 \mathrm{E}-01$	-. $4546 \mathrm{E}-01$	-1211E+01
. $4842 E+00$. $11198+07$. 2067E-04	. $7908 \mathrm{E}-01$	-. $4832 \mathrm{E}-01$	-1207E+01
.4947E+00	. $1142 \mathrm{E}+07$. $2148 \mathrm{E}-04$.8317E-01	-. $2403 E-01$. $1202 \mathrm{E}+0$

$.5158 E+00$	$.1140 E+07$	$.2643 E-04$	$.8279 E-01$	$.3548 E-01$	$.1196 E+01$
$.5263 E+00$	$.1102 E+07$	$.4483 E-02$	$.7626 E-01$	$.4132 E-01$	$.1201 E+01$
$.5368 E+00$	$.1086 E+07$	$.7084 E-02$	$.7383 E-01$	$.4195 E-01$	$.1190 E+01$
$.5474 E+00$	$.1050 E+07$	$.1069 E-01$	$.6804 E-01$	$.4384 E-01$	$.1188 E+01$
$.5579 E+00$	$.1031 E+07$	$.1483 E-01$	$.6531 E-01$	$.4472 E-01$	$.1178 E+01$
$.5684 E+00$	$.9979 E+06$	$.1927 E-01$	$.6040 E-01$	$.4660 E-01$	$.1176 E+01$
$.5789 E+00$	$.9766 E+06$	$.2340 E-01$	$.5764 E-01$	$.4770 E-01$	$.1168 E+01$
$.5895 E+00$	$.9456 E+06$	$.2724 E-01$	$.5346 E-01$	$.4960 E-01$	$.1164 E+01$
$.6000 E+00$	$.9228 E+06$	$.3086 E-01$	$.5070 E-01$	$.5094 E-01$	$.1159 E+01$
$.6105 E+00$	$.8931 E+06$	$.3405 E-01$	$.4706 E-01$	$.5294 E-01$	$.1156 E+01$
$.6211 E+00$	$.8693 E+06$	$.3689 E-01$	$.4440 E-01$	$.5451 E-01$	$.1151 E+01$
$.6316 E+00$	$.8404 E+06$	$.3979 E-01$	$.4117 E-01$	$.5666 E-01$	$.1149 E+01$
$.6421 E+00$	$.8158 E+06$	$.4234 E-01$	$.3864 E-01$	$.5851 E-01$	$.1146 E+01$
$.6526 E+00$	$.7874 E+06$	$.4474 E-01$	$.3576 E-01$	$.6088 E-01$	$.1144 E+01$
$.6632 E+00$	$.7622 E+06$	$.4737 E-01$	$.3336 E-01$	$.6305 E-01$	$.1142 E+01$
$.6737 E+00$	$.7342 E+06$	$.4991 E E-01$	$.3078 E-01$	$.6570 E-01$	$.1141 E+01$
$.6842 E+00$	$.7085 E+06$	$.5244 E-01$	$.2855 E-01$	$.5824 E-01$	$.1140 E+01$
$.6947 E+00$	$.6808 E+06$	$.5536 E-01$	$.2622 E-01$	$.7127 E-01$	$.1140 E+01$
$.7053 E+00$	$.6548 E+06$	$.5831 E-01$	$.2416 E-01$	$.7427 E-01$	$.1139 E+01$
$.7158 E+00$	$.6273 E+06$	$.6130 E-01$	$.2207 E-01$	$.7776 E-01$	$.1139 E+01$
$.7263 E+00$	$.6010 E+06$	$.6485 E-01$	$.2019 E-01$	$.8135 E-01$	$.1139 E+01$
$.7368 E+00$	$.5736 E+06$	$.6875 E-01$	$.1931 E-01$	$.8548 E-01$	$.1141 E+01$
$.7474 E+00$	$.5471 E+06$	$.7229 E-01$	$.1660 E-01$	$.8981 E-01$	$.1142 E+01$
$.7579 E+00$	$.5198 E+06$	$.7539 E-01$	$.1492 E-01$	$.9477 E-01$	$.1145 E+01$
$.7684 E+00$	$.4931 E+06$	$.7842 E-01$	$.1338 E-01$	$.1001 E+00$	$.1148 E+01$

PIPE LENGTH = 2 FEET, INSIOE DIAMETER $=2$ INCHES SOURCE PRESSURE = 135 PSIA, SINK PRESSURE = 15 PSIA

2/L	RE	F	MAZ	V/u	PHI
. $1053 \mathrm{E}-01$. $1992 \mathrm{E}+05$. $5203 \mathrm{E}-02$. $6 \pm 32 \mathrm{E}-05$	-. $4445 E+01$. $1344 \mathrm{E}+01$
.2105E-01	. $4176 E+05$	-40775-03	. $2858 \mathrm{E}-04$	-.2081E+01	. $1279 E+01$
. 31588 c -	. $6605 \mathrm{E}+05$. 3582 E -03	. $7121 \mathrm{E}-04$	-. 1220E+01	. $1236 \mathrm{E}+01$
.4211E-01	. $9172 \mathrm{E}+05$. 2736 E-03	.1379E-03	-.9477E+00	. $1228 \mathrm{E}+01$
. 5263E-01	. $1206 E+06$. 1725 E-03	. 2377 E-03	-. $7226 E+00$. $1230 E+01$
.6316E-01	. $1515 \mathrm{E}+06$. $1520 \mathrm{E}-03$. $3758 \mathrm{E}-03$	-. $57505+00$. $1227 \mathrm{E}+01$
. $7368 \mathrm{E}-01$. $1857 \mathrm{E}+06$. 1136 E-03	. 5633E-03	$-.4704 E+00$. $1228 \mathrm{E}+01$
.8421E-01	. $2227 \mathrm{E}+06$.9372E-04	.8112E-03	$-.3923 E+00$. 1228 E+01
. 9474E-01	. $2531 \mathrm{E}+06$. 7960 E-04	.1122E-02	-. $3326 \mathrm{E}+00$. $1228 \mathrm{E}+01$
. $1053 \mathrm{E}+00$. $3071 E+06$. $6683 \mathrm{E}-04$.1545E-02	-. $2852 \mathrm{E}+00$. $1228 \mathrm{E}+01$
-1158E+00	. $3559 \mathrm{E}+06$. 5790E-04	. 2077E-02	-. $2466 \mathrm{E}+00$. $1228 \mathrm{E}+01$
. $1253 \mathrm{c}+00$. $4047 E+06$. 5057E-04	. 2692E-02	-. $2171 E+00$. $1228 \mathrm{E}+01$
-1368E+00	. $4538 \mathrm{E}+06$. $4484 \mathrm{E-04}$. $3388 \mathrm{E}-02$	-. $1942 \mathrm{E}+00$. $1229 \mathrm{E}+01$
. $1474 \mathrm{E}+00$	- $5029 \mathrm{E}+06$. 4045 E-04	.4171E-02	$-.1756 E+00$. $1229 E+01$
. $1579 \mathrm{E}+00$. $5522 \mathrm{E}+06$. 3683 E-04	. 5037E-02	-. $1604 \mathrm{E}+00$. $1229 \mathrm{E}+01$
. $1684 \mathrm{E}+00$. $6014 \mathrm{E}+06$. $3381 \mathrm{E}-04$. $5994 \varepsilon-02$	-. $1476 \mathrm{E}+00$. $1228 \mathrm{E}+01$
. $1789 \mathrm{E}+00$. $6510 E+06$. $3124 \mathrm{E-04}$. $7038 \mathrm{E}-02$	$-.1369 E+00$. $1228 \mathrm{E}+01$
. $1895 \mathrm{E}+00$. $7006 \mathrm{E}+06$. 2906E-04	.8179E-02	-. $1276 E+00$. $1228 \mathrm{E}+02$
. $2000 \mathrm{E}+00$. $7505 \mathrm{E}+06$.2710E-04	.9410E-02	-. $1196 E+00$. $1228 \mathrm{E}+01$
. $2105 \mathrm{E}+00$. $8004 \varepsilon+06$. $2544 \mathrm{E}-04$. 1075E-01	-. $1125 \mathrm{E}+00$. $1228 \mathrm{E}+01$
. $2211 E+00$. $8506 \mathrm{E}+06$. 2391 E -04	.1217E-01	-. 1063E+00	. $12278+01$
. $2316 \mathrm{E}+00$. $9010 E+06$. 2257E-04	. 1372E-01	-. 1008E+00	.1227E+01
. $2421 E+00$.9515E+06	. $2139 \mathrm{E}-04$.1536E-01	-. $9590 E-01$. $1227 E+01$
-2526E+00	. $1002 \mathrm{E}+07$. 2034E-04	-1713E-01	-. $9143 \mathrm{E}-01$. $1226 E+01$
. $2632 \mathrm{E}+00$. $2053 \mathrm{E}+07$.1937E-04	.1900E-01	-. $8748 \mathrm{E}-01$. $12265+01$
. $2737 \mathrm{E}+00$.1105E+07	.1851E-04	. 2102E-01	-. $8380 \mathrm{E}-01$. 1225 E+01
. $2842 \mathrm{E}+00$. $1157 \mathrm{E}+07$.1769E-04	.2314E-01	-.8056E-01	-1225E+01
. $2947 E+00$.1209E+07	. 1699 E -04	. 2544 E -01	-. $7748 \mathrm{E}-01$. $1224 \mathrm{E}+01$
- $3053 \mathrm{E}+00$. $1261 E+07$. 1632 E-04	. 2784E-01	-. $7478 \mathrm{E}-01$. $1224 \mathrm{E}+01$
-3158E+00	. $1315 \mathrm{E}+07$. $1572 \mathrm{E}-04$. 3045 E-01	-. $7215 \mathrm{E}-01$. $1223 E+01$
. $3263 E+00$.1367E+07	.1514E-04	. $3315 \mathrm{E}-01$	-.t590E-01	. $1223 \mathrm{E}+01$
- $3368 \mathrm{E}+00$. $14228+07$. 1465 E-04	. $3611 \mathrm{E}-01$	-.6764E-01	-1222E+01
. $3474 E+00$. 1475 E+07	.1416E-04	. 3914 E-01	-.6573E-01	. $1221 E+01$
. 3579 +00	-1531E+07	.13725-04	-4250E-01	-.6376E-01	. $1220 \mathrm{E}+01$
- $3684 \mathrm{E}+00$. $1535 E+07$.1329E-04	.4590E-01	-.t215E-01	$.1220 E+01$
- $3789 \mathrm{E}+00$	-1642E+07	.1291E-04	.4971E-01	-.6041E-01	.1218E+01
. $3895 \mathrm{E}+00$.1696E+07	.1251E-04	. $5351 \mathrm{E}-01$	-. 5505E-01	. $1218 \mathrm{E}+01$
. $4000 \mathrm{E}+00$	-1755E+07	. $1218 \mathrm{E}-04$. 5786E-01	-. 5749E-01	. $1216 \mathrm{E}+01$
. $4105 E+00$.1809E+07	.1183E-04	.6211E-01	-. 5636E-01	. $1216 \mathrm{E}+01$
.4211E+00	. $1871 E+07$. $1153 \mathrm{E}-04$.6709E-01	-. 5475E-01	$.1214 E+01$
-4316E+00	-1924E+07	. 1124E-04	. $7185 \mathrm{E}-01$	-. 5402E-01	. $1214 \mathrm{E}+01$
.4421E+00	. $1989 \mathrm{E}+07$. 1095 E-04	. 7759 E -02	-.5271E-01	-1212E+01
. $4526 E+00$. $2041 E+07$. 1074E-04	. $8287 \mathrm{E}-01$	-.5198E-01	. 1211 E +01
. $4632 \mathrm{E}+00$	-2110E+07	.1047E-04	. $8948 \mathrm{E}-01$	-. 5078E-01	. $1209 \mathrm{E}+01$
. $4737 E+00$. $2161 E+07$. $1052 \mathrm{E}-04$.9526E-01	-. 5026E-01	. $12075+01$
.4842E+00	. $2233 \mathrm{E}+07$. $1052 \mathrm{E}-04$	$.1026 E+00$	-. $4920 \mathrm{E}-01$	$.1203 E+01$
.4947E+00	. $2281 E+07$.1106E-04	. $1084 E+00$	-. $2450 \mathrm{E}-01$	$1198 \mathrm{E}+0$

PIPE LENGTH = 2 FEET, INSIDE OIAMETER = I INCH SOURCE PRESSURE $=30 \mathrm{PSIA}$, SINK PRESSURE $=15 \mathrm{PSIA}$

2/L	RE	F	MA2	v/u	PHI
. $1053 \mathrm{E}-01$. $2318 \mathrm{E}+04$.9045E-02	. $5703 \mathrm{E}-05$	-.2184E+01	.1295E+01
. $2105 \mathrm{E}-01$. $4884 \mathrm{~F}+04$. $4220 \mathrm{E}-02$. 2531 E -04	-. $1037 E+01$. $1250 \mathrm{E}+01$
. $3158 \mathrm{E}-01$. $76505+04$. 2668E-02	. $6203 \mathrm{E}-04$	-. $66626 E+00$	$.1236 \mathrm{E}+01$
.42115-01	. $1069 \mathrm{E}+05$.1909E-02	.1213E-03	-. $4739 \mathrm{E}+00$. $1230 E+01$
. 5253E-01	. $1402 \mathrm{E} \sim 05$.1451E-02	. 2077E-03	-. $3628 \mathrm{E}+00$. $1230 \mathrm{E}+01$
. 6316E-01	-1752E+05	-1161E-02	. 3281E-03	-. $2833 \mathrm{E}+00$	-1227E+01
. 7368E-01	. $2161 \mathrm{E}+05$. $9351 \mathrm{E}-03$.4526E-03	-. $2263 \mathrm{E}+00$.1230E+01
. $8421 \mathrm{E}-01$. $2577 \mathrm{E}+05$. $7864 \mathrm{E}-03$. $7079 \mathrm{E}-03$	-. $1970 \mathrm{E}+00$. $1228 \mathrm{E}+01$
. 9474E-01	. $30<8 \mathrm{E}+05$. 6636 E-03	.9880E-03	-. 1673E+00	. $1229 \mathrm{E}+01$
. $1053 \mathrm{E}+00$. $3559 \mathrm{E}+05$. $5674 \mathrm{E}-03$. 1351 E-02	-. $1434 E+00$. $1229 \mathrm{E}+01$
. $1158 \mathrm{E}+00$. $4132 \mathrm{E}+05$. $4902 \mathrm{E}-03$.1817E-02	-. $1242 \mathrm{E}+00$. $1230 \mathrm{E}+01$
. 1263 Ē+00	. $4699 E+05$.4301E-03	. 2359 E -02	-. $1094 E+00$. $1230 E+01$
. $1368 \mathrm{E}+00$. 52i1E+05	. 3826 E-03	.2971E-02	-.9805E-01	. $1230 E+01$
. $1474 \mathrm{E}+00$. $5843 \mathrm{E}+05$. $3458 \mathrm{E}-03$. $3664 \mathrm{E}-02$	-.887:E-01	. $1230 \mathrm{E}+01$
.1579E+00	. $642.0 E+05$. $3151 \mathrm{E}-03$.4428E-02	-. 8122E-01	. $1230 E+01$
. $1634 \mathrm{E}+00$. $7005 \mathrm{E}+05$. 2889 -03	. $5295 \mathrm{E}-02$	-.7482E-01	. $1229 \mathrm{E}+01$
. $1789 E+00$. $7591 E+05$. $2668 \mathrm{E}-03$. 6212E-02	-. $65555 \mathrm{E}-01$. $1230 \mathrm{E}+01$
. $1895 \mathrm{E}+00$. $8182 \mathrm{E}+05$. 2480 E-03	. $7239 \mathrm{E}-02$	-. $6490 E-01$. $12295+01$
. $2000 \mathrm{E}+00$.8770E+0S	. $2307 \mathrm{E}-03$. 8337E-02	-.6102E-01	. 1239 E + 01
. $2105 \mathrm{E}+00$	- $9365 E+05$.2171E-03	. $9548 \mathrm{E}-02$	-. 5748E-01	. $1229 E+01$
- 2211 E+00	. $9960 E+05$. 2036E-03	. $1083 \mathrm{E}-01$	-. 5452E-01	. $1229 \mathrm{E}+01$
. $2316 E+00$. $1057 E+06$. 1924 E-03	.1225E-01	-. 5175E-01	. $1228 \mathrm{E}+01$
. $2421 \mathrm{E}+00$. $1118 \mathrm{E}+06$.1822E-03	. $1374 \mathrm{E}-01$	-.4543E-01	. $1228 \mathrm{E}+01$
. $2526 \mathrm{E}+00$.1180E+VO	.1728E-03	.1539E-01	-.4721E-01	. $1227 E+01$
. $2632 \mathrm{E}+00$. $1242 \mathrm{E}+06$.1646E-03	. 1711E-01	-.4536E-01	. $12278+01$
. $2737 E+00$. $1306 E+06$.1573E-03	.1902E-01	-. $4354 \mathrm{E}-01$. $1226 E+01$
- $2842 \mathrm{E}+00$. $1369 E+06$.1500E-03	. 2098E-01	-. 4205 E-01	. 1226 E+01
. $2947 \mathrm{E}+00$	-1434E+06	.1439E-03	. 2318 E -01	-. $4053 \mathrm{E}-01$. $1225 \mathrm{E}+01$
- $3053 \overline{\text { E }}+00$. $1498 \mathrm{E}+06$.1377E-03	. 2542 E -01	-. 3 S32E-01	. 1225 E+02
- $3158 \mathrm{E}+00$. $1566 \mathrm{E}+06$.1323E-03	. 2795E-01	-. 3804E-01	. $1224 \mathrm{E}+01$
. $3263 \mathrm{E}=00$. $1631 \mathrm{E}+06$.1271E-03	. $3051 \mathrm{E}-01$	-. $3704 \mathrm{E}-01$. $1224 E+01$
- $3358 \mathrm{E}+00$. $1701 \mathrm{E}+06$.1226E-03	. 3342E-01	-. 3595 E-01	. $1223 \mathrm{E}+01$
- $3474 \mathrm{E}+00$. 1767E+06	.1181E-03	. $3634 \mathrm{E}-01$	-. $3514 \mathrm{E}-01$. $1222 \mathrm{E}+\mathrm{C}$ i
- $3579 \mathrm{E}+00$. $1840 \mathrm{E}+06$.1140E-03	. $3970 \mathrm{E}-01$	--3418E-01	. 1221E+01
. $3684 \mathrm{E}+00$. $1907 E+06$. $1102 \mathrm{E}-03$. $4303 E-01$	-. $3353 \mathrm{E}-01$. $1221 \varepsilon+01$
-3769E+00	-1983E+06	.1066E-03	. $4693 \mathrm{E}-01$	-. $3269 \mathrm{E}-01$. $1219 E+01$
. $3895 E+00$	- 205 ここ+06	. 1031 E-03	. 5074 E-01	-. 3216 E-01	. $1219 \mathrm{E}+01$
. $40005+00$. $2131 E+06$.1002E-03	. 5527E-01	-.3142E-01	. $1218 \mathrm{E}+01$
-4105E+00	. $2201 E+00$.9703E-04	. 5964E-01	-.3101E-01	. $1217 \mathrm{E}+01$
.4211E+00	. $2285 E+06$. $9432 E-04$.6495E-01	-. 3035E-01	. $1215 \mathrm{E}+01$
- $4316 \mathrm{E}+00$. $2357 \mathrm{E}+06$. $3176 E-04$. $69998-01$	-. 3005E-01	. $1214 \mathrm{E}+01$
. 442 LE +00	. $2446 E+06$. $8903 \mathrm{E}-04$. 7629 E -01	-. 2545 E-01	. $1213 \mathrm{E}+01$
. $4526 E+00$	-2519E+06	.8701E-04	. 8215 E-01	-. 2924E-01	.1211E>01
-4632E+00	. $2614 \mathrm{E}+06$.8447E-04	.8967E-01	-. $2869 \mathrm{E}-01$. $1210 \mathrm{E}+01$
.4737E+00	. $26888+06$. $8385 \mathrm{E}-04$. $9649 \mathrm{E}-01$	-. $2858 \mathrm{E}-01$. $1207 E+01$
, 4842E+00	. $2790 E+06$. $8108 \mathrm{E-04}$. $1055 E+00$	-.2811E-01	. $1206 E+01$
-.4947E+00	_. 28 E $3 E+06$.8338E-04	.1130E+00	-. 1406E-01	. $1202 \mathrm{E}+01$

. $51585+00$. 2 Ј59E*06	. $1056 \mathrm{E}-03$. $1125 E+00$.1677E-01	. $1194 \mathrm{E}+01$
. $5263 \mathrm{E}+00$. $2773 \mathrm{E}+06$. 2505E-02	. $1036 \mathrm{E}+00$	-1805E-01	. $1193 E+01$
. $5368 \mathrm{E}+00$. $2733 E+06$. 4874 E-02	. $1001 \mathrm{E}+00$. 1848 E-01	-1177E+01
. $5474 \mathrm{E}+0$ (${ }^{\text {a }}$. $2651 \mathrm{E}+\mathrm{O}^{\circ}$. 8034E-02	. 9240E-01	. 1971 E-01	,1172E+01
. $5579 \mathrm{E}+00$. $2605 \mathrm{E}+06$. 1155E-01	.8873E-01	. 2023 E-01	. $1158 \mathrm{E}+01$
$.5684 E+00$. $2528 \mathrm{E}+06$.1519E-01	.8225E-01	. 2139E-01	. $1152 \mathrm{~F}+01$
- 5789 t 00	. $2478 \mathrm{E}+06$.1870E-01	. $7859 \mathrm{E}-01$. 2200E-01	. $1142 \mathrm{E}+01$
. $5895 E+00$. $2404 E+06$. 2190 E-01	. 7306E-01	. $2313 \mathrm{E}-21$. $1137 E+01$
. $6000 \mathrm{E}+00$. $2351 E+06$. 2470 E-01	.6949E-01	. $2382 \mathrm{E}-01$. $1129 E+01$
$.6105 E+00$. $2290 \mathrm{E}+06$.2720E-01	.6465E-01	. $2497 \mathrm{E}-01$	-1126E+01
. $6211 E+00$. $2223 \mathrm{E}+06$. $2947 \mathrm{E}-01$.6118E-01	. 2579E-01	. 1120E+01
.6316E+00	. $2153 \mathrm{E}+06$. $3160 \mathrm{E}-01$. 5685E-01	. $2699 \mathrm{E}-01$	- $1118 \mathrm{E}+01$
. $6421 E+00$. $2094 E+06$. $3356 \mathrm{E}-01$. $5350 \mathrm{E}-01$. $2795 \mathrm{E}-01$. $1113 \mathrm{E}+01$
. $6526 \mathrm{E}+00$. $2024 E+06$. $3533 \mathrm{E}-01$.4959E-01	. 2325 E-01	-1111E+01
.6632E+00	. $1963 \mathrm{E}+06$. 3688 E -01	.4641E-01	. $3036 \mathrm{E}-01$. $1107 \mathrm{E}+01$
$.6737 E+00$. $1894 \mathrm{E}+06$. $3829 \mathrm{E}-01$. 4287 E -01	. 3179E-01	. $1105 \mathrm{E}+01$
. $6842 \mathrm{E}+00$. $1831 \mathrm{E}+06$. 3972 E-01	. $39888-01$. 3309E-01	-1:01E+01
.6947E+00	. $1762 E+06$.4137E-01	. 3667 E -01	. $3470 \mathrm{E}-01$	-1099E+01
. $7053 E+00$. $1698 \mathrm{E}+06$.4317E-01	-3387E-01	- $3623 \mathrm{E}-01$. $10968+01$
. $7158 \mathrm{E}+00$. $1629 E+06$.4499E-01	. $3096 \mathrm{E}-01$. $3807 \mathrm{E}-01$. $1094 \mathrm{E}+01$
$.7263 E+00$. $1564 E+06$.4702E-01	. $2838 \mathrm{E}-01$. $3988 \mathrm{E}-01$	-1091E+01
. $7368 \mathrm{E}+00$. $1494 E+06$.4936E-01	. 2576E-01	.4202E-01	. $1089 \mathrm{E}+01$
. $7474 \mathrm{E}+00$	$.1428 E+06$.5173E-01	. 2340E-01	. 4420E-01	. $1086 \mathrm{E}+01$
. $7579 E+00$. $1358 \mathrm{E}+06$. $5388 \mathrm{E}-01$. $2104 \mathrm{E}-01$.4E76E-01	. $1084 \mathrm{E}+01$
. $7684 E+00$.1291E+06	. 5616E-01	.1891E-01	. $49438-01$. $1032 \mathrm{E}+01$
. 7789 E+00	. $1221 E+06$.5927E-01	.1681E-01	- 5257E-01	. $2080 \mathrm{E}+01$
. $7895 E+00$. $1153 E+06$. $6348 \mathrm{E}-01$.1491E-01	. 5592E-01	. $1078 \mathrm{E}+01$
. $8000 E+00$. $1082 \mathrm{E}+06$.6843E-01	. $1306 E$-01	. $5586 \mathrm{E}-01$. $1077 E+01$
.8105E+00	. $1013 \mathrm{E}+06$. $7345 \mathrm{E}-01$.1139E-01	.6418E-01	. $1076 E+01$
.8211E+00	. $9425 E+05$.7874E-01	.9790E-02	.6932E-01	-1076E+01
. $8316 E+00$. $8737 \mathrm{E}+05$. 8495 E-01	.8364E-02	. $7505 \mathrm{E}-01$. $1076 E+01$
. $8421 E+00$. $8030 E+05$. $9269 \mathrm{E}-01$.7017E-02	. $8199 \mathrm{E}-01$. $1078 \mathrm{E}+01$
. $8526 \mathrm{E}+00$. $7345 \mathrm{E}+05$. $1011 \mathrm{E}+00$	-5831E-02	.8997E-01	$1081 E+01$
. $8632 E+00$. $6636 E+05$. $1107 \mathrm{E}+00$.4725E-02	-9996E-01	. $1085 \mathrm{E}+01$
. $8737 E+00$. $5945 \mathrm{E}+05$. 1255 こ+00	. $3769 \mathrm{E}-02$. $1119 \mathrm{E}+00$. $1091 E+01$
. $8842 \mathrm{E}+00$. $52395+05$. $1475 \mathrm{E}+00$. $2898 \mathrm{E}-02$. $12758+00$. $1101 \mathrm{E}+01$
. $8947 \mathrm{E}+00$. $4564 E+05$. $1638 \mathrm{E}+00$.2177E-02	. $1467 E+00$	- $1121 \mathrm{E}+01$
. $9053 \mathrm{E}+00$. $3930 \mathrm{E}+05$	$.1751 \mathrm{E}+00$.1597E-02	-1707E+00	-1150E+01
. $9158 \mathrm{E}+00$. $3376 E+05$. $2169 \mathrm{E}+00$.1163E-02	-1596E+00	-1170E+01
. $9263 \mathrm{E}+00$. $2834 \mathrm{E}+05$. $3353 \mathrm{E}+00$. 808 'E-03	. $2394 E+00$	-1167E+01
. $9368 \mathrm{E}+00$. $2350 E+05$. $4383 \mathrm{E}+00$. 5492E-03	- $2907 E+00$	-1146E+01
. $9474 E+00$. $1867 E+05$. $5631 E+00$. $3444 \mathrm{E}-03$	- $3675 \mathrm{E}+00$	-1174E+01
-9579E+00	.1411E+05	. $1555 E+01$.1962E-03	. $4874 \mathrm{E}+00$	-1116E+01
. $9684 \mathrm{E}+00$. $1057 \mathrm{E}+05$	- $5730 \mathrm{E}+00$. $1101 \mathrm{E}-03$. $6500 E+00$	-1260E+0
. $9789 \mathrm{E}+00$. $5868 \mathrm{E}+04$	-.1707E+01	. $3394 E-04$.1172E+01	. $3289 \mathrm{E}+01$
. $9895 \mathrm{E}+00$. $2853 \mathrm{E}+04$. $2220 \mathrm{E}+01$.	. $8018 \mathrm{E}-05$. $2414 \mathrm{E}+01$	-1213E+0

PIPE LENGTH = 2 feet, INSIDE OIAMETER = 1 INCHE SOURCE PRESSURE $=45$ PSIA, SINK PRESSURE $=15$ PSIA

2/L	RE	F	MA2	v/u	PHI
. $1053 \mathrm{E}-01$. $4279 E+04$. $4637 \mathrm{E}-02$. $8821 \mathrm{E}-05$	-. $2182 \mathrm{E}+01$. $1288 \mathrm{E}+01$
.2105E-01	. $8932 \mathrm{E}+04$. $2260 \mathrm{E}-02$. $3880 \mathrm{E}-04$	-. $1039 E+01$	$.1246 \mathrm{E}+01$
. $3158 \mathrm{~F}-01$. $1423 E+05$.1413E-02	. $9614 \mathrm{E}-04$	-. $6634 \mathrm{E}+00$.12385+01
.4211E-01	.1943E+05	.1036E-02	. $1854 \mathrm{E}-03$	-. $4748 E+00$. $1228 E+01$
. 5263E-01	. $2591 \mathrm{E}+05$.7760E-03	. $32078-03$	-. $3634 \mathrm{E}+00$. $1231 \mathrm{E}+01$
.6316E-01	. $3235 E+05$. 6210E-03	. $5062 \mathrm{E}-03$	-. $2889 \mathrm{E}+00$. $1229 \mathrm{E}+01$
. $7368 \mathrm{E}-01$. $3971 \mathrm{E}+05$. 5040 E-03	.7589E-03	-. $2367 E+00$. $1230 E+01$
. 8421 E -01	. $4736 E+05$. 4246 E-03	. $1071 \mathrm{E}-02$	-. 1975E+00	. $1229 \mathrm{E}+01$
. S4T4E-01	. $5626 E+05$. 3558 E-03	. 1528E-02	$-.1677 E+00$. $1230 \mathrm{E}+01$
. $1053 \mathrm{E}+00$. $6557 \mathrm{~F}+05$. $3058 \mathrm{E}-03$. 2087E-02	-. 1439E+00	. $1229 \mathrm{E}+01$
-1158E+C0	. 7625 E+05	. 2644 E-03	. 2816E-02	-. $1247 \mathrm{E}+00$. $1230 \mathrm{E}+01$
. $1263 \mathrm{E}+00$. $8662 \mathrm{E}+05$. 2315E-03	.3657E-02	$-.1100 \mathrm{E}+00$. $1230 \mathrm{E}+01$
$.1368 \bar{c}+00$. $9735 E+05$. $2058 \mathrm{E}-03$.4619E-02	-. $9857 \mathrm{E}-01$.1231E401
$.1474 E+00$. $1078 \mathrm{E}+06$.1867E-03	. $5702 \mathrm{E}-02$	-.8930E-31	. $1230 \mathrm{E}+01$
. $1579 E+00$. $1187 E+06$. $1695 \mathrm{E}-03$.6917E-02	-. $8182 \mathrm{E}-01$. $1230 \mathrm{E}+01$
$.1684 E+00$. $1294 E+06$. $1556 \mathrm{E}-03$.8266E-02	-. $7548 \mathrm{E}-01$. 1229 E+01
.1789¢+00	. $1405 \mathrm{E}+06$. $1439 \mathrm{E}-03$.9756E-02	-. 7022E-01	-1229E+01
. $1895 E+00$. $1514 \mathrm{E}+06$. $1343 \mathrm{E}-03$.1140E-01	-.6553E-01	-1228E+01
$.2000 E+00$.1627E+06	. $1249 \mathrm{E}-03$.1319E-01	-.6176E-01	-1228E+01
$.2105 E+00$	$.1738 E+06$.1175E-03	.1515E-01	-. 5830E-01	. $1227 \mathrm{E}+01$
. $2211 E+00$. $1852 \mathrm{E}+06$.1103E-03	.1728E-01	-.5536E-01	. $1227 \mathrm{E}+01$
. $2316 E+00$. $1965 E+06$. $1043 \mathrm{E}-03$.1961E-01	-. 5266E-01	. 1226E+01
. $2421 E+00$. $2083 \mathrm{E}+06$. $9868 \mathrm{E}-04$. 2212E-01	-. 5037E-01	.1226E+01
. $2526 E+00$. $2199 E+06$. 9371 E-04	.2487E-01	-. 4822E-01	. $1225 E+01$
. $2632 \mathrm{E}+00$. $2319 \mathrm{E}+06$.8927E-04	. $2782 \mathrm{E}-01$	-. $4640 \mathrm{E}-01$. $1225 E+01$
. $2737 E+00$. $2438 \mathrm{E}+06$. 8521 E-04	. $3106 \mathrm{E}-01$	-. $4465 \mathrm{E}-01$. $1224 \mathrm{E}+01$
. $2842 E+00$. $2562 \mathrm{E}+06$.8119E-04	. $3453 \mathrm{E}-01$	-. $4319 \mathrm{E}-01$. $1223 \mathrm{E}+01$
. 2947 E+00	. 2685 E+06	. $7817 \mathrm{E}-04$. $3835 \mathrm{E}-01$	-.4175E-01	-1222E+01
. $3053 \mathrm{E}+00$. $2813 E+06$. 7478 E-04	. $4244 E-01$	-. $4058 \mathrm{E}-01$.1221E+01
. $3158 \mathrm{E}+00$. $2941 E+06$. $7198 \mathrm{E}-04$.4695E-01	-. $3538 \mathrm{E}-01$.1220E+01
. $3263 \mathrm{E}+00$	- $3073 \mathrm{E}+06$. 6915 E-04	. 5177E-01	-. 3842E-01	-1219E+01
. $3368 \mathrm{E}+00$. $3207 E+06$. $6683 \mathrm{E}-04$. 5714E-01	-. $3741 \mathrm{E}-01$.1217E+01
. $3474 \mathrm{E}+00$. $3343 E+06$. 61,4 OE-04	.6284E-01	-. $3664 \mathrm{E}-01$. $1216 \mathrm{E}+01$
. $3579 \mathrm{E}+00$. $3483 E+96$.62108-04	.6927E-01	-. 3579E-01	. $1214 \mathrm{E}+01$
. $3684 \mathrm{E}+00$. $3624 E+0$ S	.6021E-04	. 7609 E-01	-. 3518E-01	. $1213 \mathrm{E}+01$
. $3789 \mathrm{E}+00$. $3772 \mathrm{E}+06$. 5836 E-04	.8386E-01	-.3446E-01	. $1211 E+01$
. $3895 \mathrm{E}+00$.3919E406	. 5655 E-04	. 9212E-01	-. 3398E-01	. $1209 \mathrm{E}+01$
. $4000 E+00$. $4074 \mathrm{E}+06$. 5522E-04	. $1016 E+00$	-. $3337 \mathrm{E}-01$. $1207 \varepsilon+01$
. $4105 E+00$. $4228 E+06$. 5365 E-04	. $1118 \mathrm{E}+00$	-. 3301E-01	. $1204 E+01$
.4211E+00	. $4394 E+06$. 5240E-04	. $1237 E+00$	-. $3251 \mathrm{E}-01$. $1203 \mathrm{E}+01$
.4316E+00	. $4555 \mathrm{E}+06$. 5145E-04	.1363E+00	-. 3226 -01	-1198E+01
. $4421 E+00$. $4735 E+06$. 5006 E-04	. $1517 E+00$	-. 3186E-01	.1197E+01
-4526E+00	. $4905 \mathrm{E}+06$. 49635.04	-1679E+00	-. 3172E-01	-1191E+01
.4632E+00	. $5101 E+06$. 4836 E-04	. $1883 \mathrm{E}+00$	-. 3142E-01	. $1190 E+01$
.4737E+00	. $5231 \mathrm{E}+06$. $4948 \mathrm{E}-04$	$.2097 E+00$	-. $3139 \mathrm{E}-01$. $1182 \mathrm{E}+01$
. $4842 E+00$. $5500 \mathrm{E}+06$.4735E-04	. $2377 E+00$	-.3129E-01	. $1181 E+01$
. $4947 E+00$. $5682 \mathrm{E}+06$.4996E-04	. $2650 \mathrm{E}+00$	-. 1575 E-01	. $1173 \mathrm{E}+01$

PIPE LENGTH = 2 FEET, INSIDE DIAYETER $=1$ INCH
SOURCE PRESSURE $=75$ PSIA, SINK PRESSURE $=15$ PSIA

2/L	RE	F	MA2	v/u	PHI
. $1053 \mathrm{E}-01$. $7997 E+04$. $2240 \mathrm{E}-02$. 1080E-04	$-2171 \varepsilon+01$. $1287 \mathrm{E}+01$
.2105E-01	. $1652 \mathrm{E}+05$.1271E-02	.4700E-04	-. 1037E+01	.1243E+01
. $3158 \mathrm{E}-01$. $2663 E+05$. $7606 \mathrm{E}-03$.1173E-03	$-.6620 E+00$. $1238 \mathrm{E}+01$
.4211E-01	. $3617 E+05$. $5610 \mathrm{E}-03$. $2254 \mathrm{E}-03$	-. $4743 \mathrm{E}+00$. $1227 E+01$
. 5263E-01	. $4816 \mathrm{E}+05$.4197E-03	. $3898 \mathrm{E}-03$	-. $3629 E+00$. $1230 \mathrm{E}+01$
.6316E-01	. $5995 E+05$. $3354 \mathrm{E}-03$.6138E-03	-. $2887 \mathrm{E}+00$. $1227 E+01$
.7368E-01	. $7411 \mathrm{E}+05$.2735E-03	. 924 FE-03	$-.2365 E+00$. $1230 \mathrm{E}+01$
.8421E-01	. $8823 E+05$. 2298E-03	.1327E-02	-.1575E+00	. $1228 \mathrm{E}+01$
. $9474 \mathrm{E}-01$. $1048 \mathrm{E}+06$.1917E-03	.1861E-02	-. $1677 \mathrm{E}+00$. $1230 E+01$
. $1053 \mathrm{E}+00$. $1218 \mathrm{E}+06$.1657E-03	. $2538 \mathrm{E}-02$	-. 1440E+U0	. $1228 \mathrm{E}+01$
. $1158 \mathrm{E}+00$. $1420 E+06$.1427E-03	. $3432 \mathrm{E}-02$	-. $1242 \mathrm{E}+00$. $1230 \mathrm{E}+01$
. $1263 \mathrm{E}+00$. $1611 \mathrm{E}+06$.1256E-03	. $4458 \mathrm{E}-02$	-. $1102 \mathrm{E}+00$. $1229 E+01$
. $1368 E+00$.18!oE+06	.1107E-03	. $5647 E-02$	-. $5983 \mathrm{E}-01$	-1230E+01
. $1474 \mathrm{E}+00$.2010E406	.1006E-03	.6975E-02	-.8964E-01	. $1229 \mathrm{E}+01$
$.1579 E+00$. $2217 \mathrm{E}+06$. $9127 \mathrm{E}-04$.84825-02	-.8219E-01	. $1230 \mathrm{E}+01$
. $1684 E+00$. $2414 \mathrm{E}+06$.8351E-04	.1014E-01	-. $7591 \mathrm{E}-01$. $1229 \mathrm{E}+01$
.1789E+00	. $2624 \mathrm{E}+06$. $7729 \mathrm{E}-04$.1200E-01	-. $7068 \mathrm{E}-01$. $1229 E+01$
. $1895 E+00$. $2825 E+06$. 7239E-04	. $1403 \mathrm{E}-01$	-. 6E16E-01	. $1227 \mathrm{E}+01$
. 2000 Ė+00	. $3040 E+06$.6703E-04	.1629E-01	-.6231E-01	. $1228 E+01$
. $2105 \mathrm{E}+00$. $3245 E+06$.6319E-04	.1874E-01	-.5891E-01	. $1226 \mathrm{E}+01$
. $2211 \mathrm{E}+00$. $3466 \mathrm{E}+06$. $5924 \mathrm{E}-04$.2146E-01	-. 5599E-01	. $1226 E+01$
. $2316 \mathrm{E}+00$	- $3677 \mathrm{E}+06$. 55.76E-04	.2440E-01	-. $3335 E-01$. $1255 \mathrm{E}+01$
. $2421 E+00$. $3904 \mathrm{E}+06$. 5289E-04	. 2765E-01	-.5109E-01	.1225E+01
. $2526 \mathrm{E}+00$. $4123 E+06$.5031E-04	.3117E-01	-.4500E-01	.1224E\&01
. $2632 \mathrm{E}+00$. $4357 \mathrm{E}+06$. $4778 \mathrm{E}-04$.3505E-01	-.4720E-01	. $1223 \mathrm{E}+01$
. $2737 E+00$. $4583 \mathrm{E}+06$. 4567 E-04	.3927E-01	-. 4553 E -01	. $1222 \mathrm{E}+01$
-2842E+00	-4825E+06	. $4338 \mathrm{E}-04$. $4390 \mathrm{E}-01$	-.4409E-01	. $1220 \mathrm{E}+01$
. $2947 \mathrm{E}+00$. $5059 E+06$. 4181 E-04	.4896E-01	-.4273E-01	. $1220 E+01$
. $3053 \mathrm{E}+00$. $5310 E+06$. 4005 E-04	. 5451E-01	-.4157E-01	. $1218 \mathrm{E}+01$
. $3158 \mathrm{E}+00$. $5554 \mathrm{E}+06$. 3251 E-04	. $6063 E-01$	-.4045E-01	-1217E+01
. $3263 E+00$. $5815 \mathrm{E}+06$. 3715 E-04	. $6733 \mathrm{E}-01$	-. $3951 \mathrm{E}-01$. $1214 \mathrm{E}+01$
. $3368 \mathrm{E}+00$. $6071 \mathrm{E}+06$. $3575 \mathrm{E}-04$.7480E-01	-.3860E-01	. $1214 \mathrm{E}+01$
- $34745+00$. $6344 E+06$.3471E-04	. $8298 \mathrm{E}-01$	-. 3784E-01	. $1210 E+01$
. $3579 \mathrm{E}+00$. $6614 E+06$. 3349 E-04	. $9222 \mathrm{E}-01$	-.3710E-01	. $1210 \mathrm{E}+01$
-3684E+00	$.6901 E+06$. 3250 E-04	$.1024 E+00$	-. $3650 \mathrm{E}-01$. $1203 E+01$
. $3189 \mathrm{E}+00$. $7188 \mathrm{E}+06$. $3167 \mathrm{E}-04$. $1140 \mathrm{E}+00$	-. $35915-01$. $1206 E+01$
-38^5E+00	. $7491 \mathrm{E}+06$. 3068 E-04	.1268E•00	-. $3545 \mathrm{E}-01$. $1200 \mathrm{E}+01$
. $40005+00$. $7801 \mathrm{E}+06$. $2989 \mathrm{E}-04$	-1420E+00	-. $3500 \mathrm{~F}-01$	-1200E+01
. $4105 E+00$. $8119 \mathrm{E}+06$.2985E-04	$.1584 E+00$	-.3456E-01	.11925+01
. $4211 E+00$. $8460 \mathrm{E}+06$. $2355 \mathrm{E}-04$. $1790 E+00$	-. $3436 \mathrm{E}-01$. $1193 \mathrm{E}+01$
. $4315 E+00$. $8801 \mathrm{E}+06$. 2892 E-04	. $2011 E+00$	-.3415E-01	-1183E+01
. $6421 E+00$	-9179E+06	. 2833 E-04	$.2303 E+00$	-. $3402 \mathrm{E}-01$. $1133 \mathrm{E}+01$
. $4526 \mathrm{E}+00$. $9546 E+06$. 2901E-04	- $2615 \mathrm{E}+00$	-. $3395 \mathrm{E}-01$. $11715+01$
. $4632 \mathrm{E}+00$	-9987E+06	. 2789 E-04	. $3075 \mathrm{E}+00$	-.3408E-01	.1170E401
. $4737 \mathrm{E}+00$. $1039 \mathrm{E}+07$.3109E-04	$.3554 E+00$	-. 3423 E .01	. $1155 E+01$
. $4842 \mathrm{E}+00$. $1093 \mathrm{E}+07$. $3092 \mathrm{E}-04$. $4386 \mathrm{E}+00$	-. $3482 \mathrm{E}-01$	-1247E+01
.4947E+00	. $1140 \mathrm{E}+07$. 3445 E-04	. $5292 \mathrm{~F}+00$	-. 1784E-01	-1134E+0:

$.512 \pm E+00$
$.5253 E+00$
$.5368 E+00$
$.5474 E+00$
$.5579 E+00$
$.5684 E+00$
$.5739 E+00$
$.5895 E+00$
$.6000 E+00$

$.5105 E+00$
$.6211 E+00$
$.6316 E+00$
$.6421 E+00$
$.6526 E+00$
$.6632 E+00$
$.6737 E+00$
$.6842 E+00$
$.6947 E+00$
$.7053 E+00$
$.7158 E+00$
$.7263 E+00$
$.7368 \mathrm{E}+00$
$.7474 E+00$
$.7579 \mathrm{E}+00$
$.7634 E+00$
$.7789 E+00$
$.7895 \varepsilon+00$
$.8000 E+00$
$.8105 E+00$
$.8211 E+00$ $.8316 E+00$ $.8421 E+00$ $.8526 E+00$ $.8632 E+00$
$.8737 E+00$ $.8842 \overline{\text { E }}+00$ $.8947 E+00$ $.9053 \mathrm{E}+00$
$.9158 \mathrm{E}+00$
$.9263 E+00$
. $9368 \mathrm{E}+00$
$.9474 E+00$
-9579E+00
$.9684 E+00$
$.9789 E+00$
$.9895 E+00$
$.1141 E+07$ $=1113 E+07$ $.1091 E+07$ $.1061 E+07$

$$
\mid
$$

$.4124 E-04$ $.3482 \mathrm{E}-02$ $.5849 E-02$
. 8885 E -02
$.5455 E+00$
$.4750 E+00$
-1345E-U1
$.1491 E-01$
-1120E+01
$.4359 E+00$
$.1574 \mathrm{E}-01$
$.1134 E+01$
$.1134 E+01$
$.3895 E+00$. $1694 E-01$
$.1140 E+0 i$
$.1137 E+01$
$1139 E+01$
$.1138 E+01$
$.1136 \mathrm{E}+01$
$.1135 \mathrm{E}+01$
$\begin{array}{rr}.2275 E-01 & .1133 E+01 \\ .2374 E-01 & .1133 E+01\end{array}$
. $2486 E-01$. $1131 E+01$
$.2597 E-01$. $1130 E+01$
$.2720 E-01$. 1128E+01

$.2845 E-01$	$.1128 E+01$
$.2983 E-01$	$.1126 E+01$
$.3125 E-01$	$.1125 E+01$
$.3281 E-01$	$.1123 E+01$
$.3446 E-01$	$.1122 E+01$
$.3 \epsilon 26 E-01$	$.1120 E+01$
$.3818 E-01$	$.1117 E+01$
$.4629 E-01$	$.1116 E+01$
$.4258 E-01$	$.1114 E+01$
$.4510 E-01$	$.1112 E+01$
$.4787 E-01$	$.1110 E+01$
$.5075 E-01$	$.1108 E+01$
$.5439 E-01$	$.1106 E+01$
$.5825 E-01$	$.1105 E+01$
$.6266 E-01$	$.1103 E+01$

$.6770 E-01 \quad .1102 E+01$
$.7358 E-01 \quad .1102 E+01$
$.2043 E-01 \quad .1102 E+01$
$\begin{array}{rr}.2043 E-01 & .1102 E+01 \\ .8867 E-01 & .1104 E+01\end{array}$
$.9863 E-01 \quad .1107 E+01$
$\begin{array}{rr}.1109 E+00 & .1115 E+01 \\ .1265 E+00 & .1127 E+01\end{array}$
$\begin{array}{ll}.1265 E+00 & .1127 E+01 \\ .1470 E+00 & .1150 E+01\end{array}$
$.1150 E+01$
$.1186 E+02$
$.1247 E+01$
$.1340 E+01$
$.1543 E+01$
$.1917 E+01$
$.2722 E+01$
-4123E+01
$.6946 E+01$
$.8404 E+01$

PIPE LENGTH＝ 2 FEET，INSIDE DIAMFTER $=1 / 2$ INCH SOURCE PRESSURE＝ 20 PSIA，SINK PRESSURE＝ 15 PSIA

2／L	RE	F	MAZ	v / u	PHI
．1053E－01	－ $14 \div 2 \mathrm{E}$（ 04	．1173E－91	． $1593 \mathrm{E}-04$	－． $5097 E+00$	． $1416 E+01$
．2105E－01	． $2918 \mathrm{E}+04$	．6787E－02	．6713E－04	－． $2485 E+00$	． $1263 \mathrm{E}+01$
． $31585-01$	－ $4242 E+04$	． $4582 \mathrm{E}-02$	．1488E－03	－． $1672 \varepsilon+00$	． $1239 \mathrm{E}+01$
． $4211 \mathrm{E}-01$	． $5841 E+04$	－ $3437 \mathrm{E}-\mathrm{UL}$	．2694E－03	－． $1245 E+00$	－ $1233 \mathrm{E}+01$
．5263E－01	． 7268 E＋J́4	． $2755 \mathrm{E}-02$	．4176E－03	－．1603E＋00	－1232E＋01
．6316E－01	． $8777 \mathrm{E}+04$	．229こE－02	．6094E－03	－． $8334 \mathrm{E}-01$	．1231E＋01
． 7368 こ－01	． $1023 E+05$	．19595－02	． $82078-03$	－．71＋2E－C1	． $12325+01$
．8421E－01	． $1170 E+05$	．17215－02	． 1085 S－02	－．628をE－01	． $1230 E+01$
． $8474 \mathrm{E}-01$	． $1323 E+05$	．1516E－02	．1382E－02	－． $5628 \mathrm{E}-01$	． $1233 \mathrm{E}+01$
． 1053 E＋00	． $1471 E+05$	．1367E－02	－1720ミ－32	－．5067E－01	． $1231 E+01$
． $1158 \mathrm{E}+0 \mathrm{C}$	－1617E＋05	． 1241 E －0？	－2032E－02	－．4E42E－01	－1231E＋01
． $1263 E+00$	． $1776 E+05$	－1133E－02	． $2507 \mathrm{~F}-02$	－．4262E－01	． $1231 E+01$
． $1368 \mathrm{E}+50$	． $1926 E+05$	． $1041 \mathrm{E}-\mathrm{C} 2$	． 2952 －02	－，3967E－01	． $1232 \mathrm{E}+01$
． $1474 E+00$	． $2082 \mathrm{E}+05$	． 9675 E－03	－2460E－02	－．3693E－01	． $1231 \mathrm{E}+01$
． $1579 \mathrm{E}+00$	． $2232 \mathrm{E}+05$	．9015E－C？	． $3984 \mathrm{E}-02$	－．3479E－01	． $1231 E+01$
$.1684 E+00$	． $2395 \bar{c}+v 5$	． 842 ：E－03	． $45935-02$	－． $3272 \mathrm{E}-01$	． $1230 \mathrm{E}+01$
．1799E＋00	． $2555 \mathrm{E}+05$	．7890E－03	－ $521.55-02$	－．3112E－01	． $1231 E+01$
． $1895 E+00$	． $2718 \mathrm{E}+05$	．7441E－03	．5928E－02	－． 2 S51E－01	． $1230 E+01$
$.2000 \hat{t}+00$	． $2873 \mathrm{E}+75$	．7031E－03	．6043E－02	－．2827E－01	． $1230 \mathrm{E}+01$
． $2105 \mathrm{E}+00$	． $3040 \mathrm{CLC5}$	－ $5657 \mathrm{E}-03$	．7467E－02	－． $2699 \mathrm{E}-01$	－1230E＋01
． $2211 \bar{E}+00$	． $32 \mathrm{C} 3 \mathrm{E}+05$	．6316E－03	－8236E－02	－．2602E－01	． $1230 \mathrm{E}+01$
． $2316 \overline{\mathrm{E}}+00$	． $3385 \mathrm{E}+05$	． $5995 \mathrm{E}-03$	．9260E－02	－．2497E－01	． $1229 E+01$
． $2421 E+00$	． $3547 E+05$	． 5714 E－03	．1021E－01	－．2421E－01	－1230E＋01
． 2525 E＋00	． $3728 \mathrm{E}+05$	． $5451 \mathrm{E}-03$	－113．E－01	－． 2335 E－01	－1229E＋01
． $26328+00$	． $3894 \mathrm{E}+05$	．5215E－03	． 1239 E－01	－．2274E－01	－1229E＋01
． $2737 \mathrm{E}+00$	． $4080 E+05$	．4994E－03	． 1366 －01	－． 2201 E －01	－1228E＋01
－2842E＋00	． $4255 \mathrm{E}+05$	．4788E－03	．1490E－01	－．2153E－01	． $1228 \mathrm{E}+01$
． $2947 \mathrm{E}+00$	． $4454 \mathrm{E}+05$	．4597E－03	． $1637 \mathrm{E}-01$	－．2092E－01	． $1228 \mathrm{E}+01$
． $3053 \mathrm{E}+00$	． $4636 E+05$	．4416E－03	．177？E－01	－．2C54E－01	． $1228 \mathrm{E}+01$
． $3158 \mathrm{E}+00$	． $4840 E+05$	．4247ビ－03	． 1948 E－01	－． $2002 \mathrm{E}-01$	．1227E＋01
． $3263 E+00$	． $5025 \mathrm{E}+05$	． 4086 E－03	．2110E－01	－． 2573 E －01	－1227E＋01
． $3368 \mathrm{E}+00$	． $5239 \mathrm{E}+05$	． 3935 E－03	．2304E－01	－． 1928 c .01	－1226Er01
$.3474 E+00$	． $5431 E+05$	． $3798 \mathrm{E}-03$	． 2400 ¢－01	－．1906E－02	－1226E＋01
． $3579 \mathrm{E}+00$	． $5655 \mathrm{E}+05$	． $3668 \mathrm{E}-03$	－2715E－Ci	－．1867E－01	－1225E＋01
－ $36848+00$	． $5858 \mathrm{E}+05$	． $3542 \mathrm{E}-03$	．2929E－01	－．1851E－01	－1224E＋${ }^{1} 1$
－ $37895+00$	． $6096 E+05$	． 3411 E－03	－3191E－01	－．1813E－01	－1224E＋01
． $3895 \mathrm{E}+00$	． $6307 E+05$	． 3300 E－03	－ $3438 \mathrm{E}-0.1$	－． $1808 \mathrm{E}-01$	． $1223 \mathrm{E}+01$
$.4000 E+00$	． $6559 \mathrm{E}+05$	． $3187 \mathrm{E}-03$	． 3744 E － 61	－．1780E－01	． $1223 \mathrm{E}+01$
． $4105 E+00$	． $6779 E+05$	． $3089 \mathrm{E}-03$	． $4030 \mathrm{E}-01$	－．1774E－01	－1222E＋01
．4211E＋00	$.7047 E+05$	． 2989 E－03	－4389E－01	－． $1750 \mathrm{E}-01$	－1221E＋01
． $43: 6 E+00$	．7277E：05	． 2906 E－03	．4724E－01	－． $1749 \mathrm{E}-01$	－1220E＋01
．4421E＋00	． $7564 E+05$	．2800E－03	．5150E－01	－． $1729 \mathrm{E}-01$	． $1220 E+01$
． $4526 E+00$	． $7807 \mathrm{E}+05$	．2721E－03	．5545E－01	－． $1732 \mathrm{E} \cdot 01$	－1218E＋01
． $4632 \mathrm{E}+00$	． $8115 E+05$	． $2636 \mathrm{E}-03$	． $6054 \mathrm{E}-01$	－． $1716 \mathrm{E}-01$	． $1218 \mathrm{E}+01$
． $4737 E+00$	． $8373 E+05$	． 2565 E－03	．6525E－01	－．1722E－01	－1215E＋02
．4842E800	． $87058+05$	． $2468 \mathrm{E}-03$	． $7140 \mathrm{E}-01$	－．1711E－01	． $1215 \mathrm{E}+01$
．4947E＋OC	． $8974 E+05$	． $2482 \mathrm{E}-03$	．7692E－01	－． $8604 \mathrm{E}-02$	． $1212 \mathrm{E}+01$

$\begin{array}{r} .5158 E+00 \\ .5263 E+00 \\ .5368 E+00 \end{array}$	$\begin{array}{r} .8574 E+05 \\ .8789 E+05 \\ .8692 E+05 \end{array}$	$\begin{aligned} & .2575 E-03 \\ & .6836 E-03 \\ & .1593 E-02 \end{aligned}$	$\begin{aligned} & .7689 E-01 \\ & .7293 E-01 \\ & .7102 E-01 \end{aligned}$	$\begin{array}{r} .6357 E-02 \\ .70515-02 \\ .7359 E-02 \end{array}$	$\begin{aligned} & .1210 E+01 \\ & .1203 E+01 \\ & .1187 E+01 \end{aligned}$
. $5474 E+00$. $8493 E+05$. $3230 E-02$.6702E-01	. 8138E-02	-1172E+01
. $5579 E+00$. $8374 E+05$. 5464E-02	. $6485 \mathrm{E}-01$	- $8505 \mathrm{E}-02$	-1155E+01
. $5684 E+00$. $8177 \mathrm{E}+05$. 8059E-02	. $6126 E-01$	- S211E-02	-1142E+01
- $5789 E+00$	$.8046 \mathrm{E}+05$	-1083E-01	- 5511E-01	- S569E-02	-1128E+01
. $5895 E+00$	$.7852 E+05$	$.1355 \mathrm{E}-01$. 5587 E -01	. 1022E-01	-11.18E+01
. $6000 E+00$. $7710 \mathrm{E}+05$. 1601E-01	. 5373E-01	-1057E-01	. $1109 E+01$
. $6105 E+00$. $7518 \mathrm{E}+05$. 1809E-01	. 5079E-01	. $1117 \mathrm{E}-01$. $1103 E+01$
. $6211 E+00$. $7368 \mathrm{E}+05$. $1988 \mathrm{E}-01$. $4866 E-01$. $11545-01$	-1096E+01
. $6316 \overline{\text { E }}+00$. $7177 \mathrm{E}+05$. $2143 \mathrm{E}-01$.4593E-01	. $1213 \mathrm{E}-01$. $1091 E+01$
. $6421 E+00$	$.7019 E+05$. 2278E-01	. 4333 E -01	. 1255 E-01	. $1066 E+01$
- $6526 E+00$	-6827E+05	- $2394 \mathrm{E}-01$	-4128E-01	-1316E-01	- $1083 E+01$
-6632E+00	. $6661 \mathrm{E}+05$. $2496 \mathrm{E}-01$. $3920 \mathrm{E}-01$	-1363E-01	. $1079 E+01$
.6737E+00	. $6467 \mathrm{E}+05$. 2585 E -01	. $3681 \mathrm{E}-01$. $1429 \mathrm{E}-01$. $1076 \mathrm{E}+01$
. $6842 \mathrm{E}+00$. $6294 E+05$. 2664E-01	- 3478 E -01	-1482E-01	-1074E+01
. $6947 E+00$. $6099 \mathrm{E}+05$. 2739 E -01	. $3254 \mathrm{E}-01$	-1554E-01	.1071E+01
. $7053 \mathrm{E}+00$. $5919 E+05$. $2809 \mathrm{E}-01$. $3057 \mathrm{E}-01$. $1617 \mathrm{E}-01$.1069E+01
. $7158 \mathrm{E}+00$. $5721 E+05$	- 2882E-01	. 2846E-01	. $1697 \mathrm{E}-01$	-1067E+01
. $7263 \bar{E}+00$	- $5535 E+05$. 2966E-01	. 26 58E-01	-1770E-01	-1065E+01
. $7368 \mathrm{E}+00$. $5335 E+05$. $3053 \mathrm{E}-01$. 2460E-01	. $1861 \mathrm{E}-01$. $1064 E+01$
. $7474 \mathrm{E}+00$	- $5144 E+05$. 3133 E -01	. 2281 E -01	. 1947E-01	. $1062 E+01$
. $7579 \mathrm{E}+00$. $4942 E+05$		- 2098E-01	-2052E-01	. $1060 E+01$
. $7634 \mathrm{E}+00$. $4745 E+05$. 3322 E-01	. 1929E-01	. $2156 \mathrm{E}-01$. $1059 E+01$
. $7789 \mathrm{E}+00$. $4541 E+05$. 3450 E-01	.1760E-01	- 2279 E -01	. $1057 E+01$
$.7895 E+00$. $4340 \mathrm{E}+05$	- $3585 \mathrm{E}-01$	-1603E-01	- $2404 \mathrm{E}-01$	-1055E+01
. $8000 \mathrm{E}+00$. $4133 E+05$. $3711 \mathrm{E}-91$	$.1449 \mathrm{E}-01$	- 2551E-01	$.1054 \mathrm{E}+01$
-8105E+00	-3927E+05	. $3839 \mathrm{E}-01$. $1304 \mathrm{E}-01$. $2706 E-01$	$.1052 E+01$
. $8211 \mathrm{E}+00$	-3717E+05	-4008E-01	. $1164 \mathrm{E}-01$	- $2888 \mathrm{E}-01$	$.1050 E+01$
. $8316 E+00$	-3507E+05	. $4247 \mathrm{E}-01$. 1033 E -01	- $3083 \mathrm{E}-01$	-1049E+01
. $8421 E+00$. $3294 \overline{\mathrm{c}}+05$.4526E-01	. $9084 \mathrm{E}-02$	-3312E-01	-1U47E+01
$.8526 E+00$. $3080 \mathrm{E}+05$.4847E-01	. $7917 \mathrm{EW-02}$. $3566 \mathrm{E}-01$	-1046E+01
. $8632 \mathrm{E}+00$. $2866 E+05$	- 5266E-01		$.3867 E-01$	
.8737E+00	- $2650 \mathrm{E}+05$. $5816 \mathrm{E}-01$	- $5808 \mathrm{E}-02$	-4210E-01	$.1044 E+01$
. $8842 E+00$	- $2432 E+05$. $6432 \mathrm{E}-01$. $4876 E-02$	- 4 E20E-01	- $1044 \mathrm{E}+01$
. $8947 E+00$	- $2212 E+05$. $6993 \mathrm{E}-01$. $4021 E-02$	-5106E-01	. $1045 E+01$
. $9053 E+00$. 2001E+05	. $7574 \mathrm{E}-01$	- 3263E-02	. 5698E-01	. $1047 E+01$
. $9158 E+00$	$.1789 \mathrm{E}+05$		- $2581 E-02$	- t438E-01	$.1049 E+01$
. $9263 \mathrm{E}+00$	$.1577 E+05$. $1055 \mathrm{E}+00$	-1981E-02	-7388E-01	. $1048 E+01$
. $9368 E+00$	-1356E+05	-1621E+00	-1451E-02	- \& 660E-01	- $1053 E+01$
. $9474 E+00$. $1124 E+05$. $2116 E+00$. 9925 E-03	- $3050 E+00$. $1074 E+01$
-9579E+00	. $8975 \mathrm{E}+04$. $2736 \mathrm{E}+00$.6300E-03	-1220E+00	. $1116 \mathrm{E}+01$
$.9684 E+00$. $6657 E+04$. $4248 \mathrm{E}+00$. $3443 E-03$. $1790 E+00$	- $11190 E+01$
. $9789 \mathrm{E}+00$. $4414 E+04$. $8755 \mathrm{E}+00$. $1512 \mathrm{E}-03$	- $2704 \mathrm{E}+00$	-1372E+01
. $9895 E+00$	-2117E+04	. $1797 \mathrm{E}+01$. $3293 \mathrm{E}-04$	- $5865 \mathrm{E}+00$	- $2381 E+01$

PIPE LENGTH = 2 FEET, INSIDE DIAMETER = $1 / 2$ INCH SOURCE PRESSURE = 30 PSIA, SINK PRESSURE = 15 PSIA

I/L R
$.1053 E-01$
$.2105 E-01$
$.3158 E-01$
$.4211 E-01$
$.5263 E-01$
$.6316 E-01$
$.7368 E-01$
$.8421 E-01$
$.9474 E-01$
$.1053 E+00$
$.1158 \varepsilon+00$
$.1263 E+00$
$.1368 E+00$
$.1474 E+00$ $.1579 E+00$
$.1684 E+00$ $.1789 E+00$ $.1895 E+00$ - $2000 \mathrm{E}+00$ $.2105 E+00$
. 2211E+00 $.2316 E+00$. $2421 \bar{E}+00$ $.2526 E+00$ $.2632 \mathrm{E} \$ 00$
$.2737 E+00$ $.2842 E+00$ $.2947 E+00$ $.3053 \mathrm{E}+00$ -3158E+00
$.3263 E+00$ $.3368 E+00$ $.3474 E+00$ $.3579 E+00$ $.3684 E+00$
-3789E+00 $.3895 E+00$
$.4000 E+00$
$.4105 E+00$ -4211E+00
$.4316 E+00$ $.4421 \hat{e}+00$ $.4526 \bar{c}+00$ $.4632 E+00$ $.4737 E+00$
$.4842 E+00$ $.4947 E+00$
. $2962 E+04$ $.5991 E+04$ - $8952 \mathrm{E}+04$ $.1200 E+05$ $.1497 E+05$
$.1806 E+05$ $.2111 E+05$ - $2404 E+05$ $.2750 E+05$ $.3024 E+05$
$.3363 E+05$ $.3671 E+05$ $.4025 E+05$. $4318 \mathrm{E}+05$. 4669 E+05 $.4995 E+05$ $.5370 E+05$ $.5702 E+05$ $.6075 E+05$ -6413E+05
$.6807 E+05$ $.7175 E+05$ $.7597 \mathrm{E}+05$ $.7981 E+05$ $.8415 E+05$
$.8809 E+05$ -9262E+05 -9689E+05 $.1018 E+06$ -1065E+06
-1117E+06 -1167E+06 $.1222 E+06$ $.1276 \mathrm{E}+06$.1335 E+06
$.1394 E+06$ $1458 E+06$ $.1524 E+06$ $.1594 E+06$ $.1668 \mathrm{E}+06$
$.1745 E+06$ $.1830 E+06$ $.1917 E+06$ $.2014 E+06$ $.2113 E+06$

- $2235 E+06$ $.2349 E+06$
.5636 E-02
. 3334 E-02
.2259 E-02
$.1689 E-02$
$.1358 \mathrm{E}-02$
. 1125E-02
. 9616 E-03
.8473 E-03
$.7365 \mathrm{E}-03$
$.6730 \mathrm{E}-03$
. 6026E-03
. 5540E-03
$.5031 E-03$
$.4699 \mathrm{E}-03$
$.4343 E-03$
.4057E-03
. 3770 E -03
$.3564 \mathrm{E}-03$
.3327 E-03
.3174 E-03
$.2984 E-03$
$.2835 \mathrm{E}-03$
. 2692E-03
$.2567 \mathrm{E}-03$
.2451 E-03
.2349E-03
. 2250E-03
. 2161E-03
. 2059E-03
.1990E-03
1913E-03
$.1840 E-03$
.1774 E-03
$.1679 \mathrm{E}-03$
.1638 E-03
.1565 E-03
$.1526 E-03$
$.1479 \mathrm{E}-03$
. 1414 E-03
. 1367E-03
.1382ع-03
.1285E-03
$.1324 E-03$
$.1277 E-03$
. 1354 E-03
.1294 E-03
.1371E-03
. 3059 E-04
.1254 E-03
$.2805 E-03$
$.5042 \mathrm{E}-03$
.7866E-03
. $1144 \mathrm{E}-02$
. 1563E-02
. 205 3E-02
$.2633 \mathrm{E}-02$
. 325 9E-02
3991E-02
.4799E-02
-5712E-02
. 6 686E-02
$.7787 E-02$
.8989E-02
1033E-01
.1177E-01
.1335E-01
$.1507 E-01$
$.1696 E-01$
$.1904 E-01$
.2131E-01
.2379E-01
.2649E-01
.2945E-01
-3269E-01
$.3629 E-01$
. 4022 E-01
.4464E-01
.4944E-01
.5490E-01
.6080E-01
.6765E-01
$.7505 \mathrm{E}-01$
.8378E-01
$.9330 E-01$
- $1047 E+00$
- $1173 E+00$
$.1330 E+00$
$.1499 E+00$

$1726 \mathrm{E}+00$

$.1973 \overline{+}+00$
$.2321 E+00$
$.2709 E+00$

- $3334 E+00$
$.4051 E+00$

PHI
$-.5027 E+00$ $-.2486 E+00$ $-.1667 E+00$ $-.1248 E+00$ $-.1004 E+00$
-. 8378E-01
$-.7228 \mathrm{E}-01$
..5346E-01
-. 56 35E-01
-.5141E-01
-.4717E-01
-. 4351 E-01
$-.4 C 5$ FE-01
-. $3798 \mathrm{E}-01$
-. $3588 \mathrm{E}-01$
-. 3294 E-01
-. $3238 \mathrm{E}-01$
-.3C90E-01
-. 2971E-01
-. $2855 \mathrm{E}-01$
. 2765 i-01
$-.2673 E-01$
-. 2603E-01
$-.2530 \mathrm{E}-01$
-. 2476 E-01
-.2419E-01
. 2377 E-01
-. 2332E-01
-. $2301 \mathrm{E}-01$
.. $2266 \mathrm{E}-01$
-.2243E-01
-. 2218E-01
-. $2203 \mathrm{E}-01$
$-.2186 \mathrm{E}-01$
-. 2178E-01
-. 2169E-01
-.2166E-01
..2166E-01
$-.2180 E-01 \quad .1204 E+01$
$-.2189 \mathrm{E}-01$
$-.2210 E-01$

$-.2228 \mathrm{E}-01$. $1183 \mathrm{E}+01$

$-.2265 E-01$. $1184 E+01$
$\begin{array}{ll}-.2265 E-01 & -1184 E+01 \\ -.2295 E-01 & .1169 E+01\end{array}$
$-.2361 E-01$. $1164 E+01$
-. 1215E-01 .1152E+01
$1210 E+01$
$-1200 E+01$
$-1193 E+01$
-1196E+01
-1422E+01
$.1259 E+01$
$.1236 E+01$
$.1232 \varepsilon+01$
$.1231 E+01$
-1231E+01
. $1232 E+01$
$.1230 E+01$
$.1233 E+01$
. $1229 E+01$
$.1231 E+01$
$.1230 E+01$
$.1231 E+01$
. $1229 E+01$
-1230E+01
. $1229 E+01$
-1229E+01
$.1229 E+01$
$.1228 \mathrm{E}+01$

- $1228 \mathrm{E}+01$
-1227E+01
-12:7E+01
$.1226 E+01$
-1227E+01
$.1224 E+01$
$.1225 E+01$
$.1222 E+01$
$.1224 E+01$
$.1220 E+01$
-1222E+01
-1217E+01
-1220E+01
$.1214 \mathrm{E}+01$
-1218E+01
.1211E+01
-1214E+01
$.1206 E+01$
-1210E+01

$\begin{array}{r} .5158 E+00 \\ .5263 E+00 \end{array}$	$\begin{array}{r} .2357 E+06 \\ .2335 E+06 \end{array}$	$\begin{aligned} & .1468 \mathrm{E}-03 \\ & .1214 \mathrm{E}-02 \end{aligned}$	$\begin{aligned} & .4111 E+00 \\ & .3954 E+00 \end{aligned}$	$\begin{aligned} & .3459 E-02 \\ & .3981 E-02 \end{aligned}$	$\begin{aligned} & .1147 E+01 \\ & .1144 E+01 \end{aligned}$
. $53685+00$. $2301 \mathrm{E}+06$. 2506E-02	-3716E+00	. 4767E-02	- $1144 \varepsilon+01$
. $5474 \mathrm{E}+00$. $2268 \mathrm{E}+06$. 4485 E-02	. $3513 \mathrm{E}+00$. 5510E-02	-11368+01
-. $5579 \mathrm{E}+00$. $2228 \mathrm{E}+06$. $6879 \mathrm{E}-02$. $3289 \overline{\text { c }}+00$. $6316 \mathrm{E}-02$	-1133E+01
. $5684 E+00$. $2.195 \mathrm{E}+06$. $9527 \mathrm{E}-02$. $3129 \mathrm{E}+00$. $6886 \mathrm{E}-02$	-1129E+01
. $5789 \mathrm{E}+00$. $2154 \mathrm{E}+06$. 1234 E-01	. $2944 \mathrm{E}+00$. 75 ¢3E-02	. 1123 E
. $5895 E+00$. $2116 E+06$. $1502 \mathrm{E}-01$. $2800 \mathrm{E}+00$. $8116 \mathrm{E}-02$. $1120 E+01$
. $.6000 \mathrm{E}+00$. $2077 E+06$.1737E-01	. $2652 \mathrm{E}+00$. $8673 \mathrm{E}-02$	-11175+01
. $6105 \mathrm{E}+00$. $2036 \mathrm{E}+06$. 194 LE-01	. $2519 \mathrm{E}+00$.9192E-02	- i112E+01
. $6211 E+00$. 1995 E+06	. 2117E-01	. $2388 \mathrm{E}+00$. $9709 \mathrm{E}-02$	$E+01$
. $6316 E+00$. $1754 \mathrm{E}+06$. 2262E-01	. $22655+00$.1022E-01	.1107E+01
. $64218+011$.1911E+06	.2381E-01	. $2144 E+00$.1C74E-01	. $1106 E+01$
. $6526 \mathrm{E}+00$. $1868 \mathrm{E}+06$. $2479 \mathrm{E}-01$. $2028 \mathrm{E}+00$. $1128 \mathrm{E}-01$	-1103E+01
. $6532 \mathrm{E}+00$. $1824 E+06$. 2562 E -01	. $1912 \mathrm{E}+00$. $1186 \mathrm{E}-01$. $1102 \mathrm{E}+01$
. $6737 \mathrm{E}+00$. $1778 \mathrm{E}+06$. 2639 E -01	. $1799 E+00$. $1246 \mathrm{E}-01$	099E+01
. $.6842 \mathrm{E}+00$. $1731 \mathrm{E}+06$. 2713E-01	. $1688 \mathrm{c}+00$.1311E-01	. $1098 \mathrm{E}+01$
.6947E+00	. $1684 \mathrm{E}+06$. 2786E-01	. $1580 \mathrm{E}+00$. $1379 \mathrm{E}-01$. $1095 \mathrm{E}+01$
. $7053 E+00$. $1635 E+06$. $2857 \mathrm{E}-01$. $1474 \mathrm{E}+00$. $1453 \mathrm{E}-01$.1033E+01
. $7153 \mathrm{E}+00$. $1585 \mathrm{E}+06$. 2925 E-01	. $1373 \mathrm{E}+00$	-1531E-01	-1091E+01
$.7253 E+00$. $1535 E+06$. $2993 \mathrm{E}-01$	-1273E+00	. $1615 \mathrm{E}-01$. $1088 \mathrm{E}+01$
. $7368 \mathrm{E}+00$. $1484 \mathrm{E}+06$. 3065E-01	. $1178 \mathrm{E}+00$. 1705 E -01	. $1086 \mathrm{E}+01$
. $7474 \mathrm{E}+00$. $1432 \mathrm{E}+06$. $3146 E-01$. $1085 \mathrm{E}+00$. 1202E-01	. $1084 E+01$
. $7579 \mathrm{E}+00$. $1380 E+06$. $32368-01$.9967E-01	-1505E-01	. $1083 E+01$
$.7684 \mathrm{E}+00$. $1326 E+06$. 3341 E-01	.9113E-01	. $2019 \mathrm{E}-01$	-1081E+01
$.7789 E+00$. $1272 E+06$. $3459 \mathrm{E}-01$. $8299 \mathrm{E}-01$. $2142 \mathrm{E}-01$. $1079 E+01$
$.7895 E+00$	-1217E+06	. 3577 E-01	. $7519 \mathrm{E}-01$. 2276E-01	. $1077 \mathrm{E}+01$
. 8000 E+00	.1161E+06	. $3695.5-01$. $6782 \mathrm{E}-01$. $2423 \mathrm{E}-01$. $1076 E+01$
. $8105 E+00$	$.1104 E+06$. $3832 \mathrm{E}-01$.6077E-01	. $2586 \mathrm{E}-01$. $10748+01$
$.8211 E+00$	$.1047 E+06$. $4015 \mathrm{E}-01$. 5416E-01	- 2767E-01	. $1072 E+01$
. $8316 E+00$. $9893 E+05$.4235E-01	.4789E-01	. 2963E-01	.1070E+01
. $8421 E+00$. $9313 E+05$. 4448 E-01	. $42068-0 i$	-3195E-01	. $1067 \mathrm{E}+01$
. $8526 E+00$. $8713 E+05$.4645E-01	. $3656 \mathrm{E}-01$. $3454 \mathrm{E}-01$. $1065 \mathrm{E}+01$
. $8632 \mathrm{E}+00$. $8120 E+05$. $4883 \mathrm{E}-01$. 3145 E-01	. $3752 \mathrm{E}-01$. $1063 E+01$
. $8737 E+00$. $7512 \mathrm{E}+05$. 5254 E-01	.2670E-01	. $4101 \mathrm{E}-01$. $1061 E+01$
. $8842 \mathrm{E}+00$. $6901 E+05$. 57725-01	. 2237E-01	-4508E-01	. $1059 \mathrm{E}+01$
. $8947 E+00$	$.6286 E+05$.6412E-01	.1841E-01	.4998E-01	. $1057 \mathrm{E}+01$
. $9053 \mathrm{E}+00$. $5668 \mathrm{E}+05$. 7187 E -01	. $1435 \mathrm{E}-01$, 5594E-01	. $1056 E+01$
$.9158 \mathrm{E}+00$. $5033 \varepsilon+05$. 8085 E -0i	. 1166 E-01	-63¢2E-01	. $10578+01$
. $9263 \mathrm{E}+00$. $4422 E+05$. 9317E-01	. 3906E-02	. $7291 \mathrm{E}-01$	-1059E+01
. $9368 \mathrm{E}+00$. $3797 E+05$. $1123 \mathrm{E}+00$. 6513E-02	. 8561E-01	-1063E401
. $9474 \mathrm{E}+00$. $3158 \mathrm{E}+\mathrm{C} 5$. $1370 E+00$.4499E-02	. $1032 \mathrm{E}+00$.1071E+01
. $9579 \mathrm{E}+00$. $2545 E+05$. $1694 \mathrm{E}+00$. 2875E-02	- $1297 \mathrm{E}+00$	-1087E+01
. $9684 \mathrm{E}+00$. $1971 E+05$. $22538+00$.1649E-02	. $1731 E+00$	- $1108 \mathrm{E}+01$
. $9789 \mathrm{E}+00$. $1355 \mathrm{E}+05$	$.4262 E+00$.7462E-03	. $2597 \mathrm{E}+00$	-1133E+01
. $9895 \mathrm{~F}+00$. $7093 \mathrm{E}+04$. $8719 \mathrm{E}+00$.1924E-03	-5180E+00	-1267E+01

PIPE LENGTH $=2$ FEET, INSIDE DIAMETER $=1 / 2$ INCH
SOURCE PRESSURE $=45$ PSIA, SINK PRESSURE $=15$ PSIA

2/L	RE	F	MA2	v/U	PHI
. $1053 \mathrm{E}-01$. $2043 E+04$.9997E-02	.6181E-05	-. $1065 E+01$.1259E+01
-2105E-01	. $4194 E+04$. $4808 \mathrm{E}-02$. 2605 E-04	-. $5191 E+00$	$.1234 E+01$
- $3158 \mathrm{E}-01$. $6616 \mathrm{E}+04$. $3095 \mathrm{E}-02$. $6486 \mathrm{E}-04$	-. $3292 \mathrm{E}+00$	$.1224 E+01$
.4211E-n1	. $9181 \mathrm{E}+04$. 2145 E-02	.1249E-03	-. $2376 \bar{E}+00$. 1225 E+01
. 5263E-01	. $1207 E+05$. $1644 \mathrm{E}-02$. $2158 \mathrm{E}-03$	$-.1812 E+00$. $12258+01$
.6316E-01	. $1513 \mathrm{E}+05$. 1293 E-02	. 3394 E-03	-. $1449 \mathrm{E}+00$. $1227 \mathrm{E}+01$
. 7368E-01	. $1857 E+05$. 1063 E-02	. 5116E-03	-. $11358+00$. $1227 \mathrm{E}+01$
. $8421 \mathrm{E}-01$. $2225 \mathrm{E}+05$.8823E-03	. 7346E-03	-. $9948 \mathrm{E}-01$. 12288 +01
. $5474 \mathrm{E}-01$. $2636 E+05$.7469E-03	. $1033 E-02$	-.8442E-01	.1227E+01
. $1053 \mathrm{E}+00$. $3083 \mathrm{E}+05$.6365E-03	.1412E-02	-.7296E-01	. $1229 \mathrm{E}+01$
-1158E+00	. $3578 \mathrm{E}+05$. 54 S2E-03	.1913E-02	-. $6329 \mathrm{E}-01$. $1228 \mathrm{E}+01$
-1253E+00	. $4100 \mathrm{E}+05$.4777E-03	. 2496E-02	-. 5630E-01	. $1230 \mathrm{E}+01$
-1368E+00	. $4598 \mathrm{E}+05$.4274E-03	. $3169 \mathrm{E}-02$	-. 5060E-01	. $1229 \mathrm{E}+01$
. $1474 \mathrm{E}+00$. $51068+05$.3872E-03	. 3920 -02	-.4E30E-01	.1229E+01
-1579E+00	. 5707E+05	. $3459 \mathrm{E}-03$.4831E-02	-.4258E-01	. $1231 \mathrm{E}+01$
. $1684 \mathrm{E}+00$. $6134 \mathrm{E}+05$. 3244 E-03	. $5735 E-02$	-. 3 S72E-01	. $1228 \mathrm{E}+01$
. $1789 \mathrm{E}+00$. $6770 \mathrm{E}+05$.2957E-03	.6889E-02	-. $3713 \mathrm{E}-01$. $1230 \mathrm{E}+01$
. $1875 \mathrm{E}+00$. $7296 \mathrm{E}+05$.2759E-03	. $8069 E-02$	-.3514E-01	. $1229 \mathrm{E}+01$
. 2000E+00	. $7917 E+05$. $2577 \mathrm{E}-03$.9477E-02	-. 3226E-01	. $1229 E+01$
. $2105 E+00$. $8413 \mathrm{E}+05$. $2435 \mathrm{E}-03$.1089E-01	-.3183E-01	. $12288+01$
. $2211 E+00$. $9094 E+05$.2272E-03	.1265E-01	-.3043E-01	. $1228 \mathrm{E}+01$
. $2316 E 100$	- $5663 \mathrm{E}+05$.2163E-03	.1444E-01	-. 2537E-01	. $1227 \mathrm{E}+01$
$.2421 E+00$. $1039 E+06$. 2007E-03	.1662E-01	-. 2831E-01	. $1228 \mathrm{E}+01$
- $2526 E+00$. 1096E+06	.1929E-03	.1379E-01	-. $2752 \mathrm{E}-01$. $1225 \mathrm{E}+01$
-2832E+00	-1169E+06	.1773E-03	.2142E-01	-. $2675 \mathrm{E}-01$. $1229 \mathrm{E}+01$
-2737E+00	-1234E+06	.1696E-03	. 2416E-01	-. $2613 \mathrm{E}-01$. $1222 \mathrm{E}+01$
. $2842 \mathrm{E}+00$. $1312 \mathrm{E}+06$.1590E-03	.2743E-01	-. $2555 \mathrm{E}-01$. $1226 E+01$
. $2947 E+00$. $1386 E+06$.1497E-03	.3091E-01	-.2510E-01	. $1221 E+01$
- $3053 \mathrm{E}+00$. $1469 \mathrm{E}+06$.1406E-03	. $3498 \mathrm{E}-01$	-. 2460 E-01	. $1225 E+01$
- $3158 \mathrm{E}+00$	-1548E+06	. 1314E-03	. $39338-01$	-.2437E-01	. $1220 E+01$
- $3263 E+00$	-1637E゙+06	.1269E-03	. $4449 \mathrm{E}-01$	-.2407E-01	. $1222 E+01$
- $3368 \mathrm{E}+00$. $1720 E+06$.1221E-03	. $4994 E-01$	-.2386E-01	. $1216 E+01$
. $3474 E+00$. $1818 \mathrm{E}+06$.1109E-03	. 5665E-01	-. 2371E-01	. $1221 \mathrm{E}+01$
- 357 FE+00	. $1912 \mathrm{E}+06$.1141E-03	. $6380 \mathrm{E}-01$	-. 2355 E-01	. $1213 E+0:$
. $3684 \mathrm{E}+00$. $2020 \mathrm{E}+06$.1020E-03	$.7253 E-01$	-.2250E-01	. $1217 \mathrm{E}+01$
- $3789 \mathrm{E}+00$. $2127 E+06$.1071E-03	. $8224 \mathrm{E}-01$	-.2343E-01	. $12107 \mathrm{E}+01$
. $3875 \mathrm{E}+00$. $2244 \mathrm{E}+06$. 1051 E-03	.9363E-01	-. $2346 \mathrm{E}-01$. $1211 \mathrm{E}+01$
-4000E+00	. $2368 \mathrm{E}+06$. 8613E-04	. $1074 \mathrm{E}+00$	-. $2350 \mathrm{E}-01$	$.1203 E+0$
- $4105 E+00$. $2503 \mathrm{E}+06$. 9176E-04	. $1242 E+00$	-. $2369 \mathrm{E}-01$. $1207 \mathrm{E}+01$
-4211E+00	. $2630 \mathrm{E}+06$.9688E-04	. $1422 E+00$	$\cdots .2372 E-01$. $1193 E+01$
-4316E+00	. $2793 \mathrm{E}+06$. $7209 \mathrm{E}-04$.16875+00	-. 2412E-01	.1199E+01
. $44215+00$	- $2947 E+06$.8621E-04	. $1984 E+00$	-. $2430 \mathrm{E}-01$. $1183 \mathrm{E}+01$
-4526E+00	- $3125 \mathrm{E}+06$.8803E-04	. $2392 \mathrm{E}+00$	-. 2431 E-01	. $1182 \mathrm{E}+01$
. $4632 E+00$. $3306 \mathrm{E}+06$.8399E-04	.2511E+00	-. 2521E-01	. $1167 E+01$
. $4737 E+00$	- $3559 \mathrm{E}+06$. $8183 \mathrm{E}-04$. $3840 \mathrm{E}+00$	-. 2628 E-01	. 1155 E+01
. $4842 \mathrm{E}+00$	-3755E406	. $9598 \mathrm{EF-04}$. $4933 \mathrm{E}+00$	-.2739E-01	$.1146 E+01$
. $4347 E+00$.4080E+06	. 1145 E-03	. $7 \in 47 E>00$	-.1495E-01	. $1113 \mathrm{E}+01$

. $5158 \mathrm{E}+00$. $4310 E+06$. $1932 \mathrm{E}-03$. $1083 E+01$. 1730E-02	. $1059 E+01$
. 5263 E+00	. $4264 E+06$. 2244 E -02	. $9934 \mathrm{E}+00$. 2607E-02	.1067E+01
. $5368 \mathrm{E}+00$. $4165 \mathrm{E}+06$. $5120 \mathrm{E}-02$. $8566 E+00$. $4093 \mathrm{E}-02$.1032E+01
. $5474 \mathrm{E}+00$. $4094 E+08$. $8486 \mathrm{E}-02$. $7894 \mathrm{E}+00$. $4828 \mathrm{E}-02$	1090E+01
. $5579 \mathrm{E}+00$. $4041 E+06$.1155E-01	. $7474 E+00$. 5280E- 32	. $1098 \mathrm{E}+01$
. $5684 \mathrm{E}+00$. $3980 E+06$.1418E-01	. $70905+00$. 5 E69E-02	. $1102 \mathrm{E}+01$
-.5789E+00	. $3924 E+06$. 1695 E-01	. $6775 \mathrm{E}+00$. $5983 \mathrm{E}-02$. 1108 E
. $5895 \mathrm{E}+00$. $3853 \mathrm{E}+06$.17668-01	. $6361 E+00$	-6491E-02	-1110E+01
. $6000 \mathrm{E}+00$. $3782 \mathrm{E}+06$.1914E-01	. $5989 E+00$. $6958 \mathrm{E}-02$	$114 E+01$
. $6105 \mathrm{E}+00$. $3712 \mathrm{E}+06$. 2046E-01	- 5655E+00	. $7395 \mathrm{E}-02$.1116E+01
.6211E+00	- $3631 E+06$. 2167 E-01	-5273E+00	. $75915-02$. $1116 E+01$
. $6316 E+00$. $3553 \mathrm{E}+06$. $2263 \mathrm{E}-01$. $49485+00$. 8496 E-02	-1117E+01
$421 E+00$. $3472 E+06$. 2348 E -01	. $4611 \mathrm{E}+00$	-9095E-02	-1119E+01
. $6526 E+00$. $3384 \mathrm{E}+06$. $2431 \mathrm{E}-01$. $4274 \mathrm{E}+00$. $9769 \mathrm{E}-02$.1117E+01
. 6 E $32 \mathrm{E}+00$. $3236 \mathrm{E}+06$. 2505 E-01	. 3957 E+00	.1046E-01	8
	. $3204 E+06$. 2577E-01	. $3645 E+00$. $1121 \mathrm{E}-01$.1117E+01
. $6842 \mathrm{~F}+00$. $3109 \mathrm{E}+06$. $2653 \mathrm{E}-01$. $3348 \mathrm{E}+00$. $1203 \mathrm{E}-01$	-1116E+01
. $6947 E+00$. $3011 E+06$. 2735 E-01	. $3059 \mathrm{E}+00$.1292E-01	-1112E+01
$.7053 E+00$. $2913 E+06$. 2819 E -01	. $2790 \mathrm{E}+00$. 1386 E-01	.1111E+01
$.7158 \mathrm{E}+00$. $2812 \mathrm{E}+06$. 2900E-01	. $2535 \mathrm{E}+00$.1487E-01	.1107E+01
. $7253 \mathrm{E}+00$. $2709 \mathrm{E}+06$.2983E-01	. $22955+00$. $1595 \mathrm{E}-01$. $1105 \mathrm{E}+01$
$.7368 E+00$	$.2604 E+06$. $3079 \mathrm{E}-01$. $2069 E+00$. $1712 \mathrm{E}-01$. $1102 \mathrm{E}+01$
. $7474 E+00$. $2496 E+06$. $3197 \mathrm{E}-01$	$.1857 E+00$. 1841 E-01	. $1099 \mathrm{E}+01$
. $7579 \mathrm{E}+00$	$.2386 E+06$. $3343 \mathrm{E}-01$	$.1659 E+00$.1930E-01	-1076E+01
$.7684 E+00$	$.2274 E+06$. 3504 E -01	. $1475 \mathrm{E}+00$. $2132 \mathrm{E}-01$	-1094E+01
. $7789 E+00$. $2160 \mathrm{E}+06$. $3668 \mathrm{E}-01$. $1304 E+00$. $2298 \mathrm{E}-0$.	. $1091 E+01$
$.7895 E+00$	$.2044 E+06$. $3832 \mathrm{E}-01$. $1145 E+00$. $2482 \mathrm{E}-01$. $1088 \mathrm{E}+01$
$.80005+00$. 1927 E+06	. $4001 \mathrm{E}-01$	-9999E-01	. $2 \in 88 \mathrm{E}-01$. $1085 \mathrm{E}+01$
. $8105 \mathrm{E}+00$. $1809 \mathrm{E}+06$.4182E-01	. $8655 \mathrm{E}-01$. $2920 \mathrm{E}-01$	-1032E+01
.8211E+00	$.1688 E+06$.4372E-01	.7417E-01	. $3186 \mathrm{E}-01$.1080E+01
. $8316 E+00$. $1566 E+06$.4587E-01	.627TE-01	. $3495 \mathrm{E}-01$. $1077 \mathrm{E}+01$
. $8421 E+00$. $1441 E+06$. $4902 \mathrm{E}-01$. $5239 \mathrm{E}-01$	- $3859 \mathrm{E}-01$. $1075 \mathrm{E}+01$
. $8526 \mathrm{E}+00$	$.1314 E+06$. $5350 \mathrm{E}-01$. $4302 \mathrm{E}-01$. $4291 E-01$	-1072E+01
. 8532 ¢ +00	. $1188 \mathrm{E}+06$. $5908 \mathrm{E}-01$. $3468 \mathrm{E}-01$	-4808E-01	.1069E+01
.8737E+00	$.1060 E+06$.6716E-01	. 2730E-01	. 5454E-01	-1067E+01
$8842 \mathrm{E}+00$. $9303 \mathrm{E}+05$.7992E-01	. 2082E-01	- E275E-01	. $1066 \mathrm{E}+01$
. $8947 \mathrm{E}+00$. $8015 E+05$. $9478 \mathrm{E}-01$. 1529E-01	. $7345 \mathrm{E}-01$	-1068E+01
. $9053 \mathrm{E}+00$. $6859 \mathrm{E}+05$. $1087 E+00$.1109E-01	.8659E-01	-1072E+01
. $9158 \mathrm{E}+00$. $5764 \mathrm{E}+05$.1318E+00	. $7797 \mathrm{E}-02$. $1037 \mathrm{E}+00$	-1079E+01
.9253E+00	. $4778 \mathrm{E}+05$. $1621 E+00$. 5331E-02	-1252E+00	.1092E+01
. $9368 \mathrm{E}+00$. $3917 E+05$	-1534E+00	. $3525 E-02$. $1527 E+00$	-1113E+01
. $9474 \mathrm{E}+00$. $3168 \mathrm{E}+05$. $1372 \mathrm{E}+00$. $2226 \mathrm{E}-02$. $1901 E+00$	-1143E+01
. $9579 \mathrm{~F}+00$. $2471 E+05$. $2935 \mathrm{E}+00$.1296E-02	. $2477 \mathrm{E}+00$	-1169E+01
. $9684 \mathrm{E}+00$. $1810 E+05$. $6380 \mathrm{E}+00$. 6695E-03	- $3445 \mathrm{E}+00$	-1172E+01
.9789E+00	. $1164 E+05$	-1237E+01	. 2710E-03	-5423E+00	. 124
-9895E+00	. $5106 E+04$. $2299 \mathrm{E}+01$. 5185E-04	. $1242 \mathrm{E}+01$. $17488+01$

PIPE hENGTH = 2 FEET, INSIDE DIAMETER = 1/4 INCH SOURCE PRESSURE $=20$ PSIA, SINK PRESSURE $=15$ PSIA

2/L	RE	F	MA2	v / U	PHI
. $1053 \mathrm{E}-01$. $6110 \mathrm{E}+03$. 2756 E-01	. 1076E-04	-. $2694 \mathrm{E}+00$. $1300 \mathrm{E}+01$
. 2105E-01	-1325E+04	.1496E-01	. 5067 E-04	-. $1244 \mathrm{E}+00$. $1238 \mathrm{E}+01$
. $3158 \mathrm{E}-\mathrm{Cl}$. $1939 \mathrm{E}+04$. $1032 \mathrm{E}-01$. 1085 E-03	-. $8530 \mathrm{E}-01$. 1229E+01
- 4211E-91	- $2658 \mathrm{E}+04$. $7550 \mathrm{E}-02$. 2039E-03	-. $6249 \mathrm{E}-01$. $1230 E+01$
. 5263E-01	. $3277 \mathrm{E}+04$.6114E-02	. $3132 \mathrm{E}-03$	-. 5100E-01	. $1230 E+01$
.6316E-01	. $4005 E+04$. $5010 \varepsilon-02$. $4633 E-03$	-.4201E-01	. $1230 \mathrm{E}+01$
. 7368E-01	. $4832 \mathrm{E}+04$.4328E-02	.6204E-03	-. 3665E-01	. $1230 \mathrm{E}+01$
. $8421 \mathrm{E}-01$. $5375 \mathrm{E}+04$. $3734 E-02$.8350E-03	-. $2189 \mathrm{E}-01$. $1231 E+01$
.9474E-01	. $6007 E+04$. $3341 \mathrm{E}-02$. 104 SE-02	-.2884E-01	. $1230 \mathrm{E}+01$
-1053E+00	. $6783 \mathrm{E}+04$. $2958 \mathrm{E}-02$. $1329 \mathrm{E}-02$	-. $2591 \mathrm{E}-01$. $1231 \mathrm{E}+01$
. $1158 \mathrm{E}+00$. $7405 \mathrm{E}+04$. 2715 E-02	.1596E-02	-. $2398 \mathrm{E}-01$. $1229 E+01$
. $1263 E+00$	- $8226 \mathrm{E}+04$. $2442 \mathrm{E}-02$. 1956E-02	-. 2201 E-01	. $1231 E+01$
. $1368 \mathrm{E}+00$	-8882E+04	. 2264 E-02	. 2291E-02	-. 2670E-01	. $1230 E+01$
. $1474 \mathrm{~F}+00$	- $9642 \mathrm{E}+04$. 2090 E-02	. 2721E-02	-. 1930E-01	- $2308+01$
. $1579 \mathrm{E}+00$. $1046 \mathrm{E}+05$.1920E-02	. $3154 \mathrm{E}-02$	-. $1838 \mathrm{E}-01$. $1231 E+01$
. $1684 \mathrm{E}+00$. $1118 \mathrm{E}+05$.1801E-02	. $3664 \mathrm{E}-02$	-.1733E-01	. $1230 \mathrm{E}+01$
. $1789 \mathrm{E}+00$.1195E+05	.1687E-02	.4173E-02	-. $1668 \mathrm{E}-01$. $1230 \mathrm{E}+01$
. 1895 E+00	. $1282 \mathrm{E}+05$. 1570E-02	. $4813 E-02$	-.1588E-01	. $1231 \mathrm{E}+01$
. $2000 \mathrm{E}+00$. $1365 \mathrm{E}+05$.1479E-02	. 5430E-02	-.1541E-01	. $1230 \mathrm{E}+01$
. $2105 \mathrm{E}+00$. $1447 E+05$. 1394 E-02	. 6176E-02	-. 1479 E-01	. $1230 \mathrm{E}+01$
. $2211 \mathrm{E}+00$	-1531E+05	. $1320 E-02$.6908E-02	-. $1445 \mathrm{E}-01$. $12298+01$
. $2316 E+00$. $1628 \mathrm{E}+05$.1242E-02	. $7833 \mathrm{E}-02$	-. $1396 \mathrm{E}-01$.1230E+01
. $2421 E+00$. $1722 \mathrm{E}+05$.1179E-02	.8727E-02	-. 1372E-01	. $1229 \mathrm{E}+01$
. $2526 \mathrm{E}+00$. $1818 \mathrm{E}+05$.1112E-02	. $9816 E-02$	-. 1335 E-01	. $1231 E+01$
. $2532 \mathrm{E}+00$.1910E+05	. 1064 E-02	. 1087E-01	-. $1319 \mathrm{E}-01$. $1227 E+01$
. $2737 \mathrm{E}+00$. $2017 E+05$	$.1010 E-02$. 1220E-01	-. 1290E-01	. $1229 \mathrm{E}+01$
. $2842 \mathrm{E}+00$. $2124 \mathrm{E}+05$.96065-03	.1350E-01	-. $1281 \mathrm{E}-01$. $1227 E+01$
. $2547 \mathrm{E}+00$. $2242 E+05$. 904 EE-03	.1512E-01	-. 1260E-01	. $1230 \mathrm{E}+01$
. $3053 \mathrm{E}+00$. $2354 \mathrm{E}+05$. $8716 \mathrm{E}-03$. $16708-01$	-. 1256E-01	. $1226 \mathrm{E}+01$
. $3158 \mathrm{E}+00$. $2478 \mathrm{E}+05$.8250ع-03	.1867E-01	-. $1242 \mathrm{E}-01$.1229E+01
. $3263 \mathrm{E}+00$. $2598 \mathrm{E}+05$. 79 -2E-C3	.2081E-01	-. $1244 \mathrm{E}-01$	$.1226 E+01$
$\cdot 3368 E+00$. $2734 \mathrm{E}+05$.7478E-03	. 2305E-01	-. 1235 E-01	. $1228 \mathrm{E}+01$
. $3474 \mathrm{E}+00$. $2870 \mathrm{E}+05$. 7199 E-03	. 2549E-01	-. $1241 E-01$. $1224 \mathrm{E}+01$
. $3579 \mathrm{E}+00$	- $3024 \varepsilon+05$.6839E-03	. 2856 E -01	-. $1239 \mathrm{E}-01$. 1226 E+01
. $3634 \mathrm{E}+00$. 3178 を+05	. $5557 \mathrm{E}-03$. 3167 -01	-. $1249 \mathrm{E}-01$. $1222 \mathrm{E}+01$
. $3789 \mathrm{E}+00$	- $3349 \mathrm{E}+05$.6226E-03	. $3558 \mathrm{E}-01$	-. $1252 \mathrm{E}-01$. $1225 \mathrm{E}+01$
. $3895 \mathrm{E}+00$	- $3517 \mathrm{E}+05$.5987E-03	. $35588-01$	-.1268E-01	. $1221 \mathrm{E}+01$
$.4000 E+00$. $37078+05$. 5660E-03	. $4463 \mathrm{E}-01$	-. 1278E-01	. $1223 \mathrm{E}+01$
. $4105 E+00$	- $3298 \mathrm{E}+05$. $5458 \mathrm{E}-03$.4992E-01	-. $1297 \mathrm{E}-01$. $1218 \mathrm{E}+01$
.4211玉+00	. $4114 E+05$. 5193E-03	. 5663E-01	-.1313E-01	. $1220 \mathrm{E}+01$
. $4316 E+00$. $4335 E+05$. $4951 \mathrm{E}-03$.6387E-01	-. $1239 \mathrm{E}-01$. $1216 \mathrm{E}+01$
-4421E+00	. $4587 \mathrm{E}+05$. $4709 \mathrm{E}-03$.7314E-01	-. 1361 E-01	.1216E+01
. $4526 E+00$. $4846 E+05$. 4538 E-03	.8341E-01	-. 1392E-01	. $1210 E+01$
. $4632 E+00$. $5143 \mathrm{E}+05$. $4346 \mathrm{E}-03$. $9678 \mathrm{E}-01$	-. 1422E-01	. $1210 \mathrm{E}+01$
. $4737 E+00$	- $5451 E+05$.4153E-03	. $1121 E+00$	-. 1462E-01	$.1203 E+01$
. $4842 \mathrm{E}+00$. $5807 \mathrm{E}+05$.3937E-03	. $1328 \mathrm{E}+00$	-. $1505 \mathrm{E}-01$. $1202 \mathrm{E}+01$
. $4947 \mathrm{E}+00$.6170E+05	. 3874 E-03	. $1570 \mathrm{E}+00$	-. 7776 E-02	. $1198 \mathrm{E}+01$

- $51585+00$.6273E+05	. $3975 \mathrm{E}-93$. $15735+00$. 1127E-02	-1197E+01
- $5263 \mathrm{E}+00$.6149E+05	.8464E-03	. $15515+00$. $1413 E-02$	$.1130 E+01$
- $5368 E+00$. $6064 E+05$. $1784 \mathrm{E}-02$	- $1457 E+00$. 2051 E-02	-1165E+01
. $5474 E+00$	$.6000 E+05$. 3365 E-02	. $1441 E+00$. 25145-02	. $1145 \mathrm{E}+01$
- $5579 E+00$	- $5899 E+05$. 5443E-02	$.1376 t+00$. $3103 \mathrm{E}-02$. $1129 E+01$
. $5684 E+00$. 5816 E + 05	. 7802E-02	-1329E+00	. 3475 E-02	. $1114 E+01$
- 5789E+00	. $5710 E+05$.1010E-01	. $1271 E+00$. 3895 E-02	. $1103 E+01$
- $5875 \mathrm{E}+00$	- 5618E+05	.1228E-01	. 1226E+00	. $4149 \mathrm{E}-02$. $1095 E+01$
$-6000 E+00$. 5510E.05	.1409E-01	. $1174 \mathrm{E}+00$. 4446 E-02	-1088E+01
.6105E+00	. $5413 E+05$.1559E-01	. $1130 \varepsilon+00$. $4643 E-02$. $1082 E+01$
.6211E+00	- $5306 E+05$.1678E-01	. $1082 \mathrm{E}+00$.4971E-02	. $1079 E+01$
. $6316 E+00$. $5206 E+05$	-1773E-01	-10\%OE-00	-5038E-02	. $1075 E+01$
. $6421 E+00$. $5096 \mathrm{E}+05$.1847E-01	. $9944 \mathrm{E}-01$	- 5251E-02	. $1073 E+01$
. $6526 E+00$. $4990 E+05$. 1903 E-01	. 9528 E -01	. 5423 E-02	. $1072 E+01$
$.66325+00$. $4875 E+05$. $1940 E-01$	-9083E-01	- 5648E-02	. $1070 E+01$
. $6737 E+00$. $4764 E+05$.1958E-01	. $8671 E-01$. 5847E-02	. $1070 E+01$
. $6842 \mathrm{E}+00$. 464 YE+05	.1963E-01	. $8239 E-01$. $6098 \mathrm{E}-02$. $1069 \mathrm{E}+01$
. $6947 \mathrm{E}+00$. $4535 E+05$	$.1966 \mathrm{E}-01$. $7831 \mathrm{E}-01$.6350E-02	. $1069 E+01$
. $7053 \mathrm{E}+00$	-4\%17E+05	.1975E-01	. $7409 \mathrm{E}-01$. $6654 \mathrm{E}-02$. $1068 \mathrm{E}+01$
$.7158 E+00$.4300E+05	-1991E-01	. 7004 E-01	.6970E-02	. $1058 \mathrm{E}+01$
. 72E3E+00	. $4176 E+05$	- 2012E-01	. 6588 E -01	. 1341 E-02	. $1067 E+01$
. $7368 \mathrm{E}+00$	-4052E:05	- 2035E-01	.6186E-01	. $7734 \mathrm{E}-02$. $1066 E+01$
. $7474 \mathrm{E}+00$	-2922E+05	. 2060 E-01	. 5778E-01	- 8183E-02	. $1066 E+01$
. 7579E+00	-3752E+05	. 2087E-0:	. $5385 \mathrm{E}-01$	- $2 \in 65 \mathrm{E}-02$. $1065 E+01$
. 7684E+00	- $3657 E+05$	-2118E-01	. $4990 E-01$. $9207 \mathrm{E}-02$. $1064 E+01$
. $37898+00$, $3521 E+05$. 2158 E -01	. $4608 E-01$	- S903E-02	. $1063 \mathrm{E}+01$
. $7895 \mathrm{E}+00$	- $33798+05$. 2206E-01	. $4228 \mathrm{E}-01$. $2047 \mathrm{E}-01$	-1061E+01
- 80JUE+00	- $3235 E+05$	-2201E-01	. $3862 \mathrm{E}-01$.1121E-01	-1060E+01
$.8105 \bar{E}+00$	- $3087 E+05$	- 2327 -01	. $3500 \mathrm{E}-01$. 1203E-01	. $1058 \mathrm{E}+01$
. $8212 E+00$. $2937 E+05$.2406E-01	. $3155 \mathrm{E}-01$	-1295E-01	$.1057 E+01$
.8316E+00	. $2781 E+05$. 250CE-01	. 2818 E -C1	-1399E-01	. $1055 E+01$
. $8421 E+00$	- $2525 E+05$. $2614 \mathrm{E-01}$. $2500 \mathrm{E}-01$.1516E-01	. $1053 E+01$
$.85265+00$	- $2462 \mathrm{E}+05$. $2749 \mathrm{E}-01$. 2191E-01	.1649E-01	. $1052 E+01$
. $6632 \mathrm{E}+00$	- $2301 E+05$. 2910E-01	.1903E-01	.1801E-0.	-1050E+01
$.8737 \hat{E}+00$. $2133 E+05$. $3114 \mathrm{E}-01$. $1628 \mathrm{E}-01$.1980E-01	. $1048 \mathrm{E}+01$
. 8842 E+00	.1963E+05	. $3365 \mathrm{E}-01$	-1375E-01	. 2189E-01	. $1045 E+01$
. $8947 \mathrm{E}+00$. $1790 \mathrm{E}+05$. $3673 \mathrm{E}-01$.1137E-01	- 2438E-01	. $1043 E+01$
. $9053 \mathrm{E}+00$	$.1619 E+05$. $4169 \mathrm{E}-01$. $9243 E-02$. $2739 \mathrm{E}-01$. $1040 E+01$
. $9158 \mathrm{E}+00$. $1438 \mathrm{E}+05$. $4822 \mathrm{E}-01$. $7273 \mathrm{E}-02$	- 3124 E -01	. $1039 E+01$
$.9263 E+00$	-1258E+05	- 5574E-01	. $5548 \mathrm{E}-02$	- 3608E-01	. $1039 E+C 1$
. $9363 E+00$. $1086 E+05$. $6611 E-01$. $4076 E-02$. 4231 E-01	. $1040 E+01$
.9474E+CO	. $9148 \mathrm{E}+04$. 8073E-01	. 2835 E-02	. 5085E-01	$.1042 E+01$
. $9579 E+0 v$. $7406 E+04$. $1126 \mathrm{E}+00$. $18245-02$. $6362 \mathrm{E}-01$	$.1046 E+01$
. $9684 \mathrm{E}+00$	- $5564 \mathrm{E}+04$	$.1914 E+00$.1020E-02	. $8533 \mathrm{E}-01$. $1064 \mathrm{E}+01$
- $9789 E+20$	- 3 S71E+04	. $4406 E+00$.4423E-03	- $1299 \mathrm{E}+00$	-1109E+01
. $98955+00$. $1841 E+04$. $9467 \mathrm{E}+00$.1112E-03	- $2.593 E+00$. $1228 E+01$

APPENDIX D: One-Dimensional Model, Computer Code

The pages that follow are a listing of the one-dimensional computer code. A warning about the code should be mentioned. As discussed in Chapter VII, the step size used in marching the solution down the pipe depends on the local Hach number. As the Hach number approaches 1, the step size becomes very small. If the initial upstream internal pressure is guessed too small. a problem may result where the step size becomes so small that the solution doesn't progress down the pipe. If this occurs. guessing a larger initial upstream internal pressure will solve the problem.

```
PRGGRAM ONEDF (INPLT,CUTPUT,TAPEL=INPUT,TAPE2=CLTPUT,TADE3,TAPEム)
```

C

```
C
C
c
C
C
C DEFINITION CF VARIAGLES
C
C
c
THIS PROGRAM USES A CNE-D COMPRESSIBLE FLOW MCOEL WITH FRICTION
TO FIND HOW PROPERTIES VARY IN A CLOSEL PIPE WITH ELOWING AND
SUCTION. THE BASIC METHOD IS SHAPIRO'S METHOO OF INFLUENCE
COEFFICIENTS.
    A CONSTANT USED IN hALL ELGhING BOUNOARY CONEITION
    8 CONSTANT LSED IN WALL BLOWING SOUNDARY CCNOITION
OUMMY VARIABLE USED IN CALGULATING THE WALL BOUNDARY CONDITION
C2 SPEED OF SOUNE SQUAREC ((FT/SEC)E)
C PIPE INSIOE DIAMETER (FT)
DELP CHANGE IN PO FOR SISECTICN METHOO OF FINDING ACTUAL PO
oElh change in mass flon rate due to mass transfer at the wall
DELX SPACIAL STEP SIZE
    F FRICTION COEFFICIENT
    FF SHAPIRO'S FRICTION INFLUENCE CCEFFICIENT
    FFP SHAPIRO'S FRICTION INFLUENCE CUEFFICIENT
    FL LAMINAR FRICTION COEFFICIENT
    FT TURBULENT FRICTION COEFFICIENT
    FUO CONSTANT TO ACCOUNT FER STATISTICAL VARIAYION OF POROUS
        PIPE PROPERTIES
    FW SHAPIRO'S MASS ADDITON INFLUENCE COEFFICIENT
    FWP SHAPIRO'S MASS ADDITON INFLUENCE COEFFICIENT
    GAMMA RATIO OF SPECIFIC HEATS
    N STEP COUNTER
    NM ITERATION COUNTER
    NN NN=I FOR FREDICTIO LOCP, NN=2 FOR CORRECTCF LOOP
    P PREJSURE (LBF/FT2)
    P2 NEST STEPOS VALUE DF P
    PEVAP EVAPQRATOR ENVIRONMENT PRESSURE
    PEX ENVIORNMENT PRESSURE
    PCOND CONOENSER ENVIRCNMENT PRESSURE
    PL PIPE LENGTH
    PLM HALF THE PIPE LENGTH
    PO UPSTREAM ENO CF PIPE FRESSURE
    PO2 NEXT STEPS TDTAL PRESSURE
    R IDEAL GAS CONSTANT FDR AIR
    RER RACIAL REYNOLES NUMBER
    REY REYNOLLS NUMBER BASED ON PIPE OIAMETER
```

```
C RHC JENSITY ( (L3F/SEC^2/FT^4)
```

C RHC JENSITY ((L3F/SEC^2/FT^4)
RHC2 NEXT STEPS DENSITY
RHC2 NEXT STEPS DENSITY
RHOV MASS VELOCITY BLOWING TMREUGH THE WALL (LEf-SEC/FT^3)
RHOV MASS VELOCITY BLOWING TMREUGH THE WALL (LEf-SEC/FT^3)
RMU VISCOSITY
RMU VISCOSITY
TO AIR TEMPERATURE (R)
TO AIR TEMPERATURE (R)
W LOCAL MASS FLEW RATE
W LOCAL MASS FLEW RATE
W 2 NEXT STEP'S LCCAL MASS FLOW RATE
W 2 NEXT STEP'S LCCAL MASS FLOW RATE
WSAR AVERAGE LDCAL MASS FLCW RATE (CORRECTOR STEP)
WSAR AVERAGE LDCAL MASS FLCW RATE (CORRECTOR STEP)
X AXAIL LOCATIO
X AXAIL LOCATIO
$\times 2$ NEXT STEPS AXAIL LOCATION
$\times 2$ NEXT STEPS AXAIL LOCATION
XbAR VAÉIABLE LSEE IN LAMINAR TC TURBULENT TRAASITION NCDEL
XbAR VAÉIABLE LSEE IN LAMINAR TC TURBULENT TRAASITION NCDEL
XM LOCAL VELOCITY
XM LOCAL VELOCITY
XMZ NEXT STEP'S LECAL VELCCITY
XMZ NEXT STEP'S LECAL VELCCITY
ENTER SPECIFIC PROBLEN VARIABLES
ENTER SPECIFIC PROBLEN VARIABLES
PEVAP $=38.90 \rightleftharpoons 144$
PEVAP $=38.90 \rightleftharpoons 144$
PCOND $=24.50 \% 144$
PCOND $=24.50 \% 144$
$P O=35.25$
$P O=35.25$
$P O=P O \approx 144$
$P O=P O \approx 144$
DELP = 72
DELP = 72
$A=3.536 E+9$
$A=3.536 E+9$
$B=1.701 E+8$
$B=1.701 E+8$
$T O=540$
$T O=540$
$R=1718$.
$R=1718$.
GAMMA $=1.4$
GAMMA $=1.4$
GAMM1 $=$ GAMMA/(GAMMA-1)
GAMM1 $=$ GAMMA/(GAMMA-1)
$0=0.650 / 12$.
$0=0.650 / 12$.
$N M=1$
$N M=1$
$P L=2$.
$P L=2$.
PEX=PEVAP
PEX=PEVAP
$P L M=P L / 2$
$P L M=P L / 2$
DELX $=0.01$
DELX $=0.01$
$F U C=1.07$
$F U C=1.07$
c
c
INITIALIZE ThE VARIABLES AT THE upstream pipe end
INITIALIZE ThE VARIABLES AT THE upstream pipe end
$W=0.0$
$W=0.0$
$X M 2=0.0$
$X M 2=0.0$
$X=0.0$
$X=0.0$
$p=P 0$
$p=P 0$
$T=T O$
$T=T O$
RHO $=P O / R / T O$

```
RHO \(=P O / R / T O\)
```

```
C
    USE INCOMPOESSIBLE MCSEL TO GET THE STARTING VALUES
        C=ABS(P孛設2-PEX*れそ2)
        RHCV=-(-8+SQRT(8*%2+4.*A*C))/(2.*A) #FUD
        C2=GAMMAFP/RHO
        XM22=(4.0%RHCV%OELX/RHO/D) ## 2/C2
        W2=W-RHCV*CELX*O*3.14*32.2
        X2=X + DELX
        P2=P0/(1.+(GAMNA-1)/2\divXM22) % =GAMM1
        PO2=PO
        2HO2=RHC
C
C MARCH OOWN THE PIFE FINCING THE FLCW PROPERTIES ALENG THE WAY
C
5
C
C PREDICTOR AND CORRECTCR STEPS
DO 8 NN=1,1
C calculate the infllence coefficients
C
XM2BAR = (XM2+XM22)/2.
CON1=1.+(GAMMA-1)/2%XM2SAR
CON2=1.-XM2BAR
CON3=1. +GAMMA*XM2BAR
CON4=GAMMA%XM2BAR
FW=2.*CON3*CON1/CON2
FWP=CON4
C
C FIND THE MASS ADDSD THROLGH THE PIPE WALL
\(C\)
    PBAR=(P2+P)/2
```



```
IC=1
IF (C .LT. 0.0) ID=-1
C=ABS(C)
RHCV=ID*(-B+SQRT(B**2+4.*A*C))/(2.*A) &FUD
OELW= -RHOV*OELX*O*3.14*32.2
W2=W+JELW
IF (W2.LT.O) GO TO 30
```

FIND THE FRICTION FACTQR AND THE FRICTION INFLUENCE CQEFFICIENT
$T=T 0 / C O N 1$
RMU $=2.27 E-08 \approx S Q R T(T+3) /(T+198.6)$
$W B A R=(W+W 2) / 2$
REY=4おWBAR/3.14/D/RMU/32.2
$R E R=R H O V * D / R M U$
$X S A R=((X-1.00) / .25) \div \% 2$
$F L=16 / R E Y * 1.2337 * E X P(1.20 \div X N 2)$
C $\quad F L=16 / R E Y$
BETA=ARS (RER/REY)
FSTAR=0.046/REY¥ょ0.2

C
FT=FSTAR
$F=F T-(F T-F L) \neq E X P(-.412 \neq X 3 A R)$
IF (X •LE. 1.O) $F=F L$
$F F=C O N 4 \neq C O N 1 / C O N 2 \hbar 4 \% F / C$
$F F P=C O N 4 / 2 \neq 4 \div F / D$
$F F=0.0$
$F F P=0.0$.
FIND THE CHANGE IN MACH NUHBER ANO PRESSURE DUE TO FRICTION AND MASS ADCITION
$X M 22=E X P(A L O G(X M 2)+F F \div D E L X+F W+A L O G(W 2 / W))$
$P 02=E X P(A L E G(P O 1)-F F P \div D E L X-F W P \neq A L O G(W 2 / W))$
$P 2=P 02 /(1 .+(G A M M A-1) / 2 \div X M 22) \approx \% G A M M 1$
continue
WRITE(2, क) $X / P L, P 2 / P O, W 2$
check for cenvergence anc guess a new value for po
IF (X .GT. PL) GO 1010
IF (N EQ. 2500) GC TD 40
GOTO 5
10 CONTINUE
GO TO 40
IF (W2.LT. . OO1) ©O TO 40
$N M=N M+1$
WRITE (2,*) ${ }^{\prime} N M={ }^{\circ}, N M,{ }^{\circ} P O={ }^{\prime}, P O$


```
        IF (NM .GT. 8) GO TO 40
        DELP=DELP/2
        PO=PO+OELP
        GO TO 1
        DELP=DELP/2
        GO TO 40
        PO=PO-DELP
        NM=NM+1
        IF (NM .GT. 8) GO TO 40
        WRITE (2,*) 'NM= ',NM,'PO= *,PO
        GO TO 1
4O STOP
ENO
```


BIBLIOGRAPHY

1. Ivanovskii, M. N, V. P. Sorokin, and I. V. Xagodkin. The Physical Principles of Heat Pipes. New York: Oxford University Press, 1982.
2. Berman. A. S. "Laminar Flow in Channels with Porous Walls," Journal of Applied Physics, 24 (g): 1232-1235. Sept. 1353.
3. Schlichting, H. Boundary-Layer Theory. Seventh Edition, McGraw-Hill Book Company. 1979.
4. Brady, J. K. "Flow Development in a Porous Channel and Tube," Physics of Fluids. 27 (5): 1061-1067, May 1984.
5. Friedman, M. and Gillis, J. NViscous Flow in a Pipe with Absorbing Walls," Journal of Appiled Mechanics. Transactions of the ASME. 819-8 $\overline{22}$, December 1967.
6. Kinney, R. B. "Fully Developed Frictional and Heat Transfer Characteristics of Laminar Flow in Porous Tubes," International Journal of Heat and Mass Transfer, 11: 1393-1481, 1968.
7. Rathby, G. "Laminar Heat Transfer in the Entrance Region of Circular Tubes and Two-Dimensional Rectangular Ducts with Mall Suction and injection," Journal of Heat and Mass Transfer. Vol. 14. 223-243. 1971.
8. Terrill, R. M. and Thomas, P. W. "On Laminar Flow Through a Uniform Porous Pipe," Applied Science Research, 21: 37-67. August 1969.
9. Terrill. R. M. "An Exact Solution for Flow in a porous Pipe," Journal of Applied Mathematics and Physics. 33: 547-552. July 1982.
10. Terrill. R. M. "Laminar Flow in a Porous Tube," Journal of Fluids Engineering, 105: 303-307. Sept 1083.
11. Chi, S. W. Heat Pipe Theory and Practice. New York: McGraw-Hill Book Company, 1976.
12. Dunn, P. and D. A. Reay, Heat Pipes (Second Edition). London: Perganon Press. 1978.
13. Cotter, T. P. "Theory of Heat Pipes," LA-3246-MS; Los Alamos Scientific Laboratories, Los Almos, N. H... 1965.
14. Yuan. S. W. and Finkelstein. A. B. Miaminar Pipe Flow With Injection and Suction Through a Porous Wall," Transactions of the ASME: 719-724. May 1956.
15. Knight, B. W. and B. B. McInteer. "Laminar Incompressible Flow in Channels with Porous Walls," LADC-5309, Los Alamos Scientific Laboratory. Los Alamos. N. M., 1965.
16. Wageman, W. E. and Guevara, F. A. FFluid Flow Through a Porous Channel," The Physics of Fluids. 3 (6): 878-881, Nov-Dec 1960.
17. Bankston, C. A. and H. J. Smith. "Vapor Flow in Cylindrical Heat Pipes," Transactions of ASME, Journal of Heat Transfer, 95: 371-376, 1973.
18. Van Ooifen, H. and C. J. Hoogendoorn. "Numerical Calculations on the Vapor Flow in a Flat-Plate Heat Pipe with Asymmetrical Boundary Conditions," Third International Heat Pipe Conference: Palo Alto Califonia, 1978.
19. Van Ooijen, H. and C. J. Hoogendoorn. "Experimental Pressure Profile along the Vapor Channel of a Flat-Plate Heat Pipe," Forth International Heat Pipe Conference: London, 1981.
20. Levy. E. K. "Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressures," Transactions. ASME Journal for Industry: 547. November. 1968.
21. Kemme, J. E. "Heat Pipe Capability Experiment," IEEE Therionic Conversion Specialist Conference, Nov. 1966, Houston, Texas.
22. Bystrov, P. I. and A. N. Popov. "The Supersonic Flow of Vapor in the Condensation Zone of High Temperature Heat Pipes," Third International Heat Pipe Conference: Palo Alto, California, 21-26, 1978.
23. DeMichele, D. W. A Numerical Solution to Axial Symmetric Compressible Flow with Mass Injection and its Application to Heat Pipes. PhD Dissertation, Department Of Nuclear Engineering, University of Arizona, 1970.
24. Von Vises, R. "Bermerkugen Zur Hydrodynamik," ZAMM 7. 425-4.31. 1927.
25. Tien. C. L. and A. R. Rohani. "Analysis of the Effects of Vapor Pressure Drop on Heat Pipe Performance,": Journal of Heat and Mass Transfer, 17: 61-67. 1974.
26. Busse. C. A. and F. C. Prenger. "Numerical Analysis of the Vapor Flow in Cylindrical Heat Pipes," Fifth Internarional Heat Pipe Conference: Tsukuba, Japan, 19-24. 1984.
27. Haug, F. and C. A. Busse. "Pressure Recovery in a Cylindrical Heat Pipe at High Radial Reynolds Numbers and at High Hach Numbers," AIAA 2gth Thermophysics Convention: Williamsburg, Virginia, 1985.
28. Quaile, J. P., and Levy, E. K. "Laminar Flow in a Porous Tube With Suction," Journal of Heat Transfer, Transactions of the ASME, 66-71. February 1975.
29. Aggarwal, M. A.; Hollingsworth, M. A., and Mayhew, Y. R. "Experimental Friction Factors for Turbulent Flow with Suction in a Porous Tube," International Journal of Heat and Mass Transfer, 15: 1585-1602, Pergamon Press 1972.
30. Beam, J. E. "Transient Heat Pipe Analysis," AIAA 20th Thermophysics Conference: Williamsburg, Virginia, 1985.
31. Chang, W. S. Heat Pipe Startup from the Supercritical State. PhD Thesis, Georgia Institure of Technology. Atlanta, Georgia, 1981.
32. Colwell, G. T. "Transient Heat Pipe Operation in the Near Critical Region," Forth International Heat Pipe Conference: London, 7-10. 1981.
33. Klein, D. and Catton, I. "Transient Analysis of Heat Pipe Vapor Dynamics," Preedings of 4th Symposium on Space Nuclear Power Systems, Albuquerque, New Mexice, January 1987.
34. Ransom, V. "Athena Heat Pipe Transient Model," same as 33.
35. Costello, F., Montague, A., Merrigan, H., and Reid, R. A Detailed Transient Model of a Liquid-Metal Heat Pipe," same as 33.
36. Colwell, G. T. "Transient Heat Pipe Modeling at Georgia Tech, ${ }^{\text {H same }} 33$.
37. Hall, M., and Doster, J.. "Transient Thermohydrauilic Heat Pipe Modleing," same as 33.
38. Cebici. T. "Behavior of Turbulent Flow near a Forous Hall with Pressure Gradient," AIAA Journal. Vol. 8. No. 12, 2152-2156. December 1970.
39. Doshi. M. R. and Gill. W. N. "Turbulent Flow in a Tube With Wall Suction," journal of Heat Transfer, 251-252, May 1974.
40. Kays, W. M. and Moffat, R. J. Studies in Convection, Vol 1, Academic Press, London, 213-319, 1975.
41. Kinney, R. B. and Sparrow, E. M. "Turbulent Flow, Heat Transfer, and Mass Transfer in a Tube With Surface Suction," Journal of Heat Transfer, 117-125. February 197%.
42. Merkine, L., Solan, A., and Winograd, Y. "Turbulent Flow in a Tube With Wall Suction," Journal of Heat Transfer, 242-244. May 1971,
43. Van Driest. E. R. "On Turbulent Flcw Near a Wall," Journal of Aerospace Science, Vol. 23. No. 11. 1967-1911. November 1956.
44. Brosh, A. and Winograd, X. "Experimental Study of Turbulent Flow in a Tube With Wall Suction," Journal of Heat Transfer, 338-342, August 1974.
45. Eroshenko, V. M., Ershov, A. V., and Zaichik, L. I. "Calculation of Turbulent Flow of an Incompressible Fluid in a Circular Tube With Suction Through Porous Walls," Fluid Dynamics. Translated from Russian, Vol. 17. No. 4, 559-564, July-August 1982.
46. Shapiro, A. H. The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. 1, The Ronald Press Company, New York, 1953, pp 238-241.
47. Bean, H. S. Fluid Meters. Their Theory and Application, Sixth Edition, 1971. The Americal Society of Mechanical Engineers. New York.
48. Muskat, M. The Flow of Homogeneous Fluids Through Porous Media. J. E. Edwards. Inc. Ann Arbor, Michigan, 1946.
49. Anderson, A. A., Tannehill, J. C. and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer. McGraw Hill Book Company, 1984.
50. Cebeci, T. and Smith, A. M. O., Analysis of Turbulent Boundary Layers. Academic Press, New qork, 1974.
51. Baldwin, B. S. and Lomax, H., "Thin Layer Approximation and Algebraic Hodel for Separated Turbulent Flows," AIAA $16 i n$ Aerospace Sciences Meeting, Huntsville Alabama, January 1978.
52. Dhawan, S. and Narasimha, R. "Some properties of Boundary Layer Flow during the Transition from Laminar to Turbulent Motion," Journal of Fluid Mechanics, Vol. 3. Part 4, 418-436, 1958.
53. MacCormack, R. W. "The Effect of Viscousity in Hypervelocity Impact Cratering," AIAA Paper No. 69-354, 1969.
54. MacCormack, R. W. and Baldwin, B. S., "A Numerical Method for Solving the Navier-Stokes Equations with Application to Shock-Boundary Layer Interaction," AIAA 13th Aerospace Sciences Meeting, Pasadena, California, January 1975.

Jerry Buwman
graduated from Capital High School in Boise in 1972. From 1973 to 1975 he sexved a mission for The Church of Jesus Christ of Latter-day Salnts in Uruguay, South Anerica. In 1978 he gracinted Magna Cum Laude from Brigham Young Undversity, receiving a BS in Mechanical Engineering. From 19?9 to 1982 he served as a commisioned officer in the United States Navy. During that time he taught Mathematics, Heat Transfer. Thermodynamics and Fluid Mechanics at the Naval Nuclear Power School in Orlando. Florida. In 1982 he received a MSE in Mechanical Engineering from the University of Central Florida. Also in 1982 he accepted a commision as a Captain in the United States Air Force. From 1982 to 1984 he vorled as a Space Shuttle Systens Engineer at the National Aeronautics and Space Administrations Kennedy Space Center, Florida. In June of 1984 he began Doctoral studles at the Air Force Institute of Technology studying Aeronautlcal Englneering.

[^0]:
 when compared with unpublished experimental data obtained from a sodium heat pipe by Ivonovsky and Sorokin and their colleagues at the Physics and Power Institute. The experimental data was in the form of teraperature fields measured with a movable thermocouple located in a capillary tube mounted inside the vapor channel near the wick surface. The experimental data suggested the presence of a normal shock in the condenser. This indicated the presence of supersonic velocities in the condenser.

 Two-dimensional, steady, compressible models have also been developed. The first was developed by Dellichele (23). He solved the governing equations by using an integral transformation closely related to the stream-function transformation first introduced by R. Von Mises (24). He simplified the governing equations by assuming the boundary-layer assumptions applied. When compared to unpublished experimental data obtained by J. Kemme at the Los Alamos Scientific Laboratories, the method was shown to give good results.

 Tien and Rohani (25) also solved the Navier-Stokes equations for steady, two-dimensional, compressible flow in a cylindrical heat pipe. They did not assume the boundary-layer assumptions applied. They used a vorticity-stream-function approach similar to the incompressible-flow method used by Bankston and Smith '17). They claim that, for high evaporation and condensation rates, their model gave better results than similar models

[^1]: in the following manner

