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INTRODUCTION 

This annual summary report describes research performed from 1 May 1986 until 1 July 

1987 under ONR Contract N00014-85-K-0708, which began 1 September 1985. The following 

projects are discussed: 

1. Parametric Receiving Arrays 

2. Focused Finite Amphtude Sound 

3. Noncollinear Tone-Noise Interactions ! 

All three projects involve basic research on nonlinear acoustics. The first project is a theo- 

retical investigation of the use of a parametric receiving array for measuring ship noise. We 

are primarily concerned with the effect of reflecting surfaces on nonlinear interactions in the 

nearfield of diffracting sound beams. The second project, which is essentially completed, is a 

numerical investigation of the combined effects of nonlinearity and diffraction on sound that 

propagates through a focal region. The third project is an experimental investigation of the 

interaction between a pure tone in the (1,0) mode of a rectangular duct and a band of noise 

in the (0,0) mode. This last project received direct support from ONR only prior to 1 June 

1986. 

The following individuals are involved with the research effort: 

Senior Personnel 
■ 

M. F. Hamilton, principal investigator j 

Graduate Students 

C. Darvennes, Ph.D. student in Mechanical Engineering 

T. S. Hart, M.S. student in Electrical and Computer Engineering 

S. J. Lind, M.S. student in Architectural Engineering 



I. PARAMETRIC RECEIVING ARRAYS 

The purpose of this research is to investigate the use of a parametric receiving array for direc- 

tive measurements of noise radiated by ships in reverberant environments. The investigation 

is theoretical and has been performed by Darvennes since 1 September 1985. Our primary 

objective is to develop a mathematical model that takes into account multipath components 

from reflecting surfaces. Both theoretical and experimental investigations of related prob- 

lems are currently underway at Applied Research Laboratories of the University of Texas at 

Austin (ARL:UT) and the Department of Mathematics at the University of Bergen, Bergen, 

Norway. We are in close contact with both groups, and their contributions are discussed 

briefly below. 

A. Background 

The proposed application of a parametric receiving array to the problem of measuring noise 

radiated by large ships underway in reverberant environments is outlined in detail in the First 

Annual Summary Report [1]. The problem may be summarized as follows. Measurement of 

ship noise is complicated by multipath arrivals from both the ocean floor and the surface of 

the water. The reflections make it difficult to calculate either the source level or directivity 

pattern. Moreover, when the ship is in motion, each multipath component may experience 

a different Doppler shift, with the result that the frequency distribution of energy in the 

received signal differs from that transmitted by the ship. A highly directional hydrophone 

array is therefore needed if elimination of the multipath components is desired. Because 

of its relative insensitivity to differential Doppler shift and its potentially high directivity, 

an end-fire array presents itself as a viable means of discriminating against the undesirable 

multipath components. However, at the low frequencies characteristic of ship noise, an array 

hundreds of meters in length may be necessary. 

A parametric receiving array has been suggested [2] as a possible solution to the problem 

(see Fig. 1). The receiver consists of only two components: a directive, high power pump 

transducer and a hydrophone. A high intensity beam is transmitted by the pump through 

the noise field. The beam interacts nonlinearly with the noise, and modulation components 

(sum and difference frequency sidebands) are received by the hydrophone. Information about 

the directional properties of the noise field is carried by the nonlinearly generated sidebands. 

The column of water between the source and hydrophone, which in theory may be arbitrarily 
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Parametric receiving array used to measure ship noise 



long, thus synthesizes elements of a continuous, end-fire line array. Steering the array would 

be accomplished by mounting the pump on the ship itself, with the hydrophone placed at a 

fixed location some distance away. Navigation data provided by the ship may be employed 

to continuously direct the pump toward the hydrophone. 

Until recently, theoretical models of parametric receivers did not account for diffraction 

of the noise field. Although one model [3] accounted for diffraction of the pump beam, the 

noise field was assumed to consist only of plane waves. However, the noise field radiated by 

a large ship may have a nearfield hundreds of meters long. Since the scheme for measuring 

the ship noise with a parametric receiver involves inounting the pump directly on the ship, 

nearfield diffraction effects in the noise field cannot be ignored. A Gaussian beam model 

of parametric reception that accounts for both diffraction of the pump wave and the noise 

field was developed by Hamilton, Naze Tj0tta, and Tj0tta [4]. It was assumed that both 

the pump beam and noise field are pure tones, and that both are radiated from sources 

with Gaussian amplitude distributions. The solution is particularly attractive because it is 

expressed in closed form in terms of exponential integral functions, and it is therefore very 

easy to evaluate on a computer. 

Considerable progress has been made over the past year in the Department of Math- 

ematics at the University of Bergen. In a paper by Foote, Naze Tj0tta, and Tj0tta [5], 

the restriction of Gaussian beams is removed. Specifically, pumps and sources having cir- 

cular geometries with uniform amplitude distributions are considered. The penalty is that 

numerical solution of a triple integral is required. One conclusion of the analysis is that 

results obtained with Gaussian pumps and uniform pumps are virtually indistinguishable. 

The main focus of the paper, however, is the effect of misalignment between the pump and 

hydrophone, a practical problem when the distance between the pump and hydrophone is 

large. 

At ARL:UT, Sample [6,7] has investigated arbitrary source distributions by using a 

superposition of Gaussian sources in order to take advantage of the closed form solution 

in Ref. 4. To test his method, Sample used Gaussian beams to model radiation from a 

uniform circular source and investigated the resulting nonlinear interaction with sound from 

a Gaussian pump. The results compare favorably with those of Foote et al. [5], thus verifying 

the approach. Two significant advantages result from the method of Gaussian superposition. 

First, complicated source distributions associated with large structures, such as hulls of ships, 
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can be modeled. Second, the calculations require relatively little computation time. These 

advantages are useful for evaluating engineering and design considerations associated with 

deployment of the parametric receiver. 

Finally, ARL:UT is now beginning experimental work on nearfield parametric reception. 

The experiment will involve the use of a parametric receiving array to measure sound radiated 

from a large uniform circular source. Results from the experiment should provide important 

comparisons with the theoretical models. 

The following results were obtained during the past year under the current ONR contract. 

Some of the results were presented orally by Darvennes and Hamilton [8] at a meeting of the 

Acoustical Society of America. Our main objective is to determine the extent to which a 

parametric receiver discriminates against multipath components in diffracting sound fields. 

This aspect of the problem has not been addressed in any of the previous work on nearfield 

parametric reception [4-7]. However, knowledge of how a parametric receiver performs in 

a reverberant environment is crucial for interpreting results when measuring ship noise. 

Related work on parametric interactions near reflecting surfaces has been performed by 

Novikov, Tarasov, and Timoshenko [9], although transmitting instead of receiving parametric 

arrays were investigated. The problem of parametric reception near reflecting surfaces has 

been considered by Donskoi and coworkers [10-12], but the results do not account for nearfield 

diffraction. 

B. Results 

A quasilinear analysis was used to investigate the nonlinear interaction of two Gaussian 

beams whose sources may be displaced and tilted with respect to each other. The spatial 

component of the source function for the ith primary wave (i = 1,2) is assumed to be 

Ir- b,'2 
p,(r, 0) = poi exp   - J 2-^ - jkix sin Oi (1) 

where the time factor exp{JLo,t) is suppressed, and po. is the on-source pressure amphtude, 

r a position vector in the x-y plane, e, the radius of the source, b, the displacement of the 

source from the z axis, k, = Ui/co the wavenumber, Ui the angular frequency, and 6i the 

angle of rotation. Thus for b, = 0 and 0i = 0, the ith beam is directed along the z axis. 

Positive values of 9i indicate clockwise rotation with respect to the z axis. The pump is 

designated by z = 1 and the noise source hy i = 2. 
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When effects of thermoviscous absorption can be ignored, the solution for the difference 

frequency field {cv_ = ur - u,) in the paraxial region may be written in the form 

P-ir,z) = f{r,2){Er[gir,z)]~E,[h{r,z)]), (2) 

where E, is the exponential integral function, and /, g, and h are simple algebraic functions 

of the system parameters. Equation (2) is an important generalization of the result derived 

in Ref. 4, where a closed form result is obtained only along the acoustic axis of one of the 

interacting beams. 

The generation of difference (or sum) frequency sound by two beams that interact at a 

nonzero angle is referred to as the scattering of sound by sound (see, e.g., Refs. 13 and 14 for 

a review). Whether the difference frequency sound can be radiated outstde the noncollinear 

interaction region formed by the intersecting primary beams has fueled controversy in the 

nonlinear acoustics community ever since the problem was first posed in 1956 [15]. It is 

also worth noting that over the past three decades, ONR has supported some of the most 

prominent research on the scattering of sound by sound [16-19]. 

Equation (2) is apparently the first closed form solution of the scattering of sound by 

sound tiiat takes nearfield diffraction into account. Here we consider a specific example. 

Shown in Fig. 2 is the geometry and notation for two beams that interact at angle {9, - 0,) 

Wejmve analyzed the scattering of sound by sound for the following parameter values- 

0. - -0,,u,/u, = 3, k,e, = 30,e, = e,,h, = 1.5e,e., and b, = -1.5e,e. . Under 

these conditions, the effective edges of the sources are separated by one radius. Shown in 

Fig. 3 are beam patterns for the difference frequency field when the interaction angles are 

10° {0, = -0, = 5°) and 20° (0, = -0, = IQO). The dimensionless range Z = 2z/k,4 is in 

terms of the coUimation length of the lower frequency primary beam. 

The most interesting characteristic of the difference frequency beam patterns is the 

appearance of two sidelobes, and it turns out that the location of each sidelobe is easily pre- 

dicted. As the observation range Z increases, the right-hand sidelobe in each beam pattern 

IS described asymptotically by the product directivity function D,i0)D,{0), where 0(0) is 

the directivity function of the eth primary wave. The function 0,(0)0,(0) is maximized at 

0 - -4° when the beams interact at 10°, and at 9 = -8° when the interaction angle is ^0° 

Since the right-hand sidelobe is always located between 0, and 0, , it can be argued that 

sound in this sidelobe is not outside the interaction region. 
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Beam patterns for scattered difference frequency sound 



In contrast, the left-hand sidelobe is centered at 0 = 0^, which is seen in Fig. 2 to be 

the direction of the vector kj - ka . The angle 0_ is always outside the region delined by 

the directions of the two primary beams. Specifically, we obtain <9_ = -10° when O^ = -5° 

and 0_ = -19° when 6^ = -10°. For small interaction angles, the contribution from the 

product directivity dominates the beam pattern. At an interaction angle of 20°, however, 

the sidelobe at (9_ eventually dominates the field. Moreover, the level of the sidelobe at 

0_ can be substantial. For example, if two Gaussian primary beams interact in air at 20° 

with on-source levels of approximately 145 dB (re: 20 //Pa), the sound pressure level of the 

sidelobe at Z Ri 2 and 6" f^s -19° should be approximately 73 dB. 

More germane to the research on parametric reception is the application of Eq. (2) to the 

problem of noncolhnear interaction of two sound fields in the presence of a reflecting surface. 

If the pump wave is sufficiently well collimated that its reflection from the surface of the water 

may be ignored, then the only reflections that need to be considered are those due to the 

noise field and the difference frequency field. In this hmiting case, the difference frequency 

field due to the interaction of the pump wave and the noise field may be constructed using the 

method of images. The resulting solution is given by the summation of four equations that 

have the same general form as Eq. (2). Figure 4 depicts the four basic interactions which are 

taken into account. The pump wave interacts with both the direct {a,c) and reflected {b, d) 

source wave, and the resulting difference frequency sound takes both a direct [a, b) and 

reflected {c,d) path on its way to the hydrophone. This solution is valid when the distance 

from the pump to the hydrophone is not too large, such that neither absorption nor reflection 

of the pump wave need be taken into account. 

As an example we use the following parameters: ^^262 = 30 (dimensionless source ra- 

dius), kj/k2 = 1000 (for example, 50 Hz for the source frequency and 50 kHz for the pump 

frequency), and t^/ti =. 50 (therefore k^tr = 600 is the dimensionless pump radius). Practi- 

cal design considerations for constructing a parametric receiver with similar parameters are 

discussed by AicDonough [20]. Results are shown in Fig. 5 for a source at depths 26^ and 5e2 

below the surface of the water. Increasing 9 corresponds to moving the observation point 

away from the surface. The solid curves in the top two figures are farfield beam patterns 

that would be measured linearly with a point receiver, and the dashed curves are the corre- 

sponding free field directivities. The oscillations in the beam patterns are due to reflected 

multipath components. 
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The bottom two figures show beam patterns measured by a parametric receiver with the 

pump mounted in the center of the source, and with the hydrophone at various dimensionless 

ranges Z = ^zjk-it^^ {i.e., in terms of tlie Rayleigh distance of the source). Close to the 

source (Z = 1) there are no oscillations in the measured beam patterns, but the source 

beamwidtli is significantly overestimated (see Ref. 4). At Z = 10 the predicted beamwidth 

is somewhat better, and there is still reasonably strong discrimination against multipath. 

However, multipath is seen to significantly affect the parametrically measured beam pattern 

when Z = 100, more so when the source is closer to the surface. The large oscillations that 

rcesernble those in the linear farfield beam patterns result from interaction (b) in Fig. 4. The 

rapid oscillations a.t 0 < 2° for a source at depth 2c2 are due to interaction (c). 

A trade-off thus exists in terms of the optimum range for measuring beam patterns with 

a parametric receiver in multipath environments. When the hydrophone is too close to the 

source, the beamwidth may be significantly overestimated. However, multipath increasingly 

contaminates parametric reception as the hydrophone is moved farther away. The optimum 

range for the hydrophone depends on a combination of factors. As we have seen, one factor 

is the distance of the source from the reflecting surface. Other factors involve the frequency 

and thermoviscous absorption of the pump wave. 

The more general solution, i.e., when absorption and reflection of the pump wave are 

taken into ciccount, is based on an integral expression of the form 

p_(r,^)= r G{v,z-z')dz', 
Jo (3) 

where G is a function that in turn depends on the error function. Now there are eight 

interactions which must be considered. In addition to the four shown in Fig. 4, an additional 

four involve reflection of the pump wave. The integral in Eq. (3) is difficult to evaluate 

numerically, and the problem is currently under investigation. 



11. FOCUSED FINITE AMPLITUDE SOUND 

This project consists of a numerical investigation begun by Hart on 1 September 1985. The 

task involves the modification of an existing computer program for application to finite 

amphtude sound that propagates through a focal region. The project is near completion, 

and a comprehensive account of the investigation is currently being written up as a masters 

thesis. Hart is scheduled to receive his M.S. degree in Electrical and Computer Engineering 

in August 1987. 

A. Background 

The problem we have analyzed involves the nonlinear distortion, diffraction, and absorption 

of sound as it propagates through a focal region. Only recently have these combined effects 

been taken into account simultaneously in investigations of unfocused sound fields. Previous 

theoretical research on focused finite amplitude sound has been reviewed in the First Annual 

Summary Report [1]. Here we describe only briefly where our results fit in with the current 

state of the art. 

A numerical solution, similar to ours, has already been used by Bakhvalov et al [21] 

to investigate nonlinear effects in focused sound fields (see also Chapter 4 of Ref. 22). Like 

our investigation, theirs is based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equa- 

tion [23,24]. Their analysis, however, does not take into account the abrupt edges that 

characterize circular piston transducers. Therefore the strong diffraction effects that appear 

in sound fields radiated by most circular ultrasonic transducers are not considered. The 

majority of sources analyzed by Bakhvalov et al. possess Gaussian amphtude distributions 

of the form exp{-r^/a'^), where r is a radial coordinate and a is an effective source radius. 

As is well known, sound fields radiated by Gaussian sources exhibit neither an oscillatory 

nearfield structure nor a farfield sidelobe structure. The strongest diffraction effects consid- 

ered by Bakhvalov et al. result from the fourth-order polynomial source distribution defined 

by [1 - [r/af] for r < a and zero for r > a. As shown in the First Annual Summary Re- 

port [1], the sound field that results from a fourth-order source function approximates only 

roughly the field from a circular piston. Finally, their investigation considers only focusing 

gains of order 5, whereas most interesting applications of focused sound involve focusing 

gains that are an order of magnitude larger. 
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In contrast, a theoretical study by Lucas and Muir [25,26], also based on the KZK 

e(iualiou, is limited to weakly nonlinear systems. However, the practical case of a focused 

circular source with gain of 40 is investigated. The authors obtain a quasilinear solution for 

the fundamental and second harmonic components that is in good agreement with exper- 

iment. The demonstrated abihty of the KZK equation to accurately model focused sound 

fields from reahstic sources [i.e., having abrupt edges and high gains) lends credibihty to our 

own investigation. 

Thus the work of Bakhvalov et al. accounts for strong nonhnearity but weak diffraction 

and low focusing gains, and that of Lucas and Muir accounts for strong diffraction and high 

focusing gains but weak nonhnearity. The research described below bridges the gap by taking 

into account strongly nonlinear sound fields with high focusing gains and strong diffraction 

effects. ■ ' 

The following results have been presented orally by Hart and Hamilton [27] at a meeting 

of the Acoustical Society of America. The text is excerpted from a paper by Hart and Hamil- 

ton [28] that will appear in proceedings of the 11 th International Symposium on Nonhnear 

Acoustics. 

B. Results 

In an earher investigation, a transformation [29] of the KZK equation [23,24] was introduced 

that facilitates the numerical calculation of nonlinear effects in the farfield of directive sound 

beams. The transformation introduces a coordinate system that follows the eventual spheri- 

cal divergence of coUimated sound waves. Here we introduce a similar transformation which 

is suitable for describing the convergent geometry of focused sound fields. 

Our analysis begins with the KZK equation written in the form 

where a = z/d is a dimensionless range in terms of the axial coordinate z and the focal length 

d, T = ijj{t ~ z/co) is dimensionless retarded time where w/27r is the source frequency and 

Co the sound speed, P = p/po is a dimensionless pressure in terms of the acoustic pressure 

p and its on-source value po, ZQ = ua?I2CQ is the Rayleigh distance, a the source radius, a 

the absorption coefficient at angular frequency a;, and Ip = pocH^ujpo the plane wave shock 
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formation distance, where po is the ambient density and /3 the coefficient of nonlinearity. 

The two-dimensional Laplace operator V^ is written in terms of the dimensionless vector 

u = r/a, where r = (x, y) is the transverse coordinate vector. The focal plane is defined 

to he at (7 = 0, with the source located at or = _i and radiating in the -fcr direction (sec 

Fig- 6). I 

Three dimensionless coefficients appear explicitly in Eq. (4), all of which involve the focal 

length d. The ratio G = z^jd may be identified as the hnear focusing gain. With the right 

hand side of Eq. (4) set to zero and with no absorption (a = 0), the solution for radiation 

from a circular source yields an amphtude for P equal to G at the focus [25]. The quantity 

ad indicates the role of absorption within one focal length, and dfl, is a dimensionless source 

amphtude. 

To construct a coordinate system that converges at the focus, we introduce the trans- 

formation 

PV,u',r') = (a±<5)P(a,u,r), u'=^, / = r - ^^, (5) 

where <5 is a small positive quantity, and u = |u|. The parameter 6 governs the rate at which 

the primed geometry converges. With <^ < 1, length scales in the focal plane are 6 times 

smaller than at the source. Note that the primed coordinates are singular in the focal plane 

when S = 0. The minus signs in Eqs. (5) are used in the prefocal region {a < 0) and the 

plus signs beyond the focus {a > 0). Substitution of Eqs. (5) in Eq. (4) yields 

where V'^ is the two-dimensional Laplace operator with respect to u'. With the quantity 

P' expanded in the series 
oo 

P'-   E  P'n(^,u')e-^', i (7) 
n=—oo 

Eq. (6) can be rewritten as the coupled set of equations 

9p n _ _  2   j  / jd ,2   / jnd °° 

The coupled parabolic equations in p'„ are solved via the imphcit backward finite differ- 

ence method described in Ref. 30. For an axisymmetric source having gain G and oscillating 

sinusoidally with amphtude distribution /(u), the boundary condition at a =-I is, within 
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the parabolic approximation, P = f{u) s\n[T+Gv?). In the primed system the boundary con- 

ditions become, where use is made of Eqs. (5) and (7), p\ = iJl/^)f{lu') expj{'y'^G - 7)^'^ 

(where 7 = 1 + 5), p'_^ = p'* (where the asterisk indicates complex conjugate), and p'„ = 0 

for all n ^ ±1. With the minus signs selected in Eqs. (5) and (8), the finite difference 

algorithm steps forward from the source toward the focus. At the focus, the minus signs are 

changed to plus signs, the primed systems defined in Eqs. (5) are matched, and the algorithm 

resumes. 

We now present results for focused sound from circular sources with amplitude distribu- 

tions described by f{u) = 1 for u < 1 and f{u) = 0 for u > 1. 

Shown in Fig. 7 are time waveforms calculated along the axis of a focusing system where 

G = 72.5, ad = 1.11, and d/lp = 1.06. The parameters are chosen to correspond with those of 

an investigation performed by Rugar [31], who used an acoustic microscope which transmits 

focused sound through liquid nitrogen at frequencies around 2 GHz. The dimensionless peak 

amphtude of the sinusoidal source waveform shown in Fig. 7(a) is unity. Note that the 

amplitude scale in (a) is magnified 10 times with respect to the scales in (6 - /). After 

the wave enters the focal region (6), finite amphtude distortion increases dramatically {c,d). 

At the focus (d), the effect of using only 25 harmonics in the calculations is manifested as 

small ripples in the waveform. It is interesting to compare the peak amphtude of the wave 

at the focus with the result predicted by hnear theory. The linear focusing gain of 72.5, 

multiplied by the attenuation factor e'^-^^ yields a dimensionless peak amplitude of 24 at 

the focus. Because of nonlinearity and diffraction, the compression peak in (d) is almost 

twice that amplitude, while the expansion trough is roughly half. Diffraction is responsible 

for the asynunetric shape of the wave. Comparison of (6) and (/) shows an approximately 

180° phase shift of the peak as the wave propagates through the focus. 

Shown in Fig. 8, as functions of cr = z/d, are the axial amphtudes for the fundamental 

through fourth harmonic components of the waveform in Fig. 7. As in subsequent figures, 

the solid hne is for the fundamental component {n = 1), the long dashes for the second 

harmonic {n = 2), the short dashes for the third harmonic (n = 3), and the dotted hne for 

the fourth harmonic {n = 4). Careful examination reveals that all components attain their 

peak amplitudes just before the focal plane. However, the maximum amplitude of the time 

waveform is attained slightly beyond the focus (not shown in Fig. 7). 

Another point of view, one which supplements Fig. 8, is achieved by calculating the power 
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in the wave as a function of frequency. The total power in any given harmonic component 

is calculated by integrating the intensity of that component across the entire field. Shown 

in Fig. 9 is the distribution of power in the first four harmonic components of the waveform 

in Fig. 7. The reference value for the decibel scale is the total power transmitted by the 

source. For comparison, the dot-dash line in Fig. 9 is the result from hnear theory, where 

all the energy remains in the fundamental component and decays as e~'^°"'. The (solid) 

curve for the fundamental component diverges from linear theory, particularly in the focal 

region, as energy is pumped into higher harmonics. However, the trend appears to reverse 

just beyond the focus. Energy is now depleted from the nonlinearly generated harmonics, 

although relatively little is apparently returned to the fundamental component. The change 

in direction of energy flow among the harmonic components is due initially to different phase 

shifts experienced by the various signals as they propagate through the focal region. Beyond 

the focus, spreading losses dramatically reduce the finite ampfitude effects, and the energy 

in the harmonic components is lost to thermal and viscous mechanisms. It is interesting 

that the pronounced finite ampfitude distortion observed on axis (Fig. 7) results from only 

a 2 dB overall loss of energy in the fundamental component. This "extra decibel" loss is the 

difference between the dot-dash and solid fines in Fig. 9. 

Shown in Fig. 10 are beam patterns for the fundamental through fourth harmonic com- 

ponents in a focused sound field where G = 50, ad = 1.0, and d/lp = 1.0. The choice of 2Gu 

for the ordinate on the plots is motivated by the form of the finear solution for the ampfi- 

tude distribution in the focal plane, 2Ji{2Gu)/2Gu. Of particular significance is the intricate 

structure of the field near the focal plane. As in the farfield of unfocused circular sources, the 

second harmonic component has twice as many sidelobes as the fundamental component, the 

third harmonic has three times as many, and so on (see Ref. 29). The additional sidelobes 

have been referred to as fingers [32]. On the whole, the field structure near the focal plane 

is similar to that observed in the farfield. One noticeable difference concerns the positions of 

the nonlinearly generated sidelobes relative to the sidelobes of the fundamental component. 

In a focused sound field, the nonlinearly generated sidelobes appear sfightly closer to the 

axis than do their counterparts in the farfield. 
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III. NONCOLLINEAR TONE-NOISE INTERACTIONS 

This project is an investigation of nonlinear effects that result from the noncoUinear inter- 

action of a pure tone sound wave with an acoustic noise field. The noncoUinear interaction 

is produced in an experiment where acoustic noise in the plane wave mode of a rectangular 

duct interacts with a pure tone in the first higher order mode. Work on this project is being 

performed by Lind, who received support from ONR only during the period 1 January 1986 

through 31 May 1986. All subsequent support has been provided by the National Science 

Foundation. However, the partial support provided by ONR was instrumental in getting the 

project started. The investigation is still in progress. 

It should be noted that the problem of noncoUinear interaction between a pure tone and 

noise is closely related to the measurement of noise with a parametric receiving array (see 

Sec. I). 

A. Background 
I ■ 

As discussed in the First Annual Summary Report [1], this project grew out of research on the 

nonlinear interaction of pure tones that propagate in different modes of a rectangular duct. 

The nonlinear interaction of waves that propagate in higher order modes of a rectangular 

duct may be deduced from an analysis of noncoUinear plane wave interaction. In a two- 

dimensional duct, for example, any wave in a higher order mode may be decomposed into 

a i)air of plane waves that propagate in different directions. This approach was followed by 

TenCate and Hamilton [33,34], who investigated both theoretically and experimentally the 

noncoUinear interaction in a rectangular duct of two pure tones having different frequencies. 

Theory was shown to agree well with the measured sum and difference frequency components. 

The theory is extended in the present investigation to model the noncoUinear interaction of 

a pure tone with noise. 

Previous work by other researchers, both experimental and theoretical, has considered 

the coUinear interaction of plane [35,36] and spherical [37] wave noise signals. The coUinear 

interaction of noise with a finite amphtude tone has also been investigated [38]. In many cases 

of practical interest, however, acoustic noise cannot be modeled as an ideal plane or spherical 

wave. For example, the noise in jet engine ducts may propagate in a variety of modes, and 

ambient noise in reverberant environments may be essentiaUy isotropic. No investigations 

known to the author consider the nonlinear interaction of noise in higher order modes of 
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waveguides. However, Refs. 39-41 analyze the nonlinear absorption of a pure tone by an 

isotropic noise field. The theory for the so-called absorption of sound by sound was dcrivo-d 

by Westervelt [39]. Westervelt's theory also describes the sum and difference frequency 

sidebands produced by the interaction of the tone with the noise field. The nonlinearly 

generated sidebands of noise were measured by Stanton and Beyer [42,43] and shown to 

agree with Westervelt's predictions. However, extreme care was necessary for creating a 

purely isotropic noise field in the experiments. Departure from perfect isotropy resulted 

in measured sidebands whose shapes changed as a function of location in the interaction 

region. Such variations, which result from noncolhnear interaction, are not predicted by 

Westervelt's model. Typical noise fields are neither coUinear nor isotropic, and therefore an 

understanding of noncolhnear interaction in noise fields is required. 

B. Results 

Our analysis is based on a theoretical model [34] developed for the weak nonlinear interaction 

of two pure tones in different modes of a rectangular duct. Here we shall consider the 

interaction of a wave of angular frequency UQ in the (1,0) (i.e., the first higher order) mode 

with a wave of frequency u in the (0,0) {i.e., plane wave) mode. Shown in Fig. 11 is the 

experimental apparatus and associated geometry. For the primary wave field we write 

P = Poe~"°^ cos(7ra;/a) sm{uot - koz cos 9) + p„e~°"^^ sm{u>t - k^z), (9) 

where po is the initial pressure amphtude of the tone at frequency CAPQ/STT, ko = CUO/CQ the 

wavenumber, ao the attenuation coefficient, and a the width of the duct in the x direction. 

Likewise, p„ is the initial amphtude of the plane wave, k^ = UJCQ its wavenumber, and a^ its 

attenuation coefficient. The angle 9 = sin'^ {ir/koa) is formed by the direction of propagation 

of wave fronts in the (1,0) mode with the z axis. 

The quasilinear solution for the complex pressure at the sum and difference frequency 

{LJ± = U>O ±U) may be written 

P±=Pnh±{uj), (10) 

where h±{io) is a dimensionless transfer function defined by [34] 

;.   /,.N_  , Po^ll^±{0)exp{-a^z - jA±z/2)cos{irx/a)smA±z/2 
"^   ^ " ^ Po<4{k:, cos 9^-ja^ +A J2) ^^^expiju;^t - jk^zcos0^). 

(11) 
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We have also defined a dispersion parameter A± = (fco cos6 ± k^, — k± cos 0±) — j{ao + a^^ — 

a±), where 0± = s'm~^{ir/k±a) is the angle associated with the sum/difFerence frequency 

wav<\ The parameter ^±{0) is a coefficient of nonlinearity that depends on the angle of 

interaction [44]. 

Extension to the case where a continuous spectrum of noise propagates in the plane wave 

mode is now straightforward. Let p„(u;) denote the spectral distribution (having dimensions 

Pa/Hz) of the noise. Interaction of the noise with a pure tone in the (1,0) mode produces 

sum and difference frequency sidebands of noise having spectral distributions P±{LO) defined 

by 

P±H = Pn(w)/i±(u;). i (12) 

The quasilinear solution for the nonlinear interaction is thus interpreted on the basis of linear 

system theory. 

Experimental verification of Eq. (12) is shown in Figs. 12 and 13. The source config- 

uration shown in Fig. 11 was used to generate a pure tone at 3000 Hz in the (1,0) mode 

{0 = 55°) and a band of noise centered at 350 Hz in the plane wave mode. The computer 

plots in Figs. 12 and 13 are theoretical predictions, and the photographs are experimental 

results. The nonlinearly generated sidebands of sum and difference frequency noise are seen 

to the right and left, respectively, of the spectral line at 3000 Hz. All spectra, theoretical 

and experimental, correspond to measurements along the upper wall of the duct {x = a). 

Theory and experiment are seen to be in good agreement with regard to both the shapes 

and amplitudes of the sidebands. Note that the farther we are from the source (z = 2.7 m 

in Fig. 12 and z = 5.4 m in Fig. 13), the more scalloped in appearance are the sidelobe 

spectra. The scallops are due to the noncolhnearity of the interacting waves. The results 

may be compared with Westervelt's prediction [39] for a pure tone in an isotropic noise field. 

The Westervelt model predicts sidelobes whose amphtudes increase with range and whose 

shapes remain the same. In contrast, Eq. (12) predicts sidelobes whose overall amphtudes 

decrease slightly because of absorption, and whose shapes become more scalloped as the 

range is increased. Thus the effects of noncollinear interaction are markedly different from 

interaction with an isotropic noise field. 
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