
4 '. : :4L ~ Y4AI: IMULATIONC :F PHEOL-)' AK
: B : F ; :)N,:ENTPATEZ U, PHYIAL :cITESCZ: INC

~F:~-:-s-~4 ~4~6:-~7221 4 ML



MICROCOPY RESOLUTION IEST CHART

,'hAL BUIREAU O)f STANDARDS 1%3 A



IAFOSR 71r.. 8 7 0&4~

I] I AD-A 182 462 ! -,.,,,

I Report PSI-2009/TR-666

I COLLOIDAL DYNAMICS SIMULATIONS OF RHEOLOGY AND
STABILITY OF CONCENTRATED FUEL SLURRIES

Gerald Wilemski
Physical Sciences Inc.

Research Park, P.O. Box 3100
Andover, MA 01810

10 April 1987

Phase I SBIR Final Report
Contract No. F49620-86-C-0072

I DISTRIBUTION STATEMENT

Distribution Unclassified/Unlimited.

I
Prepared for
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Bolling Air Force Base, DC 20332-6449 D T IC

I

-- .. -. - a - - - 4 - -m4mlmmmmi tm m m



'ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ila. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTIONeAVAILABILITY OF REPORT

I N/A since Unclassified Unclassified/Unlimited Distribution
"2b. OECLASSIPICATIONDOWNGRIAOING SCmeDULE

N/A since Unclassified
A. PERFORM6ING ORGANIZATION REPORT NUMBERIS) S. MOiA9 -M -''qw W WI PSI- 2009/TR-666

a. NAME OF PERFORMING ORGANIZATION ILt. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

I Physical Sciences Inc. fifapplkabtej Air Force Office of Scientific Research

dc. ACORESS iCity. Slate and ZIP Code) 7b. AOIORESS(C.Saean PCoeb 4 )

Research Park, P.O. Box 3100 Boiling Air Force Base, DC 20332-6449
Andover, M1A 01810

as. NAME OF FUNDING/S1PONSORING 8b. OFFICE SYMBOL g. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERIORGANIZATION (if ap~cabei
Air Force Office of F92-6C07
Scientific Research AFOSR/NA F92-6C07

TB. ADDRESS 'City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

.j same as 7b PROGRAM PROJECT TASK WIORK UNIT
IELEMENT NO. NO. NO. NO

________________________________ 65502F 3005 Al
I TI71TLE 'Include Secuanty Clamicationi Colloidal Dynamics

jof Rheologv and Stability of Concentrated Fuel[______________________
12. PERSON4AL AUTHOR($) Slurries

Gerald Wilemski
13a. TYPE 9F REPORT i3b. rims COVERED 114. DATE OF 1111P11,11T1 eye. .Io.. Dae. 19*G I.
* Final Rep~ort 1801

*I PRiom860815 T0 a2AL5 5741

16. SUPPLEME6NTARY NOTATION

17 COSATI CODES it SUBJECT TERMS sContgnue on mwearike it "lcemr and Identify by block "Umber.

Fill 0 GROUP Sue. OR -.Colloidal dynamics, Rheology, Fuel slurries,

I Computer simulation

II\AkTRIACT fCantine on ovvwwr~ if nectasarv end Identify bv Mak nunmberp
*I - This report prese'nts the results of a Phase I SBIR project to calculate properties of

concentrated colloidal suspen4sions using computer simulation methods. Equilibrium and non-
'equilibrium Brownian dynamics (NEED) simulations were performed for concentrated aqueous and
Inonaqueous colloidal suspensions. These are the first calculations of suspension shear vis-Icosity based on NEBD simulations. Stability estimates vere also made for sterically stabi-
lized nonaqueous suspensions. The NEBD calculations provide quantitative evidence for the
disturbance of the equilibrium structure of the dispersions by shearing. Shear viscosities

I have been calculated as a function of shear rate and Particle volume fraction. Good agree-
ment was obtained with experimental viscosities for comparable systems. The simulation

Iresults are sensitive to the type, strength aro~ rangie of the potential interactions used to

,describe the dispersion. These results demonstrate that the NEUD technique is capable ofIdescribing the essential features of sheared suspension behavior. They also establish the
feasibility and desirability of using NEWD simuilation metaiods as a predictive engineering
tool for the design of slurries. iIC 2O~ISTRIGUrION/AVAILASILITY OP ASTRACT 21 IftSTRACT SECURIrY CLASSIFICATION

UNCAIPIEDeIUNLIMITED 0 C SAME AS AFP? OTIC USERS CUnclassified

22. 1AI OP RE111SPONSISLE INDIVIDUAL 22b TELEP0HONE 14UMBIR 22C OPP-CE SYMBO.

Julian Tishkoff Include A,*@ Code,(202) 767-4935 AFOSR/NA

DO FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE UNCASSFIED

i SECURITY CLASSIPCATION OP 'HIS PAO&



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ILI

• I

I

UNCLASS IFIlED
i 1 |SCLJmIT, CLASSIICAr CN Of '"S PA



I

CERTIFICATION OF TECHNICAL DATA CONFORMITY

(OCTOBER 1985) (DOD FAR 52.227-7036)

The Contractor, Physical Sciences Inc. (PSI), hereby certifies
that, to the best of its knowledge and belief, the technical
data delivered herewith under Contract No. F49620-86-C-0072 is
complete, accurate, and complies with all requirements of the
contract.

bate Michael L. Finsdn, Executive Vice President

I ';7 T ,',' ,_J

1 u:.. ...

IDistrtbut ion/

Availftbtlity Codes

Avwtil and/or
Dist ' Special

TA



EXECUTIVE SUMMARY

The general aim of this Phase I SBIR project was to extend and refine

existing computer simulation capabilities in order to compute equilibrium and

nonequilibrium properties of concentrated colloidal suspensions. The immed-

iate application of this work is to guide improvements in the characteristics

of nonaqueous colloidal fuel slurries that are currently being developed by

the Air Force for use as propellants.

Equilibrium and nonequilibrium Brownian dynamics simulation techniques

were employed in this work. The simulations include the effects of inter-

particle forces, Brownian motion and shear flow on the motion of particles.

Hydrodynamic interactions were neglected in accordance with the Phase I work

plan.

Equilibrium and nonequilibrium Brownian dynamics (NEBD) simulations were

performed for concentrated aqueous and nonaqueous colloidal suspensions.

These are the first NEBD simulations in which the shear viscosities of suspen-

sions have been calculated. Stability estimates were also made for sterically

stabilized nonaqueous suspensions. These results can be understood in terms

of the changes occurring in the repulsive steric potential and attractive

van der Weals potential as the adsorbed polymer concentration and Hamaker con-

stant are changed.

These calculations provide quantitative evidence for the disturbance of

the equilibrium structure of the dispersions by shearing. Shear viscosities

of suspensions have been calculated as a function of shear rate and particle

volume fraction. Good agreement was obtained with experimental viscosities

for comparable systems. The simulation results are sensitive to the type,

strength and range of the potential interactions used to describe the disper-

sion. Thee overall conclusion of this Phase I study is that the NEBD tech-

nique is capable of describing the essential features of sheared suspension

behavior. These Phase I results establish the feasibility and desirability of

using NEBD simulation methods as a predictive engineering tool for the design

of slurries.
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1. INTRODUCTION

The general aim of this Phase I SBIR project was to extend and refine

existing computer simulation capabilities in order to compute equilibrium and

nonequilibrium properties of concentrated colloidal suspensions. Nonaqueous

colloidal fuel slurries are currently being developed by the Air Force for use

as propellants. The primary goal of this research was to perform, for the

first time, nonequilibrium Brownian dynamics simulations of sheared concen-

trated suspensions in order to calculate the shear viscosity of these systems.

This has been accomplished. By comparing the calculated viscosities and their

dependence on particle volume fraction and shear rate with observed properties

of real systems, the feasibility of this approach as a slurry design tool has

been established. Sample calculations of suspension stability using classical

coagulation theory have also been done to illustrate the interplay of repul-

sive and attractive forces in stabilizing suspensions.

Because of the many different types of forces and interactions between

colloidal particles, these suspensions display complicated behavior, and

current theoretical understanding of them is limited. 1- 5 Exact theories do

not exist except for a few idealized, limiting cases. Approximate theories

are invariably forced to omit or oversimplify one or more of the important

classes of particle interactions for the sake of mathematical tractability.

Computer simulation techniques, on the other hand, are capable of treating

more-or-less exactly all forms of particle interactions, at the expense,

admittedly, of ever increasing computational effort with growth in the size of

the system or number of effects treated. However, modern computers are

sufficiently fast to overcome these limitations for many systems of practical

interest. Thus, these methods are a promising means for obtaining insight

into the microscopic reasons underlying the observed behavior of concentrated

suspensions.

Equilibrium and nonequilibrium simulations of concentrated aqueous and

nonaqueous suspensions were performed. Aqueous systems were studied for two

reasons. First, results of prior equilibrium simulations of aqueous systems



have been published and are available for comparison. Second, experimental

shear viscosity data on well-characterized suspensions cover a somewhat

broader range of conditions for aqueous systems, which have been studied more

extensively than nonaqueous systems. Equilibrium simulations of strongly

interacting dilute systems were also performed under previous PSI in-house

support. The results of these comparisons are described in Appendix A as

additional background material.

It should be noted that these are the first nonequilibrium Brownian

dynamics (NEBD) simulations in which the shear viscosity of a suspension has

been calculated. Several different interparticle force laws were studied,

although hydrodynamic interactions were neglected in accordance with the lim-

ited Phase I work plan. Previous BD simulations with shear and hydrodynamic

interactions, 6 have been concerned with the dynamics of coagulation and

deflocculation of isolated pairs of particles. Nonequilibrium Stokesian

dynamics simulations were developed by Bossis and Brady7 to treat suspensions

of particles large enough that Brownian motion of the particles can legiti-

mately be neglected. This method includes hydrodynamic interactions but has

so far only been used to calculate the shear viscosity of two dimensional sus-

pensions.7,8 Many nonequilibrium molecular dynamics (NEMD) simulations have

been performed to compute the shear viscosity of molecular flulds.9 - 12

Because of the vast differences in the size and time scales governing molec-

ular and colloidal particle motion, the NEMD simulations must be performed at

extremely high shear rates, exceeding by many orders of magnitude values that

can be attained experimentally. Although NEMD techniques are an extremely

important development in computational statistical mechanics, they are incap-

able of treating many inherently colloidal phenomena such as viscous damping

of particle motion, hydrodynamic interaction between particles or Brownian

motion. Thus, NEMD simulations can provide only some qualitative insights

into the rheology of particulate suspensions.

Before describing the results of the nonequilibrium simulations, the

theoretical background underlying the computational method is presented in

Section 2. Following this, the interparticle pair potentials used in the

simulations are discussed in Section 3. As noted, simulations were performed

2



with pair potentials appropriate for aqueous as well as nonaqueous disper-

sions. The results of the equilibrium and nonequilibrium simulations of con-

centrated dispersions are then presented and discussed in Section 4. The

stability ratio for nonaqueous sytems is also discussed. Appendix A contains

the results of the equilibrium simulations of dilute, but strongly interacting

aqueous dispersions.

I

Ii
I

I
I
I
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2. THEORETICAL BACKGROUND

2.1 GENERAL CONSIDERATIONS

The Brownian dynamics (BD) simulation technique is employed in this work.

This method is an outgrowth of the molecular dynamics (MD) simulation tech-

niques that are now a well established part of the methodology of modern

statistical mechanics. 13 The MD method involves numerically solving Newton's

equations of motion for all N particles in the system. It is a deterministic,

rather than a stochastic, technique. By keeping track of all the particles'

trajectories, a representative sampling of phase space is generated, and aver-

ages of system properties can be calculated. Both dynamic and static system

properties can be treated. The method is limited to relatively small numbers

of particles, generally less than a thousand, because of computer speed and

size limitations.

Because of the vast difference in size and mass between a typical suspen-

ded particle and a molecule of the suspending fluid, the time and length

scales for simultaneous motion of molecules and particles cover too many

orders of magnitude to be directly treated by MD techniques. To overcome this

problem, BD techniques 14-18 have been developed to simulate suspensions. In

the BD technique, the suspending fluid is treated as a hydrodynamic and die-

lectric continuum and the motions of the suspended particles are described by

Langevin equations. Langevin equations are stochastic differential equations

that play the role of Newton's equations in the molecular dynamics simulation.

The Langevin equations describe the motions of the particles subject to the

action of interparticle and external forces, frictional forces arising from

solvent drag, and random Brownian motion forces. The Brownian forces are ass-

umed to act on a time scale that is much shorter than that required to produce

even a modest change in the particle's location or velocity, and they must be

treated statistically, as described below, to account for their cumulative

efffect on the motion of the colloidal particle. From the solution of the

Langevin equations for the interacting many particle system, positions of the

N colloidal particles can be computed as a function of time. From this

4



information, one can calculate fundamental quantities of interest such as mean

square particle displacements, pair distributuion functions, and transport

properties such as the self-diffusion coefficient and the shear viscosity.

2.2 PARTICLE INTERACTIONS

Solution of the equations of motion for individual particle displacements

requires knowledge of the interparticle forces and interactions affecting each

particle. These may be broken down into three groups.

First, there are random Langevin forces responsible for the Brownian

motion of the particles. Langevin forces arise from the (small) fluctuations

in the (very large) number of collisions experienced by different areas of the

large particle with the much smaller molecules of the suspending fluid.

The second class of forces consists of the "direct" interparticle forces.

These include: (1) repulsive (or excluded volume) forces due to the finite

size and relatively small deformability of the particles, (2) short-ranged

oscillatory forces between closely spaced particles due to fluid structure and

j packing, 19 ,2 0 (3) forces due to absorbed polymer molecules which, under con-

ditions giving rise to net repulsion, result in so-called steric stabili-

zation,2 1 (4) attractive London-van der Waals forces, and (5) repulsive forces

due to the overlap of electrical double layers surrounding similar particles.

The latter two forces form the basis for the classical DLVO theory of colloid

stability.22 ,2 3 The attractive van der Waals force between large suspended

particles at small separations d varies as d-2 ,24 considerably different from

the short ranged d- 7 dependence typical of molecular interactions. Electrical

double layer repulsions (or attractions for dissimilar particles under the

right conditions) result from overlap of the diffuse clouds of counter ions

surrounding a charged suspension particle. For situitions of weak overlap the

interaction force for large particles varies exponentially with d; with the

length scale set by the familar Debye parameter2 5 (or inverse screening

* length), K. In non-aqueous media, electrical double layer interactions are

generally unimportant.

' I5



The third group of interactions consists of hydrodynamic interactions

between particles. The term refers to the interaction between particles due

to the velocity fields set up in the fluid by the moving particles. Theme

velocity disturbances propagate through the fluid, perturbing the motion of

nearby particles.

Hydrodynamic interactions are neglected in this early developmental work,

and will only be cursorily treated In describing the algorithm for colloid&:.

particle motion.

2.3 LANGEVIN EQUATIONS

The langevin equation governing the motion of colloidal particle i ot

mass mi can be written6 as

dv,
* - . _ r E .(!j- +S:E) + r # L i
i dt -i -1 _

where vi is the particle velocity, Ft is the total force (dire,. rAt
plus external, if present) on the particle, Li is the rando L. nqevLn tog..

responsible for the particle's Brownian motion, ui is the und&strbe~i tLALt'

velocity at the location of particle £ due to an externally impooed tIow

field. Hydrodynamic interactions between particles are governed by tho con-

figuration dependent second rank friction (or resistance) tensor a and the

configuration dependent third rank shear tensor S. The rate of strain tensor

E is given as usual by the expression

E - -[Vu + (ZujJ (2- 2 - -

For the case of simple shear flow in the x direction, the unperturbed fluid

velocity flow field is given by

where ; is the shear rate (s1) and Yi is the y coordinate of particle I in

some Cartesian coordinate system with unit basis vectors (ex, ey, ! z ) .

6



The first term in Eq. (1) represents the frictional resistance on the

particle due to solvent drag, hydrodynamic interactions and convective effects

in a sheared suspension. With the neglect of hydrodynamic interactions, the

shear tensor vanishes,

Si -O (4)

and only the diagonal components of the friction tensor remain,

iij - i 5iji .
(C)

Here, ;i, the single particle friction coefficient, is customarily evaluated

using Stokes' law,

- f 61yo a (6)

where 1o is the pure fluid viscosity (Pa-s) and a is the radius of the parti-

cle. Because of Eqs. (4) and (5). with the neglect of hydrodynamic interac-

tions the Langevin Equations for particle motion simplify considerably to the

form

dvmidt " -u~ *u+L

The complicated configuration dependence of Fi still precludes an exact solu-

tion of these equations. In order to proceed with the numerical simulation of

particle motion, an algorithm is required for computing the change in position

of each particle during a small time step %t. Heuristic arguments will be

used to obtain algorithms without and with shear flow that are special cases

of those obtained with more rigor by Ermak and McCammon 17 and Ansell,

Dickinson, and Ludvigsen.
6

Particles undergoing Brownian motion incur significant changes in posi-

tion only on a time scale that is long compared to the typical time for the

particle's instantaneous velocity to become uncorrtlated with its value at any

earlier time.26  Velocity fluctuations are rapidly damped by fluid friction.

and all of the forces acting on a particle are nearly always in balance. The

7



velocity relaxation time scale is set by the ratio / Thus for a time

interval at )> si/Ci, the left hand side of Eq. (7) may be neglected, and the

remaining terms may be solved for vi to give

!i +i '/i -i

Equation (8) is the i'th member of a set of N first order, coupled

stochastic differential equations for the positions ri of the N colloidal

Brownian particles in the suspension. Because dri/dt - vi. it is apparently a

simple matter to solve Eq. (8) for the displacement Sr incurred in a time

interval short enough that the total force Fi acting on the particle remains

constant. However, solving a stochastic differential equation is different

from solving an ordinary partial differential equation. Given the stipulation

that St >> mi/;i, the product LiAt has no meaning because Li varies extremely

rapidly and randomly within the interval at. A correct integration of Eq. (6)

results in the following prescription for Sri:

Sr " + Di D A T A t + R (9)

where the random displacement experienced by the particle in Lt is defined as

t+AtRi " /-l L dt' (10)
L ..i.,t

and the self-diffusion coefficient, Di, of a particle in a highly dilute

suspension is given by the Stokes-Einstain expression

Di - kT/,i - kT/(6wno a) a(1)

In order to complete the algorithm, the statistical properties of Ri must be

specified. These follow from two basic assumptions of Brownian motion theory

regarding the behavior of Li . First, the average of Li over all possible

fluctuations is zero,

4L A > L m 0 (12)



Second, values of L i at different times are uncorrelated, i.e., Li behaves as

a white noise source,

<Li(t 1 ) • L (t 2)> L - 6kT 5(t I - t) (13)

The subscript L on the angle brackets in Eq. (12) and (13) indicates an

average over all the fluctuating values of L. The constants preceding the

delta function in Eq. (13) are a consequence of a form of the Fluctuation-

Dissipation Theorem. They are there to insure that the long time average

value of v12, as determined by exactly solving Eq. (7) without shear (ui-O),

equals 3kT/mi, the equipartition value of equilibrium statistical mechanics.

Using the properties shown in Eq. (12) and (13), it is easy to see that

(R i ) L 0 (14)

and that

(R - 6D..t . (15)
i L 2.

Equation (9) may now be written as

S(ui DFi/kT)At + '2DiAt ) /  (16)

where the components of i are Gaussian random numbers whose mean and mean

square values are zero and one, respectively:

Qxi" 0, Q xi = 1  (17)

Equations (16) and (17) comprise the algorithm for computing the dis-

placement* of the colloidal particles. The displacement is seen to result

from the superposition of a term linear in At, which is due to the shear field

(if any) and direct particle interactions, with the Brownian jump term, which

varies as the square root of at. Theoe equations also give the correct expres-

sions to first order in At for the man and mean scuare displacements of a

diffusing particle in a shear field and subject to interparticle or external

forces (but without hydrodynamic interactions):

9



<&L > (u + DiFiAT)At (18)

<(Ari) 2 >L - 6DiAt (19)

The general procedure for carrying out a simulation is as follows. Given

a set of particle coordinates at a time t, the forces on each particle are

determined, and a set of random numbers Qi is generated. The particle posi-

tions are then advanced, and the entire process is repeated. The questions of

boundary conditions and how to correctly determine the total force on a

particle will be dealt with in the following sections.

2.4 PERIODIC BOUNDARY CONDITIONS

In order to insure that a system of N particles (where N is usually less

than several hundred) in a cubic cell of volume V (adjusted to give the

desired density or volume fraction) will represent a bulk system, the primary

cell is surrounded by 26 image cells each containing N particles in the same

configuration as the primary cell. Such periodic boundary conditions allow

particles to pass through cell walls while preserving constant particle number

(and density) in each cell.

The side length L of the cube is determined by specifying the volume

fraction for the suspension in terms of the particle number density and

volume,

-- (N/t 3 )(,d 3 /6) (20)

where d is the particle diameter.

Consider first the case without shear flow. Beca ise all of the images of

a given particle execute the same movements as the particle itself, when the

particle passes through one of the cell walls, an appropriate image particle

automstically passes through the opposite wall to replace it in the cell. The

situation is illustrated in rig. 1. In practice it is unnecessary to save

the coordinates of the image particles because these are easily generated by a

10
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Figure 1. Two-dimensional illustration of how periodic boundary conditions
simulate an infinite equilibrium system. Circles denote
positions before a jump of (exaggerated) magnitude . Squares
indicate positions after the jump. Open symbols represent
images surrounding the primary particles (filled symbol).

I series of reflections, xi+vt, yi+vt, zi+vt, where v - -1, 0, and +1. For

I example, with the coordinate origin at the center of the box, if particle i

moves outside the box at x-E/2, i.e., if xi>Z/2, it is replaced by an image

particle now located at xi-t (within the cube). Similarly, if xi<-Z/2, then

I xi would be replaced by xi+1. Similar adjustments are made to y and z

coordinates whenever necessary.1
In computing the total force on a particle due to interactions with all

N-1 remaining particles, the minimum image conventione 7 is used. The cut-off

distance for particle interactions is taken to be t/2. Forces between

particles farther apart than t/2 are set equal to zero. This insures that,

when rij >t/2, particle i will interact with only the nearest image of particle

j. The nearest image is located by determining which of the inequalities,



-Z/2<xij</2 (21a)

-X12<YijQ£12 (21b)

-Z12<zij<£12 (21c)

is violated, followed by adjusting the appropriate components of rj. With a

few moments of reflection, it should be clear that Eq. (21) will be satisfied

by every pair of particles, provided the nearest image coordinates of j are

used whenever appropriate. The situation is illustrated in Fig. 2.

With a shear flow in the x direction, periodic boundary conditions iden-

tical to those used without shear are imposed for motion in the x and z direc-

tions. Motion in the y direction is subject to the coordinate space version

o 0 0

/2

o r</2"0 0

A-5242

Figure 2. Two-dimensional illustration of how particles interact when
the minimum image convention is used. The two particles e, A
in the center square are too far apart to interface. The *
particle interacts with the nearest triangular image and the

A particle interacts with the nearest circular image.

12
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of the homogeneous shear conditions introduced by Lees and Edwards 28 and

Evans. 1 0 Image particles in the cubes above the plane y-Z/2 and below the

plane y--£/2 do not simply replicate the motion in the primary cube. If they

did, the shear field would exhibit sharp discontinuities at y-±/2. Because

of the homogeneous shear condition, image particles lying above y-Z/2 or below

y--1/2 suffer added x displacements of magnitude ZyAt in addition to those

incurred by the primary particles. This insures that image particles with

larger or smaller y values than those of the primary particles experience

proportionately larger shear displacements in the appropriate direction.

The result of this procedure is that after n steps the relative x dis-

placement between a particle and its (original) nearest upper and lower images

is nlyAt. The particle and these two images lie on a diagonal line in the x-y

plane that is rotated through an angle a where tana - n;At. The situation is

illustrated in Fig. 3. When a particle leaves the box at y-±/2, it is

replaced by a particle with new coordinates (xi±ni;At, yi;R); the new x

coordinate must also be checked and adjusted, if necessary, to insure that it

satisfies the inequality L/2>xi>-X/2. When a equals 45o , the additional x

displacement between images due to shear vanishes, and the simulation may be

Icontinued with n reset to zero.

In computing the total force on particle i, the minimum image convention

is again used, but allowance must be made for the relative shear displacement

of image particles. When yij satisfies the inequality

-Z/2<yij </2 (22)

the procedure is identical to that in the absence of shear. When yij>Z/2, xj

must first be changed to xj+nt;At before checking the inequalities in Eq.(21).

When yij<-L/2, xj is first changed to xj-nkyAt before checking Eq.(21). An

illustration is provided in Fig. 4.
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Figure 3. Illustration of how homogeneous shear conditions plus periodic
boundary conditions simulate an infinite system being sheared
at a shear rate ;. Circles mark positions of particles after
n time steps of At; squares indicate positions after n+1 steps.
The value of ;At is exaggerated for clarity. The displacement
of particle e results from the nearly vertical jump due to
random and interparticle forces plus the horizontal shear
displacement. After n steps, particle o and its images o lie
along the solid diagonal rotated through the angle a. After
n+1 steps, particle 0 and its images Olie along the dashed
diagonals that are rotated by the angle 3.

0 0 tani a t

/rL/2

r>L/2

A A0 r<L/2 0
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Figure 4. Illustration of how particles interact when homogenous shear con-
ditioning and minimum image convention are used. The two particles

*,A in the center square are too far apart to interact. Each
interacts with the nearest image of the other, but the effects of
shear must be accounted for in locating the images.
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2.5 RADIAL DISTRIBUTION FUNCTION

The radial distribution function (or pair correlation function) g(r)

provides information about the local distribution of particles in the fluid

arouni any arbitrarily selected particle. Because particles have hard cores

and interact with each other via other repulsive and attractive forces, the

local distribution may deviate considerably from the simple bulk average.

Besides providing insight into the structure of the fluid, g(r) is important

for another reason. When particle interactions are assumed to be pairwise

additive, all of the (excess) equilibrium thermodynamic properties of the

suspension can be obtained solely from g(r). There are a number of simple,

equivalent ways of defining g(r). If p (=N/V)is the average number density of

particles in the suspension, pg(r) is the local density at a distance r from

any particle. Thus, the quantity 41rr2 pg(r)dr is the number of particles whose

centers lie within a spherical shell of thickness dr at a distance r from the

central particle. Finally, N47rr2pg(r)dr is the number of pairs of particles

whose center-to-center distance lies between r and r+dr. Because the

distances between all pairs of particles are evaluated in determining the

total force on each particle, this last definition is most convenient in

numerically calculating g(r) during a simulation.

2.6 SELF-DIFFUSION COEFFICIENT

The self-diffusion coefficient for tagged (or tracer) particle motion in

suspensions is a good indicator of the effects of concentration, interparticle

forces, and hydrodynamic interactions on the ease with which particles move

about in the suspension. The time dependent self-diffusion coefficient can be

computed from the expression
29 ,30

D - .-- <Ar(t)) 2 > (23)6 6dt ,

where the mean square displacement (m.s.d.) is defined as

1



(rt))2 >= -!<E l,(t) - r,012 >(24)

and the angle brackets denote an equilibrium ensemble average. The algorithm

used to compute the m.s.d. is similar to Van Megen's and Snook's method,
3 0

which is based on the operation of a hard-wired correlator used in photon

correlation spectroscopy experiments.

The m.s.d. is computed at n. time intervals T of length mAt. The con-

stants m and n s are chosen to give adequate temporal resolution of the m.s.d.

and to insure that the longest sampling time (nsT) is less than the time at

which the uncertainty in the calculated value of the m.s.d. becomes too large

due to statistical fluctuations. Rather than store ns sets of particle coor-

dinates, as Van Megen and Snook do, a suggestion 31 to store the cumulative

displacements is followed. In this way, one avoids having to correct the

sequence of coordinates for a particle when that particle passes through any

wall of the simulation cube. Failure to correct the coordinates would intro-

duce artificial jumps of length Z every time a particle moved through a wall.

The cumulative x, y, and z displacements of the N particles at each of

the n. times are stored in n. sets of registers. After every m time steps, a

new set of initial displacements Ar(T) is generated, and the total displace-

ments corresponding to the largest sampling time nsT are discarded. The new

displacements are then added to each of the remaining cumulative displace-

ments, thus advancing them by one step of time T. Each of the cumulative

displacements is then shifted to the next storage register, and the new

displacements are stored in the first register. In this scheme, the particle

trajectories are followed backwards through time (which makes no difference in

calculating the m.s.d.), and a new sequence of cumulative displacements is

effectively created after every m time steps. From the new sequence of cumu-

lative displacements the squares of the displacements are formed, summed, and

added to the existing sums for each time. Ultimately, these sums are averaged m

over the total number of starting times for which a sequence of displacements

was generated.

16

!



2.7 SHEAR VISCOSITY

From the nonequilibrium simulations, the shear viscosity coefficient n

can be obtained by dividing the average shear stress axy of the suspension by

the shear rate:

o . n; • (25)xy

With the neglect of hydrodynamic interactions, the average shear stress can be

calculated by averaging the particle stress tensor: 8 , 3 2 , 3 3

. ;+. 1 y..F.> .(26)Oxy 0 q 2 1- > i i xij

The first term is the pure fluid contribution, the second arises from the

hydrodynamic particle stress in the infinitely dilute limit, and the last term

represents the contribution of interparticle forces to the stress. Here, the

angle brackets denote an average over the nonequilibrium particle distribution

in the sheared suspension. The double sum indicated in Eq. (26) is computed

after each time step of the simulation. The values are summed and averaged

over the total number of time steps in the simulation.

2.8 INITIAL CONDITIONS

Simulations are generally started with the particles arranged on the

sites of a fcc lattice. Typically, five thousand time steps (or more, if

needed) are then generated in order to bring the system to equilibrium or to

steady-state (with shear). Computation of average system properties then com-

mences. In the equilibrium simulations, satisfactory results can usually be

obtained with five to ten thousand steps. For the nonequilibrium simulations

much longer runs, of thirty thousand steps or more, are required for averaging

the particle stress tensor. If the final coordinates from a prior run under

identical or similar conditions are available, the preliminary startup period

may be eliminated or significantly reduced.

7
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3. DIRECT INTERPARTICLE FORCES

3.1 PAIRWISE ADDITIVITY

Potential interactions between particles were assumed to be pairwise

additive. Thus, the total configurational potential energy, U, of N particles

can be written as

U = I u(rij) (27)
i>j

where rij (=Jrt-r.j) is the distance between the centers of particles i and j.

The total force on a particle is obtained as usual from the gradient of the

potential:

F. =-V.U = - T.u(rij. = ) F.
1 1 j#i J ji

3.2 AQUEOUS SYSTEMS

For the aqueous suspensions studied here, only repulsive forces due to

the overlap of electrical double layers were considered. The range of the

pair interactions is characterized by the familiar Debye screening length

N- I

2cNA 1/2
K = e(- -- (28)

where e is the electronic charge (1.602 x 10- 19 C), c is the monovalent

electrolyte concentration, F is the electrical permittivity of the aqueous

phase (7.08 x 10-10 F/m), and NA is Avogadro's number.

18



When the electrolyte concentration and particle diameter are such that Kd<3, a

good approximation for u(rij) is the screened Coulomb (or Yukawa)

potential,22,29,42a

u(r) = wc(dl 0)
2 {exp[-K(r-d)l}/r (29)

where o is the electrical potential at the particle surface.

When <d>3 a better approximation to u(r) is given by
2 2 ,29

u(r)= nrdo2n{1+exp[-<(r-d)]} (30)

under conditions of constant surface potential. This potential was used in

simulations of concentrated aqueous dispersions of 1.2 4m diameter spheres

at two electrolyte concentrations: 10 - 4 mol/dm 3 and 10 - 6 mol/dm 3 . Plots of

Eq. (30) for these conditions are shown in Fig. 5.

3.3 NONAQUEOUS SYSTEMS

For the nonaqueous dispersions studied here, the pair potential was taken

to be the sum of a repulsive piece arising from steric stabilization and an

attractive piece due to van der Waals forces:

u(r) = us(r) + uA(r) (31)

Steric stabilization arises from the repulsive interaction of polymer layers

adsorbed on or bound to particle surfaces. The steeply repulsive potential

derived by Ottewill and Walker 34 was used:

7kTC
2

u (r) =- (i-X)(2R + r)(R - r)2  (32)
6v Pp
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Figure 5. Potentials used for simulating concentrated dispersions.

where

Ro = d + 26

The thickness of the adsorbed polymer layer is denoted by 6, and Ro is

the distance at which the steric repulsive force is first felt. In the simu-

lation runs, a layer thickness of 0.02 pm was used and a value of 0.013 g/cm 3

was used for Cp, the concentration of polymer segments per unit volume of the

adsorbed layer. The remaining parameters were evaluated following Cairns, Van

Megan and Ottewil13 5 and are appropriate for poly (12-1ydroxystearic acid)

chains with a dodecane solvent. The density pp of the adsorbed chains is

1.114 g/cm 3, the difference between the entropic (*) and enthalpic (X) inter-

action parameters is 0.3, and the partial molar volume v, of the solvent is

227.3 cm3/mol.
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The attractive potential between two spheres, neglecting retardation

effects, was derived by 
Hamaker:

3 6

U (r) A d 2 2 +2Ln( 2- d2(3
A T2 2 2 2 2

A value of 5.0 x 10" 2 0 j was used for the Hamaker constant, A. A plot of

Eq. (31) is shown in Fig. 5.
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4. RESULTS AND DISCUSSION

4.1 EQUILIBRIUM SIMULATIONS

Equilibrium simulations of concentrated suspensions of 1.2 um diameter

spheres were performed. Aqueous suspensions at volume fractions of 0.15,

0.25, and 0.35 were studied using the potential given by Eq.(30) with

- 0.06V and c - 10- 4 aol/dm3 . At this electrolyte concentration, the

screening length < -1 is about 0.03 pm, and <d - 39.4. This results in the

relatively short-ranged, repulsive potential shown in Figure 5. A nonaqueous

suspension of sterically stabilized 1.2 um diameter spheres was simulated at a

volume fraction of 0.40 using the potential given by Eqs. (31) to (33). This

potential has a deep primary minimum (not shown) for r/d < 1.005 and a shallow

secondary minimum at r/d - 1.033 separated by a steeply repulsive wall that

prevents irreversible coagulation into the primary minimum. The potential is

shown in Fig. 5.

Figures 6 through 9 contain the results for the aqueous suspensions. All

calculations were performed using 32 particles and a time step of 2 x 10-4s.

Figure 6 compares the calculated g(r) at -- 0.35 with the result of Van Megen

and Snook. 3 0  The agreement is very good. Figure 7 shows the progressive

change in the equilibrium structure that occurs as the volume fraction

decreases. The prominent nearest neighbor peak when t - 0.35 arises from the

strong repulsions that prevent particles from approaching each other too

closely. This peak shrinks rapidly as 0 decreases because the particles have

more free volume in which to move. The excluded particle region around

r/d - 1.55 is evidence that when t - 0.35 the suspension has a high degree of

solid-like order. This feature disappears as t decreases. At . - 0.25, g(r)

is liquid-like, and at * - 0.15, the suspension structure is beginning to

resemble that of a repulsive soft-sphere gas. In Figs. 8 and 9, the m.s.d.

and self-diffusion coefficient strongly show the effects of increasing $. Van

Megen's and Snook's 30 results in Figs. 8 and 9 also illustrate the influence

hydrodynamic interactions have in determining the short time diffusive motion

of the particles.
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Figure 6. Radial distribution function for dispersion with

Kd - 39.4 at = 0.35 (from Ref. 30).
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Figure 7. Radial distribution functions for dispersions with

Kd - 39.4 at - 0.15, 0.25, and 0.35.
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Figure 9. Plot of the time-dependent self-diffusion constant (Eq. (23)),

expressed in units of D,, against time. Other details as for

Figure 8 (after Ref. 30).
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The simulation of the nonaqueous suspension was done using 108 particles

and, due to the hardness of the repulsive potential, a time step of 5 x 10-6g.

In Fig. 10, g(r) for the nonaqueous suspension at * - 0.4 is shown. The

moat significant feature is the very strong nearest neighbor peak. This peak

is considerably sharper than those found for the aqueous suspensions. This is

due to the hardness and shorter range of the nonaqueous repulsive potential in

combination with the secondary attractive well. The peak thus represents

weakly flocculated particles with separations narrowly distributed about the

secondary minimum. Each particle has, on average. six very near neighbors

with r/d lying between 1.03 and 1.06. The self-diffusion coefficient for this

system has a very rapid decay (not shown), dropping to 47 percent of Do after

only 10-40 and to 12 percent of %O after 10-38. The asymptotic value of about

0.09 0o is reached after 3 x 10-3g. This decay is much faster than that seen

in Fig. 9 for the aqueous suspensions and is probably a consequence of caging

due to the weak flocculation or perhaps to the slower collective motion of

weakly bound groups of particles.
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Figure 10. Equilibrium radial distribution function for nonagueous
dise rsion with 6 - 0.4
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4.2 MOISEQUILIBRIUN SIMULATIONS

Simulations were performed with 108 particles for volume fractions of 0.2

or 0.4, except for one run with $ - 0.35, at various shear rates ranging from

5 to 200 " . The particle diameter was always 1.2 us. Three different poten-

tials were used in order to assess the effect of interparticle forces on shear

thinning. Two of these wre also used for the equilibrium simulations just

described. The third potential is given by Eq. (301 with # - O.06V and with

c a 10 - 6 sol/dm3 . At this electrolyte concentration the Debye screening

length is increased by a factor of ten over the value used for the equilibrium

simulations. With this increase, ecd now equals 3.94, and the range of the

repulsive, electrostatic stabilization potential is substantially extended.

This is apparent in rig. 5, where all three potentials are plotted.

Generally, the first five to ten thousand time steps of a run were used

to bring the system to steady state. The run would then be continued for

another twenty to thirty thousand time steps, during which g(r), the average

of the particle stress tensor (Eq. (26)) and its square were computed. The

computations were performed on PSI's in-house DEC MicroVax II computer system.

In order to reduce the computational time needed for these preliminary stud-

is., random numbers with a uniform, rather than Gaussian, distribution were

generated over the interval (-1/2, +1/2). A test run showed this to have only

a small effect on the calculated results. For 108 particles. 1700 time steps

could be performed per CPU hour. A typical 20,000 step run would then require

about 12 hrs of computer time. For the nonaqueous systems, the same time step

(5 x 10-6s) used in the equilibrium simulations proved satisfactory. A time

step of 2 x 10-5 s was used for simulating the aqueous suspensions. This is

one-tenth of the value used for the equilibrium simulations. The smaller time

step was needed to avoid artificially bringing pairs of particles into highly

repulsive configurations that would result in unphysically large displacements

on the subsequent time step. This can occur because with the relatively soft

repulsive potentials used for the aqueous systems studied here, the effect of

shear is to drive some of the particles closer together where they experience

stronger repulsions than at equilibrium.
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This can be seen in Fig. 11 where the equilibrium g(r) and the

angular-averaged nonequilibrium g(r) are plotted for an aqueous suspension

with ,O - 0.35 and Kd = 39.4. Besides driving particles closer together, shear

reduces the number of particles in the nearest neighbor shell, spreading them

over a wider range of pair separations. This is evident from the appearance

of particles in the range 1.45 < r/d ( 1.65 where they were strongly excluaed

at equilibrium. Thus the average particle distribution is more uniform than

at equilibrium, although it should be noted that in a sheared suspension g(r)

is strongly angular dependent and not spherically symmetric as at equilibrium.

6

SHEAR
RATE
10 s-I

4

0~ EQUILIBRIUM4
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0
1.0 1.2 1.4 1.6 1.8

r/d

A-5256

Figure 11. Radial distribution functions for dispersion with < = 39.4 at
t - 0.35, at equilibrium and at a shear rate of 10s - I.

The behavior of the sheared nonaqueous suspensions is somewhat different.

Figures 12 through 14 show the angular-averaged nonequilibrium g(r) for

f - 0.4 at three different shear rates: 20, 100, and 200s - 1. The very hard

repulsive part of the potential for these systems prevents any significant

decrease in the minimum pair separation at the shear rates studied. The high

steric barrier also makes it virtually impossible for shear-induced coagulation
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Figure 12. Noneguilibrium radial distribution function for nonagueous
dispersion with € = 0.4 and shear rate of 20s - .
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Figure 13. Noneguilibrium radial distribution function for nonagueous
dispersion with # = 0.4 and shear rate of 100s - T.
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Figure 14. Noneguilibrium radial distribution function for nonagueous
dispersion with - 0.4 and shear rate of 200s - l.

to occur at these shear rates. Thus the only significant effect of shear

observed here is to reduce substantially the number of nearest neighbors

around any particle. This is demonstrated by the marked reduction in height

of the major peak as the shear rate increases. Compared to the equilibrium

g(r) in Fig. 10, the sheared particle distribution is more uniform at larger r

as well. Minor structural features in the equilibrium curve are steadily

reduced with increasing shear rate.

Figures 15 through 22 illustrate the calculated volume fraction and shear

rate dependence of the relative viscosity of the various suspensions. Some

comparisons with experimental data are also given. The relative viscosity qr

of the suspension is defined as the ratio of the measured or calculated sus-

pension viscosity to the viscosity of the pure suspending fluid,

nr ' n/no o (34)
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Figure 17. Relative viscosity versus Peclet number for sterically stabilized
monodisperse polyvinyl chloride spheres in several solvents at

=0.20 (Ref. 38).
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Figure 15 is adapted from the paper of Brady and Bossis. 8 It shows the volume

fraction dependence of nr for several experimental systems, theoretical

results of Beenakker,4 1 and their Stokesian dynamics (SD) simulations. Our

low shear (10s-1) results for aqueous suspensions with Kd - 39.4 at 0 - 0.2,

0.35, and 0.4 have been added to the figure. A higher shear rate (100s -1)

value for 0 - 0.4 is also included. The figure was originally intended to

compare values for hard sphere suspensions, thus our values are not strictly

comparable with the others. However, they do demonstrate that NEBD simula-

tions of moderately repulsive spheres do produce a dependence on 0 that corre-

sponds well with observed behavior on related systems. Our higher shear rate

value for 0 - 0.4 shows a considerable shear thinning effect; more discussion

of this point will follow shortly. The lower line added to the figure repre-

sents the relative viscosity due only to the solvent and independent particle

hydrodynamic contributions. It neglects interpart1r.le forces and hydrodynamic

interactions. It is clear that interparticle forces contribute to our NEBD

results to about the same degree that hydrodynamic interactions contribute to

the foLce-free SD results of Brady and Bossis. 8 Rrady and Bossis 8 also simu-

lated a system with a much shorter-ranged, more highly repulsive potential
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than used in any of the present aqueous simulations. This system showed a

very weak shear-thinning effect, and exhibited a slight shear thickening at

much higher shear rates due to hydrodynamic interactions.

Figure 16 presents the volume fraction dependence of nr for nonaqueous

latices in the high and low shear rate limit.37 Also shown are our NEBD

results for 0 - 0.2 and 0.4 at shear rates of 20 and 200s -1. The discrepancy

at 0 - 0.4 is almost entirely due to the lack of hydrodynamic interactions

between particles in the simulations, but the shear thinning effect, due to

interparticle forces, is reproduced reasonably well. Hydrodynamic interac-

tions are relatively unimportant for the more dilute dispersion, which also

shows very little shear thinning at these shear rates. Figure 17 is a compen-

dium of data 38 on nonaqueous dispersions at 0 - 0.2 taken from a review by

Russel.2 When plotted against a dimensionless shear rate, the Peclet number

noa3;/kT, the relative viscosity data for different particle sizes lie on a

single curve. Shear thinning is evident at very low dimensionless shear

rates. This apparent conflict with the experimental results shown in Fig. 16

may be due to some relatively weak, long ranged interaction or structure for-

mation that is important only at very low shear rates. The available NEBD

results plotted in Fig. 17 are in reasonable agreement with the data, but it

was not possible to explore the shear thinning region. Meaningful results

could not be obtained at lower shear rates due to large statistical fluctua-

tions for the 108 particle system studied. Even for the two points shown, the

standard deviation for the average particle stress contribution to nr was com-

parable to the average value.

Figure 18 shows the shear rate dependence of the two nonaqueous disper-

sions calculated from the NEBD simulations. The erzor bars indicate the cal-

culated standard deviations. It is gratifying that the NEBD simulations of

the model nonaqueous system correspond well with data for real systems. It is

also worth noting how much lower the viscosity of vell-stabilized dispersions

is compared to that of carbon/hydrocarbon fuel slurries, such as reported by

Lin and Brodkey. 38  An example of their results is shown in Fig. 19. These

systems apparently have either a long-range network structure or a strong
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shorter-ranged structure that leads to very high viscosities at low shear

rates, to pronounced shear thinning behavior, and to high relative viscosities

(a100) even at shear rates greater than 100s - 1. It seems reasonable to infer

that improved polymeric stabilization techniques could greatly reduce the vis-

cosities of these fuel slurries.

Although it was not possible to simulate either long or short range

structural effects in nonaqueous suspensions during the Phase I program, a

crude analog for this, termed the secondary electroviscous effect, was simu-

lated in the aqueous system studies. This effect refers to the increase in

viscosity of aqueous dispersions that occurs when the electrolyte concentra-

tion is progressively reduced. The phenomenon is illustrated with experi-

mental results40 in Fig. 20. At fixed particle volume fraction, the increas-

ing Debye screening length results in much longer ranged forces, and the

system becomes much more strongly interacting. Although this is clearly not

the same type of strong interaction or long range structural effect assumea to

be acting in the highly viscous nonaqueous slurry, it is nevertheless a valu-

able confirmation of the applicability of the NEBD method to a strongly inter-

acting system with long ranged forces.

The results of the calculations are shown in Fig. 21. Aqueous disper-

sions with - 0.2 and Kd = 39.4 and 3.94 were simulated. The change in < is

due to a hundred-fold reduction in the salt concentration. The minimal shear

thinning exhibited by the system with the much shorter ranged potential cor-

trasts sharply with the behavior of the dispersion with long ranged forces.

The shear rate dependence of Tlr for this latter system is so strong that below

shear rates of 10s - 1, its viscosity exceeds that of a suspension at twice the

volume fraction (4 = 0.4) with the shorter ranged repulsive forces (<d =

39.4). These latter results are plotted in Fig. 22. This system exhibits

noticeable shear thinning at = 0.4, compared to thG minimal effect observed

at - 0.2, and the effect here is due to crowding particles more closely

together. Reducing the interparticle spacing at fixed range of potential is

roughly equivalent to increasing the range of the potential at fixed volume

fraction. Both changes result in a more strongly interacting system, and that

gives rise to an increase in the viscosity.
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Figure 21. NEBD results for shear rate dependence of viscosity of
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Figure 22. NEBD results for shear rate dependence of viscosity of
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Based on the small number of cases studied, the following tentative con-

clusions may be offered regarding the effect of interparticle forces on shear

thinning. With increasing shear, the average number of near neighbors to any

particle decreases and the average number of particles with larger separations

grows. Both trends result in a decreased contribution to the average particle

stress term and, thus, to a lower viscosity. Dispersions with harder, short

ranged forces (even with long ranged, but weak attractions) show less shear

thinning than ones with longer ranged strong interactions simply because the

former systems have less "viscosity" to lose at any volume fraction. The

system whose dominant interactions are short ranged generates significant con-

tributions to the average particle stress only from very close pairs. In the

system with a longer ranged strong interaction, the stress receives contribu-

tions from a broader range of particle separations and, consequently, is

larger. At sufficiently high shear rates, the particle distribution is so

spread out that the force contribution to the stress is dominated by convec-

tion. A complete discussion of shear thinning would include the effects of

hydrodyamic interactions,7 ,8 which become more important at higher shear

rates. 4 4 Since these were not included in the Phase I feasibility study, no

speculation will be offered regarding them.

4.3 CLASSICAL STABILITY ESTIMATES

Classical colloid stability estimates are based on the application of

Fuchs' well known theory4 5 for the rate of diffusion of particles over a

potential barrier. The ratio of the rates without and with the barrier is

termed the stability ratio, W. This is defined as

w - d f exp( T))/r 2dr (35)

d k

The nonaqueous system is of primary interest here, and ,the appropriate poten-

tial is given by Eqs. (31) through (33). For parameter values of interest,

this potential is very sharply peaked at a value of r, say rm, that is just

slightly greater than d. Because of this, the exponential function in

3
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Eq. (35) acts like a delta function, and a quadratic expansion of u(r) is suf-

ficient to accurately approximate the integral via a Gaussian quadrature. The

result is

W - exp(um/kT)/(d V(v"m/21rkT)) (36)

where um = u(rm) and

V,,m - -(d2u/dr2 ) Ir -rm

Consider how stability is affected by the strength of the repulsive and

attractive parts of the potential. For this exercise, the adsorbed polymer

concentration Cp will be used as the key parameter controlling the strength of

the repulsive steric potential. The Hamaker constant A (Eq. (33)) is the nat-

ural choice for the attractive potential. This quantity depends on the nature

of two interacting particles as well as on the intervening fluid medium, and

is not a free parameter. Tabor4 6 indicates that metallic particles may have A

values 5 to 10 times larger than those found for dielectric materials, so

variations in A may be regarded as corresponding to changes in the material

composition of the dispersed particles.

Smoluchowski's theory of rapid coagulation may be used to estimate the

coagulation time tc,

tc 3no/(4kTp)

With the value p u 1012/cm 3 for 1 um diameter particles at a volume fraction

of 0.4, the coagulation time is of the order of 0.2s. This coagulation time

must be increased by about a factor of 108 if stability for a year (3 x 107s)

is desired. Consequently, when W exceeds 108, reasonable stability is

insured; for W smaller than 108 , coagulation proceeds at a faster rate.

Because p varies as d- 3 at fixed , smaller particles require larger values of

W to insure comparable periods of stability. It is well known that suspen-

sions of small particles are generally more difficult to stabilize than those

of larger particles.
2 2
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Values of the stability ratio are shown in Table I for different colubina-

tions of Cp and A. Not surprisingly, the results show that decreases in Cp or

increases in A result in decreased colloidal stability. Less adsorbed polymer

means a less effective steric barrier. An increased attractive potential also

reduces the repulsive barrier height. In a given system, A will be fixed, and

stability can be enhanced by increasing the amount of polymer adsorbed. It

should be noted that A depends, in principle, on the amount of adsorbed poly-

mer, but this effect should be negligible for particle sizes of interest due

to the relatively small amounts of polymer involved.

TABLE 1. Stability Ratio W, Potential Height urn, and curvature v" at r,
for Different Concentrations of Adsorbed Polymer and Hamaker
Constants.

A

Cp S table/

(10 g/cm3 ) (10- 2 0j) um/kT d 2vm"/2kT W Unstable

1.3 5.0 154.2 3.38 x 106 9.0 x 1063 S

1.0 5.0 61.3 1.39 x 106 6.4 x 1023 S

0.95 5.0 49.4 1.38 x I06  4.3 x I018 S

0.90 5.0 38.5 1.14 x 106 8.7 x 1013 S

0.85 5.0 28.6 0.83 x 106 5.1 x 109 S

0.80 5.0 19.8 0.71 x 106  8.0 x 105 U

0.75 5.0 11.9 0.61 x 106 3.3 x 102 U
-- - -- - -- - -- - -- - --- --------- -- - - - - - - - - - -- - - - - -

0.75 1.0 64.5 1.71 x 106  1.4 x 102 5  S

0.65 1.0 43.1 0.90 x 106 3.2 x 1014  SI
0.55 1.0 25.8 0.53 x 106  4.0 x 108 S

0.45 1.0 12.6 0.33 x 106  8.9 x I02 U

0.40 1.0 7.5 0.20 x 106  7.0 U

0.40 0.5 14.2 0.34 x 106  4.3 x 103 U

0.50 0.5 27.4 0.61 x 106 1.9 x 109 S

0.55 0.5 35.6 0.86 x 106 5.5 x 1012 S

*System used for computer simulations.
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5. SUMMARY AND CONCLUSIUNS

A number of equilibrium and nonequilibrium Brownian dynamics (NLBD) simu-

lations of concentrated colloidal suspensions have been performed. Both

aqueous and nonaqueous suspensions have been studied. Stability estimates for

sterically stabilized nonaqueous suspensions have been made. These results

can be understood in terms of the changes occurring in the repulsive steric

potential and attractive van der Waals potential as the adsorbed polymer con-

centration and Hamaker constant are changed. Quantitative evidence for the

disturbance of the equilibrium structure of the dispersions by shearing has

been obtained. Shear viscosities of suspensions have been calculated as a

function of shear rate and particle volume fraction. With allowance for the

neglect of hydrodynamic interactions, good agreement was obtained with experi-

mental viscosities for comparable systems. The simulation results are sensi-

tive to the type, strength and range of the potential interactions used to

describe the dispersion. The overall conclusion of this Phase I study is that

the NEBD technique is capable of describing the essential features of sheared

suspension behavior. These Phase I results establish the feasibility and des-

irability of using NEBD simulation methods as a predictive engineering tool

for the design of slurries.
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APPENDIX A

EQUILIBRIUM SIMULATIONS OF DILUTE DISPERSIONS

Gaylor, Snook, Van Megen and Watts2 9 ,3 0 ,4 2 ,4 3 have published the results

of a number of equilibrium Brownian dynamics simulations of colloidal suspen-

sions. In order to verify the satisfactory operation of the present equili-

brium code, several simulations were performed for conditions reported in the

literature. The potentials used are shown in Figure A-i. Comparisons were

made for the radial distribution function, mean square displacement and self-

diffusion coefficient. Dilute, but strongly interacting, suspensions were

studied. Hydrodynamic interactions were neglected. This is justifiable for

the dilute systems.

Comparisons of the present computations for dilute suspensions with those

of Gaylor et al.4 2a,4 3 and Van Megen and Snook 29 are shown in Figs. A-2

through A-6. Generally the calculations were done using 32 particles; however

those at = 9.9 x 1O- 4 (Figs. A-5 and A-li) required 256 particles. In

general the comparisons are quite favorable. The results of Gaylor et al.
4 2a

in Fig. A-2 show how changing the ionic strength of the electrolyte affects

the structure of the suspension. At the highest concentration, the repulsive

potential is relatively short-ranged compared to the average interparticle

spacing, and g(r) is characteristic of a very dilute gas with a soft, purely

repulsive potential. As the electrolyte concentration decreases, the range of

the potential increases. Because the particle volume fraction is constant,

the suspension behaves as though it were becoming denser, and g(r) develops

its characteristic nearest-neighbor peak due to the excluded volume around

each particle. In other words, particles are being pushed away from each other

as the repulsive force between them increases. The effect of volume fraction

on the time dependence of the m.s.d. and the self-diffusion coefficient as

calculated by Gaylor et al. is shown in Figs. 8 and 9. As expected, motion

slows with increasing 4. These two figures show clearly how the average

motion differs at short and long times. Because the average force on a parti-

cle is zero, short time motion will be force-free diffusion as described by

Eq. (19) with a self-diffusion coefficient equal to Di. Over long times,
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Figure A-I. Repulsive potentials used for simulations of dilute dispersions.
Potentials are based on Eq. (29) and are due to electrical double
layer interactions in an electrolyte with a concentration of
10- 6 mol/dm 3 . Surface potential o is 0.22V when d = 0.046 '4m
and 0.23V when d = 0.09 pm.
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Figure A-2. Radial distribution function as a function of electrolyte concen-
tration when - 1.5 x 10-4; - n = 10- J mol m- 3 , - n
10- 2 mol m------- n = I0-1 mol m- 3 (after Ref. 42a).
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Figure A-3. Mean square displacement as a function of time: free
diffusion, 5.0 x 10- b , --- , = 1.5 x 10- 4 ,

4, = 3.0 x I0- 4 , - - = 7.0 x 10 - 4 (after Ref. 42a,43).
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Figure A-4. Time dependence of diffusion coefficient: __ 4 = 5.0 x 10- 5 ,

--- 4-, = 1.5 x I0 - 4 , - . = 3.0 x I0- 4,.-- 4 = 7.0 x 10 - 4

(calculated from D(t)/D o = <(ri(t) - ri(0)) 2 >/6Dot, not from

Eq. (23) (after Ref. 42a).
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Figure A-5. Radial distribution function for dispersion with <d = 0.30

at # = 9.9 x 10- 4 (after Ref. 29).
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Figure A-6. Mean square displacements for dispersion with Kd - 0.30
showing free diffusion by the solid line; numbers corre-

sponding to other results represent x 104 (after Ref. 29).
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because of the slowly changing particle configuration, forces on the particles

are correlated, and the average motion is strongly affected.

Our test calculations in Figs. A-2 through A-4 were made for a volume

fraction of 1.5 x 10- 4 using two different fluid viscosities, 1 and 2 mPa.s.

Doubling the usual value of no results in halving the single particle diffu-

sion coefficient Di (cf. Eq. (11)). This significantly retards the average

motion of particles in suspension, as can be seen in Figure A-3. In princi-

ple, changing no should not affect g(r) because it is an equilibrium property

solely determined by U. The results in Fig. A-2 approximately bear this out.

The discrepancy may be due to using too large a time step At in the simula-

tions. Van Megen and Snook 30 have noted that if At is too large, peaks in

g(r) tend to be artificially flattened. Doubling the viscosity while holding

At constant effectively halves the time step, and the peak height grows as a

consequence. It should be noted that the same At reported by Gaylor et al.
4 2a

was used in these calculations. The remaining discrepancy with their results

may be due to running the simulations for an insufficient number of time

steps.

In Figs. A-5 and A-6, the results of Van Megen and Snook 29 show the

effect of increasing the volume fraction to the value 9.9 x 10- 4. Their

results in Fig. A-5 using 256 particles show that the suspension is becoming

increasingly ordered with the particles distributed about the sites of a bcc

lattice. The strong interactions that promote ordering also greatly inhibit

particle motion. This can be seen in Fig. A-6 from the slowly increasing

m.s.d. at the highest volume fraction. Our results for g(r) agree well at

r/d<14, but are poorer for larger values of r. This is probably due to our

neglect of long range contributions to the total force from particles beyond

the cut-off distance of Z/2. The calculated m.s.d. agrees well probably

because its early behavior should be controlled by interactions with particles

in the first and second nearest neighbor shells.
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