fAD-A182 402 SCIENTIFIC RND ENGINEERING STUDIES SPECTRHL ESTIMTIOI 17?7
CU) NAVAL UNDERMWATER SYSTENS CENTER NENPORT RI
A H NUTTALL 1977

UNCLASSIFIED F/G 774

HEEEREN
I O I I -







(D

Scientific and
Engineering
Studies

Compiled 1977

Spectral
Estimation

~A. H. Nuttall

PUBLISHED BY

NAVAL UNDERWATER SYSTEMS CENTER

NEWPORT LABORATORY, NEWPORT, AHODE ISLAND
NEW LONDON LABORATORY, NEW LONDON, CONNECTICUT

077/ ol A

©1, - beoan approved
N S ' ‘ o olaits




Foreword

" This collection of technical reports deals with estimation

of spectra of stationary processes, both by the now-standard
direct approach and by the more recent autoregressive approach.
The topics range over numerical procedures involving Fast
Fourier Transtorms, cross-spectral estimation, minimum bias
windows, vernier FFTs, coherence, univariate and multivariate
maximum entropy spectral estimation, and probability distri-
butions of spectral estimates. These results, which were new
when published, are still of great relevance to anyone doing

spectral analysis who is interested in obtaining good
resolution and stability from limited record lengths.

Dr. William A. Von Winkle

Associate Technical Director
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Characteristic Functions
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ABSTRACT

A method for direct numerical evaluation of the
cumulative probability distribution function from
the characteristic function in terms of a single
integral is presented. No moment evaluations or
series expansions are required. Intermediate
evaluation of the probability density function is
circumvented. The method takes on a special form
when the random variables are discrete.
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NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY
DISTRIBUTION FUNCTIONS DIRECTLY FROM
CHARACTERISTIC FUNCTIONS

INTRODUCTION

When several independent random variables are added, the
characteristic function of the sum is the product of the characteristic functions
of the individual random variables, This rule holds regardless of the distri-
butions of the individual random variables, and whether they are identically
distributed or not. Evaluation of the cumulative probability distribution of the
sum variable in closed form is often very tedious or impossible to achieve,
This is especially so when the number of random variables added is large, but
not large enough to employ the Central Limit Theorem with accuracy.,

In many signal-detection problems, the characteristic function of the
decision variable can be derived in closed form (or evaluated numerically
fairly easily). Often, however, neither the probability density function of the
decision variable, nor its integral, the cumulative probability distribution
function, can be obtained in closed form. Even if they can, they are frequently
tedious and time-consuming to evaluate (see, for example, Marcuml), In this
report, we present a technique for numerically evaluating cumulative probability
distribution functions directly from specified characteristic functions in terms
of a single integral. Intermediate evaluations of the probability density func-
tions are not necessary, and no moment evaluations or series expansions are
required. The technique takes on a special form when the decision variable is
discrete.

When the characteristic function of the decision variable (which is com-
pared with a threshold) can be evaluated for both the signal-present and signal-
absent cases, the technique can be applied to the problem of obtaining receiver
operating characteristics (probability of detection versus probability of false
alarm),

ANALYSIS

This section is composed of two subsections, In the first, a general
formula for direct evaluation of the cumulative probability distribution function
from the characteristic function is derived; in the second, an alternate and
more useful form for discrete random variables is presented.




GENERAL DISTRIBUTIONS

Let random variable x have probability density function (PDF) p(x) and
characteristic function (CF) f{(¢):

iy 1(5) = _[ dx exp (1£x) p(x), )
p) = o [t exp (18w 100, @)

(An integral without limits is over the real axis from -» to +=,)
The cumulative distribution function (CDF) Pr(X) is defined as the
probability that random variable x is less than or equalto X:
X+

rX -fdxp(x)a ' @)
~a0

The upper limit means that an impulse in PDF p(x) at x =X is to be included
in full, It will be convenient to define the modified distribution function (MDF):

P = f dx p(x), 4)
[ -]

where an impulse in p(x) at x =X is only half included. At points of
continuity of the CDF, PrX) and P(X) are equal, At a point of discontinuity
of the CDF, the MDF P(X) takes on a value halfway between the limit values
on either side of the discontinuity.2 The CDF Pr(X) can be obtained from the
MDF PX via

Pr&X) = lim PX +¢), (5)
0+

Therefore, we can direct our effort to evaluating either the CDF Pr@X) or the
MDF P(X), depending on which is more convenient.




When Eq. (2) is substituted into Eq. (4), we not~ that the MDF
becomes3 '
PX - fxdxzéfde exp (16x) 1 ()
<o

1
-1 f dE £(8) Z dx exp (-16x)

1 1
=-27fd£ (%) [16(5)-T€-GXP(-153]

1 1 [
-5 o [T roemam, (6)

where the last integral is a principal value integral, Since the PDF p(x) is
real, the real part of the CF f(£) is even, and the imaginary part of the CF
f(¢) is odd; i.e., f(-f)=f*(f). This allows Eq, (6) to be manipulated into the

forms

(]
PX) s.;..-% -?tﬁ Im{f(f)exp(-im}
0

hod
<1 1 [ d _
< 3% [ £ [mito} cos 0 - Reft}smem] . @
0

Convergence of the integrals' at the origin is guaranteed by the fact that

'Ev is integrable at the origin if ¥>-1. No moments of the distribution

sare required to exist.




Im{f0)} = 0 ' (8)

lim __i_ﬂsinii = X, 9)
&0

Equation (7) is the general equation allowing numerical evaluation of the
MDF P(X) directly from the CF f(£). For a discontinuous CDF, in order to
minimize inaccuracies in a numerical evaluation of Eq. (7), values of the MDF
PX) at points removed from the discontinuity locations (if known) should be
computed. In particular, for a discrete random variable, values of the MDF
at points midway between discontinuities should be computed when using|

qu (7)0
-The integral in Eq. (7) is confined to the real axis. Since
16| < f dxpx)=1 for £ real, (10)

there are no singular points along the ¢ axis., Also some CF's are defined
only for £ real; for example, for

Py = +-1-, )
1l4x
€(e) = expi-e),  real £, 12)

but f(¢) is not defined for complex §. Thus, the CF f(f) does not have to be
analytic at the origin to apply Eq. (7). Nor do any moments of the random
variable have to exist,

DISCRETE DISTRIBUTIONS

The expression (7) applies to all MDF's (and CDF's through Eq. (5));
however, it requires an infinite integral for each value of X, Here we shall
alleviate this requirement for a special class of random variables, Namely, we
consider discrete random variables that can only take on values which are
multiples of some fundamental increment A, That is, the PDF of interest
takes the form

P) = X0 d(x-KA). (13)
k




(A sum without limits is over the integers from -« to +«.,) Then the CF is

1) = Lo, exp (kag), a4)
k

which is periodic with period 2x/A. Therefore, the coefficients {ck} can be
determined from the CF f(f) by

o = 3z J dremeianse, as)

v

2r/A

where the integral is over any interval of length 2x/A.

Equation (15) gives the area of any impulse in the PDF p(x} in terms of
a finite integral of the CF f({). Since we are interested in the CDF PriX), =
sum over {ck} is required. At this point, it is convenient to distinguish two
cases: (1) nonnegative discrete random variables and (2) general discrete
random variables,
NONNEGATIVE DISCRETE RANDOM VARIABLES

If x is a nonnegative discrete random variable, the CDF is, at integer
value M,

M A M
Pr(M) =2 S = o de f(&)z: exp (-ikAf), M0, (16}
k=0 2T/A k=0

where we have substituted Eq, (15), Now

M
- - £
-




which must be interpreted as M+1 at §{ =0, +2x/4, +47/4, ... . Using
Eq. (17) and the fact that f(-{) = £*(§), we note that Eq. (16) becomes

A . sin +1)A 8/
Pr(M) = 2_'.2 4; dE £(E) exp (-1MAE/2) = Gats)
k /

r/A
.4 sin [(M+1)a%/2
= 6/d£ ain [A5/2 Re{f(f)exp(-lMAE/2)} » M>0, (18)

‘where the interval (-»/A, r/A) has been selected for integration. The ratio
of sines is interpreted as M +1 at the origin £ =0, Equation (18)is a
single finite integral from which the CDF Pr(M) can be evaluated at any M
directly from the CF f(£).

A special case of Eq, (18) is
/A
Pr(0) = ¢, = % f d¢ Re {f(5)} . (19)
0

(Actually, c, is always given by this formula, even for general discrete
random variables, as may be seen from the general formula (Eq. (15)).)

The case of a discrete random variable taking on values in a semi-
infinite range (.e., (-=, N) or (N,»), where N is finite but can be positive
or negative) can be handled {n a similar fashion, The key is that a finite sum of
exponentials (like Eq. (17)) can be evaluated without requiring a summation,

GENERAL DISCRETE RANDOM VARIABLES

Here we shall consider discrete random variables which can take on
values in the range ( -«, »). From Eqgs. (7), (4), and (13),

[
PO)=3-7 [ Fim it} 20)
0
-1
‘Z Ck +';‘c° al)
k==




That i{s, the value of the MDF P(X) at the origin can be evaluated by a single
infinite integral. There does not seem to be any simpler way of obtaining this
number, which will be necessary in the development to follow, In some cases,
it may be possible to evaluate the particular value P(0) from the integral

Eq. (20) in closed form, or expand it in a rapidly convergent series, while
PX) could not be so evaluated generally for X # 0, In any event, Eq. (20) will
be the only infinite integral necessary to evaluate in order to get the complete
CDF for this general discrete case,

The area of the impulse at the origin is given by Eq. (15) as
/A

c =& dt Re {£(8)} . @2)

o
0

Now let us define auxiliary functions

M
S+(M)-§ o M20, @3)
0
s(M)-ZM ., M30, @4)
ST e

By a development similar to Eqs. (16) through (18), we find that these auxiliary
functions can be expressed directly in terms of the CF f(¢{) as

/A

s+(m=%fdg%@ Re {{() exp(FIMAE/2)}, M2 0, (@5)
= 9

where the ratio of sines is interpreted as M + 1 at the origin =0,
The CDF Pr(M) then can be evaluated at any M according to
1
P(0) -zc +5 (M), M20

P(0) +-;-co -8 (|M#1]), M<O) . 26)

Pr(M) =




Here P(0) is given by Eq. (20), ¢, by Eq. (22), and S:\(M) by Eq. (25). The
constants P(0) and c, need be evaluated once, but Eq. (25) must be evaluated
for each M of interest. However, Eq. (25) is a finite integral.

EXAMPLES

We shall consider two examples recently examined by Helstrom4 for
purposes of comparison,

Example 1 - Exponential Distribution

exp (-x), x>0
P(x) ={ }
0, x<0/, 27)
1-exp(-X), x>0
Pr(X) = P(X) ={
. 0, X<0J, (28)
-1
1(g) = (1-i¢) . 29)

The exact CDF is given in Eq. (28). Approximate values for the CDF are
obtained by substituting Eq. (29) into Eq. (7) and approximating the infinite
integral by a finite sum. Results are indicated in Table 1,

The integral of Eq, (7) was sampled in § at values indicated by column
four of Table 1 and approximated by the trapezoidal rule for integration, The
limit of integration in Eq, (7) was taken to be the value above 60 where the
finite sum deviated most from the exact answer, Thus, the finite sum in
column three of Table 1 is the worst approximation to the exact answer in
column two,

For this example, the largest error occurred at the origin, This
happened because the integrand of Eq. (7) oscillates for X # 0, thereby con-
verging fairly rapidly, whereas the integrand decreases monotonically only as
(1+$2)1 forX=o0,




Table 1

NUMERICAL COMPUTATION OF EXPONENTIAL DISTRIBUTION

Finite Sum Increment Approximate Limit
X Prid via Eq. (7) in ¢ of Integration
-10 0 . 00001 | 60
-2 0 -, 00007 3 60
-1 0 . 00008 - 60
0 0 . 00532 - 60
.2 . 18127 . 18096 - 60
1 .83212 . 63220 - 60
2 . 86466 .86470 .5 60
10 . 9999546 . 9999837 .1 60
Example 2 - Poisson Distribution
2. .k
P(X) = exp(-)A) z: A sx-k), B0
k=0 k!
xk
exp(-2A) ﬁ i’ M>0
Pr(M) = k=0
0, M<0 ’ (31)
f§) =exp[M{expat)r1}] . (32)

The exact CDF is given in Eq. (31). Approximate values for the CDF are
obtained by substituting Eq. (32) into Eq. (18), with A =1, and approximating
the finite integral by a finite sum. Results are indicated in Table 2,




Table 2
NUMERICAL COMPUTATION OF POISSON DISTRIBUTION

Number of

M Pr(M) Finite Sum via Eq. (18) Intervals
0 . 00000 03089 . 00000 03089 a8
1 . 00000 48944 . 00000 49945 as
6 . 00763 1899¢ . 00763 18998 28
14 .46888 37089 . 46888 37089 a8
16 .66412 32008 . 66412 33004 a8
20 .91702 90899 . 91702 90898 28
29 . 99068 15808 . 99968 18500 a8
30 . 99980 26887 . 99960 26888 a8
40 . 99999 99768 . 99999 99764 a8

The integral of Eq. (18) was divided into 25 equal intervals and approxi-
mated by the trapesoidal rule for integration. Columns two and three of Table 2
show that the error in the approximation occurs in the tenth place (and may be
due to computsr inaccurscies rather than sampling errors)., Also, the
acouracy holds on the tails of the CDF as well as near the mean.

CONCLUSIONS

The numerical technique suggested for obtaining CDF's directly from

CF's has considerasble merit, R requires no moment evaluations or series
expansions (like Edgeworth or Laguerre) for the distributions. It does not de-
pead upon evaluation of derivatives of CF's, but depends only upon the values of
the C¥ itself. (Evaluation of high-order derivatives can be extremaly tedious
and time-consuming even if an analytic form for the CF is available.) The
sccuracy of the suggested technique can be estimated and controlled by de-
creasing the increment in the integral evaluations or lengthening the interval of

10




integration or both; the change in the approximation is a measure of the error
at that point. The method does not require an inordinate sumber of samples of
the C7, at least for the examples considered, and the additicmal functions
requiring evaluation are sines and cosines. Intermediate evaluation of the
PDY is eatirely ciroumvested. (Of course, estimates of the PDF are avail-
sble as differences of the CDPF, if desired.)

11/12
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ALTERNATE FORMS AND COMPUTATIONAL CONSIDERATIONS FOR
NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY DISTRIBUTIONS
DIRECTLY FROM CHARACTERISTIC FUNCTIONS

1. INTRODUCTION

A recent report [1] on numerical evaluation of cumulative probability dis-
tribution functions directly from characteristic functions (QF) gave the cumula-
tive distribution functions (CDF) in terms of a single integral on the CF for both
continuous and discrete random variables (RV). In this report some alternate
forms for the CDF in terms of the CF will be presented, with an aim toward
more accurate, efficient, and expeditious calculations. For the motivation of
this study and utility of the results, as well as numerical examples, see Ref-
erence 1.

2. ANALYSIS

This section is composed of five subsections. In the first, general dis-
tributions are considered; in the second, specialization to a nonnegative random
variable is made. In both subsections, forms that utilize a fast Fourier trans-
form (FFT) are derived and their applicability is discussed. In the third and
fourth subsections, discrete random variables are considered. The former
subsection shows that the distribution function can be evaluated entirely in
terms of finite integrals; the latter subsection specializes to nonnegative dis-
crete random variables. The fifth subsection treats some computational
aspects of the FFT.

2.1 GENERAL DISTRIBUTIONS

Let RV x have probability density function (PDF) p(x) and CF £(¢):

£(6) =fdx exp{i{x) px) , Q)
po = 5> f dt expi-itw) 100 . @




(Integrals without limits are over the real axis from -® to = .) The

CDF Pr(X) is defined as the probability that RV x is less than or equal to X.
The modified distribution function (MDF) P(X) is defined equal to PrX) at
points of continuity, but it takes a value midway between limit values on either
side of a discontinuity.

The MDF P(X) can be obtained from the CF by[1, Eq. (7), or 2, Eq.
4.19)]

PE) =5 - 5 f Fm e eweix) }, anx. @)
0.

If we attempt to remove the Imaginary operation from under the integral sign,
we obtain an infinite integral since £(0) = 1. However, if we express

£¢§) = [£(5) - a@®)] +a® , : (4)

where a(0) =1, and split (3) into two integrals, we can move the Imaginary
operation out of the first integral in (3). One particularly useful choice for
a(¢), which results in a closed form expression for the second integral in (3), is

2,0 = emfiut - 3 7 €7, £>0, ®

where* 4 and ¢2 are the mean and variance of RV x. The mean and vari-
ance are available from f'(0) and f"(0), if these quantities can be evaluated; if
not, the method to be described is still applicable with arbitrary constants used
for 4 and ¢2. When (4) and (5) are substituted into (3), there results [3, Eq.
3.896 4; integrate both sides with respect to b]

_ 21 -8,
PX) = ¢(x—,’i)- +im {fde — exp(-im}. WX, (8§
o]

“Actuslly, » and ¢ could be sssigned arbitrary values in the form (5); this
particular choice gives a second-order fit to f({) st the origin.




where

s0) = f aten Y2 exp-t3/2) (7)

is the Gaussian CDF.

Equation (6) is now in a form where an FFT can be utilized in the integra-
tion on ¢ (See Subsection 2.5). This equation is exact; we are not making a
Gaussian approximation in (6). There is no problem in the integration at § = 0
because, for the choice of 4 and ¢2 as the mean and variance of RV x,

(6 -a 0
—F——=0@") as §{ — 0+. @)

Also, since 'a1(£)| decays as exp(-¢252/2), the decay of the left side of (8)

for large ¢ will often depend on the decay of f(¢)/¢; this decay will dictate how

far the integral in (6) must be carried out for specified accuracy in PX).
Other choices for a(f) are possible and sometimes recommended. For

example, if the mean and variance of RV x do not exist (e.g., p(x)=x»-1.
(1 +x2)-1, all x), we might choose

a,(6) = exp(-bd), > 0. @
To best match f(¢) near the origin, we could choose
b = -f'(0+) = |£'(04) | (assuming f'(0+) real) . (10)
Then by substituting (4) and (9) into (3) [3, Eq. 3.941 1], we get
@

£(¢) - a,(¢)
=1,1 Y - 2 -
P(X)—2+tarctan(X/'b) 'Im {B/df : exp(ifX)}, all X,
(1)




For the choice of b in (10),

—2—=0@® a8 £— 0+, (12)

80 no problem in integration arises at the origin. We must be able to evaluate
f'(04 in this case so that b is known, and it must be real. In cases where
£'(0+) is not known or is infinite (See Appendix A, for example), the above
methods are inapplicable, and special techniques such as subtracting out the

singularity are required.
2.2 NONNEGATIVE DISTRIBUTIONS
When RV x is limited to nonnegative values, some simplifications in the

general form (3) occur. (The case of nonpositive RV x can be treated in a
similar fashion.) First, if X <0 in 3), then PX) = 0. Letting X = -a yields

o0
-21-= i % [fr(E) sin(ag) + £, (§) cos@)], a>o0 , (13)

La

where subscripts r and i denote real and imaginary parts, respectively.
Employing (13) in (3) for X >0, we get

[ ]
p =2 [ 1@ smen, x>0, a4
Q
or
2 [ dg
PX)=1-%3 f T fi(E) cos(¢X), X >0, (15)
0

Thus, the MDF P{X) can be evaluated from knowledge of either the real part
or the imaginary part of the CF f(§). For X = 0, neither (14) nor (15) is
necessarily valid, and we must resort to (3).




There are computational reasons for choosing (14) over (15), or vice
versa. The first has to do with ease of calculating f,.(§) versus fj({). For
example, in Appendix A, for p(x)=2/r (1 +x2)~1 for x >0, we find that
f.(¢) is a simple exponential, whereas f;({) is a sum of exponential integrals.
Converse examples, where f;(§) is simpler to compute, can also be found.

[}
The second reason has to do with the rate of decay of fy(¢) versus f;(¢).
We have

on
fr(f) = 5/ dx p(x) cos(¢x) = f dx pec&) cos(éx) = f dx pe(x) exp(ifx) , (16)

£ = f ax po) sin(ex) = [ ax p @) singx) = 7 fax p ) expiitn) ,
o

%))

where subscripts e and o denote even and odd parts, respectively. Now, if

p(0+) > 0, then p,(x) is discontinuous at the origin, and f;(¢) decays only as
£-1 for large {. An example is

P = e, x>0 f(5) =@ -ip)",

£.(5 = (1 + sz)'l- £(5) = e<1 + ez)'l. (18)

In (18), fr(f) decays as {=2 for large £, giving rise to an integral in (14)
that can be terminated earlier than the one in (15). On the other hand, consider
that p(0+) = 0 and that p(x) and its derivative are continuous except at the
origin, but p'(0+ > 0. Then po(x) and its derivative are continuous, whereas
P, (x) is discontinuous. In this case, fp(f) decays only as {=2 for large &.
An example is

p) = xe ™, x > 0; f(f) = (1 - 1872,

£ = <1 - ez) (1 + s"‘)‘z. £, = 2¢ (1 +‘£2>‘2 : 19




Here (15) could be terminated earlier than (14).

The third reason has to do with the region of X of interest. For large X,
where P(X) is near unity, Eq. (15), in the form

[ -]
1-20) =2 [ 10 cosx), x>0, 0)
Q

is to be recommended, since it is an alternating sum of small quantities and re-
tains significance. Equation (14), for large X, is an alternating sum of large
quantities and loses significance. But for small X, Eq. (14) would be recom-
mended.

Equation (15) can be immediately manipulated into a form where an FFT
can be utilized. Namely,

2 = L)
PX)=1-%Re dt —— exp(-iEX)}, X>0. 21)
o

From Appendix A, we have fj(¢)/¢ ~ Ky as §—~0, if Ky exists and is finite.

If we attempt to express (14) in the form

ol
Im {3 ¢ @ exp(iEX): ,

r
g & r

we obtain an integral that does not converge at the origin. However, if we ex-
press

£.6) = [£.6) - b@®] +b®), 2)

where b(0) =1 and b({) is real, then (14) becomes




® £ () - b(E) 5
PX) = £ m { a r—g——exP(iEX)} +2 [at v 2280 x5,
Q Q
@3)

and an FFT can be used on the first integral. Preferably, the second integral
should be integrable in closed form. A particularly useful choice is

b(f) = exp(- z u282>. £>0, 24)

where* Ko is the mean-square value of RV x. This quantity is available from
£:(0) if it can be evaluated. When (24) is substituted into (23), we get (See (3)
through (7))

X 2 © f.¢) - exp <— % #252)
po) = 2o( ) 10 Fum { [ E a0l x>0
#2 [o] (25)
The function

1,2
) - exp(- L,

; )—-Oas£—~0+

in (25) if the mean-square value Ko exists. In many cases, it decays as
f.(¢)/& for large &,

The fact that MDF PX) can be obtained from either the real or imaginary
parts of the CF for a nonnegative distribution are manifestations of the fact that
f.(6) and fj(§) can be found from each other; in fact, they are related by Hil-
bert transforms. For p(x)=0 for x<0, and no impulses at the origin, we
see that[4, p. 38)

‘As in the footnote to Eq. (5), g could be assigned any convenient value.




£(§) = f dx px) exp(ifx) = f dx p(x) Ux) exp@éx) = 3{pex) U}

= 3{pm} @ 3{Ue} = 1) o [-21- 3e) + '2':;3] = 3 [t + wicwl] |

26)
where U(x) is the unit step function, J denotes a Fourier transform, ¢
denotes convolution, and ¥ denotes a Hilbert transform. Therefore,

f¢) = i {1} , @7
or
16 =%t @}, 6 =-%{re . (28)

For the cases when p(x) contains an impulse at the origin of area C,» the
first part of (28) is still correct, but the second part is incorrect by the addi-
tive constant c,. However, we can still find f.(§) from fj(§) by utilizing the
fact that £.(0) = 1. Thus, either the real or the imaginary part of the CF con-
stitutes complete knowledge about the MDF in the case of a nonnegative dis~-
tribution.

2.3 DISCRETE DISTRIBUTIONS

In this subsection, the RV x is restricted to take on values that are mul-
tiples of some fundamental increment 4, and can be either positive or nega-
tive. Although the equations in Subsection 2.2 are applicable here, it is advan~
tageous to have forms for the distribution function that require finite integrals
rather than infinite ones. We have for the PDF

PO =D "oy bx - ka) (29)
k




where the sum ranges from —e to w. The CDF Pr(M) for integer M is
given in Reference 1, Eqs. (20) through (26). All the integrals are finite inte-
grals except for the one in (2C) for MDF value P(0):

P L®
PO =7 -+ far .
o

We now rectify this situation and obtain a finite integral for P(0) also.
From Reference 1, Eq. (15),

/A
A -
e =2 & df £(6) exp(-ikaf) . (30)

Therefore, by using Appendix B and f(-§) = f*(§), we get

-1

\ i
e =t [ wto t axas)
k 2 Jo/ exp

K==—a0 K= -w

b
-l P _ 1 [(a¢
% fAdi f(¢) [ 2 +er $(Af - I2w) + i 2 cot 2)]

-

A
S 3 1, .14 ak
2°o+2'”22r_'Ad““’“‘(z)
A
n +l--£f'/de £ (&) .
2% *2 2r J @n(at/2) @31)

Then, we obtain the desired result




-1 L

- 1 .l-A/
PO E °x *2% "2 2r 4 % @) 32)

K=z=x

As § — O+, the integrand of (32) approaches 2uy/3 if uy exists and is
finite. (There is no integral expression for P(0) in terms of f{.(f). Since fp(§)
is the Fourier transform of P (X) (SBee Eq. (16)), and since

2 1
fdxpem-;.
-

irrespective of the form of p(x), f.(f{) contains no information about P(0).
This is analogous to the general distribution case where P(0) follows from
@) as

PO = 3 -%f-d: (/% )
Q

2.4 NONNEGATIVE DISCRETE DISTRIBUTIONS

When RV x is limited to nonnegative values, the CDF Pr(M) takes on
forms requiring either the real or imaginary parts of the CF for its evaluation,
just as in Subsection 2.2, To see this, we note that cg in (29) is zero for
k < 0. By letting k= -m in (30), we get

 JAY v/

f dé¢ sin(mag) fx“’ = f df cos(mJag) fr(e) for m >0 . 33)
o 0

When we employ (33) into (30) for k > 0, we get

r/A

=22 [ dt cosman 0, k>0, (34)

°k

Q

10




v/A
o = 28 [ 4 sinian (&, k>0, (35)

Therefore, the CDF Pr(M) for integer M is given by

(36)

where we have used (34), (30), the fact that f(-¢) = f*(§), and Eq. 1.342 2 in

Reference 3. Equation (36) enables evaluating the CDF in terms of the real
part of the CF alone.

To represent Pr(M) interms of f{;({), we first note that for nonnegative
RV, the general formula for P(0) in (32) becomes

. 1 £
PO =5c=2 " f ® m@at/2) um(A(/Z) ' @n

Now,

ProM) = ch =c +3% [ e fmmu
k=0 k=1

11




s rh o«xu% at
-1-—/«1(:) » M20, (38)
v i aé

where we have employed (35), 37), and Eq. 1.342 1 in Reference 3. Equation

(38) is complementary to (36) in the sense that cnly the imaginary part of the
CY is necessary for evaluating the CDF. The reasons given in Subsection 2.2

for selecting (36) or (38) in a particular application are again relevant.

2.5 USE OF FFT FOR FOURIER TRANSFORMS

Many of the integrals in this report take the form

/ dt gt) exp(-i2eft) .

Suppose a limit T on the integration can be found such that

| [ &t ge) exp(-2eft)

where ¢ is some specified tolerance or error. Then, attention can be focused
on evaluating

< ¢ for all f, (39)

G,r() » f dt gt) exp(-L2sft) . (40)

Since the integration in (40) is over an interval of length T, it is seen that
(@ will undergo a significant change in value in an interval no smaller than
1 in f. Thus, one might initially anticipate that (40) should be evaluated at
values of {=n/T, n=1, 2,.... However, in many cases, this resolution,
1/T, may be much too fine, and be the result of satisfying (39) with a very
small ¢ . In such cases, values of Gr () at some multiple of the fundamental

o




resalution may be satisfactory, say m/T, where m is an integer. Thus, we
might be interested oaly in evaluating GT(n%). B=1,2, .... But from (40)

G,r(n.%) -/dt gt) exp(-i2vamt/T)

m-1 k+)T/m
= Z dt gt) exp(-i2rnmt, T). (41)
k=0 kT/m

In making the substitution u=t - kT/m in (41) and defining the collapsed
function

m-
l(u*ki). 0S€Su<T/m
lc(u) = k=0 , (42)
0 , otherwise

we note that (41) becomes

/m
5. / e
GT(n T) s du gc(u) exp(iz:rm u) . (43)

The collapsed function . 18 obtained from g by "pre-aliasing’ g into the
interval T/m. If we define the Fourier transform of g 8

/m
ch) = b/ du g, exp(-i2rfu) , (44)

then (43) yields

13




oo B)- e %)

That is, Gp() can be evaluated at {=m/T, 2m/T,..., in terms of the
Fourier transform of the collapsed function.

Now suppose g.(u) is sampled at increments of h in (44), where
T/m

h-= EIR and weighting |{w, | applied to the samples in an effort to approxi-
mate* (44). That is,
ch) = h: wk gc(kh) exp(-i2»fkh) = Gc(f) . (46)
k=

The approxaumation in (46) will be good if g. and the exponential are sam-
pled frequently enough. Thus, if the exponential is not to vary by more than a
radian between samples, we require

1
€ —
| £ 2n 4

When (45) through (47) are combined, the desired values are given by

W

M
E = E‘- A 2 = -1? !
GT( T) Gc( T) Gc(n T) bz:wk gc(k.m exp(-12xkn/ M) (48)
k=0

f
m 1 1 M
— < —, or |n|<==, 49
In| T < 2en’ In| <7 2 (49)
By defining
‘For exsmple, Simpson’s rule has o 2 | 3 “apel C 41 . ) 1wy 3

14




< < -
hwkgc('kh), l1<k<M-1

d'k = » (50)

hwo 80(0) + th xc(T/m). k=0 .
we can express (48) as
A m M-1
m m\ _ m) _ »
G,r(n ?) = Gc< ?) = Gc(n T) Z d.k exp(~-i2xkn/M) , (51)
k=0

which is an M-point discrete Fourier transform (DFT) of the sequence {dk}.
The factor 1/» in the upper bound on |n| in (49) is due to the aliasing in the
frequency domain that takes place at |n|= M/2. Infact, letting {w,} be the
samples of waveform w(t) at t=kh and W(f) its Fourier transform, it can
be shown that (Appendix C)

A m
G @) = W) .Z:G" f - kM -,17). (52)

A
Thus, the value Gc(% %) is composed of at least two overlapping tails of
G, (f). In order to avoid this aliasing, we must observe (49).

To summarize, the values of Gr(f) at f= n% are given approximately

as an M-point DFT in (51) of the sequence {dk} in (50). When (42) is substi-
tuted into (50), this sequence can be expressed as

= T
hwkig(khna). 1Sk<M-1
§=0

d'k - m-1 * (33)
wy 5 o(3)  mu 2e(E)
j=0 j=1

As is obvious from (53), g(t) must still be evaluated from 0 to T in incre-
ments of h, that is, at mM + 1 values. However, collapsing reduces the

15




size of the FFT from mM to M, with an attendant reduction in computation
time and round-off error. This method is related to one given in Refer-
ence 5, p. 8l.

In appryi.ng this technique to numerical integration of CF's, since the ex-
ponentiais take the form exp(+i{X), we note that the increment in X at which
values are obtained by employing an FFT are 2r/T, or 2rm/T for coarser
resolution as above.

3. CONCLUSIONS

Several alternate forms for direct numerical evaluation of the CDF or
MDF from the CF have been presented that have utility in different situations,
including ease of calculation, rate of decay of the integrands, and the probabil-
ity region of interest. Also, the speed of the FFT and the large number of
values of the distribution functions that are quickly available make the formulas
presented attractive in a large number of practical applications.

In the case of discrete distributions with RV that can take on positive as
well as negative values, all integrals for the CDF are finite and over a half-
period of the CF. Reevaluation of the sines or cosines, as in (36) or (38) for
different values of M, can be avoided if one notes that

sin [(M + -21-)a] = sm[<m - -zl-)a + a] = sin [(M - -;-)a] cos[a] + cos [(M - -;-)a] sinfa],

with a similar result for cosine. Thus, if a table of sin(a) and cos{(a) for the
values of a (Af) is constructed, this recurrence relation can he used to obtain
the higher order M-dependence required in (36) and (38) without reevaluating
sines and cosines.

16
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Appendix A

BEHAVIOR OF (NTEGRAND OF EQ. (3) AT ORIGIN

The integrand of (3) is given by

1 £.() cos(X) 1 (&) sin(kX)
§Im {£(¢) exp(-itX)} = : - : ,

where subscripts r and i denote real and imaginary parts, respectively.
Now,

£.(5) SinX)

—-X as ¢ — 0+,
£

And

£,(5) cos(tX)

= sin(¢x)
i f dx — p(x) cos(¢X) .

~fdxxp(x)=-=yx as §¢ — 0+ if sy exists and is finite.

Here o is the mean of RV x. Therefore, the integrand of (3) approaches

“x -X as ¢t — 0+ |if “x exists and is finite.

An example where u, is infinite is given by

0, x<0

p(x) = .
—er’ X > 0
l +x

19




Al

Then,
£ = exp(-|&) »
£,6) = sen® = {exp(- [¢]) Ei(l]) - exp(l8]) Eit-JeD}
Si.nceA2
Ei(-1¢) =1n |§ +C - [£] +-1- 1§12 +0(|§|3) as [§| — 0,
Ei(lg1) = 1In [g] +C + &8 + 5187 + 008" as el —~ 0,
there follows
L@ = s [ Il e 1 -0 e 2 e o(m 3);
‘”;Zr-fln(i:—l) as [¢§] — 0.,
Therefore,

f.(¢) cos((X) :
i 2 1

which is unbounded, but integrable. So, in those cases where u, is infinite,
the behavior of fj(§)/¢ at the origin must be handled carefully in order to
accurately evaluate the integral. One possibility is to subtract out the singu-
larity and integrate it analytically.

Alp, s, Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
Academic Press, New York, 1965, Eq. (3.723 1).

A2(bid., Eqs. (8.214 1) and (8.214 2).
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Appendix B

o0
EVALUATION OF E exp(inx)
n=1

Consider the ordinary function

fx) = 1n|sm ',Z'EI, X#0, _‘tZI’, i41l', cese

Since (1 + xz)"'1 f(x) is absolutely integrable from —«= to =, the generalized
function f(x) corresponding to ordinary function f(x) can be defined.Bl In
fact, the generalized function f(x) equals the ordinary function f(x) (See defi-
nition 8 by LighthillB2), Furthermore, the generalized function f(x) is peri-
odic, with period 2r,B3 and, therefore, can be expressed asB4

< inx
f(x) = E c_ e .
n=—0 o

The generalized function f(x) is absolutely integrable over a period, since
the ordinary function f(x) is absolutely integrable over a period.B5 There-
fore, the coefficients {cn} in the expansion of the generalized function f(x)
are given byB6

I 3 x
__1_/ -'mx_lf . 5| -inx
¢y = 35 J O 100 ¢ -2r_rdx1n|sm2 e

1/2

1.4
= ‘1‘ f dx ln(sin 3;') cos(nx) = 2 f dt In(sinxt) cos(2nxt)
o o

Bly, ;. Lighthill, An Introduction to Fourier Analysis and Generalized Functions,
Cambridge University Press, New York, 1939, p. 21, definition 7.

B21bid, p. 25.

B3Ibid, p. 60, definition 22.
Bé1bid, p. 66, Theorem 26.
BS1bid, p. 48, definition 19.
B61pid, p. 66, Theorem 26, Note.
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where we have used Eq. (4.384 3) by Gradshteyn and Ryzhi.k.B7 Therefore, the
generalized function In |sin(x/2)| can be expressed as

D==—

n#0

If we define the derivative of the generalized function 1n|sin(x/2)| as the
generalized function cot(x/2)/2, differentiation of the last equation yields the
expression of the generalized function cot(x/2)/2 asB8

l"cot-’g-'-‘--il y sgn( inx
2 °"\2 2 Z g e .
n=—w

(This equation says that the spectrum of the generalized function cot(x/2) is
the odd impulse train.B9) And sinceB10

20 1 z‘” inx
r E 6(x - n2x) = E € ’
A=— pE—e0
we obtain

> 1 fx\ 1 & inx
wZ&(x-nZn)+1§cot<§)=E+Ze ,

N=-—00 n=1

871. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
Academic Press, New York, 1965.

B80p. cit., M. J Lighthill, p. 28, Theorem 15.
B91bid., p. 66, Theorem 26, Eq. (36).
Blolbid., p. 67, Example 38,

22




or

2N inx 1 2 1
z e =~T4+7x Za(x-an)-i-i'é'cot(g)

n=]1 = =00

in the sense of generalized functions.
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Appendix C

ALIASED SPECTRUM

If we define the infinite impulse train

5, ) -;m - nh)

and use the time-limited character of g,, as given in (42), it is possible to
manipulate (46) as follows:

M
A .
Gc(f) = h kz(; wk gc(kh) exp(-i2»fkh)

T
- f dt wt) g () h 8, () exp(~i2rft)
o]

= f dt w(t) g (t) h 8 (1) exp(-i2ft)

=3 {wt) g,) h 50} = WD e G (D@ 5 @

= W@ oz: Gc(f -k %) i
R
T/m

Using h= vl we see that (52) results.,

25/26
REVERSE BLANK




NUSC Report No. 4113
3 june 19N

Comparison of Four Fast
Fourier Transform
Algorithms

James F Ferne
Albert H. Nuttall

ABSTRACT

Comparisons of four FFT (Fast Fourier Transform)
algorithms (Brenner's, Cooley's, Fisher's, and
Singleton's) have been made on the basis of pro-
gram execution time, storage, and accuracy.

Major modifications have been made in the genera-
tion of the trigonometric values in the Cooley and
Fisher algorithms, with significant improvements
in accuracy. Entry of constants in all algorithms
has been changed: the constants are approximated
by the best binary representation for the UNIVAC
11Q€ computer. Three waveform examples are used
in the comparisons, namely, linear FM, random
numbers, and a unit ramp. Also, the sizes of the
FFT's considered are limited to powers of 2, from
16 through 8192,

The results indicate that Singleton's and Brenner's
algorithms have the shortest execution times and
occupy the least amount of computer storage, where-
as Cooley's and Fisher's algorithms are the most
accurate. For example, for an FFT of size 1024

on the linear FM waveform, the maximum relative
errors for_the four algorithms are 0.17 x 10-6,
0.63 x 10-7, 0.64 x 10-7, 0.41 x 10-5, respec-
tively. Thus, there is no single best algorithm
for all three criteria considered; rather, each
algorithm has its own area of most effective
applicability.

Approved for public release. distnbution unlimited
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COMPARISON OF FOUR FAST FOURIER
TRANSFORM ALGORITHMS

1.0 INTRODUCTION

Since the advent of the Fast Fourier Transform (FFT), several algorithms,
each with its own claim to optimality, have been advanced to effect the Discrete
Fourier Transformation. In an effort todetermine quantitatively the relative ad-
vantages and disadvantages of the various procedures, four algorithms (Brenner's,’
Cooley's,’ Fisher's,” and Singleton's*) have been selected for operational
comparison on the basis of program execution time, storage, and accuracy. The
comparison is restricted to FFT sizes which are powers of 2, from 16 through
8192, (Cooley's and Fisher's algorithms are able to handle powers of 2 only,
while Brenner's and Singleton's can handle other radices.)

In order to allow general conclusions (conclusions not restricted to results
which are waveform-dependent), three different waveform examples are used
for the comparison: linear frequency modulation (FM), random numbers, and a
unit ramp, Both one-way and two-way error calculations are carried out for the
linear FM waveform, whereas only the two-way errors are calculated for the
random numbers and unit ramp waveforms.

Three measures of error are employed: rms, average magnitude, and maxi-
mum, Theoretical resuits on floating-point accuracy are available only for the
rms measure of error.® It was deemed important, therefore, to evaluate the
accuracy of the algorithms for all three error measures to seeif any significantly
different conclusions are obtained.

2.0 RESULTS

The comparison of the four FFT algorithms in terms of execution time,
storage, and accuracy is carried out on the UNIVAC 1108, The forward FFT

for a complex sequence x,, X,,..., X noy 18 defined as

N -1
X, = s exp(-i2rmn'N), 0 <m<N-1.
m =0




The inverse FFT is defined as

N =\
x_-% E X, exp12rom/'N), 0 2@ o N -1
as

Some modifications to the algorithms have been made; however, since these
modifications affect mainly the accuracy, and not executiontime or storage, they
are discussed in detail in Section 2.3, Accuracy.

2.1 EXECUTION TIME

Execution time is independent of the particular waveform example employed
in the FFT. Figure 1 depicts the execution time of the four algorithms versus
the size of the transform. The results indicate that Fisher's and Cooley's algo-
rithms take the most time; for example, for an FFT size of 8192, Fisher's
algorithm takes 3. 75 seconds, while Singleton's algorithm takes 2. 33 seconds,
This significant difference in time is somewhat obscured in Fig. 1 by the loga-
rithmic ordinate; however, it is worth noting. The other two algorithms, for
size 8192, require 3. 13 seconds for Cooley and 2, 62 seconds for Brenner.

Since the curves are virtually straight lines in Fig. 1, they can be extrap-
olated to powers of 2 beyond 8192, However, one can not interpolate between
powers of 2 to evaluate execution times for intermediate FFT sizes,

2.2 STORAGE REQUIREMENTS

Figure 2 depicts the number of storage locations required for the four
algorithms as a function of the size of the FFT. The amount required represents
both the number of data storage locations and the number of instructions that
the algorithms need. Singleton's and Brenner's algorithms need approximately
the same amount of storage, but Cooley's and Fisher's algorithms need an in-
creasing amount of storage as the size of the FFT increases because their
algorithms store thetrigonometric values and scratch storage in arrays, rather
than calculate values as needed.

Again, extrapolation to other powers of 2 is possible, but interpolation
between powers of 2 is not,
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2,3 ACCURACY

Three measures of error are used in the accuracy comparison: rms error,
average magnitude error, and maximum error. If the result of a calculation
yields the sequence of complex numbers Q,,, ’z\, veoosy QN—X , Whereas the de-
sired result is the sequence z,, Z,,..., 2 _, » the three errors are defined

as
N-1 2 V2
1
tms error = <— z -% )
N n n '
n=0
N-1
itud _ 1 A
average magmueerror-? z -z |,
n=g0
maximum error = max 3 z - /z\
o n n

The three errors obey the rulethat the average magnitude error is never larger
than the rms error, which, in turn, is never larger than the maximum error.
(The proof of the first inequality follows from Schwartz's inequality.) Thus, the
rms error is an intermediate measure insofar as severity of error is con-
cerned. The only way any of the error measures can be equal is if all theterms
'z, - ’z\,, are equal, i,e., independent of n,

Modifications have been made in all four FFT algorithms to improve their
accuracy. These modifications include the changing of constant values to the
best binary representation for the computer, and the generation of the trigono-
metric values in the Cooley and Fisher algorithms by calculating one pair of
sine and cosine values in double precision, followed by double precision recur-
sion, and rounding to single precision. This procedure keeps execution time to
a minimum and improves the accuracy of the generated trigonometric values,
which often are the major source of error in FFT algorithms,

Three different waveforms are considered in the error comparison in order
to eliminate any waveform-dependent conclusions. The first waveform is linear
FM, characterized by the sequence

= exp(inmz/N), 0 <m <N-1 (Neven)




The FFT of this sequence® is
N~1
X, = E exp (inm?/N) exp (-i2mma/N)

m*0

= N2 exp (in/4) exp(-ima?/N), 0 <a <N-1.

We have here a simple closed-form theoretical expression for the one-way FFT
that can be used for comparison with the numerical FFT calculations, accord-
ing to the error measures above, Figure 3 is a flow chart for the error calcula-
tion,

The results of the rms-error comparison on the one-way (forward) FFT are
given in Fig, 4, for N ranging from 16 through 2048, in powers of 2. * The
corresponding results for average magnitude error and maximum error are
given in Figs. 5 and 6, respectively. Actually, all these errors are relative
errors, obtained by dividing the errors above by the average magnitude of the
correct answer,

There is considerable similarity between the results of Figs. 4, 5, and 6
for the three error measures, Accordingly, in the remainder of this section
attention is confined to the rms-error measure. (Tabulations of all three errors
for all three waveforms are provided in the appendix to this report.)

The increased error of Singleton's algorithm is strikingly evident in Figs. %,
5, and 6, It is almost two orders of magnitude less accurate than the Cooley and
Fisher algorithms for an FFT size at 2048 and is degrading rapidly. The Brenner
algorithm is approximately three times less accurate at size 2048 and has the
same rate of error growth as the Cooley and Fisher algorithms,

It is worthwhile, at this point, to compare the numerical investigation with
some theoretical calculations of error conducted by Weinstein. From Egs. (28)
and (24) of Weinstein, we obtain the error (for a one-way FFT) as

1/2
o / 3 !
— Zl 206 Y o= - 4‘21-"
0‘ 2

where

o, =0.46e27"

* . . .
Storaye limitations in the auxiliary error computation program for the Cooley and Fisher alaorithms
prevented us from investigating the 4036 and 8132 cases for the linear FM wavetorm,




READ
FFT SIZE

GENERATE
LINEAR FM

A 1

LOAD LINEAR FM
INTO DATA ARRAY

l

CALL FORWARD FFT

l

CALCULATE AND PRINT
] ERROR RESULTS

R

Fig. 3. One-Way FFT Error Calculation for Linear FM




3n107 r STNGLETSN
: AN j
D
107% 7,/
—7
pd
I |
|
A
d |
| BRENNER
g _7 / L N N
w10 S —_ —— —
2 7 1 T
* V4 N : ‘ ! ‘ L
Pl * i - ' -] 15
7T = T T
A T | cootey | | '
/ | | L * |
’ ‘
/ | FISHER } ‘
/J ; q | I ‘ '/+ —X
1078 —r %—’f—t—t—‘ L1 rmeorencar ‘
", . e -
4 _ TI— , —— ‘ L
7 A T
4 o z ‘
T —t= * —
30107 ! | R S
*F e 32 64 128 256 512 1024 2048
SIZE OF FFT

Fig. 4. RMS Error for Linear FM (Forward FFT)




3x107%

SINGLETON ﬁy/
1076
Z
’/
(-4
9] /
o
o]
" /
o
2 //
5 17 =z BRENNER -
§ prd Na
- . a
O i
£ p
z i ol COOLEY]
el
—————
L — —
/ /
-8 A
10 -z —
2 -
p AR
7
3x10"° y
6 32 64 128 256 512 1024 2048
SIZE OF FFT

Fig. 5. Average Magnitude Error for Linear FM (Forward FFT)




10

-5

10
SINGLETON ~——Z-
N
A
/
v g
107 A
-
pd
2 BRENNER
g a
x _—r-:“
g _—_-J—"'
/ /—
1077 — I
7 —~—FISHER
7 T
L e f
/. r X
i COOLEY
|
> J
/V |
|
1078 / —
}
6x 107 .
16 32 64 128 256 512 1024 2048
SIZE OF FFY
Fig. 6. Maximum Error for Linear FM (Forward FFT)




Here, v is the logarithm (to the base 2) of the size of the transform (N = 2"),
and t is the number of bits used to represent the mantissa of a number, *

As shown in Fig, 4 (where the theoretical equation is plotted as x's, with
o2=1), Weinstein's calculations underestimate the rms errorby a fair amount
over most of the range of FFT sizes. Also, his calculations indicate a slower
rate of error growth with FFT size than was actually obtained. As Weinstein
himself notes, this is probably due to the truncated arithmetic employed in the
UNIVAC 1108, In fact, if truncated arithmetic is employed instead of rounding,
the rms error is greater by a factor of Y32 at N = 2048 (see Ref. 5). This in-
creased error would move thetheoretical curve in Fig, 4 to a very close approx-
imation to the Brenner curve, Fisher's and Cooley's error curves are somewhat
better because their trigonometric values are obtained by rounding while the
remaining arithmetic is truncation; thus, they constitute a mixed procedure,

For the other two waveforms considered, the error is computed after a two-
way FFT is performed; i.e., the FFT is retransformed back into the original
(time) domain to obtain the error estimate (see Fig. 7). The primary reason for
doing this is that, since all the array entries in the time domain are approximately
unity in magnitude, it is easy to form a meaningful relative error in the time
domain. A relative error formed in the frequency domain, where the range of
values is several orders of magnitude for the random numbers and unit ramp
waveforms, would be less meaningful. The linear FM waveform, on the other
hand, possesses constant magnitude for all array entries in both domains, a
characteristic which makes it particularly appealing.

The resuits for the rms error for thethree waveforms aregiven in Figs. s,
9, and 10. (The average magnitude error and maximum error are tabulated in
the appendix.) The two-way error results are similar in form to the one-way
error results, with the exception of Singleton's curve, A comparison of Figs. 4
and 8 reveals that the two-way error for Singleton's algorithm is less than the
one-way error, a discrepancy which must be due to fortuitous error-cancella-
tion in the two-way results, Since one would never use a two-way FFT without
performing some transformations on the one-way results, the two-way Singleton
results must be used with reservation. Where Singleton's algorithm is concerned,
it would be more reasonable to double the one-way error of Fig. 4 than to use
the two-way error of Fig. 8.

¥ For the UNIVAC 1108, t equals 27 in single precision.
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Direct comparison between errors for different waveforms is not possible
because the average values of the array entries are not identical;e. g., the rms
value for the linear FM waveform is 1, for the random numbers Y2, and for

the unit ramp Y 2/3. Such scale factors would have to be included in order to
obtain a valid comparison between waveforms.

3.0 CONCLUSIONS

The trade-off between the four algorithms considered is readily apparent:
the best accuracy is achieved only at the expense of increased execution time
and storage. If we are severely limited by execution time and storage, we may
have to select a less accurate FFT algorithm;how important the errors are will
depend upon the particular application.

In summary, po single FFT algorithm represents a best choice; it must be
left to the user to determine the best algorithm, based on the criteria of most
importance to him,
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APPENDIX

TABULATION OF ERRORS

(NOTE: In the following tables,
notations such as , 124-07 mean
.124 x 107 ,)
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20

RELATIVE ERROR FOR ONE-WAY FFT OF LINEAR

Table 1

FM WAVEFORM

Algocithm SF::: RMS M?g::?x:e Maximum
Breaner 18 124-07 .951-08 .199-07
Cooley 16 .800-08 .611-08 .142-07
Fisher 18 .416-08 +349-08 .631-08
Singieton 16 .208-07 .152-07 .354-07
Brenner 32 421-07 .326-07 .826-07
Cooley 32 .150-07 «119-07 .226-07
Fisher 32 .103-07 .7192-08 .220-07
Singleton 32 .128-07 .570-07 .133-08
Breuoner 64 44807 J351-97 .942-07
Cooley 64 .155-07 J121-07 345071
Fisher 84 .130-07 .893-08 .331-07
Slagleton 64 .136-08 .101-06 .311-06
Brenuer 128 .612-07 518-07 .132-06
Cooley 128 .197.47 W171-07 .386~07
Fisher 128 .198.07 .160~07 +384-07
Singleton 128 .175-06 »128-06 .444-06
8renger 256 .586-07 .494-07 .118-08
Cooley 256 .213-07 .181-07 .431-07
Fisher 258 +205-07 . 160-07 . 459-07
Singlewon 256 .334-06 1250-06 .363-06
" Breaner 512 .165-07 .682-07 .118-06
Cooley §12 .264-07 .239-07 .549-07
Fisher 512 .2719-07 .242-07 .593-07
Singleton 12 .665-06 .520-06 . 188-05
8reaner 1024 .806-07 .T18-07 173-06
Cooley 1024 .283-07 .249-07 .626-07
Fisher 1024 211-07 .228407 .642-07
Siogletoo 1024 .126-0% .968-06 ,355-0%
Breaner 2048 . 969-01 .890-07 L203-06
Cooley 2048 .349-07 .321-07 .654.07
Fisher 2048 34407 .311-07 .828-07
Siagteton 2048 .235-05 .176-05 L785-08




Table 2

RELATIVE ERROR FOR TWO-WAY FFT OF LINEAR
FM WAVEFORM

Algorithm ::: RMS ::;:i:e Maximum
Brenner 16 .279-07 .197-07 .395-07
Cooley 16 .884-08 .590-08 .159-07
Fisher 16 .543-08 .373-08 .931-08
Singleton 16 .124-07 .843-08 .218-07
Breaner 32 .800-07 .628-07 .169-06
Cooley 32 .230-07 L177-07 .401-07
Fisher 32 .204-07 .169-07 ,333-07
Singleton 32 .425-07 .280-07 .897-07
Breaner 64 .828-07 .669-07 .1587-06
Cooley 64 .237-07 .180-07 .525-07
Fisher 64 .222-07 .165-07 .449-07
Singleton 64 .376-07 .289-07 .802-07
Brenner 128 .108-06 ,931-07 .211-06
Cooley 128 .344-07 ,291-07 .619-07
Fusher 128 .381-07 .326-07 .673-07
Singleton 128 .678-07 .562-07 .157-06 !
Brenner 256 .115-06 .980-07 .214-06
Cooley 256 ,380-07 .324-07 .760-07
Fisher 256 .383-07 .315-07 .792-07
Siungletoa 256 .898-07 .685-07 .242-06
Breaaer 512 .142-06 . 127-06 .306-06
Cooley 512 .810-07 .452-07 .954-07
Fisber 512 .539-07 .484-07 .988-07
Singleton 512 .227-06 .178-06 .696-06
Brenner 1024 .150-06 .135-06 .308-06
Cooley 1024 . 54407 .487-07 .934-06
Fisher 1024 .520-07 .461-07 .105-06
Singleton 1024 .294-06 .211-06 .126-05
Breaner 2048 .181-06 .166-06 .344-06
Cooley 2048 .683-07 .623-07 .127-06
Fisber 2048 .688-07 .638-07 .113-06
Singleton 2048 .557-06 .397-06 .289-05




Table 3

RELATIVE ERROR FOR TWO-WAY FFT OF
RANDOM NUMBERS

Algorithm :;: RMS N‘: :;;::i:: Maximum
Breaner 16 .499-07 .359-01 .141-06
Cooley 16 .221-07 .165-07 .832-07
Fisher 16 .220-07 .153-07 .832-07
Singleton 16 .276-07 »209-07 .802-07
Brenner 32 .787-07 .612-07 .224-06
Cooley 32 .369-07 .308-07 .354-07
Fisher 32 .332-07 .267-017 .666-07
Singleton 32 .543-07 .458-017 .114-06
Breoner 64 .105-06 .838-07 .256-06
Cooley 64 .464-07 .366-07 .128-06
Fisher 64 .5168-07 .403-07 .128-06
Singletoa 64 .966-07 .820-07 .187-06
Breaner 128 .166-06 .132-06 .592-06
Cooley 128 .733-07 571-07 .283-06
Fisher 128 .719-07 .603-07 ,211-06
Singleton 128 .223-06 .178-06 .116+-06
Breaner 256 .184-06 .148-06 .590-06
Cooley 256 .881-07 11-01 .298-06
Fisher 256 .862-07 .709-07 .233-06
Siagletoa 256 .326-086 .261-06 .943-06
Breaner 512 .215-06 .172-06 .718-06
Cooley 512 .102-06 ,813-07 .382-08
Fisher 512 .101-06 .825-07 .340-06
Singleton 512 .137-06 .602-06 .259-05
Brenner 1024 .255-0€ .204-06 .894-06
Cooley 1024 .123-06 .992-07 .443-06
Fisher 1024 +124-06 .102-06 .424-06
Singleton 1024 .152-05 .124-08 .524-05
Breaner 2048 .288-06 .230-06 ,110-08
Cooley 2048 . 136-06 .109-06 .506-06
Fisher 2048 .137-08 .111-06 .554-06
Singleton 2048 .317-08 ,257-08 .128-04
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Table 3 (Cont'd)

RELATIVE ERROR FOR TWO-WAY FFT OF
RANDOM NUMBERS

FFT

Average

Algorithm Size RMS Magnitude Maximum
Breanes 4096 .306-06 +245-06 .117-08
Cooley 4096 .149-06 .119-06 .569-08
Fisher 4096 .150-06 .122-06 .654-08
Singletwon 4096 .619-05 .502-05 .275-04
Breaner 8192 .339-06 .272-06 . 154-05
Cooley 8192 «163-06 .131-06 .654-06
Fisher 8192 .185-06 .133-06 .674-06
Singletoa 8192 .122-04 .991-08 +563-04
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Table 4
RELATIVE ERROR FOR TWO-WAY FFT OF UNIT RAMP

FFT Avetage
Algorichm Size RMS Maguitude Maximum
Brenner 16 .250-07 .188-07 537-07
Cooley 16 .114-08 .492-08 .211-07
Fisher 168 .101-07 .889-08 20-07
Singleton 16 »121-07 .833-08 .239-07
Brenner 32 .381-07 «305-07 1,000-07
Cooley 32 .129-07 .102-07 .421-07
Fisher 32 .172-07 .142-07 .421-07
Singleton 32 +213-07 .183-07 .421-07
Brenner 64 .411-07 .337-07 »120-06
Cooley 64 .180-07 «141-07 .832-07
Fisher 64 .208-07 .171-07 .4717-07
Singleton 64 .367-07 +296-07 .107-06
Brenner 128 +529-07 -449-07 .180-06
Cooley 128 .238-07 .181-07 .954-07
Fisher 128 .248-07 .195-017 .745-07
Singleton 128 .702-07 «564-07 «249-06
Brenaer 256 .575-07 .483-07 .208-06
Cooley 256 .284-07 +222-07 .118-06
Fisher 256 .298-07 «241-07 +105-08
Singleton 256 .107-06 .820-07 .463-06
Brenner 512 .696-07 .593-07 .283-06
Cooley 512 .331-07 .255-07 .149-06
Fisher 512 .342-07 .2713-07 .126-06
Singleton $12 .236-06 .118-06 .119-08
Brenner 1024 .743-07 .628-07 .316-06
Cooley 1024 .366-07 .279-07 .191-06
Fishet 1024 .396-07 .319-07 .158-06
Singleton 1024 .440-06 .328-06 .270-05




Table 4 (Cont'd)
RELATIVE ERROR FOR TWO-WAY FFT OF UNIT RAMP

FFT Average
Algorithm Size RMS Magnitude Maximum
Breoner 2048 .872-07 .150-07 .401-08
Cooley 2048 -412-07 .315-07 J233-08
Fisher 2048 .438-07 «350-07 .191-08
Singieton 2048 .938-08 .694-08 .642-05
Brenner 4096 .899-07 .160-07 .434-08
Cooley 4096 484-07 .359-07 .217-08
Fisher 4096 .491-07 .395-07 «244-06
Singietoa 4096 .185-05 .137-08 + 144-04
Brenner 8192 .101-08 .870-07 .517-08
Cooley 8192 .502-07 384-07 .310-06
Fisher 8192 .530-07 .422-07 .265-06
Singletoa 8192 .370-05 .273-08 .328-04
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Spectral Estimation by
Means of Overlapped Fast
Fourier Transform
Processing of Windowed
Data

Albert H. Nuntail
ABSTRACT

An investigation of power-density autospectrumestimation

by means of overlapped Fast Fourier Transform (FFT)
processing of windowed data is conducted for four candidate
spectral windows with good side-lobe behavior. A compari-
son of the four spectral windows is made on the basis of
equal half-power resolution bandwidths. The criteria for
comparison are: (1) statistical stability of the spectral
estimates, (2) leakage (side lobes) of the spectral windows,
(3) number of FFTs {number of overlapped pieces) required,
and (4) size of each FFT required. The dependence of these
criteria on the amount of overlap is investigated quantitatively.

Some striking invariances are discovered. Specifically, it
is shown that the ultimate variance-reduction capabilities
of the four windows, as measured by the equivalent number of
degrees of freedom (EDF), are virtually identical under the
constraint of equal half-power bandwidths. Furthermore, when
the proper overlap is used for each window, the stability of
this method of spectral estimation is identical to that of the
"indirect” correlation approach. Also, the number of FFTs
required to realize 99 percent (or less) of the maximum EDF
is virtually indeoendent of the particular window employed.
The required fractional overlap of the four data windows for
99 percent (or less) of the maximum EDF is virtually independ-
ent of the product of the available time and the resolution
bandwidth, although it does depend on the particular window.
Tables of required overlap are presented. The only tradeoff
among the four windows is that those with better side lobes
require larger-size FFTs. All of these results are derived
for a Gaussian random process, under the assumption that the
resolution bandwidth of the spectral window is smaller than
the finest detail in the true spectrum.

Rules of thumb for the maximum EDF and the number of FFTs
required to realize 99 percent of the maximum EDF are given.
The possibility of weighting individual spectral estimates
unequally in order tooptimize the EDF is investigated; the
gain is found tobe negligible for cases of practical interest.

Approved for public reiease; distribution unlimited.
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SPECTRAL ESTIMATION BY MEANS OF OVERLAPPED
FAST FOURIER TRANSFORM PROCESSING OF WINDOWED DATA

INTRODUCTION

Estimation of the power~density spectra of stationary random processes is
an important problem and occurs frequently in many fields. The resolution of
closely spaced frequency components, with limited amounts of data, presents
inherent limitations on the statistical stability of the estimates. Also, the pre-
vention of leakage of undesired frequency components into the frequency being
analyzed dictates a careful choice of data weighting. Lastly, the extent and
complexity of the data processing required to realize the desired resolution,
stability. and leakage control are important considerations.

The fundamental, conflicting desires involved in spectral estimation be-
come painfully obvious when the amount of data available for analysis i1s limited
and can not be au, mented by additional measurements. For example, the avail-
able record length may be limited by

a. nonstationary conditions (changing environment),
b. storage limitations,

c. equpment failure, and

d. time-sharing requirements.

Although factors b, ¢, and d can often be remedied or corrected. factor a
often can not be controlled. Thus. only a small segment of the time record
may be usable for each spectral analyvsis. If fine frequency resolution 1s de-
sired. the limited number of independent observations available makes stable
estimation impossible in some cases. One must then be willing to accept
coarser, but more stable, spectral estimates,

The two fundamental parameters that control the performance of spectral
estimation are the available record length, T. 1n which the sample of the
random process 1s assumed stationary, and the desired frequency resolution,
B. of the spectral analysis. Large values of the fundamental BT product
vield good performance of the analysis technique, but small values are often
forced upon us by too small a record length T or too fine a desired resolution
B. The problem here 1s to make maxamum use of the available data.




Spectral analysis has received much attention in the past [1-6], especially
since the advent of the Fast Fourier Transform (FFT) [7, 8]. In particular, the
method of averaging short modified periodograms (9] is a prime candidate for
spectral analysis — for several reasons., First of all, nonstationary trends in
the data are more readily observable through the time-local spectral estimates
of each segment, Second, the size of each FFT can be kept reasonably small,
thereby reducing storage, execution time, and round-off error. Third, the fre-
quency resolution is easily controlled by the choice of segment length, and leak-
age (side lobes) can be controlled by the proper choice of window in the time
domain, Lastly, overlapped segments of windowed data utilize more fully the
variance-reduction capability of a given record length,

The problem to be addressed here has to do with the choice of window and
amount of overlap to employ for a particular application. Specifically, if we
employ a window with very small spectral side lobes, how much should the
segments be overlapped, and does the overlap vary greatly with the particular
window selected? (Fifty-percent overlap has been suggested as a reasonable
procedure for the triangular data window [9. p. 72].) How many FFTs of what
size have to be performed for the different windows? Is the variance-reduction
capability dependent on the particular window?

Four windows will be investigated. They are called data windows in the
time domain, where they are multiplied by the available data record. they will
be called spectral windows in the frequency domain, where their main effect
enters via convolution. The four data wandows are called triangular. cosine. *
quadrauc, and cubic and will be documented in a later section. Hamming
weighting [2. p. 14], although 1t possesses good adjacent side lobes. 1s not
considered here because the spectral window decays very slowly with frequency.
thereby responding to {requencies far removed from the analysis band of
interest.

PROBLEM DEFINITION

Consider that stationary random process x has been observed for a time
interval T seconds. thatis, x(t) for 0<t < T is available. Let the power-
density autospectrum of thus process at frequency f bedenoted by G(f}, where
double-sided spectral notation will be employed. We wish to estimate spec~
trum G with a resolution of B hertz, where B is the half-power (-3 dB)
bandwidth of the desired resolution.

*Also called Hanning weighting.




DATA WINDOW w

VAR
/ N\
/7
/ \
/ \
I \J
0 s L S+l P-1)5 (P=1)5~L

Fig. 1. Overlapped Data Windows

The method of obtaining the spectral estimates is depicted in Fig. 1. A
data window w of duration L seconds is applied successively to the available
data x in the overlapping intervals (0,L), (8,S+L), ..., ((P-1)S, (P-1)S+L).
S is the amount of shift each adjacent data window undergoes, and P is the
total number of pieces or segments employed. Since only T seconds of data
are available. we must have

(P-1S+L < T. (1)

The segment length L should be large enough that the correlation function of
process x 1s effectively zero for delays larger than L/2. (The relation be-
tween frequency resolution B and segment length L isdiscussed quantitatively
later.) The form of the data window, depicted in Fig. 2, is even about the
origin and real. Also, w(t) is zero for rt:>L/2.

wit)

-2 L2

Fig. 2. Data Window




When the overlap in Fig. 1 is a significant fraction of the segment length,
the effective use of the available data x is fairly uniform over the entire inter-
val T except for the edges of the data, where a gradual taper over an interval
of length L/2 takes place. This is consistent with earlier suggestions [10,

p. 58] for maximum use of the available data. Notice that the percentage of
taper depends on the desired frequency resolution and available record length,
and is not a constant, such as 10 percent, as has occasionally been suggested.

The estimate of the power-density spectrum G is obtained as follows.
First, a Fourier transform on the p-th windowed section is performed*:

Yp(f) =/dt exp(-i2rft) x(t) w[t —% - (p-l)S] , 1<psP. 2)

The spectral estimate at frequency f is then available as the average of the P
preces:

A 1 P 2
Co =3 ‘;lYpml : (3)

Equation (2) assumes a continuous, rather than discrete, form of signal
processing [2. Secs. 4-11 versus 12~21]. However, if the discrete version of
Eq. (2), where samples of » are taken At seconds apart, is such that aliasing
is negligible, there is little difference between the two methods of spectral
analysis {2, pp. 37-39 and 123-125]. We shall assume that At is so chosen
and confine attention here to the continuous processing technique of Eq. (2). Of
course, in practice, Eq. (2) is approximated by a discrete Fourier transform
[9. p. 70], in which case dc and linear-trend removal should be considered for
the sampled data (2, pp. 47-49].

The spectral estimate /(‘:(f) in Eq. (3) is a random variable. Its mean and
variance are evaluated in Appendix A under the assumptions that x is a Gauss-
ian random process and that the frequency resolution of the spectral window
[W|*, where

W (f) =ﬁt exp(-i27ft) wit) , (4)
is narrower than the finest detail in the true spectrum G. (This latter assump-

tion is equivalent to that given under Eq. (1) for segment length L.) The re-
sults are

*Integrals without limits are over the range of non-zero integrand.




{80} = [d ca-» wmlPxco [a wml?, (5)

P-1
Var{@(f)} = 1%' Z 1 - — l/:iu exp(i2mukS) G(u) lW(f—u)l
k=-(P-1)
P-1
=Gchn = ( - '—lﬂ>|¢ (RS)| (6)
k=~(P-1)
where
¢w(r) ;/dt wi(t) w¥(t - 7). (N

Relation (3) shows that the mean of the spectral estimate is equal to the con-
volution of the true spectrum G with the spectral window |W|2. Relation (6)
expresses the variance of the spectral estimate in terms of the number of
pieces P, the shift S, and the autocorrelation ¢, of the data window. The
result, Eq. (6), holds if f is greater than the bandwidth of the spectral win-
dow; the right side of Eq. (6) must be doubled if =0 [see also 9, p. 71].

The equivalent number of degrees of freedom (EDF) in spectral estimate
G is defined as [2 p. 22]

2 N
> k/:\(f)%
var { G}
=— 2b = (8)
Z (1_5 ¢w(k5)
Pjlo (0)
w

k=-(P-1)

employing Eqs. (4) through (6). Notice that under the assumptions given above,
K is independent of the value of frequency f and true spectrum G; for f= 0,
K is given by one half of Eq. (8).

For computational purposes, it is convenient to define a normalized data
window u according to

u(x) = w(lx). (9




Then u contains the shape information of data window w but extends only over
the interval (-1/2, 1/2). It follows that

e (n=L ¢u(f/L) , (10)
where
¢u(r) =/dt u(t) u*it-7) . (11)

The EDF in Eq. (8) then becomes

2P

K= > (12)
5 e
P ¢,

=-(P-1)

In order to minimize the fluctuations in the spectral estimate 6\, we
should maximize K in Eq. (12). To accomplish this for a given number of
pieces P and segment length L, the shift S in Eq. (12) should be chosen as
large as possible so that ¢ is as small as possible at S/L, 2S/L, etc.
However, since Eq. (1) dictates a constraint among these variables, the best
choice of shift S — for given record length T, number of pieces P, and
segment length L — is given by equality in Eq. (1):

T-L
= cm— >
S Pl (ffor P22) . (13)

Substituting Eq. (13) in Eq. (12), we have

K= 2P : (19)
Pl kI
> (1 "5‘)
k=-(P-1)

.+ «wpresses the EDF as a function of




P, number of pieces in the average,
T/L, ratio of record length to segment length, and

¢u, autocorrelation of shape of data window.

The problem now is to maximize the EDF in Eq. (14) by choosing, subject to
specified record length T and desired half-power frequency resolution B, the
number of pieces, P, for several data windows, w. It will turn out that the
optimum value for P is not infinite.

One special case of Eq. (14) is worth comment: if P < T/L, the values
of ¢, in Eq. (14) are zero since u extends only over (-1/2, 1/2). Then K
equals 2P; that is, regardless of the window, the EDF increases linearly
with the number of pieces P until overlap occurs (see Eq. (13)). As P in-
creases somewhat beyond T/L, K continues to increase, although at a slower
rate, because the overlapped pieces are progressively more statistically de-
pendent, Of importance in the behavior of K are the rate of increase of K
with P, and the maximum value of K attainable through the choice of P.

LIMITING VALUE OF EQUIVALENT NUMBER OF DEGREES OF FREEDOM

As the number of pieces P tends to infinity, the overlap approaches 100
percent, and the denominator of Eq. (14) approaches an integral, yielding

K= — i((T ] -

—-1)x

fdx(l-nu) 2 :(0)

-1 u

T
_ 2(z-1) _ 5

/%-d . Lot | |d>u(")
’< 'I%_ll>|¢uw)




This limiting value depends only on T/L and the correlation ¢¢®of-ehewh sc
u of the window. It is finite because the overlapped pieces are statistically
dependent.

For large values of T/L (ratio of record length to segment length), an
alternate form of Eq. (15) is very illuminating. If Eq. (10) is utilized, the
denominator approaches

8 (7 2 o, Lr)® | s, ® 2
fd’ % (0) =/d’ s (0) =fﬁ‘ 2 O (16)
u w w

but from Eqgs. (7) and (4),

¢ _(0) =/dt |w(t>[2 =fdfl\V(f)|2 , (17)

¢ ® =fdf exp (i2rft) I\V(f)l2 , (18)

/dt |d>w(t)|2 =fdf ]w(f)l”" (19)

by Parseval's Theorem. Combining Egs. (15) through (19), we obtain

[/;f hw ()] 2] E

K =2 (T - Ly

and

giving

for 2>> 1. (20)

fdf lwol ' L

If we define the statistical ‘bandwidth [5, p. 265] of spectral window l\\'l2 as
A’

[ﬁf [w) 2] C,,

B = = , (21)
st /df lwel* T
then
_ oI T -
K, =2 (T-L)B_ = 2(L 1) C,» for —>1. (22)




The constant Cg; is dimensionless and of the order of unity; it depends only on

the shape of the window:
2
2
[ {df lu@) ]
= (23)

where U is the Fourier transform of u (see also Eq. (9)).

The first form in Eq. (22) for K, indicates that if windows are compared
on the basis of equal statistical bandwidths (by appropriate choice of segment
length L for each data window), then all windows have the same value of K,
for large T/L; that is, all windows have the same variance-reduction capabil -
ity, when compared on the basis of equal statistical bandwidths, if the avail~
able record length is much larger than the segment length. For other measures
of bandwidth, such as the half-power bandwidth B, we are led to anticipate
this same result. In a later section, we will demonstrate this quantitatively not
only for T/L >> 1 but for small values of this ratio as well, and for finite
values of P, the number of pieces.

It is of interest to compare Eq. (20) with the results of Blackman and Tukey

[2, Secs. B6-B8] for spectral estimation via the "indirect" correlation func-
tion approach. Their EDF at frequency fj is given approximately by

a0
2
[ { df [Q (f+f)) +Q, (-1 )] G(f)]

a0
2 2
[ df [Q,¢+)) +Q,(-1))]" G"

2T (24)

for long records, where Q. is their spectral window. For frequencies f;
greater than the width of spectral window Q;, and assuming that Qi is narrow
compared with the finest detail in true spectrum G, Eq. (24) becomes approxi-

mately
a0
[fde,(f-f )}2
b i 1

2T . (25)

® 2
[ df @ (¢-1,)




In order to relate the EDF in Eq. (25) to the one used here, we note that the
mean value of Blackman and Tukey's spectral estimate is given by the convolu-
tion of Q; with G. We then identify Q; with |w|2, obtaining for the EDF in
Eq. (25):

, (26)

which is in agreement with Eq. (20) for long records. Thus, under the assump-
tions given above, the same limiting value of EDF is realized by both the
"indirect" correlation approach and the present 'direct" FFT approach; that is,
both methods are capable of the same statistical stability if the proper overlap
is used in the FFT approach.

DATA WINDOWS AND CHARACTERISTICS

Four data windows will be considered here. They are all continuous; how-
ever, they have differing degrees of continuity in their derivatives, leading to
different rates of decay of their spectral windows for large frequencies. The
triangular data window, made up of two straight-line segments, has a discon-
tinuous first derivative. The cosine data window (Hanning) has a discontinuous
second derivative. The quadratic data window is made up of segments of
quadratic curves so chosen that the first derivative is everywhere continuous,
but the second derivative is discontinuous; thus, the quadratic data window has
behavior similar to that of the cosine data window. The cubic data window is
made up of segments of cubic curves so chosen that the second derivative is
everywhere continuous, but the third derivative is discontinuous. This se-
quence of windows will have progressively better high-frequency decay and, as
will be seen shortly, better side lobes at low frequencies. (Hamming weighting
is not considered because its discontinuous data window yields a slowly decay-
ing spectral window for large frequencies.) Computation of the quadratic
and cubic data windows is easier and faster than computation of the cosine data
window in the time domain, * Their computational advantage and better side-
lobe behavior, make them attractive candidates for spectral analysis.

*In the frequency domain, the cosine data window is equivalent to convolu-
tion with the sequence -1/4, 1/2, -1/4, which is easily implemented.

10




The four windows are detailed below in Eqs. (27) through (30). They have
been normalized in such a way that U(0) = 1. From Eq. (9) and Fig. 1, notice
that u(t) =0 for It1>1/2. (The expressions for the correlations @, of the
windows are collected in Appendix B; these correlations are necessary for the
evaluation of Eq. (14).) In the following, sinc(x)= sin(rx)/(rx).

Triangular Data Window

u(t) = 2 (1 - 2it1), |tlS%
.2
U(f) = sinc” (f/2) . 27
Cosine Data Window
u(t) = 1 + cos(2nt), mS';:
U@ = sinc (f) (28)

1-¢

Quadratic Data Window

(1-126%), 5%

w o

u(t) =
27 2 1 1
- - &< =
= (1 2m) U

U@ = sincs(f/3) ) (29)

11




Cubic Data Window

8 2 3 1
3.(1 24t +481t1°), 1t g "

u() =
16 3 1 1
?(1-2m) . FSusy
. 4
U () = sinc (f/4) . (30)

The function W(f) is available from the normalized function U(f) accord-
ing to

wf) =L ULS) , (31)
upon Fourier transformation of Eq. (9). We define the half-power bandwidth

of spectral window |W|2 as the frequency range over which |W]2 is greater
than half of its peak value:

,W(i' 213){2 =2 lwo®. (32)

In addition to the statistical-bandwidth constant Cg, defined in Eq. (21), we
define a half-power-bandwidth constant C according to

B= (33)

i [9!

Numerical values for both of these dimensionless constants for the four win-
dows are given in Table 1.

The bandwidth constants are larger for the ""smoother' data windows; thus,
their bandwidths are larger for a given segment length L (Fig. 1). Alternatively,
if the bandwidths are to be kept equal for the four windows, the segment lengths
must be larger for the smoother data windows,

In the bottom row of Table 1, the ratio of the statistical-bandwidth constant

to the half-power-bandwidth constant is found to be relatively constant for the
four windows considered. Thus, the statistical stability of the spectral esti-

12




Table 1

BANDWIDTH CONSTANTS

Data Window
Triangular Cosine Quadratic Cubic
Cst 1,854 2,079 2,304 2,686
C 1,276 1,441 1,572 1,820
Cst/c 1,454 1,443 1,466 1,476

mates can be discussed in terms of either bandwidth without fear of changing
significantly the quantitative aspects. For example, Eq. (22) becomes

for % >1, (34)

K =2.9(T-L)B,
[+ o]
in terms of half-power bandwidth B, where Egs. (21) and (33) and Table 1
have been employed. A more precise relation than Eq. (34) will be given for
K in the next section, where the number of pieces P will be finite.

Half of each symmetric spectral window is plotted in dB versus f/B in
Figs. 3 through 6. Here

dB =10 log IUI2 , (35)

since the power-density spectrum G is seen through a window proportional

to |U|%. All the plots go through -3.01dB at /B = 1/2, since B is the half-
power bandwidth. The slow spectral decay of the triangular data window and
the fast spectral decay of the cubic data window are evident. The cosine and
quadratic data windows exhibit intermediate behavior. The first three side
lobes of the spectral windows are given in Table 2, where it is seen that the
quadratic window offers an 8.3-dB improvement relative to the cosine window
in the size of the first side lobe, and the cubic window yields an additional
13.3-dB improvement. .

13
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FIRST THREE SIDE LOBES OF
SPECTRAL WINDOWS

Data Window Side Lobes (dB)
Triangular -26,5 -35.7 -41.6
Cosine -31.5 -41.5 -48.5
Quadratic -39.8 -53.5 -62,4
Cubic -53.1 -71.3 -83.2

RESULTS

The general expression for EDF is given in Eq. (14). We eliminate the
segment length L in this expression in favor of the half-power bandwidth B
by using Eq. (33) to obtain the dependence on the fundamental parameter BT
(see Introduction). It follows that

- 2P : .
o P-1 Y (k———BTP/_Cl'1> 2 e
k=_§_l) (-3 ?_(0)

For a particular window u and value of BT, K is computed versus P. A
sample tabulation for the cosine data window and BT = 8 is given in Table 3.
The column headed "' Fractional Overlap'" is a measure of how much the individual
data windows overlap in the spectral processing technique depicted in Fig. 1 and
is given by

18




Table 3

EQUIVALENT DEGREES OF FREEDOC)
VERSUS NUMBER OF PIECES,
BT =8, COSINE DATA WINDOW

|

Fractiona.

P K .
(neriar

2 4. 00 "
3 6. 00 '
4 =, 00 !
5 10. 00 "
6 12,00 e
7 14. 00 o
8 15.96 ’
9 T.74 +
10 19. 1 v
11 20,04 <
12 20,50

13 20, Ay

14 20,72

15 20,71

16 29, K

17 20,61

15 20, 5

19 IV

20 0, e

30 IR

40 .

50 . .

100

200
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when non-negative, Equations (13) and (33) were employed in Eq. (37).

Several points in Table 3 are worth noting. For no overlap, the EDF
increases linearly with P, and even as overlap begins to occur, the rate
of increase of EDF remains the same, .Thus, 24% overlap still yields the
maximum possible EDF for P =7, However, as P and the overlap increase
further, the EDF increases more slowly, eventually reaching a maximum, *
after which it decreases slightly for further increases in P. A point of
diminishing returns is reached somewhere near P = 12, where 98% of the
maximum (max) EDF is realized. The extra computational effort in spectral
analysis for P > 12 is not worth the return in stability. The fractional over-
lap for 98% of max EDF is .59; the EDF is then 20,5, whereas it was only
10, 0 for the last non-overlapped example, The case for overlapped processing
is well demonstrated by Table 3,

Similar results for all four windows and BT =2, 4, 8, 16, 32, and 64
are condensed in Table 4, which gives the required number of pieces and
the corresponding fractional overlap for a specified fraction of the max EDF,
For example, in Table 4B for the cosine data window, in order to realize
a specified fraction of 98% of the max EDF at BT = 8, the number of pieces
required is 12, and the corresponding fractional overlap is ,59. The bottom
row of each data-window table gives the max EDF for the corresponding
value of BT, Also provided is an equation for max EDF, which was empiri-
cally determined to fit through the numerical values obtained,

Several striking invariances are apparent upon inspection of Table 4, First,
for a given record length T and desired frequency resolution B, the max

* The existence of a finite value of P for maximum EDF is similar to the
situation cited in Reference 11,

20




EDF is virtually independent* of the window employed; that is, all the windows
considered have the game variance-reduction capability in spectral estimation
when compared under the same frequency-resolution constraint. A simple,
approximate rule of thumb for all four windows is given by

max EDF =3 (BT - 1). (38)
Recall that B is the half-power bandwidth of the spectral window.

For a given window and specified fraction of the max EDF, it will be ob-
served from Table 4 that for BT > 4, the required fractional overlap is
approximately constant (independent of BT). Therefore, in the last column of
Table 4 is entered a representative or ''average' fractional overiap required
for the specified fractionof max EDF entered in the first column. (This simple
rule does not hold well when 100% of the max EDF is required; accordingly, no
value is entered for this case.)

For a given value of BT, the number of pieces required to realize .99 (or
less) of max EDF is virtually independent of the particular window employed in
spectral analysis. This independence is very important; it says that all four
windows require the same number of FFTs in order to realize the same EDF
and that selection among the windows, therefore, can not be based upon the
number of FFTs required, but must be based upon some other consideration
such as side-lobe level or size of FFT (to be discussed). An approximate rule
of thumb for the number of pieces required is given by

Number of pieces required ~1.75 BT for .99 of max EDF. (39)

For large BT products, the number of pieces required to realize max EDF
is significantly larger than the number required to realize 99» of max EDF;
thus, this large amount of additional processing yields insignificant improve-
ment and is to be avoided.

*Very small values of BT are an exception; these are of little practical
interest however,

21
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Table 5
REQUIRED FRACTIONAL OVERLAP FOR , 99 max EDF
Data Window
Triangular Cosine Quadratic Cubic

Fractional

Overlap .56 .61 .85 .70

The required fractional overlap is greater for the better-side-lobe win-
dows. Thus, for example, to realize ,99 of max EDF, we have (virtually inde-
pendent of the BT product) the values listed in Table 5. Notice that rather
large overlaps are required for some windows.

The difficulty of realizing general fractional overlaps, such as .56, raises
the question as to what fraction of max EDF is attainable if one restricts over-
laps to a few easily realized overlaps such as .50 and .625. This question is
answered in Tables 6 and 7.* Table 6 indicates that the cosine data window at
5307 overlap (a popular case) vields 92 of the max EDF, However, the cubic
data window realiizes only 75% of its potential at 50 overlap. Table 7 shows
that when the fractional overlap is increased to 5/3, the cosine and quadratic
data windows realize virtually their ultimate capability. If the overlap is in-
creased to 757, the cubic data window then realizes its max EDF,

Table 6

ATTAINABLE FRACTION OF max EDF
AT .50 FRACTIONAL OVERLAP

Data Window
Triangular Cosine Quadratic Cubic
Fraction of
max EDF .96 .92 . 88 .15

*These values are not attainable from Table 4 but come from the complete
tabular results, of which Table 3 is one example.
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Table 7

ATTAINABLE FRACTION OF MAX EDF
AT .625 FRACTIONAL OVERLAP

Data Window
Cosine Quadratic Cubic
Fraction of
max EDF 1.00 .98 .93

Thus far, no trade-off has been necessary to realize the better side lobes
of the smoother data windows; that is, by proper choice of overlap, equal statis-
tical stability is attainable, and an equal number of FFTs is required, for all
four windows. However, there is one trade-off that enters as follows: if the
original record length T is composed of samples of a process at increments*
At, more samples are contained in the segment length L for the better-side-
lobe windows; that is, the number of samples in interval L is

N =—==z===, (40)

employing Eq. (33). Ng is directly proportional to half-power-bandwidth
constant C for a specified sampling increment At and resolution B, Thus,
using Table 1, the cosine data window requires 1,13 times as many samples as
the triangular data window requires. The corresponding ratios for the quad-
ratic and cubic data windows are 1.23 and 1.43, respectively. Thus, better
side lobes in spectral analysis can be realized at the expense of larger-size
FFTs, rather than at the expense of statistical stability or number of FFTs,
These comments hold for equal half-power bandwidths of the windows,

For a specified sampling increment At, desired resolution B, and
particular window, Eq. (40) will generally not be a power of 2. Since FFTs run

*The sampling increment At must be chosen small enough to avoid alias-
ing; this is the only area where the bandwidth of the process comes into con-
sideration,
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faster when conducted at powers of 2, it is recommended that the desired
resolution B be changed somewhat (increased or dectreased) so as to make Ng
a power of 2, This is generally a tolerable situation since B is often a
"guesstimate' in the first place,

OPTIMUM WEIGHTING OF INDIVIDUAL SPECTRAL ESTIMATES

In Eq. (3), the p-th estimate |Y,(f)|2 of the power-density spectrum was
weighted equally with all other estimates. In this section, we consider whether
unequal weighting will yield additional worthwhile variance reduction. Inas-
much as the edge pieces in Fig. 1 are weighted only once by a data window,
whereas the interior pieces are weighted more than once, perhaps heavier
weighting of the edge pieces will yield additional stability. The power-density
estimate is formed as

P
G = pz_:l v |Yp(0|2. (41)

The derivation of the EDF of this estimate is given in Appendix C, which also
presents the optimization of the EDF by choice of weights for a given P,
record length, and window., A summary of the numerical results is given in
Table 8, where P is varied up to 64. The largest value of EDF attained over
that range of P is quoted in Table 8, except for BT = 16 where, with the ex-
ception of the triangular data window, P = 64 was not yet great enough to
reach the max EDF by weighting.

Table 8
OPTIMUM EDF VALUES
Data Window dd
2 4 8 16
Triangular 4,37 10,12 21,65 44,72
Cosine 4,50 10,15 21,44 >43.87
Quadratic 4.07 9.80 21,29 >44,18
Cubic 3,82 9. 52 20,94 >43,72




A comparison of Table 8 with the max EDF values of Fig. 4 reveals that
very little is to be gained by optimum weighting, except for small values of BT.
However, small values of BT are not of great practical interest because the
estimates are very unstable statistically, Also, the number of pieces P
required to realize the optimum EDF is rather large; for example, in order
to gain an improvement in EDF of 0.5 over the max EDF in Table 4, 19 pieces
are required for the cosine data window, 20 pieces for the quadratic data win-
dow, and 15 pieces for the cubic data window, Moreover, the optimum weights
are found to alternate in sign for some cases, causing a loss in significance.

DISCUSSION

This investigation of four good data windows indicates that there is no best
window for spectral estimation. Rather, there is a trade-off to be made when
choosing a window: the better-side-lobe windows require larger-size FFTs.
When the proper overlap is used for each data window, the selection of win-
dows can not be made on the basis of statistical stability or the number of FFTs
required,

The quadratic and cubic data windows are simpler and quicker to compute
than the cosine data window in the time domain (but not in the frequency do-
main as regards their effects). In addition, the quadratic and cubic windows
have better side-lobe behavior and, therefore, merit serious consideration for
spectral analysis, However, they require larger-size (but not more) FFTs
than does the cosine data window,

The reason that the better-side-lobe windows do not require more FFTs
than do the other windows is as follows, For a fixed half-power bandwidth B,
the better-side-lobe windows require larger segment lengths L ; however, the
corresponding data windows tend to be more peaked near the center of the seg-
ment length. In order to utilize a given record length for maximum statistical
stability, these data windows must, therefore, overlap for a greater percentage
of the segment length. It turns out that the increased segment length and
increased overlap almost exactly compensate each other, so that a constant
number of FFTs is required regardless of the window selection.

This report has concentrated on the variance of the spectral estimates. In
Appendix D, it is shown that the covariance of spectral estimates at two differ-
ent frequencies is always positive but is essentially zero when the frequencies
differ by more than the width of the spectral window. Thus, spectral estimates
at frequencies farther apart than B are statistically linearly independent of
each other,
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Appendix A

DERIVATION OF MEAN AND VARIANCE

From Eqs. (2) and (3), the spectral estimate at frequency f is

[/ du dv exp -12ﬁ(u-v)) X(u)x*(v) o

k L L
wlu ~5 - (p-1)S] w* [v -3 ®-1)s] . (A-1)

(For completeness, process x and window w are allowed to be complex.)
The mean value of @‘(f) is obtained by ensemble-averaging Eq. (A-1) over the
possible realizations of process x. Expressing the correlationof x as a
Fourier transform of spectrum G, we find the average value

P
E{e(f)} =-%- Z -[/;u dv exp(-inf (u-v)) dv exp(iZw(u-v)v) G(v) e
p=1
L L
wl-=- (@-1)S] w*[v -7- ®-1)S]

=/:iv G(v).|W(f-v)|2 =fdv G(f-v) |W(u)|2 . (A-2)

where we have utilized £q. (4). If spectral window IW[2 is narrower than the
finest detail in the true spectrum G, Eq. (A-%) becomes

E{Gml = G f dv W2 . (A-3)

Equation (A-2) is not limited to Gaussian processes but is, in fact, true for any
stationary process.

In order to evaluate the variance of the spectral estimate, we start with
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P P
E{ez(f)} = iz pgq};/]]-ﬁu dvdrds exp (-i21rf(u-v+r-s)) E{x(u)x*(v)x(r)x*(s)} e
p = =

wlu -514- (p-1)S] w* [v-%‘-- ®-1)s] wlr -25- (@-1)S] w*(s -% -(q-1)S] -
(A-4)

In order to simplify this expression, we must be able to evaluate the fourth-

order average. If x is a real Gaussian random process, the average in Eq.
(A-4) becomes ‘

R(u-v) R(r-s) + R(u-r) R(v-8) + R(u-s) R(r-v) , (A-5)
where R is the correlation of process x. (If x is a complex envelope of a
Gaussian process, the middle term in Eq. (A-5) is absent [12].) When we

express correlation R as a Fourier transform of spectrum G and substitute
Eq. (A-5) in Eq. (A-4), we obtain

E{G 0} = iz pz::l g f[/] du dv dr ds exp(-i2rf(u-v+r-s)) o

P
w(u --;'—- ®-1)s] w*[v -% - p-1s] w(r -2£ - (q-1)s] w*[s -; - (g-1)S]e

[/ du dv G(u) G(») [exp(izru(u-v)ﬁzn(r-é)) + exp(i2rn(u-r)+i2ry(v-s))
+ exp(izru(u-s)+i2n(r-v))]
1 = 2 2
=3 Z 2 %u dv G(w) G(v) [IW(-m|® IW(E-1)|° + exp(i2ru+v) (p-q)S) o
P p=lg=
W~ W*(+9) W(E+e) WH(E-0) + exp(i2riu- np-9)S) IWe-wl? we-»I%],

{A-6)

using Eq. (4). The first term in Eq. (A-6) is recognized from Eq. (A-2) as the
square of the mean of ‘G. Therefore,
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du G(4) exp2ru(p-)S) W(E-s) W(t+u)[*

<
i
o
M
Do
M
M

L 2
+'IE E I /:’“ G(w) exp(i2ru(p-q)S) |W(f-n)|2| . (A-T)

Now if f, the frequency of interest, is greater than the bandwidth of the spec-
tral window IWI2 (i.e., a couple of resolution cells away from the origin),
then W(f-») and W(f+x) do not overlap significantly. Letting B be the half-
power bandwidth of the spectral window IWI2, we therefore have the excellent
approximation* for f > B,

2
(A-8)

/:1,‘ G(u) exp(i2ru@p-q)S) |W(f-u) 12

(For £=0, the two terms in Eq. (A-7) are equal if data window w is real, in
which case Var{G(0)} is double that given by Eq. (A-8) at f=10.) Making the
change of variable k= p-q in Eq. (A-8), we obtain

P-1 2
varfCol=g 3 (1- %-')I /:1# expi2euks) G) |WE-ml%| . (a-9)
k= -(P-1)

But if the bandwidth B of spectral window |W|2 is narrower than the finest
detail in spectrum G, the integral on u in Eq. (A-9) can be approximated by

G(f) [du exp(i2muks) lW(f—u)lz
= G(f) exp2riks) ¢, (<5) , (A-10)

where we have utilized Eqs. (4) and (7). Then Eq. (A-9) becomes

*When x is a complex envelope, Eq. (A-8) is exact; see comment under
Eq. (A-5).
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P-1
Ikt

Var{/G\(f)}EGz(f)%k=§-1)( -?)|¢w(k5)|2 . (A-11

This equation is similar to that given in [9, p. 71].

Equations (A-3) and (A-11) are the main products of this appendix.




Appendix B

CORRELATIONS OF DATA WINDOWS

The correlation of the normalized data window u is given by Eq. (11) as
¢u(r) =/dt u(t) u*(t-7) . (B-1)

This quantity is required for the calculation of EDF, K, in Eq. (14). Since
u(t) =0 for Iti 21/2, then ¢ (r) =0 for |/ 2 1. Thus, for the:

Triangular Data Window

2 3 1
¢u(f) 1-67 +6i11, 7 < E
- . B-2

Cosine Data Window

¢.(M 1 1
4’“(0) = 5(1 -ITl) [1 +Ecos(21rr)] +z sin(2»tr), 1711 £1, (B-3)
Quadratic Data Window
81 . .3 2 <)
22 (1 -1i71) -_-Ql(r), 3 It 1
¢ (1)
u 243 1 2
= -= =< £y, -
50 Q, (7 (: m) =q,(n, Smss (B-4)
1215 5 1
Q (f) (3 |1|> 1 lf' S 3
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Cubic Data Window

8,(7)
XC

( %211 a- m)75'cl(f), -iﬁ <im<l

8192 /3

151 \4

286721

Coln) + 151 \2 -

57344 (_1_

L m)7 m<d
151 \4 ! 4

| C3(m) -

3_m)7= 1 3
Cl(r)-—-—( -m) =C_(mn), 25|r|54

(B-5)

The forms for the correlation of the quadratic and cubic data windows are
compact and very useful for computer programming.
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Appendix C

OPTIMUM WEIGHTS FOR EDF

The estimate of the power-density spectrum is given by Eq. (41). By
generalizing the results in Appendix A, we have

-1 2
Var{a(f)}‘-; Z 'rk /:iu exp(i2xukS) G(x) lW(f-“)l2 , (C-1)
k=-(P-1)
where
= * -
‘Yk ;wq-ﬂ(wq' (C-2)

The sum is over all non-zero terms. Utilizing the same assumptions used in
Appendix A, we have

P-1
Var{&'(f)}'-:—c;z(f) Z . Pw(ks)|2 . (C-3)
=-(P-1)
E{GH} =G(f) zp: w 9,0, (C-4)

yielding

(C-95)
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where

Ow(ks)
ukl .w(o) = M_k. (C-6)

Partially differentiating K with respect to wj' [13. Appendix] and noting that
the absolute scale of weights {wp} does not enter in K, we see that the
optimum weights must satisfy the equation

Zk:“k“'pk"' 1<jSP. C-7

If we define the matrices

M*[M ] 1<m,n<P,
m-n

M= 1. 1) whaw, w,. .. w.]. (C-8)

then the optimum weights are
w= M1}, (C-9)
and the optimum EDF is

K=2 1TM-11. (C-10)
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Appeadix D
COVARIANCE OF SPECTRAL ESTIMATES

A generalization of the technique in Appendix A leads to the following
expression for the covariance between spectral estimates at frequencies f 1 and

fp:

COV{G(f ). G(f )‘ ﬁ : lj:ln G(s) W(t -u) W(f +u) exp(izu(p—Q)S)l

2
+ %—i i l fdu Gw) Wt -m) WL, -u) exp(izvup-q)5|
Pl ®-1)

Now if f,+{, is greater than the bandwidth of the spectral window, W(f)-u)
and W(fo+u) are essentially non-overlapping. Then,

P-1
%- 2 ( -'—:—,—'-) /:u Gw) Wl =) W(f,~u) exp(izrukS)r .(D-2)
k=-(P-1)

This quantity 18 always positive. However, it is very small when |fo-f,|>B
because W(f,-u) and W(fz-u) do not overlap then.

When true spectrum G varies but slightly over a frequency range B,
P-1

2
lkl
Cov ¥G() Git,) 2 l(ks £ fl)l , (D-3)
k--(P-l)
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where

x(r.) = f du exp(i2wur) W(uH)W*(u)

-:/‘ dt exp (~-i2#ft) w(t) w*(t-7) (D-4)

is the ambiguity function of window w., Again, if |f1-12| >B, Eq. (D-3) is
essentially zero, as shown by the first form in Eq. (D-4).

As an example, for the cosine window and 0% overlap, the covariance
coefficient (ratio of Cov to the square-root of the product of variances) is

4 1 1 2 3 4
1'9!36. olooooapfor Itz-fll.o'L.Ll L' L'...'resmcdvely.

Thus spectral estimates % Hz apart are essentially uncorrelated, For 50%

overlap (and large P), the corresponding covariance coefficients are slightly
larger, being 1, .495, ,068, ,005, 0, ... .
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ESTIMATION OF CROSS-SPECTRA VIA OVERLAPPED
FAST FOURIER TRANSFORM PROCESSING

INTRODUCTION

In a recent report (Ref. 1), the use of overlapped fast Fourier
transform (FFT) processing of windowed data for estimation of auto-spectra
was thoroughly investigated. It is now desired to extend these results to
estimation of cross-spectra. The method of overlapped FFT processing is
often used for cross-spectral and coherence estimation with good results
(see, for example, Ref. 2); here we wish to give analytical back-up to its
optimality.

PROBLEM DEFINITION

Consider that stationary random processes x(t) and y(t) have teen
otserved for a time interval of T seconds, 0<t%T. Let the auto-spectra
of the processes at frequency f te &nm(f) and & (f),respectively, and
let the (complex) cross-spectrum be &,(f). The method of estimating the
cross-spectrum is discussed thoroughly on pages 2-4 of Ref. 1, and will
not be repeated here; the reader is referred to that reference for nota-
tion, related past work, and qualifications. We let w(t) denote the
fundamental data window, and S the shift of each successive overlapped
window, and define

W 1) = w({---‘g_-—(x-n)s)) l<x< R (1)

where P is the total number of overlapped segments fitting into the fo,™)
interval. The estimate of the cross-spectrum is*

A

§,6)- - SO, @

Ky

where

X, 6 = (dt axplizf) w i x i),

Y, )= feb exp i) yto. (3)

(The contir)mous versus discrete versions of (3) are discussed on page 4
of Ref. 1.

The estimate in (2) is & complex random variable (RV) which it is hoped
will approximate the true cross-spectrum G,,(f) for sufficiently large P
and proper choice of shift S . The problem is to evaluate the stability of
the XV fr.’(f), and optimize the statility by choice of overlap. At the

#Carets denote random variables, and integrals without limits are over
the range of non-zero integrand.
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same time, we wish to investigate the dependence of the stability on the
fundamental parameters such as observation time T, desired frequency
resolution B, spectra &.(f), & (f), & (£), etc,

PROBLEM SOLUTION

A
In Appendix A, the mean of RV Gr,y(f) is determined to be

E{ Gy = Sapn &y [WiE-PI" m
2 Ry OWI = 64, (48)

where
W@ = (o epl-izft)w i), ()

and we have assumed, with no loss of generality, that SEW®Er= 1.

The exact relation (4A) indicates that the mean is equal to the convolu-
tion of the true spectrum &y (f) with a spectral window |WI()|'. (Desiratle
aspects of windows are dlscussed on pages 10-18 of Ref. l.) The aprroxi-
mation (4B) is valid when the frequency width B of spectral window wer
is narrower than the finest detail in the true spectrum &,(f). These
results are not restricted to Gaussian processes, tut hold for any station-
ary processes x(t) and y(t).

We now define the zero-mean complex RV

§0) = &, 0-E A0 = 6y (- 6y, (8)

This XV measures the dev1ation of the estimate of cross-spectrum from its
true value. In Appendix A, the following two relations are demcnstrated:

EXL Pl = RaE, #)—_5_(1- A9, (kS)F, (74)

ELgm s &OF = (-2 s (73)

Ke-P

n

mn

where
b o) = (dt Wiy wite o). (8)

Three assumptions are required for the validity of (7): the processes
x(t) and y(t) are jointly Gaussian; the frequency f of interest must be
greater than bandwidth B of window [WH)|'; and bandwidth B must be less
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than the narrowest detail in @n(f), &y(f), and &,(f). (A case where B
is greater than the narrowest detail is discussed later.)

A measure of the stability of a XV 1is afforded by its equivalent
number of degrees of freedom (EDF); see Ref. 3, p. 22. For a complex RV 2,
we extend the definition to

2
Ei8)

Efls- e1a ] o

The dencminator of (9) could be interpreted as the variance of complex RV 2.
Interpreting & as @-,“,(f), and using (4B), (6), (74), (8), and Parseval's
Theorem, there follows for the EDF at frequency f,

EDF = 2

EDF = Y, 0 K, (10)
where
&
d Yy ) = e 6, y (11)

(12)

K 27
-3 =1 .
= (1- m) mxs)r
Ke-PH P/l éulo
The quantity X“(f) is the complex coherence a* frequency f of processes
x(t) and y(t). Equation (10) indicates that tne EDF at frequency f of RV
8y (f) is given ty the product of two factors, one frequency-dependent
sc;iely on the processes' spectra (over which we have no control*), and the
other depending solely on the method of processing, tut being frequency-
independert. Specifically, K depends on the number of pieces P in the
average (2), the shift S of each window in (1), and the autocorrelaticn
$,(T) of the window w(t). Furthermore, this factor K is precisely the
same guantity encountered in Ref. 1 as the EDF for auto-spectral estima-
tion. Therefore all the results of Ref. 1 on maximization of K ty choice
of shift S are immediately brought to bear on the present protlem of
cross-spectral estimation. Thus, the optimum choice of overlap for cross-
spectral estimation is identical to that for auto-spectral estimation.**

*Linear filtering of x(t) and/or y(t), such as pre-whitening, would
not affect |¥o(|* , and therefore not affect EDF. A related
otservation on this aspect is made in Ref. 4, p. 379.

**More generally, since all the variances of the estimates in the following
sections depend inversely on K , maximization of K is appropriate,
regardless of the particular definition of stability.
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VARIANCES OF QUADRATURE COMPONENTS
OF CROSS-SPECTRUM ESTIMATE

The zero-mean complex RV § (f) in (6) is the random error in
estimation of the cross-spectrum. The diagram in Fig. 1 depicts the

T o]
E {80}
A A
gy §6)
PalF A
Reg &, )
Fig. 1. Complex Random Variatles in
Cross-Spectrum Estimation
relationships tetween the various complex RYs. Here
Pyld = anl&., (13)
is the true phase of the cross-spectrum.

It is convenient to represent complex RV 5(f\ in terms of its
real and imaginary components,

A .
g(n ={H+igh),
as shown in Fig. 2. Also depicted are the projections of %

b

(14)

(f) on a
%(F)

Fig. 2. Projections of Random Error g(f)
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different rectangular coordinate system (&(f),b(f)) aligned with the
direction of the true phase R,(f) of the cross-spectrum. That is, we
also represent

é({_) “P[_ipw\‘r.)] = a(ﬁ-t»i%(‘), (15)

where &(f) and b(f) are real. We note immediately that all the RVs in
(14) and (15) have zero mean; this follows from the definition (6).

In order to evaluate the covariances of these various quadrature
components, we first note from (7), (12), and the fact that dwl) has
been assumed unity, that

{130
EY Al

Equation (16A) (or (7A)) affords the interesting interpretation that the
average squared-length of the random error %(f) in the estimate of the
cross-spectrum is, in fact, independent of the true cross-spectrum, but
depends on the auto-spectra of the two processes involved. (See also
(A15) more generally.)

Substituting (14) in (16), there immediately follows

)

et
- (60 8y 0 £ R 60 ) 7 T o] /K
- GuP Gy O] £ Ref WH] /K, (174)
eUIH] = Ta{ay W /K = 2Re{o ¥ Tmiby¥}/K

L1

26,0 &y W/K, (164)
2 64®/K. (16B)

G ®) Gy T { Yoy ) /K . (178)

The quantities in (17) are the covariances of the real and imaginary parts
of the cross-spectrum estimate; that is, using (6) and (14),

Var [Re &) ) = E{T' ),
Vor [Tm &, H)) = E 476},

Cov [Re 18,8, Tt #]] = E{IM3H), 18)
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Equations (17) and (18) are basically identical to Ref. 4, p. 378;
however, the scale factor K is different.

The projections 4(f) and B(f) have simpler properties than £(f) and
(). From (15), (16), and (13), there follows

E{ m\z = a0 le®l] /K

14
= G‘,,G\ GW@)[l * )\‘xqq')rj /K)
Efarie] = o 9

Thus the projections of the random error along and perpendicular to the
direction of the true phase of the cross-spectrum are uncorrelated.
Furthermore, the variance of the projection a(f) along the direction of
the true phase is aluays greater than or equal to the variance of the
projection B(f) perpendicular to the true phase. In fact, if the magnitude-
squared coherence is unity at some frequency f,, then the variance of b(f,)
is zero; in this case, all random fluctuations of (f,) lie along the
line with phase 'ES(QS in Fig. 1. H

On the other hand, if the magnitude-squared coherence is zero at some
frequency f,, then the variances of a(f,) and t(f,) are equal; in this
case, the "scatter" of random perturbations g(f,) in Fig. 1 is a circle
centered at the origin.

Generally, the scatter of random perturtations is like an elligse,
as depicted in Fig. 3, where the major axis of the ellipse lies on the lirne

T by ]

G

%) ReSi Y

Fig. 3. Scatter of Cross-Spectral Zstimates

with phase R (f). If RYs &(f) and t(f) are Gaussian, as they would be
(approximately) if K is large, then the elliptical diagram can te made
quantitative and interpreted as contours of iso-protatility.
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VARIANCES OF AMPLITUDE AND PHASE ESTIMATES

Estimates of the amplitude and phase of the cross-spectrum are
available according to

bng® = Ayl exti i), (20)

In order to estimate the means and variances of 1.,(1‘) and P,,(f), we
will assume that the scatter of points in Fig. 3 is small in comparison
with the distance out to the center of the ellipse. That is, using (9’
and (10), we will assume that

N O K> 1. | (21)

This requires that the product of observation time and desired freguency
resolution be much larger than unity (Ref. 1), tut it alsc requires that
the magnitude-squared coherence not te too small at the frequency of
interest.

We first utilize (20), (6), and (15) tc express

é“j #) = D G,,(‘f\‘l + 08+ L('F)-J exp L’ P‘S \4:)] . (22)
Then
ij (F) = ‘ lG,.,(Hl + 0B +i 'i(f»)l (234)
2|6, D) 42, (23B)
By ) = Pylf) + argg &) + 310 + 1Y) (24)
s B (22)
= Pyt + + ]

Eguations (23A) and (24A) are actually exact, whereas {(23%) and (243
require the assumption of (21). Combining (23B), (24B), and (19), there
follows irmediately

Vor (A8} = (6 W6, 0+ |6:y®T] /K

= En 6, ®0+ IV,0F] /K, (254)
S$h a) . Achwer \

; = (25C)
CoviA e, P % = o.
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Thus the amplitude and phase estimates are uncorrelated. The variance
of the phase estimate in (25B) is much smaller than unity, when we recall
that assumption (21} is necessary for (25) to be true; that is, the denom-
inator of (25B) must a.ways be large. It should also be noticed that none
of the covariances in eqs. (19) or (25) depend on the actual phase of the
cross-spectrum, tut only on its magnitude. Some additional relations on
the covariances of estimates of coherence are given in Ref. 4, pp. 378-9;
of course, the phase estimates of complex coherence and cross-spectrum are
identical.

EFFECT OF CLCSELY SPACED TONES

All the earlier results have presumed that the tardwidth B cof the
spectral window W' is narrcwer than the finest detai. in the spectra
b (), G (f), and &, (f). We now consider a case where this is nct so,
and investigate the variance of the cross-spectrum estimate.

Suppose the spectra are approximately pure tones:

Culp = FR[SE-£) 4 S 8],
Gl * R [TE-R) +1#4,)], 26
Then from (A27) ir the appendix,

T am Pl i) Y

elIgel = $np, WE-AT {wig)] Fartedl =

which can te interpreted as the variance cf the complex RY &y £ . New
if \h-%1<B, and if the frequency f of irterest .ies near or tetween {, and
fy, then the window functions irn (27’ are near their peak va_ue Wlo). Alsc,
i} If, -£,) < (2PST' = (27", then the tracketed %erm in .27 s rear unity.
Then the variance in the crcss-spectrum estimate Is _arge; in fact, it nas
the same value as fcr Psl, no averagirng. Yet the true coross-srecirun zay
in fact te zero. Thus estimaticn cf the cross-spectrum will te In error,
even for a .arge Tt prcduct, in a frequency range rear f, and f,. It shculd
be noted that this noisy estimaticn case requires the frequency seraration
of the tones to te less than {27)', not (2L)'; thus the tone separatior must
be much closer than the fundamenta. rescluticn of B= (',

If the tone separation, on the other hand, satisfies |f,-f1> (ps™ = 7T ,
then the variance of estimaticn is greatly reduced, as inspecticn c¢f the
bracketed term ir (27) indicates. In fact, .27 teccmes

at - R 3 - \Pr -2 ) \.l N
ENGHN 2 SRR Wk Wei Prrg g S]7 08 o) <l s
which has the desirat.e P deperdernce - the nuzter -I rleces in lhe
average (2). Cf course, whern Ify-£,!> B, ther the windcw functions in &7

decay rapidly and indicate a greatly reduced variance, ever i B is greater
than the finest Jetail in the spectra.

8
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APPENDIX A. DERIVATION OF MOMENTS
From (2), .
E{&, ) - L Z e{mpn e, ™
But from (3),
EELOYIE) = [T o db cxplnarf -t mgttor 1) Roy (649, (a2)
where
Ko (o) = E{x ‘Hg’&—r% (A3)

is the cross-correlation of x(t) and y(t). We are allowing all processes
and windows to be compliex, for generalit.yS and have utilized jcint-station-

arity ir (A3). The cross-spectrum of x(t) and y(t) is
Buy ¥\ = (dr expli 2F DR, 0O (AL)
Utilizing (A4) and (5) in (A2), there fo.lows for (Al),
» f 2 14
E(E,#Y = Jh e WIWIF-PI, (A5)
we have a.sc empioyed the fact that
- r /
W, )= W ) expl-i 20 (5 +4)3) (Ae)
whichk fcllows from (1°. Equation (A5) is the fundamental relation for

the mean >f{ the cross-spectral estimate. However, when ® is _ess than
the finest detail in £, (f),

L - 2 ~
E{5, 0 7 G, B]alWnl = &8, o
upor. setting S&Mﬂ’-l,withont loss of general.ity.

Tc evaluate the variance of é‘,(f), the following steps are required;
from (2),

1630 - & = ELOWHLOY.H, (A8)

But the statistical average ir (A8 is, using (3],
E T = (Mt dtet ah eno 20t b4 o AW D e )
. E{ )yt ) x“é)yk-jil (AQ
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Further, the statistical average in (A9) is given bty

Eliia] = Ruyt)Re, (40 + R b )Ry o) + R, - EIR, H,-4), (A20)
where we have assumed that x(t) and y(t) are joint Gaussian, and have
defined K- m - Eixﬂx‘({'-ﬂ},

Ry fe) = EQyM o),

Y= EOxi)y b-o) \
@‘J(‘t‘ E(x J . VALDD
.The last function in (All) is generally differer+ frem (A3 .’ D rnotin
the Fourier transforms of the three functions in A--.\ vy &,. L, € T
2., (f) respectively, in a manner simi.ar to (AL, 'AlC) tecomes

Elad = f,“r dv{up[,h,.k».-tdcslﬁ -1 2wy 4] &,; o
v exp[i 2oy )] Buulp) el 28] Gy ()
+ o [ feee] § yeml-izen 4] B2 ¢ ,{3 a2

o’

€, ¢ and Gu\'“‘ must aiways te rea’l) Subtstituting (A1l in , “here
fallows

Eluay = andv [T akabab ety enplneklt iyt B0 W

.
v By e D e exp ) Bt &) - 1 2ew 1Y)

+ g by ™) tnyri Ty (£-8) -1 2 (+‘-+,\]
b} 12 R
+d.’")‘¢b" [y h’? ! ar)l +;-f4> -—12w‘\{‘)- a\]j

rr r >

e WG, e W, - WS- IWS (W (f-v)
+ Gl G0 W, (- W (W () Wi
VAL T R R (OO VRN

10
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< (Top &[Gy D Wi WD
+ 60 Gy ) WL NG9 e 205 (- (p- )
+ By ,@; OWIE- )W) WE I () expli 205 (k) [wvﬂ

|l SN |
+ Fdr T Lu‘)\,w(}—yﬂ‘m[i L(x--)rSj:&v 63,{»)!\'\4“{{-»')\; evpi- 12w (ko) S?
+ fér 9,3!,»\\\;',# -r\,W'Juy)e-pS).{r--\rS]:dv&; MHWNYEIW L) e.,,[, T ke wy Sj (Al13)

Upcr. sutstitution <f (Al3) in (A8), we ottain

b

! ‘ !
"S! A2 = r L 1
£l Ay ) Wl
| ] (',- ¢ 2 ~Nr A . n » j
b 2SN e leen S 0 S WO e (S,

r ’ N \ . r 0 =)
+ dy "d‘j 'r\w o'W ;Fyv{‘: Q‘Y“;x )w(k--blysl v }; (V\Wl@-i’\w. ) exp)s L.(r..\vs]}

SEESCIENE A ACHY (AL4)

wrere we have used ¢ . If the freguency ¢ cf irterest is greater than the

19 . N . 3 . : .
tardwidth B cf the window !WW)', then W(f-p' and W(f-p! dc nct cverlap or
the m-scaie. Then

Ao . .
EfIpel £ x> (G W) ser 20 eom)p 5]
o (Y G W) e Sl mw s]

s L B W g G 0 W e[ 2ekpS)

P xs-P) . \ 2 / \
. SJ\) G”(V)“W@-P)l AR TR CALE
This is a genera. relation for E?'a'“\ﬂ ; it will be noticed tc te inderendent
cf crcss-spectrum ﬁ'.,(f‘, and depend orly crn auto-spectra .. f' and G”Lf‘.

11
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Also, there is no need to Imow .6,‘(!').

If B is less than the narrovest detal. in &u(f and &,(f rear the
frequency f of interest, the integra. on P in (Al5) becomes apprcximately

f - -
G‘(" QYP\! (.W‘CkS) ‘- (k 5)’ \A-é‘,
and (AlS) ylelds
a1 3 T B e SUBUNRFERNN e
Ei “‘)R = J‘. ”{# P o \l P/ $\-“S/, . A
Since (£ is @ complex RV, it ls necessary a.s: -C eva.ua‘e “he
quantity Ejg a} in addition tc AR, in order t: :omp.e%e the second-

srder moments "ue tc the simi.arity tc the derivations arfcve, the sters
wi.l be ;reserted in a more curscry fashicrn.

Ef 5} = Zeix RN 3p g A Ageal (A18)
T
Efuc] = 17 ot dhodh e epif b s o W R b T
vyt Rl o )] (A19)

EL‘I)Q‘ R + {U '\‘3 \fs *Q/ + &‘l "- f)XR' I{ {0:' + g.j i‘:,'t\ ?‘S _‘\}’fa‘;

- ;Jf dy dviu{i}rylt—t.ﬂ G“ () ewF{i wrolhy- fo\:} ;.., )
P NI TS R PO SR

-

+ ey [_i'lv’y({‘.-‘h\.l Q"’ ’}n\.eb:l )'v(&)—QT ;," ‘y g A {A20)

Efas) = | d 0] @ BRI, oW EopW E RS
+ B P g W, [0 WO FIW, Fon We 4,
L ANEL R ETRY Tl Y MRSV SR

-

-

~ .

A .o
R év ‘j M u- ) N't w \,\-\{i-p\"

. - | YL r N
+/" | d ’v\‘,\ :-u\\"i-v§V\'*‘v\\f\ ey oo NS e py

~ ~ '
+ Ty » x“'v“,\»'.;.‘.w FSRALIS wh R on S e
3 . - ‘J

12
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: U‘#‘ G’.,(PHW@—)')H
374 Dy WWE-p)WEp) erpli el S o Bt (W B )W'ha) en[-i2e (k-5 §]
+ ayw WIWE- D expli e ik-wpS] [dv &, dOIWE-D exp[- 12w (- 5] (A21)

a rP kN
L&) = | o Sy IWH-p)
*.Lif’a PWE- NG o) ewplitelcp S d gt W (1) )
P‘“ 1 P‘” P oL 2 Iph --)’a h vg* VVV '\N &v)exrt—.}-(x-)uSJ
+ dy U"E )‘))\N ”’—M\Y?\wﬂw& QPS] Qv & V)IW(F '>| -o(y )w(k.-bv 5@
AR o

If £ is greater than B,
P A . 1
E{j‘(ﬁ} . #‘Z, dp Ty VWY exp [ 2w (k-]
i 5” G’v’ (’) ‘IW @“ ”)Y"r {-ilv(k-w)\’S]

--LZG Bl Gy WO -] e i 2w S)

Ke- ?n
dv & WW( v\‘ —vzﬂ»S\,. (A23)

This genera. relation for E{§'P}depends only on the cross-spectrur &,(f),
and not on the auto-spectra &,(f) and G- (£). Alsc, there is no need to
lnow A- f) or j‘, (.

If B is less the narrowest detail in @,(f) near the frequency f cf
interest, the integral emp in (A22) becomes approximately

&,,® exp(i2eFxS) ] (9), (424)
and A23) ylelds

g = sLA L LS g ) (a25)

P re-Po) *

13
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For the case where x(t) and y(t) contain pure tones (eq. (26) of main
text), the general relation (Al5) for E(1§*#} takes on the following form:
first the integral enpin (Al5) is approximately

LR IWER)" expliznkhy ), (426)
Then (Al5) becomes .
£71 0 = SRRIWEATINER & 2 (- 1) wxp (amhen)d)

= LB INE-B] |We-R) E%‘f‘?:‘&i%?? ,

using Ref. 5, (418) and (428); this relation is used in (27).

14
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Minimum-Bias Windows
for Spectral Estimation by
Means of Overlapped Fast

Fourier Transform
Processing

Albert H. Nuttall

ABSTRACT

The time-limited nonnegative data windows that
minimize the bias in auto- and cross-spectral esti-
mation of stationary random processes by means of
overlapped Fast Fourier Transform (FFT) processing
are derived for a variety of constraints. When the
time duration L of the data window is constrained,
the optimum data window is (2/L)1/2 cos (wt/L),

|t] < L/2; when the equivalent-noise bandwidth i;
constrained, the optimum data window is (8/3L)1/
cos2 (mt/L), which is the Hanning window; when the
half-power bandwidth is constrained, the optimum
data window is L-1/2 (1,682 + 4.261 cos (4.434 t/L)-
4.337 cos (3.552 t/L)}, which is very similar to

the Hanning window; and when the root-mean-sauare
bandwidth i§ conatrained, the optimum data window

is 4/(5L)1/2 cos3 (nt/L). In the three bandwidth-
constrained cases, the window duration L is adjusted
to meet the constraint.

The Hanning window is a reasonable compromise for
achieving minimum bias, because in addition to being
the optimum for one bandwidth constaint, it is very
close to the optima for two other bandwidth con-
straints. The relative merits of the spectral
characteristics of the windows are also discussed.

Approved for public release; distribution uniimited.
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MINIMUM-BIAS WINDOWS FCOR
SPECTRAL ESTIMATION BY MEANS OF
OVERLAPPED FAST FOURIER TRANSFORM PROCESS!NG

INTRODUCTION

The selection of good data windows in spectral estimation of stationary
random processes, to minimize leakage, is an important consideration and has
received much attention [1-8]. In {6], a thorough investigation of fourgood data
windows revealed virtually the same variance-reduction capabilities of over-
lapped Fast Fourier Transform (FFT) processing when the proper overlap was
used for each window. The ultimate variance reduction of this direct procedure
was also demonstrated to be identical to that attained by the older (indirect)
analysis procedure in [4].

In this report, attention is focused on the bias in the estimation of power
density spectra by means of overlapped FFT processing. Specifically, the bias
is minimized by the choice of data windows that are restricted to be time-limited
and nonnegative and are subject to either a time-duration constraint or a band-
width constraint. These results complement and extend those of [8] for the in-
direct approach to spectral estimation.

PROBLEM DEFINITION

The overlapped FFT method for spectral estimation and the reasons for its
use are documented in [6]. The mean of the spectral estimate is given by [6,
eq. (5)] for auto-spectral estimation, and by [7, eq. (4A)] for cross-spectral
estimation. In both cases, the mean takes the form*

E {G®} = [av Gi-v) |Ww) |2, )
where a_(f) is the estimate of the true (auto or cross) spectrum G(f), and
W) = fdt exp(-i2ntt) w(t), ()

" *Integrals without limits are over the range of nonzero integrand.
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where w(t) is the data window multiplied in the time domain by the available
data. It is assumed that the data window is time-limited and nonnegative:

=0 for It| >L/2
wit) [20 for fti SL/2 [’ 3
where L is the window duration. The restriction to nonnegative data windows
guarantees that the spectral window W(f) peaks at the origin. It should be noted
that (1) is true with no restriction on the available record length T and with no
restriction on the statistics of the random processes involved, except that the
processes must be stationary; they need not be Gaussian for (1) to apply.

The desired value of (1) is the true value G(f); therefore the bias inestima-
tion is defined as

B(f) = E [G(f)} - G(f). (4)

We approximate this bias by expanding G(f-») in (1) according to

G(f-v) = G(f) -vG'(f) + 1/2 G"(f)v2 - 1/6 G""(f)v3 + 1/24 G " (f)vi, (5)
where the prime denotes a derivative. Substitution of (5) and (1) into (4) vields
B(f) =1/2 G"(f) fdv v2 [W(v) |2 + 1/24 G(f) fdv vi{w(v)| 2, (6)

where we have assumed (without loss of generality) that
Javiww)|2 = fdt w2(t) = 1, 7

and that lW(v)| 2is even about the origin; that is, w(t) is a unit-energy real
waveform.

We express (6) as
B(f) =1/2 G"(f) Dy + 1/24 G""'(f) Dg = B (f) + By (f), (8)
where window constants

Dy = fdvv2 |wW(v))2,

Dy =/dv vi | W(v) |2. ®
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are independent of the.true spectrum G(f). To minimize the bias, we must
therefore minimize Dy and/or D2, subject to (3) and (7). To this aim, it is
useful to express (9) in terms of the time domain. There follows, by use of (2),

D; = (2m-2 fdt [w'(t))2 (10)
and
Dy = (2m~4 fdt [w(r)) 2. (11)

Strictly, the approximation (8) to the bias is due only to local variations in
true spectrum G(f) about the frequency point f of interest; equation (5) is not
necessarily a good approximation for larger v. Thus, peaks in the true spectrum
that are distant from the point f under investigation are not accounted for by (5).
To minimize the effects of remote spectral peaks on bias, we must also require
that the spectral window W(f) decay sufficiently rapidly for large |f|. Thus
the results of the following optimizations are not final, but must be investigated
to see if they also meet the requirement of sufficiently rapid decay with frequency.

In addition to constraints (3) and (7), we shall be interested in constraining
the bandwidth of the window; this is in keeping with the philosophy of requesting
a specified frequency resolution for spectral estimation, and letting the window
duration L and overlap be whatever is necessary to meet this requirement {6].

It should also be noted that constraints on bandwidth tend to equalize the
variance-reduction capabilities of the windows. This may be seen from [6,
eq. (22)], where the equivalent number of degrees of freedom is given approxi-
mately by

2TBg, for T»L, (12)

where Bg: is the statistical bandwidth [9, p. 278] of the window. Thus, if all
windows were constrained to have the same statistical bandwidth, they would all
have the same variance-reduction capabilities, and we could minimize the bias
subject to this constraint. However, this constraint is not mathematically trac-
table. * Therefore, we resort toconstraints on other, more tractable, bandwidth
measures, with confidence that they too will yield comparable variance in spec-
tral estimation (see [6, table 1)),

*We have not been able to express the time-domain constraint (3) directly in the
frequency domain, nor have we been able to express the requirement that
é,,(7) be a legal correlation function directly in the time domain; see [6,
egs. (7) and (17)-(21)).
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PROBLEM SOLUTION

Four different constrained problems will be addressed in this section: con-
strained window duration L ; constrainedequivalent-noise bandwidth; constrained
bhalf-power bandwidth;and constrained root-mean-square (rms)bandwidth. The win-
dowduration L is adjustedto meet the bandwidth constraint inthe latter three cases.

DURATION CONSTRAINT

Here we wish to minimize Dy in (10), subject to constraints (3) and (7) and
a fixed value of window duration L. In order that (10) be finite, w(t) must be
continuous; therefore w(tL/2) = 0 from (3). When we use acalculus-of-variations
approach, the optimum window wg(t) must satisfy the differential equation

wgl(t) + Awe(t) =0, |t|] < L/2, (13)

where \ is a constant (Lagrange multiplier). The solution of (13) that satisfies
the boundary conditions and (7), and has minimum Dl’ is

1
wo(t) = (—%) /2 cos(wt/L), |t| s L/2. (14)
The corresponding value of (10) is
Several windows are compared in table 1. It is seen that the Hanning window

has 33 percent greater bias, as measured by Bl(f), than the optimum window,
under a duration constraint.

Table 1. Window Bias Constants Dy

Data Window 4L%p,

Optimum, (14) 1
Parabola 10/x2 =1.01
Triangle 12/w2 = 1.22
Hanning 4/3 = 1.33
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The spectral window corresponding to the optimum data window, (14), is

" 1-4L.2¢2

The decay for large frequencies is only as £=2. The sidelobes of this and the
following windows will be discussed later.

EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT

The equivalent-noise bandwidth Be of spectral window W(f) is defined as

ver ]2 1
B = ﬁ’”“‘”'o . . (17)
|w(0)]2 [ﬁit w(t)]2
where we have used (7) and (2). The quantity B, can be interpreted physically
as the bandwidth of an ideal rectangular filter that would pass the same amount

of power as a filter W(f), when subjected to white noise; see figure 1. The peak
of |W(f)|° occurs at the origin, since data window w(t) is nonnegative.

[
1
-Be/2 B /2

Figure 1. Equivalent-oise- Bandwidth Interpretation

The problem here is to minimize Dj in (10), subject to constraints (3), (7),
and (17). This problem is solved in appendix A, with the result that the optimum
data window is

1/2
w(t) =(£> cosz(ﬂ/L). |t] sL/2. (18)
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This is the familiar Hanning window. The window duration L must be chosen as

31
L 2 Be (19)

according to (17). The minimum value of Dl is

Dl =1_ =i Bz . (20)
3L2 27

The specified equivalent-noise bandwidth dictates the window duration L and
the minimum attainable bias constant Dl' The spectral window corresponding

to (18) is
1/2 .
Wy(t) = 2L> sin(wLf) ’ 1)
3 wLf(1-L2%)

where L must be determined from (19). The decay for large frequencies varies
as f -3,

HALF-POWER-BANDWIDTH CONSTRAINT

The half-power bandwidth By of spectral window W(f) is defined as

W(tBy/2)| 2

W(0)

L (22)
2

We desire to minimize D; in (10), subject to constraints (3), (7), and (22).
Converting (22) into the time domain and restricting w(t) tobe even, * constraint
(22) takes a desirable integra' form:

ﬁt w(t)[cos(wByt) - 2‘1/2] =0, (23)

The solution to this minimization problem is presented in appendix B. The optimum
data window is

wo(t) = L-1/2 [1.682 + 4.261 cos(4.434t/L)
- 4.337 cos(3.552t/L)], |t} s L/2. (24)

*An odd component in w(t) increases the rate of variation and therefore
increases D;.
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The window duration L must be chosen as

1.411
L= —B—h—— ' (25)
according to (23). The minimum value of Dy is
D = 0.1604 B} . (26)

The spectral window corresponding to (24) is obtained bv emploving (2); this will
be discussed in the next section. It is shown in appendix B that wg($L/2) = 0;
therefore the decay of the spectral window is according to f-3.

For comparison, if the time duration of the Hanning window is adjusted to
realize the specified half-power bandwidth, namely L =1.441/B, [6, eq. (33)
and table 1}, it follows that Dy = 0.1606 Bf. Thus the Hanning window has
virtually the same bias as the optimum window under a half-power-bandwidth
constraint. Further comparisons are made in the next section.

ROOT-MEAN-SQUARE-~BANDWIDTH CONSTRAINT

The rms bandwidth B, of spectral window W(f) is defined as
o _Jare2lwel2

B (27)
r
Jat (w2
Inspection of (7) and (9) immediately reveals that
Dy = Bf. . (28)

Thus if the rms bandwidth is constrained, bias constant D; is fixed. In this
case, it is reasonable to resort to minimization of the second bias constant D,
in (9) or (11). Thus, we wish to minimize (11), subject to constraints (3), (7),
and

Jat[w')? = B2 . (29)

The solution to this problem is presented in appendix C. The optimum data win-
dow is

coss(wt/L). |t| s L/2. (30)

wolt) =
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The window duration L must be chosen as
3
L = — "1_ ’ (31)
245 B,
according to (29). The minimum value of D, is

25
Dy =SBy . (32)

The spectral window corresponding to (30) is

W) = _16-(51,)1/2 cos(wLf) .
15% (1-41.2£2)(1-41212/9) (33)

where L is determined from (31). Thedecay for large frequencies is according
to £-4.

For comparison, let the time duration of the Hanning window be adjusted to
realize the specified rms bandwidth Br' Then employing (18) in (29), we find
L = 1/(J3 By), and (11) yields Dy =3 B‘,*- . Thus the Hanning window has
8 percent more bias than the optimum window under an rms bandwidth constraint,
as measured by bias constant Ds.

COMPARISON OF WINDOW CHARACTERISTICS

In figure 2, one-half of the symmetric optimum data windows for the three
bandwidth-constrained cases are drawn for a common time duration of L =1,
The equivalent-noise-bandwidth data window (Hanning) and the half-power-band-
width data window are virtually identical and are continuous in value and deriv-
ative at 0.5. The rms-bandwidth data window is more peaked, and goes to zero
in value, in derivative, and in second derivative at 0.5. Thus the last window
would require greater overlap than the first two, in order to realize the same
variance reduction; see [6].

In order to deduce the required overlap for the rms bandwidth data window,
the quadratic and cubic data windows [6, pp. 10-18] are superposed in figure 3.
Over most of the range, the quadratic and rms-bandwidth windows are very close.
Near the end of the range, however, the taper of the rms-bandwidth window ap-
proaches that of the cubic; in fact, both are continuous in second derivative at

0.5. Thus, it is anticipated from earlier results {6, table 4 ] that slightly over
65 percent overlap would be required for the rms bandwidth data window to realize

99 percent of its maximum equivalent degrees of freedom [ 4, p. 22]}.
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Figure 2. Three Bandwidth-Constrained Data Windows;
L =1, Unit Energy
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Figure 3. Comparison of RMS-Bandwidth Data Window with
Quadratic and Cubic Data Windows; L =1, Unit Energy
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The spectral characteristics of the four windows derived in this report are
presented in figures 4 through 7. The abscissas on every plot are in units of the
half-power bandwidth; thus all the curves go through half-power (-3.01 dB) at
/By = 0.5. The duration-limited window, (14), is plotied in figure 4 and ex-
hibits relatively slow decay with frequency, since the data window is discontin-
uous in derivative at its edge. The equivalent-noise-bandwidth (Hanning) and
half-power-bandwidth spectral windows, plotted in figures 5 and 6, are virtually
identical and have good decay with frequency, since the data windows are con-
tinuous in derivative at their edges. The spectral window for the rms-bandwidth
data window is plotted in figure 7 and exhibits very rapid decay with frequency.
However, as noted above, by virtue of requiring greater overlap for maximum
variance reduction, this window will require somewhat greater-size FFTs than
do the other windows.

CONCLUSIONS

The Hanning window is optimum under an equivalent-noise~bandwidth con-
straint, asfaras minimization of bias constant D; is concerned. Furthermore,
it is near the optima for two other bandwidth constraints. Its sy ztral decay is
also sufficient for most cases that the bias is relatively unaffected by distant
spectral peaks. And with 50 percent overlap, it realizes 92 percent of the max-
imum number of equivalent degrees of freedom [6, table 6]. Thus, the Hanning
window is a reasonable compromise to utilize in spectral estimation of random
stationary data.

10
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Appendix A

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN
EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT

We wish to minimize (10) (from the main text), subject to constraints (3),
(7), and (17). Equations (7) and (17) are integral constraints and are in a con-
venient form for a calculus-of-variations approach. The way we handle (3) is to
first ignore the nonnegative limitation; then, out of the class of allowable sol-
utions, we restrict attention only to the nonnegative solutions and pick the best.

In order that (10) be finite, w(t) must be continuous. Using (3), we see that
this means that

w(zL/2) = 0. (A-1)
A calculus-of-variations approach tells us to minimize the quantity

Q =f&[w'(ﬁ]z— \, gd’c wit) + 22, f&f wh), (A-2)

where A, and )\, are Lagrange multipliers; the resulting differential equation
for the optimum window is

wo” ) + quo(e) = N, H< L/z. (A-3)

We employed (A-1) on the allowed variations in deriving (A-3).

The general solution of (A-3) is

A cos(at) + B 3in @) + C
' Py ' /2 (A-4)
w, &) =\ A cosh(at)+ Bsinh(at) + C T < L/2,
oR
A+ Bt

where @ is real and positive. The third alternative in (A-4) yields the trivial
solution when (A-1) is imposed.
15
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The second alternative reduces to

W, = A[Cosﬁ(oﬁ— cos\\(aL/2>]’ It < L/Z. (A-5)

Since A can be chosento satisfy the energy constraint (7), and L can bechosen
to satisfy the bandwidth constraint (17), there is left only the variable @ in
(A-5) to vary; w ) is certainly nonnegative by the choice of proper polarity
for A, In order to find the best value of @ for this second alternative of (A-4),
we compute P, in (10) versus 2 and pick the minimum.

To accomplish this goal, we define

) = w(5u) = A AL, Jul sy, (A-6)
where
J) = coshlau) -coshle), lul<! (A-T)
and
X = QL/Z. (A-8)
The bandwidth constraint (17) then becomes
-¥2
A% K, = B,y , (A-9)
where
' "
K, = g du Jq14). (A-10)
-1
The energy constraint (7) becomes
Az —E. Ky= |, @-11)
where
! /"A, N
Kz. = y'du ¥ NCYD (A-12)
The window constant (10) becomes
—t A:
Rl K,, (A-13)

16
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where
A .
K, " S du [A’(H)] . (A-14)
=i
If we eliminate A and L by using (A-9) and (A-11), then (A-13) becomes

4
'D'z_L_ELf.L‘Bz

(A-15)
) ) e -
4w Kz

The quantities necessary in (A-15) follow from (A-7), (A-10), (A-12), and (A-14):

2[cosh () - Zizbi=) |
>
af sinh 24 -
= .,' 2« l], (A-16)

< fa ©
K- 21 geonioo-3 S449]

P
"

x
]

When (A-16) is substituted in (A-15), D, is found to increase monotonically with
increasing « ; the limit as o{-» o+ is

125 2 _ 2 (A-17)
—1-;;'3, = .171598B, .

The first alternative in (A-4), when subjected to boundary condition (A-1),
breaks into two subcases. In the first, if Sin{(a) = O, then P isarbitrary.

Then o =2 Kw, K2 | . The function with smallest D, corresponds to K=1,
and yields
w, i) = A[cos (2xt/L) H‘J +Baw(awt/L), [t] S 1/2. (A-18)

However, we must have B = O ; otherwise w,(t) would go negative somewhere.
Imposition of the energy constraint (7) and bandwidth constraint (17) yields

w, =€L—)" cos*(wt/l), bl = Y2, (A-19)
where
L = .} -%-;— . (A-20)

17
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The corresponding value of D, is
2 (A-21)

* which is smaller than (A-17).

The second subcase occurs if Sin{x) # 0 . Then B in (A-4) must be
zero, and we get

W, (t) = A[cos(at) - cos(x):l} K=< L/z, (A-22)

where « # KT . The comments and method immediately below (A-5) apply
equally well here. Therefore we define

hlw) = cosfew) - cos(d, lul =1, x #Km, (A-23)
and find o
K° = '2[5':(“’) - coa(«ﬂ’
a _ sin!z-r)
K, =« [\ o™ ]) e

~ .m2)
K,= 2 |+-§;co:.(2~()°%'s“)_'§;1‘ .

When (A-24) is substituted in (A-15), I, is found to decrease monotonically with
increasing « , at least for & up to W. However, when «> T, J‘(u) becomes
negative somewhere; this may be seen by noting that .ﬁ'(s) = ~o¢ sin {x) is
positive if «>®. Thus the limiting member of this subclass, which is (A-19), is
the optimum window.

18
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Appendix B

DERIVATION OF THE OPTIMUM DATA WINDOW FOR A
HALF-POWER~-BANDWIDTH CONSTRAINT

Here we will minimize (10), subject to constraints (3), (7), and (23). In
order that (10) be finite, (A-1) must again be true. A calculus-of-variations
approach tells us to minimize

Q= Sﬂi [W'ffaa‘xnjcﬁ' WA B + 2%, [dE wit) o, (B-1)
where "

ctt) = coslot) - G‘, wzmB,, ‘G' =2, (B-2)

and M\ and ); are Lagrange multipliers; the resulting differential equation for
the optimum window is

Wi+ h WD) = ), ), < L2, (B-3)

If A, is negative, the form for w_ #) includes sinh and cosh terms, which
lead to a progressively larger value of D, as )\, becomes more negative,
similar to the result of appendix A. If )\, is zero, the only solution to (B-3)
and (A-1) is the trivial solution. If >\, is positive, the general solution to (B-3)
is

A cos(\t) + Bam ().f)%--;%:,,— cos (wt) -->§§-G', A#Q
w, i) = OR i< _!(,5-4)
A ws(wt) + Boin(wt), A=

We discard the odd solutions for the reason given in the footnote to (2%).

If we attempt to use the second alternative in (B-4), we can eliminate A
by means of energy constraint (7). However, the bandwidth constraint (23) can
not be satisfied for any value of wlL # 0 . Therefore, we must discard the
second alternative.

To handle the first alternative in (B-4) conveniently, we define a function

j.lu) £ W,(aku) =Aus(r“)+5;|x-:'¢:cos(«u) - % &, W<, (B-5)

19
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where
wlL . X
1'%‘#': «s & = TB,L. (B-6)

Imposition of (A-1) forces (B-5) into the form

«)  9cospu)+ &{1~g?) <
5'(“)=C[c::=(}r0 ) %’m@«)ﬁ(%] = CAD, W<l g

where C is a constant. The energy constraint (7) yields

(&)
C = K, ) » (B-8)
where we have used (B-5) and (B-7), and defined
K,, = j‘ du A‘(U) . B-9)
Satisfaction of bandwidth constraint (23) demands that
0 = Jdu [“5@‘") - 5’].““), (B-10)

where we employed (B-6) and (B-7). Substitution of the detailed form for ﬁ‘u),
(B-7), into (B-10) yields the relation

coseq)[26 5l - 262 + 91§ 14267+ 5120 - 4& 560 ]

\ ! - \ -~ (B-ll)
- [gesstosali-g)][5(xqr )+ g - 265ky),
where e
Sin
S() = = (B-12)
For a given value of 9, (B-11) must be solved for the smallest value of « ; &
is a known specified constant. In order to find the best value of , We com-

pute D, versus q and pick the minimum, always being careful that AWremain
nonnegative for all lwgt, The quantity

D, = 7 (et fw/#l] = g 2 Jaulyo W]’

K| 1 (B"13)

20
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using (B-5), (B-7), (B-8), (B-6), and defining

K, = | du[ﬁ’(«)]’. (B-14)

The quantities K, and K, are available upon substitution of (B~7) in (B-9) and
(B-14). There follows, upon use of (23),

K = ¢i[1+ S(x9)] + 26 g 5() + &(1-1)]
+C, C,[za(z-f)sm)+ cfSQq-h-t) + 1’5(-(1: -f)l (B-15)
K, = ¢ [C3{1-Saxa)] + y CGF1- S(20]
+ 296 c,{S(«q; ) - S(-up «)}], (B-16)
Wheré. = fosteq)), C, = -[qicosi) + G'("t.')]-.- (B-17)

The numerical approach may now be summarized as follows. A value of

is picked, and (B-11) is solved for o . Then (B-17) is computed and sub-
stituted in (B-15) and (B-16), thereby emnabling evaluation of D, in (B-13) for
that choice of . (Up to this point, @ could be any desired constant; we now
restrict & = "&") When this approach is tried, it is found that D,
increases monotonically with increasing q . On the other hand, when ¢ is
made too small, W) becomes negative near ws|, The optimum value of %
is realized when _k'(l) =(0). From (B-7) and (B-17), this requirement is

C,swmEq) + G 9 sinp) = 0. (B-18)

The simultaneous solution of (B-11) and (B-18), with smallest « , is then given
by

¢1=.!on 9% , « = 2.217 059§, (B-19)
The optimum value of P, then follows from (B-13) as
D, = .60+ 4850 By , (B-20)
and the segment length follows from (B-6) as
4N 4 - 24231
L= 3, B (B-21)

Finally, the optimum window W, ¥ follows from (B-5) as
wid = ™ [l.(.sl 651 + 260 0617 cos(4. 434 uNt/L)

- 4,337 339 cos (3,552 2612 UL)], iH s Ya.

(B-22)

21/22
REVERSE BLANK




TR 4513

Appendix C

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN RMS-
BANDWIDTH CONSTRAINT :

The problem here is to minimize (11), subject to constraints (3), (7), and
(29). In order that (11) be finite, w'l{) must be continuous. Using (3), this means

that
w(tL/2) =0, w(tL/2)=o0. (C-1)
A calculus-of-variations approach tells us to minimize the quantity
Q = S dt [\n"'!t}T + )\Sd{-[w' H:)]z +yjdt w'i, (C-2)

where N and p are Lagrange multipliers; the resulting differential equation for
the optimum window is

W) = AW (g, rew, e = 0, JH < L2, (C-3)

We employed (C-1) on the allowed variations in deriving (C-3).

To solve (C-3), we assume a form e»p(st) for wi). Substitution in (C-3)
requires that 8 be chosen to satisfy

54-\5’4- p=0, 2 = "zb‘ + (kl— 4#)”]. (C-4)

At this point, several alternatives are possible. The first case we pursue
is a negative discriminant in (C-4). Then the four values for 8 in (C-4) can be

expressed as » »
s=2,2,-%,-2, (C-3)

where 2 is a complex constant with nonzero imaginary part. For distinct roots
(i.e., # not purely real), the optimum window is

W, i) = A exp(et) +Beap(2't) + C exr(-}f)+ D ur(*Z*f). (C-6)

In order that (C-1) be satisfied with a nontrivial solution, it is necessary that

the determinant .
E e Y¢ Ve

e ve&* e E*
i 26 e -’ (C-T)
te et e L

23
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equal zero, where E = exr(i‘:L /2) . This requires that

(Z+i>(2—£XE4-'I)(E'4-I) = 0. (C-8)

But none of the factors in (C-8) can be zero without double roots resulting for s,
in which case the form (C-6) is not appropriate. Therefore, the negative-
discriminant case is self-destroying.

The second case corresponds to a zero discriminant in (C-4). Then we have
three subcases:
a, @, -4, -a
- . o‘ - .
S= (a, ta,~1a,~ta )
OR
0,000

For subcase 1, the form for wylt) is

a real and positive, (C-9)

w i) = A cosh(d‘) +B snh(at) +Ct cosh (Qt') + Dt sinh (“t)- (C-10)
Imposition of (C-1) requires that

smhlal)=+ al (C-11)

for a nontrivial solution. But (C~11) has no solutions for positive real q .
For subcase 2 in (C-9), the form for w)is
wiH= Acosfut) +B sin at) + Ct ws( ot) + Dt sin(at), (C-12)

Imposition of (C-1) requires that
sin(aL) = 2 al (C-13)
for a nontrivial solution, Again this is disallowed,

For subcase 3 in (C-9), the form is
s 2 3
witl=A+Bt+Ct +Dt". (C-14)
Imposition of (C-1) yields only the trivial solution.

The third, and last, case we must now consider is a positive discriminant in
(C-4). Then we have three subcases:
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rqtb
$= ta)tib , 4 and b real, (C-15)
*ie, tib
For subcase 1, we have
W) = A cosh(at) + B simhlat) + C wsh(bt) + D sink (bt). (C-16)

Imposition of (C-1) requires that

o tanh(e) = r"b‘“‘\") or +°:(*) = b;h L2 (C-17)

where

<3 aLfz, f=bL/2 (C-18)

"

The only solutions of (C~17) are -(=F ; that is, &4 = b . However, these have
been considered already in (C-10) and found inadequate.

For subcase 2 in (C-15), we have

w, i) = A osh (qf) +5B ﬁmk(d’{‘) + Cs(bt) +D 5“'\(bt)- (C-19)

Satisfaction of (C-1) demands that

: ' nh +on (9)
-« tanhiv) -.-.-Ph..(P) or 'h': ) = P(L (C-20)

The second alternative in (C-20) leads to odd solutions only, in (C-19), and they
must be discarded because of their higher variation rate. The first alternative
in (C-20) leads to

w1 = C [ :::((:? - C:is((b;)) ] , s £ (C-21)

which is a legal nontrivial solution, The values of « and § are related as shown
in figure C-1, To handle this alternative conveniently, we deflne a function

Yolu) = ".(“:':“) = C[ c(:::t;) - (;i(p)] = Cﬁ(u_l), juls |, (C-22)

25




TR 4513

¥ s<.~x tanh (x)

-
-

Figure C-1. Relationship of @ and p in (C-20)

Then
L il
Yo ) = L (Bu), &' () =5 w'(2v). (C-23)
The energy constraint (7) requires that
C =(2_.>y2 : (C-24)
LK.
where
. 2
(
K, s _S‘ du [J( J)(u)] (C-25)
The bandwidth constraint (29) requires that
- -'-(—5'(' kL (C-26)
L=w\K) B’

where we have employed (C-23), (C-24), and (C-25). Then we use (C-23) through
(C-26) to determine the bias constant P, as

D, (;3_5&[”' W) = o Br (C-27)
For the curren example in (C-22), we evaluate

K« R@O*L | 1+303f)
(] Q’L‘M caslv)

26
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2 Rf2w) -1 4o T 2 _)|-Sf28)
K‘ = ( (1 + x’i-“f L'(b?)'FM&i“’F COS‘P) )

cosh' &)
- 4 Kb +1 1+ S{'g
Ky = cosh’ ¥ F Cos’ @ (€5

where we have employed the first alternative in (C-20), and defined

_ smhi® _ _Swmix)
R&) = ——=, S=—=—" (C-29)
For an arbitrary o¢ , we solve the first alternative in (C-20) for .
and then compute D, , by means of (C-27) and (C-28). It is found that D,
increases monotonically with o¢ , The minimum is realized when =0 ,
namely
D= 33:, (C-30)
The third subcase in (C-15) yields the form
W, ) = A cos{at) + B sin[st) + C tos(pt) +D sin (b0). (C-31)
The boundary conditions (C-1) demand that
tml) _ twmld
o ton () = 4 ton (9) or —-= 3 : (C-32)

However, the second alternative in (C~32) yields odd solutions and is discarded.

The first alternative yields lat) n 9
c0sla cos L r
w i) = C[ () @@ ]1H5?’°(+1' (C-33)

The values of « and ’ are related as shown in figure C-2., As above,

x tan(x)

/7

Figure C-2. Relationship of @ and B in (C-32)
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we define a function

Yl =W, (%.'“) = CA(") = C[ coalw) o5 ’ (C=38)
We can now employ (C-25) through (C-27) immediately, We evaluate

1+ 52+ _2 Ske+p)+ See-p) . | + 5(2p)

L= cos’ b)) Cos by) <o5(p) cos( ?)
1-5() Sk-p)-Sf3d) | g« _1-Sho) )
'J COS‘(«;) -2« f COS(-’) 05{{’7 A3 o8 (ﬂ) (C=-35)

_ A 1+5(20) 522 S+ +Ske-9) I+S '
oW HE sk wslp) +(5 cos‘(p§
For an arbitrary X ( #™/2) , we solve the first alternative in (C-32) for

, and then compute P, using (C-27) and (C-35). It is found that D,
decreases monotonically with increasing « , at least for o¢ up to 7/2, the

limit being 25/9 at « = W2 = . However, when o > m/2 , Alu) goes
negative somewhere and is unacceptable. For o = w/2 , (C-32) is not an
adequate form; we note instead that 3 = 3Iw/2 from (C-31), andthen
Ald) = Aces (Tu) - Bees(2F0). (C-36)
The boundary conditions (C-1) force A =-3B , giving
bl = cos®(Zw). (C-37)
We then find
1l . 45T
Ko 3‘?') K = 32 K‘- 1z (C-38)
yielding - 3.4
L 27’? B.- ’
(C-39)
‘Dl = qu. Br )

which is smaller than (C-30), Thus (C-37) is the optimum window, (Notice that

K =0)
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An Approximate Fast
Fourier Transform
Technique for Vernier
Spectral Analysis
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ABSTRACT

An approximate and quick fast Fourier transform
technique for vernier spectral analysis is derived
and tested for several condidate time and delay
weightings, and for overlaps of the time weightings.
For 50 percent overlap, the use of a simplie cosine
lobe for the time weighting yields spurious spectral
sidelobes at least 23 dB below the main peak, where-
as Dolph-Chebyshev time weighting achieves -33 dB
sidelobes. For 75 percent overlap, use of a
(cosine)d lobe for the time weighting yields side-
lobes at least 54 dB down, whereas Dolph-Chebyshev
time weighting achieves -86 dB sidelobes. In both
cases of overlap, use of delay weighting is also
required and is taken as a Hanning weighting. Ex-
tensions to other overlaps and .weightings are
possible.
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AN APPROXIMATE FAST FOURIER TRANSFORM TECHNIQUE
FOR VERNIER SPECTRAL ANALYSIS

INTRODUCTION

To detect the presence of very narrowband weak signals in noise, and to
measure their center frequencies accurately, it is necessary to Fourier trans-
form a long time segment of the available process. When the center frequencies
of the signal components are unknown and the total search bandwidth of interest
is large, this procedure demands storage and computation of many degrees of
freedom, that is, search of a large time-bandwidth product space. It would be
advantageous if a quick, coarse search for narrowband components could be
conducted, followed by a finer vernier analysis over a limited band where the
presence of narrowband components has been indicated. Such an adaptive pro-
cedure would be less time-consuming and require less storage. Also, if the
procedure did not need to be exact, but yielded an approximation with accept-
able sidelobes, the required storage and computation might be reduced further.

This report presents just such a technique, which
1. accepts the input process in smaller time segments as they are available,

2. performs a reasonable-size weighted fast Fourier transform (FFT) on
each overlapped segment,

3. stores only that frequency portion (at each segment) where narrowband
components are indicated to be present, and

4. performs a small-size weighted FFT over the total data record available,
for each frequency bin stored.

Steps 1 and 2 permit smaller-size FFTs than would be required if the total data
record were spectrally analyzed in one operation. Steps 3 and 4 constitute the
adaptive feature of this technique. The last transformover time (delay) in step 4,
for each frequency bin, is a vernier frequency analysis, measured from the
center of each bin; the degree of approximation of this technique is the subject
of this report.
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Some past work onperforming large-size FFTs by means of several smaller
FFTs is reported in references 1 and 2. The methods reported there are exact,
but they consume more time and require more storage than the method to be
presented here. In particular, the two methods of reference 1 require too many
small-size FFTs, and the method of reference 2 requires additional multiplica-
tions by complex exponentials and a fair amount of storage. The approximate
technique of reference 3 is similar to the one outlined above, up to step 4, with
the notable exception of overlapped weighting; at that point the technique of ref-
erence 3 requires transformation back to the time domain followed by another
transform to the desired frequency domain. Additional transforms are required
in this last technique, and it produces greater sidelobes than the new technique,
especially when the temporal weighting is judiciously selected.

FUNDAMENTAL SPECTRA L RELATIONSHIPS
LARGE-SIZE FFT APPROACH
Before embarking on the approximate technique, we review the standard
large-size FFT approach to spectral analysis. Suppose a data waveform x(t)

is sampled at time instants nA, n integer. Then the voltage density spectrum
that can be computed is*

v(f)

[ dtexp -izwft) xit) u) & 8, (%)
(1)

A ) exp (-i2mfna) x(na) una),

n
where u(t) is a temporal weighting deliberately imposed to control spectral
sidelobes, as will be discussed shortly; see figure 1A. The finite duration of

u(t) terminates the integral and sum in equation (1) at finite limits. The im-
pulse-train function in (1) is defined as the infinite sum

8,(0)= 2 §(t-na. (2)
n

The integral representation in (1) allows us to express!

Vi =X(H @ UHh @ Sy‘(ﬂ , (3

*All integrals are over the range of nonzero integrand.
tThe Fourier transform of the lower-case time function x(t) is the upper-
case frequency function X(f); this notation is used throughout.
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where @ denotes convolution, and, in keeping with (2),

0= T 5¢-3). @
m

Thus, the observed spectrum V(f) is the convolution of X(f) with the set of
windows* U(f) @ 8,(f), which is depicted in figure 1B.

u it

Figure 1A. Temporal Weighting

U(Ho5t(f)

0
Figure 1B. Spectral Windows
Figure 1. Time and Frequency Relationships

[ >SN WL

b’-‘ e

Because the ideal spectral window is a single impulse at f = 0, the aliased
mainlobes at m/A, m # 0, are undesired. Also, the window U(f) is desired
to be narrow, with very small sidelobes. Since the weighting u(t) is of limited
duration, the mainlobe wiadth of U(f) is not zero, but is inversely proportional
to the time duration.

Now, if the voltage density spectrum V(f) is computed at multiples of
(La)-1, where LA is the time duration of u(t), we obtain

P
Y (—L_A-)= 8 1 exp (-1270p/1) x(nd) u(ad) , p integer . (5)
n

*In the time domain, u(t) is called a weighting; the corresponding Fourier

transform in the frequency domain, U(f), is called a window. This nomencla-
ture is used throughout.
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Since V(f) is periodic of period 1/A (see (1)), (5) need be computed at L
different points; thus it can be realized as an L-point FFT of sequence
{x(ma) uma)}. For fine frequency analysis (that is, large L4) the size L of
the FFT may be too large to compute easily, under storage and time limitations.
The values in (5) are samples of the convolution of figure 1B with voltage density
spectrum X(f).

APPROXIMATE FFT TECHNIQUE

Just as we started above with an integral deflnition of a spectrum, then
showed that samples of this spectrum were attainable with an FFT, we begin
with the spectral-delay function, a, deflned as

a(f, r) gf dt exp (-i2#ft) x(t) w(t - 7) a8, (1)
(6)
=4 ) exp (-i2¢fna) x(nd) w(na - r) .
n

The temporal weighting w is now delayed by r seconds; if the duration of w
is I, seconds, the function w(t - r) picks out a delayed portion of data x
of length L,,, and subjects it to the same transform as in (1). This operation
is depicted in figure 2A, where the temporal weighting can be located at aa,
bb,..., cc. Thisfigure is drawn for 50 percent overlap of the temporal weight-
ings; however, other overlaps are possible and recommended in some cases.

The next step, consistent with step 4 in the Introduction, is to perform a
Fourier transformation on the delay variable r, while holding frequency vari-
able f fixed. The general definition is the vernier spectrum

Y(f,v) = fdr exp (-i2nx v r) a(f,r) d(r) S&S(r)
=8 Y exp (-i2#vkS) a(f, kS) d(kS) ,
k

where » is the vernier frequency, d(r) is called the delay weighting, and

S is the separation increment in delay r at which a(f,r) must be computed;
that is, S is the shift between temporal weighting locations (see figure 2A).
Since the separation S in delays can be taken to be smaller than the temporal
weighting duration L,;, (7) allows for overlapped weighted transformation of
the available data (see (8)).
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The operation described by (7) is depicted in figure 2B. When the Fourier
transform (6) on weighted time segment aa is completed, the set of frequency
components denoted by the vertical line of Xs at the end of segment aa are
available. Similarly, frequency component values at the ends of segments bb, ...,
cc are indicated in figure 2B; these components correspond to delayed locations
of the temporal weighting w. Now, for a fixed frequency, say f;, the array
of (delayed) frequency components indicated in a horizontal box in figure 2B is
subjected to a delay weighting and is Fourier transformed according to (7),
thereby vielding vernier spectrum Y(fj, v). Similar outputs are available for
other (adjacent) frequencies of interest, such as f2 or f3 .

temporat weighting w

cece ‘—A_J o Time

T T
a b a b c ¢

'

<< |- —

—B— it}

|

A — — — e Yered<

* s0 00

delay
weghting d

o Time

o
T
|
|
1
|
|
o —_— — — K :
¢ > -
ni—-—-——»—ﬂ—-»/-—

Ol e — —

Figure 2B. Adjacent Delay Weightings

Figure 2. Temporal and Delay Weightings
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Samples of the vernier spectrum in v at multiples of (MS)'I, where MS
is the duration of delay weighting d(r), are given by

m
Y (f, I\Tg) =8 Z exp (-i2#mk/M) a(f, kS) d(kS), m integer, (8)
k

which can be realized as an M-point FFT of the sequence {a(f,kS) d(kS)} of
length M. The periodicity of Y(f,») in », of period 1/S (see (7)), means
that (8) need be computed only at M different values of m.

Finally, samples of vernier spectrum Y in frequency f at multiples of
(NA)'1 are given by (using (8))

p m M-1 p
Y(—, —])=s ) exp (-i2emk/M) a|— , kS| d(ks),
Na MS k=0 Na o)

p=01,...,N-1;, m=0,1,..., M-1,

where delay weighting d(r) has been selected so that samples {d(kS)} are
nonzero only for k=0,1,..., M - 1. The values of a needed in (9) are (using
(6)) given by

p
a(—-— ’ kS) =4 z: exp (-i2epn/N) x (n4) wnad -KkS). (10
Na n

In order to put (10) directly in the form of a standard FFT, we assume that the
delay separation S is taken as an integer multiple of the sampling increment a:

S=I;4 . (11)

Then, if temporal weighting w has nonzero samples {w(nA)} only for0<n< N-1,
(10) becomes

p N-1
a(— . kS) = exp(-i2:pkls/m A 2 exp (-i2spm/N) x(ma + k[s 4) w(ma),
Na m=0

(12)

0<p<N-1, O0<k<M-1.
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The exponential phase factor preceding the sum (FFT) in (12) takes on particu-
larly simple forms for two special cases of delay separation S: For Ig= N/2,
delay S is equal to half the temporal weighting duration I,, and is termed

50 percent overlap; for I_ = N/4, delay S is one-quarter of L,, andistermed
75 percent overlap. For tsﬁese two cases,

50 percent overlap, Ig = N/2, phase factor = (-1)pk ; (13A)
75 percent overlap, I = N/4, phase factor = (-i)pk . (13B)

By proper branching in a computer program, no storage or complex multiplica-
tions are necessary to incorporate these phase factors in (12), prior to its
usage in (9). (An alternative approach that completely circumvents the phase
factor in (12) is described in appendix A.)

Equations (12) and (9) are the essential results of interest. We now inter-
pret them by means of simple examples that will enable us to make good choices
of temporal weighting w, delay weighting d, and separation (overlap) S.

INTERPRETATION OF THE VERNIER SPECTRUM

In appendix B, the vernier spectrum is shown to be given in terms of X by
m
Y(f,v)= [Wev) 20 X(f-v - )| @ D(v) @ 5y(»), (14)
m

where all the convolutions are on v, with f held fixed. D(v) is the delay
window corresponding to the delay weighting d(r).

The lineariiy of the two Fourier transforms, (6) and (7), on the data x(t)
indicates that we can investigate the behavior for data components separately
and merely add the results. The fundamental component is

X(t) = exp (i2¢f t), X(f) = 8(f - fo) . (15)

At this point, we shall make a series of reasonable assumptions and require-
ments, and deduce desirable properties about the weightings and separations.
The first assumptions are

(a) excitation frequency fo < (2A)"1,
(b) coarse analysis frequency f < (2A)'1,
() Ly»> a.
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Assumption (a) avoids aliasing, (b) restricts analysis to the fundamental range,
and (c) requires the temporal weighting to cover many samples of the process
x(t) . Furthermore, if

(d) temporal window W has low sidelobes,

the only term in the sum in (14), after substituting (15), that has substantial
value is that for m = 0, and it yields

Y(f, v) = [W(f- fo) D(v + f - fo)]e slk(y) . (16)

A plot of this equation versus vernier frequency » is given in figure 3, where
L d is the length (duration) of delay weighting d(r). The narrow lobe at » = fo-f
is the desired component; this component is displaced from the coarse analysis
frequency f (corresponding to v=0) by f, - f Hz, which places it at absolute
frequency f+ (f,-1f) = fo, as desired. The shape of this lobe is governed by
the delay window D; thus, if

() delay window D has low sidelobes,
the large lobes separated by 1/S Hz in figure 3 will not overlap significantly,

and potentially good spectral estimation is possible. The necessity of delay
weighting is made obvious by these observations.

f Yit.U)

WIt- 651D 10) dme e ——

Wit-101DW+ £-14)

Vg

lo-'—é

'O" *g

Figure 3. Vernier Spectrum
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There are afew additional points worthnoting about figure 3. The peak height
of the lobes, W(f - f;) D(0), is a function of the exact location of the excitation
frequency f, and the coarse analysis frequency f. This undesirable picket-
fence effect* (which was not present in figure 1) can be minimized:

(g) choose analysis frequencies {fi} closely spaced (see figure 2B).

Then [fi-f,]| is small for some value of k. Also, since the width of the lobes
in figure 3 is 1/ Ly where Lgis the delay weighting duration and will betaken
of the order of the total record length available or utilized, very fine resolution
in v is possible. Hence, narrowband components closer than 1/L, the resolu-
tion capability of a single time segment, can be resolved by using this technique.

FFT CONSIDERATIONS

Samples of the vernier spectrum Y(f, v) were given in (9). The locations
of the samples arel

1 2 N-1
f 09 sy T .
Na Na Na
(17)
1 2 M-1

Ms' wms  MS

The range covered by the vernier frequency v is s~1, and will be greater than
the increment in f, which is (NA)~1l, if overlapped temporal weighting is used.
And since the full range, s-1, would encompass a spurious lobe for values of
lfo - f| near (ZS)'1 (see figure 3), overlapping is necessary.

The approach adopted here is to utilize all the samples in  at separations
of (NA)'I, and use only samples in » which cover a range of (NA)"l; that is,
we use the central portion of Y centered around » = 0, including negative fre-
quencies. In terms of figure 2B, adjacent delay weightings at fj, fo, f3 will be
employed. The alternative time-saving procedure of attempting to utilize all of
the M samples in », and using only enough samples in { to fill in the frequency
axis, can lead to a very bad picket-fence effect, in addition to large spurious
lobes at undesired frequency locations. These conclusions follow upon piecing
together several vernier spectra like figure 3 for appropriate values of f and
excitation frequency f;.

*See reference 4, page 47.

“he upper half of the array of numbers in (17) corresponds to negative fre-
Thus the last samples in eacharray correspond to f =-(NA)‘1 and
L orespectively,
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EXAMPLES

The general guidelines furnished in the previous section do not yet enable
us to make quantitative selection of good weightings for different degrees of
overlap. To make this selection, several examples are considered and compared.
The numerical examples utilize

1

|

A=

1
seconds, N = 1024, = —8— Hz,

1024

=

S
(18)

f, = 256 /-1—) 256 = Hz .
\Ze 2

(A sample program utilizing (9), (10), (11), (18), and the method of appendix A
is given in appendix C for 75 percent overlap.)

50 PERCENT OVERLAP

At 50 percent overlap of the temporal weighting, * several possibilities were
tried. They included

cosine lobe : w(t) = cos (mt/Ly)
cosine? lobe (Hanning) ; w(t) = cos2 (nt/Ly)} [t] < Ly/2. (19)
Dolph-Chebyshev (Reference 3)t

A complete list of cases is presented in table 1.

In figures 4A through 4I,% decibel plots of the magnitude of the estimated
spectrum are given for cosine temporal weighting and for (cosine)2 delay
weighting. All plots are normalized with respect to a maximum of 0 dB, which
occurs for fy =f =256 Hz, v =0 Hz. Figure 1A, for example, demonstrates
the behavior predicted by figure 3, namely, the presence of spurious sidelobes
every S-1=(.5x1s)"1=2Hz. The largest spurious lobe in figure 4A is
-23.5 dB at 258 Hz. The slow rate of decay of the peaks at 256 + 2n Hz is due to
the discontinuity of slope of w(t) at + Lw/2 for this example. The desirable
feature of a narrow mainlobe is attained, as indicated in figure 4. The succes-
sion of plots in figure 4 shows that the cxtent of the picket fence varies greatly

*When these weightings are employed in the FFT, they are delayed by L,,/2
seconds, thereby being nonzero in the interval (0, Ly).
A quick and accurate method of generating the Dolph~Chebyshev weights by
means of efficient use of an FFT is presented in reference 6.
IF‘ig‘ures 4 through 14 follow the text, beginning on page 16.

10
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Table 1. Examples of Temporal and Delay Weightings

Figure @Z?gt;:g:‘; Delay Weighting Ov(e;:)lap Number of Tones

4 cosine cosine? 50 1

5 cosine® cosine2 50 1

6 Dolph-Chebyshev cosine? 50 1

7 cosine? cosine? 75 1

8 cosine3 cosine? 75 1

' 9 cosine4 cosine2 75 1
| 10 cosined® cosine? 75 1
11 Dolph-Chebyshev cosine? 75 1

12 cosine? flat 75 1

13 cosine? cosine? 75 2

14 cosine? flat 75 2

with excitation frequency, reaching a maximum of -3.20 dB in figure 4H for
fo = 256 7/16 Hz. (The figures for f, > 256 1/2 Hz repeat the behavior shown.)
The worst sidelobe of -23. 0 dBoccurs for f, = 256 1/8 Hz, as showninfigure 4C.

It should be noted that if sidelobes were to be measured with respect to the
peak onthat sameplot, figure4C wouldyield a sidelobe of -23. 0+ 0.13=-22.9dB.
Thus, the convention adopted here must be kept in mind in the following discussion.

Instead of applying the weighting directly in the time domain by means of
multiplication on the data x, the effect of cosine weighting can be accomplished
in the frequency domain by means of convolution of the spectrum with the se-
quence (i/2) {1, -1}; however, the resultant must be interpreted as the spectral
value between the two quantities convolved at each frequency step. * More gen-
erally, (cosine)l! time weighting can be accomplished alternatively by means of
convolution of the (unweighted) spectrum with the sequence

B -

*This possibility and its interpretation were pointed out by Dr. N. L.
Owsley.

(20)

11
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of length n + 1, and then interpreted as the spectral value at the center of the
region convolved, for each frequency step; see appendix D. The convolutional
sequences in (20) are given in table 2 for n = 1 through 5.

Table 2. Convolution Sequences

Convolution Sequence
i1/241, -1}
1/4{-1, 2, -1}
i1/8{-1, 3, -3, 1}
1/16{ 1, -4, 6, -4, 1}
i1/32}1, -5, 10, -10, 5, -1}

G W N =N

Since the effect of (cosine)2 temporal weighting is very easy to incorporate
in the frequency domain by means of convolution, it must be considered as a
candidate for weighting. The results in figures 5A and 5B show that although
the picket fenceis reduced to -2. 70 dB, the peak sidelobe increases to -15.4 dB.
(For brevity, we are now presenting only selected cases of worst excitation
frequencies.) The reason for the increased sidelobes for this temporal weight-
ing is that 50 percent overlap is not yet great enough to realize the deeper first
sidelobe level of -31. 5 dB; that is, we are still sampling, according to figure 3,
on the skirts of the mainlobe for some excitation frequencies. Generally, for
50 percent overlap, the peak sidelobe will occur approximately at the excitation
frequency such that the worst sidelobe (or mainlobe) of the temporal window
beyond f =1.5/L., is encountered; this may be seen by considering figure 3
and recalling that we plot only the central portion of Y(f, »). Thus the (cosine)l
weightings in tables 1 and 2 for n > 2 are not acceptable for 50 percent overlap,
since sampling of the mainlobe is encountered.

The realization of minimum sidelobe level for a specified beamwidth (to the
first null) is exactly the problem addressed by Dolph, reference 5. Accordingly,
this weighting is of considerable importance in spectral estimation. In figures 6A-
6C, the effects of Dolph-~-Chebyshev time weighting are presented. The worst
sidelobe of -33. 2 dB occurs for fy = 256 1/8 Hz (figure 6C). These results are
noticeably better than in figures 4 and 5.

When triangular temporal weighting was tried, it had a peak sidelobe of
-20. 2 dB; again, we are samplingthe skirts of the mainlobe. Thus, if 50 percent
overlap is all that can be utilized for some applications, due perhaps to limited
computation time, the cosine-lobe temporal weighting is the best of the simply
applied windows (that is, by means of frequency domain convolution), but the
Dolph-Chebyshev time weighting is 10 dB better than the cosine lobe weighting.

12
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75 PERCENT OVERLAP

At 75 percent overlap of the temporal weightings the following examples
were utilized:

cosine2 lobe (Hanning) : w(t) = cos? (xt/Luy)

3 3 . = 3
cosine® lobe : W(t) = cos3 (nt/Ly)
cosine4 lobe : w(t) = cos? (xt/ Ly) It] < Ly/2. (z1)
cosine® lobe : w(t) = cos® (xt/Ly)

Dolph-Chebyshev -——

The results for the Hanning weighting are given in figure 7. The peak sidelobe
is -41.8 dB at fo = 256 1/2 Hz in figure 7C, and the picket fence is -2. 60 dB
at fo = 256 7/16 Hz in figure 7B. Thus, a2 much improved sidelobe level is
realized relative tc 50 percent overlap, at the expense of increased computa-
tion effort, that is, increased overlap and number of FFTs.

In an effort to further improve performance, the (cosine)3 weighting, which
has a higher degree of continuous derivatives at + Lw/2, was tried. The re-
sults in figure 8 show a maximum sidelobe of -51. 2 dB and a picket fence of
-2.34 dB.

Continuation of this effort to smoother weightings suchas (cosine)4, figure9,
shows a peak sidelobe of -48.1 dB and a picket fonce of -2.18 dB. The peak
sidelobe has increased over that for (cosine)3 weighting because, for 75 percent
overlap, the peak sidelobe (or main lobe) of the temporal window beyond approxi-
mately f=3.5/Lw is encountered. It so happens that the worst case in this
region is larger for (cosine)4 than for (cosine)3 temporal weighting.

For (cosine)S temporal weighting, the peak sidelobe is reduced further to
-54.1 dB. Also, the picket fence is improved to -2. 07 dB; see figure 10. This
weighting is easily accomplished via frequency domain manipulations; see table 2.
An alternative temporal weighting of virtually equal quality to (cosine)® is cubic,
that is, sections of cubic curves that have continuous derivatives of as high
order as possible. The temporal window is proportional to

. 4
sin (n Ly £/4)
nLy, /4 (22)

and has a worst sidelobe of -53.1 dB. (The picket fence was not computed.)
However, a cubic temporal weighting is not easily accomplished in the frequency
domain.

13
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When (cosine)® temporal weighting is considered, it is found that 75 per-
cent overlap forces us to sample the temporal window on the skirts of its main-
lobe. This is an unacceptable weighting because the peak sidelobein the vernier
spectrum increases significantly.

The possibilities of Dolph-Chebyshev weighting are indicated in figure 11.
The worst sidelobe is ~86 dB in figure 11B for fo = 256 1/4 Hz, and the picket
fence is ~2.29 dB in figure 11C for fo, = 256 7/16 Hz. This is a 32-dBimprove-
ment in sidelobe level compared with (cosine)5 weighting. The picker fence is
degraded by 0. 22 dB.

To determine the effect of not using delay weighting, figure 12 was computed
for (cosine)2 temporal weighting and flat delay weighting. For certainexcitation
frequencies, a very narrow mainlobe is realized; see figure 12A. However, for
other excitation frequencies, the lack of delay weighting creates broad ""shoulders"
of significant level; see figure 12B. Also, the sampling in f and », inherent
in the FFT, produces a picket fence of -5.0 dB. Thus, although a low peak
sidelobe is attained, lack of delay weightingis very detrimental to performance,
as will be further demonstrated below. Notice from figure 7 that (cosine)? delay
weighting also yields a peak sidelobe of ~41.8 dB, but has no broad shoulders
and has a picket fence of only ~2. 60 dB.

The detrimental effects of no delay weighting are best illustrated by a com-
parison of figures 13 and 14, which have two tones separated by 1/2 Hz, one
15 dB stronger than the other. It is seen that thesetwo tones are resolved, even
though they are closer than the resolution capability of the individual time seg-
ments, that is, closer than 1 Hz. In figure 13, (cosine)2 delay weighting is
employed; in figure 14, none is employed. A comparison of part A of these
figures reveals that, for excitation frequencies 256 and 256 1/2 Hz, the flat
delay weighting is better. However, for excitation frequencies 256 1/16 and
256 9/16 Hz, the presence of the weaker tone is clearly evident in figure 13B,
but hardly discernible in figure 14B (no delay weighting). The presence of noise
would obscure the weaker peak. Thus, although the peak sidelobe may be very
small, the presence of high-level broad shoulders must also be eliminated by
use of delay weighting.

CONCLUSIONS
An approximate and quick FFT technique for vernier spectral analysis is
possible by employing overlapped temporal weighting and delay weighting. For

50 percent overlap and Hanning delay weighting, the best simply-applied tem-
poral weighting discovered was a single cosine lobe, realizing a peak sidelobe

14
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of -23 dB. However, Dolph-Chebyshev temporal weighting achieves -33 dB side-
lobes. For 75 percent overlap and Hanning delay weighting, the best simply ap-
plied temporal weighting discovered was (cosine)®, which realized a peak sidelobe
of -54 dB. However, Dolph-Chebyshev temporal weighting is capable of -86 dB
sidelobes. Which overlap and weighting to employ depends on the limitations on
computation time and storage, and on therelative strengthand location of inter-
fering tones.

The overlap is not limited to the above choices. It could, for example, be
67 percent. The best weightings were not investigated in this case, because it
was felt that the above overlaps were easier to implement in most cases of
practical interest. However, Dolph-Chebyshev weighting is always a strong
candidate and is quickly and accurately generated (reference 6).

15
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Appendix A

no+ N-1
TWO METHODS OF COMPUTING 2 : exp (-i2#pn/N) g,

n=n°

Define

ng+ N-1
= 2 : exp (-i2apn/N)q,, 0<p<N-1, (A-1)
n=n,
where ng > 0. If welet m =n - n,, (A-1) becomes
N-1

Q, = exp (-i2xpn /N) Z exp (-i2xpm/N) Un e ng - (A-2)

p

m=0

no+N-1

The sum in (A-2) is an FFT of the sequence {qn}no .
For an alternative method, consider the general term qp in (A-1). Then,

if

(@ n=0, N, 2N,..., q, gets weight exp (-i0) ;

) n=1, N+1, 2N+1,..., q, gets weight exp (-i2xp/N) ; (A=3)
(c)n=N-1, 2N-1, 3N-1,..., q, gets weight exp (-i2ap(N-1)/N) .
So, if we define m=n mod N, then case
(a) corresponds to W =0;
(b) corresponds to T =1 ; (A-4)
(c) corresponds to i=N-1.
Therefore, let
vi=qn,no_<_n§no+N-1, (A-5)

A-1
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in which case

N-1
Qp= exp (~i2#p0/N) vz, 0<pP<N-1; (A-6)
=0

-1
this is simply an FFT of {v‘ }g , with no phase factor necessary. Equation
(A-5) corresponds to filling up the v; array, from the given quantities qp,
starting from the nonzero position, n, mod N, andcyclingaround to position 0.

To apply these results to (10), suppose weight w is nonzero for t>0.
Then if n, is the smallest integer such that ng > k S/A, (10) canbe expressed as

ng+ N-1
p \
a(—, ks) = A Z exp (-i2#pn/N) x(n4) w(nAd - kS) . (A=T)
NA n=n,

This is of the form of (A-1) if we identify

Qp = X(nd) w(na - kS) . (A-8)
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Appendix B
DERIVATION OF VERNIER SPECTRUM

From the first line of (7) in the main text, there follows immediately
Y(‘v v) = A(fo ») @ D() @ ‘*(') ’ (B-1)
where all convolutions areon », for f fixed. Then using (6), we obtain

Af,v) =[df exp (-i2nwvr) a(f,r)

= [dr exp (-i2uv 1) [dt exp (-1278) x(t) w(t - 1) aft  (B-2)

wW(- v)jdt exp (-i2n(f ~ ») t) x(t) Afy(t)

W(- ¥ Zx(hv - i:l).
m

Substituting (B-2) in (B-1), we have

m
Y(f,») = [W(-U)Zx(f¢ v - A)].D(v) ."k(’) . (B-3)
m

B-1/B-2
REVERSE BLANK
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Appendix C
SAMPLE PROGRAM

The program furnished below is illustrative of the vernier technique. It
has been written for

1
A (DEL) = seconds, N = 1024, M =32, S =Tsec

1024
(C-1)

f (FO) = 256(1/16) 256-;- ’

but could be easily changed to other cases. The input data are furnishedby inter-
nal functions XREAL and XIMAG; currently, two tones of relative strength
-15 dB and separation 1/2 Hz are incorporated. Loop 1 in the main program
accomplishes Hanning temporal weighting, while loop 2 accomplishes Hanning
delay weighting. The subroutines MKLFFT and QTRCOS are detailed in refer-
ence 7. The method in this program employed the cycling technique described
in appendix A.

PARAMETER N=102urM=32,N4SN/7Gel ,MezM/be]
INTESER PS

DIMENSION ZR(N)LZI(N) ya(N) oD (M) eAR(21oM) AL (21+M) sADR (M) +ADI (M),
SOB (M) gCNINW) )CM M) »2(200) 9 X(108) Y (168)
s°=1°|“(.o75,
TPiIMs2,¢3,141592654/(Mel)
TPINS2,¢3,14159265u/N

MizM=}

Ni=N=}

DELS‘./N

ISaN/6

Sz1SeDEL

JMSINTY (LOG(FLOAT(M) )81, ,ub27¢,5)

Cauny STRCOS(CNew)

CaLl QTRCOS(CMew)

CaLl MODES3(2+0)

CaLL SUBJUEG(Z+5.9=100,,165,40,)

C‘BL OﬂJCYG(l'OOOo01“00.91625.02350o)
D0 1 Maz0eN}

W(MGe1)2L,.=COS(TPIveMS)

D9 2 XKS=0evy
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13

10
16

11

D(KS*3)21.,=COS(TPIMe(KSeL))

DO 13 IC=1r3168

X¢ic)slIC

00 12 1F=0.8

F0=256,¢1Fs, 0628

DO 3 KS=0.M}

NOSISeKS

NYsNOeNi

DO & NS=NOWNU

NTSMOD (NS¢ N)
ZRINT*1)SXREAL (NSeUEL ) sw (NSeNOe L)
LI INTeL)SXIVAG(NSeUEL) sW (NS=NO+1)
CONTINJE

CALL UWKLFFT(ZRe21+sNel0r=1)

D0 8 Pu=246,266

AR(PS®2uS5¢KSel)= JelL®ZR(PS+1)

AL (PSe2u59KS+1l)= DelLe2]l(PSe})

c ONTI NUE

CONTINUE

D0 6 PS5=2Wb, 260

D0 7 KS=0.M3
ADR(KS+1)SSeAR(pS=205,K5¢1)80(KS*1)
ADI(KS+1)35eAl(pS«2u5,K5+1)8D(KS*1)
CONTINVE

CaLl MXKLFFT(ADR,AD[)CMyIMo=})
IFE(IFEQ.0.AND PS.£0.256) PEAKS10,8.0010(A0R(1)e82+ADI(1)882)
DO 8 XS5=30,M)

AR(PS=245:KS+1) =ADR(KS+])
A1(PS=245,KS+1)=AD] (KSe})

CONTINVE

CONTINUE

DO 9 PS=286,2066
I1CE(PS=206) 8

D0 10 mMS=0.M}
ASAR(PS=205,M501 ) 0e2¢AL (PS=245,M5¢]1)0e2
ASMAX (A} ,E=36)
OB(M5¢1)=210,¢L0G10(A)=PEAK
CONTINVE

PRINT 14, PS
FORMAT(///110/)

PRINT 11, DB

FORMAT(78E1S8,6)
Y(1C*3)208(uel)
Y(IC*2)208(M=2)
Y(1C*+3)20B(M=})
Y(IC*%)3DB(M)
Y(IC*8)s08(1)
Y(3C*6)s08(2)
Y(1C*7)s0B(Yy)
Y(iC*0)208(y)
CONTINUE

S1UE=e200,

Do 17 I¢=1s160
IF(IC,GE.69,AND 1C,LE,109) 60 TO 37
SIVEZVAX(SIDE,Y(1C))




17
18

18

16

12

CONTINUE

PRINT 180 SIOC

FORMAT(/® PEAK SIDcLOBE 15°*,Eiw.8)
Cabl SETSMG(2+30¢l,)

Do 19 1P210,90,30

Caul LINESS(Z:0, S.e=FLOAT(IP))
CablL LINESS(201,165.0=FLO0AT(IP))
DO 16 1P313,157.8

Canl LINESG(Z,0,FLUAT(IP)0,)

CaLl LINES®(Z,1.FLOAT(1IP)¢=100,)
Caul SETSMG(2:3n¢2,)

Caul LlN!Sz(loO.Su-lOO.)

Caul LINESG(2¢1,5400,)

Cabl LINESG(2:1,.1065,00,)

Cavl LINESS(2,1,169,0=100,)

Canl LINESS(2+1,5,0-100,)

Canl LINES®(2/468+40Y)

Cal PAGLEG(2:0¢301)

CONTINUE

Canl EXITE(2)

PRINT 110 PEAK

FUNCTION XREAL(T)
XREALSCOS(2,03.1412926548F00T)

S OCOS(Z.OJ.1015’265&0('00.5)‘7)050
RE TURN

FUNCTION X1mAG(T)
XIMAGSSIN(2,03.1410926500F0eT)
eSIN(2,03,1912926540(F0¢,3)0T)e5Q
RETURN

Env
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C-3/C-4
REVERSE BLANK
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Appendix D
EFFECT OF (COSINE)® TIME WEIGHTING

Let us define the spectrum of unweighted data x as

N-1
Z() = [ dt exp (-i27ft) x(t) A8,(t) =4 kZO exp (-i2#kAf) x(ka), (D-1)

and that corresponding to weighting w as

Zyw() Z [ &t exp (-i2xft) X(t) w(t) a8,(t) = Z(D @ W(D

N-1 (D-2)
= A Z exp (-i2rkaf) x(ka) wka) .
k=0

Now for (cosine)® time weighting, we have*
w(ka) = sin” (k#/N), 0<k<N-1. (D-3)

Substituting (D-3) in (D-2), there follows

N-1

1\?
Z,0=4 kz=:0 exp (-i2xkaf) x(ka) (‘E)

n
[exp (ik®/N) - exp (-iku/N)]

N -

1 1 n n n krn
=A 2: exp (-i2vkaf) x(kA)(-——) Z -1y (J,)exp[i—(n-2j)]

1V n n\ N-1 n - 2j
=AH Z (-1 (J) z x(ka) exp [-iZka( - )]

i2/ =0 k=0 2Na

1 n /n n-2j

i2 y=0 2Na

the last step via use of (D-1). This result yields (20).

*See the first footnote to equation (19) of the main text for the explanation
of sin? in (D-3).
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For the special case of n =1, (D-4) becomes

1 1
Zwi =11/2 [Z(--—)-Z(f+ —) , (D-5)
2NA 2NA
and in particular,

n 1 n n+1
Z, (— + )=i 1/2 |2 <—A)- zZ ( ) . (D-6)
Na 2NA N NaA

The right-hand side of (D-6) involves two adjacent spectral values as afforded
by the standard N-point FFT in (D-1). The left-hand side of (D-6) is the spec-
tral value of Z,, at the frequency halfway betweep the above two spectral loca-
tions. Thus, under this interpretation of the right-hand side of (D-6), the desir-
able sidelobe control predicted by the convolution in (D-2) can be attained. A
similar interpretation is possible for (D-4) for general n.

D-2
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APPROXIMATIONS FOR STATISTICS OF
COHERENCE ESTIMATORS

INTRODUCTION

Expressions for the probability density function, the cumulative distribution
function, and any moment of the estimates of magnitude-squared coherence
(MSC) and magnitude coherence (MC) are available in references 1-5. The
expressions for the moments usually involve a generalized hypergeometric
function* gFo and require a time-consuming computer effort for their evalu-
ation, Also, the fundamental dependence of statistics like the bias, variance, and
mean-square error on the number of averages N and the true coherence are
not obvious, because of the lack of significant results for the 4F, function.

This report will seek to present accurate approximations for these statis-
tics, of as simple a nature as possible, and capable of hand calculation., Also,
the dependence on N and on the true coherence will be deduced, and thereby
future experiments can be designed in which the required stability can be pre-
dicted and attained with ease and certainty, As a by-product, a technique for
reducing a particular type of 3Fo function to a Gauss hypergeometric function
(reference 7, chapter 15) is presented,

ESTIMATION OF MAGNITUDE-SQUARED COHERENCE

The complex coherence between two jointly stationary random processes
x(t) and y(t) is defined as

G, D
Xy
Ty () = ’ 1)
Xy [Gxx(f) ny(f)] 1/2

where G,,(f) is the cross-spectral density at frequency f, and Gy,(f) and
ny(f) are the auto-spectral densities, The MSC is

il = |rey®|? @

*See, for example, reference 6, section 9, 14,
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The MSC is frequently estimated according to

N
C = =N N , (3)
Buxld Gy ® Y |xp0]% 2 | ¥a00]?
n=1 n=1

where N is the number of data segments employed, and Xpj(f), Yy(f) are the
(discrete) Fourier transforms of the n-th weighted data segments of x(t) and y(t).

GENERAL RELATIONS

The m~th moment of the random variable* C for independent data segments
is given in reference 1, (4) and reference 2, (3) as

emjz, _IMI(m+]) N A )

!’ Hm——rTm—(l-C) 3F2 (m+1, N, N; N+m, 1; C), 4)
where C is the true MSC and 3F, is a generalized hypergeometric function.
The power m need not be integer in (4).

For m = 1, the first moment of C can be reduced (reference 5, appendix B)
to the simpler (and rapidly convergent) form

l N-1
“1' §+N+1C F(ly l’ N+2' C) ’ (5)

whefe F is the Gauss hypergeometric function, For m = 2, the second moment
of C can be reduced to the simpler form (see appendix A)

N3-2N2+2N-2 N-1

2
= + N4 - (N-2)C| F(1, ,; N+2; C), (6
™ - N+1[ (N-2)¢] F( )y (6)

which involves the F function with the same arguments as in (5). Equations (5)
and (6) give exact resxilts from which the bias, variance, and mean-square error
of the MSC estimate C can be obtained.

*The f-dependence is suppressed for convenience.
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BIAS APPROXIMATION
The bias of C is

Bias(C) =E{Clc,N} -Cc=4; -C . N

By expanding F in (5) in a power series in C and retaining terms to order N‘z,
we obtain the approximation

Bias($) = % 1 - C)2 (1 +-2N£> ) (8)

Plots of (7) and (8) are given in figure 1 for N = 8 and 16. The discrepancy be-
tween the exact result (7) and the approximation (8) is barely discernible for

N = 8 and is not discernible for N = 16, The discrepancy (between (7) and (8))
is even less for larger N. Equation (8) is a much simpler and more accurate
approximation than reference 2, (5). The bias and approximation are observed
to have a peak of value 1/N at the origin and to decrease monotonically with
the value C of the true MSC,

1/N

\\
\ \

A
BIAS (C)

EXACT

APPROXIMATION

!

i

[+) c 1
Figure 1A, N =8

Figure 1, Bias of MSC Estimate
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A7

sias &)

‘/llACY

APPROXIMATION”

0— N
(] c 1

Figure 1B, N =16
Figure 1 (Cont'd), Bias of MSC Estimate

VARIANCE APPROXIMATION

An expansion for the variance of E is given in reference 2, (6), U we
expand the bracketed term to order N-1, we obtain the approximation

a  N-1 5 1-6C+13C2]
Variance(C) = m 1-0C) L2C + N 9
This result can also be obtained from the exact expression
Variance(E) = Mg - u% 10y

combined with (5) and (6).

Plots of (9) and (10) are given in figure 2 for N = 8 and 16, The discrepancy
between (9) and (10) is barely discernible for N = 16 and is not discernible for
N > 32, Equation (9) is a much simpler and better approximation than refer-
ence 2, (6).

For large N, the peak of the variance occurs at C ¥ 1/3 and is of value
8/27 N-1, Thus, even when the true coherence is unknown, the maximum vari-
ance will be less than 0, 3/N, for large N,
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vaRIANCE (C)

Figure 2A. N =8

.3/

EXACT -

'

N\

APPROXIMATION

vaniance )

o

0 ]
c

Figure 2B, N = 16
Figure 2, Variance of MSC Estimate
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MEAN-SQUARE ERROR APPROXIMATION

The mean-square error of the MSC estimate C is
Mean-Square Error (¢) = E (€ - €)%}
= [Biu ((..‘)]2 + Variance (E)
= =02 uy-ud=uy-2cu -c?. ay
This exact result can be computed by means of (5) and (6). If we substitute

approximations (3) and (9) in (11) and retain terms of the two highest orders in
N, we obtain

Mean-Square Error (6» z

_ = 2

2
N+1
Plots of (11) and (12) are presented in figure 3 for N = 3 and 16, The dis-
crepancy between (11) and (12) is discernible for N = 16 but cannot be seen for
N . 32.

For large N, the peak of the mean-square error occurs at C # 1,3 and is
of value %-27 N~1,

N
_APPROXIMATION
exacr”
MEAN-
SOUARE
ganon (&)
%~ T
c

Figure 3A, N' = ¥
Figure 3. Mean~Square Error of
MSC Estimate
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Figure 3B. N = 16

Figure 3 (Cont'd).. Mean-Square
Error of MSC Estimate

ESTIMATION OF MAGNITUDE COHERENCE
The magnitude coberence (MC) is defined as
S(f =|7xy(f)| = NC(B
upon use of (2). The estimate of MC is
§(f\ = v’-(‘.'(_f; '
where (?(f) is defined in (3).

GENERAL RELATIONS

The first moment® of S is available from 4) by setting m = 1/2:

~ I'Nr@E/2) N 3 e
E{S*=T_ﬁ(l-szl SFZ(?' N, N; N-1/2, 1; 52) .

*The f-dependence s suppressed for convenience,

TR 5281

(13)

(14

(15
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The second moment of § is directly available trom (5):

E {83} -ﬁ- *g—:—i s F(1, 1; N+2;8%) | (16)

It will be noticed that (15) and (16) are even functions of S; this information will
be useful in the approximate forms to be adopted later, Equations (15) and (16)
give exact results from which the bias, variance, and mean-square error of the
MC estimate S can be obtained.

A significant difference now exists between treatment of the MC estimate
and the MSC estimate: whereas (4) could be reduced to an F function for m an
integer, no such reduction has been discovered for (15,. Further, (15 1s not an
appealing analytic result, as may be anticipated by noticing that, since (15) must
equal unity at S = 1, and the leading factor contains an N-th order zero at $ = 1,
then 3F2(...) must contain an N-th order pole at S = 1. No transformations
or useful approximations of the 3F2 function in (15) were discovered in refer-
ences 6-11,

EXPANSIONS ABOUT S =0

A direct series expansion of (4) yields

omi  TMNMLm+LH V. mNN-1L o
E{g m| TN-m | N S

. mN(N- 1)
4(N+m)(N+1+m)

[(Nz-xp(m-h - 2(m41;] S“ ... : LT

Now, if m =1, the N2 and N terms in the S% term drop out, and we get a
useful development in which the terms decay with N:

5’32}:1 N-1 52 N-1 4

N'N+1° "RoDiNvD) > s
But, if m = 1/2, we obtain
£{3} - DNIE/2) ) NON-1 2 NN-DNE-N-6) 4 ! 1)
F(N+1/2) |° "2N+1 42N+ (2N +3) Ty
and the coefficients of Sz. S‘.. . . increase with N, in direct contrast to re-

sults for MSC estimation. This increase is due to the two numerator terms and
one denominator term in 3F9 in (15) thal depend on N,
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EXPANSIONS ABOUT S =1

If the results in (5) and (6) are expanded about S = C = 1 by means of ref-
erence 7, equation 15.3. 11, we find the asymptotic expansions

1]
N-2

21
.

23
w-oN-3 17O

(1-0)2 -

E{C}SC +

3!

. ot
TR TR 20

EIE2} = 1-20-0) + 322102

4(N+1) (1-C)3¢ 6(3N+2)

e ——————— - ‘
N-2)(N-3) N-DHN-HN-H 1" . @

acze L g.c??. 2 ___a-c3?
2t ~FoEE-n 1

6. N-N°
. 16
(N-2)(N=-3)(N-4)

4
(1-C% +. .. 22)

upon regrouping terms, Expressions (20) and (22) are useful near C =1 and
indicate bow rapidly E{C®} - C™ approach zero as C approaches one, for
m=1 and 2, It will be observed from (20) and (22) that the coefficients of
(1-C®)2 and (1- C™)3 are identical, and those of (1 - C™)* are similar,

It was thought that E{§} = E{C1/2} might possess a similar expansion in

powers of (1-C1/2) = (1-S) and provide a useful method of evaluating (15), at
least near S = 1. In appendix B, it is indeed shown (after considerable labor) that

1 N-4 2 1 N2-7N+16

1
E'g}il-f(l-C)--s——N—_E(l-C) -Ra—m(l'c)a*... (23)
- 1 1-82-—2 ___1-5)3
S*N_z(l S) N-Z(N-3) (1-8)" +... (24)
9
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(upon regrouping terms), which has the ideatical coefficients as (20) and (22),
up through the order computed, Equation (24) shows that the bias of the MC
estimate S approaches zero as S approaches one according to (1-8)2/ (N=-2),
Also, (24) and (20) can be combined to show that

. (1-52)2
Variance (S) z(—zl(?s_-z)—)-as S-1. (25)

This corroborates reference 4, (8).
CHOICE OF APPROXIMATION

Expansions like (20)-(25) cannot be used to evaluate the desired statistics
for small S; in fact, they are divergent asymptotic expansions, When this in-
formation is combined with the earlier results about S = 0, we find that direct
analytic expansions of (15) are not fruitful, in contrast with the earlier approach
for MSC results, Instead, we must adopt some convenient simple approximation
and try to match it to the exact results in some fashion. (The techniques in ref-
erence 12, chapter 9, are relevant in this regard.)

Before we do that, however, it is necessary to digress., We know that

Bias §) = E{§} -s , (26)
variance §) = E{§2} - E2{§} , @27
Mean-Square Error (§) = [Bias (5)]2 + Variance (§) . (28)

where the exact moments are given in (15) and (16). A very good approximation
to E{32} = E{C} is already available from (7) and (8), namely,

Eit}=c +-;-(1~C)2 (1 +-2EC-> . 29)

or

R 2 2
Elsz}zsz+§u-52) <1+zi>. (30)

Therefore, if we can approximate E{gf or Bias (§) or Variance (§) in (26)
and (27), we will have approximations for all three statistics in (26)-(238).

10
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Initial attempts concentrated on approximating the bias (26) by the form

2
1-8
(—N:)2—+ a(l-S)", VZ3 ’ (31)
where a and » were chosen so as to match the exact bias and its derivative at
S = 0; these attempts were not successful for all N and S, A generalization to
the form

2
1-8) ¥ 2, _ 115
j_N-Z +(1-8) [a +8s%(s x)], A= TR Y23 (32)

was quite good for N up to 100, but deteriorated for larger N, despite also
matching the exact second derivative of the bias at the origin. Numerous other
forms were tried for approximating the bias but yielded poorer approximations.

VARIANCE APPROXIMATION

Succeeding attempts were aimed at approximating the variance (27). It will
be recalled (from the discussion under (16)) that (27) is an even function of S,
(This even property is not true of (26) or (28), because of the S term in (26).)
The approximation to the variance was therefore also chosen to be even;* after
much trial and error, an acceptable form was found to be

R _ 2,2 1-52)%
Variance(S)E-(;TqE;—)zT 1-%(1-32)4-1\ ( — sodp . (33)
1+ Bs? + DS

The leading term in (33) is dictated by (25); the second term in the bracket was
deduced from observing the numerical values of the variance near S = 1; and
the numerator of the third term is chosen to make it decay faster than the other
two terms near S = 1. Equation (33) already matches the value and derivative
of the exact variance at S = 1, and the three constants were chosen so as to
match the value and first four derivatives of the exact variance at S = 0; see
appendix C. The end result of the investigation is that the constants are given by

- 0,571+ 175, 0.760
N N2

B=0,752 N - 3,26

2

D=0,221 N"-1,66 N . (34)

*See reference 12, pages 108 and 118,

11
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Plots of the exact variance (27) and the approximate variance (33) are pri-
sented in figure 4 for N = 8, 16, 64, 256, and 1024, (Notice that the abscissa
is S, not C,) The discrepancy does not go to zero as N increases, as it did
for the MSC approximation; however, the discrepancy is small over the practical
range of values of N (l.e., N < 1000), where N is the number of averages
employed in the MC estimate,

The peak of Variance (§) occurs at

2.6 9 35
S T (1-W+ N) for 64 < N < 1024 (35)
and is of value
Peak Variance (§) = 0.49 10,299 for 64 < N < 1024 . (36)

These results follow by fitting the exact numerical results in figure 4. For very
large N, (36) suggests that the peak variance approaches (2N)-1,

032 APPROXIMATION

VARIANCE ($)

]
0 s 1

Figure 4A, N =38
Figure 4, Variance of MC Estimate
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Figure 4C. N =64
Figure 4 (Cont'd), Variance of
MC Estimate
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.002
APPROXIMATION
EXACT
A
VARIANCE ($)
o
0 s

Figure 4D, N = 256

.0008
APPROXIMATION
EXACT
A
VARIANCE (S)
L]
0 S

Figure 4E. N = 1024

Figure 4 (Cont'd). Variance of
MC Estimate
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At the origin, we have, from (15) and (16),

2
. a _ 1 |T(MNI(s/2
Variance (S) ——N - [-}S(N%i/—z)l]

"IN "TF "X : 37

__( :)1 # 1 _0.215 0.196
N N2

Here, we have employed the approximation (reference 7, equation 6, 1, 47)

rNI@s/2) . Nw/2 <1+ _1_) 28
'(N+1/2) -~ N 8N/’ 38)

which is excellent even for N as small as 2.
BIAS APPROXIMATION

If we eliminate E{§} from (26) and (27), and then employ (30) and (33),
we can express

1/2 _

Bias (§) = [E{gz} - Variance (Q)] S

1/2
2.1 9.2 252 2 _
-[S R 3-89 <1+T =%pp| ~SZbgpp . (39)

This approach is in line with the observation made under (30). The approximate
variance °§.pp in (39) is given by (33) and (34).

Plots of the exact bias (26) and the approximate bias (39) are presented in
figure 5 for N = 8 and 16, The exact bias decreases monotonically with S and
has an origin value of

C(N)I'(3/2)

Bias §|s = 0) = TRV

H GN , 40)

from (15); an excellent approximation to Gy is given in (38). The discrepancy
between (26) and (39) is barely discernible for N = 8 and is not discernible for
N = 16 up through N = 1024,

15
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Figure 5SB. N = 16
Figure 5. Bias of MC Estimate

16




TR 5291

MEAN-SQUARE ERROR APPROXIMATION

The approximation to the mean-square error is immediately available
via (28):

2 41

e 2
Mean-Square Error (S) = bapp + 9app °

where the approximate bias and variance are given by (39) and (33), respectively,
Plots of (28) and (41) are presented in figure 6 for N = 8, 16, 64, 256, and 1024,
The discrepancy does not go to zero as N increases; however, it is small over
the range of practically useful values of N.

The peak value of the mean-square error occurs at S = 0 and is of value
1/N, as is seen from (16). The mean-square error curve is composed of two
distinct regions, one near the origin where the bias dominates, and one for
larger S where the variance dominates; this explains the hump in the curves
for larger N,

1/N

MEAN-
SQUARE
ERROR (§)

APPROXIMATION

0 s 1

Figure 6A, ' N=8
Figure 6, Mean-Square Error of MC Estimate
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1/N
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APPROXIMATION

EXACT

() s 1
Figure 6B. N = 16
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Figure 6C. N =64
Figure 6 (Cont'd), Mean-Square
Error of MC Estimate
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SUMMARY

Approximations for the MSC estimate are given by

Bias (C) z-;- (1-C)2 (1 + 2C>

N

variance (C) = N-1

1l-6C+ 13C

-l .2
NN+ D) 1-0) [2C+

- 2 2
Mean-Square Error (C) 2 N+1 (1-C) [C

Approximations for the MC estimate are given by

where

N

N

. _ 2.2 _ 2.2
vmance(S)z-(le—s_-z)_ 1-%—(1-82)4-1\ 1-57
( ) 1+ Bs? + ps*
A= -0 571+ 175, 0.760
N T2

20

B=0,752 N - 3,26

C=0.221N2-1.66 N .

:

_ 2
L1 sc+7c] .

.
Papp »

1 2 252 1z
- 2 -
Bias (S) E [S +-I‘T (1-82) <1 +—N—> - ag.pp] -S= bapp

Mean-Square Error (§) = bgpp +0

2
app °

(8)

9)

(12)

33)

(34)

(39)

41)
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All of these are capable of band calculation over the entire range of true
coherence. The approximations for the MSC estimate are particularly simple;
those for the MC estimate are somewhat more complicated, but far more
tractable than the exact answers involving a gF, function. The fundamental
dependencies of the statistics on N and true coberence have also been deduced.
Although the discrepancies between approximations and exact values do not tend
to zero for the MC statistics for large N, the approximations are useful at
least over the range from N =8 to N = 1024, which is believed to encompass
the region of most practical interest, How good the approximations are for
larger N has not been investigated quantitatively.

21/22
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Appendix A
REDUCTION OF THE 3F5 FUNCTION

From (4) in the main text, we have

=2 _q-c\N , , )
Ho N(N+1)(1 C)" 3F2 3, N, N;N+2, 1;C) (A-1)

which is very slowly convergent for C near 1. Now, in (A-1), using reference 6,
section 9. 14, we have

o BNy ok
3Fg (co0) = TR T (A-2)
k=0
But
Bk k+1E+2) 3
= -3)
D)y 2 ‘
and
N NN+l s
(N+2), T (N+K)(N+k+1) (A=4)
Substituting (A-3) and (A—4) in (A-2) and (A-1) yields
© k
R k+1Hk+2) C -
by = (1-ON 3 TR E D o Mk (A=5)

k=0

Now, a partial-fraction expansion yields

k+L@+2) _,  (N-HN-2) NN-1

k+N)k+N+1) k+N "kK*N+1 ' (A-6)
and, since we can express
1 1 (N
k«N N (N+1) °
(N"l)k
1 1 A

k+N+1 N+1 (N+2) '
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(A~5) takes the form
N Nk

= (1-C)N -
ug = (1-C) N+1y k!

ek o JN-D(IN-2) -
; o0 —
=0 k=0

N(N 2 i (N)km+1)k Ck (A-8)
(N+2) k!
= 1-C)N 3F<n. bi b €) + S B py, N N1 )
N(N-1) ]
-'—W—F(N,N‘*I;N*Z, C)z . (A=9)

upon employment of reference 7, equation 15, 1. 1, By use of reference 7, equa-
tion 15, 3.3, this can be manipulated into the form

(1-C) F(1, 1; N+1; C)

-1)(N-2
“2’1"(N ;}N )

- NNN*.II) (1-C) F2, 1; N+2; C) , (A-10)

which is particularly good for developing in a series in (1-C) by use of refer-
ence 7, equation 15.3, 11,

At this point, a multitude of alternative forms for (A-10) are available by
use of reference 7, page 558, Several rapidly coavergent forms involving a
single F function are now listed:

3_ 02
N°-2N°+2N-2 N-1[.2 -1
by = - . T [N - v-2¢] F, 1 N+20) (A-11)
2 (N-1(N-2) .
TN(N+1) N+1
N-1 2 -
——— - (N=2 CF(2, 1; N+3; C (A-12)
*INTONTD) [N (N-2) C] CF )

iy e N-L -9y -|N2- (N-2)Cl F@, 1; N+2; O)f . (a-13
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The form in (A-11) uses exactly the same F function as encountered in u; in (5)
and is more rapidly convergent than the latter two forms, for all values of C.

The reduction technique employed above for m = 2 in (4) can also be used
for other integer values of m. However, it fails for m noninteger, because
simplifications like (A-3) and (A-4) do not occur then,

A-3/A-4
REVERSE BLANK
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Appendix B

EXPANSION ABOUT S =1 FOR
MAGNITUDE COHERENCE

The estimate of MSC is given in (3). We let
Xn(f) = (g +ibp) = ap
Yu() = g(Ay + iby) + @n +1dy) = g + By (B-1)

where 3p, by, &, d, are independent, zero-mean, unit-variance, real,
Gaussian random variables, Then, for g real,

E{Xn(f) Y;(Q} = E{an glg + p;)} = gE{lanlz} 2

E{|%a0%} = 2 E{|vac)?} - 2a+¢? . ®-2)
Therefore, the MSC is

2 2
C = (2g) __8

2x2(1+g2) 1+g2

(B-3)

For a specified value C of the MSC, the required value of scale factor in

(B-1) is
1/2
g= ( fc) . B-4)

Thus, as S-1, C = Sz—-l, g ~w, and 1/g -0, Because we are interested in
S near unity, we can concentrate on 1/g near zero,

If we define

N N N
A= Z: 'anlz' B= Z 'pnlz, D= Z anp; . B-5)
n=1 n=1 n=1

then substitution of (B-1) in (3) yields
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2

N *x *
Z ap e+ By)
e - n=1 -

N N - 2
Y. leal? 3 lsea s pof? A PTEOTTED
n=1 n=1

lp+gal?

IDI2 + 2gA D + g2A2
= 2 2 ’ (B-e)
AB + 2gAD_ + g%A

where D, is the real part of D in (B-5). Rearranging (B-6), we obtain

1 +-1—'T +-LU
- g g2
C= 1 1 ’ B=7)
1+—T +;2-V
where
2Dr Ip|2 B
T =T, U =—F, A% = (B-8)

Now a series expansion of (B-7) in powers of 1/g (as noted under (B-4)) yields
Cel+—St—p—s—. 2, (B-9)

where

a, = U=V, ag=-(U-WT, ag = (U-V)T2-V),

ag = U-V)@V-T3T, ag=U-v)Tt+v?-3T?y) | (B-10)

Since we are interested in the behavior of the MC estimate S, we employ
the expansion

(1+‘)1/2=1+%‘-§‘2+I%‘3+"' (Jel< D (B-11)
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to obtain

- 'J':- a2> 1 a3> 1 - {2y a%) 1
S= C-1+2 2+2 3+(2-3.—Z

g g g
2 3
a5 3apag\ | (dg a3 33y 35) ;
—— —— —— — -+ + -
3 1 5+2 5 ) T - (B-12)

And, since we are interested in S near unity, we let
x=1-C ) B-13)

and expand S ina power series in x, To do this, we utilize (B-4) and obtain

1 J=X _1/2( 1, .3,2 )
g— 1-x-x 1+2X+8X+...

_l_.=x+x2+x3+...

g2

3 2

g

—l-=x2 (1+2x+3x2+...)=x2+2x3+...
4

g

—1—=x5/2 <l+ix+...)

5 2

g

N U (B-14)
g6

Substitution of (B-14) in (B-12) yields

3 1 1
+ x5/2 <-4- as +-2-a5 --4—8.28.3)

1 1 2 1 1 2 1 1 3
+x3<~2—a2+a4-za2+§ae--§a3_-zaza4+-i-§a2)+... . (B-15)
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Now we are ready to perform averages on the individual terms in (B-15) and
obtain an expansion of E{S} in powers of x=1-~C,

The method of obtaining E {az} will be developed in full. The results for
the other averages in (B-15) will merely be stated, and can easily be deduced
from the method presented, From (B-10), (B-8), and (B-5),

N
IDI-BA 1
ag=U-V=——""= 3" BriBn Qun»  (B-16)
2 2 ‘
A A° m, n=1
where we have defined
Qmn = ama; -Abmn . (B-17)
Now, let
a s ["1 @ ... “N] . (B-18)

Then, since Qpp depends only on a,

A m, 1
-2 iQ -2 a-aN=-2E-D (B-19)
= nn - ", 7 ey e -
a2 p=1 A2 A
where we have utilized the property
E{Br Paf = 26mn » (B-20)

which follows directly from the definitions (B-1), Therefore, using (B~19), we
have

E{U-V}=-2(N-1)E37i-$ . (B-21)
Now, A is given by (B-5) and (B-1) as
N
A=) @2+5% . (B-22)
n=1

B-4




Therefore, the probability density function of A is

N-1

A exp(-A/2)

2N (N-1)1

A>0 ,

P(A) =

There follows immediately the m-th moment of 1/A as

1 1
om (N-1IN-2)... (N-m)’

E{1/A™} =

Employing (B-24) in (B-21), we have

Ef{ag}=E{U-V}=-1,

m«<N ,
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(B-23)

(B-24)

(B-25)

By employing the generalizations of (B-20) to the fourth and sixth orders,

namely,
E{pk BE pm B;} =4 <6k£ 8o * Skn G.Qm) ’

E{ﬁk ﬁE B ﬁ; o B;} =8 <6kﬂ 8an Spq * 8kg 8mq Snp

* B384 850 * Sicn 05 8imq * 81cq 8m bnp * Okq 80pOmn) »  (B-26)

we find the following quantities:

}

,2
b= ey et woE
}

___N(N+1)
(N-2)(N=3) *

(B-27)
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When we employ (B-27) in (B-15), there follows

a 1 1 N-4 2
E{Sf—l-?(l-C)-—?m(l C)
1 N2-7N+16

_LN°-7N+16 . 3
BN-ZN-3) T

This is the end result quoted in (23) in the main text.

(B-28)




Appendix C

VARIANCE APPROXIMATION FOR

MAGNITUDE COHERENCE

From (19) and (40) in the main text, we have

E{§}=Q, +Q; 82 +Qyst+... ,

where

N (N-1)(6+N-N2)

4 (2N+1)(2N+3)

And, from (18), we have

E{§2} =R, +R;sZ+Ryst ...,

where
Ro= &
Ry = ﬁli
R DR -
Therefore,
Variance (§) = a+ pS2 +yst e,
where
a=Rg - Q<2>
B=R; - 2Q,Q;

Y=Ry- Q] - 2Q0Q; -
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€-1

(C-2)

(C-3)

(C-4)

(C-5

(C-6)




e

TR 5291

By use of (40) and reference 7, equation 6, 1,47, we find

NT/2 1 1
Gy = l+=— bt ] . (C-7)
NTTUR 8N 12gN2
Expanding the above expressions in powers of N-1, we find

— ] e - p— — vy o—

_(1_w>1 r 1 65n 1

] 52\ 1
B=1-7-2-f)F*---

(C-8)

Thus, (C-5) and (C-8) give a power series expansion of Variance @) that should
be accurate for large N,

The variance approximation that we adopt is given in (33). We expand (33)
in powers of s2 and obtain

930p :2(—‘,1'-7-[‘1-1*:\{'-52 i-A(B+2)-2(1-%,A>(

~. Q N ‘ N 2 ’

.54':.-\((B*112-D)-2(%—A(B+2)) +(\1-1+A)} *] -

N

We now select constants A, B, and D so that (C-3) and (C~9) match up through
the power st. There follows

3
A-2(N=2) a- =
A ( ) a l*\,

B =71\-[-£.—- 2(N-2)(Za*ﬂ)] -2

D:(B*lvz--{li-Z(.\'—m Ba+28 +Y) . ({C~10)
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We now employ the expansions for a, p,Y in (C-8) and obtain, finally,
A =-0.57080 + 1,7489/N + 0.76047/N% + , , ,
B =0.75194N - 3,2639 + . . .
D = 0.22142N2 - 1,6648N +. . . (C-11)

Equations (33) and (C-11) are the final results for the variance approximation,

It has been found sufficient to retain only three decimals in the constants and to
stop with the terms shown in (C-11),

C-3/C-4
REVERSE BLANK
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Bad Data Points, Via
Maximum Entropy and
Linear Predictive
Techniques

Albert H. Nuttall

ABSTRACT

A comparison of several methods for spectral esti-
mation of a univariate process with equi-spaced
samples, including maximum entropy, linear predictive,
and autoregressive techniques, is made. The com-
parison is conducted via simulation for situations
both with and without bad (or missing) data points.
The case of bad data points required extensions of
existing techniques in the literature and is docu-
mented fully here in the form of processing equations
and FORTRAN programs. It is concluded that the maximum
entropy (Burg) technique is as good as any of the
methods considered, for the univariate case. The
methods considered are particularly advantageous

for short data segments.

This report also reviews several available techniques
for spectral analysis under different states of knowl-
edge and presents the interrelationships of the various
approaches in a consistent notation. Hopefully, this
non-rigorous presentation will clarify this method of
spectral analysis for readers who are nonexpert in the
field.
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SPECTRAL ANALYSIS OF A UNIVARIATE PROCESS WITH
BAD DATA POINTS, VIA MAXIMUM ENTROPY AND
LINEAR PREDICTIVE TECHNIQUES

1. INTRODUCTION

The analysis of power density spectra of random processes via maximum
entropy, linear predictive, and autoregressive techniques has attracted much
attention recently, especially for short data segments. In particular, a good
review article (reference 1) recently appeared in which 115 references are
listed on the topic of linear prediction. Another good paper on this method of
spectral analysis (including a comparison of techniques) is available in refer-
ence 2, where 66 references are cited. Additional related references, that this
author is aware of, are given in references 3 through 15 of this report. The
close links that exist between maximum entropy spectral analysis (MESA),
autoregressive spectral analysis, predictive error filters, noise-whitening fil-
ters, and least-squares model building are pointed out very well in reference
14.

The purposes of this report are to review and interrelate several available
techniques for spectral analysis under different states of knowledge, for equi-
spaced samples, in a consistent notation; collect and compare the techniques
via simulation in order to determine the best available technique(s); and extend
the best technique(s) to handle the case of bad (or missing) data points and com-
pare them via simulation. The only detailed comparison of techniques for no
missing data points available thus far in the literature is that in reference 2,
where the Burg technique and the Yule-Walker approach are compared. Here
we will extend the comparison to include the Burg technique, the Yule-Walker
approach, an unbiased version of the Yule-Walker approach, the approximate
maximum likelihood and least-squares approaches of reference 16, the auto-
correlation and covariance approaches of reference 1, and an extended version
of the covariance approach. (A comparison with the maximum likelihood tech-
nique is reserved for a future report.) Also,we will compare the best of these
approaches for the case of bad (or missing) data points and present FORTRAN
programs for the recommended techniques.

Throughout this report, we assume we are dealing with equispaced samples
of a stationary zero-mean random process x(t); that is, n.=.x(nA). where Ais the
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sampling interval in time. In section 2, we will assume that the correlation
function of the sampled process, {xn} , namely, *

Ry =% ¥k = Bl @

is known exactly for all k, and shall present two alternative equations to deter-
mine the spectrum of {xn} ; the latter of the two equations serves as a guide to
the MESA, linear predictive, and autoregressive approaches. In section 3, it
will be assumed that Ry is known only for a limited range of values of k, and
three alternative approaches will be considered and shown to lead to identically
the same spectral approximation. Next, in sections 4 and 5, the practical
problem of an unknown correlation function and only a finite data set of {xn} ,
n=1, 2, ..., N, some of which may be bad, will be addressed, and several
candidate techniques for spectral estimation will be presented. Finally, a com-
parison of the techniques, via simulation, will be conducted and conclusions
drawn regarding the best available technique, both with and without bad data
points. FORTRAN programs for the best technique for both situations will also
be presented.

*The case of complex samples is treated, so that we can handle complex
envelope or complex demodulated processes. Specialization to real processes
is immediate, and (1) becomes Ry = R_k. An overbar indicates an ensemble
average,
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2. CORRELATION KNOWN EXACTLY FOR ALL ARGUMENT VALUES

Suppose the correlation function in (1) of process {xn} is known for all k.
The standard (double-sided) definition of the spectrum of {xn} is then (see, for
example, reference 14, equation (10))

exp(-i2rfky), 1fi < -]-"- 2)

@O
o0 % n

k=-w k

G (f) is real and nonnegative, but need not be even in frequency f{ for complex
{Rk}-

2.1 LINEAR PREDICTION BASED ON
INFINITE PAST

Suppose that sample values xk.1, Xk-2, ... are available and are used to
linearly predict the value of xi. Thentheone-step predicted value, based on the
infinite past, is (for a zero-mean process)

A @O
xks }: anxk-n' 3)
n=1

O
The values of the complex predictive filter coefficients {a,}) are chosen such
that the one-step prediction error

@
egx—xzz a x n (ao=—1) 4

has minimum ensemble average magnitude-squared value. Figure 1 depicts the
interrelationships.

The ensemble average magnitude-squared error is, employing (1), given by

2 a
E= ‘ek| = 3 a a*R _ . (S)
m,n=0

For a minimum, we first compute (see reference 17, appendix A)
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| —
PREDICTION |
x x ¢
k PREDICTIVE k k
i ———
I FILTER . Z —>
| (), ageeee) - T |
WHITENING FILTER (o, o,/ a,+++)
Figure 1. Block Diagram of Predictive and Whitening Operations
IE =
= >
~= L R, _a_,221 (6)

and set it equal to zero, obtaining the optimum predictive filter coefficients
{'Em}“l’ as the solution of the set of equations™

@

> R T =0,421 (T =a =-1). )
f-m m [o) 0

m=0

The minimum-error sequence {tk} then possesses correlation

—— ®
E =% .= a ax *
i %R E— e xk-mxk-j-n
m,n=0
@ [s 0] @
- ~ ~* = ~ L
Z 4mn Rj+n-m }:‘ 4n E Rj+r1-m m’ (8)
m,n=0 n=0 m=0

*The same result, (7), can be obtained by setting the partial derivatives of
E, with respect to the real and imaginary parts of a,, equal to zero.
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where we have employed (4) and (1). Now the innermost sum on m in (8) is 0
for j+n 21, by (7). Andif j >1 in (8), then j +n >1 since n >0 in the outer-
most sum in (8). Therefore, EJ- =0 for j >21. Also since E_j = Ej" we have

Ej=0f0rj#0; 9

that is, the minimum-error sequence {Tk} is uncorrelated and therefore pos-
sesses a white spectrum. The linear filter characterized by coefficients

{'i'n}‘é’ is a whitening filter; see figure 1.

The correlation of {71(} for zero time delay is the power of the minimum
error and is given by

bgd 2 & P, X ~
E:oz ‘k| = z an Z Rn-mam
= m=0
@O L L Lo d
= a; Z R_mam = R0 -3 Rr.nam' (10)
m=0 m=1

where we have used (8), (7), and (1). The spectrum of {Tk} is therefore
(using (9))

o ey o 1
Grlf) =3 2 E| exp(-i27fj3) = 3, if1 < 52, (11)

which is white, as mentioned above,

But since the error sequence is given by a linear transformation of process
{ xic} according to (4) and figure 1, the spectrum of {¥}} is given by the stand-
ard linear filter relation

: 2
Gz = jaml G o, (12)

where

(4 ¢
= 1 exp(-i2 7fna 13
A n‘éo T exp( na) (13)
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is the transfer function of the whitening filter and is assumed to be stable.*
Combining (11)-(13), we obtain an alternative expression to (2) for the spectrum
of {x¢| as

G +M _ AE

i< == (14)

Given the correlation values {R,}, utilization of (14) requires solution of the
set of equations in (7) for the filter coefficients {3'“} and subsequent substitu-
tion in (10) and (14). Although this is not a practical alternative to (2) in this
case, it does serve to indicate that there is possibly some potential in the idea
of determining predictive filter coefficients to minimize the average magnitude-
squared one-step prediction error and thereby obtain a white spectrum; this
idea will prove to be quite fruitful later on.

As an aside, if we allow a_; # 0 in (3) and minimize |eg}2, we find E| # 0,
although E. = 0 for j >2, Thus, the minimum-error sequence would not be
white, and a convenient expression like (14) would not result.

It should also be noted that the crosscorrelations between the minimum-
error sequence {?‘k} and all past values of the input, {xk} , are zero; this
follows by use of (4), (1), and (7).

2.2 LINEAR PREDICTION BASED ON
INFINITE FUTURE

If sample values Xk+]1r Xgsoo ++- are available and are used to linearly
“predict” the value of x, according to a backward regression (that is,
combine future values),

£

k- Z ar‘lxki-n' (15
n=1

®)

*That is, n a_z  has all its poles inside the unit circle, O, in the com-

plex z-plane.

nt4%




TR 5303

then the one-step error

aD
=X - = * =
k=% T %k ;0 **k+n B~V (16)
has average magnitude-squared value
2 (¢ 4]
l‘kI - 2 ama; Rn-m’ (a7

m,n=0

which is identical to (5). Thus, the same optimum filter coefficients in (7) that
minimized (5) would also minimize (17). The minimum-error sequence in (16)
would also be white, and an expression for the spectrum of {xk} identical to
(14) would result. The point of this result is that an equivalent expression for
the spectrum of {x. | is obtained by the backward regression (15), rather than
the forward regression (3) of the preceding subsection. This idea will prove
useful later when we have to deal with finite data sets and unknown correlation
functions.

The crosscorrelations between the minimum-error sequence and all future
values of the input are zero; this follows by use of (16), (1), and (7).

2.3 LINEAR INTERPOLATION BASED
ON INFINITE PAST AND FUTURE

If we attempt to comhine the approaches of the previous two subsections,
we are led into considering linear interpolation according to

U0
X = Z anxk-n' (18)
n=-w
n¥0
The error
A [+ 4}
‘k = Ak - xk = Z anxk-n (a0=-1) (19)

-3




TR 5303

has average magnitude-squared value

E (20)

"
w‘
T

]
s
-]
-
»*
o ¢}

m,n=-o

using (1). Setting as/aa; = 0 for 4 # 0, we obtain for the optimum filter coeffi-
cients

®
A = = = - . 2
3 Rl_m 3 0, 2# 0 (50 a =-1 1)

m=-w

There follows, by use of (1),

a = 3-, (22)

-] j

The correlation of the minimum-error sequence {’i'k} is now

——————— 3 4]
E = €& = T IR
j k k-) Z mn j+n-m
m,n=-w
) o (1)
~ ~ ~ - ~ ~
= - 2 R =2 a_ R = -ak , 23
n Z m j-n-m -) Z m -m j o
n=-w mz=-m m=-wmn

where we have employed (19, (1), (21), and (22). It is generally nonzero for
)y # 0. The spectrum of the minimum-error sequence is therefore

. ) B 1) ~ ) ook B l .
Ggoih) = - .\EO 3 @ exp-i2efyy) = - SE_ A, 1 5T (24

J= =

where we have used (23) and assumed A(f) to be stable. This spectrum 1s not
white. in fact, employing (12), (24) can be expressed as

2 2
2°E
Gr) = —=, [ < = 25)
¢ G‘m' 237 -

which 1s the 1nverse of the nput spectrum.
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If we instead eliminate Gg(f) from (12) and (24), we obtain an expression
for the input spectrum in terms of filter A(f) in (24) as

AE 3E, .
= - = - |« —
GO=-%Tn~ ron " m 26

the realness of A(f) follows from (22).

There is an uncorrelated property between the minimum error and the input
in the present case also. Namely, the crosscorrelation between the minimum-
error sequence and the input is

D A ———— (1 9)
* = E T h = T =
j kxk-j an xk-nxk-) Z an R)-n l‘:o 60)' (27)

n= - = -m

using (19), (1), (21), and (23). Thus, the minimum-error sequence is uncorre-
lated with all past and future values of the input except at the same time instant,
The cross-spectrum 18

{3 ¢]
3 Y Cexp(-i2rfj3) =3E_, [ <3, (28)

J:—un

G!-x(f)

which is white,

Although (26) and (21) offer an alternative to (14) and (7) in the present case
of known correlation function {Rki , it suffers in the practical case of unknown
correlation and a finite data set, by virtue of the estimate of the real denomina-
tor of (26) going through zero (or being complex if (22) is ignored) at some
values ot {. This 1s not a significant problem for (14) since both the real and
imaginary parts of the estimate of (13) must simultaneously equal zero there,
1n order to constitute a problem.

Another importan gractica] drawback of this mterpolauon apprq’ach 1s that
ensemble average |[¢,|“ would probably be approximated by E “k “, where

the sum Is conducted over those values of k at which a meaningful value of
error ¢y can be formed for a segment of a single member function of an en-
semble. But since the minimum- error sequence {e k} is not uncorrelated In
this case (see (23)), minimization of R “ '2 for a single member function

segment 1s not synonymous with minimization of “kl , rather, the minumiza-
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tion of ¢
k

which are not included in |e, |© and which will bias the filter coefficients.
Several simulation runs (on real data) confirmed this conclusion by yielding
severely biased (and negative) estimates of spectrum Gy (f), even when (22) was
taken into account. Accordingly, the interpolation approach was dropped from
further consideration.

',ek‘z will spuriously involve correlation between adjacent terms

v
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3. CORRELATION KNOWN EXACTLY FOR A LIMITED
RANGE OF ARGUMENT VALUES

In this section, Rk of (1) is assumed to be known exactly for k. < p and
unknown for ki > p. Since we are unable to compute the exact spectrum Gx(f),
given by (2), in this case, a different approach involving approximation to Gy (f)
is required. Three different techniques will be considered and shown to yield
identically the same approximation to Gy(f).

3.1 MAXIMUM ENTROPY SPECTRAL
ANALYSIS (MESA)

The method in this subsection was originally given in reference 18 and
elaborated upon in reference 19. We begin with (2) and note that

L

24

“' df Gx(f) exp(i2-fka) = J df G‘(f) exp(i2-fka) = Rk' 29)
4 1/a

25

We wish to approximate me by a real nonnegative function G(f) such that its
entropy (reference ls, eguation (1))
A df in G(f) (30
1/a

1s maximized, subject to the integral constraints
df G(f) exp(i2=fki) = R k <p. (31)
1/a

To this aim, we form the quantity
P
Q = f dfdn G(f) - k_z; M f df G(fy exp(i2-fka), 1321
1/3 P 1/3

11
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where Lagrange multipliers u_y = u; » because of the restriction R_j = Rﬁ, as
shown in (1). We perform a variation of (32) according to

p
Q+éQ = j df 4n [Go(f)ﬂn (f)] - Z My I df[Go(f)+ tn(f)] exp(i2rfky),
1/3 k=-p 1/a

(33)

where Go(f) is the "optimum' approximation to Gy (f) under criterion (30), and
obtain, upon setting

8(Q+6Q)=0at «=0, (34)
Jde
the relation
1 1
= < -
G (O 5 , - 3 (35)
z ™ exp(i27fk a)
k=-p

Go(f) 1s real since “g = u;; . Since it is also to be nonnegative, we can express

1
G(f)= 2..f<2—-\, (36)
Iy o)
where
P 1
v = Z qk e.xp(il.?ﬂfk_\), f « E:' (37)
k=0

and where v(f) has no zeros in the upper-half complex f-plane; that is, polyv-
nomial

P
B(z) = }: dk zk
k=0
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has no zeros inside the unit circle, O, in the complex z-plane. A proof that
B(z) in (38) has no zeros inside O is given in reference 11, page 7, for exam-
ple.* Specifically, it is shown that B(1/z) has all its poles and zeros inside O;
that is, B(1/z) is minimum phase.

In order to determine the constants {ak}z in (37), we express (36) as

*f = L L
G, OY* O = T 1< o5 (39)

(We could equally well have multiplied by ¥(f) in the following.) Therefore, for
all values of £,

s df Go(ih*(f) expl(i2nfla) = j— df ;%5 exp(i2nfla) . (40)
1/a 1/a
But using (37), this can be expressed as
P exp(i2nfda)
a; j df Go(f) exp(i2=f({-k)a) = df > *P , all .41
k=0 o
1/A 1/a kZO ) exp(i2=fk a)

Now if £ is an integer in the range (0, p}, the integral on the left side of (41) is
equal to Ry_p (via (29)) for any value of k in its range [0, pl; this is where the
constraints are employed. Therefore, we have for integer £,

P
Z R,_ka;=bi,0§ﬂép, (42)
k=0
where
b = df exp(i2nflda) 0<4<p. (43)
[ p P
1/3 kzo ay exp (i27fk a)

“*The proof is couched in terms of the recursive solution of (46 presented
in appendix A,

13

S
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In (43), letting z = exp(i2rfA) and using (38), we have

1 dz zf .
bl_-——izﬂAf—z- m},OﬁﬂSp, (44)

where $ denotes counterclockwise integration around the unit circle O in the
complex z-plane. Now B(z) has no zeros inside O by construction. Further-
more, B(z) can have no zeros on O, for then ¥(f) would be zero for some f, and
G, (f) would possess infinite power, countradicting Ro< ®. Then (44) yields

by =—— 5, ,0<4<p, (45)
Aa, 10
and (42) becomes
P 1
* = <2<
2 R, o = 8,50 0S4 <p. (46)
k=0 (o}

This is p+l linear equations in p+1 unknowns.*

Now let correlation matrix R be defined as

R, R, ... R
Rl Ro

R = (47)
R R
L P o

and define two column matrices

8=1(1 0 0 ... 01", e= |a a0 a (48)

colation ot (46) is presented in appendix A.




R is Hermitian, Toeplitz, and nonnegative definite.
as
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Then (46) can be expressed

Re* = F (49)
Aao
with solution
l* = _l- R—l 3 (50)
Aao
Now let the inverse matrix
Mc c c
00 ol op
0 ‘11
Rl 2 (51)
c c
L PO pp |
Then (50) and (48) yield
c 1/2
g T 2.1 —(ﬁ) exp(io 52)
@ Aa, 0o’ ‘ao‘ 3 %0’ % T\ Xp(i6), (

where 6 is an arbitrary real constant.
sult and (15) in (50), there follows

(cop 1s always real.) Utilizing this re-

cko
ap = exp(-i0), 0<k<p, (53)
fAc
00
15
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and (37) becomes

P
_ exp(if) x . < 1
y@) = ——— 3 ko exp(i2rfka), If! 5 (54)

‘/Acoo k=0

Finally, using (36), the "optimum'' spectrum (called the maximum entropy
spectrum) is
Ac

G (f) = o0 L < ==, (55)

p 0 24
Z c, exp(~-i2nfky)

ko
k=0

Equation (55) gives the maximum entropy spectrum in terms of the first
column of the inverse of the correlation matrix R of available known correlation
values; see (47). The forms of (55) and (46) are similar to those encountered
earlier in (14) and (7), respectively; see also appendix A, The maximum value
of the entropy defined in (30) is evaluated in appendix B and is given by 4n (a/cyq).

Substitution of (53) in (38) yields

. P
exp(-i9) k
= . 6
B(z) — ; o 2 (56)
N/ 00 k=0
p
Thus, investigation of the zeros of B(z) depends on the polynomial kE 0 ko K,
it must have no zeros inside the unit circle O. But if we combine (16) and (53),
we can write that
p c
ko -
2 R ys—=-R, 1<L<p. (57
k=0 00

P .
Now reference 1, page 567, declares that all the zeros of I 0 ko 2~k must lie

inside O since R is a correlation matrix. Therefore, polynomial B(z) has no
zeros inside O,

16
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3.2 LINEAR PREDICTIVE FILTERING

Here, as in the previous subsection, the available information is knowledge
of Ry for ki< p. A linear one-step prediction of xk, based on the past p values,
XKk-1s +++s Xk-p> is to be accomplished with minimum average magnitude-
squared error; see figure 1. Now, however, instead of (3), we have for the
predicted value the finite sum"

?‘k = 3 ax - (58)

n=1

The instantaneous error is

‘k

p
R 20 ax . (a =-1. (59)
n=

(Equations (58) and (59) constitute stable digital filters regardless of the choice
of coefficients.) The ensemble average magnitude-squared error is

— p
2 - H
= = = R
E = ekl 2 a a Rn_m a Ra, (60)
m,n=0
where we have used (1) and (47) and defined
3 = [a a ...a]T. (61)

We now wish to minimize E by choice of filter coefficients {ap} . How-
ever, we have the constraint on a; in (59); this can be expressed mathematically
as

a3 = -1, (62)

where § is defined in (48). In order to minimize (60) subject to (62), we form
the quantity

* P
The more general form including Zl bn xl:—n is not considered here.
n:

17




TR 5303

aHRa- xaHs- A*aTs*

-l‘H 1

) R(a - AR &) - n2gHat

= (a - AR §, (63)

where R-1 is defined in (51). Since R is nonnegative definite, being a correla-
tion matrix, (63) is minimized by the choice of coefficients

2 =AR &, (64)

The Lagrange multiplier A\ is obtained by substituting (64) in constraint (62), and
using (51) and (48):

A8R6=-1,)«=-L. (65)

Then (64) yields

C
@ = - 0<k<p. (66)

The minimum value of the error power is found by utilizing (64) and (65) in
(60):

- 2
RR $ = DY coo = CL’ (67)
00

™
1l
~!
o
|
>
o
o
oo
P
]
o)
[

where {?’k} is the minimum-error sequence obtained by employing (66) in (59).
(A recursion relation for Eép) is presented in (A-T7); it can be started with

1/c(()((’)) =Ry .) Notice from (67) that oo must be positive, for non-negative

definite R .

The transfer function of the optimum error filter from input x to output €
in figure 1 is, from (59) and (66),

18
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& Gor

P
Aff) = Y ?ik exp(-i2nfka)
k=0

= L : xp(-i2nfka), 1fi < i 68
=-= choep( ; 53 (68)
00 k=0
Furthermore, the spectra in figure 1 are related hy
: . 2
G = {AMIT G O (69)

Now let us assume that the spectrum of the minimum-error sequence is
1 1
white over the band (-—, —
vhi ve eb ( 53’ 2a

for the case when the infinite past was available. Then we say

); this is in line with the property (11) which held

A~ o A 1
G~ = — o e— ] < o 70
@) = 1/a coo' t 2a° (70

where we have used (67). Substitution of (68) and (70) in (69) yields the linear
predictive spectrum approximation to the input spectrum according to the defi-
nition

A G+ ac
G (0 = - : — = 00 , lf\<'2-13‘. (1)
IAMDI

P 2
}: Co EXP (-i2nfka)
k=0

This is identical to the approximation (55) obtained by MESA. It is critically
dependent on the assumption that the spectrum of the minimum-error T in fig-
ure 1 is white,

Since (71) is identical with the maximum entropy spectrum, (55), it must
follow that

~

df Gx(f) exp(i2rfka) = Rk for ki <p; (72)
1/a .

19




TR 5303

that is, although not specified in the current approach, the correlation fuaction
formed from the linear predictive spectrum Cx(f) in (71) has the same values at
ka for Ikl <p as the known correlation values {Rg} .

The implications of the assumption (70) of a white spectrum for the mini-
mum error are investigated in appendix C. It is shown that the crosscorrela-
tion function between input x and output ¥ of figure 1,

-~ o
C,. = (k xk-l’ (73)
must then satisfy
1 , =0
‘ /COO ﬂ I
0 ,22>1

that is, minimum-error sequence {?k} is assumed uncorrelated with all the
past values of the input. It is also shown that the unknown correlation values
Ry for k > p can be approximated according to

P ¢ p
no ~ -
= - — = >
Ry 2 TR, . =X TR_.k2p+l, (15)
n=1 00 n=1
This recursion relation, starting with known values Ryy oo Rp, can be con-

sidered to be an extrapolation of the known correlation values into regions
where they are unknown, Equation (73) is shown in appendix D to be a stable
recursion when B(z) of (56) has no zeros inside O; this property has been dis-
cussed under (38), (56), and (A-9). It can also be shown that Fourier transfor-
mation of the extrapolated correlation approximants yields precisely (71). It is
interesting to note that (75) has the same form as the predictive equation (58) for
individual data values.

Since A
df Gx(f) exp(i27fky) (76)

1/a

is the autocorrelation at delay ka, it is given by (72) for k <p, and by (75) for
k >p + 1, where the latter correlations are extrapolated values. This follows

20
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from setting 6‘;(£) white and choosing f}x(f) by (71), according to the analysis in
appendixes C and D.

If sample values xk+1, ..., Xg+p Were used to linearly "predict” x) ac-
cording to backward regression

P

s *

Xy 2:1 & X (17A)
n=

the one-step error ep = Sik - Xk has average magnitude-squared value

p
2 . _
E = ,ek‘ = 3 amaan_m (@ =-1), (17B)
m,n=0

which is identical to (60). Thus, the same optimum filter coefficients in (66)
that minimized (60) would also minimize (77B), and an approach similar to that
above would yield a spectral approximation identical to (71). The equivalence
of the results of this backward regression to that of the forward regression in
(58) will prove useful later when we deal with finite data sets and unknown
correlation functions.

3.3 ALL-POLE DIGITAL FILTER
MODEL

The available information about process {x,} is the same as in the previ-
ous two subsections, namely, knowledge of Ry for (ki< p. Consider a sampled
autoregressive process {yk} in steady state generated by a stable all-pole
digital filter, H(z), excited by discrete white noise {wk} ; see figure 2, The
noise is characterized by correlation

* = , all n, T8A
wow 6no all n (78A)
witii no loss of generality, and has spectrum

1
= | —
G =21, i <5, (18B)




TR 5303

" ALL-POLE Y
——— DIGITAL FILTER
H(z)

Figure 2. Generation of All-Pole Process

The digital filter is characterized by a p-th order autoregressive relationship,

p
Z Bnyk-n = wk !
n=0

with transfer function

1

p -
n=0

H(z) =

(79)

(80)

We are going to choose digital filter coefficients {ﬁn}g so that autoregres-

sive process {yy} has the same correlation values as process {xk} » up

through order p; that is, we will set

y r x = .
kyk-n Rn for ini < p

Then the spectrum of autoregressive process {yk} , given by
G @ =G (f)’H(exp(an.\))!z
Y w

A " 1

p
2. B exp(-i2rfny)
n=90

~d
to
(=

to
[§¥]

(81)
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will be used as an approximation to the spectrum of {xk} . The spectral rela-
tion in (82) holds only if H(z) is stable; that is, all the zeros of the denominator
of (80) must lie inside O.

In order to evaluate the filter coefficients {Bn}g , we notice that

*

"k k-n

=0forn >0 (83)
since noise samples {wk} are uncorrelated (see (78)) and filter H(z) is realiz-

able (see (79)). The first step we take is to express (79) as

o n=1

1Y
1
Yk T B [wk -2 Bn yk-n:] ) (84)

Then using (78) and (83),

1 -
W Y =37 (83)
o}
Now multiply both sides of (79) by yﬁ_f and average; there follows
p 1 A
= — < <
Z BnRi—n 5 6£0,0_12_p, (86)
n=0 o

upon use of (81), (83), and (85). Now if we let B, =3 ag, (86) becomes iden-
tical to (46). Therefore, we can use solution (53) to obtain for the filter coeffi-
cients

cOO
B = exp(-i6), 0 < n < p, (87)
n ,Coo

where 6 is an arbitrary real constant,
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Substitution of (87) in (82) yields the autoregressive spectrum approximatior
to the input spectrum as

. Acoo 1
Gx(f) = Gy(f) = , <= (88)

P 2 2a
Z o exp(- i27fna)
n=0

This is identical to the maximum entropy spectrum (55) and the linear predic-
tive spectrum (71). The discussion surrounding (76) is relevant here also.

Substitution of (87) in digital filter (80) vields

Coo exp(ig)
Hz) = —o—oouou . (89)

This is stable if the denominator contains all its zeros within Q; that is, H(z} is
stable if and only if B(z) of (36) has no zeros inside O. This property has
already been shown true in the discussions under (38), (56), and (A-9).

The relationship in (86) can be extended to { = p = 1 with the resvlt that

p )
Z Bn RP+l—n =0 (50)
n=90

where Rp-1 1s now interpreted as the value of yi _\';‘;_p_l, and was never speci-
fied. If we combine (90) with the last p equations ¢t (86), we obtain

P
2 A R, =0,1<h<prl. (91)
n=0

In order for this set of p + 1 linear equations to possess a nonzero solution for
{ Sn}g (as it did above), we must have

24




det

Rl Ro
Rz R1
Rp*fl Rp

p-1
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(92)

This can be solved* for Rp+1. But since this is identical with reference 19,
equation (1), we see that the all-pole digital filter model is identical to choosing

R.p+1 such that

det

R

%

R

-

_p_l

1 (93)

is maximized. Additional interpretations of (93) in terms of maximum uncer-
tainty and entropy are presented in references 20 and 14.

*Of course, a far more practical method is given by (30) and (87), and
more generally by (795).
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4. CORRELATION UNKNOWN; FINITE DATA SET

In this section, the correlation values {Rk} are unknown, and the only
information available about the random process x(t) is a finite set of N samples
Xqs ove XN from which we remove the sample mean. From these N samples,
we desirean estimate of the spectrum G, (f). Yet we can not minimize or utilize
any ensemble averages as was done in sections 2 and 3, since we have only a
finite segment of one member function to work with.

The MESA and autoregressive methods of subsections 3.1 and 3.3 are not
easily directly extended to the case of unknown correlation, because they make
explicit use of this correlation information; see (31) and (81), respectively., A
direct extension o1 these two methods would require us to decide on the form of
the correlation estimates a priori, and could unnecessarily restrict the quality
of the spectral estimate we finally obtain, The linear predictive method of sec-
tions 2and 3. 2, ontheotherhand, requires thatthe ensemble average magnitude-
squarederror be replaced by some estimating quantity that can be readily calculated
from the available data {xn} 1\1I ; asaby-product, we may getestimates of the cor-
relation. Several candidate processing techniques based on subsection 3. 2 will
therefore be considered, and their processing equations derived. Also, some
of the results of subsection 3.1 on MESA will be adapted and combined with the
linear predictive approach to form a viab.. approach to spectral estimation;
this technique was originally presented by Burg in reference 21. In section 6,
all the techniques will be compared by means of simulation.

4.1 YULE-WALKER EQUATIONS
We begin by defining in this subsection

xk = 0 for k-1, k>N, (99)

since these samples are unavailable. Taking (58) in subsection 3. 2as a guide, we
attempt a linear prediction according to

p
X = El ax all k, (95)
n:

where the choice of p is arbitrary for the moment. It should be noticed that
although ;‘k is defined for all k, it is not expected to have a good chance of ac-
curately predicting x) for k <p or k >N + 2 since some zero values of xi have
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been utilized in those regions, according to (94). Nevertheless, we define an
instantaneous error

p
¢ =% -x = ZO a X o all k (@ =-1); (96)

n=

it is expected to be valid or meaningful, however, only if k >p +1l and K <N
(error ey, must utilize a zero value for xN+1). Digital filtering operations
(95) and (96) are stable for any choice of coefficients {an} .

Since we cannot compute an ensemble average magnitude-squared error

now, an average magnitude-squared error is defined for the available data of
the single member function as

2

‘k

p
=Z—

1
F=5 L
k m,

« 1 x
0 a'man N %ﬁ{—mﬁ(-n’ (97)

0
where ﬁ denotes summation over all nonzero values of the summand Ie k"‘ ,

regardless of how meaningful they are. The normalizing factor 1/N is some-
what arbitrary; there are N+p nonzero terms in the first sum in (37), but ondy
N-p meaningful terms.

We define, for all n,m

S E-l
n—

m -~ N Z‘ xk-—mxk-n - Sm-n’
k

in which case (97) yields
p
F= Z amar‘. >n—rt '
m,n=

This relation uses S; onlv for «» - p. In
coeffictents {a_ |7, we conm, ute
i l

i
‘3.1. -—
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The optimum coefficients {'En}l]’. are therefore solutions of the p linear equations

P
3 S, &y = 0 152 <p @ =2 =-1) (101)
m=0
or
P
Y s, T =8§.,1<4<p. (102)
m=1

These are the Yule-Walker equations for the optimum filter coefficienis. The
method here is called the autocorrelation method in reference 1. (Asanaside, in
analogy to subsections 2.2 and 3.2, identically the same equations (102) result
when xy is predicted on the basis of p future values, rather than p past values
as was done here in (95); see (5) and (17) et seq. and (77) et seq.)

The minimum value of average error F is obtained by substituting (101) in
(97) and (99):

p
-1 ~2_ P ~x -
FoEN z I‘kl =2 %n )D Sn-m‘im_‘io z s-mzm
k n=0 m=0 m=0
P x P x
= - mz-o s & =8 - m2=1 st T . (103)

where we have employed (98) and (101).

Thepxpmatrix [S;_..] P on the left side of (102) has the form of a legal
correlation matrix in that it is Hermitian, Toeplitz, and nonnegative definite.
The last property follows from

p p
' 1 ®
S a_a = Z a a* N Z X
rm=1 f-mTmy {,m=1 m% N m k mxk {
1 P 2
) E Zk mgl aka.m 2° oo
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for any {am}g . Since (104) is greater than zero with probability one, (102)
will possess a solution with probability one.

A convenient method of obtaining this solution is to combine (101) and (103)
to get

p
- Z S'__m.'5m=Fo 6'0. 0<4<p. (105)
m=0

Written out in detail, this is

p— 1 o~ —
S 17] F ]
s, S, a4 0
= (106)
S S, -2 0
_ P . [ P L

(The (p+1) x (p+l) matrix in (106) is nonnegative definite, as a simple extension
of (104) shows.) But (106) is identical in form to (A-3), and the recursive solu-
tion presented in (A-4) through (A-7) applies directly.

The spectral estimate we adopt follows from results (68) through (71) in sub-
section 3.2 on linear predictive filtering for known correlation values: first,
the optimum transfer function leading from {xk} to minimam-error sequence
{7k} in (96) is

P
AD = ¥ ‘i’n exp(-i2#fna). (107)
n=0

However, we have a problem in trying to accurately estimate the average mini-
mum-error power that would be used in the numerator of the assumed white
ectrum for the error in (70). Although minimum average error F, of (103)
could be used, it is not recommended because not all the error terms in the
sum in definition (97) are meaningful. Therefore, because of our inability to
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accurately estimate the average minimum-error power in this case, we shall
adopt as our spectral estimate

&= al a ,m<2LA. (108)
IA(f)l 20 'i'n exp(~i2»fna)
n=

This is tantamount to assuming the average minimum-error power equal to
unity (in addition to assuming the minimum-error spectrum white). This pro-
cedure also eliminates level perturbations in the spectral estimate (108) due to

random fluctuations in the absolute level of the sample set {xn} !f; that is, from
(102) and (98), it is seen that the opti.mum values of the filter coefficients,
{7 *p » would be the same if {Kxn} ) Were the available samples, for any K.

Therefore. estimate Gx(f) in (108) is also independent of the absolute level of
the available samples. The choice (108) allows for convenient comparisons of
the spectral estimates obtained by the various methods presented here.

As an alternative, (108) could be numerically integrated over (- -ﬁ ‘Ik ),
and then (108) could be scaled so that the area under the estimated spectrum is
equal to the sample power, * ; p&,) , if desired.

The implications of the assumption in (108) that the minimum-error se-
quence has a white spectrum are investigated in appendix E. It is shown that
the sample crosscorrelation between input sequence {x } and minimum-error
sequence {?'k} defined for the available data of the single member function as

-1 .
D, N zk: Tk Xyt all £, (109)

is assumed to satisfy

D=0, 1<4; (110)

that is, the minimum-error sequence is uncorrelated (on a single member func-
tion basis) with all the past input. It is also shown that the quantities S, de-
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fined in (98) (of which only §, for Ms p were used in (99) et seq.) can be
estimated for £ >p + 1 according to

P
=L ¥ 8, .42p+1. i)
n=1

This relation, (111), which may not be true for the quantities S, actually ob-
tained from data {xp}, via (98), is due directly to the assumption that the

sample spectrum of the minimum-error is white; see appendix E. The recur-
sion relation (111) is stable, according to appendix D, if

P
1- % ¥ 112)
n=1

possesses all its zeros within O. But since matrix (S,_..] in (102) has the
form of a legal correlation matrix, we appeal directly to reference 1, page
567, to state that this property does indeed hold. Therefore, recursion (111)
is stable. '

It is worthwhile noting that no direct estimation of unimown correlation val-
ues {Rk} was attempted in this approach; rather, we minimized the average
error defined in (97) and solved directly for the filter coefficients in (102),
However, if we rewrite (105) in the form

p
)3 s'_m‘l'm--t'o 8o 0<2<p, (113)
m=0

and compare with (C-3), we see that the quantity S, could be adopted as an esti-
mate of R for 4! < p; that is, using (98), we could say

ﬁ, ® §, -% Z: xkx;_', I41<p, (114)
k

(and then (111), with ﬁ replacing S, could be used to estimate R, for 4/ >p + 1,
rather than (98)). This is in fact the approach adopted by some authors; see,
for example, reference 2, equation (19). However, (114) yields biased esti-
mates because
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N- ||
e R, , 141 €N
R! = S‘ = . (115)
0, otherwise

It is interesting to note that if (114) were adopted a priori as estimates of
the unknown correlation values {R, | , then the MESA and autoregressive ap-
proaches of subsections 3.1 and 3.3 could be utilized directly, if the right sides
of (31) and (81) were replaced by {Ry} . The spectral estimates would then be
given by results identical to (108), except for a scale factor. The major draw-
back of this approach is the need to commit oneself to a specific form for the
correlation estimates, such as (114), rather than letting the technique itself
yield alternative estimates. The specific form used for the correlation esti-
mates could limit the quality of the spectral estimate obtained; this contention
is proven true by simulation in section 6.

4.2 UNBIASED VERSION OF YULE-
WALKER EQUATIONS

One method of obtaining unbiased estimates of the correlation values {R,}
is to define estimators

N

~ 1 - 1 .
*'N-1 & —— <l <p.

R, = N-4 2: xkxk_' N-2 k.z,,l xkxk_' for 0< 4 < P (116)

Of course ﬁ_, = ft,‘ . These could then be used in (102) i1n the form

p
E R_,T =R, 1<4d<p, 1w
m=1

to solve for the filter coefficients { %y} '1) . And (108) could again be adopted for
the spectral estimate. The solution for the coefficients in (117) minimizes no
error criterion; it merely utilizes unbiased correlation estimates. The dis-
cussion under (115) is relevant to this approach; how good the technique is will
be ascertained in section 6,

The matrix lﬁ, -ml ‘1’ of estimated correlation values on the left side of
(117) is Hermitian and Toeplitz; however, it is not necessarily nonnegative
definite. (This last property is shown by considering the examplep = 2, N= 3,
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with x) = 2, X, = x3 = 3, for then R, = 22/3, and R) = 15/2.) The recursive

solution of appendix A could again be applied to a modified form of (117); see
105) and (106). If the recursive technique in (111) were utilized to extrapolate
¢ according to

P
Re=T TR_.220+1 (118)
n=1

and (116), it need not be stable unles [ﬁ(-m) ‘; is nonnegative definite. Even if
(118) were unstable, (108) could still be used as a spectral estimate of Gy(f);
there would, however, be a greater tendency of some pole-pairs of (108) to
drift close to the unit circle, O, in the z-plane and give rise to spurious large
peaks in the spectral estimate. This tendency is reduced for stable recursions
(118), that is, if (112) possesses all its zeros within O,

4.3 LEAST-SQUARES ESTIMATES OF
BOX AND JENKINS

In reference 16, appendix A7.5, a likelihood function approach to estima-
tion of the coefficients in an all-pole (that is, autoregressive) filter model for
generation of the process {x,,} is considered. The end result (in our notation)
is given in (A7.5.7) for real data by

N-i-j
1 1
S, ® NP1, o1 ™ N ) XXk 0SB ISP (119)
k=1
and in (A7.5.15) by

P

)y sui') = s“o. l<i<op. (120)

=1

This constitutes p linear equations in the p unknowns l?)} ‘; . The matrix [S;;) '1’
occurring in (120) is symmetric, not necessarily Toeplitz, and not necessarily
nonnegative definite. (The last property is shown by considering the example
N=5, p=2, withxyg =x3=xy=1, for then S| = 3/5, 812 =S3; =2/5, Sgp =
1/5, and the determinant is - 1/25.) The quantities {S;;| also yield biased
estimates of {R;_,}| , because
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= N-i-j

B — . 2
85 S R (121)
Nevertheless we will adopt (108) for our spectral estimate in this case. The
fact that we encounter a non-Toeplitz matrix in (120) disallows the use of the
recursive technique for solution in appendix A.

If the solution to (120) is substituted in (112), the zeros need not all lie in-
side O. Therefore, there would be a greater tendency for some pole-pairs of
(108) to drift close to O than when all the zeros must lie inside O, as for sub-
section 4.1.

4.4 APPROXIMATE MAXIMUM LIKELIHOOD
ESTIMATES OF BOX AND JENKINS

This technique is a slight modification of the previous one in subsection
4.3. Namely, in reference 16, under (A7.5.18), the coefficients are solutions
of

p
El i zi = S 1Si<P, (122)
where (see (119))
) | N-i-g
S ¥y Dieluj1 T RO & MMk 0SBiSP. A29

The matrix [Sile occurring in (122) is symmetric, not necessarily Toeplitz,
and not necessarily nonnegative definite. (The last property is shown by con-
sidering the example N = 5, p = 2, with Xp =2, X3 =1, x4 =2, for then ), = 3,
$12 = S21 = 2, S =1, and the determinant of these coefiicients is -1). The
quantities {S;| yield unbiased estimates of {R;_;} : however, every element in
a pdrticular diagonal can be different, even thouggx they are estimating the same
quantity. Also, the number of terms (in the sum 1n (123)) along a particular
diagonal varies with the position of the element, thereby yielding differing de-
grees of stability. Equation (108) can be used with (122) to obtain the spectral
estimate. Recursive solution of (122) is not allowed because of the non-Toeplitz
character of the matrix [nglg . The comments at the end of subsection 4,3
are relevant here also.
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4,5 PREDICTION USING VALID ERROR
POINTS

The method of subsection 4. 1 utilized an average error measure defined over
all nonzero error terms; see (97). However, as noted under (96), instantaneous
error ¢ is meaningful only if k>p + 1 and k <N. Here we define an average
magnitude-squared error by summing only over the set of valid error points:

F = —1— |¢k| . (124)

There are N - p terms in this sum, Th&s procedure is tantamount to not running
off the edges of the available data {xn} 1° Employing (96), (124) can be writ-
ten as

p
= *
F Z a a Snm , (125)
m,n=0
where
N
' =1 - *
Snm " N-p Z xk-mxk--n - smn ’ (126)
k=p+1

This quantity always contains N - p terms for 0 <n, m < p. In order to
minimize F, we compute

F P

—— =E < < .

Oa: Z Slmam’ l<d<p 127
m=0

p
Y S, 3 =01 <8 <p (§'°=ao=-1). (128)
m=0
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or

S
1

lmam-‘-S'o.lSﬁ <p. (129)

AL

The method here is called the covariance method in reference 1.

The minimum value of the average error F is obtained by substituting (128)
in (124) and (125):

1 N 0 P P P
Fso— 2L |BIf=S ¥ s 3 =7 Y s 13
o~ N pk=p+1 kl ne 0 nm=0 nm m °m=0 om m
P P
- * ~ - ~
== T ST =S L ST (130)
m=0 m=1

where we have used (126) and (128).

The p x p matrix [S;,] g on the left side of (129) is a legal correlation.
matrix in that it is Hermitian and nonnegative definite. The last property fol-
lows from

p P L N
* - * x
Z Slm “m % E amal N-p 2 xk—mxk-r
t,m=1 t,m=1 k=p+1
1 N P
2
= — >
g = | & e Xen| 20 (131)
k=p+1ljm=1

for any {am}g. Since [Sym]) is not necessarily Toeplitz, however, the re-
cursive solution in appendix A is not applicable. Numerical computation of
{S;m] is eased by taking advantage of a recursive relation between S 1+1, m +1
and S, ..

The spectral estimate we adopt is given by (108). However, note that we
could, if desired, get an estimate here of the average minimum error power
E,, used in (70), according to

37




TR 5303

(132)

This quantity is meaningful because (130) involves only the valid error terms.

Equation (129) is similar to, but not identical with, the form of (117). The
quantities {S;.} , defined in (126), yield unbiased estimates of {Rp_p! ; how-
ever, every element in a particular diagonal can be different, even though they
are estimating the same quantity.

If the solution to (129) is substituted in (112), the zeros need not lie inside
O, despite the nonnegative definite property demonstrated in (131). (The ex-
ample

p=1, N=2, yields a, = xz(xl (133)

and gives a zero location of (112) which can lie anywhere in the z-plane.)
Therefore, the comments at the end of subsection 4.3 are relevant here also,

4.6 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

It was noted in subsections 2.2, 3.2, and 4.1 that "prediction’ based on
future values of the input {xk} yielded an equivalent spectral estimate to that
obtained by prediction based on past values. Here we combine the two tech-
niques. The forward-predicted value of X is.

P

xk an xk_n,p+lskgl\, (134)
n=1

where we limit k to the range [p + 1, N], in anticipation of the fact that we can
only measure valid errors in that range; see (96) et seq. The backward-pre-
dicted value of xj is

at

< k< N-
. nxk+n'1‘k‘N P, (135)

¢
H
[}
3
v Mo

where we again limit the range of k. (See, for example, (15), (22), and (77).)
The forward and backward errors are, respectively,
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"
2
]
»
0
=]
W Mo
]
»
)
+
-
=
A
4

(136)

wherea =-1.

o

An overall average magnitude-squared error is defined as
9 N-p 9 p
b4 - *
F= 2(\,_‘)) Z r‘kl £ ¥ I‘kl > Y a_ats ., a3
k=1 m,n=0
where, in this subsection,
1 N N-p
= 2(N-p) < 2 Xeom™ k-n 2 xk+n k+m ' (138)
k=p+1

This quantity always contains 2(N-p) terms for 0 <n, m < p. Two useful prop-
erties of Spm 2Te immediately available:

S =8 ,s8 = s* (139)
mn nm p-n, p-m nm

These properties, plus a recursive relation relating Sp+1, m+1 and Sy, ease
the numerical computation of matrix [Spm] .

We minimize F by choice of {am} i, getting (see (127) - (129))

P
) S mim = S, LSnSP. (140)
m=1

The minimum value of F is (see (130))
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F, =S Z_: 8 o 3 (141)

The method here is an extended version of the covariance approach in refer-
ence 1.

The matrix [Sp,] i is Hermitian and nonnegative definite:

p 1 N p 2 N-p p . P
Z Slm m% =2(N-p) E Z amﬁ:-m * Z amxk+m 29
f,m=1 k=p+1jm=1 k=1|m=1 (142)

for any {am} However, this matrix is not necessarily Toeplitz; therefore,
we cannot appljy the recursive solution of appendix A.

The spectral estimate we adopt is obtained by substituting the solution of
(140) in (108). An estimate of the average minimum error power E,, used in
(70), is available here according to

E =F, (143)

if desired, where F, is given by (141). This is meaningful because (137) util-
ized only the valid error terms.

In analogy to (126), the quantities {Snm} in (138) yield unbiased estimates
of {Rn-m} Nevertheless, if the solution to (140) is substituted in (112), the

zeros need not lie within O, despite the nonnegative definite property shown in
(142). For p =1, we find

X2X1 + X3X + ... F XNXN-I

R R
N-2 N-1 *N

R MER MR
! 2

And since

X
3 (144)

I"k x|

Elxk-ll

<1, (145)
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it follows that
'all <1, (146)

So for p = 1, the zero of (112) must lie within O, (unless xix = A exp(ikB) for all
k, in which case it lies on O). However for p = 2, N = 3, and real data, the

X X
+
zeros of (112) lie at r :Jrz ~ 1, wherer =L2;-—3- . Soif Irl <1, both zeros
2
lies on O, whereas if Irl >1, one zero lies outside O. Therefore, the com-
ments at the end of subsection 4.3 are relevant here also.

4.7 BURG TECHNIQUE

The key to this technique, first presented in reference 21, is the observa-
tion from equation (A-6) in appendix A that if the particular p-th order coeffi-
cient a®) can be evaluated, the rest of the p-th order predictive filter coeffi-
cients, a ) , 1<k<p-1, could be evaluated from (p - 1)-th order
coefficients. This relation (A-6) holds true for the solution of normal equations
(A-3) even if ng} are replaced by estimated values. Explicitly, if estimates

o Bi1» p-1s and a p) arc considered known in the matrix equation
R &R, .. R 1 p®
(o] -1 -p
& R ®) -
R1 R0 -a 1 0
= (147)

R ﬁ -a(p) 0 ,

_ P o L. P R

~

then we have p + 1 linear equations in the p + 1 unknowns a(f) s eees a.’()p_)l, Rp,

P(p . (Notice that whereas Rp was known and a unknown in (A-3), the situa-
tion is reversed here for these two variables.) The solutions are given, for
p21, by

-1 =1)*
a(f:) N 31(<p~ - a(;f) ai‘f.k’ , k=1,2, ..., p-1 (notermsifp=1) (148)
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P p
a a ® . " ®)
R=Y R _a ,5=2x 5,8 : (149)
- k -k
p =1 p-k P ko1 p
-1) ) 2
p® - p@ (1 - ag’ > (150)

The quantities {5 k} in (149) are the estimated normalized correlation coeffi-
cients {Ry/R,} . The recursion (150) is started with

P(o)=ﬁ =
o

Z |

N
3 'xnl , (151)
n=1

which is the sample power of the available samples. A method of evaluating
a]()p) for p >1 is treated below.

The method presented here is a combination of references 21 and 7. It
begins by defining zero-th order forward and backward sequences according to

£ - x , b =%, 1<ngN. (152)
n n n n

The p-th order forward and backward sequences (residuals) for p >1 are de-
fined according to

@) _ (P-1) _ (-1
fn = fn gp bn-l

for p +1<n <N, (153)
p® = @1 _ e (E-D)

n n-1 p n

(These can be interpreted as one-step forward and backward prediction errors.)
A chain interpretation of (153) is presented in figure 3. (From the known
correlation results in subsection 3. 2, if we define

p
) N (P)
f(n =X ) a X

k=1

p *
(P _ - (P
n-k '’ bn *n-p kglak *n-p+k

we find that figure 3 results, with g, replaced by a:)P).)
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¢p-1)

n n

Figure 3. Chain Interpretation of Burg Technique

The average magnitude-squared value of the p-th order forward and back-
ward sequences is

1 S o2 2
p® _ > <|f(p) . b(p)| >
2(N-p) n n
n=p+1
N 2 2
= ®-1) _ ®-1) ®-1) _ - (p-l)l )
Ep) oo (Ifn 8 Pher | (Pn-1 "B n ,p21.
n=pri (154)

We wish to minimize this average power at the p-th stage by choice of cross-
gain gp We find the optimum choice to be

N
-1 , @-1*
2 (P p
= n=§”‘ T g Jump) 5y (155)
LT o012 1 o2\ Dem) 'P =T
2 <|fn l * bn-1 )
n=p+1
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When (155) is substituted in (153), the results are called the residuals. The
minimum value of the residual power at the p-th stage is obtained by substitu~
ting (155) in (154) and is expressible as

@) - - 2, Den(p)
F, (1 Igp' )——2(N_p) s P21. (156)

The quantities necessary for this evaluation are available when (155) is evalu-
ated. The value of (156) will never be smaller than (141), since the procedure
here is a step-by-step procedure, not a simuitaneous procedure as used in
subsection 4. 6.

An immediate recursion for the transfer functions of the p-th stage in fig-
ure 3 is

3@, = 30V, gpz‘la'!"”m
. . ,p21, (157)
3Pz = 2 1gP Vg g;'a“” ) (2)
with starting values
392 = 8% = 1. (158)
If we let transfer functions
®) P ® -k
IT@=1- 3 az,
k=1
®) ! @k p_ -p_@* -1
B @ =- ) a z +2z =2'%3 @27, (159)
k=0 P°K
the solution is
L >1 160
3p Sp. p2z2l, (160)

with the lower order coefficients given by (148). Thus, the only remaining
quantity, ag’) » that was necessary for solution of (147) - (150) is given by (160)
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and (155), along with (152) and (153). To the three lowest orders, the solutions
are given by

p=0 pO. R = 'r% E Ixn|2 (161)
n=1]1
p=1, ail) =8
B, - W
p) . p@ (1 - Hl)lz) (162)
pez 1 g

@ _ .0 _ @ o
5 T3 T A

2 a® LR W@

R, =R a," +R a,

p® o o (1 - | B2). as

It will be observed that for p =1, a(ll) is identical to (144); in fact, the proce-
dures are Ldenticd in this case. It should also be noted that at each stage, an
estimate, , of the true correlation value becomes available via (149), and
is unchanged by the addition of any further stages (larger p).

It was demonstrated in (A-9) that the magnitude of a.g’ ) was bounded by
unity if the known correlation matrix R was nonnegative definite. The same
property,

a‘p)l <1, (164)
p | =

is true here in the case of unknown correlation when ®) is determined by (160)
and (155); see appendix F. This is sufficient to show that all zeros of (A-10)

45




TR 8303

lie inside O; see reference 11, for example. Therefore, the recursion (149)
can be used in the form

~ P ~ (p)
R,-kzlal_k;k.zgp+1, (165)

to extrapolate the estunated correlation values beyond p-th order, with the p-th
order coefficients {ak } P | and is guaranteed to be stable. Division of (165) by

RO yields the normalized correlation coefficients. Recursion (165) is similar
in form to those encountered in (75), (111), and (118).

The quantity P(p) that results as the solution (150) of matrix equation (147)
is not the minimum average magnitude-squared error as it was for known cor-
relation; see (A-3), (A-7), and (67). In fact, P(P) has no direct physical sig-
nificance; it is merely the variable left over in that position in the normal equa-
tions (147) when modified from the case of known correlation values, (A-3).
Rather, F(‘,p ) in (154) and (156) is the minimum average magnitude-squared
error of the forward and backward residuals, (153), of the available data,
Thus, as far as picking an "optimum' value of p at which to terminate the re-
cursion in (147) - (150) is concerned, the latter quantity has more physical sig-
nificance. However, the two quantities are very close to each other for no bad
data points, especially for N-p large; see apperdix G. Both quantities are
readily calculated at any stage via (150) and (156), respectively.

The transfer functions from input x to the p-th order residuals are given in
(159). Therefore, the spectra of the residuals are given by

G(p)(f) (p)(r) |3(p)(exp(12nf.§))|2 G (. (166)

Now if the chain in figure 3 has been carried to the stage where further values
of cross-gain would be substantially zero, then the residuals are approxi-
mately white. Therefore, an estimate of the input spectrum is available from
(166) and (159) according to

~ Y
G (ﬂ = ’ f <
Z a exp(-i2n fka)
k=1

|-

) (s

™o

A
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where the residual power has been set at unity; see the discussion under (108).

Two alternatives to this scale factor are discussed in appendix H; namely, it is
shown that P®) and F§) are both meaningful scale factors that could be applied
to (167).

The estimated correlation values in (1498) are generally biased. This may
be anticipated from the complicated forms of (149), (148), and (155), ame
additional statistics than simply xy,pXk need to be known in order that Ry be
capable of evaluation; that is, ﬁ; depends on much more than just Xk.pXk . for
the Burg metho?. This biasedness may be proven for a simple examPle with
Pp=1, N=3. (R, in (15]1) is unbiased; and for p = 1, N= 2, we {ind R} = xox]
which is unbiased.) For real data, with random variables {xk}‘;" being zero-
mean unit-variance Gaussian, and XX} = X3X3 = :\ﬂl" X3X, = 0, we find (in

appendix 1) that -ﬁ_l = {/% LZ_—TZL/E =+ 1 (.9484). The bias is slight but non-

vz
zero.

In summary, the Burg algorithm for data processing consists of initializa-
tion (152); followed by the cross-gain calculation in (155); filter coefficients via
{160) and (148); and normalized correlation coefficients (149) (if desired)
at every stage. The update required at each stage is given by (153), and
the extrapolated normalized correlation coefficients at any stage are available
from (165),upon division by ﬁo.

4.8 SUMMARY OF PROPERTIES OF
TECHNIQUES

The solution for the filter coefficients in the techniques considered above
can be put in the form

R(-3) = F &. (168)

The properties of the estimated correlation matrix [ (if desired) are tabulated
in table 1. (Actually, several of the '"No'" entries should be ""Not Necessarily.'’)

It will be seen that none of the techniques possesses a ""Yes' for all the
properties. The Yule-Walker and Burg techniques possess everything but the
unbiased property; however, the unbiased property, per se, of the correlation
estimates is not necessarily a desirable feature for spectral estimation, as will
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Table 1. Properties of Estimated Correlation Matrices
Noaneg-

Correlation ative Stahle
Technique Estimates |Unbiased | Hermiti Toeplitz | Definite | Recursion
Yule-Walker (114) No Yes Yes Yes Yes
Unbiased

N N

Yule-Walker (116) Yes Yes Yes (o} o
Least Squares
of Box and (119 No Yes No No No
Jenkins
Approximate
maximum
likelihood of (123) Yes Yes No No No
Box and
Jenkins
Prediction (126) Yes Yes No Yes No
Forward and
Backward (138) Yes Yes No Yes No
Prediction
Burg (149) No Yes Yes Yes Yes

be seen by later simulation results. On the other hand, simultaneous satisfac-
tion of the three properties of Hermitian, Toeplitz, and nonnegative definite
guarantees that a stable recursion and nonspiky spectral estimates result; see
reference 1, page 567.
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5. CORRELATION UNKNOWN: FINITE DATA SET
WITH BAD DATA POINTS

In some applications, some data values can be bad as a result of malfunc-
tioning equipment or human errors in reading or recording, for example. Also,
ecome data values can be missing as a result of equipment being inadvertently
or intermittently turned off for calibration purposes, for example; or some sec-
tions of data can be contaminated by strong burst-like noise and be virtually
useless in those sections. All of these problems can he characterized mathe-
matically by saying that of the available data set {x;} L + the values x, for the
distinct integers _

n= Ml' M M (169)

2. LA ) B

are known to be bad (or missing). The B bad locations {Mj} f are presumed
to be kmown. The bad data points can be regularly spaced, or randomly spaced,
or a combination, depending on the application, it will make no difference to
the techniques to be developed here.

In this section, we wish to estimate the input spectrum despite the presence
of known bad points. The last two methods in subsections 4.6 and 4.7 will be
extended to cover this case. The reason we do not extend the other methods in
section 4 will become clear when we compare the various techniques by simu-
lation in section 6.

5.1 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

The method to be presented here is very similar to that given earlier in
subsection 4.6; accordingly the treatment will be briefer. For convenience and
to enable a better estimation of the true spectrum with a limited number, p, of
parameters, we subtract the sample mean of the N-B good data points so that

N
'i%i % x =0, (1T0A)
n=]

where J denotes that we skip those values of n in the set (169); that is, we

simply ignore the bad data points -- this is, in fact, the main theme of the
methods to be presented. We attempt no interpolation on the bad points, nor do
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we set them equal to zero or the sample mean. We also scale the good points
8o that the sample variance is unity:

N
1 2
T 2% lxn| =1, (170B)
n=1

This helps avoid overflow and underflow problems in the numerical manipulation
of large arrays encountered for large p.

A forward prediction of xi is afforded by
p
Xz L 2 x ,p+l<k<N, 171)

n=1

provided that k-1, k-2, ..., k-p # M1, Mo, ..., Mg. Then a valid forward
error can be defined as

P
¢k_=_xk-xk=n¥0anxk_n @=-1),p+1< k<N, @72

provided that k, k-1, ..., k-p # Mj, Mg, ..., Mp; that is, €} is defined for
p+1 < k<N except for k in the set of integers

(Ml' M1+l, cesy Ml*‘p\
My, M,+1l, ..., M,+p >
I: 173
. { . 173)
\M M_+1 M /
ss ey + .
B’ B B P

If any numbers in set Ip are <p+1 or > N, they are not encountered in the error
definition (172). Let By denote the number of distinct integers in I which are

> p+1l and <N; this is the number of gaps (bad points) in the error sequence
(172).
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We now define an average forward error over the valid error points as

~ 1 N 2
Feyms = Wl a7y
P k=p+1
kglp

where 6 denotes ''not contained in,'" and N-p - Bp is the number of terms in the
sum. Substituting (172) in (174), we obtain

P
s _ * 1 *
F= 2 %m %n N-p-B ) *k-m *k-n" (175)
m,n=0 P k=p+1
fTy
A backward prediction of x| is available as
P .
‘x'ka 3 a;ka,lngN'P- (176)

n=1
provided that k+1, k+2, ..., kip # M, M,, ..., Mg. And a backward error
P

T =X - = * =- < < -
=X -x nz_:oanka @, 1), 1< k&N -p, (AT

is available if k, k+1, ..., k+p # M1, My, ..., Mp. Letting £=k+p in (177),
we can write
p
€ = * < ) <N, 7
‘l-p 20 anx'_p+n, p+l<£L<L (178)
ns

if 4 is not contained in the set I defined in (173). The we can define an average
backward error over the valid error points as
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1 al 2

Fegeg & ¥ _pl (179)

P t=p+1

4
p 1 N
= ‘——— *
Z am an N-p-B Z xl-p+n xl-p+m i (180)
m,n=0 P f=p+1

‘4
where we have substituted (178).

We are now in a position to define an overall average error as

p
Sl ALY - .
F=3F+F 3 a a*s (181)
m,n=0
where, from (175) and (180),
N
- 1 » *
snm T 2(N-p-B) Z (xk-m xk-n * xk-pi-n xk-p+m>' (182)
P  k=p+1
klp

It should be noticed that (182) does not tell us merely to sum over the ""good"
products, but rather to exclude set Ip. The number of terms in the sum (182)
is the same for 0<n, msp and is N-p-Bp. (For no bad points, (182) reduces to
(138).) Two useful properties of Spm are

=s* .S =s* . (183)
mn nm’ p-n, p-m nm

The quantity Spym is an unbiased estimate of Rp_m; however, the presence of
bad points will increase the variance of Sp,; see reference 5. The matrix

[ Spml Fl’ is Hermitian and nonnegative definite.

The optimum predictive filter coefficients {'Em} { are obtained by mini-
mizing (181):
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p
2 Sm %, =5,.,150 <p. (184)
m=1
The minimum average error is
p
= - = e
F, soo 3 smo C (185)
m=1

And since the sample variance of the good data points was set equal to unity in
(170B), (185) is a relative error measure that can be used to decide what value
of p should be used in (171) and (176); see reference 1, equations (41) and (89)

et seq. The spectral estimate we adopt is obtained by substituting the solution
of (184) into (108), as usual. The quantity F, in (185) could be used as a scale
factor, if desired, according to

N
E =F . (186)

5.2 BURG TECHNIQUE

The problem setting is the same as that for the previous subsection, in-
cluding (169) - (170). The solution is identical to that for subsection 4.7, up to
(150). Now we define zero-th order forward and backward sequences as

f(°)=x,b(°’=x,1_<_n-sN.n4'l, (187)
n n n (o]

n

where we again employ the definition (173). The first-order sequences are de-
fined as

W _ .0 _ _ O |
fn - fn g bn—l

forzsnsN,né'Il. (188)
® _ (0 x ((0)
by = b1 "B fy

where the restriction of set 1; is due to the fact that the first-order sequences
cannot be formed (evaluated) in set Ij. We choose cross gain g; to minimize
the average error
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@) 1 = (1.0 . . m]2
P =3w-1-8) z <|fn ' +]bn] ) (189)
1" pn=2
n§l

where N-1-B,; is the number of terms in the sum. The solution is given by

- 0 L (©*
2 Z fn bn-l

n=2
n
1
= . 190
TN o o) -
2 (0 + [
n n-1
n=2
I
n§ .
With this value of g;, we can now compute values for residuals fx(ll) , bl(ll) in
(188) and continue the procedure.
At stage p, we have
(@ @D e
n n p n-1
: forp+1gn5N,n¢1. (191)
® _ ,0-1 _ _« -1 P
b =b -g f
n n-1 P n
The choice of cross-gain gp that minimizes average error
®) 1 & (@2 | o) (0)
F¥ 2 8T p) (lfn + Ibn | ) (F =1), (192)
' P n=p+l

n¢lp
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is N
- 1) (P-l)
2 3 £
+1 n-l
ngl
- P _ Num(L)
& TN 2 2. - Den(p) ' (193)
z (]
n n-1
n=p+1
nflp
and the minimum value of (192) can be expressed as
_ _Denp) 0) _
1 I I TN-p-5) (Fo 1). (194)

This is also a relative error, due to the normalization (170B), and can be used
as an indicator when to terminate the recursion procedure in (191).

It may be seen from (192) and (193) that the sums are merely taken over
those values of n where the summands are defined. The number of terms in all
the sums is N~p-Bp.

As in subsection 4.7, the filter coefficients are given by

)
=g.,p21l, 195
8, =g P2 (199)

and for p >2, by

al(f)=al(‘p—1)-aép)a£;1)*»lsksp-l. (196)

Equations (147) through (150) still hold true. The starting value of P(0) is now
1, by virtue of normalization (170B). Recursion (1635) for / >p +1 is still valid
and is stable since

‘P’|=||<1 197
1] g, <. -

as may be seen from (193) and appendix F. The spectral estimate is again
given by (167). The discussions in appendixes G and H are relevant here also.
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6. COMPARISONS

All the techniques considered in section 4 will now be compared in terms-of
their resolution capability, bias, and statistical stability, by meéans of a simu-
lation approach. In particular, the fourth-order autoregressive process which
was intensively investigated in reference 2 (see figures 4a and 5a) will be the
basic process of interest here also. It is characterized by

4
n=1
where
al = 2.7607, a2 = - 3.8106, a3 = 2.6535, a4 = - 0,9238, (199)

and where {wk} is Gaussian white noise, We restrict consideration to real
processes here. We will not address the problem of how best to pick the value
of p used in the techniques of sections 4 and 5, but shall instead set p equal to
the known value, 4, and concentrate on the ability of the various techniques to
estimate the parameters in (199), and thereby the spectrum of {xk} , from a
finite set of N data points.

The simulation method consists of the generation of 100 independent reali-
zations of the process in (198) in steady state. The coefficients in (198) are
estimated for each of the 100 realizations, and the corresponding 100 estimated
spectra are computed by means of (108), for every technique in sections 4 and
5. The examples to be considered are summarized in table 2, where N is the
number of data points in each realization (trial), and B is the number of bad
points in each realization. The corresponding figures are collected together at
the end of this section.

6.1 NO BAD DATA POINTS

In figure 4A, the 100 different estimated spectra, one for each of the 100
independent trials, are plotted for the Yule-Walker approach, and for N = 40
data points. In figure 4B, the (power) average spectrum of the 100 estimated
spectra is plotted, along with the true spectrum of process (198) and (199).
The true spectrum is scaled so that its area is equal to that of the average
spectrum. It will be seen from figure 4A that there is a great deal of variabil-
ity in the individual spectral estimates, From figure 4B, we observe that the
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Table 2. Simulation Examples

Figure Number of Number of
Number | Data Points Bad Points
N B Technique
4 40 0 Yule-Walker
5 40 0 Yule-Walker, Unbiased
6 40 0 Least Squares of Box and Jenkins
7 40 0 Approximate Maximum Likelihood
of Box and Jenkins
8 40 0 Prediction, Valid Error Points
9 40 0 Forward & Backward Prediction
10 40 0 Burg
11 40 0 Burg, Uniform Noise
12 40 4 Forward & Backward Prediction
13 40 4 Burg
14 100 0 Forward & Backward Prediction
15 100 0 Burg
16 100 10 Forward & Backward Prediction
17 100 10 Burg
18 100 20 Forward & Backward Prediction
19 100 20 Burg
20 100 30 Forward & Backward Prediction
21 100 30 Burg
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average spectrum does not resolve the two narrowband peaks of the true spec-
trum*; in fact, this same conclusion is true for the individual spectra in figure
4A, A severe bias exists in the skirts of the average spectrum, which gives a
gross overestimate of the power in bands away from the peaks. - Thus, the
Yule-Walker approach has poor resolution, severe bias, and substantial vari-
ability.

The corresponding results for the unbiased version of the Yule-Walker ap-
proach are displayed in figure 5. Rather than improving the situation, it is
found that the spectral estimates are worse in every regard. The spectral
estimates with strong spikes near f = B]T are manifestations of pole-pair loca-
tions of estimate (108) that are very close to the unit circle O. Recall from
subsection 4.2 that the zeros of (112) need not lie inside O; see the discussion
below (118).

The unbiased correlation estimates utilized above in the normal equations
are of the same form as those suggested in reference 5 for missing data, when
spectral estimation is attempted directly via (2). But since the performance of
these unbiased correlation estimates is so poor here, they are not considered
worthwhile in the presence of bad data points, when spectral estimation is ac-
complished via (108). Whether they are worthwhile for use in (2) is not known.

Results for the least-squares approach of Box and Jenkins are given in fig-
ure 6. The variability is less than that for the Yule-Walker estimates in figure
4A. And some resolution is achieved in figure 6B, in addition to good skirt
selectivity. There is still, however,. a large number of spiky spectral esti-
mates, as anticipated in the discussion under (121).

Conditions are not much improved for the approximate maximum likelihood
method of Box and Jenkins presented in figure 7. There happens to be one par-
ticular spectral estimate with a very large spike (a zero virtually on O) that
severely influences the average power level. The variability in the estimated
skirt level is quite small for this technique (as well as for the previous one).

In figure 8, the results for prediction using only the valid error points are
presented. The resolution and bias in figure 8B are observed to be very good,

*This same conclusion is reached in reference 2, figure 5b, for the same
number of data points. Increasing p (above 4) does recover some of the resolu-
tion of the two narrowband peaks, but it does not reduce the severe bias of the
Yule-Walker approach.

59




TR 3303

and except for some spiky estimates in figure 8A, the variability of the individ-
ual estimates is fairly small.

The situation is still better when we consider forward and backward predic-
tion, using only the valid error points, in figure 9. There are a couple of spiky
estimates, but they are not excessively large, as they were previously. The
bias and resolution are very good in figure 9B. Although the zeros of (112) need
not remain inside O for this technique, it was found that in all 100 trials, no
zeros were ever located outside of O. The presence of the two spiky estimates,
however, indicates that on two occasions,a zero came close to the periphery
of O.

One of the major drawbacks of this technique is the need to invert a non-
Toeplitz matrix (or an equivalent operation) in order to evaluate the optimum
filter coefficients; see (140). For large p, this is a significant numerical prob-
lem. We therefore attempted to convert the matrix (S,p,] in (140) to a Toeplitz
matrix, so that the recursive solution in appendix A could be utilized. We first
averaged (Sym] ‘; down the diagonals and left the right-hand side of (140) as is;
however, we lost resolution and got badly biased and more variable spectral
estimates. Next we diagonally averaged [S;,,] P and left the right-hand side of
(140) alone, but got the same bad effects. F'malfy, we diagonally averaged
{Sym) g and also replaced the terms on the right-hand side of (140) by the ap-
propriate averages, but again to no avail. Thus, we are unable to significantly
modify (140) without dire effects on the spectral estimate.

Finally, when the Burg technique is considered in figure 10, we observe the
complete absence of spiky estimates; this is due mainly to the yuaranteed loca-
tion of the zeros of (A-10) inside O. In other respects, the results of figures 9
and 10 are very similar. There is a small bias in figure 10B, with the peaks
being rounded off and the valley filled in: this is similar to figure 5 in refer-
ence 2,

All the results above have been conducted for Gaussian white noise ‘wk} in
(198). To see the effect of the statistics of {wy| upon the spectral estimates,
we changed to a uniform distribution. The results in figure 11 are virtually
identical to those in figure 10. Accordingly, Gaussian statistics are kept for the
remainder of the simulation.
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6.2 BAD DATA POINTS

By virtue of the results of che preceding subsection, further consideration
is limited to the forward and backward prediction technique and the Burg tech-
nique. The first example we consider is B = 4 bad data points out of a total of
N = 40 data points; that is, in each of the 100 realizations of 40 data points, 4
points (no more, no less) were randomly selected as being bad, and the corre-
sponding values of xi were suppressed. In some of the realizations, the four
data points may have been close together (for example, 10, 12, 14, 15), whereas
in other realizations, they might have been far apart (for example, 1, 14, 27,
40).

The resulting spectral estimates are given in figures 12 and 13. The vari-
ability in the skirts is less for the forward and backward prediction technique
than for the Burg technique. However, the spiky nature of the former technique
is quite evident in comparison with the latter technique. Both techniques have
suffered a significant loss of resolution near the narrowband peaks.

The reason for the significant degradation in performance of both tech-
niques is that although only B/N = 4/40 (10%) of the points are bad, the number
of valid error points, N-p-Bp in (174) and (192), can decrease significantly.
For example, for p=4 and spaced bad points at M; = 11, My = 16, M3 = 21,
M, = 26 (see (169)), we have

=20, N-p - 16, 00
Bp P Bp- (200)

On the other hand, for contiguous bad points at My =1, My =2, M3 =3, My =
4, we have

B =4, N-p-B =232, o1)
p P" % @

Thus, anywhere from 16 to 32 valid error points can be achieved. The stability
of the spectral estimate for (200) will be less than that for (201). Generally,
contiguous bad points are less damaging than spaced bad points, because more
valid error points can be formed when the bad points are contiguous.

One of the points of the above example is that 4 bad data points out of 40 is
rather detrimental. We consider now N = 100 data points. The first example
of interest will serve as a comparison case and is B = 0. The results of spec-
tral estimation for the forward and backward prediction technique and Burg
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technique are given in figures 14 and 15, respectively. The results are virtu-
ally identical; there is excellent resolution and almost no bias for both tech-
niques,

When B is increased to 10, the results in figures 16 and 17 are obtained.
Despite 10% bad points, good performance in terms of stability, bias, and reso-
lution is attained. The number, N-p-Bp. of valid data points can vary from 46
to 86; however, the likelihood of realizing as few as 46 on a random %asis is
very remote. The Burg technique has less-spiky estimates near the narrow-
band peaks, as expected; however, it is more variable in the skirts than the
forward and backware prediction technique.

When B is increased to 20, the results in figures 15 and 19 indicate that the
Burg technique has more variability, but is less spiky and has better resolution.
The same conclusions hold true for B = 30 in figures 20 and 21, however,
neither technique resolves the two narrowband peaks for this many bad data
points,
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7. DISCUSSION AND CONCLUSIONS

Several methods of spectral estimation via linear predictive techniques have
been considered for a univariate process, both with and without bad data points;
the bad points can be regularly spaced, randomly spaced, or a combination.
Two particular methods have been found to have better performance than the re-
mainder, namely, the forward and backward prediction technique and the Burg -
technique. The former technique tends to have less variability on the skirts,
but has more spiky estimates near the peaks of the spectrum; the latter tech-
nique has very few spiky estimates. Both techniques have comparable resolu-
tion and bias.

Since the best choice of filter order, p, is not known a priori, it is neces-
sary in practice to make several guesses at this parameter and compute some
error criterion that indicates when to terminate the recursion. In particular,
Akaike's Information Criterion (reference 22) is often adopted as a termination
procedure; it takes the form (reference 1, equations (91) and (41) or reference
22, page 719)

AIC = /n (Relative Error) + R (AIC(p =0)=0), (202)

-
L
&~

e

where N, is the "effective’” number of data points, and is taken as N-p (or
N—p-—Bp for bad points) here, at the p-th stage. The value of p at which (202)

is a minimum is taken as the best estimate of this parameter; however, criterion
(202) is not absolute, and the user can adjust it to fit his application (reference 1,
page 575). A wide range of values of p may have to be investigated if little is
known 7bout the true spectrum a priori; an upper bound on p is given by Akaike
as 3N1/2 (mig).

One of the ramifications of this successive guessing procedure is that for
the forward and backward prediction technique, adifferent pxp matrix (S| Il)
must be inverted (or an equivalent operation conducted) at each stage (see
(140) and (138)) in order to determine the filter coefficients and minimum
error, (141). Although the matrix terms can be updated according to

X 3 + ®
(p+l) _ N-p ®) p+l-m xp+1-n *N-p+n xN—p+rn
S Z —— - P

nm N-p-1 mm 2(N-p-1) ! 203)

in addition to the relations in (139), the size of the matrix [Sy] Ilj grows with
p, and the solution of (140) can be a time-consuming procedure, if many large
values of p must be investigated. This fact, coupled with the fact that this

spectral estimation technique can yield spiky estimates and an unstable recur-
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sion relation (149), leads to the conclusion that, of the methods considered, the

Burg technique is the recommended procedure for spectral analysis of univari-

ate processes. A comparison with the maximum likelihood technique (reference
23) is underway and will be documented in a future report.

The solution for the filter coefficients in the Burg technique is accomplished
recursively as shown in subsection 4.7 and automatically progresses through
successively larger values of p at which error measures (150) and (156) are
readily calculated. There is, of course, the need to update the forward and
backward residuals via (153), and the calculation of cross-gain gp in (155), both
of which take time to effect. But the effort required actually decreases as p
increases, since fewer terms are involved in (153) and (153); in exchange, the
stability of the estimates also decreases.

FORTRAN programs for the Burg technique, both with and without bad data
points, are given in appendix J. Some representative execution times on the
Univac 1108 for the computation of the filter coefficients (SUBROUTINE BURG)
are given in table 3, where N is the number of data points and PMAX is the
maximum order of filter considered. The times are approximately linearly
proportional to N and PMAX., The execution time for the evaluation of the
power density estimate itself is governed by the FFT technique employed to
evaluate (167) (SUBROUTINE POWERS).

Table 3. Execution Times; No Bad Data Points

N PMAX Time (sec)
100 10 0.038
100 20 0.073
1000 10 0.33
1000 50 1,78
10000 50 17.9
10000 150 48,4
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The presence of bad data points is easily accommodated in the Burg tech-
nique, as shown in subsection 4.7. If the bad data points are contiguous, the
loss in stability of the estimates is not as great as when the bad data points are
spaced. The worst possible locations of bad data points occur when the closest
spacing is >p + 1, since each bad data point causes the loss of .p + 1 valid error
points. Interpolation of spaced bad data points has proven poorer than the tech~
nique utilized here (of ignoring bad points) when the spectral content of the input
process extends fairly close to the Nyquist frequency (2 a)~1, Ssince the exact
extent of the input spectrum is unknown a priori, interpolation can be a damag-
ing procedure in some cases.

The spectral estimation technique investigated here is particularly advan-
tageous for short data segments, where other methods are inapplicable. For
example, if a piece of equipment fails frequently, short disjointed pieces of data
may be all that are available. Or if a process is nonstationary, it may be nec-
essary to cut the total data record into small segments in each of which it is
believed that conditions are substantially stationary. For longer data records,
where standard FFT techniques can be applied, it has been recommended that
both spectral estimation procedures be applied and the results plotted together
to glean maximam information about the true spectrum (see reference 12).
This seems particularly useful when some pure tones are present in the input
data; the standard FFT technique is ideally suited for the analysis of pure tones
or very narrowband components,

83/84
REVERSE BLANK
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Appendix A

RECURSIVE SOLUTION

If we employ (52) in (46), there results

p a¥*
k 1
_—_ = 0< f<p. -
k=0 0 00
Now define
*x
[e 4
£-.a® o<k <o, (A-2)
a k

where the dependence of the coefficients on the order p in (31) is indicated ex-
plicitly. Then (A-1) becomes

1 7, 7 [ ®]
Ro R_1 v R_p 1 l/coo
®)
Rl R0 al 0
= (A-3)
R R _a(p) 0
L P o | L. P B J

where the matrix R is Hermitian and where we have also indicated that the real
quantity cgo is dependent on p; see (47) and (51). Equation (A-3) constitutes
p+1 linear equations in the p+1 unknowns aip), cees aép), l/cc(f’o) .

The solution to (A-3) can be obtained recursively as follows (see, for ex-
ample, reference 11 or reference 24, appendix B):

1) _ 1 _ L _ _
a’ = Rl/Ro’ ) Ro R-l a Ro (1
o0

L2\,
al I > (A-4)
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for p > 2:
p-1
(p-1)
Rp - ay Rp—k p-1
2@ k=1 = |R - (®-1) ®-1) " (a-35)
P ! -y - S
R, - L % Ry )
k=1
F 3
al((p)=al(‘p_1) [(Jp) ap()p_-kl) » k=1,2, ..., p-1, (A-6)
-1 ;
L g .y Prar _a@)R*_pZ ZO 1 (1 a(p>2).
0 o &%k kT o T Tp T & ko -\ {p
00 = 00 (A=7)

The last step in (A-7) is obtained by substituting (A-6) and employing (A-5). It
is very important to notice from (A-6) that once a.l()p) is specified, all the p-th
order filter coefficients can be calculated from (p-1jth order coefficients. The
same is true of (A-T).

If we use (A-2) and (53), the maximum entropy spectrum in (55) can be ex-
pressed as

A/cg:)) 1
% |f|<?..k-' (A=-8)

S0 TTE ®)
3 a exp(-i2rfka)
k=0

The similarity in form to (14) will be complete when it is shown (in (67)) that
l/c(()po) is the minimum value of the average magnitude-squared error for a p-th

order predictive filter; therefore cg%) must be positive for all p, for non-negative
definite R. Equation (A-7) offers a recursive calculation of the average error; it

can be started with '(?(1—1,5-= R0 . (In fact, (A-5) through (A-7) can be used for p>1

when that starting val%% is used.)
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(p)

Since c,, must be positive for all p, (A-7) indicates that
lal(:{)lslfork= 1, 2, ..., P (A-9)

This is equivalent to having all the zeros of

@,k (A-10)
0 k

f[\’]'c

(where the remaining coefficients are determined via (A-6)) inside the unit cir-
cle, O, in the complex z-plane; see reference 1, page 567. Therefore

P K
(z) Z (A-11)
k= o

has no zeros inside O.

A-3/A-4
REVEKSE BLANK
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Appendix B
EVALUATION OF MAXIMUM ENTROPY

The optimum spectrum is given by (36) and (37). The maximum entropy
then follows from (30) as

Ent = Af df In Go(f) = -a f df [dny(f) +Lnv"(D)] = 6’1 +§2.
1/a 1/a (B-1)

Consider

p
51 = -A f df In { }: a. exp(i2nfka)) . (B-2)
1/a k=0

Letting z = exp(i2rfA) and using (38), (B-2) becomes
1 dz
51 = - Tz?f—z In B(z), (B-3)

where f denotes counterclockwise integration around the unit circle, O, in the
complex z-plane. Now

K p
a, 2z =a JI (z -o0) (B-4)
k
o K P k=1

B@z) =

"M

where, from (A-14), zero locations o} satisfy

Iokl > 1, all k; (B-5)

that is, all the zeros of B(z) lie outside O. (There can be multiple-order
zeros in (B-4).) Also assume p >1 for now. Then (B-3) can be expressed as
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p -y
_ 1 dz
81--12”f - [ﬂnap+ Z.ﬂn(z—ok)
k=1 o
P 1 dz ]
= - [ﬁn ap + Ef—z- In (z - ok) . (B-6)
k=1 o
But

in (z-ok)=1n (- o) +4n Q1 —gz—)
k

2
z z
=f4n (-0,) - — - (—) - ... for
k ok ok

k

<1; (B-7)

that is, expansion (B-7) converges for !z] < oy i But since 0! >1, the region
of integration in (B-6) remains in the convergence region of (B-7). Therefore,
the integral in (B-6) is

2

L1 fdz R §:22 P Z L (E
i2rrf z In (z-ok) - iZﬂf Z {ﬁn( Ok)° o <o >
k k
Then from (B-6) and (B-4)
P p
k=1 k=1

- 4dn B©) = - 4n a - (B-9)

- } = Jn (- ok) .(B-8)

it
[}

And from (B-1) and (B-4)

£ =-a df gny"(f) = - AJ dfﬁn{ .

1/a 1/a

7[")1:

a’ exp(i2r fk.s)}
0
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1 dz -k 1 dz
='a;9{—z“{z L }‘r Z 1 5°(5)

k=1
p
s g f 2oy 2 il
k=1
P 1 fd 1
= -[ﬂn o + 3 T —zz,(Zn<;- 01:)] . (B-10)
Pk=1

Now

<1; (B-11)

x
02
that is, expansion (B-11) converges for Iz! >|01—*1' But since logi >1, the

region of integration in (B-10) remains in the convergence region of (B-11).
Therefore, the integral in (B-10) is

2
'ﬁf%z‘ﬂn(% - o;)= lz—arf-d;z{ﬁn (— o;)- (%z- - (g‘%) - i = {n (— o;).

Kk
(B-12)
Then from (B-10) and (B-4)
P P
R A
k=1 k=1
= - fn B*(0) = - fn a; . (B-13)
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Combining (B-9) and (B-13) in (B-1), there follows for the maximum entropy
Ent = -} L. in (a/c_ ) B-14
nt = n ldol cOO s ( )

where we have also employed (52). (For p = 0, a separate derivation yields
(B-14) also.) Recall from (51) that ¢, is the upper-left corner element of rR-1,
where R is defined by (47).




TR 5303

Appendix C
IMPLICATIONS OF ASSUMPTION OF WHITE SPECTRUM
FOR MINIMUM ERROR; KNOWN CORRELATION
We define the crosscorrelation function between minimum error ¢ and input
X in figure 1 as
o~ x -
¢ = “ xk—l' all f . (C-1)

Substituting (59) and utilizing (1), this becomes
P
C, = nz-:o iR, all £ . (C-2)

Now from (64) and (65), we can express

RT= - — 3. (C-3)
c
00
Thus, (C-2) immediately yields
-1/c ,4 =0
oo
C’ = H (C-4)
0, 1<4<p

that is, minimum error value ¢ is uncorrelated with the past p inputs xg_1,
vy xk_p.

Now using (59) and (C-1), the.autocorrelation function of the minimum
error is

S P
- ~ % = ~t o~ * = -
E, =¥ % Zo T oK, nEOK; Cipgr 8l14.  (C-5)
n= =
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In particular, using (C-4),

E = 3; Cpﬂ. (C-8)
But from (C-2) and (66),
p N P cno
Cpr1 = n§0 T Borron =7 Rpar ” n§1 T fpramr 0

Therefore, assuming E; = 0 is equivalent to assuming pr-l = 0, (that is, mini-
mum error € uncorrelated with input Xk-p-1), which in turn is equivalent to
requiring

P cnO P
Rp+1 = - . _c_o_o o+l-n = nzl an Rp*l-n . (C-~8)
n= =

This relation, which may not be true for the actual process {xy}, is a direct
result of assumption (70); the quantity Rp+) in (C-8) is really an approximation
to the true (unknown) correlation value.

Next from (C-5),

—~ R ~ &
E2 = ap_1 Cp+1 +* ap Cp?2 . (C-9)

Assuming Ey = 0 (in addition to E; = 0) is equivalent to also assuming Cp-2=0,
which in turn from (C-2) and (66) requires that we approximate according to

p cno p
R = - — R = a R . (C-10)
p+2 nel 50 p+2-n ngl n  p+2-n

Continuing in this way, it follows that assuming white noise for |{%y}, that
is, assuming

E, =0 for £ 21, (C-11)

is equivalent to assuming that C, =0 for i >p ~ 1; that is, the minumum error
is uncorrelated with all past inputs. There follows the approximations

c-2
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P ¢ p
no ~
= - — = > . -
R, 2 —R,_ =2 TR for f2p~1 (C-12)
n=]1 00 n=1

This recursion relation (starting with known values Ry, Ry, ..., Rp) can be
considered to be an extrapolation of the known correlation values into regions
where they are unknown.

If we augment (C-12) according to

R != R; for > p+1, (C-13)

then it can be shown that the spectrum defined by

Alc
00

A Y. R, exp(-i2rfld) =
—— 0 P

1- a -1
,,_21 a_exp(-i2rfnd)

2 * (C-14)

which is identical to (71). The transform in (C-14) converges if Ier decays
with increasing [1' ., that is, if B(z) of (56) has no zeros inside O.

C-3/C-4
REVERSE BLANK
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Appendix D

STABILITY OF RECURSION RELATION

The recursion relation for approximated correlation values R’ is given in
(C-12)and (75) as

P
Ry= 3 T R, _ ford>p+1. (D-1)
k=1
Therefore,
@ 42 k & -1k
U@z = Y R,z = ) 'i'kz ) R, 2 . (D-2)
t=p+1 k=1 f=p+1
But
p
S -tk -] -]
3 R, 2 -.2 Rjz = ) Rjz
t=p+1 j=p+l-k j=p+l-k
a -3
+ ¥ Rz=v@+vae, @-3)
j=p+1 '
where
- -(p+1-k) _ - -p _
Vk(z) Rp+1-k z + Vk_l(z) , k22, Vl(z) Rp z ., (D-4)
Vk(z) involves the starting values Rp+1-k' ceey Rp for 1< k< p. Employment

of (D-3) in (D-2) yields

P -k P -k
Ue)= 2 Tz V@ +U@ 2 %z, (D-5)
k=1 k=1
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or

P -k P -«
> a .z V@ k§1 Co 2 V@

’ (D‘B)
P P
~ k -k
1 - Z a4z k}_;o Cro Z

where we have utilized (66). In order that recursion (D-1) be stable, the de-
nominator of (D-6) must possess all its zeros within the unit circle O in the
complex z-plane. Therefore, B(z) of (56) must possess all its zeros outside

O if recursion (D-1) is to be stable. This is guaranteed by the results in
(A-9) et seq.
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Appendix E

IMPLICATIONS OF ASSUMPTION OF WHITE SPECTRUM;
UNKNOWN CORRELATION

The minimum error sequence is given by (96) and (101) as

p
6 = Zo X all k. (E-1)
n:

The sample autocorrelation of {€}} is defined here as

P
F,=-1~Z'a'?* = Y 7 TS (E-2)

m n f{+n-m

using (E-1) and (98). The sample spectrum of {?k} is defined here as

@®
He(f) =4 ). F, exp(-i2nfla) = Hx(f)lA(nlz, fl< ==,  (E-3)

I=-® 24

where we have employed (E-2) and (107) and defined the sample spectrum of
x,.} as
it

2 . 1
Hx(f) =A 12 S, exp(-i2n{da), If1< Sa (E~4)
=-m

Therefore, (E-3) yields

He() 1
lfl €« =— (E-5)

H () = 24

X

lam| 2’

Now we will assume that the sample spectrum of {?'k} is white; that is, we
set
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e = Ka, 111< 5=, E-6)

where K is a constant. We then adopt an estimate of the sample spectrum of
sequence {x.n}lf according to

. Hy ()
i) s ——-= Ka L < E-T)
X lA f)l_Z P 2 24
( 2 afnexp(—iznan)
n=0

and adopt a scaled version of this quantity as a spectral estimate of process

{xa}:
| &M= = . £l < == 8
x(f) = p 2: 2A . (E' )
Z a'n exp(~i2nfna)
n=0

The white assumption in (E-6) forces us to assume that

F, = 0for £ #0, (E-9)

as (E-3) shows. In order to see what this implies, we utilize the definition of
the sample crosscorrelation in (109), along with (96) and (98), to obtain

i

P
= —1 Iry * = -
Dy =y )_;, O Zo a S, ,all. (E-10)

n:

,Yse of (101) then shows that

Dl=0t'orL_<_125p. (E-11)

Meanwhile, the sample autocorrelation in (E-2) can be written in the form

P
= x* -
F, = ):O D, ,ald, (E-12)

n=
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upon employment of (E-10). There immediately follows from (E-9), (E-11),
and (E-12)

- x* - -
F =% D, = 0. (E-13)

But then (E-9) and (E-10) indicate that

P
Sy = 21 CREN (E-14)
n=

where {'é'n}f are the solutions of (102). But relation (E-14) may not be true
for the quantity Sp+1 actually obtained from data {xn} 11*1 via (98). Thus, as-

sumption Fj = 0 is forcing us to assume that Sp+1 can be obtained via (E-14)
and (102), when {Sl}gp are obtained from (98).

Next from (E-12) and (E-11),

= T* * -
F, Tl Dp+1 +’§p Dp+2. (E-15)

Assuming Fo = 0 (in addition to F; = 0) is equivalent to also assuming Dp+2 =0,
which in turn from (E-10) requires that

P
Sp_'_2 = E an Sp+2-n . (E-16)
n=1
Continuing in this way, it follows that assuming
F, = 0for £21 (E-17)
is equivalent to assuming D; = 0 for 4 >p +1; that is, the minimum-error se-

quence is uncorrelated (on a single member function basis) with all past inputs.
There follows the estimates

S;= ¥ TS, ., 4>p+1. (E-18)

Stability is discussed in (111) et seq.

E-3/E-4
REVERSE BLANK
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Appendix F

BOUND ON CROSS-GAIN

The value of the cross-gain gp in (155) can be written as

N
) (®-1) (p-l) Z If(p-l)IZ b@-l)r)l/z
_ n=p+1 n n -1 —p+l ‘1 n-1
gp = br’ N/2 N
< 6" 1)' Z |b<p 1)> 5~ (I - b(p-l)l)
n=p+1 n=p+1 a (F-1)

The first factor in (F-1) is of the form of a correlation coefficient of the (p-1)-
th order forward and backward sequences and can never exceed unity in magni-
tude (by Schwarz's inequality). The second factor in (F-1) is almost always
very close to 1: let the pair of sums

{ If(p l)l and Z
n=p

n=p+1

112
br(lp b } = {A and A(1+r)} ,»  (F-2)

where /r >0 without loss of generality. The second factor in (F-1) then equals

(1+r) , which is never larger than 1 and is tabulated below. Thus, in
1+r/2 &p

(F-1) is virtually identical to the correlation coefficient of the forward and back-
ward sequences, since r is near zero with high probability.

Table F.1 Second Factor in (F-1).

r | 0 1 .2 .3 .4 .5
1/
(1+r) | 1 .999 .996 .991 .986 980
1+r/2
F-1/F-2

REVERSE BLANK
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Appendix G

CLOSENESS OF ERROR MEASURES

Two possible error measures for the Burg technique were presented in
(150) and (156). For p = 0, employing (154) and (152),

©_1 X 2
F*'/ = N ) |xn| . (G-1)
n=1
Comparing this result with (151), we find

0 0
F( ) = P( ). (G-2)
Thus, the two error measures are identical for p=0.

Next from (150) and (151)
1) _ L0 (1)|2 L2\ 1 2
P =P <l-la1| =(1-|a1|>§ZIxn|, (G-3)
n=1
whereas from (156), (160), (155), and (152),
@ _ (- [, IZ Den(1)
Fo = (1 Ial >2(N-1)

W)[2\ _1 . 0|2 ) |2
(l i Ial I ) 2(N-1) 22 <|fn * |Pp-1 )
n=

shal® « Il + xalf o * el # el + S
l_laa)lz\z 1 2 3l Tt T N2 N1l 2l
1|/ N-1

(G-4)
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But now reference to (151) and (G-3) reveals that, for N-1 large,
2
r) = (1 - la‘l’l )p(o’ = pM, (G-5)
0 1
Continuing with (150),
p@ _ pM (| _ |a<2)|2 G-6)
2 .

And (156), (160), and (155) combine to yield

\

N
= (- BT 3R - (1) e (167 - )
n=3 (G=T)

But from (154),
N

L _ 1 1)|2
Fo' = 3o z (lfn I "
n=2

2
1
bt > . (G-8)

Comparing (G-7) and (G-8), we see that, for N-2 large,
2
F@ = <1 - |a(2)| > rl) (G-9)
0 2 o]

Then employing (G-5) and (G-6), we have

2
Ff’ ¥ <1 - Ia;2)| >p‘l’ - p?, (G-10)

which is the desired relationship. In general, for no bad data points, we have
Ff,p) = P(p) for N~p large . (G-11)

Numerical computations have borne this result out, with the two quantities not
having any ordered relationship; that is, either quantity can be larger (or
smaller) at different stages, p. (G-9) generalizes to

PP = (1 ) !a“”
Y P

f)
- -1
) Ff)p ) for N-p large. (G-12)
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Appendix H

SCALE FACTORS IN SPECTRAL ESTIMATES

Instead of using a unity value for the average minimum error or residual
power in the numberator of (167), we could use the value given by (156). Then
our spectral estimate would be

[s)

1
{ & — -
2,lf 24" (H-1)

G o =

P )
1- 3 a.f(p exp(-i2rfka)
k=1

An alternative approach is to use an arbitrary scale factor K and choose it
so that the area under the spectral estimate is equal to the sample power (151),
as suggested under (108); that is, set

A AK 1
= | & — -\
Gx(f) > o X fi 24" (H-2)
1 - ak exp(-12 nfka)
k=1
and force
1
24 N
I dfax(f) = p® =§ )3 'x |2. (H-3)
n
J 1 n=1
24

Substituting (H-2) in (H-3), and using (159), we have

1
24
p(® =f af . oK T = —. (H-4)
R ®) » _ | (@)
-52 1 - 2: a exp( i2nfka) sl gl ‘am H
k=1 m=]
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The last step in (H-4) is proven as follows: from (A-8) and (29), we know that

1
23
2 _ P)
51 df P o 7 " Ro o * (H-~9)
5T |1 - 3 a exp(-i2ntky)
k=
But from (A-T7),
P-1
R ¢
R P22 . . : (H-6)
o o0 P2 P 2
1-‘3 31-‘a(m,l 2
P 7 m
m=1]

where we have employed R, c(()%) = 1. The relationship in (H-4) hoids when the
filter coefficients are determined via (148).

Therefore, (H-4) yields, with the aid of (150),
p
(m)
[71 31 lam

m=

9 .
f = p(p’ ’ (H’.”

and the estimate (H-2) becomes

P)
~ AP 1
= C — -
Gx(f) , | 53 (H-8)

L@ 2
1- 3 a, exp(-12~fka)
k=1

The very close similarity of values between the alternatives (H-1) and (H-8) is
made evident by the results of appendix G, in particular (G-11). Thus, there is
virtually no difference between estimates (H-1) and (H-8), for no bad data
points.

H-2
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Appendix I

BIASEDNESS OF BURG'S CORRELATION ESTIMATE

For the Burg technique with p=1, N =3, we find from (162) and (144) that
(for real data)

~ 2
R = 3 (I-1)

X <x + X )(xz + xz + x2>
2 \*1 TX3/\*y "X "Xy
1 2
3

xf + 2x§ +X

The mean of this random variable depends on more than just XX, (£X3X,); in
fact, it depends on the third-order joint density of (Xqs X2, X3). As an exam-
ple, let

X, =u, X =_t\7;.(u+v),x3=v, (1-2)

where u and v are independent, zero-mean, unit-variance, Gaussian random
variables. Then X1, Xg, X3 are zero-mean, unit-variance, Gaussian random
variables with

, X X, =0, (1-3)

Employing (I-2) in (I-1), we obtain

B 1 1 (u+ \')2(3u2+ 2uv + 3\'2)
Rl =15 E 2 . (1-4)
Ve u  +tuv v
Therefore,
a0
f{_ = + 111 du dv (_ “2*V2>(U*V)2(3u2*2uv+3v2)
1 - % 6 2n exp 2 3 5

<a u +uv +y
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" 2 2 2

=+ 1 % 2——1 ' dr 2 exp(-ri/2) [ do &8 2‘3‘3 *202 238 ) 15
0 C +CS+8

-t

where we have changed to polar coordinates and let C = cos 8, S= sin 8, The
integral on r in (I-5) is 2, and the integral on ¢ is 4n(2 :/%) .

Therefore, —
R = ;\/-51- = ‘92V§ =+ \I% (.9484), (1-6)
which is not equal to
xx=xx-+-1~. (I-7)
21 3 2 e

1-2
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Appendix J
FORTRAN PROGRAMS3
The programs in this appendix are written for real data, but may be readily

generalized to complex data by means of the general equations in the main text.
From (H-8) and (H-7), for real data, the spectral estimate 1s given by

P )
9%) (0
N
G () = k=1 1 <= J-1
x! o z' ' S3ac -
1 - z a e:p(-i27fka)
k=1
Let frequency increment
f
L. 1 _ N -
=277 32 25T IR (J-2)

where fN is the Nyquist frequency, and J is an integer. Then, using (H-3) and
the real behavior of the data,

L
24
p¥ -2 j df & 1) = 2ap? 1p7 ;1 N J}éz A
X " f*
0 k=1 m'O
‘m
P ) 2
ll -3 a.l(f exp(-i27ma k)
k=1
P 2, J/2 J/2
2 (0) (k) ‘m -
= <P k]_? ;1 a, Z_:O P 5 = Zo I
=1 m=¥n- 3 a}(f exp(-i2 rmk/J) m=
k=1 (J-3)

J-1
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where {‘m} is a set of integration weights (for example, trapezoidal). So we
can compute (independent of time increment A) the quantity

P P 2
WY . R
P k=1 1- ¥ :ﬁ((p’ exp(-i27 mk/J)
k=1 (-4
which represents the fractional power in the frequency band
I S
2 2 -
( Ja ’ Ja ) H (J‘O)
that is,
J/2 Pm
Y e —=F1 (J-6)
m=¢ m P(O)

if estimate 6x(f) in (J-1) has been sampled finely enough (that s, large Ji. The
denominator of (J-4) is recognized as a J-point FFT of p-1 nonzero numbers:
hence, J should be chosen as a power of 2 for speed purposes. The programs
below yield the fraction of power in frequency bands of width (Ja)~1, if J is an
integer large enough that the spectral estimate (167) or (H-8) is adequately sam-
pled to keep track of its peaks.

NO BAD DATA POINTS (SUBSECTION +.7)

The data generation is accomplished via function IRAND, which generates
integers uniformly distributed over (0, 235-1); by RAND, which generates num-
bers uniformly distributed over (0,1); and by TINORM, which generates zero-
mean unit-variance Gaussian variables. The FFT used below is that presented
in reference 25.

J-2
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SPECTHAL ESTIMATION USEK: CHANGE LINE 13 AND REPLACE LINES 17=31
N = nUMBER QF DATA POINTYS
X(32regorX(ti) = INPLYT [DATA
PrFAX = mAXIMUM OROER OF FI_ TER
PBeST = BEST ORLER OF FILTER
Al1)re,erA(PBEST) = PREUICTIVE FILTER COEFFICIENTS
PROL = PRUDUCTI(1=A(P)®s2) FOR P3] TO PBEST
RMUGL) peee s RPU(PMAX) = NHORMALIZED CORRELATION COEFFICIENTS
v = 512t CF FFT (MUS] BE A POWER OF 2)
AX(1)r,eerXaluseel) = FRACTIONAL POWERS, FROM DC TO NYQUIST FREQUENCY
CC(3)renerCulurkel) = GUAKTER COSINE TABLE
Y Aliv YY ARE REGUIREU AUXILIARY ARRAYS
FARAMETER = 100s PrAXZ10» JZ2068, Juizy/bel
liJEGER PBEST
CLMENSION (1) e YIN) o A(PMAX) s RHO (PMAX ) ¢ XX (W) 1YY (J) o COWMY)
INPUT LATA IN X(1)eees s X(N)
LeFIE IRANDZ]o58815¢ ((1=SIGN(1,1858625))/2)034359738367
Ceb IhE RANDSFLCAT(1) /734359738367,
[=52861
LSTarT=Ne4CO w aILL DISCARD INITIAL 400 POINTS
xxt1)=0,
AR(2)=0,
x4(3)=0,
AAi4)=0,
Cv 11 L3SeNSTANT
1= IRANY
AA(L)=€ 76079 XA(L=1)=3,01060XX(L=2)42,65308ra(L=J)=
30,92388xx(L=4)*+TINVRM(naNG,311)
CuneTINUVE
Ly 12 I=laiv
Al)ZXA(I*NSTART=N)
PRrinY 1,
FurrAT (/¢ INFUT LATASY)
FRINT ¢ (X(1)eIS1enN)

EVALUATE PrEuwlICTIVE FULTER CUEFFICIENTS

CALL dURGIN,PMAXIRI Y PBESTIA+PROD kMO
FrinT 99 X(N)
FURMAT (/¢ MEAN ='rkl4,8)
FranT 10, Yl
FummAT (' STANDARL VEVIATION =9,£13.8)
FriINT 2, PLEST
FUnRVAT (/7 FREST =0 13)
PriINT 3,
FunmaTizt FRELICTIVE FILTEP COEFFICIENTSEY)
rrdicT 4y (n(d) ) S1ePUEST?
FunwAT(5£20,0)
FriNT 5, PRCC
FunMAT(/* FRODUCT(Lea(P)ee2) =',E13,8Y
PRINT ©
FunpAT (/¢ 1ORmALICED CURRELATION COEFFICIENTS:')
FRINT &, (RNO(1)o1S1,PMAX)
Canl OTH0US(COrd)

EVALUATE FRACT]IONAL PURERS
CaLL POwehS(PBEST AsPROL I veXX»YYICC)
Print 7,
FORMAT (/' FRACTIONAL POwtRS:')
Lzl
FriInT 8¢ (AR(1)s133,L)
FunmAT(22010E13,6)
BN

J=3
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SUDROUTINE BURG(NIPMAXsX¢Y,PBEST+A¢PROD,RI1O) 6 2 FEB 197e
THIS SUBROLTINE COMPUTES THE PREDICTIVE PILTER COEFFICIENTS
N = NUMBER OF DATA POINTS) INTEGER INPUT
PMAX = MAXIMUM ORDER OF FILTER) INTEGER INPUY
X(1)91X(2)1,,00X(N) = UATA ARRAY ON INPUTS ALTEREL ON QUTPLY
ON OQUTPUTr X(1)2X(2)0e0es X(PMAX) = A(LIPMAX) 0 A(2IPMAX) saee s A(PVMAX)IPMAX)
Y1) oY (2) 0,400 Y(N) = AUXILIARY ARRAYJ SCRATCH INPUT
ON QUTRUT, J(1)eY¥(2)reeeoY({PMAX) = A(111)0A(212)000esA(PMAXIEMAX)
ON CUTPLT X(N) = MEAN, ANO Y(N) = STANDARD LEVIATION OF INPLT DaTa
PPEST = BEST ORDER OF FILTERS INTEGER OUYPUT
A1) 1A(2) 0,440 A(PBEST) = PREDICTIVE FILTER COEFFICIENT ARRAY =
ALLIPOEST) s A(RIPBEST) 0,44 A(PBESTIPBEST)S OUTPUT
PROC = PROCLCT(1~A(PIPBEST)®s2) FOR P31 YO PBESTH QUTPUT
RHO(1) s ees s RHU(PMAX) 3 NORMALIZED CORRELATION COEFFICIENTS: CcuTPUY
CIMENSICN X(N) s Y(N) s A(PMAX) t RHO (PMAX) 1S REGQUIRED IN MAIN PROGRAM
INTEGER PMAXIPEEST P
CUVBLE PRECISIUN Sa,SB
LIMENSION X(1)oY(1) A(1) RHO(L)
IF (PMAX,GT.3.8SQRT(N)) PRINT 2+ PMAXIN
2 FURMAT(/" PMAX ='sles? IS TOO LARGE FOR NUMBER QOF CATA pOINTS w =
$¢15)
C COMPUTE MEAMN
S1=0,
UO 1 I=lene
b Sa=S1+x(])
S1=281/N

C SUBTRACT MEAN: ANL SCALE Ty UNIT VARIANCE
S4=0.

Cu 3 IsS1en
X(1)SX(][)=51

3 Sc=S2¢X([)eee
$2=SGRT (527 (Nh=ly))
¥=z1,/52
CO S Is1.N
A(LIZX(])eT

S Y(l)3X(]}

C BEGIw RECURSION
Fau
FriLUUCSY,

AlCmiNzO,
PbEST=0
ruulsl,

° Parel

C CALCUWLATE CxOUSS=GAINSI EQ, 155
Saz0,.,C0
Se=0,.,L0
Larel
Lv 72 Iz2L,N
SAZSAeA(L)sY(]I=1)

7 SusSS3¢A(l)wsdeY([=1)0eg
VS, ®#5A/5b
PrucUCZPROOLCe (14 =080)

v CALCULATE FILTER COEFFICIENTS) EQS. 31004348, STCRE IN X(l)ee.eeX(P)
K\P)=6
lriP.EG,1) 60 TO0 b
wab/2
Lv 9 Iz21,.¢
Tzsa(ll=Gex(P~])
A\Pel)Zk(P=]1)=GeX (1))

ol aR oV aN aN a N aN ol aR o NN o X o ¥ 2]

Y ALl)st
W CaALCuLATE NORMALICEC CORRELATION COEFFICIENTI Ew, 149
° Tza(P)
iFiP.Eu,l) GO TO L&
LaPel
by 19 2300
1% T1sTer(1)eRNO(P=])
IC My (P)3)

J—4
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CALCULATE AKALIRE'S INFCRMATION CRITERIONS EQGS. 1568202
ReLERRZ (1,=0%6)sSNUL (SL) /(2,8 (N=P)}
ALC2LOG(RELERR) $2 ,#FLCAT () / (N=P)

Ir (AIC.GELAICMAN) 60 TO 10
AlCmINSLIC

rocSTzP

PROUSPRODUC

we 11 121.P

ALa)SXLL)

IF(P+Ew,PmAX) 6O TV 16
UPDATE FORaARLU AND BACKWAK, SEGQUENCESE EQ. 153
Larel
Lo 12 I=sneble=)
13&A(1)=0eY(I=1)
Y(I)SY(]l=1)=08X(])
x(1)aT7
Y(P)=S6
60 10 &
Y (PMAX)=6

IF (PBEST ,£Q,PMAX) 60 TO &
COMPUTE EXTRAPOLATED NORMALIZED CORMELAYION
COEFFICIENTS FROM PBESTel TO PMAXI EQ. 165

LaPBESTe}

00 17 Pz PMAX

A(P)=0,

1=0,

Lo 18 Iz)1.PBEST

T2VeA(1)sBhO(P=])

KHO(P) ST

A(N)=SL

Y(N)3S2

RETURN

Enp

SUBROUTINE POWERS (PBES1,AsPROD 1 XX, Y¥,CO)
THIS SUBROUTINE COMPUTES THE FRACTIONAL POWERS IN BANDS 1/(JeCELTA)} EQ. =i
PBEST = BEST ORDER OF FILTERS INTEGER INPUT
A(L)reoaerA(PBEST) = FILTER COEFFICIENT ARRAY! INPUT
PROL = PROOUCT(1=A(P)®s2) FOR P=3 TO PBESTI INPUT
J 3 SI2E OF FFT (J/2¢1=NUMBER OF FREGUENCY POINTS)s INTEGER INPUT
XX = AUXILIARY ARRAY ON INPUT
XX(1)r,0e0XX{u/2¢2) = FRACTIONAL POWERS ON OUTPUTY
YY = AUXIWIARY ARRAYS SCRATCH INPUT
CO(L)rqeeerCO(U/%4l) = QUARTER COSINE TABLE FOR FFT) INPUT
OIMENSION XX(W)IYY(u)rCO(J/eel) 1S REQUIRED IN MAIN PROGRAM
CIMENSION A(PMAX) 1S REGQUIKED IN MAIN PROGRAM, WHERE PMAX,.6E.PBEST

INTEGER PBEST

DIMENSICN A(L)oXX(3) oYY (1)sCO(3)

F=PROCe2,/v

Xx(1)=4,

Yy(1)=0,

Lo ) 1=31,PBEST

XX(lel)zwAl(l)

YY(I+1)=20.

L=PBEST+2

0o 2 I=pev

Xx(l)=0,

Yvigrso,

L=l ,0427eL0G ()¢S s L062(J)

CALL MKLFFT(XX»YY,COsLr=l)

Lzu/2e}

Lo 3 Iz,

XR(I)ISF/(XX(1)e824YY(])ee2)

HETURN

EnU

J=5
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il

sk il

VATA;
=.523957096+0}
=.21771014401
=e25060Uc3+0¢
+54001053¢0¢
~s 390650764 0¢
«,2930C007+0}
+25051¢89+35¢
=:28371¢39+02
«3870137140¢
=:56573362¢0¢2
«96965025+0¢
s 17950ucQeCe
&205967340¢
~e2483ec0040¢
¢ 1e79135702
=,1810cuv5eGL
+92385522+4¢C
«13023073«02
=y 95003555002
6940372090

117523513430

+31340011402
«0740%896401
~enl166025¢C<
100 TG 33002
27681677401
093916168402
23658428002
e (389513+02
e 7383318402
=.20217300+02
i l067912402
04907580401
«07850u77+01
-, w07% 202400
~0is08%TceCe
rac3Copiuele
-,i003i90%ec
o091 0uC9e0¢c
“.0d857312e02
e233003une2

Slanvlry vevenilUe = ,25060007402

ruedT =

PreUICTIVE FloTin CORFFICindls:

£T0351210)

PROLUCT(l=A(F | engy

~esuT3d3Elhel]

16095654783

AORMALIZby owHFELATIUN COEFF CIENTS:

OO OCONCOOODODOO N

J-6

«7330¢290+0¢
=223157.07+00

¥ = SI2E OF FFY

1al1C4360-))
+23C61750+20

INPUT DATA

«15902615¢02
120620527+02
-, 30993711402
-, 72%42098en1
S46871206eC2
=.52N512084+02
«%42103€1102
-, 35354962+52
33784645402
«,18068573+92
=, 11739632402
17644500402
=,1401527%+032
22156870402
-, 28198744eC2
+489965C7+02
-, 3507¢2u8e02
o 112R31er2
~,27823¢33e02
150437 T8

gBUI6[27e0

=+59619489%9+0C
276821693400

SPECTRAL ESTIMATION FOR BAD DATA POINTS
LINE 17 AND REPLACE LINES 22=36 AND 4}eiéd
N = NUMBER QF DATA POINTS
x(‘)'oco’x(N)
BMAX = MAXIMUM NUMBER OF 8AD DATA POINTS
B = ACTUAL NUMBER OF BAD DATA POINTS
M(l)reeosM(B) = LOCATIONS oF BAD DATA POINTS
PMAX = MAXIMUM ORCER OF FILTER

PBEST = BEST ORDER OF FILTER
All)reeorA(PBEST) = PREDICTIVE FILTER COEFFICIENTS
PROD = PROOUCT(l=A(P)ss2) FOR P=1l TO PBEST
RHMO(1)ssses RHO(PMAX) = NORMALIZED CORRELATION COEFFICIENTS
(MUST BE A POwER OF Q)
XX(1)reeerXXtJ/2¢1) = FRACTIONAL POVERS, FROM OC TO NYGUIST FREGUENCY
CO(l)raeerCQ(J/V91) = QUARTER COSINE TABLE
Yo Yve AND [P ARE REGUIRED AUXILIARY ARRAYS

« 714923698+C
04 9559856+02
12594108740y
~,53348869+02
«60200199+02
~,3T437309+32
«23Tw8203¢C2
-, 15176&34+0;
4897963340
«d2364Su1402
-,3201909%+02
»c6691572402
-, 32636875+u¢
«359150824G¢
= 21i7949 740,
145214269072
=,0B1lp6203+0;
«s8 7700302
= 1161177450
*e22571clNeC2

~.92927752+0¢C

=y9l00197040C
RAL-ELA R I

BAD DATA POINTS (SUBSECTION 5. 2)

USER; CHANGE

{MUST HAVE B,LE.BMAX)

PARAMETER Nz 100, BMAXz 25, PMAXS10, D=2048, J4izy/4+1

INTEGER g+PBEST

OIMENSION K(N) s Y(N) e A(PMAX) ;RHO (PMAX) s XX (W) » YY (J),CO(UlY)
OIMENSLON M(BMAX) 1 IP(N)
C INPUT DATA [N X(L)resesX(N)
CEFINE JRANDSIwS5ewl154((1=SIGN(1s1050825))/2)830359738367
DEFINE RANOSFLOAT(1)/34359738367.,

1s5281

NSTART=NQ400

w WILL OISCARD INITIAL 400 POINTS

- 22727143e01
«10E03774ec
038769337402

-f196367%402
3919616402

- 58956uL62+012

e J6F8U461200}
1345636402

- 346173934(2
3678709602

«. 315101 %eg2
129231873402

«s376485%3+u2
«I1Eu5702402

«41323172%4+02
+13225i8be0G2

~021167769+22

~e 376 1ukce]
W SI2615965492
s 7I2uBCETe2

-, T7TL10 27400
AT 2000
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xx(1)s0,
Xx(2)26,
ax(3)=0,
XX{4)=0,
LU 11 L=9sNSTART
1= 1RANU
AX(L)Z2,76007%XA(L=1)=3,81008XX(L=2)42,65358XX(L=d)e
$0,92382Xx(L=4%)+TINCRM(KaND,$11)
il CONTINUE

CO 12 I=ish
e X(d)SXA{I+NSTART=NN)
FRINY 1,
1 FORMAT (/1 INPUT UATASY)

FRINT &9 (X(I)eI=1rN)
¢ EnTER Br AND ENTER BAD DATA LOCATIONS IN M{1l)reeeoM(B)
B2S
N{l)=3
¥(2)=7
M(S)=11
M{w)z12
m(2)=19
C EVALUATE PREUICTIVE FILTER COEFFICIENTS
CaLL BURGBU (NyPMAXsXoBomMeIP,Y,PBEST.A,PROD/RHO)
PRINT 95 XI(N)
9 FORMAT (/Y MEAN =',El4,b)
PRINT 10, Y(N)
190 FORMAT(* STANDARD ULEVIATION =',E13.81
PRINT 2, PBEST

< FORMAT (/' PBEST =1+13)
PRINT 3,
3 FURMAT (/! PREQLCTIVE FILTER COEFFICIENTS')
PRINT 4y (A(1)eI=1ePBEST)
“ FUrRMAT (5£20,8)
rrinT S, Phow
5 FURMAT (/0 PRODLCT(leA(P)»%2) =',E13,8)
PRINT 6,
6 FORMAT (/' NORMALIZED CORRELATION COEFFICIENTS:')

PriINT 4y (RHO(L) o I=1,PMAX)
CALL QTRCOS(COrJ)
C EVALUATE FrRACTIONAL POWERS
CALL POWERS(PBEST/A,PROD*J»XX»YYCO)

PrINT 7
7 FORMAT (/' FRACTIONAL POWERS:')
Lsus2+l
PRiWT 8y (XX(1)0121,L)
o FURMAT(2Xx010EL13,6)
EnG

SUBROUTINE BURGED (NyPMAXsXeBoMsIP)Y)PBESTIA/PROD/kHO) w 2 FEB 1976
THIS SUBROUTINE COMPUTES THME PREDICTIVE PILTER COEFFICIENTS #OR B BAD POINTS
N = NUMBER QF DATA POINTS! INTEGER INPUT
PMAX = MAXIMUM ORDEB OF FILTERs INTEGER INPUT
X(1)eX(2)r,g0aX(N) = DATA ARRAY ON INPUT¢ ALTERED ON OUTPUT
ON OUTPUT» A(1)oX(2) 10,50t XIPMAX) = A(LIPMAX) ¢A(2FPMAX) 000 s A(PMAXIPMAX)
B =z NUMBER QF BAD DATA POINTS: INTEGER INPUT
ML) M(2)1,,02M(B) = LOCATIONS OF BAD DAYA POINTSI INTEGER INPUTS
THESE (OCATIONS MUST BE DISTINCT AND LIE IN THE RANGE L1/N3
IP(1)1IP(2)asee?IP(N) = AUXILIARY ARRAYS SCRATCH INPUT
Y(1) oY (2)reget Y(N} = AUXILIARY ARRAY: SCRATCH INPUT
CN CUTPUT) Y(L)1rY(2)r0aerY(PMAX) = A(L11)9A(202) 10anrA(PMAXIPMAX)

Cn CUTPUT, X(N) = MEAN, AND Y(N) = STANDARD DEVIATION OF INPUT DATa
PBEST = BEST ORDER OF FILTER! INTEGER ouYPUT

ALl sA(2) 0,400 ALPBEST) = PREDICTIVE FILTER COEFFICIENT ARRAY =

4 IPBEST ) ,AL2IPBEST) 0, , .+ A(PBESTIPBEST)® OUTRUT

[ A AN AR e AN a N aN oW aN o X o W ol
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C PROD = PROQUCT(1~A(PIPBEST)®s2) FOR P31 TQ PBESTI QUTPUT
C RHO(1)jpees s RHO(PMAX) = NORMALIZED CORRELATION COEFFICIENTS; oUTPUT
C OIMENSION X(NJsY(N)sA(PMAX) s RHO (PMAX) IS REGQUIRED IN MAIN PROGRAM -
C OIMENSION M(BMAX)IP(N) IS REQUIRED IN MAIN PROGRAM
INTEGER PMAX+BsPBESTP,BP
DOUBLE PRECISION SA,S8
DIMENSION X(1)eM(L) o XP(1)eY(1)2A(L)1,RMO(L)
IF(8.,6T,0) 6O TO 21
CALL BURG(NyPMAX»X ¢ Y )PBESTAsPRODRHOY
RETURN
21 =N=8
IF (PMAX,GTo3¢3SGRT(L)) PRINT 2» PMAX,L
z FORMAT (/Y PMAX ='+I4s? IS TOO LARGE FOR NUMBEK OF GOOC CATA POINTS

$ n=B =7,15)
C SET UP IP ARRAY FOR P=05 EQe. 173
D0 22 I=1sN
22 Ir(l)=t
Gu 23 L=1.8
I=Mm(L)
23 Ip(1)=0
C COMPUTE MEAN OF GOOD WATA POINTS
S1=0,
00 1 I=S1,N
IF(IP(1),EQ,0) 60 TO }
S1=Si+X(1)
by CONTINUE
S$1=S1/ (NeBl
c SUB;RACT MEAN? AND SCALE TO UNIT VARIANCE, FOR GOOD DATA POINTS
<=0,
00 3 I=1.N
IF(IP(1) ,£Q,0) GO TO 3
X(I)SX(1)=5¢
S2=82+X (1) ex2
3 CUNTINUE
S2SSART (S2/ (N=biwl,))
T=1,/52
Lo 5 I=1yN
IF(IP(1),EQ,0) GC TO 5
X(I)=X(I)sT
Y(I¥SX(1)
5 CONTINUE
C BEGIN RECURSION
P=0
PRODUC=1,
AICMIN=C,
PgEST=0
FROU=1,
=P+l
VPUATE 1P ARRAY}I E@. 172
Lo 24 L=1,0
lamM(L) +pP
1F(1.6T,N) GO TO 24
IP(1)=0
<4 CUNTINVE
B8P=Q
L=P+l
CO 25 1=usN
&5 bPz8Pel=(P(])
KSN=P=pp
IF(KLT,25) PRINT 269 K,P
<6 FURMAT(/? NUMBER OF VALLD ERROR POINTS IS ONLY'*»I3s' FOR F'¢ 1)
C CALguLATE CROSS=GAINI EQ, 193
A=0.,00

oo




[N e X'

15
14

11
10

12

16

'Xs

18
37

SB=0,00
L=Pel

0O 7 I=L,N
IF(IP(I1),EG,0) 6O TO 7
SASSA+X (L)Y (I-1)
Su=SB+X () ss2¢Y(l=1)ex2
CONTINUE

6z2,%SA/SB
PRODUC=PRODUCH (1 ,=06%6G)

~

CALCULATE FILTER COEFFICIENTS) EQS. 1958196. STORE IN X{l)se.esX(P)

X{P)=6

IF(PJEG,1) 60 TO 8
LaF/2

Lo 9 I=1,.L

1SR (1)=GaX{pP=1)
X(P=1)2X(P=1)=GsX(I)
X(1)=7

CALCULATE NGRMALIZED CORRELATION COEFFICIENTI EG, 149

T=A(P)

IF(P.Ew,1) GO TO 1%
LaP=1

0o 1S I=3sL

- 12T+X (L) sRHO(P=])

RHO(P)=T

CALCULATE AKAIKE'S INFORMATION CRITERIONS EQS, 1544202

RELERR=(1.=G*6)sSNGL (SB)/ (2,8K)
AlCSLOG(RELERR) +2 4 5FLOAT(P) /K
IF(AIC,GE.AICMIN) 60 TO 10
AICMIN=AIC

PEST=P

PROD=PROOUC

00 11 I=1.P

A(L)SX(I)

IF(P.EG,PMAX) GO TO 16

UPDATE FORWARL AND BACKWARD SEQUENCEST £0,191

L=P+l

00 12 I=Nely=1
IF(IP(I),Ew,0) 60 TO 12
T=A(1)=GeY(1"1)
Y(1)SY(19l)=GeX(I)
x¢1)sT

CONTINULE

Y(P)=G

60 TO 6

Y (PMAX)=6

IF (PREST ,£w,PMAX) GO TO &

COMFUTE EXTRAPOLATED IWORMALIZED CORRELATION
CCEFFICIENTS FROM PBEST+1 TO PMAX!) EQ. 165

L=PBEST+)

Ly 17 PzLPMAX
A(P)=°c

1=0,

00 18 Iz1.PBEST
T=T+A(1)sRHO(P=])
RHu(P)=T

A(N)SS)

Y(N)SS2

RETURN
Enb

TR 5303




TR 5303

SUBROUTINE POWERS (PBEST,A¢+PROD,Jr XX YY,CO)

C THIS SUBROUTINE COMPYTES THE FRACTIONAL POWERS IN BANQRS 1/(J*DELTA)?1 EQ, T=4
C PBEST = BEST ORDER OF FILTER) INTEGER INPUT
C A(1)r,,+0A(PBEST) = FILTER COEFFICIENT ARRAY! INPUT
C PROD = PRODUCT(1-A(P)#s2)} FOR P=1 TO PBEST! INPUT
C J = SIZE OF FFT (J/2+1=NUMBER OF FREQUENCY POINTS) ) INTEGER INPUT
C XX = AUXILIARY ARRAY ON INPUT
C XX(1)r,eeeXX(J/2¢1) = FRACTIONAL POWERS ON OUTPUT
C YY = AUXILIARY ARRAY§ SCRATCH INPUT
€ CO(l)rgesrCO{JY/¥41) = QUARTER COSINE TABLE FOR FFT} INPUT
C DIMENSION XX{J)eYY(J)91CO(J/%+l) IS REQUIRED IN MAIN PROGRAM
C DIMENSION A(PMAX) IS REQUIRED IN MAIN PROGRAM, WHERE PMAX,GE,PBEST
INTEGER PBEST
DIMENSION A(1)oXX(1)2YY(1)02CO(L)
F2PROD=2,/J
XX(1i=1,
YY(3)=0,
00 1 1=1,PBEST
XX(I+1)==A(1)
3 YY{I+1)s0.
L=PBEST+2
DO 2 I=Lrv
XX(1)=0,
2 YY(1)=0,
L1, 44278L0G(J)+.S L0G2(J)
CALL MKLFFT(XX:YYsCOrbh,=1)
L3J/2ed
00 3 I=1.b
3 XX(I)SF/(XX(1)s224YY(])®s2)
RETURN
ENOD

J-10
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ABSTRACT

A FORTRAN program for multivariate linear predictive
spectral analysis, employing forward and backward
averaging, is presented. The program is written for
general M, where M is the number of processes, with
the exception of an internal function and three in-
ternal subroutines which are written for M = 2 in
this version of the program, but can easily be
generalized to general M. This program generalizes
Burg's algorithm to the multivariate case. The
theory behind this program will be published in a
forthcoming NUSC Technical Report.
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FORTRAN PROGRAM FOR MULTIVARIATE LINEAR
PREDICTIVE SPECTRAL ANALYSIS, EMPLOYING
FORWARD AND BACKWARD AVERAGING

INTRODUCTION

The Burg algorithm for spectral analysis has proventobe a very attractive
method for a univariate process, * Extension to a multivariate process has been
desired for some time and has now been accomplished, and is documented here
in the form of a FORTRAN program, Publication of this program will make
immediately available to those interested users a powerful method of spectral
analysis; the theory behind this program will be published soon in a NUSC
Technical Report, The basic analytical problem was to minimize the sum ot
the traces of the forward and backward error matrices by choice of the partial
correlation coefficients, subject to a linear matrix constraint which guaranteed
that the forward-extrapolated and backward-extrapolated correlation estimates
were Hermitians of each other, Solution of abilinear matrix equation is required
in the process,

It has just come to the.author's attention thata similar procedure has been
presented by R, H. Jones! Comparison of the details of the two procedures
and programs has not been undertaken yet,

*A, H. Nuttall, "Spectral Analysis of a Univariate Process with Bad Data
Points, via Maximum Entropy and Linear Predictive Techniques, ' NUSC
Technical Report 5303, 26 March 1976,

TR, H. Jones, ""Multivariate Maximum Entropy Spectral Analysis,”™ Applied
Time Series Analysis Symposium, Tulsa, Oklahoma, 14-15 May 1976.
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ABSTRACT

A method for multivariate linear predictive spectral
analysis, employing weighted forward and backward
averaging, is presented and programmed in FORTRAN.
The method constitutes a generalization of Burg's
univariate algorithm to the multivariate ‘case. The
essential analytical procedure is to minimize the
trace of the sum of the weighted forward and back-
ward error matrices by choice of the partial corre-
lation coefficients, subject to a linear matrix
constraint which guarantees that the forward-extra-
polated and backward-extrapolated correlation matrix
estimates are Hermitians of each other. The choice
of error weighting is important and is discussed.
Solution of a bilinear matrix equation is required
in the algorithm.
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INTRODUCTION

Spectral analysis of stationary random processes via linear predictive,
maximum entropy, and autoregressive techniqueé has attracted much attention
lately, especially for short data segments; see, for example, the biblio-
graphies listed in references1, 2, and 3. For a univariate process, it
appears that the Burg algorithm (Ref. 4), which guarantees a stable correla-
tion recursion, is as good as any of the currently available techniques of

similar nature that employ an all-pole model of the available process (Ref. 3).

Accordingly, it is desirable to develop a spectral analysis technique
for the multivariate case in such a way that: we employ a physically mean-
ingful error minimization for the determination of the filter coefficients;
the technique yields a stable correlation recursion; and it reduces to Burg's
algorithm for the univariate case. It will be shown in the following that
we have accomplished these goals, with the exception that we have not proved
(or disproved) the stability requirement. A FORTRAN program for this spectral
analysis technique was published in Ref. 5, along with an example of its
application. Virtually simultaneously, the same technique was investigated
independently and published in Ref. 6. In this report, we will document the
derivations and equations that lead to the program presented in Ref. 5, and

indicate an extension of that result.

Our approach in this report will be to investigate, in some detail, first
the case where the correlation of the multivariate process under consideration
is known for a limited range of argument values, and to extract all the
relevant important properties of the solution so that they may be forced to

be satisfied later when we treat the unknown correlation case. This property-
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extraction procedure will be found to: furnish guides to the analysis of
the unknown correlation case; allow us to cut down on computer execution
time and storage by employing the properties; and make us aware of some of
the shortcomings of the unknown (versus known) correlation cases. This
procedure should also be helpful to those who are not thoroughly familiar

with spectral analysis of multivariate processes and their properties.

Throughout this report, we assume we are dealing with equispaced
samples of a stationary zero-mean complex random process X(t) of dimension-

ality M; that is, sample
X(a) 3 % 2[2- 2T W

is an M x 1 column matrix, where A is the common sampling interval for all

the component processes of X(t). It is not assumed that X(t) is Gaussian.

In section 2, we will assume that the correlation matrix of process

{Xn}, namely the M x M matrix*

R X, X0 =R (2)

K
is known exactly for a limited range of values of k, and will show how
an approximation for the spectrum of process {Xp} can be obtained. In
section 3, the input correlation matrix Ry will be unknown, and all that
is available is a finite set of N data samples, X;, X,, ..., Xy, from
which an estimate of the spectrum of process {X,} is desired. The end

result will be a FORTRAN program for multivariate spectral analysis.

*The case of complex samples is treated so that we can handle complex
envelope or complex demodulated processes. Specialization to real processes
is immediate, and (2) becomes R“=R'. An overbar indicates an ensemble
average, superscript T denotes a transpose, and superscript H denotes a
conjugate transpose. Matrices are indicated by capital letters.
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2, KNOWN CORRELATION

If the correlation in (2) is known for all k, the standard (double-

sided) definition of the spectrum of process {X,} is

[ ]
&) = a 2 eplizik) R, , Hleir - ®)
The complex M x M matrix G(f) is Hermitian and non-negative definite for
any value of frequency f (see appendix A), but need not be even in frequency
f. When Rk is not known for all k, but only for a range |kl=p, an approxi-

mation to (3) must be accepted; this problem will be pursued below.
2.1 DERIVATION OF EQUATIONS

Suppose M-dimensional samples X are available, and we

k-p, LRI ) xk-l
attempt a one-step linear prediction of X, according to the p-th order

operation
X = ZAX%. (4)

where complex coefficient matrix Ah isSMxM,n=1,2, ..., p. The

instantaneous error at time kA is defined-as

% XX - ZAK. , AT .
The linear operators in (4) and (5) constitute stable linear filters regard-
less of the choice.of coefficients; the filter of (4) is called the predictive
filter, that of (5) is called the predictive error filter. Notice that we are
not assuming that process {Xn} actually satisfies an autoregressive relation;
rather we are simply attempting to linearly predict {X.} on the basis of the

most recent p past values.
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The minimum value of the scalar error

Y -t (6)

'R

p
by choice of coefficients {An}l’ is given (in appendix B) by the solution
of the linear matrix equations

;iA?R__sR_'\susy, (7)

wst
where the explicit dependence on the order p is indicated. Knowledge of

Rk for Nﬁr is required in (7).

14 ‘
Before we discuss the solution of (7) for {N:}‘ , we consider one-step
linear "backward prediction" of process {X,}. Suppose samples X ., Xi_1» «.+>»
Xk_p+] are available, and we attempt a one-step linear prediction of Xk-p

according to

v |4
Xop = 2B Xy (8)

The instantaneous error is defined as
Z',Xn-rgxp."- ;%thloyho ) BO!-I’ (9)

The minimum value of the scalar error

ZE-bEAZ 1ol

by choice of coefficients {Bn}?, may be shown (in a manner similar to that

of appendix B) to be given by the solution of the linear matrix equations

ﬁBrR.__-"R__, lewms p. (M)

ws )
For the optimum coefficients in (7) and (11), we find (see appendix B)

that the optimum error matrices take the form
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ort \;\;"zk.-éArR_,sUr, U=R,,
orf Tz‘: s‘&’ éB:.R, E V' » “‘ R.. (12)

In general, these two matrices, their diagonal elements, and their traces are
unequal (as the simple example of p=1 will show). However, their determinants
are equal, as will be shown in subsection 2.2,

The solutions of (7) and (11) can be accomplished simuyltaneously in a

recursive fashion (Ref. 7). Define

Cur-2 AR, Alsem,

[ 11 )
() (13)
Dpi- 2B, , Ble-T
Then - -
v ' .
Ar = Cy-|v'- ) Br DP"U’" (14)
and :
r_ AV’B?")
An = An 4 :’ |§nsr-l (P!l). (15)
-0
8? * Bn 'S: Ar-
These relations will be simplified somewhat in subsection 2.2. For M=1,
a univariate process, (7) and (11) immediately yield
)X (16)
At,' Bl for M=,

where we have used (2) in the form Rk = R*k for a univariate process. No

such simple relation as (16) holds for M > 2.
We will now derive a chain interpretation of the above results that will
prove very useful later when we have to deal with the unknown correlation case.
) P )P
For the optimum filter coefficients {A:}| and {B:S , define the p-th
]

order forward and backward residuals (see (5) and (9)) as the outputs of the

forward and backward predictive error filters:
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Yx') g A?) Xicn ® X A(pxm T Aw X"‘? )

@
Ze - —,%B:)Xk-pn = Xx.p‘B?Xm""Br A (17)

Then using (15), we can express
= X* = EAZ) xk., - wak-r
X E (Ah) A(” )X A:) --r

- .,,Eo A?) an + A? éB(r’-:) Xu-

) -))
Y” Ar 2" . (18)

L ?-o
A BEX,

J =0 P

And similarly

- %, 2 (E-BOATDX, - BEX,

= %i-‘x"h T B:.,i,“:? X*-r*'
T-*ﬂ'iA Xy Z,( B"Y"’_ (19)

Jeo
{ ()]
Thus p-th order r‘esidualeP) andZ: are related to the(p-1)th order residuals
simply through the coefficients A(P) andBP . A block diagram of the relation-
ships in (18) and (19) is given in figure 1, wherezjdenotes an M x M matrix

filter of unit delay.
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y(P-1) (p-1)

(p) )
Yk Zk

Figure 1. Chain Representation of Residuals

Thus matrix operators A‘: and B(r can be interpreted as those coefficients

which minimize -

YWYP e 20 (20)

respectively, at the output of the p-th stage in figure 1, where fe}tﬂ and
{ﬂ:’}':.' are determined by minimizations at lower order stages. A;’ and B:’

are called the partial correlation coefficients. Stated alternatively, stage
by stage minimizations of (20), via choices of parﬁa] correlation coefficients

A;’ and B‘;’, respectively, results in the same overall filter as if the powers

in

- éA.XH awd -ian Xn-rn : (21)

)

were minimized by the choices of {An}? and {Bn}g, respectively, each in one

simultaneous optimization. This will furnish an important reference point
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for the unknown correlation case in section 3.

If we let the transfer functions (z-transforms) to the outputs of the
p-th stage in figure 1 be denoted by %r(z) and #:(z), it immediately
follows, from figure 1 or equations (18) and (19), that

B - %‘r " - A W)
WMe - 2N - AW,
N6 = wﬁ’(}) = T. (22)

]

In closed form, these predictive error filter transfer functions are express-

ible as (see (17)) ‘N"@ s - ﬁ "'A(P’ < 2—-A<P’
neg s )
¢ -p_b
%’(3)=‘i2 .Bt:-i B")
neo J=0 P
(23)
‘P )
-z
2.2 PROPERTIES AND INTERPRETATIONS
Suppose that process {X,} were scaled according to
(24)

>(n = ]>:X.
where M x M matrix D is arbitrary, but invertible, Then the correlation of

the scaled process is

—————e——

Ros Xo % = DX. X0 D" = DR, D". (25)
Now from (7), since the solutions {A:)} and {xz)} must satisfy
P (26)
%A»R.“R. ) 13 msp,
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ﬁ.A"’ﬁM Ismsp, (27)

respectively, the solutions are related by a similarity transformation:

A” A(r) -
This is called the scaling property. A similar property holds for the back-
ward coefficients {BY'}.

<N < (28)
, lsnsp.

An immediate by-product of the scaling property is that A‘P and A have

the same eigenvalues:
det(AP-2T) = det(DAVS'-2T) = et (@P-2T). @

Similarly, Br and ﬁ: have the same eigenvalues, regardless of scaling matrix

D.

The remainder of this subsection will deal with the quantities Up and
Vp defined in (12), and Cp and Dp defined in (i3). The quantity Up can be
interpreted physically as the correlation matrix of the p-th order forward
residual; see (12), (5), and (17). Similarly, Vp is the correlation matrix
of the p-th order backward residual; see (12), (9), and (17). That is,

IRV BT L - en (30)
U= YY" N =EE
Thus Up and Vp are Hermitian:

N _ H . (31)
and Up and V are non-negative definite:

A U,,’V A A &V "V w)i (32)

for any M x 1 matrix ®Y. In appendix C, it is shown that simple recur-
sions hold for Up and Vp:
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U, - @- AV, , U=k,
Vp = (Z-30 D) Vo, R

It immediately follows from (33) that (see appendix C)
= t (34)
det U? de Vf , p=0.

This property was proved in Ref. 8, page 240.

(33)

The quantity Cp defined in (13) can oe interpreted as the crasz-gorve-

lation matrix between the p-th order forward and backward resiguals 3% one

it of delay: o e g
unit of delay Y:‘Z:‘ s ﬁ iATX‘-nxbhr‘:-B:

. (35)
=§ ('gArRP’---)B:“ .- .%Af”w- i

where we have used (17), (2), (7), and (13). Similarly

ZET . S XS AY

»s0 Nze

. ﬁ (iB:’R,.,,.,_)A:w ) _'%B(:).R -D,, (36)

neg ‘o “ptem
where we have used (17), (2), (11), and (13). [t immediately follows from

(35) and (36) that
]
DF - G . (37)
Thus it is not necessary to do the additional calculation of Dp in the
solution given in (13).

Another interpretation of Cp is available as follows:

UF’M=0
FT;VNX'H.," A‘:’XumXu::-%A‘f’Rn-u= 0) |:ns)7 (38)
ns=s0 CP) M=,p+)

where we have employed (17), (2), (12), (7), and (13) in order. Thus the

p-th order forward residual is uncorrelated with the p most recent past

10
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values of the input, and the crosscorrelation at p + 1 units of delay is

Jjust Cp. Similarly, the backward residual satisfies

V. n-O_\
?)
ZY-:.. =°§Brx..,.)(,:,=-§8:ﬂ... * o, lsnsr)‘(w)
DP) m:P<HJ

Yet another interpretation of C_ and Dp will be given in subsection 2.3.

p

As the order p in the linear prediction (4) increases, (38) yields
U, ,m=0
n /)
F’: i' X - Qs P—b ~. (40)
- 4 [ &
0, lsm
Therefore the autocorrelation matrix of the forward residual becomes

" W U, , m=0
XY .- iY:' ) A:r-’ as P> ° (4

Neo 0’ 's~

That is, p-th order residual Yt’tends to white noise with a correlation

matrix at zero time delay of value U_, which is not necessarily diagonal.

The Hermitian property in (37) allows us to combine (14) into the

equation

A:V = U’_' B:u , (42)

n
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where we utilized (31). This constraint on the partial correlation coeffi-
cients will be of paramount importance in the unknown correlation case. [t

immediately follows from (42) and (34) that

det AV = det B = et B

No such simple relation holds between det N: and det Bg'for n-'S, excest

for M = T, a univariate process.
2.3 EXTRAPOLATION OF CORRELATION VALUES

In subsection 2.1, we minimized the er=or in prediction 4 2n¢c “aunc

that for a p-th order prediction, knowledge of Rk for |Kljsp was ren,irec.

see '7,. Now suppose that this is all the knowledge avai’atle 3-3i.t =

that 1s, Suppose Rk 1S unknown “or k p. What can De done AaDlLT TTIv TATIL

these unknown valuyes?

One approach is as follows: we assume that the p-th order res:cu3’
orocess fﬁr} in (17) is white {i.e., uncorrelated for al' ncn-zer: 3e’ 3.5  in:
that ﬁ:soﬁotnerwise we could reduce the valie of p . That '3, ~€ 135.7€ we
can do nothing more in prediction by choosing more terms ir the sum <
which is tantamount to assuming maximum uncertainty (entropy' adboul re
residual process §\ﬁr}' This is a very extensive assumption, we nCw *"vest’-

gate its ramifications.

We know from [38' that
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X - 2R, all e, W

must satisfy

F:=0 FO" lSnsr. (45)

Additionally, employing (17), the autocorrelation matrix of the p-th order
residual is
P - AT SRR . e
*) nso
Now for j * 1, the white noise assumption on process {¥}yterds, via (46)

and (45),

og-ﬁF"’A"“--F*"A

)
) Le F:, = 0. (47)

And for j = 2, the white assumption (in conjunction with (47)) yields

o,-ﬁ A:'uz-f—“ﬁ’)” e. FV:

weo "”

(48)

Continuing in this way, the white assumption is tantamount to assuming that

Ff = 0 ‘Fbr rH S m. (49)
Returning to expression (44), this means that we are assuming that
’iA?R-,.'O ‘For priswm; (50)
wso
that is,
»
Ra = '%A K prism (s1)

Using more explicit notation, and denoting these assumed values of correlation

as forward extrapolations JR"}, we nave

13
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RP '_ﬁ'A-"ﬁ:: , ptism,

where “starting values"

RT’R-) 0 S ms p 153

Equation .32, is cailed the correjation recyrsion equation. [t is interestiing
to note that the ‘orm of the correlation recursion '52) is ‘dentica’ to the

form ‘d, for the individually predicted waveform values.

The correlation values in (52, are callec the maximum entropy cor-eiation

extrapolations. The recursion is stable if and only if (see (23}}

det(1- ZA) - det A i

possesses all its zeros within the unit circle in the complex z-plane;

this oroperty will be treated in subsection 2.4,

A similar procedure for backward correlation extrapolation, assuming

that residual process {Z] is white, yields

e
<

W

M~

7

3’ g

b o
<

~o

¥

1A

¢

where

ﬁ.(.’:"R-..,():msF. (56)

14
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Backward recursion (55) is identical in form to the backward prediction (8).
The recursion (55) is stable if and only if (see (23)).

det (T- % F°BT) = det (i")[;"(g')) (57)

possesses all its zeros within the unit circle.

As a special case of (52) and (53), the one-step forward extrapolated
correlation based on a p-th order prediction is

ﬁ:,’. } icﬁ,f’:. b iA?Rpm : (58)

But from (13), we now can see that

G "%A?Rr*‘-“ "R, -RI .

+) p
That is, Cp is the difference between the true correlation value Ry, and the

based upon knowledge of ka}Ep,

one-step forward extrapolated correlation a:Ll

A similar procedure shows that

DR, - R_:" | (60)

That fis, Dp is the difference between the true correlation value R_;_y and

the one-step backward extrapolated correlation ﬁf:,1 based upon knowledge

f P
0 {Rk}-’

When (59) and (60) are combined with the Hermitian property in (37), we

see that

‘ktr’" . ﬂ(r’ | (61)

- pe!

15




TR 5501

This is a special case of the more general property (demonstrated in appendix

D) that "
\ @
‘R..'.’ = R— ) pHr=Emi (62)

that is, the backward and forward extrapolated correlation matrices are
Hermitians of each other. This is a desirable property of the extrapolations
and is consistent with the same property, (2), which holds for the known

correlation values, {R.}_: )

It was noted in (54) and (57) that the zeros of detﬂr(z) and detﬂr(z’U
must be within the unit circle in order that recursions (52) and (55), respect-

ively, be stable. It is shown in appendix E that
.o AP -" yH 6
det(t- 5 A,)- det(I- ; B ) (63)
e | wa *
That we need consider only the zeros of one of these quantities; the location

of these zeros is considered below.

It 's also shown in appendix E that
'64)
tr A',” 2 ({r B?Y

det A:) = (de’c B;’f , (65)

2.4 SPECTRAL APPROXIMATION

ang

Equations (52) and (53) define the forward extrapolated correlations for

all m2» 0. e extend these to negative m via

A(” a “
Re:R?  mso (66)

16
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which is consistent with (2). We will now use the Fourier transform of this
infinite sequence, as in (3), as an approximation to the spectrum of process

{Xp}. In appendix F, it is shown that the approximate spectrum is given by

PG O WG, Wex, @
Hr({) == ;.i. er(-i 21anA>A? (68)

is the forward predictive error filter transfer function. Since Up is non-

where

negative definite by (32), spectral approximation G(p)(f) is nonnegative
definite for any f; it is also obviously Hermitian by (31). Thus the desir-
able properties of appendix A are achieved by approximation (67). In order
to evaluate (67), one M x M matrix inverse (of Hr(f)) is needed at each

value of f of interest.

A similar procedure applied to the backward correlatiun recursion of

(55) and (56) yields the spectral approximation

&6 - AH:(F)" Vr H?(F)-'" o W<ago (69)
HE)- - = epliznfna)BY. "

is the backward predictive error filter transfer function. Since the extra-

where

polated correlations via (52) or (55) are equal, as shown in subsection 2.3,
the same notation, G"’(f), is used for both (67) and (69); however, we have

two different factorizations for the unique spectral approximation G(p)(f).

In appendix F, it is also shown that the zeros of det 'Hr(:) {see (22)
and (23)) all lie inside the unit circle in the complex z-plane. Additionally,
the poles of ‘ﬂr(r)-. all lie inside the unit circle, and the zeros ofﬂr(;.)"

17
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all lie at z = 0. Thus the recursion (52) is stable. This point is

discussed in Ref. 7, p. 132.

2.5 EXAMPLE

A simple example for M = 2 will be considered. Let the process te

generated according to P77
: = + YAE
XK G Xx—r Wk )
where G- .85 -5
.65 . 5§ 7z
and white noise wk satisfies
H 73
WW. = § T

Then it may be shown that

~4
£>

Rn= G'Rn-n ‘*‘S,..,I, m20,

with solution

25.)3s  4.%¢2 17,718 -12.099
4.352 21.{4> ) 19.012 13- 064
By means of (7) and (11), we find
A .88 -1S T 55930  .752M 76
boLes ssl 0  L(44e0 34070
and A's AT AT=0,25nsp . We observe K+80 K8 < 8'A7,
and A‘?-';i F," The determinants of (76) are both .955.
Evaluation of (12) gives
I 91330 28934
U=T ) V' = (77)
.28934 . 18659

18
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These matrices and their traces and eigenvalues are unequal, but their

determinants are both 1.
3. UNKNOWN CORRELATION

In this section, the correlation values {Ry} are unknown, and the only
information available about the random process is a finite set of N data

points Xl, Xz, ...» X, from which we have removed the sample mean. From

N)
these N data points, we desire an estimate of the spectrum G(f). But we
cannot minimize or utilize any ensemble averages as was done in section 2,

since we have only a finite segment of one member function to work with.
3.1 PHILOSOPHY OF APPROACH

For the known correlation case above, we had the set of normal equations
\ o
‘%A,, 'R‘M - 'R... (78A)
9 | < ms P)

iBr'R = R (788)

Ne |
where {Af}: and {B?}r were the unknowns. Now in the unknown correlation

case, we make a change by assuming that Ar and B:’ are known* (along with R,
for \m|s p-1, from lower order solutions), and by letting ®, andR, be unknown.

The equations in the unknowns are still linear, and the solution is given by

¢)_ 9 o)
AT NC- K B emep (29, (79)

) D] o
B: * 5:‘ - BrAr' (798)

*The manner of specifying A:'andtwﬂl be considered in subsection 3.4.
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R ﬁ q,) (80A)

ns| P"‘ )
g . (808)

(It must be noted that R,in this section denotes an estimate of the true
(unknown) correlation value; for notational convenience, no distinguishing
symbol has been added to R, to emphasize this distinction.,) However, we
shall insist that the correlation estimates (80) that we obtain at the p-th

stage satisfy

R =%,

(81)

in keeping with property (2). Since equations (78) and (81) are identical

to those encountered in the known correlation case, the mathematical defini-
tions and interrelationships employed there can be applied here also. How-
ever, some of the properties and physical interpretations may be different,

since we are now dealing with estimates, rather than true values.

To solve (78), we begin by defining

N\HXX" R >

Now consider p=1 in (78), we have
) | O
A"RQ = Rl ) B‘ R‘ - R-l ‘ (83)

Now if &' and B’ are known, we can compute unknowns R, and R.,. But by

constraint (81), A‘:’ and B‘," must be chosen such that
]
0 ) (84)
AR, = R.B) .

Thus when we select A? and B?, constraint (84) must be kept in mind; that 1s,
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A‘,’ and B(:’ cannot be specified independently of each other.

At stage p(22), if A;) is known (and {R;ﬁc; are known from earlier
stages with property R,,-R_"., Osksp-1), we could solve the linear equations
(78A) for fA:’}r and Rr' according to (79A) and (80A), where the lower order
quantities in (79) and (80) are available from earlier stages, Similarly
if B‘;’ is known, we use (79B) and (80B) to solve (788). However, by (81),

we must constrain the selection of Ar and Br

To see exactly what constraint (81) implies about the selection of

A’r' and B;',”, notice that, for p22, (and defining B:"_')--I)
> p- §-) 2
Rpr SHR. - 2 U MR+ AR
g g ﬁ o
- SR 2B

% V") S BHR (85)

where we have employed (80A) and (79A). Now define forward extrgpolated

correlation estimates based on order p-1 according to (see (52) and (53))

R e ZAR) fr mayp (86)

where

-')
R: = ‘Rn ; OSMSP-I‘ (87)

Then, in particular, the one-step forward extrapolated correlation estimate

based on order p-1 is

,Ry) i Av-oR?-" - E'AT’RP‘"’ (88)
r

n=| e

Also define (see (12))
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%—_ B@-.) (89)

n=0
This quantity has the physical interpretation as the gstimate of the corre-
lation matrix of the (p-1)th order backward residual at zero time delay
(see {30)); its properties are considefed in subsection 3.3. Then by means

f (88) and (89), (85) can be expressed as

s A (90)

(This equation is similar to a combination of (14) and (59) for the known

correlation case.)

At the same time, by (80B) and (798) (and defining AT "=-I),

R, - >8R, - i (8- BPAT R, + BYR

S8R, - B2 AR,
éB"’) “’ B(PJ% At ') . (o)

Now define backward extrapolated correlation estimates based on order p-1

as (see (55) and (56))

,R.(t'") E ? ~) ('") _Rr "> Fl (92)

ne )

where
RQH) = R 0o<ms p-). (93)

Then, in particular,
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’H) .5 B”R‘ ¢ ﬁ B‘H) (94)

Also define (see (12))

.. 5 MR (95)

nz o

This quantity is an estimate of the correlation matrix of the (p-1)th order
forward residual at zero time delay (see (30)). Then by means of (94) and

(95), (91) can be expressed as
¢ P
R’? = 'R_P + B,, Ur., : (96)

(This equation is similar to a combination of (14) and (60) for the known
correlation case.) But now it can be shown (see appendix G) that the
extrapolated correlation estimates in (88) and (94) satisfy
4Rﬂ*0*' - 1{?‘0 (97)
-p P -
Therefore, if (81) is to be satisfied, (90) and (96) in conjunction
with (97) force

"N, =0 BP"
' PP (98)
(This reduces to (84) for p=1.) Thus the selection procedure of N: and E#f

at the p-th stage must be done according to (98), where \;‘and Uyqare
quantities already available from the (p-])th stage, according to (89) and

(95). The precise selection procedure will be undertaken in subsection 3.4.

23




TR 5501

3.2 COMPARATIVE FEATURES

There are alternative technfques to the estimation of the correlation
matrices and the spectral density matrix that could be considered. Ffor
example, the standard Yule-Walker technique (e.g., Ref 2, page 186) uses

correlation estimates

R =4 =X X" (99)

K K-p )

where the sum is over all nonzero summands, and then solves recursively for
@P P?. . . . .. ..

iA”}l and {B"}. via the method in subsection 2.1. This apriori decision

on the form (99) of the correlation estimate gives poorer spectral estimates

for M=1 (Refs. 2 and 3), and probably does so for M>1, The estimated

correlation matrix [R__J: is Hermitian, block Toeplitz, and nonnegative

definite:

= ﬁ %HR_‘_ﬁ/.. : ﬁ%n -l\'J_xZ X... X»iﬂv

M, mzo mms0

N=o

#‘?‘l ﬁlvjxn--r 20 fo auy {%}: ;o

where'K is Mx{. However the stability of the correlation recursion (52)

is unknown to this author., The estimate (99) is unchanged by the addition

of more stages, that is, larger values of p.
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Another technique would be to minimize the prediction error
< -- T) 101
Yn 2 '“A,XM , p sks N (A, (101)
over the available data points directly, by choice of iA.}r. We have the

error matrix

N
TN ZASLA,

where

o H
Sm\ = N_r .%K' X‘.. ) Osﬂ)ﬂ S’. (103)

The optimum coefficients for minimum trace of the error matrix, (102), are

solutions of

ﬁA(:)SM . Sn (104)

e ) = M<p.

L)
Matrix [S_”]r is not block Toeplitz, and a significant computer problem
exists for M>1 when it is noted that solution of linear equations (104) must
be done anew for each different value of p. This was a good technigue for
spectral estimation when M=1 (see Ref. 3); however, computer time was
greater than for the Burg technique. Moreover, stability of the correlation

recursion (52) is unlikely in view of the (occasionally unstable) results

for M=1 in Ref. 3.

This technique could be extended to include backward prediction in
addition to (101). However, the lack of the block Toeplitz property and

lack of stability make it a very undesirable technique.
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The technique suggested here (in subsection 3.1) lets the correlation
estimate be yielded according to solution (80), once partial correlation
coefficients A;’ and B:'have been specified. And we shall see in subsection
3.4 that these latter quantities are determined according to a physically
meaningful minimization problem, Stability of the correlation recursion
(52) has not been proved; however, numerous examples have ail yielded stable
solutions. The estimate (80) is unchanged by the addition of more stages,
that is, larger values of p. And it will be seen that the current technigue
reduces to Burg's algorithm (Ref. 4) for M=1., Thus the current tecrrigue
appears to be very attractive among those techniques that employ an all-pcie

representation of the input process.

3.3 PROPERTIES AND INTERPRETATIONS

The quantities L»q and V;.

interpreted as estimates of the correlation matrices of the (p-1)th order

were defined in (95) and (89) anc¢ were

forward and backward residuals, respectively, at zero time delay. It is

shown in appendix H that they satisfy the recdrrence relations

G- @A, , U-R,
Vo (z-Ea0V.,, Ve R.,

just as for the known correlation case. It is also shown that

UrN'Uw VeV, (106)

(105)

and

def\),,—- det V. (107)
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However, we are not able to prove \4} or V' nonnegative definite without
specifying the method by which A! and B:' are selected; no relations like
(30) and (32) exist here.

By means of (106), the constraint (98) on selection of A:’ and ¢’ takes
the form (see 42))

IV L
Ar Vv-' } Ur' Br

(108)

This will be used in the next subsection,

3.4 EVALUATION OF PARTIAL CORRELATION COEFFICIENTS
We recall from subsection 2.1 that, in the known correlation case, the

partial correlation coefficients A‘: and w minimized

te WY ad 4 2P

) (109)

respectively, when lower order stages had already been optimized. We extend
this idea to the unknown correlation case as follows: let (as in (18) and

(19))
Y:a)(“,i‘”s)(. , 1=k<N, (110)

and for pzl, define errors (residuals)
AMER NS

| | Zrzn -

The block diagram for (111) 1s identical to that in figure 1 on page 7.

)Im:k:N. (1)

27
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Define for pzl, the error (residual) matrix over the available data

points as
]

N M
E'—‘"ZY'Y: ’Er) ma)

N-p kept K

this nonnegative definite matrix is an unbiased estimator of Y:”Yr

Substitution of (111) in (112) yields

w N
E: Sy - ATSY - SN AS L

s P '
where

) o)“ wﬂ

S(’z N rK-r*i * Y: - S ") (1144)
il
é;%; \“?ﬂ Eﬁ«\ £1148)
&3 y-.)n )H

;-\ = -NJ.—’—t"” ) Zﬁ S:,t . f14c)

Also define for p2\, error matrix

H

ZL”Z‘”" (115)

Pkrn
Substitution of (111) in (115) yields

=3 " ) <t S"’"H 'f’" 9 ~(pH
- P

Now error matrices Ep and Fp are Hermitian and nonnegative definite.

Therefore matrix A‘Er_A: is Hermitian and nonnegative definite for any

MxM weighting matrix A,:

V(& AV = (A4)'E (X) 2 0

117)

—
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for any Mx1 matrix 4/, Also since

bAEN) = &(MAE) » & (AE), e

only the productA-A:A.matters in so far as the trace of .A,E,.A: is concerned;
notice that A is Hermitian and nonnegative definite. We shall be interested

. W "
in minimizing the traces of weighted error matrices AEpd, and L F 117
the exact choice of, and the reason for, weightings A, and [ will be under-

taken in the next subsection.

Now if we were to minimize ‘hr(.Lr.E) by choice of A:., we would find

(see appendix B for method) that we must solve

.'\7.‘ A: S: * -A-r-c S"': / (19)

and the choice of.A,_. would be irrelevant. Also, if we were to minimize

. P .
b(rr.r') by choice JB', we would find that we must solve

LS¥B = T, 5%,

and the choice of [, would be irrelevant., Furthermore, we would not satisfy

(120)

constraint (108) generally, But since the behavior of error matrix Fr is

just as important as that of E,. we should take both matrices into account

in any error minimization; in fact, for known correlation, recall that the

determinants of residual matrices \+ and V, were equal.
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We therefore choose to minimize the sum of the traces of the weighted

bl 6)+ ([LF) - b (4.5 [ E), 02

where j\'q and f;q are Hermitian and nonnegative definite,

error matrices

by choice of A: and B:'Sub,ject to constraint (108). If we let

SARRT

) P
then we can express

A ErDLE
w ') Q
J\,-.[ -GV S SOV G G+ BTV - ,’] (123)
r.. Lo - ) ]
Al r- S ’-l‘f - Ur-oG*G-rUp-vS‘ u G’
in terms of the single unknown matrix Gp. Our problem therefore is to

minimize the trace of (123) by choice of the single quantity Gp, subject

to no constraints;, we can then solve for the best coefficients according to
P _ G V" B(r)__ GHU-I (124)
P Pty P P Mp-r -

Also we can compute the correlaticon estirate from [90) and (28) according

to

)
RP = R: + G-,, | (125)

In appendix [, it is shown that the minimum of the trace cf 1230 is

[

reali1zec when GD 1S the solution Of the bilinear ~atriy ejuatior 'Ref. 3

GYK+/’GP:}"+V) ,
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where
—‘

-V SRV,

X

/f = -er-l U t: f;
)"’S;?»V."' N
v Ap Yo SY

-)
T
)
ll VA (127)

-

Uniqueness of the solution of (126) is considered in subsection 3.6. (It
is interesting to note that the separate minimizations in (119) and (120)

yield

G'p"(')"=v'/ef=o' (128)

Thus whereas both these quantities had to be equal separately to the zero

matrix, we now require only that they be equal to each other.)

For the special case of M=1 (a univariate process), (105) and (108)

yield

Gy, B AT ey o

Then (126) and (127) can be solved for the scalar

U’p-n‘J\ )5-. . (M=1) . (130)
TS 5 r

P

3
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Now, if ‘and only if

b = Ay M=, (131)

(130) reduces to Burg's algorithm (Ref, 4); in fact, it can be shown that
(131) is the only choice of weights in (130) which guarantees a stable
correlation recursion for M=1. Thus we shall insist that the weights

satisfy (131) when we deal with their selection below.

3.5 WEIGHTING OF ERROR MATRICES

It is necessary to apply weighting to error matrices Ep and Fp in (112)
and (115), prior to minimization of the trace in (121), for several reasons.
First, without weighting, the larger amplitude compor.ants of errors (111)
would receive most of the emphasis in the minimizatcion; thus, some weighting
inversely proportional to the component strengths is desired. Second, it
is desired that stable correlation recursions result and that matrices Up
and Vp be nonnegative definite, Without weighting, it has been discovered
(by an example to be presented in subsection 3.9) that both of these require-
ments can be violated. Third, we will insist that the scaling property

introduced in subsection 2.2 hold for the unknown correlation case as well;

that is, if

S(,fDXu D av bitrary 32,

we shall insist that the coefficients satisfy

Ay -DATD
B-DED

) s n=p, Q)) P (133)
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The matrix equation (126) can be combined with (122) to yield the
simultaneous set of equations
WSS SIS
AN, - BB = 0.
We now consider several possible choices of weightings.Afﬂ and ﬁ;,
to simplify the form of (134). The first choice is no weighting:

_A.P,, = I) F;-n =T. Chorce | (135)

The problem with this choice is that the weighting is not related to the

that tend

error component strengths, and it may be readily verified that the solutions
to (134) and (135) do not satisfy the scaling property (133). Also an unstable
correlation recursion can occur, However, the solutions do reduce to Burg's

algorithm for M=1; see (131).

Our next candidate weighting is

Ay = U’_-: ) r;-u - Vp:: ) Chofee 2 (136)

which are Hermitian and are nonnegative definite if U _, and Vp_1 are

P
nonnegative definite. This weighting is inversely proportional to the

component strengths, as desired; more will be said on this below. The
'”:5;99 Y9~ (4

Ar -} + S;" Br - 2 5 ~ )
@ - ng

A% -U. B

The solutions of (137) satisfy the scaling property (133), and they reduce

equations (134) become

(137)

o .

to Burg's algorithm for M=1; (129) shows that (131) is satisfied for the

choice (136). Although stability of the correlation recursions (52)
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and (55), and nonnegative definiteness of Up and Vp, have not been proven

for general M22, no counter examples have been discovered.

We nexf consider
-1 y! - -t
J\'f" = i{? UP" , ,;,, =\{,_, S(H leo»'ce ) (138)

in which case (134) becomes
P )" ) ey -1
A’ + Bz = Sf-v - + S ~5.(§’Q
| oL S
A’”V ) B’” (139)
p BB o
However, the weighting (138) is not necessarily Hermitian, is not necessarily
nonnegative definite, and is not directly related to the error component
strengths, Also the solutions of (139) do not satisfy the scaling property.

Furthermore, the solutions do not reduce to Burg's algorithm for M=1, and

can yield unstable correlation recursions for M=1,
The last choice is
-} )
PV, SV, Cholce 4
S B Ve 5V e0

which are Hermitian and nonnegative definite, and for which (134) tecomes

yH
? Voo, + U Bv 5%’) ot \,},_.SW ) (141)
) u
A“;’VP"- U sB: = 0

This choice is a very interesting one in that the solutions of (141) are
immediate and do not require that a bilinear matrix equation be solved. The
weighting (140) is inversely proportional to the error component strengths,
and the solutions of (141) do satisfy the scaling property. In fact, this
choice is very close to Choice 2, since Up_] and Q?are both estimates of

the correlation matrix of processfyt”? at zero time delay, and should be
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fairly close to each other, However, the solutions of (141) do not reduce
to Burg's algorithm for M=1, and the correlation recursion (52) can be
unstable, even for M=1, In fact, the solutions to (141) are identical

to those for Choice 3 for M=1,

Therefore, of the four choices considered, only Choice 2 in (136)
yields solutions that satisfy the scaling property (133) and reduces to
Burg's algorithm for M=1, The stability of the correlation recursions has

not been proved or disproved for choice (136) of weighting.

There is another strong reason for choosing weighting (136), which has
to do with a whitening interpretation. We recall that Ur-. and Vr_, ,
defined in (95) and (89), are estimates of the correlation matrices of
processes {\r:'"} and {?_t’"’} , respectively, at zero time delay. Now let

(for non-negative definite Ur_, and V._, )

U (42

where Ur' and Vr-' are (lower triangular) square root matrices. Then scaled

processes
~ y-l)_ =1 ) 2 6~ = 1)
WPAENT IR N, o

each have estimated correlation matrices at zero time delay equal to I; that
is, all the components of {7‘0’")} (or {Z‘(P")} ) have unit power and are

uncorrelated with each other at zero time delay.

Now define, for PnsksN,

q/x(” = U,,-.: Y,(!) = UP-,' (Y,.w- A‘: Zf:’) = V"’. A:” 2:“’ LS

-f
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where

-f (’,
ERVuY L

Also define the estimated correlation matrix at zero time delay of process

{ Pl as .
7 ’W%W T hww £}, -4 E,,b},-. ’ e

where we have used (144) and (112). Therefore

L(YIeY)- o (2 YE) - £ (yls), (147)

-)
where we have used (I-1) and (142). Thus, minimizing the trace of UP" E,,
by choice of At’ ,1s equivalent to minimizing the trace of é;, by choice of
R‘: (see (144)), where process {‘y:”}is the error in prediction of (p-1)th

order processes with estimated correlation matrices at zero time delay equal

to I.
In a similar fashion, for prisk=N
COVRE M RS
where
E: = Vr:: B;) UY" ' (149)
And

N
. P ?)H N 2 V)” - = -
?P—Nrk"%. kar“ ,—\ZZ‘ V F;.v (150)

with

{-v’.}’, = {_Y(VP:" F;,>

(151)
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If we solve (145) and (149) for Ar and B"» , and then utilize constraint
(108) along with (142), we find that the constraint takes the form

A;’ = ,B;’H _ (152)

This could be used as the starting point in aminimization of error matrices
€P and .3? . In fact, if we minimize the unweighted trace of é,#¥, by choice

of K:"’ , we find the optimum choice to be given by

S SUA - 237, s

where the notation is an obvious modification of (114). By employing (145),
(143), and (142), we can show that (153) is equivalent to (137), as it must
be. (This alternative approach may be useful for proving the stability of

the correlation recursion.)
3.6 SOLUTION OF BILINEAR MATRIX EQUATION

If we substitute definitions (127) into bilinear matrix equation (126),
v
and premultiply byJL’: and postmultiply by F’.Y.' , we obtain the equation

éré?a,(zjér:;uﬁ, (154)

where
« W : -
,f' U 500 AL (155)
v
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Now the Hermitian matrices & and F’ are non-negative definite; e.q.,

&VH Y- (r:, p "V> 5 r [';:"‘ﬁ/) >0 (156)

for any MX1 matrix Q/, since 5;4 is non-~negative definite. We have employed
the Hermitian property of V’, andl;* above; see (118) et seq. This means
that the eigenvalues of & and? must be non-negative. Therefore the

solution of (154) exists and is unique (Ref. 10, eq. 3).

Solution of the bilinear matrix equation (126) or (154) has peen addressed

by many authors (Refs 9 - 17). In particular, for the equation involving MxM

XB+AX= G e

matrices,

one form for the solution is given by

X = pQ" ) (158)

where
P . 2CrACE™
Q- 267 a5, s
are MxM matrices. The constants {a} are given by (Ref. 18, pp. 87-88)
- _-L < < =
o = -1t (AA,), 1sksM (a.=1), (0

and the matrices fAk} are given by

A, - AA'+a, lsk«M (A°=I>. (161)

Here, M-2 full matrix multiplications are necessary when we note that AM = 0
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by the Cayley-Hamilton theorem.
For M = 2, (159) takes the form

P=cCB-(A-+0I)C
Q=(rA++B)B+(dtA-€tHT

where we have used the Cayley-Hamilton theorem to express

Bz = ‘{)’(B) B- d?{:(B)I ‘Qr N=2, (163)

Equations (162) and (158) are the forms used in the FORTRAN program for M = 2.

b M=2, (162)

3.7 SPECTRAL ESTIMATION
Having obtained correlation estimates {R_}: by means of (82) and (80A),

we now extrapolate these, as in subsection 2.3 (equations (52) and (66)), to

i - g
yield ‘Rh = éhn Rn." ) P‘H < m)
H 164
Rh = R“ﬂ ) m< o. ( )

This defines an infinite sequence {R_T which is assumed stable; its Fourier
-
transform will be taken as the spectral estimate of the process under consid-

eration. In a manner identical to that given in appendix F, it is found that

G%Bc)’é:/‘r(-fw)ﬂl\)& = 4}.’:”({)"\)’ H:G’.)-.H) ’-F)<i’l°‘ , (165)

where UP and H;"f) are given by (95) and (68), respectively. It follows that

f&f G",Ef-) = R = sawple power (80). (166)
"%

Also, as in subsection 2.4, an alternative factorization is available as
) (R T4 S n
G"“)’AHD('P) Vf '(;> ) H:)<14 ? (167)
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where VT and "({) are given in (89) and (70), If U’ or \/r is non-negative
definite, then GP(f) is non-negative definite, as desired for a spectral
estimate. Since (165) and (167) are equal, we concentrate henceforth on

form (165).
Since

- . y?
H?“‘) = %_‘g—’:?y% ) (168)

(165) can be expressed ag

G = o et H:’(Qr[% H}’(Fﬂ UP[% H:)(F)] ”. (169)

Since G‘"#) is Hermitian, matrix G’m(f) need be computed only on and above its

main diagonal, at each frequency of interest., Efficient computation of
H;”(é) by means of an FFT is undertaken in appendix J. It is shown that we
need to perform M N-point FFTs of p+1 non-zero numbers, in order to evaluate

H;"Uf) at N frequency cells in the frequency range (-.t ,-11‘-)

Real Multivariate Process

The results above have been derived for a complex multivariate prccess

A riyari . ent -
{x”’). For a real multivariate process, \,L is real and IA" }° are real. Then

"&)(‘f) = H:)(.[.)* for a real process, (170)

and

QP a H:”v)"'u, Hf'(f)""w

) -I. ) -4”‘ ( ¥ i
. AH!W \# ){(F) . G’)ff) for a real process. 7
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Thus we need compute matrix &(”({») only for £20, for a real multivariate

process.

In order to avoid complex matrix multiplications, we develop (169) more

explicitly; let

Ad W0 = R ) +i T8, a2

where R{) and L(f) are real MxM matrices at each f. Then since \L is real,
\%T: \)r , and upon substituting (172) in (169), we find

" -a

et | ROWREFTOULE™ i Mp)-i ) (173)

for a rel process,

M“:) ® I“:)Q,RAEF)T (174)

. . T * - -
Since M(f) is real, the quantity iM(f)-i M) is zero on the main diagonal;

where

therefore we need not compute the main diagonai of M(f). Al1 the matrix

multiplications in (173) are real.

Real Bivariate Process

We now further specialize to M = 2, a bivariate process. Let the real
and imaginary parts of the filter transfer function Pﬁ" be denoted by XX
and YY, respectively (where these symbols are unrelated to X and Y introduced

earlier); that is

HY) « XXE) +i YYlf). (175)

Then from (172), for 2 X 2 matrices,

R ‘Rciﬁ{;ﬂr@} Aq, Re{HﬂF)}= Ad XXE) « XN E), e
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L =T 4 6] <Ay T IS = A4 YY) = Y. )

Substitution of (176) and (177) in (173) yields spectral estimate

9 - | Poxieny T U YR M- e

v a rea) bivariate process, (178

where

M“‘)=YYA(F) \'y X)S('F)r e

The 2X2 matrices involved in (178) are aii real, and Xxap{f) and YVA[‘) ars=
o

Tne

3

the adjoints of the real and imaginary parts of Pﬂﬂ[F} , respectiv
form (178) is used in the program for the spectral estimate of a rea’

bivariate procass.

3.8 TERMINATION PROCEDURE
For unknown correlation, the correct value of p *o use in (79) arc (R0}
is unknown. We adopt the Akaike information criterion (AIC) derives ir

Ref. 19, page 719:
ATG =N In detly + 2M'p

"N In &tV +2M%, R

w
[0

where we have utilized (107); namely, we compute AICp for p = 0, ]""pma ,
X
and we use that value of p, pbest’ for which AICp is a minimum. Selection

of p is discussed below.
max

For purposes of updating U

p and Vp, we can combine (105), (106), and

(122) to yield
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Uy = Ur'~ArG;7 Vszr-v'va"G? ) (181)

in terms of the solution, Gp, of bilinear matrix equation (126).

At this point, it is worthwhile to review the procedure adopted here.
From the actual data, we could have estimated the input correlation matrix
via (99) (or some scaled version of it). Also we could have used (112) and
(115) as error matrix estimates; in fact, these matrices are guaranteed
Hermitian and non-negative definite. However, since dctE’*f detf-”. we would

have had to settle on some average like

|n(de{Ef-dtff;)t=%_-(|n&{§+ L.d¢t|;> (182)

for purposes of the information criterion. As for the spectral estimate, we

- M
could have adopted, instead of (165), the quantity A}"‘m{f) 5 H:’)“)-‘ ,
-1 H

(" -1
or A Hag) i'; Hg#) . for example.

Instead, we have chosen consistently to stick with the results of the
normal equations (78). Thus the estimate of the input correlation matrix is
obtained from (80)(and (82)); the estimates of the correlation matrices of the
residuals are given by (89) and (95) (or more computationally convenient via
(181)); and the spectral estimate is given in terms of UT or Vr by (165) or
(167), respectively, for p’pbest' The major gap in this procedure is that
we have not proved that Up or vp is non-negative definite for Choice 2 of

weighting in (136); however, no counter examples have been discovered.

Qur selection of Pmax is accomplished as follows: in ref. 1, page 575,
Akaike is quoted as suggesting y_::m‘for M= 1, a univariate process. Since

the number of coefficients evaluated is p, and the number of available data
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points is N, this ratio was upper bounded by 3N%. We extend this idea

directly to the multivariate case: the number of scalar coefficients

evaluated is M*p, and the number of available scalar data points is MN.
P

Upper bounding this ratio by 3N-'h, we find we should choose the filter
order

faw = 2

e —

M

in terms of the number of data points, N, and the dimensionality of the

time series, M.

3.9 EXAMPLES

(183)

[t is worthwhile to summarize here the sequence of calculations required.

For data X], Xz,.., XN

Y:'z" X. ; 1s ks N
o LSy . s

* N-{ xs2a

5:" -L‘EYMX: i iT%X“X'". i,r

N-| W3 ke

LXK

g
° N-\ ka3

L) H
GrWmRes R 2%

| ¥ W1

"

VRV
Then for pz! and choice (136) of weighting,
o= V’._: S;“.’
f: ¥ U
prve ¥
G, via (12¢)
A'r" SV B:)' G Uy
e Y K
Y 'Vr-"B:G?
ATG, *N Indet U, + 2M'p

44
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) ) AP 2
ng: -A?Z"" ) pH! = = N
N 9»)__ P D
£ 2 Yr (186)

(187)

For p = » 1t is not necessary to compute (186) through (187). When the

pmax

best value of p, pb st’is found from AICp, we can then compute the spectral
e

estimate (165).

We now consider an example for M =

! - {
o] ][] )
0,-V,<F, - [ ]
Then for weighting (136), we find

TN v 13
ooty ], et ]

The eigenvalues of A? are GB:[T?)ﬂz , which are both bounded by 1 in magnitude,
as they must be for the correlation recursion (164) for p = 1 to be stable.

Also,
2 (4

-V = - (190)
\X \4 72 16 16} »
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which is non-negative definite. Thus, for weighting (136), all the

desirable properties are realized.

However, for no weighting, (135), we find, for the same example (188),

e.s]® 36 g0 &0 0 (191)
' 14 30 43 ) ) ! 9 -2) 4.

The eigenvalues of Aﬂ) are 4/9 and -10/9; since the latter is larger than 1

: : : » :
in magnitude, the recursion R, = A, R,, ,mz2l, is unstable. Also

VRN EL) (192)
' §1 5],

which is not a non-negative definite matrix. It is found that the spectral
estimate obtained from (165) has frequency rangeswhere the two autospectra
(diagonal terms of (165)) are negative, and where the magnitude-squared

coherence can be negative or greater than 1. These are all unacceptable.

For the alternative example for M = 2, N = 4, of

-25§ =115 35 95
X!‘;[-J.lﬁ] ) X-A:l _3,) )ng .?') ) X+:['43], (193)

and no weighting, we find a stable correlation recursion, but U1 and V1 are
not non-negative definite, and values of the magnitude-squared coherence
greater than 1 are realized in some frequency ranges. Because of these
unacceptablie behaviors, the choice of no weighting, (135), is discarded from

future consideration,

An example for M = 2, N = 100, and weighting (136), generated via (71) -
(73) of subsection 2.5 yielded the results below; the program and its output

are given in appendix K. We find pb =] and
es
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o |-Svs1  -Ti024 é" 56613  .770%8
- ) -
63432 .5¢03s| ' -6342 .%573) ,  (19)
97618 - 00867 A¥17T 3483 199
U, =. 090 , V= oQuo[ ] (195)
=00%C1 | 0234 sy ), 20087 .

It is worthwhile to compare these estimates for N = 100 with the exact values

in (76) and (77). The scale factor .09110 in (195) is unimportant and is due
to the fact that the white noise used here had variance 1/12 rather than 1

as in (73); except for the scale factor, the matrices in (195) have
determinants equal to 1. The estimated magnitude-squared coherence reaches

a maximum of .999745, versus the true peak of ,999013.

Observations from other examples of real bivariate processes have pointed
out that: the eigenvalues of A? ana B:’ are identical and are bounded
by 1 in magnitude; the eigenvalues of A‘;’ and B';’ are not identical for
P22, and can be larger than 1 in magnitude; and the eigenvalues of Af,"

and B&" for n<p can be larger than 1 in magnitude.

Timing Results

Some sample execution times on a UNIVAC 1108 for SUBROUTINE PCC,

which evaluates the partial correlation coefficients, are presented below

for M = 2, a bivariate real process.
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Table 1. Timing of Subroutine PCC

N Pmax Time of Execution (sec)
100 10 0.25

10 |15 0.35

1600 10 2.63 |
1000 40 9.23 |
10000 50 120

10000 ;| 150 326 !

The execution time is almost linearly proportional to N and Prax The
execution time for PEFTF was 1.25 seconds, and that for SCM was 0.53

seconds, both for N = 1023 frequency celis; see appendix < “or arsgram.

4. SUMMARY

A method for multivariate linear predictive spectral analysis,
employing weighted forward and backward averaging, has been ;resentec and
programmed in FORTRAN. The method constitutes a generalizaticn of 3urg's

univariate algorithm (Ref. 4) to the multivariate case.

The choice of weighting in the error minimization is very important,
and several candidates have been considered. The weighting retained, (136),
is the only one of those considered that satisfies both the scaling property
(133) for all M, and reduces to Burg's algorithm for M = 1. Also, the

weighting retained is equivalent to minimizing the unweighted traces of
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error processes that are the differences of approximately white processes;

in fact, (136) could be used as the starting point of the error minimization.

The major gaps in the analysis are that we have not proved that Up and
Vp are non-negative definite, and we have not proved that correlation
recursion (164) is stable; however, no counterexamples have been encountered.
The major analytical block in this endeavor is the bilinear matrix equation,

(126), which requires special treatment for its solution.

49/50
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Appendix A
PROPERTIES OF A SPECTRAL DENSITY MATRIX

Suppose an arbitrary linear filter with impulse response {Hn} is

excited by input {Xk}. The output at time ka is

Y( =;’H"Xk-n ? e

where the sum is over all non-zero summands. Xk and Yk are M x 1 matrices,
whereas H, is M x M. In steady state, the spectra of the processes in (A-1)

are related by

&6 = HO&®HE)"

(A-2)
wnere transfer function
Hf) = ."Z Exr(—iZTanA) H, : (A-3)
and f frequency in Hz and is real.
Now
G+ & Z el fkdR) - a 2 expliizrtnilR, » 6,69, (A-4)

where we have employed (2). Thus Gx(f) is Hermitian at any value of f.

Similarly GY(f) is Hermitian at any f.

Also

(Y
R =YY, (A-5)

is non-negative definite for any H(f), because

YR - Y Yy = [V 2 0 -9
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h#3

for any M x 1 column matrixc)/ . Therefore
5N .
24 . "
R0« (46,6 - [# HOGHHE)
- -t
2a 24
is non-negative definite for any H{(f). It then follows that
N (. . I
Gx G:) )S  mon-negative definte for all £ A-8)

To prove this, assume that Gx(ﬂ) is not non-~-negative definite; thar € e

choose H{f)~ 1 é(f-f]), that is, an impuisive transfer functicr -=3v

frequency f,, we get Rmf»G Te.) from (£-7,, wnich contracists shn com- o sior
1 ) x 1

} . -
that Rg must be non-negative definite,

Thus a spectral density matrix musT @iwdys be Harmiti2n ani ~or-n2cit’a
definite for all f. In particular, this implies that a1l the autl 7o2ct”
(diagonal terms of the matrix, must Le "e4° 3ng nor-r2jative, 7% a ;. o TCas

that all conherences are Houndea oy unity in magnituae.

r




Appendix B
MINIMIZATION OF TRACE OF ERROR MATRIX

From (4) and (5), we have
Y e X ZA K= % A
where x.h-n

Q=[A-A), Le|
K-

P

X% -, %K - Q

Here,@ is M x Mp, X, is Mpxl, € is MxMp, and Q is MpxMp. We notice

Let

TR 5501

(B-1)

that Q" = @, and Y"QY = |¥" X.|' >0 for any Mpx1 matrix ¥#0, if no exact

linear relation exists between the elements of X ; tha

I
@ is Hermitian and positive definite.

Now

Y e (G- ax)X-%at)
-%-ac-ea"+0an”
R-eac+(a-caNal-ca)’

LA
d-CQ =1
Vo

where°V.i is an Mpx1 matrix. Then for the M x M matrix in (B-5),

t is,

B-1
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L =(a-Ca")a (O-CQ-')H = [z%...] " (8-7)

=t )

where complex scalar
H
,23,. = pVJ QaV.. . (3-8)

'}
The real quantity %f%ﬂ{»for any‘ljfo , Since @ is Hermitian and positive
definite; the minimum value of lﬁ is zero and is attained ¢ and onls if

"1/3=o . Therefore, tr L is minimized, attaining value zero, -y the znoice

. ! ] M . L. ; N -
‘V;:o,HJiﬁ- Thus Tr Y, Y, =Y, Y, is minimized by the cnoice of U as
¥

0, [ 8] - e »

since the leading two terms in (B-5) are independent of Q.

O

Then we have opt L = 0 and

R - H M
ot WY = R-CACT-R-0,C = R-0,Q0, )
Also

—— *—'o™

wn T, < bt T s £ (R-CCTCT) XN -t (T

It should be noted that the solution (8-3) is attainable directiv from
(B-4) if the coefficient ode(ora) is set equal to zero; this observation

will be useful later.
Equations (B-9) and (B-10) can be developed as follows:

a’(Q-C yields, with the use of (B-2) and (B-3),

R R
O A%l :° ol 1. (8-12)
A,' 14 :" * = [P\ R’ )
R,., R

B-2




TR 5501

that is,

M—-
S
> o)
3
Ia
|
A
-~

n=\ (8‘13)

And (B-10) can be expressed as "
T OR J p
ot VY, =R - WAl |- R- ;_Z.A.‘.”R, |
R:.

Equations (B-13) and (B-14) are the main results of this appendix.

(B-14)

If an exact linear relation exists between the elements of Xp.)“,,\;T,

then

Xh_‘ = J‘%G‘) X"’f ;o( Some {G}}:# 0. (B-15)

In this case, (B-1) yields

Y,‘_, * Xx-| - %An X(-v-- = Xk-t‘ J-é AJ"' X“J— Afx""" " (B-16)

Therefore we can get zero error by choosing

M &,, , l=vs p-l

A., ™ ‘ (8-17)

()) w=p

Thus A:-O if an exact linear relation exists between the elements of
)(“_,,..., )(,.' )

Also we have the following general theorem:

Ry
No exact linear relation P\ is positive definite. (B-18)

between elements of X.,...,X.,' — R.' R,

To prove this, let i

X,, o | (8-19)

B-3
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Then f_ = Y Xn is a scalar. Now if and only if an exact linear relation
exists, F, = 0 for some D # 0, no matter which member function of the

ensemble we select {with probability one). We also notice that
T DT .
x| =D X,X‘ D (8-20)

and that the ensembie average in (B-20) is equal to the matrix in (3-18),

2

Assume that F, # 0 Yor any O # 0. Then }F“|i

>0 for any O # G, and
the right-hand side of (3-20) is positive for any D # 0. Therefore

KXJ is positive definite.

Conversely if X‘X'" is positive definite, the right-hand side of

(B-20) is positive for any D # 0. Then|R|’ >0 for any 0 # G, yielding

Fx # O for any D # O.

B-4
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Appendix C

INTERRELATIONSHIPS OF Up AND Vp

We start with the definition (12) and develop Up as

O+ R- SaTr,

R- BL-ABEIR.- AR, (b (15)

R SATR AN ZECR.

U A:J%B}”’RJ-, (by (12))

-\~ A7 D (by (13))

+ Up - A BPV, (by (18))

«(T- FEDN,.. . (c-1)

This relation holds for p21, with U,= R,. A similar derivation for Vp

yields

Y- (I'Bi’/*?)\/r. , PEV; V=R, (c-2)

The determinant of Up is given by

e (TR
e it A det(A7-BY) det (c-3)

whereas the determinant of vp is

det \p » det (- BP AF) - et
e det(WT-B) dt AT WtV

(C-4)
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Now if det U = det V

p-1

P

_1® then (C-3) and (C-4) indicate that

det U} = cet V,

But since Uy = V, = Ry , det Uy = det V,. Therefore ({-5) heins 7y

p20, by inauction.

C-2

(@A)




Appendix D
HERMITIAN PROPERTY OF EXTRAPQLATED CORRELATIONS
We know that
RH R For I
- * " = ?-

We then solve

:£é1A2012,.. = ]Rk , | sks P

e )

for {A“"}f , and set

s SA"RE for all kot R R, for s

We then define
() “m"
(r
‘R.' = R- ‘k" r+‘ = k
In a similar fashion for the backward case, we solve

=B’R., =R, , k=P

wz

for {Eﬁr}r , and set

R_‘: = iB(" ..(': for al} k215 Riﬁ=R_,. br Ik p.

ne )

We then define

fk(‘r’ . }'{‘P’" for p+ = k.

TR 5501

P. (D-3)

(0-5)

(D-7)

D1
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We know from the definitions above that

H A (9)
R_(:) =R for IK<p (

Ay |
1
(03]

Now we assume that
V( A )
R_:)H = R?) {or M= m, wheve m2 p) o

that is, from (D-6) and (C-3),

v ) A(r) | .
Rﬁ: ﬁRm Bm ﬁAr k,‘ = Ru ?r;r S Xe® oo

Re ) »ws )

“ow from recursion definition {D-€;,

v “
ke . ZRED

Py

. 230 BT {5y D)

. ﬁﬁA R_‘._ = {54 D-3

YTy .- z

. ﬁAv’iR':’_ﬂ 38,?’" (be b))

. ,i A RE by (>-19)

. Ri’: /N b3 T
Tnerefore we have extended ,0-5, by ore steg, and e Iro.t ot Tl

b20+] by induction.
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Appendix E

RELATIONSHIP OF DETERMINANTS

The forward correlation recursion is given in (52) as

(r) D) -
iA R’ ) ?H:m. (E-1)

The z-transform of this sequence is

R : Zz‘"ﬁ_” SN S gge

nt rH

The inner sum on m can be expressed as (see (53))

EZ'(”‘R + Z (M)ﬁm : é(}), (€-3)

s P! w=pbHn

Therefore,

R - = AR + éz’"Af,” e (-4)

)= (- .‘i.“(-ﬂ).' ﬁ AN, () (-5)

At the same time, we define the zZ-transform of the backward correlation

recursion as

Ry = ZamRe

NUPH (E'G)

and note that, via (62),

&n(?) = ii"‘kf:‘)" - = - R'(:) - aﬁ(# (€-7)
hs’+|

£-1
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A comment on notation is timely here. If matrix

Gk) = =D, (£-8)

where z is a complex scalar variable, then

GH(*) Zz.hDj, (E-9)

But

M
My
k:j‘

&)

~ ) (E-10)
which is not always equal to [£-9), unless z is real.

3ut Jet us also develop definition (E-7) by means of backward recursion

55}, in a manner similar to that above in (E-1) through (£-5). We find

fro- %0 S 2R B by 63)

n
.‘.’*\ s ’*‘ Nz

Sl B (mew) ¥ " »

= 2 ( ::E;.:} ” 7{(P)j>'I3t) | \ .
Az \n-pﬂ N

The 1nner sum on TS

D>

- (m-n b2 AN VRN ,
SRS TR LR e

‘\D--l
‘2‘—?#' n-.pom

where we used .56, 2., (E-3), and (£-17'. Therefore

&H(i‘) = 2_“&-.(?93?” + &H(;)é a B‘f’k (E-13)

Ns
or

- 1 4

-1
R -2 LeR" (1- éz‘"B?’H>

£-2
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Combining (E-5) and (E-14) according to (E-7), we see that
-ny @ C (pH
de‘t(t’ - A,,) aud deJc(I- é?"Bf) (€-15)

must have the same zeros, since these two quantities determine the singul-
arity locations of (E-5) and (E-14). The quantity &n(z) defined in (E-3)

is singular only at z = 0.

Furthermore
T
deJC(I- éiZ.nA?.»> = imde{'(zrD {‘Ao,’)-“ (:)> = ;_;Li;iz (E-16)

and

M
det(I- ﬁz"B,’,"")= Z'M’dei(z’ra".a,""---- -B’;’"> = I—z,..(:*l’) » (E-17)

where we have utilized the observations that the quantities in (E-15) have
the same zeros, the same pole at z=0, and the same scale factor. Therefore

the two determinants in (E-15) are equal.

Also since

&(I— ;ﬁi"(){'): 1-2 4G -+ ,f‘z‘"’dde} ,  (e-18)

it follows that

& Ab) N '{'.VB({)H N ({_r B}‘v)y (E-19)

and

det A": = det B;)H - (de{- B;’))*, (£-20)

E-3
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Numerical examples show that generally

H:r A?:)\ t \'{:rgf\ 1< k=p (£-21)
and
\ det At)\ 1 ldﬁ{ Bt)‘ b X< p. (E-22)
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Appendix F

SPECTRUM FROM EXTRAPOLATED CORRELATIONS

The forward correlation recursion is given by

R - iA‘”R,,, m> pH

(F-1)
n= )
where
R (F-2)
RM = RM ) ‘ml = P
and
5 (P ()
f RP ) m=2 P+I. (F-3)
We wish to evaluate the z-transform of {Aﬁg)} :
(> /) - A()
jé‘r)(z-) = A ZE R: . (F-4)
W = -0

In order to do so, consider a fictitious process {in} with the corre-
lation given by (F-1) through (F-3).

Consider the output of the optimum
predictive error filter,

given by

A

(a- A%, el K (F-5)

The crosscorrelation

)

Ce Y, Xom = - iA” X, Xoo == Sp° Ry (F-6)

neo Nso

Using (7) and (F-1), we see that

é_‘:O for m2) (6.,,#0 {ur-hvﬁ O)} (F-7)

F-1
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A
that is, predictive error filter output \1 is uncorrelated with al: pas=:

A

: v
values of input A -
Also, output autocorrelation

‘AD = “ ‘-iYy\“ — ~-ﬁcmp(w ; (F-§,

ol H h" nie nzo

using (F-5) and (F-6). But now employment of (F-7; in (F-8) shows that

—

n
t

W

j>m=o Rr m2

Alsc (F-7;, (F-6), (F-2), and (12) yielc

ho - FAR 2R

And since, from definition (F-8),

]

[

we have

b, - { }
oﬁm,( (F-12;

that is, predictive error filter output Y’ is white for input Yk (07

course, Up is not diagonal).

A
At the same time, autocorrelation D, can be expressed (by means of

(F-5)) as

B ZENR KA S AR AT . (F-13)

Nso jro neo j:o

Therefore the z-transform of {A f)..\ is

F-2
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'D fz A:) -(M)“')-Rly) iz A(r)

L TS n=zo h' -

( (F-14)
- A JUATLEEDS

where we have used (F-13), (23), (F-4), and (E-9). When we couple (F-14)
with (F-12), we obtain

sy, - e O @) e19)

or
!

P = A[‘}é’)(z)]-' Uy b"f’u(a")]- ) (F-16)

where matrix Up is independent of z. This is one of the main results of

this appendix.

If we let (for f real)

Z= exr(:’?w%), If) < 3+

(F-17)

and denote the forward predictive error filter transfer function and spectral

estimate as

7“‘:’ (m(ihh)) = - gex,:(-" )w(-m)A(:’ . H:)(f),
BPlewpliants) = s Seglizrmdf? - P, (F-18)

A
respectively, then the spectrum of process {X,} can be expressed as

-,H
ENT T Y

where we have utilized the result that (see (E-8)) through (E-10))

[ et = [ )] = W)= 7 0

F-3
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The procedure for the backward correlation recursi_on parallels that

above to yield (using (23))

&h(}) -4 [ﬁ;,(})]ﬂ V,, B‘?H({’)]-’ (F-21)
G h=-a MY WG

and

(F-22)
-
ZER0 LOCATIONS OF BT (2)
Assume that Wf’(;)-' & Q(z) has a zero at z=z, # 0; that is,
O ssume Q(z") = 0) {L’? Zevo Ma{’ﬂx) (F-23)

where 0 < 2] . But

) - (P - ) () -
%r(?-=-£2 AY, *‘3’[A§+2AP..+W+ 2’ AT)- 2’ I]' (F-24)

LEY

Therefore 74?(;0 is finite for 0<\1J, yielding

) .
Q(Z‘)ii‘:(z,) =0 # T. F-23)
Therefore assumption (F-23) is invalid, indicating that
Q@ +o0 for O<lz. (F-26)
Now from (F-24)
® -pA P . o7y
%A (2)~ - AP as 2> 0

F-a
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therefore,
)~
Q@) ~ -2 A: as ||=> O (F-28)

Thus Q(z) has a p-th order zero at z=0, but is not equal to the zero matrix
for 0<JR). Of course, the individual elements of matrix Q(z) can have zeros

anywhere.

-1
POLE LOCATIONS OF 4/,P(2)
Since from (F-24)

)
%v @--2"QE, (F-29)
where Qp(z) is a matrix of polynomials in z of order p, it follows that

4 p A
Q) =TG- ggm Qe

where 6“.')?(!) is a matrix of polynomials in z of order (M-1)p. Therefore
the poles of Q(z) are caused by the zeros of det Qp(z); that is, the poles

of 9(:"(2)-' are caused by the zeros of det 7/(')(;). As |él*-,71;”(a)~1‘h-(F-24);

therefore, Q(z) ~ I as |zl»®, so that Q(z) has no poles at |aj=w®.

Thus the poles of Q(z) are located where det Wn'[}) 0.

We now consider the problem of determining when detﬁ @=0; the

following derivation is based upon Ref. 7. Let

X
] - :-" (F-31)

Ko

be an Mpx1 matrix. Define prediction
$-C5 (72
X -1 )

F 5

(4 4
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where C is MpxMp. And define error

SRS AR oy )

Then —
5 - (-C)E-5 )
=9 - C, - % e U C (F-24)
- - U WU+ (-2 (c-wag)
where

fo} - H
Yo = j; f(-... : (F-25)

The minimum value of tr 5“ 3: is realized when (see appendix B8) we select

C = ‘l(,%" . (F-36)

The corresponding value of

WS = U-UW - U, - CY -7)

. 4 . . .
si-ce Q,l‘,:i(.. Now let the left eigenvectors and eigenvalues of the optimum

C te denoted as

-~
)

H F-3
€ C N Fm , 1 mE M |

{The eigenvectors {5..} may not all be linearly independent). Then

os|8is [ - S 5o - 5l (- cU O

TS (- o

"

F-6
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Now ((. is Hermitian, block Toeplitz, non-negative definite, and has
the form R R Rr'
u .
= = |R,
uo - flru ..
R,

Therefore |\, |<! for |swsMp; that is, all the eigenvalues of C are

(F-40)

bounded by unity in magnitude. Furthermore, Ref. 7, p. 134, shows that
if there is no exact linear relation between the elements of X,‘,X....,...,X..H

then })qq for |smsMp (see also appendix B).

Now we develop the error in (F-33) in more detail:

- &

Xx ... G .
SK'f;- Cfb—t’ E = : ’ Xf
x'?*‘ CP'“' C" Xk-r

% = 2 Con X

5 (F-41)
K™ é,-cf,"x*"
Minimizing tr &S: can be seen to make C of the form

Ap Ar e AP

T © 0
C=lo o _ (F-42)

0 T O

.

Therefore (Ref. 7, eqs. (35) and (36)),

det (CAI) (-3 et H ) (74

F-7
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If we were to assume that ddﬂ:ﬁ@:o, where |2 =1, we would have det(C-#I)=0.
But this contradicts D l«! for |smsMp. Therefore, the zeros of det W‘(')(z.)
all lie inside the unit circle; that is, the poles of Q(z) all lie inside

the unit circle.

F-8




TR 5501

Appendix G

HERMITIAN PROPERTY OF ONE-STEP EXTRAPOLATED
CORRELATION MATRIX ESTIMATES

From (78), at the (p-1)th stage, we know that

RY - ERLB BRLET SRR e (@)

Now we start with (94) and express

R SR, B SR

-\ B (by©-»)

wsy j‘! J

LEArER B

J's| J ns)

.B AR, (by &)

o

R 0y @). (6-2)

Thus, the one-step extrapolated correlation matrix estimates, based on

order p-1, are Hermitians of each other.

G-1/G-2
Reverse Blank
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Appendix H
INTERRELATIONSHIPS OF Up AND Vp FOR UNKNOWN CORRELATION CASE

We develop the definition (95) as follows:

U - - SAR, -R- SR AR,
R- i (A BT R. A”ia‘,"h, (by(r4) aed (805))

- B AR, A SR
-R[ZEC-HAR,BR] (e 09) (v-1)

Now

9 S
B4, B,

!

Therefore
! - b
0y~ e MBS B AR, R (s 09
= Uy +-ﬂ:‘§fjééﬂgﬁ1?~r
\) Av» B(r) Ur' (Lj (75))
(1- A8}V, (H-3)
In a similar manner, we can show that

VP'(I-B:A:er' (H-4)

In order to show that Up is Hermitian, we recall the constraint (98)

and express

H-1
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0, = U - AVBPU,. < U AT A

(H-5)
H N
Therefore if p-i =U - WVP"'_VP , it immediately follows that
H

Similarly singe
= _pP P _ _rPy oK @
Vr - VP*I g’Al’ VP—I - VP" '& UP-' BP )
it also immediately follows that

VP"=VP. (4-7)

3ut properties (H-6) and (H-7) are obviously true for p = 0, because
U,=V,=R,= R} (4-8)
° ) o o

Therefore (H-6) and (H-7) are true for all p, by induction.

In order to relate the determinants of Up and Vp, we express (=-2
and {H-4) as
- AP (AP P - (AP g@\ @
UP' Ar (A’ BP)UF.’ ) \/P (AP B’ )A’ v’_| . (H=3)

Therefore if det U?-l = G’e*. VF-H “hen

det 1, = det \ me1
But (H-10)1is obviously true for p=0 by (H-8). Therefore (-1l 135 true
for all p, by induction,

Properites (M-6), (H-T), and {(X-17' applied to '35  immegiateiy S$"Cw

that

*
det B(:) = @ei‘ A’ﬁ
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Appendix I
MINIMIZATION OF TRACE OF WEIGHTED ERROR MATRICES

We wish to minimize the trace of (523 )ghby choice of matrix Gp. We

use the fact that, for square matrices P and Q,

4 (PQ) = ZPm O = ZQm P - &(QP), (1-1)
to express
B LBl S L -G ST A RS 6
H- G STV STWG R STV L STRIE] g

Now (I-2) is an analytic function of the variables Re(Gmn) and Im(Gmn).

Therefore the minimum of (I-2) is realized simply by setting the coefficient

of Gg equal to zero (Ref 20). W~ obtain, after premultiplying by ‘A'?"

post-multiplying by G-, , the equation for G

GV SRV AT UL SAYIE s STV A AU ST (1)

(Gp is not Hermitian or Toeplitz, as numerical examples will show.) In

terms of A‘p')and B¥, we have the simultaneous equations

p,
A MR TR s: SRRl o) o W TR C Nt
AV -UL B - 0

where we utilized (122).

1-1/1-2
Reverse Blank
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Appendix J
COMPUTATION OF FILTER TRANSFER FUNCTION

The forward predictive error filter transfer function is given in

(68) as

H'E) = - - Zeqlimtn AT, K<

N=0 (J'1)
Now divide the frequency range 61-!3,2{;) into N cells of width

A‘_ = Kl‘ -g— . (J-2

Then for |mls MNe/2,
n 4) = H, QIT) =" ﬁ-e"f("}'"'"/’\g AY
= gwr(-il*""/"gzn

where

~A osnsy
Z,* 5
0}?*" ns N1
Now if we let the sum in (J-3) be denoted as an Ng-point

-
> .

Z@xr '1”'"/’\])2, Dsms N -

n+0

then (J-3) becomes
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Appendix K
PROGRAM FOR SPECTRAL ANALYSIS

In this appendix we present the program for the procedure summarized
in (184) - (187) and (165). The spectral estimate, (165), is computed
at frequencies {m/(N:d)}:

GO - WGR) U, WS, e na, (k-1)

where the forward predictive error transfer functionl{”ﬁfk) is given
by (J-6). The specific scaling adopted is based upon (166), which takes
the sampled form ‘

a § G") N
% £ G%mg) 5 R, -

where {\g} is a set of integration weights (e.g., trapezoidal). The
approximation is a good one if G(p)(f) is sampled finely enough; that is,
if NF is large enough to resolve the peaks and valleys of G(P)(f). If we
emp16y (J-2), (K-2) becomes

LY e

or, for trapezoidal weighting,

a L) e R, (k-38)

e adsp “A

where we have employed the periodic nature of G(p)(f) (See (165) 'and (68)).

K-1
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“hus the sum of samplesib&mﬁl;) equals the sample power, (80).

For a real muitivariate process, we can employ (171); & medified form

emerges:
N (
~ ImN o r .
Ke .‘Z‘o W, N:‘ @”fwj\, = F,, for  rea) pricess. fiot

where {W,} is another set of integraticn weights. This is tha €y

programmed in the following; the quantities computec ars

(8]

H
2 » A\‘ = i N i ‘”CITM\.' 'ﬁz -
G RS G W AR -

2
N,
The real part of their weighted sum equals the sample power, =0. Tne FFT
used here to evaluate (J-5) is given in Ref. 21; it is limited to powers o°
2, but could be replaced if desired. Input parameters are N, FML7, axd

NF in line 22, and the input data call is in line 37 and SUBROUTINE DATA;
all these quantities have to be changed by the user to fit his particular
application. The program is written for a real multivariate process
(general M), with the exception of FUNCTION DETERM, SUBROUTINE: SDM,
INVERT, and SOLVE, and the printout of the spectral density matrix, [x-5;.
Arrays used in the program are explained by comment statements. A sample

printout follows the program.

K-2
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MULTIVARIATE LINEAR PREDICTIVE SPECTRAL ANALYSIS»
EMPLOYING WEIGHTEU FORWARD AND BACKWARD AVERAGING,
THIS PROGRAM IS WRITTEN FOR REAL PROCESSES AND GENERAL My WITH THE
EXCEPTION OF FUNCTION DETERM AND SUBROUTINES SOMes INVERT, AND SOLVE,
AidD THE PRINT OUT OF THE SPECTRAL DENSITY MATRIX,.
USERS CHANGE LINES 22 AND 37¢ AND REPLACE SUBROUTINE DATA,
M = DIMENSIONALITY OF MULTIVARIATE PROCESS! INTEGER INPUT
N = NUMBER OF DATA POINTS IN EACH PROCESS: INTEGER INPUT
X(101)eoeX(No1)roeo?X{loM),eeX(NeM) = INPUT DATA} ALTERED ON OUTPUT
PMAX = MAXIMUM ORDER OF FILTER; INTEGER INPUT
NF = S12E OF FFT (MUST BE A POWER OF 2 TO USE MKLFFT); INTEGER INPUT
AVE = MEANS OF INPUT DATAj} OUTPUT
R = COVARIANCE MATRIX OF INPUT DATA} OuTPUT
AJC = AKAIKE'S INFORMATION CRITERIONS oUTPUT
PBEST = BEST ORBPER OF FILTER! INTEGER oUTPUT
UbEST = MATRIX OF COEFFICIENTS IN SPECTRAL ESTIMATE: OUTPUT
AP = MATRIX OF FORWARD PARTIAL CORRELATION COEFFICIENTS! THEN =
MATRIX OF FORWARD PREDICTIVE FILTER COEFFICIENTS FOR PBEST! OUTPUY
BP = MATRIX OF BACKWARD PARTIA_ CORRELATION COEFFICIENTS: OUTPUT
AXsYY = SPECTRAL MATRICES’ OUTPUT
PARAMETER M=2 # BIVARIATE PROCESS
PARAMETER N= 100 » PMAX= 10, NF=1024+ HFYI=NF/4+}
INTEGER PBEST.P
DIMENSION X(NoM)oY(NeMLoZ(N,M}oUBEST(MyM) sAP (MyMoPHMAX)
SEP (MoMoPMAX) s AVE (M) ¢ XX (NF sM,M) o YY (NFoMoM) s COSI(NFL1)
SU(MeM) o VIMoM) pUT(MgMREoVI(MpM) s A(M;M)»B(MoM),R(MeM),
SWA(MoM) ,WB(MeM) yWC(MoM) yWD(MoM) yWE(MoM) »AIC (PMAX) ,AICO(2)
EWUIVALENCE (X,Y)9 (AIC(1)sATCO(2)})
PRINT OUT VALUES OF PARAMETERS
1=N
JSPMAX
K=M
L=NF
PRINT 1, ledeKolL
FORMAT(1H19* N ='916910Xs 'PMAX =914 e10Xs '™ =,12,10X,'NF 2°91S)
INPUT DATA IN X(103)oeaX(Nod)o, o0rX(2oM)eoeX(NoM)
CALL DATA
PRINT 2
FORMAT (/' INPUT DATA:')
J=N=99
L=v=200
DO 3 ISteM
PRINT 4, 1
IF(N,LE,208) 60 TO S
PRINT 6, (X(Ke1)rK310100)
PRINT 7, L
FORMAT-1In, ' INPUT DATA POINTS NOT PBINTED HERE')
PRINT 2, (X(Kel)eKFJoN)

60 T0 3
PRINT 6, (X(Kel)oKF1¢N)
CONTINUE
FORMAT(* PROCESS NUMBER',12)
FORMAT (5£20,.8)
EVALUATE PARTIAL CORRELATION COEFFICIENTS
CALL PCC
PRINT 8

K-3
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8. FORMAT (/' MEANS OF INPUT DATA:')
PRINT 6, (AVE(I)sIF1irM)
PRINT O
9 FORMAT (/' COVARIANCE MATRIX OF INPUT DATAL')
PRINT 6y ((R(IsJ)eI=1oM)oJ=10M)
PRINT 10
10 FORMAT (/' AKAIKE INFORMATION CRITERION:')
PRINT 110 (PeAIC(P)P=0Q,PMAYX)
11 FORMAT(I10,E20,8)
"FRINT 12+ PBEST
12 FORMAT (/' PBEST =',13)
FRINT 13
13 FORMAT (/' UBEST:')
PRINT 6, ((UBEST(I,J)rI=3sM)pJd=1eM)
PRINT 14
ia FORMAT (/' FORWARD PARTIAL CORRELATIQON COEFFICIENTS:")
0O 15 Pz=1.PMAX .
15 PRINT 160 Pr((AP(LeJeP)r 121 ,M)od=iem)
Y- FORMAT(110,6£20,8)
PRINT 17
17 FORMAT (/! BACKWARD PARTIAL CORRELATION COLFFICIENTS:')
00 18 P=1.PMAX
18 FRINT 160 Po((BP(IoJeP)s131,M)0oJU=lrm)
IF(PBEST,EQ,0) GO TO 19
C EVALUATE PREDICTIVE FILTER COEFFICIENTg
CALL PFC
PRINT 20
20 FORMAT (/' FORWARD PREDICTIVE FILTER COEFFICIENTS FOR PRLEST:')
LO 21 P=1.PBEST
<l PRINT 160 Po((AP(I2JeP),IS1,M)eJstev)
C EVALUATE PREVICTIVE=ERROR FILTER TRANSFER FUNCTION
19 CALL PEFTF
C EVALUATE SPECTRAL DENSITY MATRIX AND COMERENCE
SNF/2+1
CALL SULM
PRINT 22
22 FORMAT (/' SPECTRAL DENSITY MATRIX AND COMERENCE FOR ™M=22:Y)
PRINT 23
ed FORMAT (BXo "BEIN' o 10X, TAUTOLL o J0Xe *AYTOR2 010X, 'REAL(CROSSLI2) ', X,
SIMAG(CROSS1I2) " +19Xs "MAG SQ COM' v 11X 0 ' ARGUMENT ')
PRINT 169 (Lo XX(Loplod) oy XX(Lo202) 0 XX(Lolo@) oYY (Leds2)oYY(Lo1s1),YY(
S$Le2¢2)r LS)N)

SUBROUTINE OATA
C THIS SUBROUTINE GENERATES DATA FOR Mz, BIVARIATE PROCESS
DEFINE IRANDE1eSes S+((17SI6N(1:1050815))/2)830359738367
OLF INE RANDIELOAT (1)/34389738367,
15201
TA20,
W=C,
00 1 K=14100 @ wWilLlL DISCARD TUESE INITIAL POINTS
1= IRAND
7T2.050TA2:.75¢TB+RAND®,S
12 IRAND

K-4
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TES,658TA+ .55+ TB+RAND=,S
TAST
X(1,1)=TA
X(1,2)=78
DO 2 K=2¢N
1=1IRAND
T3.858TA=e 7S$TB+RAND® .5
1=IRAND
T83,6SeTA+,58sTB+RAND=, S
TAST
X(Ke3)STA
X(Ke2)=TB
RETURN
SUBROUTINE PCC
THIS SUBROUTINE COMPUTES PBEST, UBESTe AND THE PARTIAL
CORKELATION COEFFICIENTS FOR P = 1 TO pPMAXS ANY M
=i
J=PMAX
IAS3.8SGRT(N) /M
IF(PMAX ,GT,IA) PRINT 1, Jol,IA
FORMAT (/' PMAX ='yJle* IS TOO LARGE FOR NUMBEK OF DATA POINTS | =
$915s'% SEARCH LIMITED TO P =*,14)
IASMIN(IA/PMAX) B UPPER BOUND ON PMAX}! EQ 183
FACZ2 ., sMSM/N @ FACS0, wOULD FORCE PBEST EWuAL TO FMAX
SUSTRACT MEANSS FILL IN DATA ARRAYS! Eg 110
Lo 2 I=ieM
TASO0,
UO 3 K=1eN
TASTA+Y(Ke])
TASTA/N
AVE(I1)=TA
ODvu 2 K=1oN
Y(Kel)SY(KoI)=TA
Z(Ke1)2Y(KeY)
INITIALIZE CORRELATION MATRICES: EQS 820 114, AND 105
CALL AUTO(2/N=1,Y+4C)
CO & I=1,M
DO & J=IoM
TASY(1e1)eY(1rJ)
TOSY(NeI)®Y(Ne J)
K(1oJIS(WC(1oJ)+TASTB) /N
wsA(loJd)=wC(I,J)eTB
wa(loJ)2WC(1oJ)eTA
R{Jel)SR(IeJ)
2A(JeI)SWA(LsJ)
wd(Jel)zwWB(lov)
CALL EQUAL(R,V)
CAaLL EQUAL(R,V)
CALL CROSS(2/NeYeYwC)
BEGIN RECURSION
AIC(0)SLOG(DETERM(V))
AICMINZSALIC(O)
PBEST=0

K-5
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CALL EQUAL (U, UBEST)
Lo 5 P2ty lA
EVALUATE MATRICES REQUIRED IN BILINEAR MATRIX EQUATION: EQ 126
CALL INVERT(VaV])
CALL MULT (V]IsngrwD)
CALL SuUAL (WD WB)
Cakl InVvERT(UYUL)
CALL EuUAL{wA»w()
CALL MULT(WD,UI)wA)
CALL AULC(WC,wC/,wC)
SOLVE BILINEAR MATRIX EQUATION; EGS 157=161
CalL SOLVE
EVALUATE PARTIAL CORRELATION CQEFFICIENTSS Eu l2¢
CAkL MULT(WCsVvI,A)
CALL TRANS|WCrwD)
LAkl MULTIWD,UI,B)
Call EWUALIAPAP(Llr1+P))
CALL EQUALI(B,8P(1:1,P))
UPUATE MATRICES U AND Vi Eg 18)
Caki MULT(A,WDIwk)
CALL SUB(U»wE»U)
Cabl MULT(B.,wCswE)
cacl SUR(VinErv)
CALCULATE AKAIKE'S INFORMATION CRITERIONG EQ 180
AICIPIZLOG(DETERM(UL) ) +FACSP
1r (AIC(P) «GEL,AICM]iv) GO TO ¢
AJCMINZAIC(P)
rdeST=P
CALL EGUAL(UIUBEST)
1F(P,Eu,IA) GU TO 5
UPDATE JATA SEQUENCES Y AND 23 EG 111
LaP+}
LO 7 KaNrbo=]
Lu 8 I=1eMm
TASZ(K=1e1)
O 9 Jzlem
TasTA=p (leJ)sY (Ko J)
LiRs1)ZTA
CO 10 [=1l»Mm
TAZY (K, ]1)
Ltu 11 Jslem
TazsTA=A(led)sd(K=10¢J)
Y(Re I)2TA
CONTINUE
CulCULATE nEW CORRELATION MATRICES) EQ 134
CaALbl AUTOLIP+2eNsYomA)
CALL AUTO(P+losN=1rcowB)
CALL CROSS(P42/NeYeZ1WC)
COIY INVE
IF(M,EWw,1l) RETURN
AzM=]
L0 12 I=len
Lalel
LO 12 uslr4
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UBEST (1,J)S,5%(UBEST(I+J)+UBEST(Jr1))
UBEST (J» 1)SUBEST(IJ)
RETURN

SUBROUTINE PFC

THIS SUBROUTINE COMPUTES THE PREDICTIVE
FILTER COEFFICIENTSS ANY M3 EQ 79

IF (PBEST,LE,1) RETURN

CO 1 P=2,PBEST

1A=P=1

00 2 L31rlA

I8=P=L

CALL MULT(AP(1/,1+P)sBP(101,1B)sWA)
CALL SUB(AP(121,L)rWArWA)

Call MULTI(BP(Lle1e/P)rAP (1010 ) eWB)
CALL SUB(BP(1,1,1B) WBy8P(1,1:1B))
CALL EQUAL(WArsAP(101rL))

CONTINUE

RETURN

SUYSROUTINE PEFTF

THIS SUBROUTINE COMPUTES THE PREDICTIVE=ERROK
FILTeR TRAUSFER FUNCTION?I ANY MI EQS 68 AND (J=3)=(Jm=p)

K1, 44278LOG(NF)+,5
CALL QTRCOS(COSINF)

CoO 1 Iz1sMm

Co 1 JsiM

xXX(1,1,4)=0,

IF(I.EQ,J) XX(1,10v)=1,
Yv(1l:.30J)=0,
IF(PBEST4EQ,0) 60 TO 2
1ASPBEST+)

00 3 L=2/1A
XX(LeloeJ)S=AP(loJdrbl=l)
YY(LeIoJ)SO0,

IASPBEST+2

LO & LSIANF
XX(LOIOJ’=°0
YY(LeloJ)=0,

Cabl MKLFFT(XX(10loJioYY(1010J)eCOSIrKr=1)
RETURN

SUBROUTINE SOM

THIS SUBROUTINE COMPUTES THE SPECTRAL DENSITY
MATRIX ANDO COHERENCE FOR Mz=23 EQS 178 AND K=5

T22./NF

DO 1 L=1eK
wWA(led)SXX(Le202)
wA(le2)==XX(Lelr2)
wA(201)==XX(Le2,1)
wA(2r2)2XX(Lols})
wB(1,3)3YY(Le202)
w8(102)2=YY(L01,2)
wB(2r3)2=YY(Le2,1)
aB(2,2)ZYY(Ledr})
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TASODETERM(WA)=0DETERM(WB)
TB:&A(1ol)tNB(ZDZ)?NA(ZoZ)th(Iv1)'NA(102)tNB(2'1)-hA(291)*WB(172)
TAST/ (TA®32+TBas2)

CALL TRANS{WAswC)

CALL MULT(UBEST,WC»wW0)

CALL MULT(NBO'U'WC)

16=WC(1y2)=WC(2,1)

CALL MULT(WA,wD,WC)

CALL TRANS(wBowO)

Cakl MULT(UBEST,WDsWE)

Cakl MULT(wBswE WD)

CALL ADD(WC»WU»aC)
YY(Lr202)Z(WC(1s2)s2+TBas2)/(WC(101)8WC(2,2)) & MAG SQ COH

YY(Lr2:2)SATAN(THIWC(1,2)) w ARGUMENT
xX(Lelr1)=TASWC(101) v AUTO11
AX(Le202)=TASWC (202) w AUTC22
XALLr102)2TASWC(102) e REAL(CROSS:12)
YY(Lr102)=TAsTH ® IMAG(CROSS1:)
AA(Lre2,1)20,
YY{Le202)=0,
CUNT INUE

- KETURN

SUBROUTINE CROSS(N1sN2,A:Bec) @ ArBrA NG
TH1S SUBROUTINE COMPUTES A CROSS CORRELATION MATKIXS ANY M} EG 114B

CIMENSION A(NeM)eBiNeM),C{M,M)

LouBLE PRECISION T

UO 1 I=1eM

CoO 1 J=1M

T=0,00

L0 2 K=N1/N2

TsT+A(Ky 1) sB(K=1rJ)

C(lrJd)=T

KETURN

SUBROUTINE AUTO(N1:N2¢,A,B) @ AsA NG
TAlS SUBROUTINE COMPUTES AN AUTO CORRELATION mATRIX: ANY Mé EG 1i.A

UIMENSION A(NeM)rB(MeM)

LousLk PRECISION T

L0 1 I=1/M

LO 1 J=1IeM

T:O.DC

LO 2 K=N1eN2

T=T+A(K,1)sA(K»Y)

t(led)=T

vbive1)=B(1sJ)

he TURN

SUOROUTINE EQUAL(AB)
TrIS SUBROUTINE SETS TwO MxM MATRICES gQUAL
CIMENSICN A(MeM) obB(MeM)
LO 1 I=ieM
Ly 1 J=isM
Eided)=Atlng)
RE TURN

K-8




O O =N

TR 5501

SUBROUTINE TRANS(A,B}) @ ArA NG

THIS SUBROUTINE TRANSPOSES AN MXM MATRIX

DIMENSION A(MeM)eB(MeM)
CO 1 I=1,M

DO 1 J=1/M
B(lrJ)=A(Jel)

KETURN

SUBROUTINE ADD(ArBrC) @ AsBrA OK

THIS SUSROUTINE ADDS TWwO MXM MATRICES

LIMENSION A(MeM)sB(MeM),C(M,M)
00 1 I=1/M

DO 1 J=1/M
C(IoJIZA(I19J)+B(1ry)

RETURN

SUBROUTINE SUB(AsBsC) @ ArBeA OK

THIS SUBROUTINE SUBTRACTS TWO MXM MATRICES

DIMENSION A(MeM)eB(MeM),C(M,M)
00 1 I=1sM

0O 1 J=1eM
C(lrJI=A(IJ)=B(IrV)

RETURN

SUBROUTINE MULT(A.B8¢C) @ ArBeA NG

THIS SUBROUTINE MULTIPLIES TWO MXM MATRICES

DIMENSION A(MeM)B(MeM),C(M,M)
DO 1 I=1eM

DO 1 J=1,M

T=0, .

DO 2 K=1sM

T=T+A(I1,K)*B (Ko J)

C(lrJ)=T

RETURN

SUBROUTINE INVERT(A,B) b ArA NG

THIS SUBROUTINE INVERTS A 2X2 MATRIX

wIMENSION A(202)9B(2¢2)
TA=1.,/DETERM(A)
B(lrl)=A(2:2)%TA
D(202)=A(1,1)*TA
B(le2)==A(1,2)%TA
B(201)==A(2,3)%TA
RETURN

SUBROUTINE SOLVE

THIS SUBROUTINE SOLVES BILINEAR MATRIX EQUATION
FOR mM=2» BIVARIATE PROCESS: EQs 157, }58, AND 162

TASWA(Ll,1)+wA(2,2)¢wB(1,1)+wB(2,2)
TB=DETERM(WA)=DETERM(WB)

CALL MULT(wWC,WB)WD)
wE(1e1)=WA(2,2)

wEl1r2)==WA({L,2)

wEl(201)==WA(2¢1)

wE(202)zWA(1,1)
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Cakl MULT(WE,WC,rWA)
CALL ADD(WD,WA,WD)
wd(101)zTAswWB(1,1)+TE
wo(202)=TA*WB(2,2)+TE
wd(1,2)=TAxwB(1,2)
wtd(201)=TAswB(2,1)
CALL INVERT(wB,wE)
CALL MULT(WD,WE,WC)
HETURN

FUNCTION DETERM(A)

THIS FUNCTION COMPUTES THE DETERMINANT 0% ¢ 2xz2
CIMENSION A(202)
CelERMzA(L 2 ®A{202)=A(12, 2A 222
ke TurN
)

SUBROUTINE MYLFFT (X2 Yo CCoMe 7SN

CIMENSION X(L))Y(21),CC{L)rLr 2!
EQUIVALENCT (L12o{32)o(L11,L02) e i20sni3:,, .

LCLToL(B) ) e (LOrL T 2 o (LS, L 6B} ) 0 (et (9} o LLdp 20, mn i

2(Llsl(12i,
l\.:dt*M
NOY=N/G
4P LlztiDW+1
HOWP2=NDUPL+ 1
1.02P2=NCB+ND4P2
LO 8 LuzlirMm
LMXS2%% (M=0)
LIA=S2%MX
ISCL=N/LLIX
Ly 8 LM=1l/,LMX
IARG= (LM=1)xISCL+]1
IF(IARG.LE,NB4P1) GO TO 4
C==CC(ND2P2=1ARG)
SSISN*CC(IARG=NO%)
60 10 &
4 C=CC(IARG)
S=ISN®CC(ND4P2=1AKRG)
o U0 3 LI=LIXeNeLIX
JISLI=LIX+LM
Je=Jl+LMX
T1SX{Jl)y=X(J2)
T2=Y(J1)=Y(J2)
X(Jl)=x(Ji)+X(J2)
Y(J1)2Y(J1)+Y (J2)
X(J2)=CeTi=SeT2
Y(J2)SCeT2+4SeT}
8 CONTINUE
CV 40 J=1r12
L(J)=2
IF(J=M} 31,31:,40
31 L(J)=2ss({Meley)
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40

S1

Se
60

CONTINUE

Jii=l

L0 60 Ji=loLl

00 60 Jy2=Jl,L2,L1
v 69 J3=J2,L3,L2
CO 60 Juz=J3rL4,»L3
U0 60 JUS=J4LS) LY
U0 60 J6=JSLEILS
0O 60 J7=J6sL7sL6
LO 69 J8=J7,L8,L7
L0 69 Jo9=J8,LY,L8
L0 60 J10=J9,L10,LY
GO 69 Ji1i=Jl0o,L11,L10
U0 60 JR=J11l,L1i2,L11
Ir (UN=UR) 51,51,52
R=A(JN)

X (JIN)Z=X (JR)

X(JR) =R

FISY(JN)

Y (JNIZY (JR)

Y (JR)SF]

JNSJN+1

CONTINUE

RETURN

ENU

SUBROUTINE QTRCOS(C,N)

L1IMENSION C(1)
Nel=N/4+l
SCL=6,283185307/N
DO 1 I=S1eN4}

C(i)=COS((I=1)=SCL)

RETURN
ENU
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FORTRAN Program for Linear
Predictive Spectral Analysis of a
Complex Univariate Process

Albert H. Nuttall

ABSTRACT

A FORTRAN program for evaluating (1) the linear
predictive complex filter coefficients and (2)
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FORTRAN PROGRAM FOR LINEAR PREDICTIVE SPECTRAL
ANALYSIS OF A COMPLEX UNIVARIATE PROCESS

1. INTRODUCTION

Spectral analysis of a complex univariate process via linear pre-
dictive and maximum entropy techniques is considered in reference 1,
and Fortran programs for resl data are presented there in appendix J.
In this report, we present a program for handling the case of complex
data, ylelding as an output the auto-spectrum of the process.®* Complex
data can be encountered, for example, when a narrowband real process is
complex-demodulated to a low frequency and sampled at a rate comparable
to the bandwidth of the process. When the new center frequency is
zero, the process is called the complex envelope.

In section 2, an example of the use of the program is presented,
and the changes that the user must make for his application are pointed
out. In section 3, the possibility of using this program to estimate
the cross-spectrum of two real processes is investigated and found to
be undesirable. In section 4, a fimitation of the complex predictive
filter for complex waveform estimation is considered, and a possible
generalization is indicated to alleviate the problem.

*The theory and notation for this case were developed fully in
reference 1 and will not be repeated here, for sake of brevity; the
reader is referred to that earlier material for all details.
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2. USE OF PROGRAM FOR SPECTRAL ANALYSIS

The program for spectral analysis of a complex process consists of
five parts: a main program and four subroutines, as listed in appendix A.
Input parameters to the main program (listed in statement 15) are

N, number of complex data points,
PMAX, maximum order of filter considered, and
J, size of FFT for spectral estimate.

The sample program generates a data example in lines 20-33 and must be
replaced by the user to fit his particular applications.

A sample output for N = 100, PMAX = 10, is presented below. It
indicates that PBEST = 1, which agrees with the actual value of p (see
statement 21 of the main program). The fractional powers sum up to
0.99999829 instead of 1; the difference is a measure of whether the
spectral estimate has been adequately sampled in frequency. {(If the
error is too large, J may be increased.)

Since the autospectrum of a complex process is real, but not
necessarily even, it is necessary to compute the spectrum over both
negative and positive frequencies. Thus bin 1 corresponds to zero fre-
quency; bin J/2 + 1 corresponds to + Nyquist frequency, +1/(11); and
bin J corresponds to frequency -1/(JA), where 4 is the sampling inter-
val in time.

An example of a spectral estimate of 1000 samples of a complex
envelope of surface-bottom forward scatter at a 20° gra:ing angle at
frequency 750 Hz over a 20 nautical-mile path is presented in figure 1,
where the sampling rate is 1 Hz. There is observed to be a pair of
spectral peaks at +1/4 Nvquist frequency, a strong very low freguency
component, and a rather syvmmetric spectrum about :zero frequencyr. In fig-
ure 2, the direct path is emploved instead, the sampling rate is 0.1 Hz,
but 1000 samples are still used. The center portion of the spectral
estimate reveals a double peak near :tero frequency and a rapid drop-off
away from this frequency. With these few data points, resolution capa-
bility of this quality is very hard to achieve by any other spectral
analysis techniques.

tJ
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3. ESTIMATION OF CROSS-SPECTRUM OF TWO REAL PROCESSES

Suppose that processes u(t) and v(t) are real, zero-mean, and sta-
tionary. If we form the complex process '

x(t) = au(t) + Bv(t), (1)

where a and 8 are complex, then the autocorrelation of x(t) is

wn

R (1) = X(E)x*(t - 1) = RY_(-7)
= lalR () + [BI%R (1) + aB*R (1) + a*BR (-7), (2)

where the crosscorrelation of u(t) and v(t) is

Ry(D 2ult)viet - 1) . (3

The auto-spectrum of x(t) is the nonnegative real (noneven) function

-]

Gxx(f) = i dt exp (—i2nft)Rxx(r)

2 2
= lal%6,, (£) + |8]%6 (£) + aB*G () + a*8G: (f),  (4)
where the cross-spectrum of u(t) and v(t) is

Gy, () = i? dt exp (-i2rf0)R (1) = G: (-f). (5)

Now let us decompose the cross-spectrum as

Gy () = R(E) + iI(f), (6)

for which (5) yields
R(-f) = R(f), I(-f) = - I(f). €]
7
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Utilizing (6) and (7) in (4), we obtain

e 1al2 . lat2
Gxx(f) = |al Guu(f) 18] va(f)
+ 2Re(aB*)R(f) - 2Im(ar*)I(f),
G (-f) = faf® G LB+ (8] c (£)
+ JRe(aB*)R(f) + 2Im(aB*)I(f). (8

Solving (8) for R(f) and I(f), the real and imaginary parts, respec-
tively, of cross- spectrum G (f) we obtain

_]_._ 1 ’ - oA | 2 oA ;2
REE) = 7 qetarey [Oxx () * G (-0 - 216 () - 2{3i76 (D],

“

I(f)

11
T [e 16 -6 (-D], (9)

if Re(=z2*) # 0 and Im(x2*) # 0. Slnce 3 and are arbitrary, we choose

o

az* = (1 - 1\/-, for which a2t Tyl 1/2. For simplicity, we
choose 'x'= = 'Zi% = 1/v2; then (9) becomes
G f S 0- G £ G £
R(E) = xx( ) Cex! £) i uu( )+ G ()
G (fYy «+ G ()
= EVEN‘G_ (fy . - =& A ,
XX -
V-
’xx(f) - O -0
I(f) = =< ——— = ODD{G“(f)}. 10)

7~

Now we need only compute R(f) and I(f) for f > 0, as {7} indicates.

An alternative method to (10) was presented in reference 2, equa-
tion (4}. However, that method required calculating four auto-spectra,
whereas the current method requires calculating only three auto-spectra:
Guu(f) and Gy (f) are real and even, whereas Gy, (f) is real, but not
necessarily even.




TR 5505

The choices of a and B in (1) are still not unique. If we let

a = 2-1/4e16, 8 = 2-1/4e1¢’ (11)
then
aB* = 2-1/2e1(e-¢) - 1 5 i_ 2'1/2e-1"/4. (12)
Therefore, we must have 6 - ¢ = -n/4. There are two obvious choices:
Choice 1
8 =0, ¢ =7/4
P Y i)
V2
x(e) = 27V « L2y (0], (13)
V2
which is not very symmetric.
Choice 2
8 = -n/8, ¢ = n/8
o = 2-1/4e-1ﬂ/8 = a - ib
g = 2-1/4e1w/8 = a .+ ib
a=2Y% cos (n/8), b = 271% sin (n/8)
x(t) = alv(t) + u(®)] + ib[v(t) - u(v)], (14)

which is the preferred form.

For known autocorrelations or auto-spectra, (10) furnishes a valid
way of czlculating the real and imaginary parts of the cross-spectrum
of real processes u(t) and v(t). However, when the auto-spectra are




TR 5505

unknown, spectral estimates must be substituted in (10). Although R(f)

and I(f) can both take on positive or negative values in anv frequency
range, there is a constraint on their magnitudes. Namely, the magni-
tude-coherence is upper-bounded by unity. However, several numerical
examples using the programs in appendix A, for cases where the true
magnitude-coherence was near unity, yielded estimated magnitude-coher-
ences greater than unity in some frequency ranges. This was traced to
the fact that the estimate of Gy, (f) can be too small and/or the esti-
mates of Guu(f) and Gyy(f) can be too large. This type of coherence
estimate is intolerable; hence, estimation of cross-spectra of real
processes by means of the auto-spectrum of a complex process is dis-
couraged. The same conclusion is offered for the method in reference

10

-
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4. A LIMITATION OF COMPLEX PREDICTIVE FILTER

The theory behind the program presented in appendix A has been
given in reference 1 and is based on a linear predictive technique.
Specifically, given p past values of complex process {xy}, a linear
one-step prediction of xy is attempted according to reference 1, equa-
tion 58:

A
xk z 2 anxk-n' (1%)

If we express all the quantities in (15) in terms of their real and
imaginary parts according to definitions

A

A A . .
xk = uk - 1vk, xk = uk - 1vk, an = an + 1En. (16)
then (15) can be expressed as
A P
Y T Z(anuk_n = BpVkon)»
n=]
A P
Yk " z (enuk-n * anvk-n)' (17
n=]
But (17) is not as general as the form for prediction given by
(vns» vn, Bns ap real):
P
uk ® Z (hnuk~n * vnvk-n)'
n=x]
P
Yk * ngl(enuk~n * Qnd-n)' (18)

It is apparent that the mean-square errors of predictions in (18) could
be made smaller than those in (17), in general.

The complex estimate of x, that can be formed from (18) is
P

8% Y W T nzl(gnxk-n * hnxi-n)’ (19)

11
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where

1 .
8, = 3lu, +a ¢ i(8 - vl
h sl[-u -a_ o+ i(8 + v)] (20
2 n n n -’ -

(The form 719} is the one alluded to in reference !, footnote o egua-

tion (58).) The coefficients {gn?p and €hn‘p in 19 are twe com-

1 1
pletely independent sets of complex constints that can be chosen. IS:ince
the complex predictive filter in 7157 is obviousiv a specia. case o°f
197, 1t 1s expacted to have a more !imited abiiity in waver rm ~red.c-
tion than (19%; however, '15) may suffice for spectral arr: wi73iicn

purposes. ‘For a real process, '19) reduces to 13

Now suppose that a pair of real! processes were ictuall. generatad
according to p-th order autoregressions,

P

uk . (Lnuk-n : nvk-n * dk‘
n=\}
P

vk L (:nuk-n “ aYven T bn'
n=1

where all the Juantities are real. Then complex prraocess

where 2, and hy are given by (20), and

wk z dk . lbk’ 23

Now 1f ay = -up, Fpoz v, for 1 <no< opin (1Y, we vet g = 0, R o= Ly
RN

* 1.n, and 22" vields autoregression
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So a linear prediction according to (15) is not expected to do too well
on the actual waveform values given by (24), no matter what the statis-
tics of {wy} are. However, the spectral approximation available via
(15) of Gx(f) for process (24) can be very good if p is chosen large
enough in (15).

As an example, let p = 1 in (24):

xk = hx{-l . wk, (25)

where h and wy are complex with

Ih| <1, (26a)

k-n 6°n, wk"k-n = 0. (26b)

The excitation process described in (26b) is an analytic process, as
witnessed by the zero value for the second ensemble average. We find
averages

; = » = 7
M ken = 00 X = Sope P 2 0, (27)
and correlations
1 % no~0, 2, 8,
Rn H xkxi_ af— s
1< |n| 0O,n=1,3,5, ... (28)
h ‘ 0, n=0, 2, 4, ... (
R = x. x 2 —
n k“k-n 2
LI [T T T (29)

Since (29) is not zero for all n, process {xx} of (25) is not an anal-
ytic process.

If we use the facts (derivable from the definitions above) that

= L ]
R R* R

. R, (30)

13
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we find that the spectra

G(f) = A Z Rn exp (-i2nfny)

nes.e
1+ In|?
=8 ? Pt
'1-1h|" exp (-i2n£22)
and
«»
G(f) =2 ] R exp (-i2nfna)
nNz-o n
- ch cos (2nf4)
4 T , K
[1 - [hi{° exp (-i27f22)
Generally, spectrum G(f) is real and positive and € f> :s complex
and even about f = 0. For this particular example, 13, 3:¢ 1s ai
even about f = 0.
If we attempt prediction on the process 25 according to .3
we minimize
»g e - |Q - X N
| S § k
we find
A 0, ng .
a = s
h'", n =2
and
— |- wyt s
. ls =
mxnlck s
1+« h ", p>

Now (34) 1s hardly the same result as the actual autoregression

Nevertheless we find spectral approximation

14

“31,

ta
-

(VY]

)
("3}
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a1 - 3H, p e

& - :
G(f), p > 2 (36)

from (34); that is, the spectral approximation is exact for p > 2, de-
spite the obvious error of (34) in terms of waveform prediction.

If instead we attempt prediction on process (25) according to (19)
and we minimize

we find, of course,
0, n#é 1l
g = 0, h =
n h, ns=l (38)
and
-inl?kli‘- 1= "‘k’i . (39)

For 'h|2 near 1, the error (35) for P > 2 is approximately twice as
great as (39).

For the general autoregression in (22), it is shown in appendix B
that for analytic white noise {(wy}, (hn)Y = 0 if and only if «&.}p = 0.

Thus, given a complex data sequence {xn of unknown origin, we can de-
fine

A N
€ : g 1 = 7 0 <m,
"% emey "R
N
A 1 2
R == ¥ |x|°. (40)
o N nsl n

. A
Then, if !l.[/ﬁ << 1 for 0 < m < q, the autoregressive model (19) with
{hn}p = 0 can be used with some confidence for p < q to predict the ac-
tual waveform. But, even if some ﬁ. # 0, the autoregressive model (19)

with {hn)g = 0 can still be used to estimate the spectrum of the process

15
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{xk}; however, in order to attain equivalent spectral estimates, it has
been observed that more data points, N, are needed when some hp # 0

than when {hn)g = 0.

If a process is generated according to autoregression

P

' ) N P (41)
n=]

where process ‘wy:' is not analvtic, then {Ry} are not necessaril- :ero.
Thereby prediction (15) will not necessarily give accurate predictions,
although the spectral estimate can still be adequate; this situation is
discussed further in appendix C. Ceneration of analvtic processes is
considered 1n appendix D, and a more thorough look at the prediction
capability of (19) is considered in appendix E.

16
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S. DISCUSSION

A program for estimating the autospectrum of a complex univariate
process via linear predictive techniques has been presented. Although
it can be used to estimate the cross-spectrum of two real processes, it
is not recommended because estimated values of magnitude-coherence
greater than unity can result. Instead, the methods of multivariate
techniques presented in reference 3 should be employed; in fact, the
theory for complex multivariate processes is developed there and a
working program given.

Although the program presented here presumes that none of the data
points are bad, it may be readily generalized to include bad data
points. The method and program presented in reference 1 furnish the
necessary background for this extension.

Application of the linear predictive technique in (15) is most
successful when the complex process under investiagtion is analytic.
Otherwise, the more general prediction technique in (19) is worthy of
consideration.

17/18
Reverse Blank
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Appendix A

FORTRAN PROGRAM FOR SPECTRAL ANALYSIS

The following program for spectral analysis of a complex process
consists of five parts: a main program and four external subroutines.
The subroutine BURGCX computes the complex predictive filter coeffi-
cients, POWERC computes the fractional power in bands (JA)‘1 Hz wide,
MKLFFT effects a fast Fourier transform (reference 4), and QTRCOS gen-
erates a table of cosine values (reference 4).
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(X N o N s Y a N ol aNaN g sl o aN ol o

21
22
1

C

10

SPEC IRAL ESTIMATION FOR CUMPLLY DATA
USEr 2+ CHANGE LINE 15 AND REPLACE LINEq 20=33
N = UMBEx OF COMPLEX DATA POL:TS# INTJFGER [hbuT
X(1)roeera(N) = COMPLEX INPUT DATAI ALTERED CI. QUTPUI
PMAA = MAX1MUM URDER OF FILTEK; INTEGgh T.4°uT
J = 5leE OF FFT  (MUST BE A PO.ER OF ; TO USEL " (LFFT); INTEGeRr IrUT
PBEST = BEST QRPER OF FILTER: [NTLGER CUTPUT
A(Ll)reee?A(PSEST) = CUMPLEX PReDICTIVE FILTEIC COufFFICIENTSE CUTPUT
PROL = PROCUCT (1=AuS{A(P))ex2) FOk P=y TO POEST: wUTPUT
RHO(1)reee s RHG(PMAX) = COMPLEX MOKMALIZED CORACLATICLSE JUTPLT
XX(1)reaorXX{J) = FRALTIONAL POWERSE UTPUT
CA(l)reeerCOlYsY+l) 3 GUAKTER (OSInE TABLEZ FUF FFT PurPOSES
Y IS A REQUIREDL COMPLEX AUXILIARY ARRLY
Yr 1S A REQUIRED AUXILIARY ARRaY

PARAMETER Nz 1000 PMAXZ10» g= 9120 JH13J/u+]

1NTEGER PLEST

CUMPLEX X(P) e Y(N) o n(PMAX) piRHO (FHAX)

CIMENSION XX{J) e YY(JLeCO(JST)
COMFLEX INPUT UATA IN X€1)peeesX(l)

COMPLEX A1,Zt1490)

CEFINE IRANDZI®928 1S54 (1=SIGH(LrIage®15))/2)e08359738367

LEFINE RANUSELOAT (L) /734359738307,

1=5281

AlS(.65,,69)

LU 21 L=201430

I=IRANU

R1ZRANU=,S

I=1RANLU

R2=RANQ=s5>

2(L)=ALls2(l=2)+CMPLALR],R2)

CO 22 I=1,N

X(1)=22(141400~N)

PRINT 1

FURMAT (1HLl,* INPUT DATA:")

PRINT 4y (X(I1)eIS2eN2
EvVALUATE PREVICTIVE FILTER COEFFICIENTS

CALL BURGCX (N/PMAX,XeY,PBESTA»PROp,RHO)

PRINT 9, X(N)

FORMAT (/' MEAN = (' E13,8,','4c13.58,")")

RISREAL (Y(N)}

PRINT 10¢ K1

FURMAT (' STANDARD UVEVIATION =',E13,8)

PRINT 2, PBEST

FORMAT (/' PBEST =1,13)

IF(PBEST,EQ,0) GO TO 12

FRINT 3 :

FURMAT (/' PREDICTIVE FILTER COEFFICIENTS FOR FUEST:')

PRINT 4, (A(I),I=1,PBEST)

FORMAT (4iE18.8,£15,81)

FRINT 5, PROD

A-2
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FORMAT (/' PRODUCT (1=ABS(ALP))*%2) ='+E13.6)
PrR4nNT 6
FORMAT (/' NOBMALIZeD CURRELATION CoEFFICIE . TSIY)
PRINT 4, (KHO(I)eIZ1lePMAX)
CALL QTRCOS(CO»y)

EvALUATE FRACTIDNAL POwERS
Call. POWERC (PBEST»A»PROLIJIxX2YY2Co»SUM)
FRANT 7
FORMAT (/' FRACTIONAL POAERS: ')
FRINT &, (XX(I)eIS1,J)
FURMAT(2Xe10E13,6)
FRINT 11 SUM
FURMAT (/' SUM OF FRACTIONAL POWLRS ='rE13.6)
tllh‘

AUk ROU L Lt CURUCA I e PEAX e Xe Y 2 PUR ST A s PRED T4
Tkt Sushe Tl Co«PLIES THE CuMPLEX pREDICTIVE ¢ [LTL~ COLFFICTELTS
4 = weukn OF (UMPLEX UATA POITSé Liive GER IMFOT
P T AATMUN ORyeR oF FLloTER; INTEG:r InPUL
A1) oAl soeerafN) = LCUMPLIX UATA ARRLY Ou IMFUTE ALTEREL ON OUTHRUT

Vo wuTRUTe X(1) e X(2)reesr X (Piday) = A(lSPPAX)v»(?iHﬁAA)Oco.'A(P“AX3p“ﬁX)

YOL) oV (2) s, perYEN) 2 COMPLLX AULXILIARY ARRAYE SCRaATCie INFUT
(VI (.Ur"”JT' Y(l)'Y(C)'OQO'Y(pMAX) - A(l:l)ll\(";'d)o.ooinﬁp"AX‘l"l'-’-'x)
Wi, LulrUTy K(N) = JdEAne Al Y(r) = STt DARC LEVIATICI OF INPUT DaTA
PotsT = BL5T URUEK OF FILTER: INTREGLER cUTPUT
A(Ll) )Rl reserniPorST) 5 COMPLEX FREDICTIVE FHILTER CUEFFICIENT ARRAY
A(LiPubs>T ) ALZiPBEST) v, eern(PuFSTIP3EGT) I OUTFUY
Prul = PRU UCT(1=AbS(n(PiPLEST))s*c) CR P=1 TO ; 0ESTS OUTPUT
RIU(2) 0 eeer RHU(PMAX) = CUMPLEX NOm:ALTZED CORRELATICISE OUTPLT
CultrieX X(id o Y(H) 2A(PHAX) oxHUIPMAX) 15 REGUIKED IN «AIN PROGRZM
JUTEGER PMAAIPLEST P
cuutLE o ReClSIoy SakeSal e St
CumPLER Slron T
CumPLEX X(1) oY (1) en(l)erHO(])
IF(rvax 6T, 3.35uRT(1.}) PRINT 29 PMaXxN
Fur#AT (/Y PieAX =tolle? IS T00 LARGE FOK -wWMBIR OF [ATa POINTS 11 =
$,[2)
CoVFUIE tipAle
S1S()ere)
v 1 Iz)eN
L13S1ex( 1)
SISCAPLALREAL(SL) Zive AIMAG(S]L) /IV)
SULTIRACT g Arer ANU SCALE TC UNIT vARIAMCE
5‘=°o
19 3 I=1N
) II=X(1)=%1
SeSEHREALIX(]1))»2c+AIMAGIX (1)) ee2
CeSSURT (Se/ (ti=1,))
0310/5‘
Ly 3 I=leN
Ava)ZCr LA (FEAL(X(L1))eB,AINAG(X(1))eB)
Yyl)=x(1)

A-3
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(¢ BEGLl RECURSION
r=0C
FrOLJUC=1,
rilMmINZE,
rBeST=0
FRkub=l .
L =P+l
C CALLULATE CROSS=GAIN} Eu, 155
SalSH U™
Sulz=te0"
$8=9,0C
LaP+l
Lo 7 I=belv
T1sREAL(ACTL) ]
Te=AIMAGIX(]I))
TO=REAL (Y(I=3))
J4=altaciY{i=1))
SAKZSAR+T1aTI4TcxTw
SALZSA]+ 728 T3~=T1x14H
7 SBESB+T1%%2+T2ea24+ T35 24TU% 2
t=2.8SAR/Sb
C=2,%SA1/S08
G=CHPLX (B C)
E=1,-B8+BuCsC
PRODUC=PRODUC s
C CALCULATE FILTEB COEFFICIENTSS EQS. 16C81u48, STOREL Iiv X{1)ree,s X(P)
x(P)=6
IF(P,Eu,1) GP TO 8
=P/2
L0 9 Iz1,L
T=X(1)=GsCONJG(X(P=12)
X(P=l)=X(P=1}=GaCONJG(X (1))
9 x(h=T
C CALCULATE NORMALIZED CORRELATICN COEFFICIENTE E£3, 149
o T=A(P)
IF(P.EG,1) GO TO 14
L=P=1
CO 15 1=1-L
15 T=T+X(1)®RHO(P~])
14 RHO(P)=T
C  CALCULATE AKAIKE'S INFORMATION CRITERICNI Eub, 1508202
RELERR=B#SNGL(SB) £ (28 (1v=P) )
AlC:LOG(RELEBRloQ.%FLOAT(P)/(N-P!
IF(AIC,GE.AICMIN) 60 TO 10
AICMIRN=AIC
PIEST=P
PROQO=PROPUC
Cu 11 I=}rP
11 Acl)I=x(l2
10 IF(P,EG,PMAX) GO TO 16
C UPDATE FORWARD AND BACK®AKRU SEQUENCES; EQ, 153
L=Pe+l
00 12 I=NsL =}
Tsx(])=GeY{]l=1)
Y(1)=Y(]wl)=CONUGIL)SX(])

A-4
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12 x(h=T
Y(P)=06
60 TO 6
it Y (PMAX) =6
1IF(PBEST,EQ,RMAX) G0 TO 4
C COMPUTE EXTRAPGLATED NORMALIZEp CORRELATION
C COEFFICIENTS FROM PBEST+l1l TO PvAX: EQ, 165
=PBEST+1
00 17 P=L+PMAX
A(P)=(0,00,)
T:(o. '0.1
LU 18 1=1+PBEST
18 T=T+A(I)*RRO(P=])
17 RHO(P) =T
4 X(N)=S1
Y(N)SCMPLX(S200,)
RETURN
enb

SUOROUTINE POWERC(PBEST »ArPrODIve Xy YYoCOpSU )

C Trls SUBROLTINE COMPUTES THE FRACTIONLL POUxERS Ii. BALLS 1/(J=0UFLTA)
L PaEST = BEST ORDER OF FILTERS INTEwcR INPUT
C A(l)reserA(PBEST) = CUMPLEX FILTER COgFFICIFMT annAY; INPUT
C PRUL = PROCUCT(1=AgS(A(P))*%2) FOR P=q TO FokSTs INPLT
C J = SIZ2E OF FFTH INTELGER InPUT
C XX = AUXILIARY ARKAY UN INPUT
C XX(1)reeesXX{J) = FRACTIONAL PQWERS 0;. GUIPUT
C YY = AUXILIARY AKRAYF SCRATCH [NPUT
C CU(1)reesrCOlUs4+1) 5 GUARTER COSLIWE taBLE Fun FETI LiPUT
C OIMENSION xX(J)rYY(J2eCO(J/441) 1S REGUIRED 1N t alt PROGKAM
¢ COMP_EX A(PMAX) IS5 REGUIRED In MAIN pROGRA 4y w it nE F 4AX,6E«-BEST
INTEGER PBEST
DIMENSION XX(1)YY(1)eCu(l)
COMPLEX A(1l)
F=PROD/J
xX(1)=1,
YY{(1)=0,
IF(PobSTWEG,0) 60 10 &
Lu 1 1=1¢PBEST
ax{I+l)=eREAL(A(I])
b YY(I+1l)=PAIMAG(A(L))
v L.=PBEST+2
Co 2 I=sLed
ax(l)=o,
2l Yv(l)=0,
L=1,48278L0G(J)+,5 P LnG2(J}
Cakl MKLFFT(XX»YYeCOrLe=1)
SumM=0.
OO 3 I=1¢v
AXCIISF/EAX(])e824YY (1) %02)
3 SUMSSUM+ AKX (1)
RETURN
[RLTY)
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SUOROUTINE BLFFT(A»YoeC oMy TSN)
LAMENSLICN X(1)eY(1)»CC(L1) ol (22)
rWUIVALENCE (L12eL 013 (L13,L02) 3o (LIBL{IN )0 (T (W) )sllusl (B)),
LLT ol (o) 2o (LEOsLCTL) p Lo LA ) ol r 19 v (L3, (1M ) s fleol (11,
2(Llel(12))
[ me%sM
INVE 23874
LLePlan e+l
| Cur2stivlibl e}
1.udP2I U ENC P2
0 8 Lozlem
LWAZ28 s (Ne_ ()
LIxzas 'x
1sCu=ei/LIx
vV 8 LMmzlellMX
JARGS (L-*1)#15CL+1
IF(IARG,LLMBUPL) OC T( 4
C==CC(inL2Pg=1AKY)
G21SHSCCUIARG=UY )
60 TO o
4 C=CC(lAaRG)
S=iS ixCC(NLURZ2=[AR V)
O Ly B8 LIsCINeNaLLX
wiSLI=L]1X+ M
weSJieL X
T12X(Jl)eX(o2)
T<e2Y(Jl )oY ()
AWI)EX (Ul +X02)
Y(wl)ZY (Jl) ey lue)
A(wR)SCaTl=5gTR
YiJ2)=CeT2+52T1
o CunTIUE
LO 8C J=1ri2
Liv)=l
IF(J=M) Ale33ru4c
31 L(J)=cesiMel=y)
8C CuLiiTINUF
wN=1
Lv éen y13l,Ll
vV 67 u23dla2eldl
v B0 W3FVeL3sL2
LY 60 wuSJdIrlé,Ld
Ly 60 J53J4 LDy
v 00 J6FJS5,LOLDS
LO 60 J75J6/L740L0
w9 B0 UBSJTLB,L7
uO 60 U9svarL9,L8B
v 67 Ul0=u9eLl1) LY
Lu 60 Jll=ullrlll, L0
LO 6C URZJILrL129L1)
IF(urimdrl 51001452
S1I hzA(JN)
X (JNI =R (JR)
A(JR) =K
FI=Y (Jty)
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Y (JN)SY (JK)
Y(JR)=F1
52 JUNSJN+]
60 CUNTINUE
KETURN
Enb

SUBROUTINE GTRCUS(Cow)
LIMENSION C(1)
l.“l:nl/“*l
SCL=6,203185307/N
{0 1 I=1¢Nu}

i C(L)=CuSi(I=1)=5CL)
nETURN
[ A\TY]

A-7/A-8
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Appendix B
PROPERTY OF AUTOREGRESSIVE MODEL
The process of interest here is given by the autoregressive model
(22):

p
X = nzl(gnxk-n * hnxi-n) * ¥ (B-1)

where excitation {wy} is analytic white noise. That is,

PR e L -2
It then follows easily that
“)Xk-n = Som’ "1 *kem = 0> m > 0. (B-3)

Use of (B-2) and (B-3) then yields correlations

P
Rm = *x-m * n§1(gﬁ“m-n * hnR;-n)’ m 20, (B-4)
P
= X x¥ = -
R, = Xx¥ nzl(gnkm_n +hR )8, m>0. (B-5)

For given coefficients {g }g and {hn}P, (B-4) and (B-5) constitute si-
multaneous equations in tRe unknown c&rrelations.

Now let us suppose that

h =0, l1<n<p. (B-6)

Then, from (B-4), the first p + 1 equations yield

B-1
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- - - s 0
Ro glﬂl ngp
Rp - glczp_1 - - ngo = 0. (B-")
Therefore
2 ‘B-83
Rm 0,0 <m<p, { v

and from (B-34) and (B-6) it follows that Ry is zero for ail m.
Conversely, assume that

R =0, 0 <m«<p. (B-9°
m -— -

Then, from (B-4), the first p equations vield

thl + h:R2 ¢ L.+ hpRp = 0
thZ-p + hZRS-p S S hpR1 = 0, (B-10)
Therefore
h =0, 1sn<p, (B-11)

and from (B-4) and (B-11) it follows that Ry is :zero for all m.

Thus we have shown that (hn)q = 0 if and only if (Rm}g = 0 in the

autoregression (B-1) with analytic white noise excitation.

B-2




Appendix C

NONANALYTIC WHITE NOISE EXCITATION

Suppose a process is generated according to autoregression

p
x = Lg% n ¢ W
n=]
where excitation {wy} satisfies
wkwl.t-m * Btsorw “Wrem ¥ 86orr\ )

TR 5505

(c-1)

(C-2)

8 is complex and nonzero; therefore {wyx! is not an analytic process,

although it is white.

Then {Ry! need not equal zero, even for autoregression (C-1). For

example, for

p=1, g, " 8 lgl <1, g complex,

we find correlations

The corresponding spectra are

AB

G(f) = i 2
ge |

1 -

48

G(f) = 5
1 - 2g cos (2nfa) + g

(C-3)

(C-4)

(c-5)

(C-6)

(C-7)
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Since the {Ry} are not zero, appendix B shows that the coeffi-

cients {hp} would not be zero in model (B-1) with an analytic excita-
tion.

Optimum prediction on process (C-1) using (15) gives

A g, n=1
a = ,

n 0, nfl (C-8)
with a minimum mean square error equal to B, and the spectral estimate
is identically (C-6). Thus, for this example, the nonanalyticity of
the excitation is no problem.

For the more general model of (C-1) with p > 1, it can be shown
that all {Ryl} are independent of the value of 8. Then, although (15)
may not be too accurate for waveform prediction, it can still be used
for spectral estimation purposes.

Optimum prediction on process (C-1) using (19) gives

@1 =g, other coefficients = 0, (C-9)

with a minimum mean square error equal to B. This yields the same re-
sult as above.

Cc-2
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Appendix D

A METHOD OF GENERATING ANALYTIC PROCESSES

Suppose linear filter H(f) is excited by complex input x(t),
yielding output y(t). Then correlation

R (1) = FTOY (€ - 1) = [ df exp (izvff)cx(f)!ﬁ(f)jz ., (D-1)
and spectrum
Gy(f) = [ dr exp (-iwar)Ry('r) = G (£) H(f)]". (D-2)

Also correlation

Ry(r) T y(t)y(t - 1)
= [ df exp (i2rfr)€ (£)H(E) H(-f), (D-3)
and spectrum
Gy(f) z [ dr exp (-iwar)Ry(r) = G_(f) H(f) H(-f) . (D-4)

Complex process v(t) is defined as being analvtic if {D-3) is zero
for all t. Suppose that filter

H(f) = 0 for f < 0. (D-5Y
Denote the output of filter (D-5) by y.(t). Then (D-4) shows that
TK(f) and R (1) are both identically zero for all argument values.

erefore 51ng1e sided waveform y,(t) is an analytic process.

Let complex envelope

y(t) = y’(t) exp (-ianot). (D-6)

D-1




TR 5505

Then

(=0 =z vitdy*’t - 7} = - -i2-f < = -7)
R (- vty Ry‘( ) exp (-i fo ) 0 D-")

N
-

for anv f,. Thus the comrlex envelope of any stationary process is an
analvt:ic process.

~

rn the other kand, For the two real processes urt) and v T, ne
1inear 2ombination, :u %~ v %, where x and I are Zorrlex, ever
vieids an analvtic rrocess unless Ry, ° 5, Pot, and Ry 7 satisty
verv sperl.al restridtions.  Thus the process Jensiructed in . was not
anal tic and coull net mave heen expected to wleld geod rreiiltion fap-
abri:e RS
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Appendix E

CAPABILITY OF A MORE GENERAL PREDICTION MODEL

If p is infinite in (19), we have prediction

Xk © Z (8 %kon * hXkon) - (E-1)
n=1
Minimization of [€}[? = [X) - xk|? yields the simultaneous equations
z (gan-n * hnRa-n) = Rm’ l<m,
n=1
L (gR +hR: )=R,1<m (E-2)
n=1
It can then be shown that Ty is a white process with
. S~ b
m1n|ek| =R, - ) (g R* + hnR;). (E-3)
n=1
Also it can be shown that
€ &m =0 form # 0, (E-4)
with
~ 2 o
e =R - n§1(g“‘z“ +hR). (E-5)

However, E} is not an analytic process since (E-5) is not zero.
The simplest example to demonstrate this is

Rn = Roson’ Rn = Roéon’ (E-6)

for which (E-3) and (E-5) yield R, and Ry, respectively.

E-1
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The spectral relations for (E-1) take the forms
6o(F) = G () [a(e)|? + 6 (-0 [B(H)]?
X X X
+ G _(£) A(E)B*(£) + [6,(D)A(£)B*(£)]* (E-7)
and
GY(f) = Gx(f)A(f)A(-f) + G;(f)B(f)B(-f)
+ Gx(f)A(f)B(-f) + Gx(-f)A(-f)B(f), (E-8)
where
A(f) = Z g exp (-i2="n2)
n
n=1
and
B(f) = | h_ exp (-i27fnl) (E-9)
“.n
n=1
are considered known after solution of (E-2) for coefficients {gn} and
‘hpt. Equations (E-7) and (E-8) can be solved for Gy(f) and G (1):
[y a» . v axp ] - F~
AA* B B* A BT A*B_ bx-, u?,.
B B* A A* A B A*B G G
X X
A B AB A A B B G G,
- - - - X X
| A18* AvBr BBz arar] |G & (E-10)
where
-\ = \(f), A = ’\('f):
G G (f), 6 =G (-f),
X X X X
€ =€ Y, €~ = € (> (E-11
X X X X
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This requires the inverse of a 4 x 4 complex matrix at each value of
frequency f,

Thus an alternative spectral estimation technique is available
from the more general prediction model in (E-1). Whether it is worth-
while in terms of stability and resolution is unknown, as it has not
been pursued.

E-3/E-4
Reverse Blank
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Probability Distribution of
Spectral Estimates Obtained Via
Overlapped FFT Processing of
Windowed Data
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ABSTRACT

The characteristic function of spectral estimates
obtained via overlapped FFT processing of windowed
data is presented for a random process containing a
signal tone and Gaussian noise. For the special case
of noise-alone, the probability distribution of the
estimate is plotted and compared with an approxima-
tion utilizing only the first two moments and found
to be in excellent agreement in probability over
the range (.0001, .9999) for several data windows,
overlaps, and time-bandwidth products. This result
means that knowledge of the equivalent degrees of
freedom of the spectral estimate is adequate for a
complete probabilistic description, even when the
overlap results in significant statistical depend-
ence of the component FFT outputs.
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PROBABILITY DISTRIBUTION OF SPECTRAL ESTIMATES
OBTAINED VIA OVERLAPPED FFT PROCESSING
OF WINDOWED DATA

INTRODUCTION

Estimation of the autospectrum of a stationary random process by
means of overlapped FFT processing of windowed data (the so-called
direct method) is a popular and efficient method, especially for data
with pure tones present. Stable spectral estimates, as measured by
the equivalent degrees of freedom of the spectral estimate, result
when the product of the available record length and the desired
frequency resolution (the time-bandwidth product) is large in com-
parison with unity. (See, for example, references 1 and 2 and the
references listed therein.)

The equivalent degrees of freedom of the spectral estimate is an
incomplete probabilistic descriptor, because it depends only an the
mean and variance of the random variable. In this report, we address
the problem of obtaining the characteristic function of the spectral
estimate with overlap processing,of a signal tone present in Gaussian
noise, and thence the cumulative probability distribution (perhaps by
numerical means as given in refereances 3 and 4). For the case of
signal-absent also, wc wiil compare the exact probability distribution
with an approximate distribution that uses only the first two moments

of the spectral estimate, to see when the approximate distribution can
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be used as a valid probabilistic description. Some related work is
available in reference 5 and the papers cited therein,

A discussion of the relative stability of the spectral estimates
with signal tones present, and of a cross-spectral estimate,completes

the presentation.

CHARACTERISTIC FUNCTIC{ FOR SIGNAL PLUS NOISE

The method and conditions of processing are described fully in
reference 1 and, for sake of brevity, will not be repeated here. The
power spectral estimate at analysis frequency, f, is given by

(reference 1, pp. 2-9)

o>
—~

e,
f—

P
P P ’

where P 1s the total number ot weighted data segments, Here*

Yp(f) =d/rdt exp(-127ft) x(t) w]t - L - (p-1.5], h

1 af—

where x(t) is the available (complex) duata process, w{t' 15 the data
window of length L, and S is the amount of shift each adjacent data

window undergoes. The fractional overlap 1s therefore 1 - S'L.

*Integrals without limits are over the range of non-lero ntegrand.
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If we let x(t) be composed of a pure signal tone*
s(t) = A exp(i2mf, t+i6) (3)

and zero-mean Gaussian noise n(t), (2) can be expressed as

Yp = Yps + an ’ (4)

where the variable f is suppressed for notational convenience and

complex (non-random) constant
= - T - 1 -
Yps A W(E fo) exp[le i2n(f fo)(E'L + (p l)S] . ()

where

W(Ef) zfdt exp(-i2mft) w(t). (6)

IW(f)I2 is called the spectral window (see equation (5), reference 1),
and has analysis bandwidth B. Now if analysis frequency, f, is not
within a bandwidth, B, of tone frequency, fo, (5) will be zero; there-

fore,we limit consideration to 1f-f°|<B. The remaining term in (4),

- . 1 1 . (p- 7
an -/:n exp(-i2nft) n(t) w[t -3 L - (p 1)5] , (7)

is complex Gaussian since n(t) is Gaussian,

Substituting (4) in (1), the spectral estimate is given by
P
Ay o1 2 (8)
G(f) = p E Yo * Yonl®
p=1

*The generalization to several separated tones will be obvious.
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pn} are complex correlated

Gaussian zero-mean random variables, and the correlation is due to the

where {Yps} are complex constants and {Y

overlapped processing.
In appendix A, the characteristic function of forms like (8) is

evaluated; it specializes here to the form

P
ilu [*x z/p
C(&) =H (1-ix_£/P) " 'exp _l_P——L— , (9)
P 1-ix_&/P
p=1 P

where {Ap} are the eigenvalues of P x P matrix

P
E gY Y ’z
pn qn 1 (1m

K

and
1

3

QHK—'m i

vy

where @ 15 the normalized modal matrix of K, and

m - [Y LY ]T N
s Ps) . L2
The evaluation of K in (10} 1s considered 1n appendix B. [t 1
given hv
K = |K =G (1) (0IR, 13
4-p n w

where \;ntfv 1~ the noise spectral Jdensity at analvsis frequency, r,

¢ (1) =J(ht wit)w*(t-11: BER
w
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and

rl T T T ]

2 P-1
=|T =T ., 15
[ Q'P] .-1 . ( )

r
| 1-P {
where
m 4, (0)

A Fourier transformation of (9) would yield the probability
density function of the spectral estimate (8), for a tone present

This would have to be done numerically, but has not been pursued here

MEAN AND VARIANCE FOR SIGNAL PLUS NOISE

By means of (A-16), the mean and variance* of spectral estimate,

G(f), in (8) can be expressed as

Mean {G(f) K + 7 E Im |2, (17

P-1
- k
var {c(f)} =1 -’——I [k, |? & tm Km (18)
P k P2
k=1-P

in terms of the quantities in (12) and (13). Employing the explicit

relationships in (12) and (13), there follows
Mean {c(f)} = G_(£)0,(0) + AF|[W(E-£ )| (19)

*More generally, the cumulants are given by (A-7).
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and
P-1 K| 2
¢ = [g 21 1- ) e
var {8} = [ 00, @] Z :{ P) K
k=1-P
P-1
1 k : SN
+2A7 [W(E-£,)1%6 (D)9, (0)F E (1- l$l>rk exp<1k27(f-fo)§> , 1203
k=1-P

where we have employed (15) and (5).

At this point, it is convenient to define the output signal power

of a window filter with transfer function, W, centered at f as

Q (f) = A%|W(E-F )%, (21)
S (o]

and the output noise power of the same filter as

RNED =fdu G (M Wn-D]* = Gn(f)fcmlwm-f)i2 =G (£),(0). 122]

Then (19) and (20) take the forms

Mean {G(f)} = Q (£) + Q () 23
and P-1 l
A |k,
= 02 1 - 12
e o0} -0 13 (-5 )
k=1-P
1 fif: K| (ik27(£-£ )S)
’ZQs(f)Qn(f)F 1- e rk explik~: 0 ) 124
k=1-P

From (24), we see that the presence of signal (A ¢ Q) always increases
the absolute level of the variance of the spectral estimate over that
for noise-alone., If the noise is absent, the variance of the estimate

15 zero. If the signal is absent, the equivalent degrees of freedonm,

detined as
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2(Mean)? 2
EDF = - = ’ (25)
n Variance P-1

ES (-5

k=1-P

is identical to equation (8), reference 1, as it should be.

On the other hand, for Qs(f) >> Qn(f),

_ 2(Mean)? e (f) e
EDFs = Variance P-1 |k| « 126)
£) 1 2 : L i -
Q, (£) 5 (1 5 >'rk exp (ik2m(¢t fo)S)
k=1-P

When a strong signal is present, EDFS is larger than EDF by approxi-
mately the ratio % Qs(f)/Qn{f)>> 1, since the ratio of sums in (25)
and (26) is approximately unity for f = fo and reasonable overlaps
(see (27) below). That is, the relative fluctuation in the spectral
estimate is reduced by the addition of signal, even though the absolute
variance increases.

For Hanning weighting and 50% overlap (S = L/2), we find T, = 1,

= 1/6, T = 0 for k22. Then the two sums in (25) and (26) take on

1‘4_1
the values

1+ (l-%)

g 1 (U-pg cos [ m(£-£)5] (27)

respectively. The former value is slightly larger than unity, whereas
the latter value varies between approximately 2/3 and 4/3, depending on
the exact location of the signal tone frequency, fo, with respect to

the analysis frequency, f. For an FFT approach, at least one bin has
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its frequency location, f, such that lf-fols(QL)°l; thus, at least
one frequency bin is located such that the latter value in (27) is
larger than unity.

Figure 1A represents the power spectral estimate, (1), plotted on
a linear scale proportional to watts., The '"ribbon width'" in the region
of noise-alone is denoted by a. The amount of fluctuation of the
estimate at fo is denoted by b and is larger than a. (The quantity b
is observable only by rerunning the spectral estimation procedure for

independent noise segments.)

G(1) 10 log G(f)

-

Figure 1. Spectral Estimates for Signal Plus Noise

If, instead, the power spectral estimate is plotted on a dB scale
(see figure 1B), the noise-alone ribbon width, ¢, is larger than the

fluctuation, d, of the estimate at fo' The mathematics behind this
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conclusion follows. Let the spectral estimate at frequency f be
expressed as
e(f) = m+X, (28)
where m is non-random and x has zero-mean and variance o?, Then
dB = 10 log G(f) = 10 log m + 10 log(1+%). (29)
Now suppose that o/m<<l, which could be realized by means of a large
number of pieces, P, or a high signal to noise ratio; then
A
=101 20 x
" *In10 m (30)

The last term in (30) is proportional to the relative stability of the

spectral estimate (28); in fact
2
a1l ~ [ 10 o?
Var {ds} = (ln 10) il (31)

which can be made arbitrarily small. Thus a plot like figure 1 is
easily achievable and should be anticipated for a pure tone in Gaussian

noise.

PROBABILITY DISTRIBUTION FOR NOISE-ALONE
For noise-alone, the mean and variance of spectral estimate, a(f),

are available from (19), (20), and (16) as

mean {8(6)} = G, (£)4,(0),
P-1

var {G(f)} = G:(f) % Z (1- %) |¢>w(kS)]2 , (32)

k=1-P
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which agree with equations (5) and (6), reference 1, respectively,

More generally, the characteristic function follows from (9) as
-1

P
C(g)= H {1-ixp5/P} . (33)

p=1

Now let us define a normalized random variable
Gef)

g s —_— s (34]
G, (£)e (0)
notice that the scale factor is independent of P and the amount of

N

overlap. Thus the mean E{§} = 1, and the characteristic function of

~ .
g is
P '1
. ., (R) s
C (g = 1-1A /P 133)
g £ I l ! 5 £/p} ,
p=1
where {k(g]} are the eigenvalues of matrix R in (13). Then by a
partial fraction expansion, the probability that random variable g
remains below a threshold value,v, 1s found to be
P
Prob (f<v) = 1- B, exp [- ——— |, >0, 36,
k (R)
AT/P
k=1 k
where
[X(R)]P-l
B = h , l=ks=pP 137)
h p
H LRY IRy
k P
p=l
p#k

10
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We have assumed all the eigenvalues of R to be unequal; this is the
case if the overlap is greater than 0, which is the case of most
practical interest. The eigenvalues are all non-negatiﬁe since Ris
a non-negative definite matrix (see appendix B).

Equation (36) is an exact expression for the cumulative probability
distribution in terms of the eigenvalues of matrix R. If we consider
another random variable, t, with the same mean and variance as §, a

candidate approximate characteristic function is (guided by form (35))

c ()= (1-i&/6)™" (38)
where, in order to maintain the same variance, we choose
P P P-1
:2:: (R)? :E:: 1 k
%:1_ Ap) =_1_ Ir _q|2 =_P_ 1__|_P_l Irk|2 . (39)
Pz P2 P
p=1 P,q=1 k=1-P

Equation (8), reference 1, shows that b = K/2, i.e., half of the
equivalent degrees of freedom, Then the approximate probability
density function is

b b-1 -bt

p(t) = bt e , t>0, (40)

I'(b)
and the approximate cumulative probability distribution is (equations

6.5.2 and 6.5.12, reference 6):

v

1
dt p(t) = ——— (bv)be'bv 1F (1;1+b;bv), v>0. (41)
I'(b+1) 1

0

11
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(A further simpler approximation, not pursued here, would be to set
b1 = integer part of b, b2 = b; + 1, and bracket the results above by
two simpler sums.)

We shall now make quantitative comparisons between exact result
(36) and approximation (41) which has the same mean and variance. The
question 1s5: 1s b in (39) and (41) a sufficient statistic to accurately
quantitatively describe the exact cumulative probability distribution
(36), for representative dJdata windows, overlap, number of pieces, and
time-bandwidth products, over the range of probabilities Of interest
to most users? I[f so, then attention can be confined to the equivilent
degrees of freedom and its maximization alone, as was done 1n reference
1; this simplification would be most worthwhile and of obvious impor-
tance.

The actual numerical computation of the cunulative prohabil:izy
distribution Prob(g-v), is considered in appendix C. In figure I, the

exact cumulative probability distribution for Hanning window:ng s

presented for time-bandwidth product BT = 3, 1o, 32, bd, where 7 o1s
the avalluble record length and B 1s the Jdesired resolution Fandwidth,
In each plot, the overlap is varied from 0 to upproximately 5., and
the distribution plotted on a normal probability ordinate covering the

range (.0001, .9999). The fact that the curves are not straight lines

over this range meuns that d GAUsSS1lan APProximMation to the power

spectral estimate would not suttice. However, the Gaussian 4pproximtii-
tion would bv a fuirly good one for larger Bl and P (see figure 2D, for
example],

12
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The fact that the curves in figure 2 are virtually identical for
overlaps greater than 50% means that there is little point in choosing
overlaps greater than this amount. This confirms the choices of over-
lap made in reference 1, where attention was confined to the eqgu:ivalent
degrees of freedom. The ideal distribution would be a vertical line
at v = 1; the closeness of these curves to the ideal is a measure of
the spread of the spectral estimate.

The corresponding results for the approximation (41) are presented
in figure 3. The curves are virtually identical to those of figure 2
over the complete range of probabilities considered, for various values
of BT and overlap.

For a cubic window, the exact results and the approximation are
given in figures 4 and 5, respectively. The conclusions are identical

to those made for the Hanning window.

13
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FLUCTUATIONS OF CROSS SPECTRAL ESTIMATE

This topic is not directly related to the earlier material on
autospectral estimation; however, it is an important observation and
merits a comment, For two uncorrelated processes, x and y, the cross
spectrum ny(f) = (. However, the cross spectral ostimate,ﬁxy(f),

satisfies the equations

and
~ 2 - = N 4“
E{Jc (f)i2}=:u £36 £ = 222, -
XV K xx (S
: .- . - A .
where K 1s the equivalent degrees of freedom NOw, 1t K>»>1, O I
Xy

approximately complex Gaussian. Therefore, if we Jdefine the amplizude

estimate

I
i

1t has probabiiity density function

X R e
pix} = exp |- —— , x>0, B

Then the mean of A 1s

SN
Gxx(f)cvv(rJ 2

m
——
ped
——
[}
——
[BIE]
\_/N
*
Q
1
to] =4
'
Ut

K

which 1s a rather slow decay with K. Then the ratio of the meuan
anplitude, (35, to the syuare root of the product of the auto-syedtra
1%

Yy
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E{A‘ _ =<Tr_)l/2= 1.253 | (46)

[Gxx(f) Gyy (f)]l’2 2K <

If, for example, K = 32, this ratio is ,222 which is -6,55 dB; this is
not very far down relative to unity coherence, though the two processes

are uncorrelated.

Also,
G__(£)G._ (£

- TV g2 o Ty XX " Yy .
var fa) = (2-3) - (-3) , -

K

and, therefore,

1.

Standard deviation {A} - (4-ﬂ)2 = 0.52, (48)
Mean {A} 7

independent of K {(or P), So for a zero cross-spectrum value, A =
}axy(f)l will always have the same amount of relative variation,
regardless of the number of pieces P (for large P}; thus, on a dB
scale, the '"ribbon width" of the cross-spectral estimate is indepen-

dent of P, when the two processes are uncorrelated.

23/24
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DISCUSSION

An exact expression for the characteristic function of the power
spectral estimate of a pure tone in Gaussian noise has been attained,
and then specialized to noise-alone, In the noise-alone case, a
numerical computation of the cumulative distribution function has been
conducted. Comparison of the latter with an approximation utilizing
only the mean and variance shows excellent agreement over a wide range
of probabilities, regardless of the exact window, overlap, or the time-
bandwidth product. This means that concentration on the equivalent
degrees of freedom, particularly on its maximization, is sufficient
for a probabilistic description of the auto-spectral estimate.
Maximizing the equivalent degrees of freedom results in a narrower
probability density function, as witnessed by the increased steepness
of the cumulative probability distributions presented.

An entirely different method of auto- and cross-spectral estimation
has been presented in references 7 and 8, and is mentioned here as a
viable, attractive alternative, particularly for short data segments.
Since only a few parameters are estimated, the estimates are potentially
pore stable, whereas the technique considered here (and in reference 1)
assigns independent degrees of freedom to each and every frequency
cell of interest and, therefore, requires the estimation of many more

parameters.

25/26
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Appendix A

DERIVATION OF CHARACTERISTIC FUNCTION

The first half of appendix C of reference 9 considers the Hermitian
form

F=X"BX, (A-1)

with mean and covariance of .the complex random variable matrix X,
E{X} =m, cov{X} = E{(X-m)(X-m)"} =K , (A-2)

where matrix X is P x 1, and matrix B is Hermitian and P x P. Defining
P x P matrix

A= K7BK" , (A-3)
with corresponding normalized modal matrix Q and (diagonal) eigenvalue

matrix N, we can express (A-1) as

P
F=vihv E Ml -
k=1

where matrix V is P x 1 with mean and covariance

E{V} = QUK *m =y, coviv} =1 . (A-5)

Then a slight generalization®of the second half of appendix C
of teference 9 (see also reference 10) yields the characteristic

function of random variable F in (A-4) as

*We must also have E{(X'M)(X'M)T} =0, in addition to (A-2).
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P

o (ﬁluklzxkz
- [ [ 1-iA _ ]
C(&) (1-1A, &) eXP\ g , (A-6)
k=1

where {‘tk} and {uk} are the elements of matrices X\ and g . The cumulants

of F follow easily from (A-6) as

P
- R n Loz fA-71
<, (n-1)! E )\k (1+n;.1k, )
k=1
In particular, the first two cumulants are
p
= - : 2
Mean {F} =c, = E Xk L1+‘uk] )
P k=1
Var {F} = ¢, E AL (Le2lup -5
k=1
For the case of zero-mean variables, i.e., m= 0, 1.3 vieids
= O, and the characteristic function becomes
P
Clg) = l I ;(I-i)\k@—l} for cero-mean varilables. \-9.
k=1
The cumulants are then
p
. n
“p = (n-1) E >‘k for tero-mean variables. tA-10)
k=1

1
(It is not necessary to evaluate K for eigenvalue purposes alone,
because the elgenvalues “.}\' of matrix Adefined 1n (A-3 ure the <ane

as the ergenvalues of KBor BK D)
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As a specific application of the general results above, we consider

= T = .
B=1 ,m= [ml...mé] ’ K [Fp-q] (A-11)

Then from (A-3), we see that A = K . In order to evaluate (A-8), we

P P
xk = A = PK (A-12)
E : E : PP o
k=1 p=1
P

-k _L
z : A lu 2 =pap=miK Q@ K m

notice that

k=1
-mHiK-2“AK"“m-m"m- E Imkl2 (A-13)
Z;AZ Z: E: z (P-1x[) Ik |2, (A-13)
Pq ap
k=1 P,q=1 p,q=1 k=1-P

P
E :xiluklz -p e =mbik™ Q@K 'm
k=1
-m'K A @ K Fm - m KEKKK T m - miKkm, (19

Then (A-8) yields

p
2
= = m ,
Mean {F} = c PK_ + E | kl
po1 Kl
Var {F} = ¢, = E -1k K 2 + 2miiKm . (A-16)
k=1-P

The specialization to zero-mean variables is obtained by dropping the

last terms in (A-16).

A-3
Reverse Blank
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Appendix B
DERIVATION OF COVARIANCE MATRIX

We are interested in deriving the two averages

EfY Y*} and E{Y Y } (B-1)
pn gn pn gn

because they are needed for appendix A and to see if the conditions

required there are satisfied, We have, from (7),

E{Y Y ‘( =ffdt du exp (-i2mf(t-u)) E{n(t)n*(u)} w[t-lL-(p-ns] .
pn qn 2
w* [u-é—L-(q—l)S] . (B-2)

Letting the noise correl:;tion in (B-2) be denoted by Rn(t-u), and its

spectrum by Gn’ (B-2) becomes

* = 1 l - -
E {anan} -fdu Gn(u)/dt exp(i2m(u-£f)t) w[t--z-L (p 1)8].
{/du exp (i2m(u-£)u) w[u—%L-(q-l)S]}

=fdu G () [W(E-) |2 exp[izv(f-u) (q-p)S] : (B-3)

This quantity is a function only of the difference of indices q and p.
If spectral window |[W|? is narrower than the detail in noise

spectrum G, in the neighborhood of analysis frequency f, (B-3) simplifies

to
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E {Y Y } = Gn(f)jdulwu-u)lz exp[iZﬂ(f-u)(q—p)S]

pn gqn
= B-3)
= G_(£)6_((a-p)S),
where
®H(T) Edladt wit)w*(t-1) iB-3:
is the autocorrelation function of data window w.
Now let
¢ _(mS)
ot = r ., {(B-6
3,00 m
Then
E{Y Y *} = G ()Y (Or , (B-"1
pn gn n w q-p
and from (10),
K=G (f)e (OOR , 'B-3,
n w
where P x P matrix
1 T r, rp_17
T .
‘1 »
. 3-9
R: .
1
__rx-P ]

is Hermitian, Toeplitz, and non-negative definite.* For real weighting
w, Ris a real symmetric Toeplitz matrix. The matrix in (B-8) 1s the

one required in (A-11) and (10).

*This property is easily proven by use of definitions (B-5) and
{(B-b).

B-2
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The second quantity we desire is, by use of (7),

pn qn ffdt du exp(-i2mf(t+u)) E{n(t)n(u)} [t-%L-(p-l)S] .
w [u-iL-(q-l)S] . (B-10)

Letting the noise correlation in (B-10) be denoted by (ﬂn(t-u), and its

spectrum (Fourier transform) by Cn’ (B-10) becomes
= . 1
E{anan} —/du(}n(uZ/‘dt exp(i2rw(u-f)t) w[t-EL-(p-l)S]

/du exp(-i2m(u+f)t) w[u-%{,-(q-l)s]

=/duQn(H)W(f-u)W(f+u) exp[—iZ'rrf(L—ZS+pS+qS)-iZTm(q-p)S] . (B-11)

If analysis frequency f is greater than the bandwidth B of spectral

window W, then W(f-u) and W(f+u) do not overlap on the p-axis, and

E{Y Y }
pn qn

Thus, the property desired in appendix A (footnote to equation (A-6))

(B-11) yields
0 if £>B. (B-12)

i

holds true if f>B.

B-3
Reverse Blank
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Appendix C
NUMERICAL COMPUTATION OF CUMULATIVE PROBABILITY DISTRIBUTION

The numerical computation of the cumulative probability distribution
Prob(§<v) is not accomplished here directly via the sum in (36). The
reason is that, for large P, (36) is an alternating sum of terms of
large magnitude, and accuracy is lost in the final result. Instead,
the methods in references 3 and 4 are utilized on characteristic
function (35): for a random variable limited to positive values, the

cumulative probability distribution can be expressed as {(reference 4)

NG
P(v) =1 - % Re{f dg 15 exP(-iEV)} , v>0, (C-1)
0

where fi(a) is the imaginary part of the characteristic function f(§).

We have fi(g)/E-E {g} =1 as £ + 0. We approximate (C-1) according to

g
f 2 4g éE) exp (- 1£v)} (C-2)

2
P(v)= 1 - T Re{
0

and then sample and approximate this expression according to

£, (k A8)
P(nav) S 1 - = Re{AE E xp[—ikM; n AV]} ’ (C-3)

where L Af = £,, and { k} are Trapezo1dal weights of integration. We

choose sampling increment
2n
AE = {(C-4)
Ev N av '’

where N is chosen large enough that fi(g)/g does not change much in




TR 5529

AE. Then
f.(k &
P(n &v) = 1 {AEE £k 88) xp[-iZWkn/N];
k Ag
N-1
=1 - T’-:-Aa Re{ E g, exp[ "fkn/\l]} (C-3)
k=0
where
J SN B
g, =§ : w o £; ((k+jN) _g)’
4 k«JN  (k+jN) BE
J=0
OSksw-l,Lil-lst%}- ) (C-6)

-

Equation (C-5) 1is an N-point FFT; theretore, we choose N as a power of 2
for speed purposes.
The only remaining question 1s the cholce of limit 5. in (-20

From (35), we know that

[£.(8)] < (&) < ) (c-")
! p
II , e
max {1, rp,’
p=1
where rp = X(R)/P. Therefore
1 -
lfi(E)l < — , (C-8)
max {rpg}
p=IP
c-2
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where IP can be 1 or 2 or ... or P. Therefore the error, E, in using
(C-2) rather than (C-1) is bounded according to

-1
® P -P+IP-1

coif I Sam o o
£ H{rp} p=IP

p=IP

This equation can be solved for

2 P+1-1P

g, = P nEIPI {A(i)}(Pﬂ-IP) , (c-10)

p=IP

with the guarantee that the error will be less than E if we choose £2
according to (C-10). Since IP is not unique, we choose £2 to be the
minimum value over the range of IP=1, 2,..., P, for then the integration

range in (C-2) can be kept to a minimum.

In summary, we:
specify Av, E, P, BT
compute {A(g)} and £,
choose N = 1024 (say)
compute Af = ﬁz%v
compute L = §2/Af
let J = (L+1)/N
compute (C-6)
compute FFT {gk} and printout (C-5)

choose N = 2048, go back to sfep 4, and observe change in printout.

Cc-3
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A program for this procedure for the Hanning window follows. The
subroutines TRIMXD and EIGVLD are presented in reference 11, and sub-

routines DPMCOS and DPMFFT are given in reference 12.

In order to execute the approximation (41), the line under state-
ment number 2 is changed to CALL PROBA(BT, P, Y). This subroutine for

the Cubic window is also presented below.

1235~ P
Lloenid. £121)eY(31)02(203)Yi.CRM(25) '
JATA YOMM/=3.71902,=2,29052+=3,09723+=2,E7810+=2,57583,=2,22E25,

)‘&.351750-1,OQHES"l.2&1551-.e“lﬁdo°.523“0}'.45335!0.v.25335!.52““

)c.Jnlbd:l.dnlSS'l.bb“8502.35375'2.32635-2-5756302-5781613-C90230
22230548+ 2.7150¢/
C=l,4058257 ¢tk ING
CALL “COExu (e
CALL SUBubG(Lruat Y idRY (L) o3, YI\CRI4(2F))
CALL JuJCTu (1115040335, 9¢852.+2735,)
CO 11 (BT=2,u
Blzc.es]187
CALL ScTSHu(/lellecs)
CALL LINESu(<r 90, Y 0RI (1))
CAce lnESu(Crirdes Y CR(29))
CALC LINESG(Crle3, v Y .CR™(25))
CALL waisbdo(aele3erYnCrY L))
CALL LLIEDG( Lol YNNI (1))
CALL SeTSMG(L223r1,)
LO 21 u=zir11
CALL CINESG(Z20drus 2S5, Y .CRM (1))
<. CALL LINESG(Lrirde,cSeYLCRY¥(29))
0 ¢2 vz=Eids
CALL LINESO(Ze 000, YO (G )
¢z CALL LINESG(Lele S, 0¥ QR (J))
CALL SETS*G(i13Cres)
«0 23 I=1,51
S X{l)z,Jd6e(]=1)
SO0 1 IP=z1sa
P=(UT/Chrelp
SL=(BT/C=1,)/(F=1)
pRK{\T (' dTvPOSL

< FOR*nT(////7¢ BT =£13,8,° P zrlu, S/C s'€13.8)
CALL PRQOEUP (8T PY)
PRL..T 3, Y

3 FORMAT (/5E20,8)
00 4 I=1/51

SMIN(Y(1),,999999)
Q=MAX (W) ,000001)

Y Y(I)=TINORM(Qr$])
CALL LINESG(Z+S1rxaY)
i CONTINUE

CALL PAGEG(2+0+1,1)
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i1 CONTINLE
CALL EXITu(2)
END

SUBROUTINE pPRCBDP (BT /P,ANS)
PARAMETER ¥=100 & MAXIMUM NUMBER OF PIECLS
PARAMETER N=2068/N4]1=N/Le]
DOUBLE PRECISION R(MoM)oO(M) 4B (M) sE(™) o u (M) oF(7)sGRIN) ,GI (1) CC(NG
$1),CrERROR,DELVIPI¢SLTPE,XI2+)PRIATIOELXI1SeLsnFICKI
INTEGER PyP1
OIMENSION ArnS(1)
€=1,4405825800 @ HANNING
IF(P.LE,M) GO TC 1
JoM
PRINT 2» Pyu
2 FORMAT(/' P ='14y' IS GREATER THAN N ='11/)
00 3 J=1.5;
3 ANS(J)=s=1,
RETURN
1 ERROR=1,D=1¢2
DELvz=,06D0
P1:3.1415926535857932400
Pl=p=1
SL=(BT/C=-1,00}/P1
DO 4 K=Q¢P]
4 D(K+1)=U(KsSL)
D0 5 J=1.P
DO 5 K=1.P
L=ABS (JU=K) ¢}
5 R(J»K)=DI(L)
CALL TRIMXC(PeMeR,0,B)
CALL EIGVLU(PrErDrdiwsF)
TPE=2.00/(PIsERROKR)
PR=20,00
DO & J=Pyl,)=1
PR=PR+LOG(E (V) )
AT=1,00/(P=y+1,00)
SSP#EXP (AT« (LCG(TPESAT)~PR))
6 xI2=MINn(X12,S)
NFz=n/2
7 DELAI=2,008P1/ (NFeUELV)
S=xX[2/CELK(
JC=(S+1,00) /NF
Niz=nFel
DO 8 K=0emv}
Sz0,00
0O § Jz=0rJC
9 S=S+wFIOXL( (K+usNF ) aDELXI])
GR(K+1)=S
8 6l(k+1)20.D0
CALL DPMCUS (COWNF)
JE1,44270 05(NF)I+,5
CALL DPMFFT(GRsGIiCOrJs=1)
S=2,09%DELXI/PI
DO 10 J=151

C-5
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10 ANS (J)=1.00=580R (W)
IF («F oEG et} RETURN
UL 11 <=lsupeS
11 PRINT 12+ AnS (o) P ANSIJ+1) bALG(L42) o BES(U43) 1 AnS (J+d)
PRINT 12, ANSI(S1)
12 FORVMAT(/5c2C.81
NF =
GO 1O ?
FUNCTION u(T) & RALLLS
DOudLE PRECISIULN THS1
IF(T,3E8.1,09) oC TC L
=2. ePleT
3§2f0353.:0a(1.30-T)t(L.DO*.SCCtCOQ(SI))+(.EZQ/PI)0SIU(SI)
RETURI.
1 u=0,00
RETUR!'
FUNCTICH wFIUXI(X)
DOLGLZ PRECISICH AraTOP ALPREFBITO¥P .S,

IF(Xx,6T7,0.,u02) GC TO 1
XxTor=z1,0100
wFIo£1=,9500
RETURMN
1 IF(X,GT ,xT,P) oC TO 3
AL=1,00
HEz-E(P)sx/P
CO 2 Jizl,P]
BIzE€(JI)ex/»
TEMP=AL+EEs 31
3EzdE~-aL®0]
e ALZTEMP
SQzAL Aty «BE
IF(SQe (X8ERLOR ) #82,3T,10,DJ) ATCPIUII(XTIP,A)
aF 10X I==Br/ (SGeX)
RETUR:¢
3 wFIuxI=g.02
RETUR
ENC
SUBROUTINE PRCBA(BTIP,ANS)
DOUBLE PRECISICN GCiDybVIFLLIL
INTEGER P,P}
OIMENSION ANS())
C=1,82009566 » CUBIC
PlzPe}
SL=(BT/C=1,)/P)
8=1,
00 1 K=1/P}
1 BzB+2.2(l,=FLOAT{K)/P)esU(KeSL)se2
CAPK=2.,¢F/B
PRINT 101, CAPK
101 FORMAT(/' caPKX IS 'E15,8)
8z=P/8
18=8
FB8=6-~[8
CALL GAMMA (] ,+FB,1Gr82,32)
GO=LOG(CBLE (G))
0C S K=1+]lH
C=FBex
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EN » O

UNCLASSIFIED

60=6D+L06(C)
DO 3 nr=1+5)
V= ,060(K=1)
IF(v,6T7,0,) 60 TO &

ANS(K) =0,

60 70 3

Bv=8BsV

ANS (K ) ZEXP (BeLCG(BV)=BV+FL1L (DBLE(Be1,),BV)=G0)
CONTIMNE

RETURN

PRINT &, B

FORMAT (/' PROBLEM AT B = *E1S5,8)
RETURN

FUNCTION Flil(AsXu)

DOUBLE PRECISICN SO+sTOD,AD,XD,A
$0=1,00

10=21,00

AD=A=1,D0

00 1 XK=21+1000

TO=TOsXD/ (AD*K)

SD=SD+T0

IF(ABS(TU) ,LE,.1.,D0=-88ABS(SD)) 60 TO 2
PRINTY 3,

FORMAT(/* 1600 TERMS'/)
FliL=L0G(SD)

RETURN

FUNCTICN U(T) & cuBlcC
IF(T,6E,1,) GO TO 1
US10264,/715),2(1.=T)ee?
JFL{T,6€E,0,75) RETURN
UBU=8192,/151,8(,75=T)se?
JF(T,6E,0.,5) RETURN
UZU+20672,/151+%( . S=T)se?
USU=ST348,/151,0(,25=T)ee?
RETURN

vso0.,

RETURN

End

UNCLASSIFIED
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~ END
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