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NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY
DISTRIBUTION FUNCTIONS DIRECTLY FROM

CHARACTERISTIC FUNCTIONS

INTRODUCTION

When several Independent random variables are added, the
characteristic function of the sum is the product of the characteristic functions
of the Individual random variables. This rule holds regardless of the distri-
butions of the individual random variables, and whether they are identically
distributed or not. Evaluation of the cumulative probability distribution of the
sum variable in closed form is often very tedious or impossible to achieve.
This is especially so when the number of random variables added is large, but
not large enough to employ the Central Limit Theorem with accuracy.

In many signal-detectiQn problems, the characteristic function of the
decision variable can be derived in closed form (or evaluated numerically
fairly easily). Often, however, neither the probability density function of the
decision variable, nor its integral, the cumulative probability distribution
function, can be obtained in closed form. Even if they can, they are frequently
tedious and time-consuming to evaluate (see, for example, Marcuml). In this
report, we present a technique for numerically evaluating cumulative probability
distribution functions directly from specified characteristic functions in terms
of a single integral. Intermediate evaluations of the probability density func-
tions are not necessary, and no moment evaluations or series expansions are
required. The technique takes on a special form when the decision variable is
discrete.

When the characteristic function of the decision variable (which is com-
pared with a threshold) can be evaluated for both the signal-present and signal-
absent cases, the technique can be applied to the problem of obtaining receiver
operating characteristics (probability of detection versus probability of false
alarm).

ANALYSIS

This section is composed of two subsections. In the first, a general
formula for direct evaluation of the cumulative probability distribution function
from the characteristic function is derived; in the second, an alternate and
more useful form for discrete random variables is presented.
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GENERAL DISTRIBUTIONS

Lot random variable x have probability density function (PDF) p(x) and
claracteristic function (CF) f():

f() f dx exp (Qx) p(x), (1)

p(X) - f ex (-ix) f(t). (2)

(An integral without limits is over the real axis from -a to . )

The cumulative distribution function (CDF) Pr(M is defined as the

probability that random variable x is less than or equal to X:

X

PrM f dx p(x). (3)
-0

The upper limit means that an Impulse In PDF p(x) at x = X is to be included
in full. It will be convenient to define the modified distribution function (MDF):

P( -t & d p(X), (4)

where an impulse in p(x) at x = X is only half included. At points of
continuity of the CDF, PrM and PM are equal. At a point of discontinuity
of the CDF, the MDF PM takes on a value halfway between the linut values
on either side of the discontinuity. 2 The CDF PrM can be obtained from the
MDF PM via

Pr(M) lira P(X•e ). (5)

40.0+

Therefore, we can direct our effort to evaluating either the CDF Pr(X) or the
MDF P(X), depending on which Is more convenient.
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When Eq. (2) is substituted into Eq. (4)s we not- that the MDF
becomees3

- f() Jdz6xP(-Ib H

- i- - fA MCP(-i, (6)

where the last integral is a principal value integral. Since the PDF p(x) is
real, the real part of the CF f(f) is even, and the imaginary part of the CF
f() is odd; i.e.. f(-E) - fP(). This allows Eq. (6) to be manipulated into the
forms

2~ ir .f AIm {f()exp i=
0

11 m f ~ I cos(M) Re dtsn(X 7

0

Convergence of the integrals t at the origin is guaranteed by the fact that

?~Vis integrable at the origick if Y>-l. No moments of the distribution

are required to exist.

3



Im If(O) = 0 (8)

and

lum sin = (9)

Equation (7) is the general equation allowing numerical evaluation of the
MDF P) directly from the CF f(j). For a discontinuous CDF, in order to
minimize inaccuracies in a numerical evaluation of Eq. (7), values of the MDF
P(M) at points removed from the discontinuity locations (if known) should be
computed. In particular, for a discrete random variable, values of the MDF
at points midway between discontinuities should be computed when using I
Eq. (7).

-The integral in Eq. (7) is confined to the real axis. Since

If(m)I fdx p(x) - 1 for E real, (10)

there are no singular points along the axis. Also some CF's are defined
only for t real; for example, for

71 1Xp(x) = ---- ,(11)

f(j) - exp(-I(I), real (, (12)

but f() is not defined for complex E. Thus, the CF f(J) does not have to be
analytic at the origin to apply Eq. (7). Nor do any moments of the random
variable have to exist.

DISCRETE DISTRIBUTIONS

The expression (7) applies to all MDF's (and CDF's through Eq. (5));
however, it requires an infinite integral for each value of M Here we shall
alleviate this requirement for a special class of random variables. Namely, we
consider discrete random variables that can only take on values which are
multiples of some fundamental increment A. That is, the PDF of interest
takes the form

p(x) = ck 5(x- k). (13)
k

4



(A sum without limits is over the integers from -w to +o.) Then the CF is

f(E) = _ckexp(lk4t), (14)
k

which s periodic with period 2r/A. Therefore, the coefficients I ck I can be
determined from the CF f(t) by

f = f dexp(-ik&)f(), (15)
2 r/4

where the integral is over any interval of length 2r/A.

Equation (15) gives the area of any impulse in the PDF p(x) in terms of
a finite integral of the CF f(Q). Since we are interested in the CDF Pr=, r.
sum over I ck I is required. At this point, it is convenient to distinguish t,o
cases: (1) nonnegative discrete random variables and (2) general discrete
random variables.

NONNEGATIVE DISCRETE RANDOM VARIABLES

If x is a nonnegative discrete random variable, the CDP is, at integ:-r
value M,

Pr(M) == Md f(M)p ) , (16

k=0 2/A

where we have substituted Eq. (15). Now

exp 1 - exp [-I(Ml

exp(-iW ) -'

5



which must be interpreted as M + 1 at O , +2 w/A +4/A.... Using
Eq. (17) and the fact that f(-J) - f( ). we note that Eq. (16) becomes

-W A fsin [(M+1)Ak/2]

Ad sin [ff) e/ p ()Ap(-in f /2o

1/A
S dn . A/] Re t exp(-MM/2)j, M >, (18)

0

where the interval (- r/A, i/A) has been selected for integration. The ratio
of sines is interpreted as M + 1 at the origin t = 0. Equation (18) is a
single finite integral from which the CDF Pr(M) can be evaluated at any M
directly from the CF f(t).

A special case of Eq. (18) is

Pr(0) = co =A di Re jf(j). (19)
0

(Actually, co Is always given by this formula, even for general discrete
random variables, as may be seen from the general formula (Eq. (15)).)

The case of a discrete random variable taking on values in a semi-
infinite range (i.e., (-.w, N) or (Nc-), where N is finite but can be positive
or negative) can be handled in a similar fashion. The key is that a finite sum of
exponentials (like Eq. (17)) can be evaluated without requiring a summation.

GENERAL DISCRETE RANDOM VARIABLES

Here we shall consider discrete random variables which can take on
values in the range (-*, a). From Eqs. (7), (4), and (13),

P(O) 2 Im ( )I (20)
0

-1
6: cj + c0  (21)
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That is, the value of the MDF P(X) at the origin can be evaluated by a single
Infinite Integral. There does not seem to be any simpler way of obtaining this
number, which will be necessary in the development to follow. In some cases,
it may be possible to evaluate the particular value P(0) from the integral
Eq. (20) in closed form, or expand it In a rapidly convergent series, while
P(Z) could not be so evaluated generally forX 0 0. In any event, Eq. (20) will
be the only infinite integral necessary to evaluate in order to get the complete
CDF for this general discrete case.

The area of the impulse at the origin is given by Eq. (15) as
v/A

0  J djReff(t)I. (22)
0

Now let us define auxiliary functions

S+(M) - ck , M>0, (23)

0

S(M)- Z ck M>0. (24)

By a development similar to Eqs. (16) through (18), we find that these auxiliary

functions can be expressed directly in terms of the CF f(E) as

f+ (m)=Asin [ 2 [(M+1)6/tl

f+inM) = A- -  Re f(j)exp(+MA/2)1, M 0, (25)
- 0

where the ratio of sines is interpreted as M + 1 at the origin - 0.

The CDF Pr(M) then can be evaluated at any M according to

P(o) - I c + S (M), M > 0
Pr(M)"20

P(o) +-c - s (IM+1l), M<O (26)2 o (M 1)

7



Here P(0) Is given by Eq. (20), co by Eq. (22), and S+'(M) by Eq. (25). The
constants P(0) and co need be evaluated once, but Eq. (25) must be evaluated
for each M of interest. However, Eq. (25) is a finite integral.

EXAMPLES

We shall consider two examples recently examined by Helstrom 4 for
purposes of comparison.

Example 1 - Exponential Distribution

p(x) = / e x p (- x ) , >0 }
. , x<O ,(27)

11 - exp (- X) >0

1 0, X<o , (28)

f() = (l-tQ- . (29)

The exact CDF is given in Eq. (28). Approximate values for the CDF are
obtained by substituting Eq. (29) into Eq. (7) and approximating the infinite
integral by a finite sum. Results are indicated in Table 1.

The integral of Eq. (7) was sampled in f at values indicated by column
four of Table 1 and approximated by the trapezoidal rule for integration. The
limit of integration in Eq. (7) was taken to be the value above 60 where the
finite sum deviated most from the exact answer. Thus, the finite sum in
column three of Table 1 is the worst approximation to the exact answer in
column two.

For this example, the largest error occurred at the origin. This
happened because the integrand of Eq. (7) oscillates for X:# 0, thereby con-
verging fairly rapidly, whereas the integrand decreases monotonically only as
(8 + 2)-I forX= 0.



Table 1

NUMERICAL COMPUTATION OF EXPONENTIAL DISTRIBUTION

Finite 9um Increment Approximate Limit
T PrM via Eq. (7) int of Integration

-10 0 .00001 .1 60

-2 0 -. 00007 .5 60

-1 0 .00008 .5 60

0 0 .00532 .5 60

.2 .18127 .18096 .5 60

1 .63212 .63220 .5 60

2 .86466 .86470 .5 60

10 .9999546 .9999637 .1 60

Example 2 - Poisson Distribution

p(x) -exp(-) L,6(x-k). (30)
k.0~ k!

Skexp(-,.) A. k!'M>

Pr(M) = k=0
0, M0 * (31)

The exact CDF is given in Eq. (31). Approximate values for the CDF are
obtained by substituting Eq. (32) into Eq. (18), with A - 1, and approximating
the finite integral by a finite sum. Results are indicated in Table 2.

9



Table 2

NUMERICAL COMPUTATION OF POISSON DiSTRIBUTION

Nmber of

M Pr(M) FWnite &M via Eq. (18) Inirls

0 .00000 03061 .00000 03068 25

1 .00000 48544 .0000 48498 25

6 .007a 18006 .00763 10N 25

14 .4864 37069 ,4845 37009 26

16 .6412 32006 . 8412 32004 25

20 .91702 906" .11708 90606 25

21 ,* 00058 1550 , 00 15500 5

30 .10M80 2607 .00OO 2646 25

40 .90 07 900 19764 25

The integral of Eq. (18) was divided into 25 equal intervas and approxi-
mated by the t pesoidal rule fr intramtion. Columns two And three of Table 2
show that the error in the aqtoimdation occurs in the tenth place (and may be
due to computer Inaccuracies rater then sampling errors). Also, the
accuracy bolds on the tails of the CDF as well an near the mean.

CONCLUSIONS

The mamerical teclmque suggested fr obteiing CDrs directly from
cro he. considerable merit. It requires no moment evaluations or series
eqassione (like Edgeworth or Laguerre) or the distributlons. It does not do-
pead upon evaluation of derivatives of Cre, but depends only upon the values of
the CFr Itself. (Evaluation of high-order derivatives can be extremely tedious
and time-consuming even If an analytic form for the CF Is available.) The
accuracy of the suggested technique can be estimated and controlled by do-
cresing the Increment In the Integral evaluations or lengthening the Interval of

10
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ALTERNATE FORMS AND COMPUTATIONAL CONSIDERATIONS FOR
NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY DISTRIBUTIONS

DIRECTLY FROM CHARACTERISTIC FUNCTIONS

1. INTRODUCTION

A recent report [1] on numerical evaluation of cumulative probability dis-
tribution functions directly from characteristic functions (GE) gave the cumula-
tive distribution functions (CDF) in terms of a single integral on the C F for both
continuous and discrete random variables (RV). In this report some alternate
forms for the CDF in terms of the CF will be presented, with an aim toward
more accurate, efficient, and expeditious calculations. For the motivation of
this study and utility of the results, as well as numerical examples, see Ref-
erence 1.

2. ANALYSIS

This section is composed of five subsections. In the first, general dis-
tributions are considered; in the second, specialization to a nonnegative random
variable is made. In both subsections, forms that utilize a fast Fourier trans-
form (FFT) are derived and their applicability is discussed. In the third and
fourth subsections, discrete random variables are considered. The former
subsection shows that the distribution function can be evaluated entirely in
terms of finite integrals; the latter subsection specializes to nonnegative dis-
crete random variables. The fifth subsection treats some computational
aspects of the FFT.

2.1 GENERAL DISTRIBUTIONS

Let RV x have probability density function (PDF) p(x) and CF f(t):

f(J) = fdx exp(ikx) p(x) , (1)

p(x) - I- di exp(-ifx) f(j) (2)

21



(Integrals without limits are over the real axis from - a to a .) The
CDF Pr(X) is defined as the probability that RV x is less than or equal to X.
The modified distribution function (MDI) P(Q) is defined equal to Pr(X) at
points of continuity, but it takes a value midway between limit values on either
side of a discontinuity.

The MDF PCK) can be obtained from the CF by [1, Eq. (7), or 2, Eq.
(4.14)]

P(X) = - JT Im f(f) exp(-lfX) al X (3)
0

If we attempt to remove the Imaginary operation from under the integral sign,
we obtain an infinite integral since f(0) = 1. However, if we express

f(Q) = Cf() - a(j)] + a(Q) , (4)

where a(O) z: 1, and split (3) into two integrals, we can move the Imaginary
operation out of the first integral in (3). One particularly useful choice for
a(s), which results in a closed form expression for the second integral in (3), is

a ()e2 f2] j > 0 (5)

where* A and a2 are the mean and variance of RV r. The mean and vari-
ance are available from f'(0) and f"(0), if these quantities can be evaluated; if
not, the method to be described is still applicable with arbitrary constants used
for ;& and ¢2. When (4) and (5) are substituted into (3), there results [3, Eq.
3.896 4; integrate both sides with respect to b]

Pr) - Im d exp(-i X) all X (6)

*Actually. % and v2 could be assigned arbitrary values in the form (5); this
particular choice gives a second-order fit to f(j) at the origin.

2



where

*(y) -/ dt(2r)- 1/2 exp(-t 2 /2) (7)

is the Gaussian CDF.

Equation (6) is now in a form where an FFT can be utilized in the integra-
tion on t (See Subsection 2.5). This equation is exact; we are not making a
Gaussian approximation in (6). There is no problem in the integration at t = 0
because, for the choice of ju and f2 as the mean and variance of RV x,

f(s) - a1 ( ) O2)
fM M= as j - 0+. (8)

Also, since i al () decays as exp(-u 2 t 2/2), the decay of the left side of (8)
for large t will often depend on the decay of f( )/t ; this decay will dictate how
far the integral in (6) must be carried out for specified accuracy in P(X).

Other 'choices for a(f) are possible and sometimes recommended. For
example, if the mean and variance of RV x do not exist (e.g., p(x) =r-1
(1 + x2 )- 1 , all x), we might choose

a2(Q) = exp(-bt), E > 0 . (9)

To best match f(t) near the origin, we could choose

b = -f' (0+) = If, (0+) (assuming f' (0+) real) . (10)

Then by substituting (4) and (9) into (3) [3, Eq. 3.941 1], we get

11 I Mf() -a2(() 4
P(K) = " + - arctan(Q/b) - - Im f d k exp(-iX) all X.

(11)

3



For the choice of b in (10),

f( ) -a()
fo(a) as -- 0+, (12)

so no problem In integration arises at the origin. We must be able to evaluate
f'(0O) in this case so that b is known, and it must be real. In cases where
V (0+) is not known or is infinite (See Appendix A, for example), the above
methods are Inapplicable, and special techniques such as subtracting out the
singularity are required.

2.2 NONNEGATIVE DISTRIBUTIONS

When RV x is limited to nomegative values, some simplifications in the
general form (3) occur. (The case of nonpositive RV x can be treated in a
similar fashion.) First, if X < 0 in (3), then P(X) = 0. Letting X = -a yields

fd [fr(f) sin(at) + fQ) cos(aj)], a > 0 (13)
0 

r

where subscripts r and I denote real and imaginary parts, respectively.
Employing (13) In (3) for X > 0, we get

P(r) f f Q) sin(tX), X >0 (14)

oroorr

PQ,,,1, i f()cs x),X>0. (15)
0

Thus, the MDF P(X) can be evaluated from knowledge of either the real part
or the imaginary part of the CF f(J). For X - 0, neither (14) nor (15) is
necessarily valid, and we must resort to (3).

4



There are computational reasons for choosing (14) over (15), or vice
versa. The first has to do with ease of calculating fr(f) versus fi(Q). For
example, in Appendix A, for p(x) = 2/r (1 + x2 )- 1 for x > 0, we find that
fr(t) is a simple exponential, whereas fi(t) is a sum of exponential integrals.
Converse examples, where fi(t) is simpler to compute, can also be found.

I

The second reason has to do with the rate of decay of fr(Q) versus fi(f).
We have

fr W= dx p(x) oos(tx) =fdx p (X) cos( x) -fdx Pe(x) exp(ifx) , (16)

YD =fdx p(x) sin(Ex) fdx p(X) sin(tx) = i-1 f dx po(x) exp(itx)
0 (1.7)

where subscripts e and o denote even and odd parts, respectively. Now, if
p(O4-) > 0, then po(x) is discontinuous at the origin, and fi(t) decays only as

-1 for large . An example is

p(x)= ex, x >0; f() = (1-

fr(M)- (1 + t2) - 1 . fi(,)= ( + Z2) - I . (18)

In (18), fr(j) decays as E-2 for large t, giving rise to an integral in (14)
that can be terminated earlier than the one in (15). On the other hand, consider
that p(04) = 0 and that p(x) and its derivative are continuous except at the
origin, but p'(0+) > 0. Then po(x) and its derivative are continuous, whereas
pe(x) is discontinuous. In this case, fr(f) decays only as t-2 for large t.
An example is

p (x) - xe - x  > ;f( 1 i)2

fr M - (1 -(O ) (1 + Z 2)-2 f - 2f(1 +.2)2 (19)

5



Here (15) could be terminated earlier than (14).

The third reason has to do with the region of X of interest. For large X,
where P(K) Is near unity, Eq. (15), in the form

1 - P(K) ft f.() cos(QX), X > 0 , (20)
0

is to be recommended, since it is an alternating sum of small quantities and re-
tains significance. Equation (14), for large X, is an alternating sum of large
quantities and loses significance. But for small X, Eq. (14) would be recom-
mended.

Equation (15) can be immediately manipulated into a form where an FFT
can be utilized. Namely,

2 ( f.2 f
P ) = 1 - ;pRe Idt -- expl-ikX X> 0. (21)

From Appendix A, we have fi(k)/k - x as - 0, if jx exists and is finite.

If we attempt to express (14) in the form

Im ffd ) exp(iiX)

we obtain an integral that does not converge at the origin. However, if we ex-
press

fr(Q) = [fr(Q) - b(Q)] + b(Q) , (22)

where b(O) = 1 and b(t) is real, then (14) becomes

6



2 ) f ( ) "b(s) 2 0d sin(tX) X>OPQX) =;l n d S exp(i X)j + ijd b(D) * X>O

(23)

and an FFT can be used on the first integral. Preferably, the second integral
should be integrable in closed form. A particularly useful choice is

b(Q) = exp(_ . u2 t2), >0, (24)

where* u2 is the mean-square value of RV x. This quantity is available from
fj(O) if it can be evaluated. When (24) is substituted into (23), we get (See (3)
through (7))

2" -- e(Im d e X X 2)

P(X) = 2 - 1b X d exp(ifrX
u2  0 (25)

The function

f( t -ex "-0 as k - 0+

in (25) if the mean-square value 92 exists. In many cases, it decays as
fr(t)/ for large .

The fact that MDF P(X) can be obtained from either the real or imaginary
parts of the CF for a nonnegative distribution are manifestations of the fact that
fr( and fi(Q) can be found from each other; in fact, they are related by Hil-
bert transforms. For p(x) = 0 for x < 0, and no impulses at the origin, we
see that [4, p. 38]

As in the footnote to Eq. (S). 02 could be asaigned any convenient value.

7



M~) f dx p~x) exp(ikx) uf dx p~x) U(x) exp(ix) - 1P(X) U(c)l

= 11(~ 1(~ m fM+i

(26)

where U(x) is the unit step function, 3 denotes a Fourier transform, *
denotes convolution, and U denotes a Hilbert transform. Therefore,

f~)-ig {f(e , (27)

or

For the cases when p(x) contains an impulse at the origin of area c o , the
first part of (28) is still correct, but the second part is incorrect by the addi-
tive constant co. However, we can still find fr(t) from fi(f) by utilizing the
fact that fr(0 ) = 1. Thus, either the real or the imaginary part of the CF con-
stitutes complete knowledge about the MDF in the case of a nonnegative dis-
tribution.

2.3 DISCRETE DISTRIBUTIONS

In this subsection, the RV x is restricted to take on values that are mul-
tiples of some fundamental increment 6, and can be either positive or nega-
tive. Although the equations in Subsection 2.2 are applicable here, it is advan-
tageous to have forms for the distribution function that require finite integrals
rather than infinite ones. We have for the PDF

p(x) = 'ck (x - k , (29)

k

8



where the sum ranges from -. to e. The CDF Pr(M) for integer M is
given in Reference 1, Eqs. (0) through (26). All the Integrals are finit It-
grals except for the one In (2C) for MDF value P(0):

P (0)m L r L °.f

0

We now rectify this situation and obtain a finite integral for P(0) also.
From Reference 1, Eq. (15),

i/A

Ck fw di f(s) exp(-ikAJ) .(30)

Therefore, by using Appendix B and f(- ) - f* Q), we gt

1 1 1 4

-- c of di fJ d (p (31)

k 00

Then, we obtain the desired result

A ( j -n m + n c otm 2mu9



P(~m C+1C (32)
(0) - k 2 c o f di ta. (32)

k = -'C

As f - 04, the inteprand of (32) approahes 2Ax/. if x exists and is
flnte. (There is no integral expression for P(O) in terms of fr( . Since fr(
is the Fourier transform of pe(x) (See Eq. (16)), and since

0

fLdx p (x)

irrespective of the form of p(x), fr(k) contains no tnformation about P(0).
This is analogous to the general distribution case where P(0) follows from
(3) as

P(0)- -- J'li ft (o,/f
0

2.4 NONINEGATrVE DICRETE DISTRIBUTIONS

When RV x is limited to nonnegative values, the CDF Pr(.M) takes on

forms requirng either the real or imaginary parts of the CF for its evaluauon,
just as in Subsection 2.2. To see this, we note that ck in (29) is zero for
k < 0. By letUng k -m in (30), we get

I di sin(mA ) f ( ) d cos(m.1U) r for) m > . (33)
0 0

When we employ (33) into (30) for k > 0. we get

Ck --- / di cosmcl ) fr(J), k > 0 , (34)

0

10



or

C-2 di sin -LA)f(), k>0. (35)

Therefore, the CDF Pr(M) for Integer M is given by

Pr C = df() + cos~k.]

k-0 Ik-I

., si [()A + ,,]
S di f (f) 2 M 2!0 ,(36)

where we have used (34), (30), the fact that f(-) - f*(J), and Eq. 1.342 2 in
Reference 3. Eq-aUoan (36) enables evaluating the CDF in terms of the real
part of the CF alone.

To represent Pr(M) in terms of fi(j), we first note that for nonnegative
RV, the general formula for P(0) in (32) becomes

1 Co 1 _ */A ft(V )

P (0)- 1 c A d ( T
202 2 1 d nt(a/ 2).

0

Now,

Pr(M) = = + di f(Q) t s/n(k,)
k-0 kl

11



sW[ I

wbe, we he empioyed (35), (37), and Eq. 1. 342 1 in IR~erence 3. Equadon
(36) is coVm*em ~a to (36) in the seam that only the Imaginary part of the
CF is necessary for evalatig the CDF. The reasono given In Subsection 2.2
far seleatng (36) or (36) in a particular appLication are again relevant.

2.5 USE OF FFT FOR FOURIER TRAN4FOPJA

Many of the integrals in this report take the form

/dt g(t) exp(-iZt).

Suppose a limit T on the intepation can be found such that

I tg(t) exp(-L2sft) 1 * for all f , (39)

where * In some specified tolerance or error. Then, attention can be focused

on evuluating

GTID ./dt g(t) ewW(-i2rft) . (40)

Since the intepatio In (40) is over an interval at length T, It is seen that
J w underto a slpificant chbn in value in an interval no smaller than

In f. Thus, one might initially anticipate that (40) should be evaluated at
values of f - n/T, n - 1, 2, .... However, in many cases, this resolution,
I/Tr, may be much too fine. and be the result of satisfying (39) with a very
small ,. In such cases, values of GT(1) at some multiple of the fundamental

12



reoiutim may be satisfactory, say m/T, where m is an integer. Thus, we

might be inrested only in evalusti GT U- ). n = 1, 2, .... But from (40

GT(nof) n/Idt g(t) x-ir tT

n- 1 (k+)T/m

"f f dt g(t) exp(-2unmt, T). (41)

k=O kT/m

In making the substitution u - t - kT/m in (41) and defining the collapsed
function

t g~ (u +k 0). Ou :5T/m (2

0 othrwise

we note that (41) becomes

GT T) " du gc(u) exp(-i2ij n ) (43)

The collapsed function gc is obtained from g by "pre-aliasng" g into the
interval T/m. If we define the Fourier transform of gC as

G ) - du gc(U) exp(-i2irfu) , (44)

then (43) yields

13



GT~ 1) as Gc(" T). (45)

That is, GT(f) can be evaluated at f = m/T, 2m/T,..., in terms of the
Fourier transorm of the colapsed function.

Now suppose gc(u) is sampled at increments of h in (44), where

-= . and weighting Iwki applied to the samples in an effort to approxi-

mate* 144). That is.

Gw k gc(kh) exP(-i2rfkh) a G(f). (46)

k-0

The approximation i (46) will be good Lf gc ind the exponential are sam-
pled frequently enough. Thus, if the exponential is not to vary by more than a
radian between samples, we require

1 (4)

When (45) through (47) are combined, the desired values are given by

GTn ) cG(n -M) - G C(n h i~W ~h)exiiunM (48)
k-O

if

In - h r In I< (49)o r 2(9

By defining

For example. impson'i rule has a, a 1 3 . 1 "n+.* 2 1 . 1

14



c(kh), 1< k<M-1

dk = , (50)

1hwo c( ) + hw, g,(T/m) ' k = 0

we can express (48) as

M-1

G T ) - G(n f) G c(n MT) - dci exp(-i2irkn/M (51)k=0

which is an M-point discrete Fourier transform (DFT) of the sequence IdkI.
The factor 1/r in the upper bound on I ni in (49) is due to the aliasing in the

frequency domain that takes place at In I - M/2. In fact, letting fwkj be the
samples of waveform w(t) at t - kh and W(f) its Fourier transform, it can
be shown that (Appendix C)

AG (f) = W (f) 0 • ( - kM .(52)
cT

Thus, the value Gc ) T is composed of at least two overlapping tails of
Gc (f). In order to avoid this aliasing, we must observe (49).

To summarize, the values of GT(f) at f = n- are given approximately
as an M-point DFT in (51) of the sequence jdk I in (50). When (42) is substi-

tuted into (50), this sequence can be expressed as

hwk M- g(kh + j!) 1 :5 k :5 M -1

J=0
d= -1g (53)

bw°  ! + bw M  k - 0

J-0 j=1 M

As is obvious from (53), g(t) must still be evaluated from 0 to T in incre-
ments of h, that is, at mM + 1 values. However, collapsing reduces the

15



size of the FFT from mM to M, with an attendant reduction in computation
time and round-off error. This method is related to one given in Refer-
ence 5, p. 81.

In applying this technique to numerical integration of CF's, since the ex-
ponentiais take the form exp(±ijX), we note that the increment in X at which
values are obtained by employing an FFT are 2w/T, or 2rm/T for coarser
resolution as above.

3. CONCLUSIONS

Several alternate forms for direct numerical evaluation of the CDF or
MDF from the CF have been presented that have utility in different situations,
including ease of calculation, rate of decay of the integrands, and the probabil-
ity region of interest. Also, the speed of the FFT and the large number of
values of the distribution functions that are quickly available make the formulas
presented attractive in a large number of practical applications.

In the case of discrete distributions with RV that can Lake on positive as
well as negative values, all integrals for the CDF are finite and over a half-
period of the CF. Reevaluation of the sines or cosines, as in (36) or (38) for
different values of M, can be avoided if one notes that

sin[( +±)a] - sin[( I)a + a] = sin [(M - -1)a] cos~a] + cos [(M - -)a] sin~a],

with a similar result for cosine. Thus, if a table of sin(a) and cos(a) for the
values of a (Af) is constructed, this recurrence relation can be used to obtain
the higher order M-dependence required in (36) and (38) without reevaluating
sines and cosines.

16
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Appendix A

BEHAVIOR OF NTEGRAND OF EQ. (3) AT ORIGIN

The integrand of (3) is given by

f.(Q) cos (a) f r(Q) sin(ZX)Im I f() exp(-i X )} = E

where subscripts r and i denote real and imaginary parts, respectively.
Now,

f r(Q) sin(kX)
-X as i -0+.

And

fl) cos( X)=fdx sinx ) cos(fX).

-fdx x p(x) M Ax as i - 0+ ff jx exists and is finite.

Here mx is the mean of RV x. Therefore, the integrand of (3) approaches

is - X as -+ if u exists and is finite.
x X

An example where Mx Is infinite is given by

0, x < 0

p(x) - 2/r

+ x2, x> 0

19
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Then,Al

f (}) - ex(-ij),

fi()= sgn(t) 1 fexp(-Ii) Ei(II) - exp(fl}) Ei(-ItI)}

Since 
A

a

Ei(-Itl) =n Ii + C - i +  i + O(i;i as I - ,

1 2 3)
Ei(,,) =In 1I + C + ItI + II + O( ) as II - 0

there follows

fQ) = sgn(Q) I (-in I, + 1 - C + 1 2) + O 3)

;as iet - 0.

Therefore,

f ) (Ji as I}1-0,

which is unbounded, but integrable. So, in those cases where . x is infinite,
the behavior of fi(j)/4 at the origin must be handled carefully in order to
accurately evaluate the integral. One possibility is to subtract out the singu-
larity and integrate it analytically.

All. S. Gradshteyn and I. M. Rythik, Table of Integrals, Series and Products,
Academic Press. New York. 1965, Eq. (3.723 I).

A2 bid., Eqs. (8.214 1) and (8.214 2).
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Appendix B
co

EVALUATION OF E exp(inx)

11=1

Consider the ordinary function

f(x) = inisin 2H, x 9 0, +2r, + 4
7,.

Since (1 + x2 )-1 f(x) is absolutely integrable from -oo to 0o, the generalized
function f(x) corresponding to ordinary function f(x) can be defined. B1 In
fact, the generalized function f(x) equals the ordinary function f(x) (See defi-
nition 8 by LighthillB2 ). Furthermore, the generalized function f(x) is peri-
odic, with period 2rB3 and, therefore, can be expressed asB 4

0O

f(x) = C n e

The generalized function f(x) is absolutely integrable over a period, since
the ordinary function f(x) is absolutely integrable over a period. B5 There-
fore, the coefficients Icn in the expansion of the generalized function f(x)
are given byB 6

C I xf k e-inx f xxI i e -inx
Cn = 2rf__ f2x)e = 2 -_dxnIsinl2

1r 1/2

f dx ln in 1) cos(nx) = 2f dt ln(sinxt) cos(Znt)
0 ' 2 0

BIM. J. Lighthill, An Introduction to Fourier Analysis and Generalized Functions,

Cambridge University Press, New York, 1959, p. 21, definition 7.
B2Ibid, p. 25.

B3 1bid, p. 60, definition 22.

841bid, p. 66, Theorem 26.
BSIbid. p. 48, definition 19.

B6 Ibid, p. 66. Theorem 26, Note.
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) -ln2, n=0

-- , na0

where we have used Eq. (4.384 3) by Gradshteyn and Ryzhik.B7 Therefore, the
generalized function In I sin(x/2)1 can be expressed as

00

in lsn2L n 2 - ' sg(n)e n
nl=-o

n0

If we define the derivative of the generalized function in, sin(x/2)1 as the
generalized function cot(x/2)/2, differentiation of the last equation yields the
expression of the generalized function cot(x/2)/2 asB8

c cot 2 i sgn (n) e n

n:=---c

(This equation says that the spectrum of the generalized function cot(x/2) is
the odd impulse train. B9) And sinceB 1 0

r 6(x - n2w) = e
n7-00 1=-00

we obtain

6(x - n2r) + i 2cot\= + e2n

n=-0o 1=I

B71. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,

Academic Press, New York, 1965.
8MOp. cit., M. J Lighthill, p. 28, Theorem 15.

Bg1b id., p. 66, Theorem 26, Eq. (36).

Bl01bid., p. 67, Example 38.
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or

13=1 W: -00

in the sense of generalized functions.
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Appendix C

ALIASED SPECTRUM

If we define the infinite impulse train

6 h t E 6( - DII)
n

and use the time-limited character of gc, as given in (42), it is possible to
manipulate (46) as follows:

A
Gc (f) i h Wk gc(kh) exp(-i2rfkh)

k= 0

T

=fdt w(t) gc (t) h 6h(t) exp(-i2rft)
0

dt w(t) gc (t) h 5h(t) exp(-i2ift)

= (t) gc(t) h Wh(t)l W(f) a G (f) S '1(f)

= W(I) Gc - k

k

Using h we see that (52) results.M
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Fourier Transform

Algorithms
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ABSTRACT

Comparisons of four FFT (Fast Fourier Transform)
algorithms (Brenner's, Cooley's, Fisher's, and
Singleton's) have been made on the basis of pro-
gram execution time, storage, and accuracy.

Major modifications have been made in the genera-
tion of the trigonometric values in the Cooley and
Fisher algorithms, with significant improvements
in accuracy. Entry of constants in all algorithms
has been changed: the constants are approximated
by the best binary representation for the UNIVAC
11Q4 computer. Three waveform examples are used
in the comparisons, namely, linear FM, random
numbers, and a unit ramp. Also, the sizes of the
FFT's considered are limited to powers of 2, from
16 through 8192.

The results indicate that Singleton's and Brenner's
algorithms have the shortest execution times and
occupy the least amount of computer storage,where-
as Cooley's and Fisher's algorithms are the most
accurate. For example, for an FFT of size 1024
on the linear FM waveform, the maximum relative
errors for the four algorithms are 0.17 x 10-6,
0.63 x 10 - 7 , 0.64 x 10 - 7 , 0.41 x 10-5, respec-
tively. Thus, there is no single best algorithm
for all three criteria considered; rather, each
algorithm has its own area of most effective
applicability.

Approved for public release, distribution unlimited
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COMPARISON OF FOUR FAST FOURIER
TRANSFORM ALGORITHMS

1.0 INTRODUCTION

Since the advent of the Fast Fourier Transform (FFT), several algorithms,
each with its own claim to optimality, have been advanced to effect the Discrete
Fourier Transformation. In an effort to determine quantitatively the relative ad-
vantages and disadvantages of the various procedures, four algorithms (Brenner' s,1
Cooley's, Fisher's,' and Singleton's') have been selected for operational
comparison on the basis of program execution time, storage, and accuracy. The
comparison is restricted to FFT sizes which are powers of 2, from 16 through
8192. (Cooley's and Fisher's algorithms are able to handle powers of 2 only,
while Brenner's and Singleton's can handle other radices.)

In order to allow general conclusions (conclusions not restricted to results
which are waveform-dependent), three different waveform examples are used
for the comparison: linear frequency modulation (FM), random numbers, and a
unit ramp. Both one-way and two-way error calculations are carried out for the
linear FM waveform, whereas only the two-way errors are calculated for the
random numbers and unit ramp waveforms.

Three measures of error are employed: rms, average magnitude, and maxi-
mum. Theoretical results on floating-point accuracy are available only for the
rms measure of error.' It was deemed important, therefore, to evaluate the
accuracy of the algorithms for all three error measures to see if any significantly
different conclusions are obtained.

2.0 RESULTS

The comparison of the four FFT algorithms in terms of execution time,
storage, and accuracy is carried out on the UNIVAC 1108. The forward FFT
for a complex sequence x., x,..., x N-1 is defined as

N-1

X = E x exp(-i2rmn'N), 0 <n <N -I.

-0I



The inverse FFT is defined as

I -I

I ) X. ep (0 2 /4, Om NN)-I

Some modifications to the algorithms have been made; however, since these
modifications affect mainly the accuracy, and not execution time or storage, they
are discussed in detail in Section 2. 3, Accurac2.

2.1 EXECUTION TIME

Execution time is independent of the particular waveform example employed
in the FFT. Figure 1 depicts the execution time of the four algorithms versus
the size of the transform. The results indicate that Fisher's and Cooley's algo-
rithms take the most time; for example, for an FFT size of 8192, Fisher's
algorithm takes 3. 75 seconds, while Singleton's algorithm takes 2.33 seconds.
This significant difference in time is somewhat obscured in Fig. 1 by the loga-
rithmic ordinate; however, it is worth noting. The other two algorithms, for
size 8192, require 3. 13 seconds for Cooley and 2. 62 seconds for Brenner.

Since the curves are virtually straight lines in Fig. 1, they can be extrap-
olated to powers of 2 beyond 8192. However, one can not interpolate between
powers of 2 to evaluate execution times for intermediate FFT sizes.

2.2 STORAGE REQUIREMENTS

Figure 2 depicts the number of storage locations required for the four
algorithms as a function of the size of the FFT. The amount required represents
both the number of data storage locations and the number of instructions that
the algorithms need. Singleton's and Brenner's algorithms need approximately
the same amount of storage, but Cooley's and Fisher's algorithms need an in-
creasing amount of storage as the size of the FFT increases because their
algorithms store the trigonometric values and scratch storage in arrays, rather
than calculate values as needed.

Again, extrapolation to other powers of 2 is possible, but interpolation
between powers of 2 is not.

2
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2.3 ACCURACY

Three measures of error are used in the accuracy comparison: rms error,
average magnitude error, and maximum error. If the result of a calculation
yields the sequence of complex numbers 'o, Zt AN whereas the de-
sired result is the sequence zo, z ,..., zN- , the three errors are defined
as

rserror =( E2)1/2

average magnitude error = -- A
N Z n Z n

maximum error - max Zn -f0 Z1 n -
n

The three errors obey the rule that the average magnitude error is never larger
than the rms error, which, in turn, is never larger than the maximum error.
(The proof of the first inequality follows from Schwartz's inequality.) Thus, the
rms error is an intermediate measure insofar as severity of error is con-
cerned. The only way any of the error measures can be equal is if all the terms

A
zn - z, are equal, i. e., independent of n.

Modifications have been made in all four FFT algorithms to improve their
accuracy. These modifications include the changing of constant values to the
best binary representation for the computer, and the generation of the trigono-
metric values in the Cooley and Fisher algorithms by calculating one pair of
sine and cosine values in double precision, followed by double precision recur-
sion, and rounding to single precision. This procedure keeps execution time to
a minimum and improves the accuracy of the generated trigonometric values,
which often are the major source of error in FFT algorithms.

Three different waveforms are considered in the error comparison in order
to eliminate any waveform-dependent conclusions. The first waveform is linear
FM, characterized by the sequence

X. = ep (i iF m2 IN), 0 < m < N - 1 (N even)

5



The FFT of this sequence 6 is
N-1

X0 - E exp (in 'm2 /N) ezp(-i2wm/N)

N 1/ 2 expiw/4) exp(-i1'n2/N), 0 <a <N-I.

We have here a simple closed-form theoretical expression for the one-way FFT
that can be used for comparison with the numerical FFT calculations, accord-
ing to the error measures above. Figure 3 is a flow chart for the error calcula-
tion.

The results of the rms-error comparison on the one-way (forward) FFT are
given in Fig. 4, for N ranging from 16 through 2048, in powers of 2. * The
corresponding results for average magnitude error and maximum error are
given in Figs. 5 and 6, respectively. Actually, all these errors are relative
errors, obtained by dividing the errors above by the average magnitude of the
correct answer.

There is considerable similarity between the results of Figs. 4, 5, and 6
for the three error measures. Accordingly, in the remainder of this section
attention is confined to the rms-error measure. (Tabulations of all three errors

for all three waveforms are provided in the appendix to this report.)

The increased error of Singleton's algorithm is strikingly evident in Figs. 4,
5, and 6. It is almost two orders of magnitude less accurate than the Cooley and

Fisher algorithms for an FFT size at 2048 and is degrading rapidly. The Brenner
algorithm is approximately three times less accurate at size 2048 and has the
same rate of error growth as the Cooley and Fisher algorithms.

It is worthwhile, at this point, to compare the numerical investigation with
some theoretical calculations of error conducted by Weinstein.' From Eqs. (28)
and (24) of Weinstein, we obtain the error (for a one-way FFT) as

a= 21/2 a3 - 2 1 /

ax

where

0.46 * 2

Storage limitations in the auxiliary error computation program for the Cooley and Fisher alzorithrns
prevented us from investigating thf 4036 and 8132 cases for the linear FM wavelorm.

6
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Here, v is the logarithm (to the base 2) of the size of the transform (N = 2"),
and t is the number of bits used to represent the mantissa of a number. *

As shown in Fig. 4 (where the theoretical equation is plotted as x's, with
o = 1), Weinstein's calculations underestimate the rms error by a fair amount
over most of the range of FFT sizes. Also, his calculations indicate a slower
rate of error growth with FFT size than was actually obtained. As Weinstein
himself notes, this is probably due to the truncated arithmetic employed in the
UNIVAC 1108. In fact, if truncated arithmetic is employed instead of rounding,
the rms error is greater by a factor of V32 at N = 2048 (see Ref. 5). This in-
creased error would move the theoretical curve in Fig. 4 to a very close approx-
imation to the Brenner curve. Fisher's and Cooley's error curves are somewhat
better because their trigonometric values are obtained by rounding while the
remaining arithmetic is truncation; thus, they constitute a mixed procedure.

For the other two waveforms considered, the error is computed after a two-
way FFT is performed; i.e., the FFT is retransformed back into the original
(time) domain to obtain the error estimate (see Fig. 7). The primary reason for
doing this is that, since all the array entries in the time domain are approximatel
unity in magnitude, it is easy to form a meaningful relative error in the time
domain. A relative error formed in the frequency domain, where the range of
values is several orders of magnitude for the random numbers and unit ramp
waveforms, would be less meaningful. The linear FM waveform, on the other
hand, possesses constant magnitude for all array entries in both domains, a
characteristic which makes it particularly appealing.

The results for the rms error for thethree waveforms are given in Figs. S,
9, and 10. (The average magnitude error and maximum error are tabulated in
the appendix. ) The two-way error results are similar in form to the one-way
error results, with the exception of Singleton's curve. A comparison of Figs. 4
and 8 reveals that the two-way error for Singleton's algorithm is less than the
one-way error, a discrepancy which must be due to fortuitous error-cancella-
tion in the two-way results. Since one would never use a two-way FFT without
performing some transformations on the one-way results, the two-way Singleton
results must be used with reservation. Where Singleton's algorithm is concerned,
it would be more reasonable to double the one-way error of Fig. 4 than to use
the two-way error of Fig. 8.

For the UNIVAC 1108, t equals 27 in single precision.

11
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Direct comparison between errors for different waveforms is not possible
because the average values of the array entries are not identical; e. g., the rms
value for the linear FM waveform is 1, for the random numbers and for
the unit ramp *2/3. Such scale factors would have to be included in order to
obtain a valid comparison between waveforms.

3.0 CONCLUSIONS

The trade-off between the four algorithms considered is readily apparent:
the best accuracy is achieved only at the expense of increased execution time
and storage. If we are severely limited by execution time and storage, we may
have to select a less accurate FFT algorithm; how important the errors are will
depend upon the particular application.

In summary, no single FFT algorithm represents a best choice; it must be
left to the user to determine the best algorithm, based on the criteria of most
importance to him.

16
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APPE NDIX

TABULATION OF ERRORS

(NOTE: In the following tables,
notations such as .124-07 mean

.124 x 10)
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Table 1

RELATIVE ERROR FOR ONE-WAY FFT OF LINEAR
FM WAVEFORM

AlgorkbW FFT eS Average
Size Magni de

Biencer 1 .124-01 .961-08 .199-01

Cooley 16 .800-08 .811-08 .142-01

Fisber 1 .416-08 .349-08 .631-08

Singleton 16 .208- 01 .152-07 .354-07

Brener 32 .421-07 .326-07 .826-01

Cooley 32 .150-07 .119-01 .226-07

Fisher 32 .103-01 .1'92-0 .220-07

Singleton 32 .728-01 .570-01 .133-06

Brenner 64 .448-01 .351-07 .942-07

Cooley 64 .155-07 .121-07 .345-01

Fisher 64 .130-07 .893-08 .331-07

Singleton 64 .136-06 .101-06 .311-06

Brener 128 .612-07 ,518-01 .132-06

Cooley 128 .197.07 . z71-07 .386-07

Fisher 128 .198-01 .160-01 .384-01

Singleton 128 .175-06 .128-06 .444-06

8renner 256 .586-01 .494-01? .118-06

Cooley 256 .213-01 .181-01 .431-07

Fisher 256 .205-01 .160-0D7 .459-01

SingLeton 256 .334-06 :250-06 .863-06

Brenat 512 .165-07 .682-0 .118-06

Cooley 512 .264-07 .239-07 .549-07

Fuber 512 .219-07 .242-07 .593-07

Singleton 512 .665-06 .520-06 .189-05

Brenner 1024 .806-07 .718-01 .113-06

Cooley 1024 .283-07 .249-01 .626-07

Fisher 1024 .211-01 .228-07 .642-07

Singleton 1024 .128-05 .968-06 .355-05

Brener 2048 .969-01 .890-01 .203-06

Cooley 2048 .349-01 .32 1-07 .654-01

Fisher 2048 .344-01 .311-07 .1128-07

Sisttot 2048 .235 - 05 .176,05 .755-0s
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Table 2

RELATIVE ERROR FOR TWO-WAY FFT OF LINEAR
FM WAVE FORM

A 1gortlm FFT Average maxim

Size Magizude

Brenner 16 .279-07 .197-07 .396-07

Cooley 16 .884-08 .590-08 .159-0?

Faher 16 .543-08 .373-08 .931-08

Slngleton 16 .124-07 .843-08 .218-07

Brenne 32 .800-07 .628-07 .159-06

Cooley 32 .230-07 .177-07 .401-07

Fisher 32 .204-07 .169-07 .333-07

Smgleton 32 .425-07 .280-07 .897-07

Brenner 64 .828-07 .669-07 .157-06

Cooley 64 .237-07 .180-07 .525-07

Fasber 64 .222-07 .165-07 .449-07

Singleton 64 .376-07 .289-01 .802-07

Brenner 128 .108-06 .931-07 .211-06

Cooley 128 .344-07 .291-07 .619-07

Fuber 128 .381-07 .326-07 .673-07

Singleton 128 .678-07 .562-07 .157-06

Brenner 256 .115-06 .980-07 .214-06

Cooley 256 .380-07 .324-07 .760-07

FIber 256 .383-07 .315-07 .792-07

Singleton 256 .898-07 .685-07 .242-06

Brener 512 .142-06 .127-06 .306-06

Cooley 512 .510-07 .462-07 .954-07

Faber 512 .S39-07 .484-07 .989-07

Singleton 512 .227-06 .178-36 .696-06

BSennea 1024 .150-06 .135-06 .308-06

Cooley 1024 .b44-07 .487-07 .934-06

Fbher 1024 .520-07 .461-07 .105-06

Singleton 1024 .294-06 .211-06 .126-05

Breaner 2048 .181-06 .166-06 .344-06

Cooley 2048 .683-07 .623-07 .127-06

Fisher 2048 .688-07 .638-07 .119-06

Singleton 2048 .557-06 .3917-06 .289-05
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Table 3

RELATIVE ERROR FOR TWO-WAY FFT OF
RANDOM NUMBERS

A Igori FFT RMS Average Maximum
Size Magnitude

Brenner 16 .499-07 .359-07 .141-06

Cooley 16 .221-07 .165-01 .632-07

Fisher 16 .220-07 .153-07 .632-07

Singleton 16 .276-07 .209-0 .802-01

Brenner 32 .787-07 .612-07 .224-06

Cooley 32 .369-07 .308-0'7 .954-07

Fisher 32 .332-07 .267-07 .666-07

Singleton 32 .543-07 .458-01 .114-06

Brenner 64 .105-06 .838-07 .256-06

Cooley 64 .464-07 .366-01 .128-06

FIsher 64 .516-01 .403-07 .128-06

Singleton 64 .966-01 .820-07 .187-06

Brenner 128 .166-06 .132-06 .592-06

Cooley 128 .733-07 .571-07 .253-06

Fisher 128 .719-07 .603-07 .211-06

Singleton 128 .223-06 .178 -06 .716-06

Brenner 256 .184-06 .148-06 .590-06

Cooley 256 .881-01 .711-07 .298-06

Fisher 256 .862-01 .709-07 .233-06

Singleton 256 .326-06 .261-06 .943-06

Brenner 512 .216-06 .112-06 .718-06

Cooley 512 .102-06 .813-01 .382-06

Fisher 512 .101-06 .825-0"1 .340-06

Singleton 512 .737-06 .602-06 .259-05

Breo"er 1024 .255-06 .204-06 .894-06

Cooley 1024 .123-06 .992-07 .443-06

Fisber 1024 .124-06 .102-06 .424-06

Singleton 1024 .152-05 .124-05 .524-05

Brenner 2048 .288-06 .230-04 .110-05

Cooley 2048 .136-06 .109-06 .506-06

Fishes 2048 .137-06 .111-06 .554-06

Singleton 2048 .317-05 .257-06 .128-04
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Table 3 (Cont'd)

RELATIVE ERROR FOR TWO-WAY FFT OF
RANDOM NUMBERS

A lgorithm FFT RMS Average

Size Magnitude

Bremer 4096 .306-06 .24-06 .117-05

Cooley 4096 .149-06 .119-06 .569-06

Fisher 4096 .150-06 .122-06 .654-06

Singleton 4096 .619-05 .502-05 .215-04

Bremer 8192 .339-06 .272-06 .154-05

Cooley 8192 .163-06 .131-06 .654-06

Fisbe, 8192 .165-06 .133-06 .6"74-06

Singleton 8192 .122-04 .991-05 .563-04
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Table 4

RELATIVE ERROR FOR TWO-WAY FFT OF UNIT RAMP

Algohim FF RS Average
Size Magnii Maxmum

Brenner 16 .250-07 .188-07 .637-07

Cooley 16 .774-08 .492-08 .211-07

Fisher 16 .101-07 .889-08 .211-07

Sinleton 16 .121-07 .833-08 .239-07

Breaer 32 .361-07 .305-017 1.000-07

Cooley 32 .129-07 .102-07 .421-07

Fisher 32 .172-07 .142-07 .421-07

Singleton 32 .213-07 .183-07 .421-07

Brenner 64 .411-07 .337-07 .120-06

Cooley 64 .180-07 .141-07 .632-07

Fisher 64 .206-07 .171-07 .477-07

Singleton 64 .367-07 .296-07 .107-06

Brenner 128 .529-07 .449-07 .180-06

Cooley 128 .238-07 .181-07 .954-07

Fisher 128 .246-07 .195-01 .746-07

Singleton 128 .702-07 .564-07 .249-06

Brenner 256 .575-07 .483-07 .208-0

Cooley 256 .284-07 .222-07 .116-06

Fisher 256 .298-07 .241-07 .105-06

Singleton 256 .107-06 .820-07 .463-06

Brenner 512 .696-07 .593-07 .283-06

Cooley 512 .331-07 .255-07 .149-06

Fisher 512 .342-07 .273-07 .126-06

Singleton 512 .236-06 .178-06 .119-05

Brenmer 1024 .743-07 .628-07 .316-06

Cooley 1024 .366-07 .279-07 .191-06

Fisher 1024 .396-07 .319-07 .158-06

Singleton 1024 .440-06 .328-06 .270-06
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Table 4 (Cont'd)

RELATIVE ERROR FOR TWO-WAY FFT OF UNIT RAMP

Algorihm FFT Average Maximum
Size Magahude

nemet 2048 .872-07 .750-07 .401-04

Cooley 2048 .412-01 .315-07 .233-06

Flaer 2048 .438-07 .350-07 .191-06

Sngletoa 2048 .936-06 .694-06 .642-05

srennet 4096 .899-07 .760-07 .434-06

Cooley, 4096 .464-07 .359-07 .277-06

FILber 4096 .491-07 .396-07 .244-06

Singleton 4096 .185-05 .137-05 .144-04

Brenner 8192 .101-06 .8"70-07 .517-06

Cooley 8192 .502-0 .364-07 .310-06

Fisber 8192 .530-07 .422-07 .265-06

Singleton 8192 .370-05 .273-06 .328 -04
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Spectral Estimation by
Means of Overlapped Fast

Fourier Transform
Processing of Windowed

Data
Alber H. Nuttall

ABSTRACT

An investigation of power-densi ty autospectrum estimation
by means of overlapped Fast Fourier Transform (FFT)
processing of windowed data is conducted for four candidate
spectral windows with good side-lobe behavior. A compari-
son of the four spectral windows is made on the basis of
equal half-power resolution bandwidths. The criteria for
comparison are: (1) statistical stabilityof the spectral
estimates, (2) leakage (side lobes) of the spectral windows,
(3) number of FFTs (number of overlapped pieces) required,
and (4) sizeof each FFT required. The dependence of these
criteria on the amount of overlap is investigated quantitatively.

Some striking invariances are discovered. Specifically, it
Is shown that the ultimate variance-reduction capabilities
of the four windows, as measured by the equivalent number of
degrees of freedom (EDF), are virtually identical under the
constraint of equal half-power bandwidths. Furthermore, when
the proper overlap is used foreach window, the stabilityof
this method of spectral estimation is identical to that of the
"indirect" correlation approach. Also, the number ofFFTs
required to realize 99 percent (or less) of themaximum EDF
is virtually indeoendentofthe particular window employed.
The required fractional overlap of the four data windows for
99 percent (or less) of the maximum EDF is virtually independ-
ent of the product of the available time and the resolution
bandwidth, although it does depend on the particular window.
Tables of required overlap are presented. The only tradeoff
among the four windows is that those with better side lobes
require larger-size FFTs. All of these results are derived
fora Gaussian random process, under the assumption that the
resolution bandwidth of the spectral window is smaller than
the finest detail In the true spectrum.

Rules of thumb for the maximum EDF and the number of FFTs
required to realize 99 percent of the maximum EDF are given.
The possibilltyofweighting individual spectral estimates
unequally in order to optimize the EDF is investigated; the
gain is found to be negligible for cases of practical interest.

Approved for public release; dstribution unlimited.
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GLOSSARY

T available record length

B desired frequency resolution, half-power bandwidth

x random process

t time

f, f frequency

G power-density spectrum ot process x

w data window

L segment length

S shift of data windows

P number of pieces; number ot FFTs

p integer in range (1, P)

y Fourier transform of weighted p-th piece

G, G estimate of power density

.It sampling increment ot x

W Fourier translorni of %v

IWI', Q spectral window

EIAJ statistical average of A

Var{A variance ot A

, W u correlations ol data windows w, u



K, Ka equivalent degrees of freedom

u normalized data window

Bst statistical bandwidth

Cst statistical-bandwidth constant

U Fourier transform of u

sinc(x) sin(rx)/(vx)

C half-power-bandwidth constant

N number of samples in segment lengthS

Wp weighting applied to iYP12

R correlation of process x

"y k correlation of weights jWpI

Mk normalized correlation(Eq. (C-6))

x ambiguity function of data window w

Abbreviations

FFT Fast Fourier Transform
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max Maximum
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SPECTRAL ESTIMATION BY MEANS OF OVERLAPPED
FAST FOURIER TRANSFORM PROCESSING OF WINDOWED DATA

INTRODUCTION

Estimation of the power-density spectra of stationary random processes is
an important problem and occurs frequently in many fields. The resolution of
closely spaced frequency components, with limited amounts of data, presents
inherent limitations on the statistical stability of the estimates. Also, the pre-
vention of leakage of undesired frequency components into the frequency being
analyzed dictates a careful choice of data weighting. Lastly, the extent and
complexity of the data processing required to realize the desired resolution,
stability. and leakage control are important considerations.

The fundamental, conflicting desires involved in spectral estimation be-
come painfully obvious when the amount of data available for analysis is linuted
and can not be au ,'nented by additional measurements. For example, the avail-
able record length may be limited by

a. nonstationarv conditions (changing environment),

b. storage limitations.

c. equipment failure, and

d. time-sharing requirements.

.lthough factors b, c, and d can often be remedied or corrected, factor a
often can not be controlled. Thus, only a small segment of the time record
may be usable for each spectral analysis. If fine frequency resolution is de-
sired. the limited number of independent observations available makes stable
estimation impossible in some cases. One must then be willing to accept
coarser, but more stable, spectral estimates.

The two fundamental parameters that control the performance of spectral
estimation are the available record length, T. in which the sample of the
random process is assumed stationary, and the desired frequency resolution,
B. of the spectral analysis. Large values of the fundamental BT product
yield good performance of the analysis technique, but small values are often
forced upon us by too small a record length T or too fine a desired resolution
B. The problem here is to make maximum use of the available data.



Spectral analysis has received much attention in the past [1-6], especially

since the advent of the Fast Fourier Transform (FFT) [7, 8]. In particular, the
method of averaging short modified periodograms [9] is a prime candidate for

spectral analysis - for several reasons. First of all, nonstationary trends in
the data are more readily observable through the time-local spectral estimates
of each segment. Second, the size of each FFT can be kept reasonably small,

thereby reducing storage, execution time, and round-off error. Third, the fre-

quency resolution is easily controlled by the choice of segment length, and leak-
age (side lobes) can be controlled by the proper choice of window in the time
domain. Lastly, overlapped segments of windowed data utilize more fully the

variance-reduction capability of a given record length.

The problem to be addressed here has to do with the choice of window and

amount of overlap to employ for a particular application. Specifically, if we
employ a window with very small spectral side lobes, how much should the

segments be overlapped, and does the overlap vary greatly with the particular

window selected? (Fifty-percent overlap has been suggested as a reasonable
procedure for the triangular data window [9, p. 72].) How many FFTs of what
size have to be performed for the different windows? Is the variance-reduction
capability dependent on the particular window?

Four windows will be investigated. They are called data windows in the

time domain, where they are multiplied by the available data record, theyv will

be called spectral windows in the frequency domain, where their main effect
enters via convolution. The four data windows are called triangular, cosine.
quadratic, and cubic and will be documented in a later section. Hamming

weighting [2. p. 14], although it possesses good adjacent side lobes, is not

considered here because the spectral window decays very slowly with frequency,

thereby responding to frequencies far removed from the analysis band of
interest.

PROBLEM DEFINITION

Consider that stationary random process x has been observed for a time
interval T seconds; that is, x(t) for 0 < t < T is available. Let the power-

density autospectrum of tus process at frequency f be denoted by G(f), where

double-sided spectral notation will be employed. We wish to estimate spec-

trum G with a resolution of B hertz, where B is the half-power j-3 dB)

bandwidth of the desired resolution.

*Also called Hanning weighting.

2



DATA WINDOW w
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0 S L S L (P-1')S (P-1)S-L

Fig. 1. Overlapped Data Windows

The method of obtaining the spectral estimates is depicted in Fig. 1. A
data window w of duration L seconds is applied successively to the available
data x in the overlapping intervals (O,L), (S,S+L), ... , ((P-1)S, (P-1)S+L).
S is the amount of shift each adjacent data window undergoes, and P is the
total number of pieces or segments employed. Since only T seconds of data
are available, we must have

(P-1)S+L _ T. (1)

The segment length L should be large enough that the correlation function of
process x is effectively zero for delays larger than L/2. (The relation be-
tween frequency resolution B and segment length L is discussed quantitatively
later.) The form of the data window, depicted in Fig. 2, is even about the
origin and real. Also, w(t) is zero for 'ti >L/2.

w(t)

L'2 L/2

Fig. 2. Data Window

3



When the overlap in Fig. 1 is a significant fraction of the segment length,
the effective use of the available data x is fairly uniform over the entire inter-
val T except for the edges of the data, where a gradual taper over an interval
of length L/2 takes place. This is consistent with earlier suggestions [10,
p. 58] for maximum use of the available data. Notice that the percentage of
taper depends on the desired frequency resolution and available record length,
and is not a constant, such as 10 percent, as has occasionally been suggested.

The estimate of the power-density spectrum G is obtained as follows.
First, a Fourier transform on the p-th windowed section is performed*:

Yp(f) =Jdt exp(-i27rft) x(t) w t -. L - (P-1)S], 1:_ p< P. (2)

The spectral estimate at frequency f is then available as the average of the P
pieces:

P1

Equation (2) assumes a continuous, rather than discrete, form of signal
processing [2, Secs. 4-11 versus 12-21]. However, if the discrete version of
Eq. (2), where samples of A are taken At seconds apart, is such that aliasing
is negligible, there is little difference between the two methods of spectral
analysis [2, pp. 37-39 and 123-125]. We shall assume that At is so chosen
and confine attention here to the continuous processing technique of Eq. (2). Of
course, in practice, Eq. (2) is approximated by a discrete Fourier transform
[9, p. 70], in which case dc and linear-trend removal should be considered for
the sampled data [2, pp. 47-49].

The spectral estimate Gaf) in Eq. (3) is a random variable. Its mean and
variance are evaluated in Appendix A under the assumptions that x is a Gauss-
ian random process and that the frequency resolution of the spectral window
JWV-, where

W(f) =jdt exp(-i27rft) w(t) , (4)

is narrower than the finest detail in the true spectrum G. (This latter assump-
tion is equivalent to that given under Eq. (1) for segment length L. ) The re-
sults are

*Integrals without limits are over the range of non-zero integrand.

4



21 "l IWI'
Va &((t LI - .P)jjfim exp(i2irukS) G(At)IWfA)j

=k= -(P-1) w

where

0 (r)=fdt w(t) w*(t - r) . (7)

Relation (5) shows that the mean of the spectral estimate is equal to the con-
volution of the true spectrum G with the spectral window IW12 . Relation (6)
expresses the variance of the spectral estimate in terms of the number of
pieces P, the shift S, and the autocorrelation ow of the data window. The
result, Eq. (6), holds if f is greater than the bandwidth of the spectral win-
dow; the right side of Eq. (6) must be doubled if f = 0 [see also 9, p. 71].

The equivalent number of degrees of freedom (EDF) in spectral estimate
is defined as [2, p. 22]

K 
2  (f l

Var 1,(f)

2P

2: P)I 0 w(0)1
k=-(P-1)

employing Eqs. (4) through (6). Notice that under the assumptions given above,
K is independent of the value of frequency f and true spectrum G; for f = 0,
K is given by one half of Eq. (8).

For computational purposes, it is convenient to define a normalized data

window u according to

u(x) = w(Lx). (9)



Then u contains the shape information of data window w but extends only over
the interval (-1/2, 1/2). It follows that

0 = L () u (r/L) , (10)

where

u(r) =fdt u(t) u*(t-r) (11)

The EDF in Eq. (8) then becomes

2P
K =/) 2(12)

k=-(P-1)

In order to minimize the fluctuations in the spectral estimate ', we
should maximize K in Eq. (12). To accomplish this for a given number of
pieces P and segment length L, the shift S in Eq. (12) should be chosen as
large as possible so that Ou is as small as possible at S/L, 2S/L, etc.
However, since Eq. (1) dictates a constraint among these variables, the best
choice of shift S - for given record length T, number of pieces P, and
segment length L - is given by equality in Eq. (1):

T-L
S= p--- (for P _2) . (13)

Substituting Eq. (13) in Eq. (12), we have

2PP-1 0 u T(k 1-L 2

k=-(P-l) u

p.;rt-ss the EDF as a function of



P, number of pieces in the average,

T/L, ratio of record length to segment length, and

' autocorrelation of shape of data window.

The problem now is to maximize the EDF in Eq. (14) by choosing, subject to
specified record length T and desired half-power frequency resolution B, the
number of pieces, P, for several data windows, w. It will turn out that the
optimum value for P is not infinite.

One special case of Eq. (14) is worth comment: if P < T/L, the values
of Ou in Eq. (14) are zero since u extends only over (-1/2, 1/2). Then K
equals 2P; that is, regardless of the window, the EDF increases linearly
with the number of pieces P until overlap occurs (see Eq. (13)). As P in-
creases somewhat beyond T/L, K continues to increase, although at a slower
rate, because the overlapped pieces are progressively more statistically de-
pendent. Of importance in the behavior of K are the rate of increase of K
with P, and the maximum value of K attainable through the choice of P.

LIMITING VALUE OF EQUIVALENT NUMBER OF DEGREES OF FREEDOM

As the number of pieces P tends to infinity, the overlap approaches 100
percent, and the denominator of Eq. (14) approaches an integral, yielding

2
f 2

dx (1 -1lxI) 1u x
f 41 (0)

2] T

Tf~ )Iou T2 (15)

-1
L

7



This limiting value depends only on T/L and the correlation s*#oPiom*4
u of the window. It is finite because the overlapped pieces are statistically
dependent.

For large values of T/L (ratio of record length to segment length), an
alternate form of Eq. (15) is very illuminating. If Eq. (10) is utilized, the
denominator approaches

dr 12 =4 Ii 1, 12
d7 (0) J ~ (0) L d (0) (16)

but from Eqs. (7) and (4),

Sw (0) = fdt I w(t)12 =jdf I w(f) (17)

and (t) =fdf exp(i2rft) W(f) 2

w (8

giving

f dt It w(t)12 =fdf [W(f)1 4 (19)

by Parseval's Theorem. Combining Eqs. (15) through (19), we obtain

[f 1W(f 2]T

K 2 (T - L) d I , for 1>>i (20)

, f W(f) 4 L

If we define the statistical bandwidth [5, p. 265] of spectral window 1\\12 as

B = [Jf [w(f)j C st (1
st fdf IW(f)14  L

then

K -2 (T- L) B -21) C for T>I 1 (22)
UO st L st/ c L

8



The constant Cst is dimensionless and of the order of unity; it depends only on
the shape of the window:

JdfiU (f)l 2

dC =.[ I4  ' (23)

where U is the Fourier transform of u (see also Eq. (9)).

The first form in Eq. (22) for Koo indicates that if windows are compared
on the basis of equal statistical bandwidths (by appropriate choice of segment
length L for each data window), then all windows have the same value of KID
for large T/L; that is, all windows have the same variance-reduction capabil-
ity, when compared on the basis of equal statistical bandwidths, if the avail-
able record length is much larger than the segment length. For other measures
of bandwidth, such as the half-power bandwidth B, we are led to anticipate
this same result. In a later section, we will demonstrate this quantitatively not
only for T/L >> 1 but for small values of this ratio as well, and for finite
values of P, the number of pieces.

It is of interest to compare Eq. (20) with the results of Blackman and Tukey
[2, Secs. B6-BS] for spectral estimation via the "indirect" correlation func-
tion approach. Their EDF at frequency fl is given approximately by

OD[fJ [Qi (f+f I) +Q .(f-f I)] G(f]2(4

2T 0o (24)

04df [Qi(f+f 1) + Qi (f-f 1 )] 2 G2 (f)

for long records, where Q. is their spectral window. For frequencies f,
greater than the width of spectral window Qi, and assuming that Qi is narrow
compared with the finest detail in true spectrum G, Eq. (24) becomes approxi-
mately

Ij Q (ff1]2

2T O (25)

0df Q2 (f-f

9



In order to relate the EDF in Eq. (25) to the one used here, we note that the
mean value of Blackman and Tukey's spectral estimate is given by the convolu-
tion of Qi with G. We then identify Qi with JW12 , obtaining for the EDF in
Eq. (25):

2T , (26)

f cdf IW(f)14

which is in agreement with Eq. (20) for long records. Thus, under the assump-
tions given above, the same limiting value of EDF is realized by both the
"indirect" correlation approach and the present "direct" FFT approach; that is,
both methods are capable of the same statistical stability if the proper overlap
is used in the FFT approach.

DATA WINDOWS AND CHARACTERISTICS

Four data windows will be considered here. They are all continuous; how-
ever, they have differing degrees of continuity in their derivatives, leading to
different rates of decay of their spectral windows for large frequencies. The
triangular data window, made up of two straight-line segments, has a discon-
tinuous first derivative. The cosine data window (Harming) has a discontinuous
second derivative. The quadratic data window is made up of segments of
quadratic curves so chosen that the first derivative is everywhere continuous,
but the second derivative is discontinuous; thus, the quadratic data window has
behavior similar to that of the cosine data window. The cubic data window is
made up of segments of cubic curves go chosen that the second derivative is
everywhere continuous, but the third derivative is discontinuous. This se-
quence of windows will have progressively better high-frequency decay and, as
will be seen shortly, better side lobes at low frequencies. (Hamming weighting
is not considered because its discontinuous data window yields a slowly decay-
ing spectral window for large frequencies.) Computation of the quadratic
and cubic data windows is easier and faster than computation of the cosine data
window in the time domain. * Their computational advantage and better side-
lobe behavior, make them attractive candidates for spectral analysis.

*In the frequency domain, the cosine data window is equivalent to convolu-
tion with the sequence -1/4, 1/2, -1/4, which is easily implemented.

10



The four windows are detailed below in Eqs. (27) through (30). They have
been normalized in such a way that U(0) = 1. From Eq. (9) and Fig. 1, notice
that u(t) = 0 for itl _ 1/2. (The expressions for the correlations Ou of the

windows are collected in Appendix B; these correlations are necessary for the
evaluation of Eq. (14).) In the following, sinc(x)- sin(rx)/(rx).

Triangular Data Window

u(t) = 2 (1 - 21ti), It I Z

22

U(f) = sinc 2 (f/2) . (27)

Cosine Data Window

u(t) = 1 + cos(2rt), Iti <1
-2

U (f) = sinc M (28)
1 f2

Quadratic Data Window

9 (1 -12t2), It,<- :5.

u(t) =

8 (i1 - 21t')2, 1 It<

U(f) = sinc3(f/3) (29)

11



Cubic Data Window

- 24t 2 + 48t 3) 1
3 4

u(t) =
16( - 3 ,

4

U(f) = sinc (f/4) . (30)

The function W(f) is available from the normalized function U(f) accord-
ing to

W(f) = L U(Lf) , (31)

upon Fourier transformation of Eq. (9). We define the half-power bandwidth
of spectral window IW12 as the frequency range over which IWf 2 is greater
than half of its peak value:

IW(-B)I2 = I jW(04)2  (32)

In addition to the statistical-bandwidth constant Cst defined in Eq. (21), we
define a half-power-bandwidth constant C according to

C
B = L (33)L

Numerical values for both of these dimensionless constants for the four win-
dows are given in Table 1.

The bandwidth constants are larger for the "smoother" data windows; thus,
their bandwidths are larger for a given segment length L (Fig. 1). Alternatively,
if the bandwidths are to be kept equal for the four windows, the segment lengths
must be larger for the smoother data windows.

In the bottom row of Table 1, the ratio of the statistical-bandwidth constant
to the half-power-bandwidth constant is found to be relatively constant for the
four windows considered. Thus, the statistical stability of the spectral esti-

12



Table 1

BANDWIDTH CONSTANTS

Data Window

Triangular Cosine Quadratic Cubic

Cst. 854 2. 079 2.304 2.686

C 1.276 1.441 1.572 1.820

Cst/C 1.454 1.443 1.466 1.476

mates can be discussed in terms of either bandwidth without fear of changing
significantly the quantitative aspects. For example, Eq. (22) becomes

K ;_- 2.9(T-L)B, for : >> 1 (34)
00 L

in terms of half-power bandwidth B, where Eqs. (21) and (33) and Table 1
have been employed. A more precise relation than Eq. (34) will be given for
K in the next section, where the number of pieces P will be finite.

Half of each symmetric spectral window is plotted in dB versus f/B in

Figs. 3 through 6. Here

dB - 10 log 1 0 IUI2 (35)

since the power-density spectrum G is seen through a window proportional
to IUj 2 . All the plots go through -3.01 dB at f/B = 1/2, since B is the half-

power bandwidth. The slow spectral decay of the triangular data window and
the fast spectral decay of the cubic data window are evident. The cosine and

quadratic data windows exhibit intermediate behavior. The first three side
lobes of the spectral windows are given in Table 2, where it is seen that the

quadratic window offers an 8.3-dB improvement relative to the cosine window
in the size of the first side lobe, and the cubic window yields an additional
13.3-dB improvement.

13
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Ta6le "2'

FIRST THREE SIDE LOBES OF
SPECTRAL WINDOWS

Data Window Side Lobes (dB)

Triangular -26.5 -35.7 -41.6

Cosine -31.5 -41.5 -48.5

Quadratic -39.8 -53.5 -62.4

Cubic -53.1 -71.3 -83.2

RESULTS

The general expression for EDF is given in Eq. (14). We eliminate the

segment length L in this expression in favor of the half-power bandwidth B
by using Eq. (33) to obtain the dependence on the fundamental parameter BT

(see Introduction). It follows that

K = 2P (36)

E P) _ (0)
k=-(P -1) u

For a particular window u and value of BT, K is computed versus P. A
sample tabulation for the cosine data window and BT = 8 is given in Table 3.

The column headed "Fractional Overlap" is a measure of how much the individual
data windows overlap in the spectral processing technique depicted in Fig. 1 and

is given by

18



Table 3

EQUIVALENT DEGREES OF FREED()%!
VERSUS NUM BER OF PIECES.

BT = 8, COSINE DATA %%INDOW'
Fracto ,a.

Pverlar

2 4.00
3 6. 00
4 _. 00

5 10.0o

6 12.00
7 14.00 4
8 15.96
9 17.74

10 19. 1:
11 20. 0B
12 20. 5!
13 0. f;.q

14 20.

15 20. 71
16 20. ,;,
17 20. , 1
is 2,. 5,
19 2U.

20
30 ,.

40 .

50

100
20o
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FO = L-S P-T/L f P-BT/C (37)

L - P-1 '

when non-negative. Equations (13) and (33) were employed in Eq. (37).

Several points in Table 3 are worth noting. For no overlap, the EDF
increases linearly with P, and even as overlap begins to occur, the rate
of increase of EDF remains the same. .Thus, 24% overlap still yields the
maximum possible EDF for P = 7. However, as P and the overlap increase
further, the EDF increases more slowly, eventually reaching a maximum, *

after which it decreases slightly for further increases in P. A point of
diminishing returns is reached somewhere near P = 12, where 98% of the
maximum (max) EDF is realized. The extra computational effort in spectral
analysis for P > 12 is not worth the return in stability. The fractional over-
lap for 98% of max EDF is . 59; the EDF is then 20.5, whereas it was only
10.0 for the last non-overlapped example. The case for overlapped processing
is well demonstrated by Table 3.

Similar results for all four windows and BT = 2, 4, 8, 16, 32, and 64
are condensed in Table 4, which gives the required number of pieces and
the corresponding fractional overlap for a specified fraction of the max EDF.
For example, in Table 4B for the cosine data window, in order to realize
a specified fraction of 98% of the max EDF at BT = 8, the number of pieces
required is 12, and the corresponding fractional overlap is . 59. The bottom
row of each data-window table gives the max EDF for the corresponding
value of BT. Also provided is an equation for max EDF, which was empiri-
cally determined to fit through the numerical values obtained.

Several striking invariances are apparent upon inspection of Table 4. First,
for a given record length T and desired frequency resolution B, the max

* The existence of a finite value of P for maximum EDF is similar to the
situation cited in Reference 11.
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EDF is virtually independent* of the window employed; that is, all the windows
considered have the same variance-reduction capability in spectral estimation
when compared under the same frequency-resolution constraint. A simple,
approximate rule of thumb for all four windows is given by

max EDF s 3 (BT - 1). (38)

Recall that B is the half-power bandwidth of the spectral window.

For a given window and specified fraction of the max EDF, it will be ob-
served from Table 4 that for BT > 4, the required fractional overlap is
approximately constant (independent of BT). Therefore, in the last column of
Table 4 is entered a representative or "average" fractional overlap required
for the specified fraction of max ED F entered in the first column. (This simple
rule does not hold well when 100% of the max EDF is required; accordingly, no
value is entered for this case. )

For a given value of BT, the number of pieces required to realize .99 (or
less) of max EDF is virtually independent of the particular window employed in
spectral analysis. This independence is very important; it says that all four
windows require the same number of FFTs in order to realize the same EDF
and that selection among the windows, therefore, can not be based upon the
number of FFTs required, but must be based upon some other consideration
such as side-lobe level or size of FFT (to be discussed). An approximate rule
of thumb for the number of pieces required is given by

Number of pieces required - 1.75 BT for .99 of max EDF. (39)

For large BT products, the number of pieces required to realize max EDF
is significantly larger than the number required to realize 991 of max EDF;
thus, this large amount of additional processing yields insignificant improve-
ment and is to be avoided.

*Very small values of BT are an exception; these are of little practical
interest however.
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Table 5

REQUIRED FRACTIONAL OVERLAP FOR. 99 max EDF

Data Window

Triangular Cosine Quadratic Cubic

F 56 .61 .65 .70
Overlap

The required fractional overlap is greater for the better-side-lobe win-
dows. Thus, for example, to realize .99 of max EDF, we have (virtually inde-
pendent of the BT product) the values listed in Table 5. Notice that rather
large overlaps are required for some windows.

The difficulty of realizing general fractional overlaps, such as .56, raises
the question as to what fraction of max EDF is attainable if one restricts over-
laps to a few easily realized overlaps such as .50 and .625. This question is
answered in Tables 6 and 7. * Table 6 indicates that the cosine data window at
50-r overlap (a popular case) yields 9r of the max EDF. However, the cubic
data window realizes only 75 . of its potential at 507, overlap. Table 7 shows
that when the fractional overlap is increased to 5/9, the cosine and quadratic
data windows realize virtually their ultimate capability. If the overlap is in-
creased to 75", the cubic data window then realizes its max EDF.

Table 6

ATTAINABLE FRACTION OF max EDF
AT. 50 FRACTIONAL OVERLAP

Data Window

Triangular Cosine Quadratic Cubic

[ ioof .96 .92 .85 .75
imax EDF

*These values are not attainable from Table 4 but come from the complete
tabular results, of which Table 3 is one example.
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Table 7

ATTAINABLE FRACTION OF MAX EDF
AT . 625 FRACTIONAL OVERLAP

Data Window

Cosine Quadratic Cubic

1.00 .98 .93
max EDF

Thus far, no trade-off has been necessary to realize the better side lobes
of the smoother data windows; that is. by proper choice of overlap, equal statis-
tical stability is attainable, and an equal number of FFTs is required, for all
four windows. However, there is one trade-off that enters as follows: if the
original record length T is composed of samples of a process at increments
At, more samples are contained in the segment length L for the better-side-
lobe windows; that is, the number of samples in interval L is

N M-L C
s At BAt (40)

employing Eq. (33). Ne is directly proportional to half-power-bandwidth
constant C for a specified sampling increment At and resolution B. Thus,
using Table 1, the cosine data window requires 1. 13 times as many samples as
the triangular data window requires. The corresponding ratios for the quad-
ratic and cubic data windows are 1.23 and 1.43, respectively. Thus, better
side lobes in spectral analysis can be realized at the expense of larger-size
FFTs, rather than at the expense of staUstical stability or number of FFTs.
These comments hold for equal half-power bandwidths of the windows.

For a specified sampling increment At, desired resolution B. and
particular window, Eq. (40) will generally not be a power of 2. Since FFTs run

*The sampling increment At must be chosen small enough to avoid alias-
ing; this is the only area where the bandwidth of the process comes into con-
sideration.
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faster when conducted at powers of 2, it is recommended that the desired
resolution B be changed somewhat (increased or decreased) so as to make N.
a power of 2. This is generally a tolerable situation since B is often a
"guesstimate" in the first place.

OPTIMUM WEIGHTING OF INDIVIDUAL SPECTRAL ESTIMATES

In Eq. (3), the p-th estimate IYp(f)12 of the power-density spectrum was
weighted equally with all other estimates. In this section, we consider whether
unequal weighting will yield additional worthwhile variance reduction. Inas-
much as the edge pieces in Fig. I are weighted only once by a data window,
whereas the interior pieces are weighted more than once, perhaps heavier
weighting of the edge pieces will yield additional stability. The power-density
estimate is formed as

-, P
G(f) E w p IY p(f) 12 . (41)

p-1

The derivation of the EDF of this estimate is given in Appendix C, which also
presents the optimization of the EDF by choice of weights for a given P,
record length, and window. A summary of the numerical results is given in
Table 8, where P is varied up to 64. The largest value of EDF attained over
that range of P is quoted in Table 8, except for BT - 16 where, with the ex-
ception of the triangular data window, P - 64 was not yet great enough to
reach the max EDF by weighting.

Table 8

OPTIMUM EDF VALUES

BT
Data Window

2 4 8 16

Triangular 4.37 10.12 21.65 44.72

Cosine 4.50 10. 15 21.44 > 43. 87

Quadratic 4.07 9.80 21.29 > 44.18

Cubic 3.82 9.52 20.94 >43.72
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A comparison of Table 8 with the max EDF values of Fig. 4 reveals that
very little is to be gained by optimum weighting, except for small values of BT.
However, small values of BT are not of great practical interest because the
estimates are very unstable statistically. Also, the number of pieces P
required to realize the optimum EDF is rather large; for example, in order
to gain an improvement in EDF of 0.5 over the max EDF in Table 4, 19 pieces
are required for the cosine data window, 20 pieces for the quadratic data win-
dow, and 15 pieces for the cubic data window. Moreover, the optimum weights
are found to alternate in sign for some cases, causing a loss in significance.

DISCUSSION

This investigation of four good data windows indicates that there is no best
window for spectral estimation. Rather, there is a trade-off to be made when
choosing a window: the better-side-lobe windows require larger-size FFTs.
When the proper overlap is used for each data window, the selection of win-
dows can not be made on the basis of statistical stability or the number of FFTs
required.

The quadratic and cubic data windows are simpler and quicker to compute
than the cosine data window in the time domain (but not in the frequency do-
main as regards their effects). In addition, the quadratic and cubic windows
have better side-lobe behavior and, therefore, merit serious consideration for
spectral analysis. However, they require larger-size (but not more) FFTs
than does the cosine data window.

The reason that the better-side-lobe windows do not require more FFTs
than do the other windows is as follows. For a fixed half-power bandwidth B,
the better-side-lobe windows requiz'e larger segment lengths L; however, the
corresponding data windows tend to be more peaked near the center of the seg-
ment length. In order to utilize a given record length for maximum statistical
stability, these data windows must, therefore, overlap for a greater percentage
of the segment length. It turns out that the increased segment length and
increased overlap almost exactly compensate each other, so that a constant
number of FFTs is required regardless of the window selection.

This report has concentrated on the variance of the spectral estimates. In
Appendix D, it is shown that the covariance of spectral estimates at two differ-
ent frequencies is always positive but is essentially zero when the frequencies
differ by more than the width of the spectral window. Thus, spectral estimates
at frequencies farther apart than B are statistically linearly independent of
each other.
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Appendix A

DERIVATION OF MEAN AND VARIANCE

From Eqs. (2) and (3), the spectral estimate at frequency f is

-d(f)--" /f u dv exp (-i2wf(u-v)) x(u)x*(v)

w[LU - (p-1)S] w [v - - (-l)S] (A-i)

(For completeness, process x and window w are allowed to be complex.)
The mean value of ea(f) is obtained by ensemble-averaging Eq. (A-i) over the
possible realizations of process x. Expressing the correlation of x as a
Fourier transform of spectrum G, we find the average value

P

Ef'*'(f~j~ 2~fdu dv exp(-2rf(u-v))jd. exp(i2rx(u-v)&) G(,)e
p=i

w [- -- )S] w* [v L -)S]

-fdY G<,,)*lw~f-,,l 2 =fd " G~f-P)lIw(,,l 2 , (A-2)

where we have utilized Eq. (4). If spectral window Iw12 is narrower than the
finest detail in the true spectrum G, Eq. (A-Z) becomes

Ej^G(f)j =_ G~f)fdj, lw(,)l 2 .(A-3)

Equation (A-2) is not limited to Gaussian processes but is, in fact, true for any
stationary process.

In order to evaluate the variance of the spectral estimate, we start with
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Efa(f)j P Pfffdudvdrds exp 2rf(u-v4r-s)) Eix(u)x*(v)x(r)x*(s)iop2 F H

w(u-1 p-1),)s] w,[v-.- ,-)S w[r .L. (q-l)Sj ,,[ -1- (q-L)Sj

(A-4)

In order to simplify this expression, we must be able to evaluate the fourth-
order average. If x is a real Gaussian random process, the average in Eq.
(A-4) becomes

R(u-v) R(r-s) + R(u-r) R(v-s) + R(u-s) R(r-v) , (A-5)

where R is the correlation of process x. (If x is a complex envelope of a
Gaussian process, the middle term in Eq. (A-5) is absent [12].) When we
express correlation R as a Fourier transform of spectrum G and substitute
Eq. (A-5) in Eq. (A-4), we obtain

LP= P ffffdu dvdr ds ep(-i2rf (u-v+r-s))a
P p=q1

w Cu --- (p-_)S] wv -(p--)S wr q- (q-1)S] w* [s -- (q- 1)S]

fdus di G(A) G(v) (exP(i2ru(u-v)+i2r,(r-s)) + exp(i2r u(u-r)+i2rv(v-s))

+ exp(i2rmgu-s)+i2rY(r-v))]

ffdw d,, G(A) G(P) [IW(f-s)1 2 Iw(f-v)l 2 + exp(i27r(A+v)(p-q)S).-P p=l-

W(f-A) W*(f+s) W(f+) W*(f-v) + exp(i2rwu- v)(p-q)S) IW(f-$)1 2 IW(f-v)12]

(A -6)

using Eq. (4). The first term in Eq. (A-6) is recognized from Eq. (A-2) as the
square of the mean of e. Therefore,
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Varl'(f)l --I E~jj; d G(,u) exp(12rj4,cOS) W(f-js) W(f+s)

P 2piqmI

Now if f, the frequency of interest, is greater than the bandwidth of the spec-
tral window IW12 (i.e., a couple of resolution cells away from the origin),
then W(f-u,) and W(f+tu) do not overlap significantly. Letting B be the half-
power bandwidth of the spectral window IW12 , we therefore have the excellent
approximation* for f > B,

Vard~~l= lduG(,u) exp(i21rj(p-.q)S) _wf-)12 . (A-8)

(For f = 0, the two terms in Eq. (A-7) are equal if data window w is real, in
which case Varlt(O)l is double that given by Eq. (A-B) at f = 0.) Making the
change of variable k = p-q in Eq. (A-8), we obtain

1 p-1 11_L ~ _u,212
Var t(f)I ( - .'f)JJdu exp(12rp-kS) G(,,)lw(f-,,)l 2  . (A-9)

But if the bandwidth B of spectral window IW12 is narrower than the finest
detail in spectrum G, the integral on ;& in Eq. (A-9) can be approximated by

G(f)Jdu exp(i2wrpkS) IW(f-)l2

f G(f) exp(i2xfkS) # (kS) , (A-10)
w

where we have utilized Eqs. (4) and (7). Then Eq. (A-9) becomes

*When x is a complex envelope, Eq. (A-8) is exact; see comment under
Eq. (A-5).
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P-1

Varj(f)1 -= G -P/Ik w 2

k=(P-i)

This equation is similar to that given in [9, p. 71].

Equations (A-3) and (A-11) are the main products of this appendix.
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Appendix B

CORRELATIONS OF DATA WINDOWS

The correlation of the normalized data window u is given by Eq. (11) as

ur) =fdt u(t) u*(t-r) . (B-i)

This quantity is required for the calculation of EDF, K, in Eq. (14). Since

u(t) = 0 for Itl >1/2, then Ou(T) = 0 for i1 > 1. Thus, for the:

Triangular Data Window

2 3 1
1 - 6r + 61ri , 17 1

- = (B-2)
0 U(0) 2 (1- l)3, 1

Cosine Data Window

u( ) 2 (1- Iri) +cos(2r) +Lsin(27Irl), Ir < 1 . (B-3)
*u(0) 3 i 2" 2r -

Quadratic Data Window

81( 5_ Q ()5, <171< 1
22 ) Q 1() 3 - -

_ U( r) 243/ 5 1 2
Q r)17 Q r) - 171I5 - (B-4)

0 () 2 3 -3

5 1
Q2(7) +-- (1 /,
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Cubic Data Window

1024 (1- 7 3
~~~~(l_=i ECl0), -' _< i1I <151' 7, : 7:

/r)2_ 3192 , C 1 3

1 151 c 2 (7), 2 4

4*ulv) C() 13
-2 

(B-5)

C2(o) 286721 <1_
C2(+)1-1''7 =r C3(0r, < <11:_5

C 5 7344 ir)7, 1 < 1
3 151 4 4

The forms for the correlation of the quadratic and cubic data windows are

compact and very useful for computer programming.
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Appendix C

OPTIMUM WEIGHTS FOR EDF

The estimate of the power-density spectrum is given by Eq. (41). By
generalizing the results in Appendix A, we have

Varl G(f) Ifk I exp(i2rcS) G(u)lW(f-$)1 (C-1)
k=-(P-1) f

where

1 =k wq.Ik w* . (C-2)
q

The sum is over all non-zero terms. Utilizing the same assumptions used in
Appendix A, we have

P-1

Var.(f)=G-2-(f) E w( (C-3)

k=-(P-1)

E IG(f) G(f) 1 Wp -w(0)' (C-4)
P

yielding

W2

K =2 (C-5)

Yk Mk

k=-(P-i)
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where

UkaMk (C -6)

Partially differentiating K with respect to wj (13. Appendix] and noting that
the absolute scale of weights j wpI does not enter in , we see that the
optimum weights must satisfy the equation

Ek M k Wj~k 1 1, Ij :P. (C-7)

k k

If we define the matrices

M l..m, n<p,

IT = [1 1...- 1], wT =- (wl w2.. Wp1 (C -8)

then the optimum weights are

W = M-1I . (C-9)

and the optimum EDF is

K= 2 ITM- 1 1  (C-10)
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Appad D

COVARIANCE OF SPECTRAL ESTIMATES

A generalization of the technique in Appemdix A leads to the followtng
ewpressio for the covariance between spectral estimates at frequencies f, and
f2:

1COVfa(f 1 ., '(f 2 )1 a P pt [fd G(sa) W(f i-D4 W(f 2 +i exp(12wA1P-q)S)j2

+I G m) W(f#) Wlin12+ g)pi
(D-L)

Now if f ief2 is greater than the bandwidth of the spectral window, W(f -a)
and W(f 2 +) are essentially non-overlapping. Then,

P-1

Cov ZL E (1 -. '.)jfds G(,,) W(f 1-P) W*(f -,) exP(i2-mhcS)J (D-2)Pk--(P-1) 2r

This quantity is always positive. However, it is very small when f2 -fll>B
because W(f 1 -M) and W(f 2 -) do not overlap then.

When true spectrum G varies but slightly over a frequency range B.

P-i 2
Coy 3G(f ) G(f 2 ) 1 (1- x (kS, f 2-f ) (D-3)

k"-(P-l)
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where

x(r f) fdo, exp(M2r#) W(s+f)W*(A,)

fdt exp (-i2,ft) w(t) w*(t-r) (1-4)

is the ambiguity function of window w. Again, if If 1f21 > B, Eq. ()-3) is
essentially zero, as shown by the first form in Eq. (D-4).

As an example, for the cosine window and 0% overlap, the covariance
coefficient (ratio of Cov to the square-root of the product of variances) is

, 1 , , 0, .. , for =f0f,1 , L, L , 3 4 respectively.

2

Thus spectral estimates - Hz apart are essentially uncorrelated. For 50%
L

overlap (and large P). the corresponding covariance coefficients are slightly
larger, being 1, .495, .068, .005, 0, .
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ABSTRACT

The optimum overlap to be used for estimation of

cross-spectra via FFT processing of windowed data

is shown to be identical to that for estimation

of auto-spectra. In addition, a useful geometric

interpretation of the random errors in cross-

spectral estimation, and their covarlances, is

furni shed.
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ESTIMATION OF CROSS-SPECTRA VIA OVERLAPPED
FAST FOURIER TRANSFORM PROCESSING

INTRODUCTION

In a recent report (Ref. 1), the use of overlapped fast Fourier
transform (FFT) processing of windowed data for estimation of auto-spectra
was thoroughly investigated. It is now desired to extend these results to
estimation of cross-spectra. The method of overlapped FFT processing is
often used for cross-spectral and coherence estimation with good results
(see, for example, Ref. 2); here we wish to give analytical back-up to its
optimality.

PROBLEM DEFINITION

Consider that stationary random processes x(t) and y(t) have been
observed for a time interval of T seconds, O,+'<(. Let the auto-spectra
of the processes at frequency f be CoL(f) and 6,1 (f),respectively, and
let the (complex) cross-spectrum be $-u(f). The method of estimating the
cross-spectrum is discussed thoroughly on pages 2-4 of Ref. 1, and will
not be repeated here; the reader is referred to that reference for nota-
tion, related past work, and qualifications. We let w(t) denote the
fundamental data window, and S the shift of each successive overlapped
window, and define

where P is the total number of overlapped segments fitting into the ,
interval. The estimate of the cross-spectrum is*

A

r-- 2;=% , (2)

where

(The continuous versus discrete versions of (3) are discussed on page 4
of Ref. 1.)

The estimate in (2) is a complex random variable (XV) which it is hoped
will approximate the true cross-spectrum rx(f) for sufficiently large '
and proper choice of shift S . The problem is to evaluate the stability of
the TV G1,(f), and optimize the stability by choice of overlap. At the

*Carets denote random variables, and integrals without limits are over
the range of non-zero integrand.
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sama time, we wish to investigate the dependence of the stability on the
fundamental parameters such as observation time T, desired frequency
resolution 15 , spectra ,(f), 63(f), 6,(f), etc.

PROBLEM SOLUTION

In Appendix A, the mean of RV *(f) is determined to be

G;I S1~w-,42  (4A)

Sj 1 =L (4B)

where

and we have assumed, with no loss of generality, that 10 (0- I.
The exact relation (4A) indicates that the mean is equal to the convolu-
tion of the true spectrum a,,(f) with a spectral window j()I. (Desirable
aspects of windows are discussed on pages 10-18 of Ref. 1.) The approxi-
mation (4B) is valid when the frequency width 3 of spectral window ]W) T

is narrower than the finest detail in the true spectrum (f). These
results are not restricted to Gaussian processes, cut hold for any station-
ary processes x(t) and y(t).

We now define the zero-mean complex 'RV

I(') W -1 (-E&I( = G G~-. (6)

This X/ measures the deviation of the estimate of cross-spectrum from its
true value. In Appendix A, the following two relations are demonstrated:

Three assumptions are required for the validity of (7): the processes
x(t) and y(t) are Jointly Gaussian; the frequency f of interest must be
greater than bandwidth D of window )r; and bandwidth B must be less

22
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than the narrowest detail in CT,(f), ,,(f), and (j,(f). (A case where B
is greater than the narrowest detail is discussed later.)

A measure of the stability of a IV is afforded by its equivalent
number of degrees of freedom (EDF); see Ref. 3, p. 22. For a complex IN 7,
we extend the definition to

EDF 2 E- q

The denominator of (9) could be interpreted as the variance of complex 7V P.
Interpreting V. as &i3 (f), and using (4B), (6), (7A), (8), and Parseval's
Theorem, there follows for the EDF at frequency f,

E = IF 4 12 K, (10)
where

, (n1)

and

2? (12)

The quantity ,(f) is the complex coherence at frequency f of processes
x(t) and y(t). Equation (10) indicates that the EDF at frequency f of RV
4 (f' is given by the product of two factors, one frequency-dependent
solely on the processes, spectra (over which we have no control*), and the
other depending solely on the method of processing, but being frequency-
independent. Specifically, K depends on the number of pieces ? in the
average (2), the shift S of each window in (1), and the autocorrelation
¢wT) of the window w(t). Furthermore, this factor K is precisely the
same quantity encountered in Ref. 1 as the EDF for auto-spectral estima-
tion. Therefore all the results of Ref. 1 on maximization of K by choice
of shift S are immediately brought to bear on the present problem of
cross-spectral estimation. Thus, the optimum choice of overlap for cross-
spectral estimation is identical to that for auto-spectral estimation.*

3*Linear filtering of x(t) and/or y(t), such as pre-whitening, would

not affect LY,(+)t1  , and therefore not affect EDF. A related
observation on this aspect is made in Ref. 4, p. 379.

*More generally, since all the variances of the estimates in the following
sections depend inversely on K , maximization of K is appropriate,
regardless of the particular definition of stability.
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VARIANCES OF QUADRATURE COMPONENTS
OF CROSS-SPECTRUM ESTI4ATE

The zero-mean complex 'R V (f) in (6) is the random error in
estimation of the cross-spectrum. The diagram in Fig. 1 depicts the

EIc

Fig. 1. Complex Random Variables in
Cross-Spectrum Estimation

relationships between the various complex RYs. Here

Pn[P aY51 +)l(13)

is the true phase of the cross-spectrum.

It is convenient to represent complex 3V 5(f) in terms of its
real and imaginary components,

as shown in Fig. 2. Also depicted are the projections of A(f) on a

A

Fig. 2. Projections of Random Error (f)

4
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different rectangular coordinate system" ((f),b(f)) aligned with the
direction of the true phase ?P(f) of the cross-spectrum. That is, we
also represent

I ]= a((15)

where a"(f) and b(f) are real. We note immediately that all the ',Vs in
(14) and (15) have zero mean; this follows from the definition (6).

In order to evaluate the covariances of these various quadrature
components, we first note from (7), (12), and the fact that .[o) has
been assumed unity, that

E~li'I- = 2 -(.) j+)/K, (16A)

E All ;)I Z(16B)

Equation (16A) (or (7A)) affords the interesting interpretation that the
average squared-length of the random error "(f) in the estimate of the
cross-spectrum is, in fact, independent of the true cross-spectrum, but
depends on the auto-spectra of the two processes involved. (See also
(A15) more generally.)

Substituting (14) in (16), there immediately follows

The quantities in (17) are the covariances of the real and imaginary parts

of the cross-spectrum estimate; that is, using (6) and (14),

Viar E 2(j

COV e~ ~ ~ iII E(fl~S.(18)

5
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Equations (17) and (18) are basically identical to Ref. 4, p. 378;
however, the scale factor X is different.

The projections a(f) and t(f) have simpler properties than 1(f) and
(f). From (15), (16), and (13), there follows

E A Mk3 0. (19)

Thus the projections of the random error along and perpendicular to the
direction of the true phase of the cross-spectrum are uncorrelated.
Furthermore, the variance of the projection a(f) along the direction of
the true phase is always greater than or equal to the variance of the
projection t(f) perpendicular to the true phase. In fact, if the magnitude-
squared coherence is unity at some frequency f,, then the variance of b(fl)
is zero; in this case all random fluctuations of (f, ) lie along the
line with phase P,,(A in Fig. 1.

On the other hand, if the magnitude-squared coherence is zero at some
frequency f,, then the variances of a(f.) and h(f,) are equal; in this
case, the "'scatter" of random perturbations g(f1 ) in Fig. 1 is a circle
centered at the origin.

Generally, the scatter of random perturbations is like an ellipse,
as depicted in Fig. 3, where the major axis of the ellipse lies on the line

Fig. 3. Scatter of Cross-Spectral Estimates

with phase ?,(f). If TY3 (f) and t(f) are Gaussian, as they would be
(approximately) if K{ is large, then the elliptical diagram can be made
quantitative and interpreted as contours of iso-probability.

6
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VARIANCES OF AMPLITUDE AND PHASE ESTIMATES

Estimates of the amplitude and phase of the cross-spectrum are
available according to

In order to estimate the means and variances of A4(f) and %,,(f), we
will assume that the scatter of points in Fig. 3 is small in comparison
with the distance out to the center of the ellipse. That is, using '91'
and (10), we will assume that

K -l;> 1. $21)

This requires that the product of observation time and desired frequency
resolution be much larger than unity (Ref. I), but it a'sc requires that
the magnitude-squared coherence not be too small at the frequency of
interest.

We first utilize (20), (6), and (15) to express

(;)u + 5 )ix 1 ) (22)

Then

A + '23A

(23B)

A P~Irtr1 (24A)

~ '24B)

Ecuations (23A) and (z4A) are actually exact, whereas (23)_, and ,243)
require the assumption of (21). Combining (23B), (2A3B', and $19), there
follows immediately

P - (25A)

Vov - J1..~~)P(25E)

= o.(25C)

7
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Thus the amplitude and phase estimates are uncorrelated. The variance
of the phase estimate in (25B) is much smiler than unity, when we recall
that assumption (21) is necessary for (25) to be true; that is, the denom-
inator of (2rB) must always be large. It should also be noticed that none
of the covariances in eqs. (19) or (25) depend on the actual phase of the
cross-spectrum, but only on its magnitude. Some additional relations on
the covariances of estimates of coherence are given in Ref. 4, pp. 378-9;
of course, the phase estimates of complex coherence and cross-spectrum are
identical.

EFFECT OF CLCSK.Y SPACE TONES

All the earlier results have presumed that the bandidth 5 of the
spectral window fV f*' is narrower than the finest detai. in the spectra
" (f), " (f), and We now consider a case where this is nct so,
and investigate the variance of the cross-spectrum estimate.

Suppose the spectra are approximately pure tones:

P, ( s j].'26,

Then from (A27) in the appendix,

which can be interpreted as the variance of the complex V , '
if 1;-f and if the frequency f of interest lies near or between f, and
f then the window functions Ln 27' are near their peak vaue W(o Also,

ijf -f1 j < (2P-r' IF '2T'-', then the bracketed term in 2r i near unity.
Then the variance in the cross-spectrun estimate is large; in fact, it has
the same value as for P. I , no averaging. Yet the true cross-s;ectrun may
in fact be zero. Thus estimation of the cross-spectrzn will be in error,
even for a large M product, in a frequency range near f, and fl. :t should
be noted that this noisy estimation case recLuires the frequency separation
of the tones to be less than (T), not .22 '; thus the tone separation must
be much closer than the fundamental resolution of B xLC.

If the tone separation, on the other hand, satisfies If,-;fI) (PS -
then the variance of estimation is greatly reduced, as inspection of the
bracketed term in (2') indicates. :n fact, '27' becomes

which has the desirable ?' dependence cr. the number :iez:es --. the
average 2 , . Of course, when If, -f, > 5. then the windcw f_.nctl 'ns i n
decay rapidly and indicate a greatly red'uzed variar.ce, ever. .f 1 is greater
than the finest detail in the spectra.

8
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APPENDIX A. DERIVATION OF MSOENTS

From (2),

But from (3),

where

is the cross-correlation of x(t) and y(t). We are allowing all processes
and windows to be complex, for generality and have utilized joint-station-
arity In (A3). The cross-spectrum of x(t) and y(t) is

Utilizing (A4) and (5) in (A2), there follows for (Al),

we have also employed the fact that

= W ~i 1 ~f~55 ~(A6)

which fcllows from < . Equation (A5) is the : undamenta: relation for
the mean of the cross-spectral estimate. However, when 1 is less than
the finest detail in 6,1(f)

upon setting otw q-I,without loss of generality.

To evaluate the variance of (f), the following steps are required;
from (2),

ut the statistica. average in (AW) is, using (3',

9
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Further, the statistical average in (A9) is given by

4L

where we have assumed that x(t) and y(t) are joint Gaussian, and have
defined

,The Iast function in (All' is generally different frcm 'A--.' ' en..ting
the Fourier transforms of the three functions in A-) by q , f

(f) respectively, in a manner similar to A4:, 'A!'- )ecomes

V3 1 '

, f' and f ' must always be real.) Substituting A. ' in A a'  ere

4p 4 d- r 21r

Y) r

1dp

10
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+ Aw 2, + (-) w(~m(~

aL

+ r ~ ~ )N

Upcr. substtution :i, A!i) in (AS), we obtain

- E - 'r;V 2 4 (A14)

where we have used , .:f the frequency f c irnterest is greater than the
handwidth B cf the window !*Vll , then if- d d: nct overLap or.
the k-scale. Ten

r*f,) %e W) UP~~~E~.4

This Is a genera' r~lation for ; it ill be noticei tc be independent
cf crcss-spectrum &,(f", and depend only cn auto-spectra CGf" and U171

11
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Alo, there is no need to iow (f)

If 9 is .es than the narrowest detail in fv.(f'& and r near the
frequency f of interest, the integral on p in (A!5', becomes apprcximately

and (L, ' yields

Since "f, 4s a complex AV, it is necessary a-sc eva'ate he
juantn ty3 EZ _ , In add-tion to A2 , in order t: zo-..ete t:e secr.cd-
order moment'. Due to the similarity to the derivatior.s azeve,..e.s.."
wiL. be presented in a mcre zurscr-y fashlor..

E " = -L ~L IY X? :4> '4-)l

: ..

12
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.~Lr" €--. .A#-l

+ (AZI)

:f f is greater than ,

76p

This general relation for E1 depends orly on the cross-spectrum Q,,(f),
and not on the auto-spectra C,(f) and Also, there is no need to
know 4(f, or b()

If B is less the narrowest detail in Gl(f) near the frequency f of
interest, the integral pt in (A23 , becomes approximately

and (A23) yields

13
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For the case where x(t) and y(t) contain pure tones (eq. (26) of main
text), the general relation (A15) for O)]'Mg takes on the following form:
first the integral onrin (A15) is approximately

Then (A15) becomes

4 '? 0;4( 4 , s

using Ref. 5, (418) and (428); this relation is used in (Z7).

14
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Minimum-Bias Windows
for Spectral Estimation by
Means of Overlapped Fast

Fourier Transform
Processing

Albert H. Nuttall

ABSTRACT

The tine-limited nonnegative data windows that
minimize the bias in auto- and cross-spectral esti-
mation of stationary random processes by means of
overlapped Fast Fourier Transform (FFT) processing
are derived for a variety of constraints. When the
time duration L of the data window is constrained,
the optimum data window is (2/L)1/2 cos (7rt/L),
Itl < L/2; when the equivalent-noise bandwidth is
consfrained, the optimum data window is (8/31)1/2
cos2 (nt/L), which is the Hanning window; when the
half-power bandwid h is constrained, the optimum
data window is L-192 [1.682 + 4.261 cos (4.434 t/L)-
4.337 cos (3.552 t/L)], which is very similar to
the Hanning window; and when the root-mean-souare
bandwidth i s conitrained, the optimum data window
is 4/(5L)1/e cos (wt/L). In the three bandwidth-
constrained cases, the window duration L is adjusted
to meet the constraint.

The Hanning window is a reasonable compromi-se for
achieving minimum bias, because in addition to being
the optimum for one bandwidth constaint, it is very
close to the optima for two other bandwidth con-
straints. The relative merits of the spectral
characteristics of the windows are also discussed.
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MINIMUM-BIAS WINDOWS FOR
SPECTRAL ESTIMATION BY MEANS OF

OVERLAPPED FAST FOURIER TRANSFORM PROCESS!NG

INTRODUCTION

The selection of good data windows in spectral estimation of stationary
random processes, to minimize leakage, is an important consideration and has
received much attention [1-8]. In (6], a thorough investigation of fourgood data
windows revealed virtually the same variance-reduction capabilities of over-
lapped Fast Fourier Transform (FFT) processing when the proper overlap was
used for each window. The ultimate variance reduction of this direct procedure
was also demonstrated to be identical to that attained by the older (indirect)
analysis procedure in [4].

In this report, attention is focused on the bias in the estimation of power
density spectra by means of overlapped FFT processing. Specifically, the bias
is minimized by the choice of data windows that are restricted to be time-limited
and nonnegative and are subject to either a time-duration constraint or a band-
width constraint. These results complement and extend those of [8] for the in-
direct approach to spectral estimation.

PROBLEM DEFINITION

The overlapped FFT method for spectral estimation and the reasons for its
use are documented in [6]. The mean of the spectral estimate is given by [6,
eq. (5)] for auto-spectral estimation, and by (7, eq. (4A)] for cross-spectral
estimation. In both cases, the mean takes the form*

E fG(f)} = fdv G(f- v) IW(vfl 2 , (1)

where G(f) Is the estimate of the true (auto or cross) spectrum G(f), and

W(f) = fdt exp(-i21rft) w(t), (2)

*Itegrals without limits are over the range of nonzero Integrand.
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where w(t) is the data window multiplied in the time domain by the available
data. It is assumed that the data window is time-limited and nonnegative:

[0 for Iti >L/2(
1.0 for Iti -:L/2 (

where L is the window duration. The restriction to nonnegative data windows
guarantees that the spectral window W(f) peaks at the origin. It should be noted
that (1) is true with no restriction on the available record length T and with no
restriction on the statistics of the random processes involved, except that the
processes must be stationary; they need not be Gaussian for (1) to apply.

The desired value of (1) is the true value G(f); therefore the bias inestima-
tion is defined as

B(f) = E{G(f)J G(f). (4)

We approximate this bias by expanding G(f- v) in (1) according to

G(f-v) = G(f) -vG'(f) + 1/2 G"(f)v2 - 1/6 G"'(f)v3 + 1/24 G"...(f)v 4 , (5)

where the prime denotes a derivative. Substitution of (5) and (1) into (4) yields

B(f) = 1/2 G"(f)fdv v2 JW(v) 12 + 1/24 G .... (f)fdv v4 1W(v)I 2, (6)

where we have assumed (without loss of generality) that

fdvIW(v)12 =fdt w2 (t) = 1, (7)

and that IW(v)I 2 is even about the origin; that is, w(t) is a unit-energy real
waveform.

We express (6) as

B(f) Z 1/2 G"(f) D1 + 1/24 G""(f) D2 a B1 (f) + B2 (f), (8)

where window constants

D, =fdvv2 IW(v) 2 ,

D2 =fd v4 1W(v) 12, (9)

2
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are independent of the.true spectrum G(f). To minimize the bias, we must
therefore minimize D 1 and/or D2 , subject to (3) and (7). To this aim, it is
useful to express (9) in terms of the time domain. There follows, by use ot (2),

D (2w) - 2 Jdt [w'(t)j 2  (10)

and
D2 - (2w) 4 fdt [w"(t)j 2. (11)

Strictly, the approximation (8) to the bias is due only to local variations in
true spectrum G(f) about the frequency point f of interest; equation (5) is not
necessarily a good approximation for larger v. Thus, peaks in the true spectrum
that are distant from the point f under investigation are not accounted for by (5).
To minimize the effects of remote spectral peaks on bias, we must also require
that the spectral window W(f) decay sufficiently rapidly for large If 1. Thus
the results of the following optimizations are not final, but must be investigated
to see if they also meet the requirement of sufficiently rapid decay with frequency.

In addition to constraints (3) and (7), we shall be interested in constraining
the bandwidth of the window; this is in keeping with the philosophy of requesting
a specified frequency resolution for spectral estimation, and letting the window
duration L and overlap be whatever is necessary to meet this requirement [6].

It should also be noted that constraints on bandwidth tend to equalize the
variance-reduction capabilities of the windows. This may be seen from [6,
eq. (22)], where the equivalent number of degrees of freedom is given approxi-
mately by

2TBst for T:,L, (12)

where Bst is the statistical bandwidth [9, p. 278] of the window. Thus, if all
windows were constrained to have the same statistical bandwidth, they would all
have the same variance-reduction capabilities, and we could minimize the bias
subject to this constraint. However, this constraint is not mathematically trac-
table. * Therefore, we resort toconstraints on other, more tractable, bandwidth
measures, with confidence that they too will yield comparable variance in spec-
tral estimation (see [6, table 1]).

*We have not been able to express the time-domain constraint (3) directly in the

frequency domain, nor have we been able to express the requirement that
*#w(') be a legal correlation function directly in the time domain; see [6,
eqs. (7) and (17)-(21)].

3
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PROBLEM SOLUTION

Four different constrained problems will be addressed in this section: con-
strained window duration L ; constrained equivalent- noise bandwidth, constrained
half-power bandwidth;and constrained root-mean-square ( rms )bandwldth. The win-
dow duration L is adjusted to meet the bandwidth constraint in the latter three cases.

DURATION CONSTRAENT

Here we wish to minimize D1 in (10), subject to constraints (3) and (7) and
a fixedvalue of window duration L. In order that (10) be finite, %dt) must be
continuous; therefore w( ± L/2) = 0 from (3). When we use a calculus-of-variations
approach, the optimum window wo(t) must satisfy the differential equation

wo(t) + X wo(t) = 0, Itl < L/2, (13)

where X is a constant (Lagrange multiplier). The solution of(13) that satisfies
the boundary conditions and (7), and has minimum Di. is

Wo(t) = ()1/2 cos(wt/L), 1t S L/2. (14)

The corresponding value of (10) is

D - (15)
4L 2

Several windows are compared in table 1. It is seen that the Hanning window
has 33 percent greater bias, as measured by B 1 (f), than the optimum window,
under a duration constraint.

Table 1. Window Bias Constants DI

Data Window 4L 2 D1

Optimum, (14) 1

Parabola 10/w2 = 1.01

Triangle 12/r2 = 1. 22

Hanning 4/3 = 1.33

4
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The spectral window corresponding to the optimum data window, (14), is

Wo(f) 2 (2L)1 / 2 coB6(I.,) (16)
1-4L 2f2

The decay for large frequencies is only as f- 2 . The sidelobes of this and the
following windows will be discussed later.

EQUIVA LENT- NOISE- BANDWIDTH CONSTRAINT

The equivalent-noise bandwidth Be of spectral window W(f) is defined as

Be df INkIW(f)12 = (171
e= IV(0) 12  [.fdt w(t)]2

where we have used (7) and (2). The quantity Be can be interpreted physically
as the bandwidth of an ideal rectangular filter that would pass the same amount
of power as a filter W(f), when subjected to white noise- see figure 1. The peak
of (w(f)2 occurs at the origin, since data window w(t) is nonnegative.

-B /2 B e/2

Figure 1. Equivalent- Noise- Bandwidth Interpretation

The problem here is to minimize D1 in (10), subject to constraints (3), (7),
and (17). This problem is solved in appendix A, with the result that the optimum
data w indow is

Wo(t) = cos 2 (wt/L), Itl S L/2 (18)

5
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This is the familiar Hanning window. The window duration L must be chosen as

3 1 (19)

according to (17). The minimum value of DI is

1 4 2
D1 =- =- Be 2 (20)

3L
2  27

The specified equivalent-noise bandwidth dictates the window duration L and
the minimum attainable bias constant D1 . The spectral window corresponding
to (18) is (_W. 2 1/2 sin(,Lf) (21)

0of 3/ ) rLf(l-L 2f2 )

where L must be determined from (19). The decay for large frequencies varies

as f- 3 .

HA LF- POWER- BANDWIDTH CONSTRA INT

The half-power bandwidth Bh of spectral window W(f) is defined as

W(±Bh/2) 2 1
= __(22)

W(0) 2

We desire to minimize D1 in (10), subject to constraints (3), (7), and (22).
Converting (22) into the time domain and restricting w(t) tobe even, * constraint
(22) takes a desirable integr,' form:

fit w(t)[cos(rBht) - 2- 1/2j = 0 . (23)

The solution to this minimization problem is presented in appendix B. The optimum
data window is

wo(t) = L- 1/ 2 [1. 682 + 4. 261 cos(4.434t/L)

- 4.337 cos(3.552t/L)], Iti S L/2 . (24)

* An odd component in w(t) increases the rate of variation and therefore
increases D1 .

6
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The window duration L must be chosen as
1.411

L = 1.1- (25)
Bh

according to (23). The minimum value of D1 is

D1 = 0. 1604 Bj . (26)

The spectral window corresponding to (24) is obtained by employing (2); this will
be discussed in the next section. It is shown in appendix B that w (fL/2) = 0;
therefore the decay of the spectral window is according to f- 3 .

For comparison: if the time duration of the Hanning window is adjusted to
realize the specified half-power bandwidth, namely L = 1.441/Bh [6, eq. (33)
and table 1], it follows that D1 = 0.1606 Bg. Thus the Hanning window has
virtually the same bias as the optimum window under a half-power-bandwidth
constraint. Further comparisons are made in the next section.

ROOT-MEAN-SQUARE- BANDWIDTH CONSTRAI4T

The rms bandwidth Br of spectral window W(f) is defined as

2  Jdf f2IW(f)12 (27)fdr Iw(f)12

Inspection of (7) and (9) immediately reveals that

2
D =Br . (28)

Thus if the rms bandwidth is constrained, bias constant D1 is fixed. In this

case, it is reasonable to resort to minimization of the second bias constant D2

in (9) or (11). Thus, we wish to minimize (11), subject to constraints (3), (7),
and

fdt (w'(t)] 2 = (2wBr) 2  (29)

The solution to this problem is presented in appendix C. The optimum data win-
dow is

Wo(t) 4 cos 3 (wt/L), Iti S L/2 . (30)
(5L)1 / 2

7
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The window duration L must be chosen as

3 1
L 3 , (31)

2-E Br

according to (29). The minimum value of D2 is

25 
D 2  9 El. (32)

The spectral window corresponding to (30) is

Wo(f) = 16 (5L)1/2 cos(WLf)

15w (1-4L2f2 )(1-4L2f2 /9) (33)

where L is determined from (31). The decay for large frequencies is according
to f-4.

For comparison, let the time duration of the Hanning window be adjusted to
realize the specified rms bandwidth B r . Then employing (18) in (29), we find
L = 1/(43 Br), and (11) yields D2 = 3 Br . Thus the Hanning window has
8 percent more bias than the optimum window under an rms bandwidth constraint,
as measured by bias constant D2 .

COMPARISON OF WINDOW CHARACTERISTICS

In figure 2, one-half of the symmetric optimum data windows for the three
bandwidth-constrained cases are drawn for a common time duration of L = 1.
The equivalent-noise-bandwidth data window (Hanning) and the half-power-band-
width data window are virtually identical and are continuous in value and deriv-
ative at 0. 5. The rms-bandwidth data window is more peaked, and goes to zero
in value, in derivative, and in second derivative at 0. 5. Thus the last window
would require greater overlap than the first two, in order to realize the same
variance reduction; see [6].

In order to deduce the required overlap for the rms bandwidth data window,
the quadratic and cubic data windows (6, pp. 10-18] are superposed in figure 3.
Over most of the range, the quadratic and rms-bandwtdth windows are very close.
Near the end of the range, however, the taper of the rms-bandwidth window ap-
proaches that of the cubic; in fact, both are continuous in second derivative at
0.5. Thus, it is anticipated from earlier results (6, table 4 ] that slightly over
65 percent overlap would be required for the rms bandwidth data window to realize
99 percent of its maximum equivalent degrees of freedom [ 4, p. 22 ].

8
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2 .
0

r-
IMS

-'HW "WAS: ROOT -MEA?-SQUA.E4ANDWIDTH DATA WINDOW
EN: EQUIVALENT-NOISE-4ANDWDTH DATA WINDOW
HP: IALF-POWER4ANDWIDTH DATA WINDOW

• ,ot) .

0.

RMS\\. EN' \NP

00 0.5

Figure 2. Three Bandwidth-Constrained Data Windows;
L = 1, Unit Energy

2.0 CUBIC

RMS

QUAD APS. ROOT-MEAN-SQUARE -BANDWIDTH DATA WINDOW
QUAD: QUADRATIC DATA WINDOW
CUBIC: CUBIC DATA WINDOW

cut UAD

0.0
0.0 0.5

Figure 3. Comparison of RMS-Bandwidth Data Window with
Quadratic and Cubic Data Windows; L = 1, Unit Energy
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The spectral characteristics of the four windows derived in this report are

presented in figures 4 through 7. The abscissas on every plot are in units of the

half-power bandwidth; thus all the curves go through half-power (-3.01 dB) at

f/Bh = 0.5. The duration-limited window, (14), is plotted in figure 4 and ex-

hibits relatively slow decay with frequency, since the data window is discontin-

uous in derivative at its edge. The equivalent-noise-bandwidth (Hanning) and
half- power-bandwidth spectral windows, plotted in figures 5 and 6, are virtually
identical and have good decay with frequency, since the data windows are con-

tinuous in derivative at their edges. The spectral window for the rms-bandwidth

data window is plotted in figure 7 and exhibits very rapid decay with frequency.
However, as noted above, by virtue of requiring greater overlap for maximum
variance reduction, this window will require somewhat greater-size FFTs than
do the other windows.

CONCLUSIONS

The Hanning window is optimum under an equivalent-noise-bandwidth con-
straint, as far as minimization of bias constant D1 is concerned. Furthermore,
it is near the optima for two other bandwidth constraints. Its sp. ctral decay is
also sufficient for most cases that the bias is relatively unaffected by distant
spectral peaks. And with 50 percent overlap, it realizes 92 percent of the max-
imum number of equivalent degrees of freedom [6, table 6]. Thus, the Hanning
window is a reasonable compromise to utilize in spectral estimation of random
stationary data.

10
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Appendix A

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN
EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT

We wish to minimize (10) (from the main text), subject to constraints (3),

(7), and (17). Equations (7) and (17) are integral constraints and are in a con-

venient form for a calculus-of-variations approach. The way we handle (3) is to

first ignore the nonnegative limitation; then, out of the class of allowable sol-

utions, we restrict attention only to the nonnegative solutions and pick the best.

In order that (10) be finite, w(t) must be continuous. Using (3), we see that

this means that

w(± L/2) =. (A-i)

A calculus-of-variations approach tells us to minimize the quantity

Q ~ W +ftw~2 \U 2,\J) 42jkW) (A-2)

where \ and X. are Lagrange multipliers; the resulting differential equation

for the optimum window is

it W, , + " < L/2. (A-3)

We employed (A-i) on the allowed variations in deriving (A-3).

The general solution of (A-3) is

A c. (.t)+ B +:( C

OR (A-4)

, A c ,a, ( ) + B ,'l vh ( a ) + 
C , 

l v 
L /(.a 

+ C

A +Bt

where O is real and positive. The third alternative in (A-4) yields the trivial

solution when (A-1) is imposed.
15
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The second alternative reduces to

Since A can be chosen to satisfy the energy constraint (7), and L can be chosen
to satisfy the bandwidth constraint (17), there is left only the variable at in
(A-5) to vary; w, to is certainly nonnegative by the choice of proper polarity
for A. In order to find the best value of a for this second alternative of (A-4),
we compute D, in (10) versus .1 and pick the minimum.

To accomplish this goal, we define

where

A~(u) Cos (ww,~) -cia~) Cosh ~ I (A- 7)

and

,= aL/2. (A-8)

The bandwidth constraint (17) then becomes

whereA K(A9

Ke g d . I). (A-to)
-I

The energy constraint (7) becomes
AI"  - .- (A-11)

where
f/ A J J , (A- 12)
-I

The window constant (10) becomes

"-D, - -- - K, (A- 13)
1r" "L '

16
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where

K, 'S' [ '11 (A- 14)K, & .

If we eliminate A and L by using (A-9) and (A-Il), then (A-13) becomes

"D.k: ; (A-15)

The quantities necessary in (A-15) follow from (A-7), (A-10), (A-12), and (A-14):

K . r3s (2-)K I2 -(A-16)

KI 2[I~o~?)I 2o<'

When (A-16) is substituted in (A-15), 1)1 is found to increase monotonically with
increasing K ; the limit as o(-* o+ is

12, B = (A-17)-12 b ffi s' l0/ ..

The first alternative in (A-4), when subjected to boundary condition (A-i),
breaks into two subcases. In the first, if Sih(.) a 0, then 10 is arbitrary.
Then a( a kr, k > I The function with smallest D, corresponds to K I,
and yields

w. AIcos (wt/L) + 1 +5 s(2wit/L), Iti :J L/ 2 (A- 18)

However, we must have D = 0 ; otberwise W,,(t) would go negative somewhere.
Imposition of the energy constraint (7) and bandwidth constraint (17) yields

where

L (A- 20)
a,.

17
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The corresponding value of D, is

1L-. 4 Ba (A-21)
A2-7 e

which is smaller than (A-17).

The second subcase occurs if $rn(r) 0 • Then B in (A-4) must be
zero, and we get

where a< * k i . The comments and method immediately below JA-5) apply
equally well here. Therefore we define

A'14) = CO 3k4) -coiM ('61 I i, < (A-23)

and find 
-5M Y

1 (A-24)

= i L _ 2 %) 2r24

When (A-24) is substituted in (A-15), r'0 is found to decrease monotonically with

increasing at , at least for a up to 1r. However, when a(>W1, Am) becomes
negative somewhere; this may be seen by noting that %'(I) = -O< siim (e) is
positive if a¢lw. Thus the limiting member of this subclass, which is (A-19), is

the optimum window.

18
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Appendix B

DERIVATION OF THE OPTIMUM DATA WINDOW FOR A

HALF-POWER-BANDWIDTH CONSTRAINT

Here we will minimize (10), subject to constraints (3), (7), and (23). In

order that (10) be finite, (A-i) must again be true. A calculus-of-variations
approach tells us to minimize

Q = S.it [w, WX 0- w~~+ 2\a wit-) C #0 (B-i1)

where --- er 1-f

and X, and ), are Lagrange multipliers; the resulting differential equation for
the optimum window is

Wel it + ~ 0, W. L/2 (B-3)

if X, is negative, the form for w,) includes sinh and cosh terms, which
lead to a progressively larger value of D, as \ becomes more negative,
similar to the result of appendix A. If X, is zero, the only solution to (B-3)
and (A-i) is the trivial solution. If X, is positive, the general solution to (B-3)
is

(B-4)

A (a3(W+)+ZDmn(), X%=0 (-4

We discard the odd solutions for the reason given in the footnote to (21).

If we attempt to use the second alternative in (B-4), we can eliminate A
by means of energy constraint (7). However, the bandwidth constraint (23) can

not be satisfied for any value of w L 0 . Therefore, we must discard the

second alternative.

To handle the first alternative in (B-4) conveniently, we define a function

so W.(t(A) uAc~s,(.r) +- e C(os(.u) - <~~ (B- 5)

19
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where co L := 5 0

Imposition of (A-i) forces (B-5) into the form

3.(Q) CCO.Jg(1)_ 2,k+ -,' i - I.-AJ(U/ 1 )LAI:1) (B-7)

where C is a constant. The energy constraint (7) yields

C = 12. (B-8)

where we have used (B-5) and (B-7), and defined

= u LIV/). (B-9)

Satisfaction of bandwidth constraint (23) demands that

Lo = 3dU[CD5u)-6A(U), (B-10)
where we employed (B-6) and (B-7). Substitution of the detailed form for Alt),
(B-7), into (B-10) yields the relation

(B-1l)
where

5 1 VIN
Af (B- 12)

For a given value of $ (B-I1) must be solved for the smallest value of o ;
is a known specified constant. In order to find the best value of 1, , we com-
pute ) versus $ and pick the minimum, always being careful that .AO)remain
nonnegative for all Ws 1. The quantity

_K. K,(B-13)

20
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using (B-5), (B-7), (B-8), (B-6), and defining

K, = ,J j[.*A'()1. (B-14)

The quantities K9 and K, are available upon substitution of (B-7) in (B-9) and
(B-14). There follows, upon use of (23),

K,:C c[I+ 5 (2KIq] + '2C3 5(W r

where + CI C kv ) - + (B-16)

C1  =os(Ks)T' % - 103k) . • (B-17)

The numerical approach may now be summarized as follows. A value of
q is picked, and (B-11) is solved for a . Then (B-17) is computed and sub-
stituted in (B-15) and (B-16), thereby enabling evaluation of D, in (B-13) for
that choice of k . (Up to this point, G could be any desired constant; we now
restrict &- I/ ). Wlien this approach is tried, it is found that D,
increases monotonically with increasing t . On the other hand, when , is
made too small, Aj%) becomes negative near a&I. The optimum value of 4,
is realized when .X'(I) -o. From (B-7) and (B-17), this requirement is

C, 5;w(0q) + C, 1 3'1W) - 0. (B-18)

The simultaneous solution of (B-11) and (B-18), with smallest ae , is then given
by

Ic. 011 M 6 2.217 OS'S. (B-19)

The optimum value of P, then follows from (B-13) as

'DI= *I& C 40 IJ D (B-20)

and the segment length follows from (B-6) as

L bo (B-21)

Finally, the optimum window wIb follows from (B-5) as

W, +: 1 , i, c/)(.E. 1 a/) (B-22)
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Appendix C

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN RMS-
BANDWIDTH CONSTRAINT

The problem here is to minimize (11), subject to constraints (3), (7), and
(29). In order that (11) be finite, W%) must be continuous. Using (3), this means
that

W(± L/.)=0, W'(±yL)zo0 (C-i)

A calculus-of-variations approach tells us to minimize the quantity

where X and & are Lagrange multipliers; the resulting differential equation for

the optimum window is

We employed (C-i) on the allowed variations in deriving (C-3).

To solve (C-3), we assume a form exp(st) for %W1). Substitution in (C-3)
requires that s be chosen to satisfy

4 2 .=-L(C-4)--; %A S. :-
At this point, several alternatives are possible. The first case we pursue

is a negative discriminant in (C-4). Then the four values for $ in (C-4) can be
expressed as

where * is a complex constant with nonzero imaginary part. For distinct roots

(i. e., 1 not purely real), the optimum window is
We, i):A ,.4tp(V).,- .i,( .)-Ce,,-jLDtXr(,Zf). (C-6)

In order that (C-1) be satisfied with a nontrivial solution, it is necessary that
the determinant E EVE/ '/'E"

YEr 1/1? E

AP? -IE - Ile (C-7)

23
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equal zero, where E z exF(tL/2) This requires that

a(C-8)

But none of the factors in (C-8) can be zero without double roots resulting for s,
in which case the form (C-6) is not appropriate. Therefore, the negative-
discriminant case is self-destroying.

The second case corresponds to a zero discriminant in (C-4). Then we have
three subcases:

(,4O Q.} real and positive. (C-9)

0, 0, 0, 0
For subcase 1, the form for w.ft) is

w.,-W) A co4 c) +- B 31,m (c+) -Ct co4(at) +- Df;(4). (C- 1)

Imposition of (C-I) requires that

~taiLa-)= ± L (C-11)

for a nontrivial solution. But (C-i1) has no solutions for positive real 4L

For subcase 2 in (C-9), the form for % is

t~*= Ae.() *5 1(.t) + Ct co3(q+) +]:) siv'(A4. 0-

Imposition of (C-i) requires that

Siin(a Q - ± L L (C-13)

for a nontrivial solution. Again this is disallowed.

For subcase 3 in (C-9), the form is

%1k ) = A + Bt 4 C + -D (C- 14)

Imposition of (C-1) yields only the trivial solution.

The third, and last, case we must now consider is a positive discriminantin
(C-4). Then we have three subcases:

24
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3 x Q * i C f and b real. (C-15)

For subcase 1, we have

WK4) = A (Osh(a) B5"(O0+Cco-5lb+)+D i.h(W, (C-16)

Imposition of (C-1) requires that

= P tul I a\+ankf.) = EA(P)
0 tIFj or =(C-17)

where

a( aL/2) R L/2.. (C- 18)
The only solutions of (C-17) are =e ; that is, & However, thesehave

been considered already in (C-10) and found inadequate.

For subcase 2 in (C-15),we have

W. I&0 = A co (+ + B *;n (O+) + C cv3t +-D sn(C-19)

Satisfaction of (C-i) demands that

tan&& ~p
- ' or - (C-20)

The second alternative in (C-20) leads to odd solutions only, in (C-19), and they
must be discarded because of their higher variation rate. The first alternative
in (C-20) leads to

w.l:C C05 4- ,0 W Y~l ( C-21)

which is a legal nontrivial solution. The values of 4( and are related as shown
in figure C-1. To handle this alternative conveniently, we define a function

r .aA) CL - w i C.A(u), luId 1. (C-22)
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jx

! .- x tanh Wx

Figure C-1. Relationship of a and 1 in (C-20)

Then

The energy constraint (7) requires that

C . (C-24)

where

K4  t (C-25)

The bandwidth constraint (29) requires that

L ( K_ _az  (C-26)L Ir ' K./"'

where we have employed (C-23), (C-24), and (C-25). Then we use (C-23) through
(C-26) to determine the bias constant PL as

Ko~ K. (C-27)

For the curren example in (C-22), we evaluate

K it(K+ + +-- V

2 Cos,

26



TR 4513

K20 1 +>() (C-28)

where we have employed the first alternative in (C-20), and defined

S(X) ;V14 5 () SW =  5 *X(C-29)A x

For an arbitrary a, we solve the first alternative in (C-20) for

and then compute T3  , by means of (C-27) and (C-28). It is found that P2z
increases monotonically with a . The minimum is realized when k( ,= c

namely

+ (C-30)

The third subcase in (C-15) yields the form

w.10t = A Costa+) +3 51 (44 (+ C Obs( -L) +1) M(). (C-31)

The boundary conditions (C-1) demand that

Oeor M~! (C-32)

However, the second alternative in (C-32) yields odd solutions and is discarded.

The first alternative yields "I

The values of se and p are related as shown in figure C-2. As above,x on~x

Figure C-2. Relationship of a and P in (C-32)
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we define a function
-COSe) (C-34)

We can now employ (C-25) through (C-27) immediately. We evaluate

2 5 ) -2 k-)s(t +) 1+3(2)

K, -- 5-_.s) 1 -5(20) (-35)

4 1+5) 4 +52,KI _ __CSI* -2 e Co's +0

For an arbitrary -< ( # ir/z) , we solve the first alternative in (C-32) for
_0 , and then compute Ta using (C-27) and (C-35). It is found that P,2

decreases monotonically with increasing eg , at least for oX up to /2, the
limit being 25/9 at .= -'/Z - . However, when c< >- ir/2 , .MA) goes
negative somewhere and is unacceptable. For %( -wr/2 , (C-32) is not an
adequate form; we note instead that 3 = ,r/2. from (C-31), andthen

AL.) = A C.Pr ((.) ao I-). (C-36)

The boundary conditions (C-1) force A -3B , giving

We then find

K = K (C-38)
°' 32 122

yielding 3 -

ils-4 (C-39)

which is smaller than (C-30). Thus (C-37) is the optimum window. (Notice that

8 = o.)
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Spectral Analysis

Albert H. Nuttall

ABSTRACT

An approximate and quick fast Fourier transform
technique for vernier spectral analysis is derived
and tested for several condidate time and delay
weightings, and for overlaps of the time weightings.
For 50 percent overlap, the use of a simple cosine
lobe for the time weighting yields spurious spectral
sidelobes at least 23 dB below the main peak, where-
as Dolph-Chebyshev time weighting achieves -33 dB
sidelobes. For 75 percent overlap, use of a
(cosine)5 lobe for the time weighting yields side-
lobes at least 54 dB down, whereas Dolph-Chebyshev
time weighting achieves -86 dB sidelobes. In both
cases of overlap, use of delay weighting is also
required and is taken as a Hanning weighting. Ex-
tensions to other overlaps and weightings are
possible.
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AN APPROXIMATE FAST FOURIER TRANSFORM TECHNIQUE
FOR VERNIER SPECTRAL ANALYSIS

INTRODUCTION

To detect the presence of very narrowband weak signals in noise, and to
measure their center frequencies accurately, it is necessary to Fourier trans-
form a long time segment of the available process. When the center frequencies
of the signal components are unknown and the total search bandwidth of interest
is large, this procedure demands storage and computation of many degrees of
freedom, that is, search of a large time-bandwidth product space. It would be
advantageous if a quick, coarse search for narrowband components could be
conducted, followed by a finer vernier analysis over a limited band where the
presence of narrowband components has been indicated. Such an adaptive pro-
cedure would be less time-consuming and require less storage. Also, if the
procedure did not need to be exact, but yielded an approximation with accept-
able sidelobes, the required storage and computation might be reduced further.

This report presents just such a technique, which

1. accepts the input process in smaller time segments as they are available,

2. performs a reasonable-size weighted fast Fourier transform (FFT) on
each overlapped segment,

3. stores only that frequency portion (at each segment) where narrowband
components are indicated to be present, and

4. performs a small-size weighted FFT over the total data record available,
for each frequency bin stored.

Steps 1 and 2 permit smaller-size FFTs than would be required if the total data
record were spectrally analyzed in one operation. Steps 3 and 4 constitute the
adaptive feature of this technique. The last transform over time (delay) instep4,
for each frequency bin, is a vernier frequency analvsis, measured from the
center of each bin; the degree of approximation of this technique is the subject
of this report.
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Some past work on performing large-size FFTs by means of several smaller
FFTs is reported in references 1 and 2. The methods reported there are exact,
but they consume more time and require more storage than the method to be
presented here. In particular, the two methods of reference 1 require too many
small-size FFTs, and the method of reference 2 requires additional multiplica-
tions by complex exponentials and a fair amount of storage. The approximate
technique of reference 3 is similar to the one outlined above, up to step 4, with
the notable exception of overlapped weighting; at that point the technique of ref-
erence 3 requires transformation back to the time domain followed by another
transform to the desired frequency domain. Additional transforms are required
in this last technique, and it produces greater sidelobes than the new technique,
especially when the temporal weighting is judiciously selected.

FUNDAMENTAL SPECTRAL RE LATIONSHIPS

LARGE-SIZE FFT APPROACH

Before embarking on the approximate technique, we review the standard
large-size FFT approach to spectral analysis. Suppose a data waveform x(t)
is sampled at time instants na, n integer. Then the voltage density spectrum
that can be computed is*

V(M) f dt exp (-i2vft) x(t) u(t) (t)
(1)

=a exp (-12wfh&a) x(na) u(na) ,
n

where u(t) is a temporal weighting deliberately imposed to control spectral
sidelobes, as will be discussed shortly; see figure lA. The finite duration of
u(t) terminates the integral and sum in equation (1) at finite limits. The im-
pulse-train function in (1) is defined as the infinite sum

6 t, M (t-n ). (2)

n

The integral representation in (1) allows us to expresst

V(f) =x(f) * U(f ( , (3)

*All integrals are over the range of nonzero integrand.
t The Fourier transform of the lower-case time function x(t) is the upper-

case frequency function X(f); this notation is used throughout.

2
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where 0 denotes convolution, and, in keeping with (2),

mm

Thus, the observed spectrum V(f) is the convolution of X(f) with the set of
windows* U(f) • 6(f), which is depicted in figure lB.

Figure 1A. Temporal Weighting

UMf)8 t M

1 0

-¢ AFigure lB. Spectral Windows 4

Figure 1. Time and Frequency Relationships

Because the ideal spectral window is a single impulse at f = 0, the aliased
matnlobes at m/A, m # 0, are undesired. Also, the window U(f) is desired
to be narrow, with very small sidelobes. Since the weighting u(t) is of limited
duration, the mainlobe width of U(f) is not zero, but is inversely proportional
to the time duration.

Now, if the voltage density spectrum V(f) is computed at multiples of
(LA)-l, where La is the time duration of u(t), we obtain

V ( )= A e (-i2wnp/L) x(nA) u(nA) , p integer. (5)
n

*In the time domain, u(t) is called a weighting; the corresponding Fourier

transform in the frequency domain, U(f), is called a window. This nomencla-
ture is used throughout.

3
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Since V(f) is periodic of period 1/A (see (1)), (5) need be computed at L
different points; thus it can be realized as an L-point FFT of sequence
Ix(nA) u(nA)4. For fine frequency analysis (that is, large LA) the size L of
the FFT may be too large to compute easily, under storage and time Limitations.
The values in (5) are samples of the convolution of figure 1B with voltage density
spectrum X(f).

APPROXEMATE FFT TECHNIQUE

Just as we started above with an integral definition of a spectrum, then
showed that samples of this spectrum were attainable with an FFT, we begin
with the spectral-delay function, a, defined as

a(f, ) f dt exp (-i2uft) x(t) w(t - r) A64(t)

= A E exp (-i2wfnA) x(nA) w(nA - r)
n

The temporal weighting w is now delayed by r seconds; if the duration of w
is Lw seconds, the function w(t - r) picks out a delayed portion of data x
of length Lw, and subjects it to the same transform as in (1). This operation
is depicted in figure 2A, where the temporal weighting can be located at aa,
bb, ... , cc. This figure is drawn for 50 percent overlap of the temporal weight-
ings; however, other overlaps are possible and recommended in some cases.

The next step, consistent with step 4 in the Introduction, is to perform a
Fourier transformation on the delay variable 7, while holding frequency vari-
able f fixed. The general definition is the vernier spectrum

Y(f,aV) a fd1 exp (-i2w V r) a(f,7) d(r) S6 5 (r)
7)

= S 1 exp (-12w PkS) a(f, kS) d(kS)
k

where P is the vernier frequency, d(r) is called the delay weighting, and
S is the separation increment in delay Y at which a(f, r) must be computed;
that is, S is the shift between temporal weighting locations isee figure 2A).
Since the separation S in delays can be taken to be smaller than the tvmpural
weighting duration Lw., (7) allows for overlapped weighted transformation of
the available data (see (6)).

4
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The operation described by (7) is depicted in figure 2B. When the Fourier
transform (6) on weighted time segment aa is completed, the set of frequency
components denoted by the vertical line of Xs at the end of segment aa are
available. Similarly, frequency component values at the ends of segments bb,...,
cc are indicated in figure 2B; these components correspond to delayed locations
of the temporal weighting w. Now, for a fixed frequency, say fl, the array
of (delayed) frequency components indicated in a horizontal box in figure 2B is

subjected to a delay weighting and is Fourier transformed according to (7),
thereby yielding vernier spectrum Y(fl, P). Similar outputs are available for
other (adjacent) frequencies of interest, such as f2 or f3

temnporsi we~ghting vv

a b c

Figure 2A. Overlapped Temporal Weightings

F'OquenCv

I I

3

- II

I I g I
II I I

a b a b C C

Figure 2B. Adjacent Delay Weightings

Figure 2. Temporal and Delay Weightings

5
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Samples of the vernier spectrum in P at multiples of (MS) - 1 , where MS

is the duration of delay weighting d(r), are given by

Y (f ) = S exp (-12u'ink/M) a(f, kS) d(kS), m integer, (8)

which can be realized as an M-point FFT of the sequence {a(f, kS) d(kS)f of

length M. The periodicity of Y(f, r) in P , of period I/S (see (7)), means

that (8) need be computed only at M different values of m.

Finally, samples of vernier spectrum Y in frequency f at multiples of

(NA)- 1 are given by (using (8))

S exp (-i2wrnk/M) a k d(kS)
SMS k=O (9

p= 0, 1,. .. , N - 1; m = 0 , I , . . . . , I I- 1,

where delay weighting d(r) has been selected so that samples {d(kS)I are

nonzero only for k= 0, 1,..., M - 1. The values of a needed in (9) are (using
(6)) given by

a( p, kS) A En exp (-i2wpn/N) x (na) w(nA - kS). (10)

In order to put (10) directly in the form of a standard FFT, we assume that the

delay separation S is taken as an integer multiple of the sampLing increment A:

S=Is  . (II)

Then, if temporal weighting w has nonzero samples jw(nA)1 only for0<n< N-i,
(10) becomes

IPk N-i
kS = exp(-i2wpkIs/N) A E exp (-i2wpm/N) x(mA * k1s A) w(mA),

m=O
(12)

0<p<N- 1, 0<k<M- -l

6
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The exponential phase factor preceding the sum (FFT) in (12) takes on particu-
larly simple forms for two special cases of delay separation S: For Is = N/2,
delay S is equal to half the temporal weighting duration Lw and is termed
50 percent overlap; for I = N/4, delay S is one-quarter of Lw andis termed
75 percent overlap. For tiese two cases,

50 percent overlap, I s = N/2, phase factor = (- 1 )pk (13A)

75 percent overlap, Is = N/4, phase factor = (_i)Pk (13B)

By proper branching in a computer program, no storage or complex multiplica-
tions are necessary to incorporate these phase factors in (12), prior to its

usage in (9). (An alternative approach that completely circumvents the phase
factor in (12) is described in appendix A..)

Equations (12) and (9) are the essential results of interest. We now inter-
pret them by means of simple examples that v.ill enable us to make good choices
of temporal weighting w, delay weighting d, and separation (overlap) S.

TERPRETATION OF THE VERNIER SPECTRUM

In appendix B, the vernier spectrum is shown to be given in terms of X by

Y(f,v) [W(-u) F- X~f~ -(; 0 D(P) 0 6,,S(Y) (14)
m

where all the convolutions are on P, with f held fixed. D(v) is the delay
window corresponding to the delay weighting d(r).

The linearity of the two Fourier transforms, (6) and (7), on the data x(t)
indicates that we can investigate the behavior for data components separately
and merely add the results. The fundamental component is

x(t) = exp (i2vfot), X(f) = 6(f - fo) • (15)

At this point, we shall make a series of reasonable assumptions and require-
ments, and deduce desirable properties about the weightings and separations.

The first assumptions are

(a) excitation frequency f0 
< (2a)-1,

(b) coarse analysis frequency f < (2A)- 1 ,

(c) Lw > a

7
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Assumption (a) avoids aliasing, (b) restricts analysis to the fundamental range,
and (c) requires the temporal weighting to cover many samples of the process
x(t). Furthermore, if

(d) temporal window W has low sidelobes,

the only term in the sum in (14), after substituting (15), that has substantial
value is that for m = 0, and it yields

Y(f, P) Z' [W(f - fo) D(a' + f - fo)eg(). (16)1

A plot of this equation versus vernier frequency P is given in figure 3, where
Ld is the length (duration) of delay weighting d(r). The narrow lobe at V = fo - f
is the desired component; this component is displaced from the coarse analysis
frequency f (corresponding to P = 0) by fo - f Hz, which places it at absolute
frequency f + (fo - f) = fo, as desired. The shape of this lobe is governed by
the delay window D; thus, if

(e) Ld >> S ,

(f) delay window D has low sidelobes,

the large lobes separated by I/S Hz in figure 3 will not overlap significantly,
and potentially good spectral estimation is possible. The necessity of delay
weighting is made obvious by these observations.

Y(f,./)

WOf - fo)D(ZJ f -o
WI-f to) 101

l/Ld

fo -. f- 0 to f o -t I

Figure 3. Vernier Spectrum

8
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There are a few additional points worth noting about figure 3. The peak height
of the lobes, W(f - fo) D (0), is a function of the exact location of the excitation
frequency fo and the coarse analysis frequency f. This undesirable picket-
fence effect* (which was not present in figure 1) can be minimized:

(g) choose analysis frequencies IfkJ closely spaced (see figure 2B).

Then Ifk- foI is small for some value of k. Also, since the width of the lobes
in figure 3 is 1/Ld, where Ld is the delay weighting duration and will betaken
of the order of the totl record length available or utilized, very fine resolution
in v is possible. Hence, narrowband components closer than 1/Lw, the resolu-
tion capability of a single time segment, can be resolved by using this technique.

FFT CONSIDERATIONS

Samples of the vernier spectrum Y(f, &) were given in (9). The locations
of the samples aret

1 2 N-1f: 0, - 9- .., R

NA NA N
(17)

1 2 M-1
:0, - , - .

MS MS MS

The range covered by the vernier frequency v is S- 1, and will be greater than
the increment in f, which is (NA) - 1 , if overlapped temporal weighting is used.
And since the full range, S- 1, would encompass a spurious lobe for values of
fo - f I near (2S) - I (see figure 3), overlapping is necessary.

The approach adopted here is to utilize all the samples in f at separations
of (NA)- 1, and use only samples in v which cover a range of (NA)-; that is,
we use the centra portion of Y centered around P = 0, including negative fre-
quencies. In terms of figure 2B, adjacent delay weightings at fl, f2 , f3 will be
employed. The alternative time-saving procedure of attempting to utilize all of
the M samples in v, and using only enough samples in f to fill in the frequency
axis, can lead to a very bad picket-fence effect, in addition to large spurious
lobes at undesired frequency locations. These conclusions follow upon piecing
together several vernier spectra like figure 3 for appropriate values of f and

xcitation frequency fo"

•* rtference 4, page 47.
;pper half of the array of numbers in (17) corresponds to negative fre-
.hu- tht last samples in each array correspond to f = -(NA)-I and

9
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EXAMPLES

The general guidelines furnished in the previous section do not yet enable
us to make quantitative selection of good weightings for different degrees of
overlap. To make this selection, several examples are considered and compared.

The numerical examples utilize

1 1 1
= - seconds, N= 1024, -Hz,

1024 MS 8
(18)

fo= 256 2561 Hz.

(A sample program utilizing (9), (10), (11), (18), and the method of appendix A
is given in appendix C for 75 percent overlap.)

50 PERCENT OVERLAP

At 50 percent overlap of the temporal weighting, * several possibilities were
tried. They included

cosine lobe : w(t) = cos (fft/Lwv)
cosine2 lobe (Harning) ; w(t) = cos 2 (frt/.,) Itl < Lw/2 • (19)

Dolph-Chebyshev (Reference 5)t

A complete list of cases is presented in table 1.

In figures 4A through 41,1 decibel plots of the magnitude of the estimated
spectrum are given for cosine temporal weighting and for (cosine)2 delay
weighting. All plots are normalized with respect to a maximum of 0 dB, which
occurs for fo = f = 256 Hz, V = 0 Hz. Figure 4A, for example, demonstrates
the behavior predicted by 2gure 3, namely, the presence of spurious sidelobes
every S- 1 = (. 5 x 1 s) - 1 = 2 Hz. The largest spurious lobe in figure 4A is
-23. 5 dB at 258 Hz. The slow rate of decay of the peaks at 256 *- 2n Hz is due to
the discontinuity of slope of w(t) at + Lw/2 for this example. The desirable
feature of a narrow mainlobe is attained, as indicated in figure 4. The succes-
sion of plots in figure 4 shows that the oxtent of the picket fence varies greatly

*When these weightings are employed in the FFT, they are delayed by Lw/2

seconds, thereby being nonzero in the interval (0, Lw).
tA quick and accurate method of generating the Dolph-Chebyshev weights by

means of efficient use of an FFT is presented in reference 6.
Flgures 4 through 14 follow the text, beginning on page 16.

10
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Table 1. Examples of Temporal and Delay Weightings

Figure Temporal Delay Weighting Overlap Number of Tones
Weighting (%)

4 cosine cosine 2  50 1

5 cosine 2  cosine 2  50 1

6 Dolph-Chebyshev cosine 2  50 1

7 cosine 2  cosine 2  75 1

8 cosine3  cosine2  75 1

9 cosine4  cosine2  75 1

10 cosine 5  cosine 2  75 1

-11 Dolph-Chebyshev cosine 2  75 1

12 cosine2  flat 75 1

13 cosine 2  cosine2  75 2

14 cosine 2  flat 75 2

with excitation frequency, reaching a maximum of -3.20 dB in figure 4H for
fo = 256 7/16 Hz. (The figures for fo > 256 1/2 Hz repeat the behavior shown.)

The worst sidelobe of -23.0 dBoccurs for fo = 256 1/8 Hz, as shown in figure 4C.

It should be noted that if sidelobes were to be measured with respect to the

peak onthat same plot, figure 4C wouldyield a sidelobeof -23. 0+ 0.13 =-22. 9 dB.
Thus, the convention adopted here must be kept in mind in the following discussion.

Instead of applying the weighting directly in the time domain by means of
multiplication on the data x, the effect of cosine weighting can be accomplished
in the frequency domain by means of convolution of the spectrum with the se-
quence (i/2) {1, -11; however, the resultant must be interpreted as the spectral

value b t5ey. the two quantities convolved at each frequency step. * More gen-
erally, (cosine)n time weighting can be accomplished alternatively by means of

convolution of the (unweighted) spectrum with the sequencen -1 , -( -)(0
*This possibility and its interpretation were pointed out by Dr. N. L.

Owsley.

11
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of length n + 1, and then interpreted as the spectral value at the center of the
region convolved, for each frequency step; see appendix D. The convolutional
sequences in (20) are given in table 2 for n = 1 through 5.

Table 2. Convolution Sequences

n Convolution Sequence

1 i 1/2 1, -1

2 1/4 -1, 2, -if

3 i i/s-1, 3, -3, if
4 1/161 1, -4, 6, -4, it

5 i 1/321 1, -5, 10, -10, 5, -If

Since the effect of (cosine)2 temporal weighting is very easy to incorporate
in the frequency domain by means of convolution, it must be considered as a
candidate for weighting. The results in figures 5A and 5B show that although
the picket fence is reduced to -2. 70 dB, the peak sidelobe increases to -15. 4 dB.
(For brevity, we are now presenting only selected cases of worst excitation
frequencies.) The reason for the increased sidelobes for this temporal weight-
ing is that 50 percent overlap is not yet great enough to realize the deeper first

sidelobe level of -31. 5 dB; that is, we are still sampling, according to figure 3,
on the skirts of the mainlobe for some excitation frequencies. Generally, for
50 percent overlap, the peak sidelobe will occur approximately at the excitation
frequency such that the worst sidelobe (or mainlobe) of the temporal window
beyond f = 1. 5/Lw is encountered; this may.be seen by considering figure 3
and recalling that we plot only the central portion of Y(f, v). Thus the (cosine)n

weightings in tables 1 and 2 for n > 2 are not acceptable for 50 percent overlap,
since sampling of the mainlobe is encountered.

The realization of minimum sidelobe level for a specified beamw-idth (to the
first null) is exactlythe problem addressed by Dolph, reference 5. Accordingly,
this weighting is of considerable importance in spectral estimation. In figures 6A-
6C, the effects of Dolph-Chebyshev time weighting are presented. The worst
sidelobe of -33. 2 dB occurs for fo = 256 1/8 Hz (figure 6C). These results are
noticeably better than in figures 4 and 5.

When triangular temporal weighting was tried, it had a peak sidelobe of
-20. 2 dB; again, we are samplingthe skirts of the mainlobe. Thus, if 50 percent
overlap is all that can be utilized for some applications, due perhaps to limited
computation time, the cosine-lobe temporal weighting is the best of the simply

applied windows (that is, by means of frequency domain convolution), but the

Dolph-Chebyshev time weighting is 10 dB better than the cosine lobe weighting.

12



TR 4767

75 PERCENT OVERLAP

At 75 percent overlap of the temporal weightings the following examples
were utilized:

cosine2 lobe (Hanning) : w(t) = cos 2 (t/Lw)
cosine3 lobe • w(t) = cos 3 (it/Lw) Itl < L/2 (21)
cosine4 lobe : w(t) = cos 4 (wt/ Lw)
cosine5 lobe w(t) = cos 5 (Wt/Lw)
Dolph-Chebyshev

The results for the Hanning weighting are given in figure 7. The peak sidelobe
is -41. 8 dB at fo = 256 1/2 Hz in figure 7C, and the picket fence is -2. 60 dB
at fo = 256 7/16 Hz in figure 7B. Thus, a much improved sidelobe level is
realized relative to 50 percent overlap, at the expense of increased computa-
tion effort, that is, increased overlap and number of FFrs.

In an effort to further improve performance, the (cosine)3 weighting, which
has a higher degree of continuous derivatives at + Lw/2, was tried. The re-
sults in figure 8 show a maximum sidelobe of -51.2 dB and a picket fence of
-2.34 dB.

Continuation of this effort to smoother weightings such as (cosine)4 , figure 9,
shows a peak sidelobe of -48. 1 dB and a picket fence of -2. 18 dB. The peak
sidelobe has increased over that for (cosine) 3 weighting because, for 75 percent
overlap, the peak sidelobe (or main lobe) of the temporal window beyond approxi-
mately f = 3. 5/Lw is encountered. It so happens that the worst case in this
region is larger for (cosine)4 than for (cosine)3 temporal weighting.

For (cosine) 5 temporal weighting, the peak sidelobe is reduced further to
-54. 1 dB. Also, the picket fence is improved to -2. 07 dB; see figure 10. This
weighting is easily accomplished via frequency domain manipulations; see table 2.
An alternative temporal weighting of virtually equal quality to (cosine) 5 is cubic,
that is, sections of cubic curves that have continuous derivatives of as high
order as possible. The temporal window is proportional to

-sin (f, , f/4T 4

[si (lLw f/4J (22)

and has a worst sidelobe of -53. 1 dB. (The picket fence was not computed.)
However, a cubic temporal weighting is not easily accomplished in the frequency
domain.

13
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When (cosine)6 temporal weighting is considered, it is found that 75 per-
cent overlap forces us to sample the temporal window on the skirts of its main-
lobe. This is an unacceptable weighting because the peak sidelobe in the vernier
spectrum increases significantly.

The possibilities of Dolph-Chebyshev weighting are indicated in figure 11.
The worst sidelobe is -86 dB in figure 11B for fo = 256 1/4 Hz, and the picket
fence is -2. 29 dB in figure 11C for fo = 256 7/16 Hz. This is a 32-dBimprove-
ment in sidelobe level compared with (cosine)5 weighting. The picker fence is
degraded by 0. 22 dB.

To determine the effect of not using delay weighting, figure 12 was computed
for (cosine) 2 temporal weighting and flat delay weighting. For certain excitation
frequencies, a very narrow mainlobe is realized; see figure 12A. However, for
other excitation frequencies, the lack of delay weighting creates b road "shoulders"
of significant level; see figure 12B. Also, the sampling in f and v, inherent
in the FFT, produces a picket fence of -5. 0 dB. Thus, although a low peak
sidelobe is attained, lack of delay weighting is very detrimental to performance,
as will be further demonstrated below. Notice from figure 7 that (cosine) 2 delay
weighting also yields a peak sidelobe of -41. 8 dB, but has no broad shoulders
and has a picket fence of only -2. 60 dB.

The detrimental effects of no delay weighting are best illustrated by a com-
parison of figures 13 and 14, which have two tones separated by 1/2 Hz, one
15 dB stronger than the other. It is seen that thesetwo tones are resolved, even
though they are closer than the resolution capability of the individual time seg-
ments, that is, closer than 1 Hz. In figure 13, (cosine)2 delay weighting is
employed; in figure 14, none is employed. A comparison of part A of these
figures reveals that, for excitation frequencies 256 and 256 1/2 Hz, the flat
delay weighting is better. However, for excitation frequencies 256 1/16 and
256 9/16 Hz, the presence of the weaker tone is clearly evident in figure 13B,
but hardly discernible in figure 14B (no delay weighting). The presence of noise
would obscure the weaker peak. Thus, although the peak sidelobe may be very
small, the presence of high-level broad shoulders must also be eliminated by
use of delay weighting.

CONCLUSIONS

An approximate and quick FFT technique for vernier spectral analysis is
possible by employing overlapped temporal weighting and delay weighting. For
50 percent overlap and Hanning delay weighting, the best simply-applied tem-
poral weighting discovered was a single cosine lobe, realizing a peak sidelobe

14
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of -23 dB. However, Dolph-Chebyshev temporal weighting achieves -33 dB side-
lobes. For 75 percent overlap and Hanning delay weighting, the best simply ap-
plied temporal weighting discovered was (cosine)5 , which realized a peak sidelobe
of -54 dB. However, Dolph-Chebyshev temporal weighting is capable of -86 dB
sidelobes. Which overlap and weighting to employ depends on the limitations on
computation time and storage, and on the relative strength and location of inter-
fering tones.

The overlap is not limited to the above choices. It could, for example, be
67 percent. The best weightings were not investigated in this case, because it
was felt that the above overlaps were easier to implement in most cases of
practical interest. However, Dolph-Chebyshev weighting is always a strong
candidate and is quickly and accurately generated (reference 6).

15
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Appendix A

no+ N- 1

TWO METHODS OF COMPUTING 1 exp (-12spn/N) qn

n = 
n o

Define

no+~ N-1
Qp = exp (-i2w pn/N) qn, 0 < p.<_ N - 1 (A-i)

n=n o

where no _> 0. If we let m = n - no , (A-1) becomes

N-1

Qp = exp (-i2wpn0 /N) 1 exp (-i2wpm/N) qm+no" (A-2)

m=O noN-i
The sum in (A-2) is an FFT of the sequence qnno+ -

For an alternative method, consider the general term qn in (A-i). Then,
if

(a) n = 0, N, 2N,..., qn gets weight exp (-iO)

(b) n = 1, N+ 1, 2N+ 1,..., qn gets weight exp (-i2wp/N) ;(A3)

(c) n = N- 1, 2N- 1, 3N- 1,..., qn gets weight exp (-i2wp(N- 1)/N)

So, if we define n mrod N, then case

(a) corresponds to W = 0 ;

(b) corresponds to -= 1 ; (A-4)

(c) corresponds to W = N - 1

Therefore, let

V-= , no. < n<n o +N- 1 , (A-5)

A-1
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in which case

N-I
QP= X exp (-12wyWnN) v,, , 0 < p _N - 1 ;(A-6)

N-1
this is simply an FFT of Ivj 1 ,with no phase factor necessary. Equation
(A-5) corresponds to filling up the v., array, from the given quantities qn,
starting from the nonzero position, no mod N, and cycling around toposition 0.

To apply these results to (10), suppose weight w is nonzero for t > 0 .
Then if no is the smallest integer such that no > k S/A, (10) canbe expressed as

/ no A + N-I

a(7avkS\=A exp (4i2 *pn/N) x(n A) w(n A - kS) . (A-7)
n=nQ

This is of the form of (A-i) if we identify

qn = x(nA) w(nA - kS) . (A-8)

A-2
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Appendix B

DERIVATION OF VERNIER SPECTRUM

From the first line of (7) in the main text, there follows immediately

Y(f, Y) - A(f, a) @ D(v) @ &0 , (B-1)

where all convolutions are on a, for f fixed. Then using (6), we obtain

A(f4u) fd exp (-i 2 vYr) a(fr)

-fdr exp (-12w vr) fdt exp (-12wft) x(t) w(t - r) 4 (t) (B-2)

- W(-)fdt exp (-i2w(f - v) t) x(t) A(t)

- W (- ) E X f+ ,,- - k

Substituting (B-2) in (B-i), we have

Y(f,v)= [W(-,,) X(f .- X)pI D(,,)@ ,4(w) (B-3)

B-l/B-2

REVERSE BLANK
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Appendix C

SAMPLE PROGRAM

The program furnished below is illustrative of the vernier technique. It
has been written for

1 1
a(DEL) =- seconds, N = 1024, M = 32, S tsec

1024

1
fo(FO) = 256(1/16) 256-

2

but could be easily changed to other cases. The input data are furnished by inter-
nal functions XREAL and XIMAG; currently, two tones of relative strength
-15 dB and separation 1/2 Hz are incorporated. Loop 1 in the main program
accomplishes Harming temporal weighting, while loop 2 accomplishes Hanning
delay weighting. The subroutines MKLFFT and QTRCOS are detailed in refer-
ence 7. The method in this program employed the cycling technique described
in appendix A.

PAKAK[CTER :10 ,, N--32, ,,/I.,e,-./,l
INTEaCeA PS
DINE4SION ZRCN).ZI(N)**(N)e,(M) AR(Ile,4)eAL(21M),ADR(M)IADI(M)e
SBIM), cN(N'), CMeM') Zc 200) X(lS) , Y(161)
SQZIO**(u.75)
T p 1 l|.3* ,1 )i265,/(M !],)

TPIN-3j*3.*1159265/N
MI-M-L
NIfN-l
DE6X.I,/N
ISZN/16
S=IS0ED.
114-zINTI|L0OG(|FL0t.O(M)) *1.ti427,5)

CALL OTRCOS(CNe,)
CAL QTRCO$(cMr*t)
CA6.L "ODEUS(ZvO)
CAL StBJEi,(Z5. -00,j65, ,0,)
CA6L OdJCT6(Z,ooOel6oo*0hQ25 2350, )DO I 'taZO,, i
0 S*)ZI.COOSTPIIMS)

Do 2 S:O.$@%

C-1
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a D(IKS*1)21*-COS(TPZIMe(K$.1))
DO is IC210166

13 X~lC)wIC
Do 12 IF200S
F02256. .IF4,*0625
Do 3 K~S:0.t41

Do 4 NSXNO 0NOI
NTZMO(4S6)
ZRINT*1)XRA.'jS*jCL) (NSmNOeL)
ZI tNT4L):KI4AGCNS~uEL).iO(NS-N0,1)

Il CONTINUEJ
CAL 4K6FFT(ZR#Zel#NpIOein1)
Do 5 Pti=246,266
Aft(PSo&45ePKS+L)z 0L.ZR(PS.1)

ASP-45K+~ ZL'iT1NU+I
5 CONTINUE

DO 6 PS2beabb
Do 7 KS:0,'41

7 CONTIN4UE
CAL 46FT(ADADlpCM#1M#e1)
IwpXF*EQvO.ADpS..0256) PEAK:1O..LOG1OIADRI1)0S2,ADZ(1)S*2)
Do S Ki:Oe'41

AZ (PS-a'I5vKS*Li :A (KS9L)

a CONTINUE

6 CONTIN4UE
Do 9 PS:2460266
Z(PS-26) .6

DO00 LO S:OM
AxAR(P~b245I4S.1 ).2.AI (PS-Z45.MS,1)S,8
A:atAX(A@1E LL36)
DO(StWS.LO.LOGIO (A)-PEAK

L0 CONTINUE
PRINT 14t PS

PRINT Ile DO

3L FORMAT(/GCL5.6)
Y(IC*3)208(4W3)
Y(IC~a)aDs("-Z)
Yc 1C+3):DB(v4.1)

T(lC+&I:DS(2)
Ti £C*7)zDBi3)
Vi £C.S)sS(.)

9 CONTINUE
SsZaoo.
DO V? ICZL,3,W
IF(IC,6E,69.ANQ.!C.LE.109) 00 TO 11
SIWEXVAX(SID~E ViIC)

C-2
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17 CONTINUE
PRINT JIs# SIDE

Is FORNAT(/ PtAK SZIg.LOSE S.~iS
CALL SLTSMO(Z#3nflo)

CALL 61NESS(Z@O, boompLOAT(PO
Is CALL LZNESG(Ztl 165S#eFLOAT(ZP))

DO 16 IPUL),157:
CALL LIICSG(Z#OFLUAT(LP)*Oo)

Lb CALL 6lNES6(Z#,PLAT(IP)emLOO.)
CALL SLTS*6(Zo~nelo)
CALL 6141S&(Z#O.SseemLOO)

CALL LLCSLL5e.

CA6.L L1NLSa(Zokl 16*einLOO.)
CALL 61N4ESS(Z@1L.0-1000OO)
CA6L LIP4LS6(Zetb6@A.y)
CALL PA6Lf(Z#0v3pI)

12 CONTINUE
CALL, ExZTOIz)
PR14T IS# PEAK
FUNCTION XREA6(T)
XREALXCO$(2..). l*9lS54SPO*T)

FiNCTION XIMA4T?)

s *SLN(.3.)1'L92651'I(Fo*.)T1'k
RETURN

C-3/C-4
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Appendix D

EFFECT OF (COSINE) n TIME WEIGHTING

Let us define the spectrum of unweighted data x as

N-1
Z Mf) -dt exp (-12 wft) x(t) a&a (t ) =4 A E exp (-12wk~f) x(k4), (D-1)

k=O

and that corresponding to weighting w as

Zw(f) =fdt exp (-i2wft) x(t) w(t) &6,(t) = Z(f) 0 W(f)

N-1 (D-2)

= AE exp (-i2wkaf) x(kA) w(k4)
k=O

Now for (cosine)n time weighting, we have*

w(k4) = sinn (k*/N), 0<k <N - 1 .(13-3)

Substituting (D-3) in (D-2), there follows

Zw(f) = N exp (-i2wkaf) x(ka) n xp (ikw/N) exp (-ikw/N)j

kw)=O d2 E ((k/N ) [eq

k=O \2 =
=AN-1Ix -2kf x() n n ( ) [ kw )

=4 Ex(-2kfxk) (-10)J ep i -(n - 2j

k=0 7 jE =0 N

(i) ( ) x(kA) exp i2 k ... ..)

ni\ nl~ (n / n -2')

1-I Z i(-J) if -- I (D-4)
= j=0  2N, /

the last step via use of (D-1). This result yields (20).

*See the first footnote to equation (19) of the main te.Xt for the explanation

of sinn in (D-3).

D-I
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For the special case of n = 1, (D-4) becomes

Zw(A' = 1 1/2 f + - (D-5)

and in particular,

+~ =+ [Z / -Z\N l" (D-6)

The right-hand side of (D-6) involves two adjacent spectral values as afforded
by the standard N-point FFT in (D-1). The left-hand side of (D-6) is the spec-
tral value of Zw at the frequency halfway betwee the above two spectral loca-
tions. Thus, under this interpretation of the right-hand side of (D-6), the desir-
able sidelobe control predicted by the convolution in (D-2) can be attained. A
similar interpretation is possible for (D-4) for general n.

D-2
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APPROXIMATIONS FOR STATISTICS OF
COHERENCE ESTIMATORS

INTRODUCTION

Expressions for the probability density function, the cumulative distribution
function, and any moment of the estimates of magnitude-squared coherence
(MSC) and magnitude coherence (MC) are available in references 1-5. The
expressions for the moments usually involve a generalized hypergeometric
function* 3F2 and require a time-consuming computer effort for their evalu-
ation. Also, the fundamental dependence of statistics like the bias, variance, and
mean-square error on the number of averages N and the true coherence are
not obvious, because of the lack of significant results for the 3 F 2 function.

This report will seek to present accurate approximations for these statis-
tics, of as simple a nature as possible, and capable of hand calculation. Also,
the dependence on N and on the true coherence will be deduced, and thereby
future experiments can be designed in which the required stability can be pre-
dicted and attained with ease and certainty. As a by-product, a technique for
reducing a particular type of 3 F2 function to a Gauss hypergeometric function
(reference 7, chapter 15) is presented.

ESTIMATION OF MAGNITUDE-SQUARED COHERENCE

The complex coherence between two jointly stationary random processes
x(t) and y(t) is defined as

G(f) (1)

[G- (f Gyy(f)] 1/2

where Gxy(f) is the cross-spectral density at frequency f, and Gxx(f) and
Gyy(f) are the auto-spectral densities. The MSC is

C(f) = Ixy (fl 2 . (2)

*See, for example, reference 6, section 9. 14.

1



TR 5291

The MSC is frequently estimated according to

axy 2 ~ Xn(f) Y*(f 2

N-I , 1 3)

n=1 a--=I

where N is the number of data segments employed, and Xn(f), Yn(f) are the

(discrete) Fourier transforms of the n-th weighted data segments of x(t) and y(t).

GENERAL RELATIONS

The m-th moment of the random variable* e for independent data segments

is given in reference 1, (4) and reference 2, (3) as

E um- =  +(m) ( - C)N 3F2 (me+1, N, N; N+m, 1; C), (4)

where C is the true oSC and 3F2 is a generalized hypergeometric unction.
The power m need not be integer in (4).

For m = 1, the first moment of can be reduced (reference 5, appendixB)

to the simpler (and rapidly convergent) form

I N- 1NI . +(-I-1 C F(1, ; N+2; C) (5)

where F is the Gauss hypergeometric function. For m 2, the second moment
of , can be reduced to the simpler form (see appendix A)

N2= - 2N +- C N2 (N-2) C] F(, 1; N +2; C) , (6)

N N+I

which involves the F function with the same arguments as in (5). Equations (5)
and (6) give exact results from which the bias, variance, and mean-square error

of the MISC estimate C can be obtained.

*The f-dependence is suppressed for convenience.

2
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BIAS APPROXIMATION

The bias of e is

Bias(c) =ECIC,NJ -C=ji-C . (7)

By expanding F in (5) in a power series in C and retaining terms to order N- 2 ,
we obtain the approximation

Bias(C) S K (1 - C) 2 1 . (8)

Plots of (7) and (8) are given in figure I for N = 8 and 16. The discrepancy be-
tween the exact result (7) and the approximation (8) is barely discernible for
N = 8 and is not discernible for N = 16. The discrepancy (between (7) and (8))
is even less for larger N. Equation (8) is a much simpler and more accurate
approximation than reference 2, (5). The bias and approximation are observed
to have a peak of value 1/N at the origin and to decrease monotonically with
the value C of the true MSC.

1/N~

BIAS (C)

EXACT

APPROXIMATION

0
0 C

Figure IA. N = 8

Figure 1. Bias of MSC Estimate

3
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I/

BIAS (e)

-EXACT

APPROXIMATiONI-e

C

Figure 1B. N = 16

Figure 1 (Cont'd). Bias of MSC Estimate

VARIANCE APPROXIMATION

An expansion for the variance of C is given in reference 2, (6). If we
expand the bracketed term to order N- 1, we obtain the approximation

N-1 2C C 13
Va.rlance(C) N (1 - C) C C I - 6C , 13 " (9)

This result can also be obtained from the exact expression

Variance(C) - - 2 (10

combined with (5) and (6).

Plots of (9) and (10) are given in figure 2 for N = 8 and 16. The discrepancy
between (9) and (10) is barely discernible for N = 16 and is not discernible for
N > 32. Equation (9) is a much simpler and better approximation than refer-
ence 2, (6).

For large N, the peak of the variance occurs at C 1 1/3 and is of value
8/27 N- 1. Thus, even when the true coherence is unknown, the maximum vari-
ance will be less than 0.3/N, for large N.

4
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.SIN

,APPROXIMATION

EXACT-

VARIANCE (t)

0 C

Figure 2A. N - 8

.3/N

EXACT

APPROXIMATION

VARIANCE (c)

0
0 C

Figure 2B. N = 16

Figure 2. Variance of MSC Estimate

5
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MEAN-SQUARE ERROR APPROXIMATION

The mean-square error of the MSC estimate t is

Mean-Square Error (e) = E $( - C) 2 1

= [Bias (t)]2 + Variance (C)

C 2 2 2

This exact result can be computed by means of (5) and (61. If we substitute

approximations (9) and (9) in (11) and retain terms of the two highest orders in
N, we obtain

2 2C I 5C7C21
Mean-Square Error(C N +I=- C - 5C N + 7C 1 12(

Plots of (11) and (12) are presented in figure 3 for N = i and 16. The dis-

crepancy between (11) and (12) is discernible for N = 16 but cannot be seen for

N . 32.

For large N, the peak of the mean-square error occurs at C 1 1, 3 and is
of value S'27 N-1

3/N

4.APPROXIMATION

EXACT /

MEAN-
SQUARE

O0 ---- -

0 c

Figure 3A. N

Figure 3. Mean-Square Error of

MSC Estimate

6
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EXACT

APPROXIMATION

MEAN-

SQUARE

0
0 C

Figure 3B. N = 16

Figure 3 (Cont'd). Mean-Square

Error of MSC Estimate

ESTIMATION OF MAGNITUDE COHERENCE

The magnitude coherence (M is defined as

upon use of (2). The estimate of MC is

9 (f) JC (f) ,(14)

where C(t) is defined in (3).

GENERAL RELATIONS

The first moment* of S is available from (4) by setting m 1/2:

E191 r(N)r(3/2) (1 - S2) N 2,.,N ;N-12 ;S)(5
r(N - 1,2 i 3 F 2

2  ,NN 12 ;s)(5

'The f-dependence .s suppressed for convenience.

7
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The second moment of A is directly available from (5):

N- I S2 F(1, 1; N+2;S 2 ) . (16)

It will be noticed that (15) and (16) are even functions of S; this information will
be useful in the 2pproxlmate forms to be adopted later. Equations (15) and (16)
give exact results from which the bias, variance, and mean-square error of the
MC estimate § can be obtained.

A significant difference now exists between treatment of the MC estimate
and the MSC estimate: whereas (41 could be reduced to an F function for m an
integer, no such reduction has been discovered for (15,. Further, q15, is not an
appealing analytic result, as may be anticipated by noticing that, since 15, must
equal unity at S = 1, and the leading factor contains an N-th order zero :at S = 1,
then 3 F2(... ) must contain an N-th order pole at S = 1. No transformations
or useful approximations of the 3 F2 function in (15) were discovered in refer-
ences 6-11.

EXPANSIONS ABOUT S = 0

A direct series expansion of (4) yields

E 1§2m I = r(N ir(m -1) 11 m N(N-li 52

r(N m) ) N~m

mN(N- 1) [(N- N)(m- 1, -2(m2 1, S4 -

4(N +m (N + I+ m ) " " ij7

Now, if m = 1, the N2 and N terms inthe S4 term drop out, andweget a
useful development in which the terms decay with N:

E§1.L.N -I S2 + N -1 54 "

N + I (N + l + 2)

But, if m 1/2, we obtain

EfI r(N)r(3/2) + N(N- 1) 2 N(N- 1)(N 2 -N-) 4
= r(N+1/2) 2N I " 4(2N + 1)(2N+3) S . (19,

and the coefficients of S2, S4 '... increase with N, In direct contrast to re-
sults for MSC estimation. This increase is due to the two numerator terms and
one denominator term in 3 F2 in (15) that depend on N.

8



TR 5291

EXPANSIONS ABOUT S - I

If the results in (5) and (6) are expanded about S - C - I by means of ref-
erence 7, equation 15.3. 11, we find the asymptotic expansions

E C +-11(1_C) 2 _ 2! C

N1- (N- 2)(N-3) (1-C) 3

31 
4

(N-2)(N-3)(N-4) (1-C) (20)

and

Et -1 - 2(1- C) +N +2 (1_C2
N-2

4(N + 1) (1_ C)3 + 6(3N+2) 4
)(-2N- 3) (1 -2)(N- 3 )(N- 4 )( - c) + " " (

=C+ (_2)2_ 2 (1 -C2 )3

816 (- 2)4 +(22)

(N -2)(N -3)(N -4) (1C ) " (22

upon regrouping terms. Expressions (20) and (22) are useful near C - 1 and
indicate bow rapidly E It m - Cm approach zero as C approaches one, for
m- I and 2. It will be observed from (20) and (22) that the coefficients of
(I - Cm) 2 and (1 - Cm) 3 are identical, and those of (1 - Cm)4 are similar.

It was thought that Ej I = E Jt1/21 might possess a similar expansion in
powers of (1-C1 /2 ) = (1-S) and provide a useful method of evaluaung (15), at
least near S = 1. In appendix B, it is indeed shown (after considerable labor) that

-1 (_C) 1 N-4 2 1 N2 - 7N+ 16 (_C)3 . (23)
8f N- _ 2 16_2 2N-2 ( 3

_+ 1(_)_ 2 -(1 -S3 +.. (24)N-2 (N-2)(N-3)

9
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(upon regrouping terms), which has the identical coefficients as (20) and (22),
up through the order computed. Equation (24) shows that the bias of the MC
estimate § approaches zero as S approaches one according to (1- S) 2 /(N- 2).
Also, (24) and (20) can be combined to show that

- (1 -S2)2

Variance (S) = (-0) as S-.1 . (25)
2(N -2)

This corroborates reference 4, (8).

CHOICE OF APPROXIMATION

Expansions like (20)-(25) cannot be used to evaluate the desired statistics
for small S; in fact, they are divergent asymptotic expansions. When this in-
formation is combined with the earlier results about S = 0, we find that direct
analytic expansions of (15) are not fruitful, in contrast with the earlier approach
for MSC results. instead, we must adopt some convenient simple approximation
and try to match it to the exact results in some fashion. (The techniques in ref-
erence 12, chapter 9, are relevant in this regard.)

Before we do that, however, it is necessary to digress. We know that

Bias(S) =EIS -S , (26)

Variance (S)= ES 2 I - E2 SI , (27)

Mean-Square Error()= [Bias (S)] 2 + Variance(S) , (28)

where the exact moments are given in (15) and (16). A very good approximation
to 2 1 = E i is already available from (7) and (8), namely,

ElCi = C +_(1_C)2 I + , (29)

or

E gj=S 2 + 1-(1 -$2 )2 (1 .N/" (0

Therefore, if we can approximate EISI or Bias (S) or Variance (S) in (26)
and (27), we will have approximations for all three statistics in (26)-(28).

10
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Initial attempts concentrated on approximating the bias (26) by the form

(l-S) 2(- + a(1-S)v, >3 (31)
N-2

where a and v were chosen so as to match the exact bias and its derivative at
S = 0; these attempts were not successful for all N and S. A generalization to
the form

+1-sS) 1.15 (32)

N-2 ' )L" -2. 85)' >3 , (3)

was quite good for N up to 100, but deteriorated for larger N, despite also
matching the exact second derivative of the bias at the origin. Numerous other
forms were tried for approximating the bias but yielded poorer approximations.

VARIANCE APPROXIMATION

Succeeding attempts were aimed at approximating the variance (27). It will
be recalled (from the discussion under (16)) that (27) is an even function of S.
(This even property is not true of (26) or (28), because of the S term in (26).)
The approximation to the variance was therefore also chosen to be even;* after
much trial and error, an acceptable form was found to be

Vaiace )-- (1- $2)22N 2)F (1 - 2)2B2 ,

Variance) (-) [1- .(1-S2) + A -- 2] p . (33)2(N - ) - N1 + B2+ j;4] a

The leading term in (33) is dictated by (25); the second term in the bracket was
deduced from observing the numerical values of the variance near S = 1; and
the numerator of the third term is chosen to make it decay faster than the other
two terms near S = 1. Equation (33) already matches the value and derivative
of the exact variance at S = 1, and the three constants were chosen so as to
match the value and first four derivatives of the exact variance at S = 0; see
appendix C. The end result of the investigation is that the constants are given by

A = -0.571+ 1.75 0.760
N N2

B = 0.752 N - 3.26

D=0.221N 2 - 1.66 N (34)

*See reference 12, pages 108 and 118.

11
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Plots of the exact variance (27) and the approximate variance (33) are pro-
sented in figure 4 for N = 8, 16, 64, 256, and 1024. (Notice that the abscissa
is S, not C.) The discrepancy does not go to zero as N increases, as it did
for the MSC approximation; however, the discrepancy is small over the practical
range of values of N (i.e., N < 1000), where N is the number of averages
employed in the MC estimate.

The peak of Variance (S) occurs at

4-±A 6 1 9 5 for 64 <N <1024 (35)

and is of value

0. 49 10 290

Peak Variance ( ) 4 - 10 +- -9 for 64<N<1024 . (36)
N N2  N3

- -

These results follow by fitting the exact numerical results in figure 4. For very
large N, (36) suggests that the peak variance approaches (2) - 1 .

.032 APPROXIMATION

"1 EX AC T

VARIANCE ()

00

Figure4A. N 8
Figure 4. Variance of MC Estimate
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.02 EXACT

APPROXIMATION

AVARIANCE ( S)

0
0

Figure 4B. N 16

.0065 EXACT

APPROXIMATION

VARIANCE (9)

0o 0

Figure 4C. N=64
Figure 4 (Cont'd). Variance of

MC Estimate
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.002

APPROXIMATION

EXACT

VARIANCE (AS)

0 0

Figure 4D. N = 256

.0005
APPROXIMATION

EXACT

VARIANCE (CS) C

0
0 S

Figure 4E. N = 1024

Figure 4 (Cont t d). Variance of
MC Estimate
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At the origin, we have, from (15) and (16),

- [riN)r(3/2) 
2

Variance N L r(N+1/2)]

_/. \ 1 1 0.215 0.196

- N 16 N2 N N2

Here, we have employed the approximation (reference 7, equation 6. 1.47)

r(N)r(3/2) %w- /2 i (38-
r(N+ 1/2) j (I (38)

which is excellent even for N as small as 2.

BIAS APPROXIMATION

If we eliminate E191 from (26) and (27), and then employ (30) and (33),
we can express

Bias (S)= [E I§21 - Variance (n)] 1/2 -S

S 1S) N N app - S S bapp . (39)

This approach is in line with the observation made under (30). The approximate
variance oapp in (39) is given by (33) and (34).

Plots of the exact bias (26) and the approximate bias (39) are presented in
figure 5 for N = 8 and 16. The exact bias decreases monotonically with S and
has an origin value of

'I r(N)r(3/2)

Bias (SIS = 0) = - GN , (40)
r(N+ 1/2)

from (15); an excellent approximation to GN is given in (38). The discrepancy
between (26) and (39) is barely discernible for N = 8 and is not discernible for
N = 16 up through N = 1024.

15
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GN

alAS (S)

EXACT

APPROXIMATION
o S

Figure 5A. N = 8

G N

SIAS (S)

EXACT
APPROXIMATION

0 s

Figure 5B. N - 16

Figure 5. Bias of MC Estimate

16



TR 5291

MEAN-SQUARE ERROR APPROXIMATION

The approximation to the mean-square error is immediately available
via (28):

Mean-Square Error (R) . b2  + e2 (41)

app app,(1

where the approximate bias and variance are given by (39) and (33), respectively.
Plots of (28) and (41) are presented in figure 6 for N = 8, 16, 64, 256, and 1024.
The discrepancy does not go to zero as N increases; however, it is small over
the range of practically useful values of N.

The peak value of the mean-square error occurs at S = 0 and is of value
1/N, as is seen from (16). The mean-square error curve is composed of two
distinct regions, one near the origin where the bias dominates, and one for
larger S where the variance dominates; this explains the hump in the curves
for larger N.

1/N

MEAN-
SQUARE
ERROR (9)

APPROXIMATION

EXACT

0'
0 S I

Figure 6A. N = 8

Figure 6. Mean-Square Error of MC Estimate
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MEAN-
SOU AREA

APPROXIMATION

EXACT

0
0 S

Figure 6B. N =16

MEAN- EXACT
SOUARE
ERROR (S) /

APPROXIMATION

01
0 S

Figure 6C. N 64
Figure 6 (Cont'd). Mean-Square

Error of MC Estimate
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MEAN-
SQUARE APPRXIMATION
ERROR (5)'

EXACT

0 0

Figure 6D. N = 256

1/N

APPROXIMATION
MEAN
SQUARE, EXACT
ERROR 

(5)7

Figure 6E. N = 1024

Figure 6 (Cont'd). Mean-Square
Error of MC Estimate
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SUMMARY

Approximations for the MSC estimate are given by

Bias(C)a-g (1-C)2 (i+.__ (8)

Variance (C) (1-C) 2C + 1 (9)
N (N -1) LN

Mean-Square Error (C) R- [C+1 5+. (12)

Approximations for the MC estimate are given by

_(1-$S2)2 [1 3  (1-2) 2  .

Variance CS) = (2.N -2) 1 - + A +. _-= ... 2 (33)

where

A = -0. 571 + 1.75 0.760

N N2

B = 0.752 N -3.26

C=0.221N 2 -1.66N (34)

Bias ) - [. +-" (i-S2)2  +2) 2 - S bapp

Mean-Square Error () bp p  (41)
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All of these are capable of hand calculation over the entire range of true
coherence. The approximations for the MSC estimate are particularly simple;
those for the MC estimate are somewhat more complicated, but far more
tractable than the exact answers involving a 3 F 2 function. The fundamental
dependencies of the statistics on N and true coherence have also been deduced.
Although the discrepancies between approximations and exact values do not tend
to zero for the MC statistics for large N, the approximations are useful at

least over the range from N = 8 to N = 1024, which is believed to encompass
the region of most practical interest. How good the approximations are for
larger N has not been investigated quantitatively.

21/22
REVERSE BLANK
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Appendix A

REDUCTION OF THE 3 F2 FUNCTION

From (4) in the main text, we have

2 2 (1-C ) 3 F2 (3, N, N; N+2, 1; C) , (A-I)

which is very slowly convergent for C near 1. Now, in (A-i), using reference 6,

section 9. 14, we have

(3 )k (N)k Ck
3 F2  k (l)k(N+ 2 )k k (N)k

But
(3)k (k l)(k +2)

(- k =  2 (A - 3 )

and

(N)k N (N + 1)

(N+ 2 )k (N+k)(N+k+1)

Substituting (A-3) and (A-4) in (A-2) and (A-I) yields

2 (1-C)N t (k+N)(k+N+)-k (N)k . (A-5)k=O

Now, a partial-fraction expansion yields

(k+1)(k+2) _ 1 (N-1)(N-2) N(N-% -
(k+N)(k+N+1) k+N k*N~l (A-6)

and, since we can express

I 1 (N)k
=+ N (N + 1)k

1 1 (N + 1)k

k+N+1 -N1 (N 2 )k (A-7)

A-1
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(A-5) takes the form

NlP kNi - 1)(N -2) - (N)k (N)k Ck
(- .k N k-0 (N+I)k k!

N(N- 1) (N)k (N + 1)k ck

Ne-i k (N +2 )k k I (A-8)
k-0

-C)N JF(n, b; b; C) + (N- 1)(N- 2) F(N, N; N + 1; C)
N

N(N-1) F(N, N+i; N+2;C), (A-9)

upon employment of reference 7, equation 15. 1. 1. By use of reference 7, equa-
tion 15.3. 3, this can be manipulated into the form

2 1 + N 1)(N (1-C) F(1, 1; N+1; C)N

-N N- 1) (-C) F(2, 1; N+2; C) (A-10)
N+I

which is particularly good for developing in a series in (1-Cl by use of refer-
ence 7, equation 15. 3. 11.

At this point, a multitude of alternative forms for (A-10) are available by
use of reference 7, page 558. Several rapidly convergent forms involving a
single F function are now listed:

-N
3 2N 2 + 2N- 2 N- 1 [N2 - (N -2) C] F(1, 1; N+-2; C) (A-i)NN1

2 (N -1)(N -2) C
N(N+ 1) N+1

+ N+2- [N2 _ (N -2) C] C F(2, 1; N + 3; C) (A- 12)+(N + 1)N +2)

N(+NNi1 (1 - C) (N+i1)(N -2) - [N2 _ (N -2) C] F (2, 1; N +2; C)~ (A- 13)
2 NIN + 1)

A-2
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The form in (A-11) uses exactly the same F function as encountered in is, in (5)
and is more rapidly convergent than the latter two forms, for all values of C.

The reduction technique employed above for m = 2 in (4) can also be used
for other integer values of m. However, it fails for m noninteger, because
simplifications like (A-3) and (A-4) do not occur then.

A-3/A-4
REVERSE BLANK
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Appendix B

EXPANSION ABOUT S = I FOR
MAGNITUDE COHERENCE

The estimate of MSC is given in (3). We let

Xn(f) = (in + ibn) On

Yn(f) = 0a + ibn) + (n + idn) 5 gan An (B-i)

where in, 5n, , an are independent, zero-mean, unit-variance, real,
Gaussian random variables. Then, for g real,

.E Xn(f) Y.*(f4 = E~an g(Qn + PO= gE{Ian, 2  = 2g

E{;,X(f)j 2}=2; E{(iy.(f) 2 =2(1+g2) (B-2)

Therefore, the MSC is

C (2g 2  g2

2 x 2(1+g 2 ) 1+g 2  (B-3)

For a specified value C of the MSC, the required value of scale factor in
(B-i) is

g = _- _C / •- (B-.4)

Thus, as S--l, C =S 2 -_ 1, g--c, and 1/g- 0. Because we are interested in

S near unity, we can concentrate on 1/g near zero.

If we define

N N NA L l,12  B E 10 1~n2 , D = E anP; (B-5)
n=1 n=1 n=1

then substitution of (B-i) in (3) yields

B-i
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N 2

a, (g + ID +gAI 2

n=1 n72

ID12 + 2gAD r + g2A2
= , (B-6)

AB + 2gAD r + g2 A2

where Dr is the real part of D in (B-5). Rearranging (B-6), we obtain

1 +IT +-LU
g (B-7)

1 +IT + V

where

2 Dr IDI 2  B
T -A A V (B-8)

Now a series expansion of (B-7) in powers of 1/g (as noted under (B-4)) yields

S a2 a3 a4  a. a6
2 3 4 5 6

g g g g g

where

a2 =U-V, a3 =-(U-V)T, a4 = (U-V)(T2-V),

a5 = (U-V)(2V-T2)T, a 6 = (U-V)(T 4+V 2 -3T 2 V) (B-10)

Since we are interested in the behavior of the MC estimate S, we employ
the expansion

(1+4)1/2= 1 +1-- 3+ +... (161 1) (B-11)
2 S 16

B-2
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to obtain

+a aa

/( 2 g2+2)32 a

(a5 a2 a3 \ 1 a6! a3  a2 A4  3)
+.!_ - . .. (B-12)

And, since we are interested in S near unity, we let

x = 1- C (3-13)

and expand in a power series in x. To do this, we utilize (3-4) and obtain

1 If= =x1/2(1++x +.Ix2 +.)
2 + x2  3 1 2 8

g 2

_L x3/2 3 1+2

_L= x2 (1 + 2x + 3x 2 + . 2 = + 2x 3 +
g4

5 +\ix 1g5

.3 +(3-14)
g6

Substitution of (3-14) in (B-12) yields

S~~(a 2 ) +x 2 a 3) +X2(ja 2 +.-ja 4 -7a )

+ x5/2 (Z a 3 + - a5 T -a 2 a3 )

-Z a 2 -a4 - j - a
2 +-a 6 - - a a -3 - a. a 4 +-a3) + . .(B-15

B-3
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Now we are ready to perform averages on the individual terms in (B-15) and
obtain an expansion of E19S in powers of x = 1 - C.

The method of obtaining E 1a2  will be developed in full. The results for
the other averages in (B-15) will merely be stated, and can easily be deduced
from the method presented. From (B-10), (B-8), and (B-5),

a2 =U -V =D12 - BA = N
-- - 2 = -- m Pn Qmn , (B-16)

A2  A2  m, n=1

where we have defined

Qmn = amn-A* rn . (B-17)

Now, let

a - a2"" aN] "(B-18)

Then, since Qmn depends only on a,

E{U-Vja} 1 N
2 L m I n

A m, n=1

2 N2 2 N-1
Qnn [A- -- (N- i) (B-19)

A =1 A2

where we have utilized the property

E m n} 26ra , (B-20)

which follows directly from the definitions (B-i). Therefore, using (B-19), we
have

E JU VI -2 N- 1 E A(B-21)

Now, A is given by (B-5) and (B-i) as

N
A= (Ii + b2) •(B-22)

n=l

B-4
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Therefore, the probability density function of A is

ANi exp(-A/2)
p(A) = , A > 0 (B-23)

2N (N- 1)!

There follows immediately the m-th moment of 1/A as

E 1Aj= 11- m < N . (B-24)

2 m (N-1)(N-2) (N-rm)'

Employing (B-24) in (B-21), we have

Eja2 1=EjU-Vj=-I . (B-25)

By employing the generalizations of (B-20) to the fourth and sixth orders,
namely,

E{ 0~* = 4 (6k6 + 6k 61m)

E 8(6k 6.6 + 6 k 6 m 6Pk Pm n Pp qJk n pq mq np

+ 6 kn 6 jm 6pq + 6 kn 6 ap 6 mq + 6kq 6 m 6 np + 6kq6.jp6mn) (B-26)

we find the following quantities:

E a 5 = 0, Eaa 3 = 0, E a4 = N-i

3 (N-2)(N-3)' (N-2)(N-3)

E 3 N(N+1) (B-27)
2 (N-2)(N-3)"

B-5
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When we employ (B-27) in (B-15), there follows

2 1 N-4

1 N2 -7N 16 (1- C) 3 + (B-28)
S16"(N- 2)(N- 3) " "

This is the end result quoted in (23) in the main text.

B-6
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Appendix C

VARIANCE APPROXIMATION FOR

MAGNITUDE COHERENCE

From (19) and (40) in the main text, we have

Ef§}= Qo + Q 1 S2 + Q2 S4 +... (C-1)

where

Qo = GN

N (N- 1)
Q1 = GN 2N+1

N (N- 1)(6+N-N 2 ) (C-2)
Q 2 GN 4(2N+1)(2N+3)

And, from (18), we have

EIS21 =R o +RS 2 + R 2 S +... (C-3)

where

Ro =
N1

N-1

R2 = N-i (C -4)
(N+I)(N+2)

Therefore,

Variance () =+ S2 + YS4 +. (C-5)

where

a R 2a=R O - Q0

= R1 - 2QoQ1

Y=R 2 - Q2_ 2QoQ 2  (C-6)

C-1
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By use of (40) and reference 7, equation 6.1.47, we find

1281 2  . (C-7)

Expanding the above expressions in powers of N- 1 , we find

(1 ) 1 w 1 65w 1
\4N 16 N2 1 6 3 8 4 N3 +

13=1- - -6) ..

Vr 71
32 N + F2-8 +  (C-8)

Thus, (C-5) and (C-8) give a power series expansion of Variance (9) that should

be accurate for large N.

The variance approximation that we adopt is given in (33). We expand (33)
in powers of S2 and obtain

pp 2N-2i F---A - .-- A(B+2) -2 1 -+A

S 1A(s. -12 D) - 2 A (B +2)) -(I -~+ A + .(C-9)

We now select constants A, B, and D so that (C-5) and (C-9) match up through
the 4r S4. Fhere follows

A 2(N -2) a - 1 4. -

N

B 2(N-2)(2a+P) -2

D (B - -2 N - 2 (3a 2P ) C-10)

C-2
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We now employ the expansions for a, P, Y in (C-8) and obtain, finally,

A = -0. 57080 + 1.7489/N + 0. 76047/N 2 +

B = 0. 75194N - 3.2639 +

D = 0.22142N2 - 1. 6648N +... (C-11)

Equations (33) and (C-11) are the final results for the variance approximation.
It has been found sufficient to retain only three decimals in the constants and to
stop with the terms shown in (C-11).

C-3;/C-4
REVERSE BLANK
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ABSTRACT

A comparison of several methods for spectral esti-
mation of a univariate process with equi-spaced
samples, including maximum entropy, linear predictive,
and autoregressive techniques, is made. The com-
parison is conducted via simulation for situations
both with and without bad (or missing) data points.
The case of bad data points required extensions of
existing techniques in the literature and is docu-
mented fully here in the form of processing equations
and FORTRAN programs. It is concluded that the maximum
entropy (Burg) technique is as good as any of the
methods considered, for the univariate case. The
methods considered are particularly advantageous
for short data segments.

This report also reviews several available techniques
for spectral analysis under different states of knowl-
edge and presents the interrelationships of the various
approaches in a consistent notation. Hopefully, this
non-rigorous presentation will clarify this method of
spectral analysis for readers who are nonexpert in the
field.
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SPECTRAL ANALYSIS OF A UNIVARIATE PROCESS WITH

BAD DATA POINTS, VIA MAXIMUM ENTROPY AND
LINEAR PREDICTIVE TECHNIQUES

1. INTRODUCTION

The analysis of power density spectra of random processes via maximum

entropy, linear predictive, and autoregressive techniques has attracted much
attention recently, especially for short data segments. In particular, a good

review article (reference 1) recently appeared in which 115 references are

listed on the topic of linear prediction. Another good paper on this method of

spectral analysis (including a comparison of techniques) is available in refer-

ence 2, where 66 references are cited. Additional related references, that this
author is aware of, are given in references 3 through 15 of this report. The

close links that exist between maximum entropy spectral analysis (MESA),
autoregressive spectral analysis, predictive error filters, noise-whitening fil-
ters, and least-squares model building are pointed out very well in reference
14.

The purposes of this report are to review and interrelate several available

techniques for spectral analysis under different states of knowledge, for equi-

spaced samples, in a consistent notation; collect and compare the techniques

via simulation in order to determine the best available technique(s); and extend
the best technique(s) to handle the case of bad (or missing) data points and com-

pare them via simulation. The only detailed comparison of techniques for no

missing data points available thus far in the literature is that in reference 2,
where the Burg technique and the Yule-Walker approach are compared. Here

we will extend the comparison to include the Burg technique, the Yule-Walker

approach, an unbiased version of the Yule-Walker approach, the approximate

maximum likelihood and least-squares approaches of reference 16, the auto-

correlation and covariance approaches of reference 1, and an extended version

of the covariance approach. (A comparison with the maximum likelihood tech-

nique is reserved for a future report.) Also, we will compare the best of these
approaches for the case of bad (or missing) data points and present FORTRAN

programs for the recommended techniques.

Throughout this report, we assume we are dealing with equispaced samples

of a stationary zero-mean random process x(t); that is, xn=x(nA4, whereAis the

1
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sampling interval in time. In section 2, we will assume that the correlation
function of the sampled process, x In , namely, *

R=x x* =R* (1)
Rk n n-k -k'

is known exactly for all k, and shall present two alternative equations to deter-
mine the spectrum of 1xn1 ; the latter of the two equations serves as a guide to
the MESA, linear predictive, and autoregressive approaches. In section 3, it
will be assumed that Rk is known only for a limited range of values of k, and
three alternative approaches will be considered and shown to lead to identically
the same spectral approximation. Next, in sections 4 and 5, the practical
problem of an unknown correlation function and only a finite data set of 1xn,
n = 1, 2, ... , N, some of which may be bad, will be addressed, and several
candidate techniques for spectral estimation will be presented. Finally, a com-
parison of the techniques, via simulation, will be conducted and conclusions
drawn regarding the best available technique, both with and without bad data
points. FORTRAN programs for the best technique for both situations will also
be presented.

*The case of complex samples is treated, so that we can handle complex

envelope or complex demodulated processes. Specialization to real processes
is immediate, and (1) becomes Rk = R-k. An overbar indicates an ensemble
average.

2



TR 5303

2. CORRELATION KNOWN EXACTLY FOR ALL ARGUMENT VALUES

Suppose the correlation function in (1) of process iXn is known for all k.
The standard (double-sided) definition of the spectrum of 1xnj is then (see, for
example, reference 14, equation (10))

aD 1
Gx(f) = A 1 Rk exp(-i2fk-1), ifl< (2)

k-- -(

Gx(f) is real and nonnegative, but need not be even iu frequency f for complexI Rkl .

2. 1 LINEAR PREDICTION BASED ON
INFINITE PAST

Suppose that sample values xk-1, xk_2, ... are available and are used to
linearly predict the value of xk. Then the one-step predicted value, based on the

infinite past, is (for a zero-mean process)

x k anx k-n (3)
n=1

The values of the complex predictive filter coefficients janT are chosen such
that the one-step prediction error

SXk -X anx (a-1j (4)
k k k n0 nk-n 0

has minimum ensemble average magnitude-squared value. Figure 1 depicts the

interrelationships.

The ensemble average magnitude-squared error is, employing (1), given by

2 O

12 CE) F, a a-*R .(5)m,n0 m n n-i

For a minimum, we first compute (see reference 17, appendix A)

3
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I-- - - - - - - - - - -

IPTPREDICTION ERO

J FIFlLTER E '

J ~(alp 021' )  4

WHITENING FILTER (0 al 0 2...)

Figure 1. Block Diagram of Predictive and Whitening Operations

.3E OD

= E , R 1-m am , (6)

lat ; m=O

and set it equal to zero, obtaining the optimum predictive filter coefficients

Iarn} as the solution of the set of equations*

OD

R, am = 0,2 1 (=a -1 (7)
m=0 -m -o

The minimum-error sequence 1'k1 then possesses correlation

a)

E 7! = 'j kk - ,n0 rm n k-m k-j-n

UD MD

R a R a ~ (8)
rm n j+n-mn = n j+n-m rn

mn,n= 0 n=0 rn=

*The same result, (7), can be obtained by setting the partial derivatives of

E,, with respect to the real and imaginary parts of at, equal to zero.

4
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where we have employed (4) and (1). Now the innermost sum on m in (8) is 0
for j +n 2!1, by (7). And if j 1 in (8), then j +n >1 since n >0 inthe outer-
most sum in (8). Therefore, Ej = 0 for j 1. Also since E = E!, we have

E. = 0 for j $ 0; (9)
3

that is, the minimum-error sequence 17k} is uncorrelated and therefore pos-
sesses a white spectrum. The linear filter characterized by coefficients

0 is a whitening filter; see figure 1.

The correlation of IkI for zero time delay is the power of the miimum
error and is given by

o kI nn-m m
n=0 m=0

F R a RR - R (10)0-m m 0 m mm=0 m=1

where we have used (8), (7), and (1). The spectrum of j TkI is therefore
(using (9))

CD

G .(f) = E. exp(-i2,,fj.1) = IE ifI < (
j= _ J 2

which is white, as mentioned above.

But since the error sequence is given by a linear transformation of process
xkJ according to (4) and figure 1, the spectrum of k is given by the stand-

ard linear filter relation

G;,(f) = 2Af) 2Gx(f) (12)

where

A(f) -_ n exp(-i2 Fffna) (13)n
n= 0
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is the transfer function of the whitening filter and is assumed to be stable. *
Combining (11)-(13), we obtain an alternative expression to (2) for the spectrum
of IxkI as

G .(f) AE E

G f -f)A 0 IfI <-1 (14)JA~) E Z exp (- i2ffn .)J

Given the correlation values IRk1 , utilization of (14) requires solution of the
set of equations in (7) for the filter coefficients J'n and subsequent substitu-
tion in (10) and (14). Although this is not a practical alternative to (2) in this
case, it does serve to indicate that there is possibly some potential in the idea
of determining predictive filter coefficients to minimize the average magnitude-
squared one-step prediction error and thereby obtain a white spectrum; this
idea will prove to be quite fruitful later on.

As an aside, if we allow a_1 # 0 in (3) and minimize ltk12 , we find E,# 0,
although E = 0 for j 2. Thus, the minimum-error sequence would not be
white, and a convenient expression like (14) would not result.

It should also be noted that the crosscorrelations between the minimum-
error sequence J kj and all past values of the input, .Xkj , are zero; this
follows by use of (4), (1), and (7).

2.2 LINEAR PREDICTION BASED ON
INFINITE FUTURE

If sample values xk±L, xk+2 , ... are available and are used to linearly
predict" the value of xk accordTing to a backwvard regression (that is,

combine future values),

CI)

" a* Xk+n' (15)

n= 1

*That is, ! a z has all its poles inside the unit circle, 0, in the com-
plex z-plane. n=0 n

6
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then the one-step error

UD

S=x -X = Z anX (a.=-) (16)
k=k k n = k~n on1=0

has average magnitude-squared value

lk a a*~ R o(7m,n=O m nn

which is identical to (5). Thus, the same optimum filter coefficients in (7) that
minimized (5) would also minimize (17). The minimum-error sequence in (16)
would also be white, and an expression for the spectrum of ixk} identical to
(14) would result. The point of this result is that an equivalent expression for
the spectrum of Ixkj is obtained by the backward regression (15), rather than

the forward regression (3) of the preceding subsection. This idea will prove
useful later when we have to deal with finite data sets and unknown correlation

functions.

The crosscorrelations between the minimum-error sequence and all future
values of the input are zero; this follows by use of (16), (1), and (7).

2.3 LINEAR INTERPOLATION BASED
ON INFINITE PAST AND FUTURE

If we attempt to combine the approaches of the previous two subsections,
we are led into considering linear interpolation according to

U0

X k =  aXk (18)
n = -a)

n#0

The error

U0

fk X k " Xk anXk-n (ao =-1) (19)
n=



TR 5303

has average magnitude-squared value

2 U

EE a a- R , (20)
I ki E m n n-r

m, n = -uu

using (1). Setting dE/da = 0 for A 0, we obtain for the optimum filter coeffi-

cients

RI-m m = 0, 0 o a o = -  (21)
m =-01

There follows, by use of (1),

a a(22
-j 

(2

The correlation of the minimum-error sequence fkt is now

j k k-j m n J~n-m
m, n = -uj

-a -L a R a a R -a E 2,)
n mj-n-m J m -m -j ,n= -1J m =-, n = -M ,m

where we have emloyed (19), (1), (21), and (22). It is generally nonzero for
j 0. The spectrum of the minimmm-error sequence is therefore

, VI

GT(I - _exp(- i'-f., = - ZE Alt,, I 124)
o J 0

where we have used (23) and assumed Aif to be stable. This spectrum is not
white, in fact, employing (12), (24) can be expressed as

2 E'22 E

o 1G (f ' 2.1 (251
x

which is the inverse of the input spectrum.
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If we instead eliminate G7(f) from (12) and (24), we obtain an expression
for the input spectrum in terms of filter A(f) in (24) as

AE AEo 0 1G (f) 0 . . . if, < .(26)
x A*(f) A(f) ' (26

the realness of A(f) follows from (22).

There is an uncorrelated property between the minimum error and the input
in the present case also. Namely, the crosscorrelation between the minimun-

error sequence and the input is

(1) (1)

k-j X* : IS ~R =E (27)k kj n xk-n k-j, n j-n o o)n = -41) n=
- 

-aI,

using (19), (1), (21), and (23). Thus, the minimum-error sequence is uncorre-
lated with all past and future values of the input except at the same time instant.
The cross-spectrum is

G- (f) C exp(-i2rfj.1 =-AE f . - (28iox .0o 2*

which is white.

Although (26) and (21) offer an alternative to (14) and (7) in the present case
of known correlation function IRkL, it suffers in the practical case of unknown
correlation and a finite data set, by virtue of the estimate of the real denomina-
tor of (26) going through zero (or being complex if (22? is ignoredi at some
values of f. This is not a significant problem for (141 since both the real and
imaginary parts of the estimate of (13) must simultaneously equal zero there,
in order to constitute a problem.

Another importantractical drawback of this interpolation approach is that
ensemble average jek would probably be approximated by ' Ok2' where

the sum Is conducted over those values of k at which a meaningful value of
error tk can be formed for a segment of a single member function of an en-
semble. But since the minimum-error sequence I7 kI is not uncorrelated in
this case (see (23) 1, minimization of k k2 for a single member function

segment is not synonymous with minimization of ''k 12 , rather, the minimiza-

9
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tion of Z Eki 2 will spuriously involve correlation between adjacent terms

which are not included in l ki and which will bias the filter coefficients.
Several simulation runs (on real data) confirmed this conclusion by yielding
severely biased (and negative) estimates of spectruxm Gx(f), even when (22) was
taken into account. Accordingly, the interpolation approach was dropped from
further consideration.

Il
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3. CORRELATION KNOWN EXACTLY FOR A LIMITED

RANGE OF ARGUMENT VALUES

In this section, Rk of (1) is assumed to be known exactly for k, < p and
unknown for iki > p. Since we are unable to compute the exact spectrum Gx(f),
given by (2), in this case, a different approach involving approximation to Gdf)
is required. Three different techniques will be considered and shown to yield
identically the same approximation to Gx(f).

3.1 MAXIMUM ENTROPY SPECTRAL
ANALYSIS (MESA)

The method in this subsection was originally given in reference 1 and
elaborated upon in reference 19. We begin with (2) and note that

1
2.1

f G (f) exp(i2,-fk.) f df G x(f exp(i2-fkAi = Rk. (291Xx

We wish to approximate G (f) by a real nonnegative function G(fi such tnat itsx
entropy (reference 16, equation (1))

4i df jn G (f) (.3 U)

is maximized, subject to the integral constraints

f dl G(f) exp(i2-fk.i = Rk , k < p. (31)

To this aim, we form the quantity

I. p

df n G(f) - - Ak f df G(f, expi2'fkA. 1321

IA k=-p 1tA

11
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where Lagrange multipliers wk = U, because of the restriction R- k = Rk, as
shown in (1). We perform a variation of (32) according to

Q+6Q $ f n [G 0 (f) (f)] - kFp Ak j dfE[Go(f) + i(f)] exp (i2 irfk1),

/A /=-P (33)

where G (f) is the "optimum" approximation to Gx(f) under criterion (30), and
obtain, upon setting

ot(Q 6Q) _0 at = 0, (34)

the relation

1 1
G (f) = f< - (35)

o p 2a

E mk exp(i2, rfka)

k=-p

G (f) is real since -= k" Since it is also to be nonnegative, we can express
0

1 1
G 0(f) f <  (36)o hf)V

where

p'(f) -L exp (i2 fk -i , f - 2- ' (371

k=0

and where y(f) has no zeros in the upper-half complex f-plane; that is, poly-
nomial

P
k

B(z) E Z k z(
k =Zk=0
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has no zeros inside the unit circle, 0, in the complex i-plane. A proof that
B(z) in (38) has no zeros inside 0 is given in reference 11, page 7, for exam-
ple.* Specifically, it is shown that B(1/z) has all its poles and zeros inside 0;
that is, B(I/z) is minimum phase.

In order to determine the constants lcrp in (37), we express (36) as

G (f) *(f) = 1 IfJ < I (39)
o "y (f)' 2A (

(We could equally well have multiplied by -y(f) in the following.) Therefore, for
all values of 2 ,

df G (f)y*(f) exp(i2rfTA) d f exp(i2rfA). (40)

1/ /

But using (37), this can be expressed as

k df G (f) exp(i2rf(Q-k)A) = df exp(i2,fla) all (41)
k=0 1/ / ak exp(i2-,fki)

k=0

Now if 2 is an integer in the range [0, p] , the integral on the left side of (41) is
equal to Rj-k (via (29)) for any value of k in its range [0, p) ; this is where the
constraints are employed. Therefore, we have for integer .2,

p
SRk a=b,, oK <_p, (42)

k=0

where

( c~f exp(i2nf.l.) 0<.b f , 0 p. (43)

141 E Ok exp (i2 -rfki)

k= 0

*The proof is couched in terms of the recursive solution ol (461 presented
in appendLx A.

13
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In (43), letting z = exp(i21fl) and using (38), we have

b = I B2 ) 0T f 0 < p, (44)

where f denotes counterclockwise integration around the unit circle 0 in the
complex z-plane. Now B(z) has no zeros inside 0 by construction. Further-
more, B(z) can have no zeros on 0, for then -,(f) would be zero for some f, and
Go(f) would possess infinite power, contradicting R o < mo. Then (44) yields

b, A 1 o' 0 < p, (45)

and (42) becomes

p
E k = 0 < .< p. (46)

R= f -k k 0 to ' -

This is p+I linear equations in p+1 unknowns.*

Now let correlation matrix R be defined as

R R .. R_-P0 -1 -p

R I  R o

R =(47)

R R
p o

aind define two column matrices

T T
[] 0 0 ... 01 0 C= [r pI (48)

i.:i.,n .)1 (461 is presented in appendix A.
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R is Hermitian, Toeplitz, and nonnegative definite. Then (46) can be expressed

as

Ra* (49)
Aa o

with solution

a* _1 R-1 S (50)
Azao

Now let the inverse matrix

Co Co •.. Co

0 0 o l1 .. o p

C10 c11

-1 (51)

C Cpo pp

Then (50) and (48) yield

1/2
* 1 ,2 1 00\

a -c , a °  = - C, a °  exp(iO) (52)
0 00 01 - 00' 0 10/1a0

where 0 is an arbitrary real constant. (Coo is always real.) Utilizing this re-
sult and (15) in (50), there follows

a* Ck exp(-ie), 0<k<p, (53)

15
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and (37) becomes

exp (i 0)p1-y = e c* exp(i2rfka), Il < 2. (54)ko (54)"

T- oo k=0

Finally, using (36), the "optimum" spectrum (called the maximum entropy
spectrum) is

AC
00 00

Gof) = , if' < (55)
G0 M p 22.

E cko exp(-i21rfk_%)

k=0

Equation (55) gives the maximum entropy spectrum in terms of the first
column of the inverse of the correlation matrix R of available known correlation
values; see (47). The forms of (55) and (46) are similar to those encountered
earlier in (14) and (7), respectively; see also appendix A. The maximum value
of the entropy defined in (30) is evaluated in appendix B and is given by ;n (-/CIoo).

Substitution of (53) in (38) yields

B(z) = exp(-io Ck z (56)
k=0

p
Thus, investigation of the zeros of B(z) depends on the polynomial k zkk= 0 °  ;

it must have no zeros inside the unit circle 0. But if we combine (46) and (53),
we can write that

P Co
L R 1 _ Ri, 1< <p. (57)

k= 00

Now reference 1, page 567, declares that all the zeros of c=0 ko must lie

inside 0 since R is a correlation matrix. Therefore, polynomial B(z has no
zeros inside 0.

16
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3.2 LINEAR PREDICTIVE FILTERING

Here, as in the previous subsection, the available information is knowledge
of Rk for I k I p. A linear one-step prediction of xk, based on the past p values,
xk-1, ... , Xkjp, is to be accomplished with minimum average magnitude-

squared error; see figure 1. Now, however, instead of (3), we have for the

predicted value the finite sum*

p

k a xk (58)
n=1

The instantaneous error is

p
fk = Xk - Xk= xk (ao =-1). (59)

n=0

(Equations (58) and (59) constitute stable digital filters regardless of the choice
of coefficients.) The ensemble average magnitude-squared error is

E = a a R = aHRa, (60)m n n-m
m,n=0

where we have used (1) and (47) and defined

. T
a = [a a ... a .I (61)

We now wish to minimize E by choice of filter coefficients Ian} . How-

ever, we have the constraint on ao in (59); this can be expressed mathematically
as

a H = - (62)

where S is defined in (48). In order to minimize (60) subject to (62), we form
the quantity

p
The more general form including F- bn xk-n is not considered here.

17
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H H - aT *
a Ra- Xa H - X a T

=(a - XS18)H R(a - XR- ) - IXI2 2 R-8 , (63)

where R-1 is defined in (51). Since R is nonnegative definite, being a correla-

tion matrix, (63) is minimized by the choice of coefficients

X _ R 1 1. (64)

The Lagrange multiplier X is obtained by substituting (64) in constraint (62), and

using (51) and (48):

H  =-, c (65)

00

Then (64) yields

cko
a - 0 < k < p. (66)

00

The minimum value of the error power is found by utilizing (64) and (65) in
(60):

.) 2 8H-i-I 2
E -= -RRI c 00 = ,(67)

00

where IfkI is the minimum-error sequence obtained by employing (66) in (59).
(A recursion relation for E(P) is presented in (A-7); it can be started with

c (o) = Ro.) Notice from (67) that c must be positive, for non-negative

definite R

The transfer function of the optimum error filter from input x to output

in figure 1 is, from (59) and (66),
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p

A(f) - a k exp(-i2irfkA)

k=O

I p1 P1
-- - ko exp(-i2tfk-1), ifI < 2 (68)

00 k=0

Furthermore, the spectra in figure 1 are related hy

= 2Gx(f). (69)

Now let us assume that the spectrum of the minimum-error sequence is
1 1

white over the band (-T-, 2); this is in line with the property (11) which held

for the case when the infinite past was available. Then we say

E

G7 (f) = - c. Ifl < - (70)?''7() A / c 2.1'
00

where we have used (67). Substitution of (68) and (70) in (69) yields the linear
predictive spectrum approximation to the input spectrum according to the defi-
nition

G o p 2 fl< 2- (71)
k2 cko exp(-i2 fkA) 2

k=0

This is identical to the approximation (55) obtained by MESA. It is critically
dependent on the assumption that the spectrum of the minimum-error Tf in fig-
ure 1 is white.

Since (71) is identical with the maximum entropy spectrum, (55), it must
follow that

df G (f) exp(i2Tfk-) = Rk for Iki < p; (72)

19
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that is, although not specified in the current approach, the correlation t-.iction
formed from the linear predictive spectrum Cx(f) in (71) has the same values at
ka for IkI <p as the known correlation values IRk} .

The implications of the assumption (70) of a white spectrum for the mini-
mum error are investigated in appendix C. It is shown that the crosscorrela-
tion function between input x and output T of figure 1,

-- *k x (73)

must then satisfy

_ 1/c 0

that is, minimum-error sequence I'kl is assumed uncorrelated with all the

past values of the input. It is also shown that the unknown correlation values

Rk for k > p can be approximated according to

P c P
Rk no Rk n  -a k = np+L. (75)

n=1 00 n=1

This recursion relation, starting with known values R 1 , ... , Rp, can be con-

sidered to be an extrapolation of the known correlation values into regions
where they are unknown. Equation (75) is shown in appendLx D to be a stable
recursion when B(z) of (56) has no zeros inside 0; this property has been dis-

cussed under (38), (56), and (A-9). It can also be shown that Fourier transfor-

mation of the extrapolated correlation approximants yields precisely (71). It is

interesting to note that (75) has the same form as the predictive equation (58) for

individual data values.

Since

f df Gx(f) exp(i2nfk ) 
(76)

is the autocorrelation at delay ki, it is given by (72) for k < p, and by (75) for
k > p + 1, where the latter correlations are extrapolated values. This follows

20
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from setting G-(f) white and choosing Gk(f) by (71), according to the analysis in

appendixes C and D.

if sample values xk+1, ... ,Xk p were used to linearly "predict" xk ac-
cording to backward regression

p
Xk -- a kn (77A)

n=1

the one-step error tk = Xk - xk has average magnitude-squared value

p
E IEk} = a - R(a =-1), (77B)E -lk'=m n n-m (a0

m,n= 0

which is identical to (60). Thus, the same optimum filter coefficients in (66)
that minimized (60) would also minimize (77B), and an approach similar to that
above would yield a spectral approximation identical to (71). The equivalence
of the results of this backward regression to that of the forward regression in

(58) will prove useful later when we deal with finite data sets and unknown
correlation functions.

3.3 ALL-POLE DIGITAL FILTER
MODEL

The available information about process xk1 is the same as in the previ-
ous two subsections, namely, knowledge of Rk for ik I< p. Consider a sampled
autoregressive process jyk} in steady state generated by a stable all-pole
digital filter, H(z), excited by discrete white noise Ivkl ; see figure 2. The
noise is characterized by correlation

wk w _n = 6 ,all n, (78A)

wit', no loss of generality, and has spectrum

1
G (f) If < 2-" (78B)

21
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wk ALL-POLE Yk
DIGITAL FILTER

H(z)

Figure 2. Generation of All-Pole Process

The digital filter is characterized by a p-th order autoregressive relationship,

p

r fn Yk-n = Wk (79)

n=0

with transfer function

1
H(z) = (80)P

n= 0

We are going to choose digital filter coefficients I n} p so that autoregres-

sive process IYk has the same correlation values as process Xk up
through order p; that is, we will set

Y Y* = R for n l< p. (81)

k k-n n_

Then the spectrum of autoregressive process iYkl , given by

Gy(f) = G w(f) IH(exp(i2,Tfi)) 2

P '

n exp fn A)

22
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will be used as an approximation to the spectrum of jXk. The spectral rela-
tion in (82) holds only if H(z) is stable; that is, all the zeros of the denominator
of (80) must lie inside 0.

In order to evaluate the filter coefficients Otn p , we notice that

w y 0 for n > 0 (83)Wk Yk-n

since noise samples Iwkj are uncorrelated (see (78)) and filter H(z is realiz-
able (see (79)). The first step we take is to express (79) as

Yk 1 wk - E 0 n Yk- " (84)
0 n=1

Then using (78) and (83),

1
Wk Yk = 7-" (85)

0

Now multiply both sides of (79) by y and average; there follows

p1
fnR - = ""6o 0 < IQ < p , (86)

n=0 0

upon use of (81), (83), and (85). Now if we let in = an, (86) becomes iden-
tical to (46). Therefore, we can use solution (53) to obtain for the filter coeffi-
cients

c
00

1n - exp(-i0), 0 n < p, (87)

where 0 is an arbitrary real constant.

23
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Substitution of (87) in (82) yields the autoregressive spectrum approxnatior.
to the input spectrum as

Ac
Ic 00 1G x(f) = G y(f) = ,,f <- (88)

c exp (- i2,-T fn.)
n=0

This is identical to the maximum entropy spectrum (55) and the linear predic-
tive spectrum (71). The discussion surrounding (76) is relevant here also.

Substitution of (87) in digital filter (80) yields

Ia- exp(i 0)
H(z)= . (89)

n z-n
n= 0

This is stable if the denominator contains all its zeros within 0; that is, H(z) is

stable if and only if B(z) of (56) has no zeros inside 0. This property has
already been shown true in the discussions under (3S), (56), and (A-9).

The relationship in (86) can be extended to . = p - I with the result that

p
= R - 0 (90)

n=0

where Rp. 1 is now interpreted as the value of Yk Yk-p-I, and was never speci-
fied. If we combine (90) with the last p equations cf (86), we obtain

p

<. nR rn 0,1 < p-i. (91)
n=0

In order for this set of p - i linear equations to possess a nonzero solution for

d n~(as it did above), we must have

24
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R 1  R R_ . RI-p -we

R2 R1 Ro p.. R2 -p

det -0. (92)

R Rp Rp- " ... 1

This can be solved* for Rp+l. But since this is identical with reference 19,

equation (1), we see that the all-pole digital filter model is identical to choosing
Rp+ I such that

-R 0 R_1 ... R "PR--

R 1 R 0

o - -p R-p-I

R1  Ro

det (93)

R R Rp p-i -1

R R ... R R
p o

is maximized. Additional interpretations of (93) in terms of maximum uncer-

tainty' and entropy are presented in references 20 and 14.

*Of course, a far more practical method is given by (90) and (87), and

more generally by (75).
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4. CORRELATION UNKNOWN; FINITE DATA SET

In this section, the correlation values JRk are unkiown, and the only
information available about the random process x(t) is a finite set of N samples
x 1 ... XN, from which we remove the sample mean. From these N samples,
we desirean estimate of the spectrum Gx(f). Yet we can not minimize or utilize
any ensemble averages as was done in sections 2 ani 3, since we have only a
finite segment of one member function to work with.

The MESA and autoregressive methods of subsections 3.1 and 3.3 are not
easily directly extended to the case of unknown correlation, because they make
explicit use of this correlation information; see (31) and (81), respectively. A
direct extension oi these two methods would require us to decide on the form of
the correlation estimates a priori, and could unnecessarily restrict the quality
of the spectral estimate we finally obtain. The linear predictive method of sec-
tions 2 and 3. 2, on the otherhand, requires that the ensemble ave rage magnitude-
squa red error be replaced by some estimating quantity that can be readily calculated
from the available data 1Xn} N1; as a by-product, we may get estimates of the cor-
relation. Several candidate processing techniques based on subsection 3.2 will
therefore be considered, and their processing equations derived. Also, some
of the results of subsection 3. 1 on MESA will be adapted and combined with the
linear predictive approach to form a viab.,. approach to spectral estimation;
this technique was originally presented by Burg in reference 21. n section 6,
all the techniques will be compared by means of simulation.

4.1 YULE-WALKER EQUATIONS

We begin by defining in this subsection

xk = 0 for k,'1, k>N, (94)

since these samples are unavailable. Taking (58) in subsection 3.2 as a guide, we

attempt a linear prediction according to

p
anx all k, (95)

x = E n k-n
n=1

where the choice of p is arbitrary for the moment. It should be noticed that
although ^k is defined for all k, it is not expected to have a good chance of ac-
curately predicting xk for k < p or k >N + 2 since some zero values of xk have
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been utilized in those regions, according to (94). Nevertheless, we define an

instantaneous error

p
k = k - xk E a k-n' all k (a=-1); (96)

n=0

it is expected to be valid or meaningful, however, only if k >p + 1 and k <N
(error 'N+1 must utilize a zero value for xN+1). Digital filtering operations
(95) and (96) are stable for any choice of coefficients {an.

Since we cannot compute an ensemble average magnitude-squared error

now, -in average magnitude-squared error is defined for the available data of

the single member function as

F12 a* I  97)F- " k Z a n N X_mxin (7

k m,n=0 k

where 2; denotes summation over alil nonzero values of the sumnmand lek '

regardless of how meaningful they are. The normalizing factor 1/.N is some-
what arbitrary; there are N+p nonzero terms in the first sum in (97), but only

N-p meaningful terms.

We define, for all n, m

S jXkk =S.
nm N L Xk-mXk-n Sm-n

k

in which case (97) yields

p
F =a, a

m, n = U

This relation uses S: dnly for ,.

coefficients la- f P
I

AL ,
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The optimum coefficients j nj P are therefore solutions of the p linear equations

p
FS a 0, '1 p p =a =-)(101)

m=O I- n o 0

or

p
S m m SI 1 _ Ip. (102)

m=1

These are the Yule-Walker equations for the optimum filter coefficienLs. The
method here is called the autocorrelation method in reference 1. (As an aside, in
analogyto subsections 2.2 and 3.2, identically the same equations (102) result
when xk is predicted on the basis of p future values, rather than p past values
as was done here in (95); see (5) and (17) et seq. and (77) et seq.)

The minimum value of average error F is obtained by substituting (101) in
(97) and (99):

2 P p p
F = .1 E ,S S 6= X S T

oN k n n-mm o -m
k n=O m=O M=O

p p
L s* - = s - s* (103)

In m m mm=0 m1l

where we have employed (98) and (101).

ThepxpmatrLx [Sim I on the left side of (102) has the form of a legal
correlation matrix in that it is Hermitian, Toeplitz, and nonnegative definite.The last property follows from

P p

mat m 1 k Xk.

p 2
k a -r aXk-m  > 0 (104)

2m=9
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for any am p . Since (104) is greater than zero with probability one, (102)
will possess a solution with probability one.

A convenient method of obtaining this solution is to combine (101) and (103)
to get

p
- S = F 0to' 0 < p. (105)

m=0

Written out in detail, this is

S.. 1 F

S1  S 0 0
i o -'10

(106)

S S -a 0p o Pl

(The (p+) x (p+1) matrix in (106) is nonnegative definite, as a simple extension
of (104) shows.) But (106) is identical in form to (A-3), and the recursive solu-
tion presented in (A-4) through (A-7) applies directly.

The spectral estimate we adopt follows from results (68) through (71) in sub-
section 3.2 on linear predictive filtering for known correlation values: first,
the optimum transfer function leading from I xk I to minimnm-error sequence

Ok} I in (96) is

p
A(f) = T exp(-2fn).07)

n-O

However, we have a problem in trying to accurately estimate the average mini-
mum-error power that would be used in the numerator of the assumed white
spectrum for the error in (70). Although minimum average error Fo of (103)
could be used, it is not recommended because not all the error terms in the
sum in definition (97) are meaningful. Therefore, because of our inability to
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accurately estimate the average minimum-error power in this case, we shall
adopt as our spectral estimate

G (f) e_ i.f I j < _1(108)

r, IIn exp(-i2rfnA)
n-0I

This is tantamount to assuming the average minimum-error power equal to
unity (in addition to assuming the minimum-error spectrum white). This pro-
cedure also eliminates level perturbations in the spectral estimate (108) due to

random fluctuations in the absolute level of the sample set Ixn I N ; that is, from

(102) and (98), it is seen that the optimum values of the filter coefficients,
IT I P, would be the same if jKx _ N were the available samples, for any K.

Therefore, estimate Gx(f) in (108) is also independent of the absolute level of
the available samples. The choice (108) allows for convenient comparisons of
the spectral estimates obtained by the various methods presented here.

As an alternative, (108) could be numerically integrated over (- I, A),

and then (108) could be scaled so that the area under the estimated spectrum is2N
equal to the sample power, * n 11 xi 2, if desired.

The implications of the assumption in (108) that the minimum-error se-
quence has a white spectrum are investigated in appendix E. It is shown that
the sample crosscorrelation between input sequence ix k j and minimum-error
sequence I , defined for the available data of the single member function as

D, = ?"kx,. all I. (109)

k

is assumed to satisfy

DI -0. is; (110)

that is, the minimum-error sequence is uncorrelated (on a single member func-
tion basis) with all the past input. It is also shown that the quantities St de-
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fined in (98) (of which only St for [4 5 p were used in (99) et seq.) can be

estimated for t p + 1 according to

p

ni1

This relation, (111), which may not be true for the quantities S actually ob-
N

tained from data I xn I via (98), is due directly to the assumption that the

sample spectrum of the minimum-error is white; see appendix E. The recur-
sion relation (111) is stable, according to appendix D, if

p -

possesses all its zeros within 0. But since matrix I Sj_mI in (102) has the
form of a legal oorrelation matrix, we appeal directly to reference 1, page
567, to state that this property does Indeed hold. Therefore, recursion (111)
is stable.

It is worthwhile noting that no direct estimation of unikown correlation val-
ues tRkj was attempted in this approach; rather, we minimized the average
error defined in (97) and solved directly for the filter coefficients in (102).
However, if we rewrite (105) in the form

p
E S I - " F 0 1o 0 < < p, (113)

mm0

and compare with (C-3), we see that the quantity S, could be adopted as an esti-
mate of R/Lor 111 <_ p; that is, using (98), we could say

R, v s, -__ -, (,114)
k

(and then (111), with A replacing S. could be used to estimate R, for , >p

rather than (98)). This is in fact the approach adopted by some authors; see,
for example, reference 2, equation (19). However, (114) yields biased esti-
mates because
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SN-111 R,

R, -St (115)
, 0, otherwise

It is interesting to note that if (114) were adopted a priori as estimates of
the unloown correlation values JRk I, then the MESA and autoregressive ap-
proaches of subsections 3.1 and 3.3 could be utilized directly, if the right sides
of (31) and (81) were replaced by IRkJ . The spectral estimates would then be
given by results identical to (108), except for a scale factor. The major draw-
back of this approach is the need to commit oneself to a specific form for the
correlation estimates, such as (114), rather than letting the technique itself
yield alternative estimates. The specific form used for the correlation esti-
mates could limit the quality of the spectral estimate obtained; this contention
is proven true by simulation in section 6.

4.2 UNBIASED VERSION OF YULE-
WALKER EQUATIONS

One method of obtaining unbiased estimates of the correlation values fR,1
is to define estimators

N

R1 u j XX. L xkx;-I for 0 < p . (116)
k k=-1 1

Of course R_ R; . These could then be used in (102) in te form

p
E f-m "1 Rn iR, J <L p, (117)

rn-1

to solve for the filter coefficients I p . And (108) could again be adopted for
the spectral estimate. The solution for the coefficients in (117) minimizes no
error criterion; it merely utilizes unbiased correlation estimates. The dis-
cussion under (115) is relevant to this approach; how good the technique is will
be ascertained in section 6.

The matrix [ R(.m ] P of estimated correlation values on the left side of
(117) is Hermitian and Toeplltz; however, it is not necessarily nonnegative
definite. (This last property is shown by onsidering the example p - 2, N - 3.
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with x, - 2, x2 - x 3  3, for then Ro - 22/3, and R1 - 15/2.) The recursive
solution of appendix A could again be applied to a modified form of (117); see
105) and (106). If the recursive technique in (111) were utilized to extrapolate
e according to

p
R - ->p + 1 (118)

n-i

and (116), it need not be stable unles Iff mj P is nonnegative definite. Even if
(118) were unstable, (108) could still be used as a spectral estimate of Gx(f);
there would, however, be a greater tendency of some pole-pairs of (108) to
drift close to the unit circle, 0, in the z-plane and give rise to spurious large
peaks in the spectral estimate. This tendency is reduced for stable recursions
(118), that is, if (112) possesses all its zeros within 0.

4.3 LEAST-SQUARES ESTIMATES OF
BOX AND JENKINS

In reference 16, appendix A7.5, a likelihood function approach to estima-
tion of the coefficients in an all-pole (that is, autoregressive) filter model for
generation of the process Ixn is considered. The end result (in our notation)
is given in (A7.5.7) for real data by

S D Ej , D -I . * x14-kX,.-k' 0 i Jp (119)
k-1

and in (A7.5.15) by

P Si j  - Sj o t0 1 _ i _ p . (120)

j-I

This constitutes p linear equations in the p unknowns Ijt p . The matrix [Sij] p,
occurring in (120) is symmetric, not necessarily Toeplitz, and not necessarily
nonnegative defliute. (The last property is shown by considering the example
N - 5, p - 2, with x2 - x 3 - x 4 - 1, for then S 11  3/5, S12 - S2I 2/5, S22
1/5, and the determinant is - 1/25.1 The quantities ISt)4 also yield biased
estimates of jRtj , because
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N - i j R.. (121)
ij N i-j

Nevertheless we will adopt (108) for our spectral estimate in this case. The
fact that we encounter a non-Toeplitz matrix in (120) disallows the use of the
recursive technique for solution in appendix A.

If the solution to (120) is substituted in (112), the zeros need not all lie in-
side 0. Therefore, there would be a greater tendency for some pole-pairs of
(108) to drift close to 0 than when all the zeros must lie inside 0, as for sub-
section 4.1.

4.4 APPROXIMATE MAXIMLM LIKELIHOOD
ESTIMATES OF BOX AND JENKINS

This technique is a slight modification of the previous one in subsection
4.3. Namely, in reference 16, under (A7.5. 18), the coefficients are solutions
of

p
1 S ii = So 1 lp, (122)
j.1

where (see (119))

S -N-l-j
SO LE N-i-j i1,j-1 N-i-j i-kj+k 0<i,jp. (123)

k=I

The matrix ISij I occurring in (122) is symmetric, not necessarily Toeplitz,
and not necessarily nonnegative definite. (The last property is shown by con-
sidering the example N - 5, p - 2, with x2 = 2, x 3 - 1, x4 = 2, for then S11 - 3,
S12 - S21 - 2, S2 2 - 1, and the determinant of these coefficients is -1). The
quantities ISiI yield unbiased estimates of JR-.1 - however, every element in
a p,.rtlcular diagonal can be different, even thoughi they are estimating the same
quantity. Also, the number of terms (in the sum in (123)) along a particular
diagonal varies with the position of the element, thereby yielding differing de-
grees of stability. Equation (108) can be used with (1221 to obtain the spectral
estimate. Recursive solution of (122) is not allowed because of the non-Toeplitz
character of the matrix [Sij] . The comments at the end of subsection 4.3
are relevant here also.

35



TR 5303

4.5 PREDICTION USING VALID ERROR
POINTS

The method of subsection 4. 1 utilized an average error measure defined over
all nonzero error terms; see (97). However, as noted under (96), instantaneous
error I k is meaningful only if k > p + 1 and k < N. Here we define an average
magnitude-squared error by summing only over the set of valid error points:

N

There are N - p terms in this sum. This procedure is tantamount to not running
off the edges of the available data lXnI N. Employing (96), (124) can be writ-
ten as

p
F= aa S , (125)F, m n am

m,n=0

where

N
1 =S (126)

nm N-p xk-n mnk p+1

This quantity always contains N - p terms for 0 < n, m < p. In order to
minimize F, we compute

OF P
8= F S m am, 1<_0< p. (127)

-Tr, Ibmm
m-0

The optimum predictive coefficients are therefore solutions of

pE Sm m= 0, 1 <_ J .(',= ao- ) (128)

MOO Im 0
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or

P
stream S S to 1< Sp. (129)

m=1

The method here is called the covariance method in reference 1.

The minimum value of the average error F is obtained by substituting (128)
in (124) and (125):

N p p p

F =1 6 a=' r S ,s -O N-p iki 1 run m O om Im
k=p+l n=0 m=0 m=O

p P= s* *a' =s -- s 10
* mo So - E S* a (130)mo In 00 mo In

m=O m=1

where we have used (126) and (128).

The p x p matrix [Spm] t P on the left side of (129) is a legal correlation
matrix in that it is Hermitian and nonnegative definite. The last property fol-
lows from

p p N

E S mm 1
Im=1 f,m=1 k=p+l

N p
= ' kp m a xk- m 2 >0 (131)

Npk= p+1 m=1

for any taml P. Since [Sim] is not necessarily Toeplitz, however, the re-
cursive solution .in appendix A is not applicable. Numerical computation of
[Sim] is eased by taking advantage of a recursive relation between SF+1, m+1
and Sim*

The spectral estimate we adopt is given by (108). However, note that we
could, if desired, get an estimate here of the average minimum error power
Eo , used in (70), according to
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E0 = F (132)

This quantity is meaningful because (130) involves only the valid error terms.

Equation (129) is similar to, but not identical with, the form of (117). The
quantities ISnmj , defined in (126), yield unbiased estimates of VRn-ml ; how-
ever, every element in a particular diagonal can be different, even though they
are estimating the same quantity.

If the solution to (129) is substituted in (112), the zeros need not lie inside
0, despite the nonnegative definite property demonstrated in (131). (The ex-
ample

p = 1, N = 2, yields I I = x2/x1 (133)

and gives a zero location of (112) which can lie anywhere in the z-plane.)
Therefore, the comments at the end of subsection 4.3 are relevant here also.

4.6 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

It was noted in subsections 2.2, 3.2, and 4.1 that "prediction" based on
future values of the input Ixk I yielded an equivalent spectral estimate to that
obtained by prediction based on past values. Here we combine the two tech-
niques. The forward-predicted value of xk is.

p
x a x p + i : k <_N, (134)

n=1

whc're we limit k to the range [p + 1, NI, in anticipation of the fact that we can
only measure valid errors in that range; see (96) et seq. The backward-pre-
dicted value of xk is

p
xk =  a xk I <_ k _ N-p, (135)

n=1

where we again limit the range of k. (See, for example, (15), (22), and (77).)
The forward and backward errors are, respectively,
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p

a x ,p +1 5k N,
k k k-n

n= 0
(136)

P

k =Xk - x ) F anX k+n 1:! k :N- p,

n=0

wherea -1.
0

An overall average magnitude-squared error is defined as

F 2 + k a* S (137)
2 N-)k=p+l k1K 2) m,n= 0mn m

where, in this subsection,

1 N N X-

nm 2(N-p) (k=p+l Xk-rn N-p / (138)

This quantity always contains 2 (N-p) terms for 0 _< n, m < p. Two useful prop-

erties of SUM are immediately available:

S = S* ,S =S* (139)
mn nm p-n, p-m nm"

These properties, plus a recursive relation relating Sn+l, m+ and Snm, ease
the numerical computation of matrix [ Snm] .

We minimize F by choice of lami P, getting (see (127) - (129))

p
Snm-am = Sno , 1: n 1 rp. (140)

m=1

The minimum value of F is (see (130))
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F =S - E s* (141)0o o mo In

m=1

The method here is an extended version of the covariance approach in refer-
ence 1.

The matrix [Stim] p is Hermitian and nonnegative definite:

* 1

C' 2 
)p xk ~ :

,m= I m (k=p+ m= k=1 m=1 (142)

for any lam IP However, this matrix is not necessarily Toeplitz; therefore,
we cannot apply the recursive solution of appendix A.

The spectral estimate we adopt is obtained by substituting the solution of
(140) in (108). An estimate of the average minimum error power E0 , used in
(70), is available here according to

E =F , (143)0 0

if desired, where Fo is given by (141). This is meaningful because (137) util-
ized only the valid error terms.

In analogy to (126), the quantities ISnmj in (138) yield unbiased estimates
of IRn_mI . Nevertheless, if the solution to (140) is substituted in (112), the
zeros need not lie within 0, despite the nonnegative definite property shown in
(142). For p = 1, we find

x * + *2  + x 3x 2 + + XNX_ 1

1 1 x x2 + 1 + "12 + + x 1-2  + Ix i +2 1 N

(144)

And since

4xkkI 2  < 1, (145)
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it follows that

a (146)

So for p = 1, the zero of (112) must lie within 0, (unless xk = A exp(ikB) for all
k, in which case it lies on 0). However for p = 2, N = 3, and real data, the

F- x xXl 1+ x3
zeros of (112) lie at r + , where r - So if Irl < 1, both zeros

2x 2

lies on 0, whereas if Irl >1, one zero lies outside 0. Therefore, the com-
ments at the end of subsection 4.3 are relevant here also.

4.7 BURG TECHNIQUE

The key to this technique, first presented in reference 21, is the observa-
tion from equation (A-6) in appendix A that if the particular p-th order coeffi-
cient a(P) can be evaluated, the rest of the p-th order predictive filter coeffi-
cients,P a ) , 1 :_ k _p- 1, could be evaluated from (p - 1)-th order
coefficients. This relation (A-6) holds t-ue for the solution of normal equations
(A-3) even if RkI are replaced by estimated values. Explicitly, if estimates
lop R1, " p, and a (P) arc considered known in the matrix equation

Ro  -p^ TTR 0 R_ 1 : R -P1

R1 R0 -a

(147)

VoR R a 0_p o _j L pJ _ _ .

then we have p + 1 linear equations in the p + 1 unknowns a 1() a._)l Rp,
P(P) (Notice that whereas Rp was known and a~p) unknown in (A-3), the situa-

tion is reversed here for these two variables.) The solutions are given, for
p >1, by

ak = a i ) - a p a )p - *, k= 1, 2, ... , p - 1 (no terms if p = l) (148)
p p-k"
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p (P p -k PR PEa (149)
k=1 k=1

P(P) = 1(: - 1 ) (I- Ia(P)I2). (150)

The quantities k in (149) are the estimated normalized correlation coeffi-
cients iRk/Rol . The recursion (150) is started with

N 2

= Ro jx (151)
n=1

which is the sample power of the available samples. A method of evaluating

a ) for p 1 is treated below.

The method presented here is a combination of references 21 and 7. It
begins by defining zero-th order forward and backward sequences according to

f(o) = x , b( ° ) = x , <n<N. (152)
n n n n -

The p-th order forward and backward sequences (residuals) for p >1 are de-
fined according to

f(P) = f(P-1) (p-)
n n p n-1

for p + 1 <n <N. (153)

b(P-1) f(P-1)
n n-I p n

(These can be interpreted as one-step forward and backward prediction errors.)
A chain interpretation of (153) is presented in figure 3. (From the known

correlation results in subsection 3. 2, if we define

p pt~
P ) =x x

n =Xn Xn-k n n-p E k n-p+k

we find that figure 3 results, with g replaced by a( p .)
-p p
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n 

n

++

Figure 3. Chain Interpretation of Burg Technique

The average magnitude-squared value of the p-th order forward and back-
ward sequences is

)N 1 12 + 12

N (1) bP112 +l(1fp-) 1)2 ), p >F(P) =- g p)lnJ +_ 1b n1  g n(P
n=p+l (154)

We wish to minimize this average power at the p-th stage by choice of cross-
gain gp. We find the optimum choice to be

N

2 f(p-1) b(p-')*2n p+1 n n-1 Num (p)

gP N . . . . . 2 f1 ) 2 D e n (p ) ' p  -  1 . ( 1 5 5 )

g , n+1 2-
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When (155) is substituted in (153), the results are called the residuals. The
minimum value of the residual power at the p-th stage is obtained by substitu-
ting (155) in (154) and is expressible as

0 () 2(N- p > 1. (156)

The quantities necessary for this evaluation are available when (155) is evalu-
ated. The value of (156) will never be smaller than (141), since the procedure
here is a step-by-step procedure, not a simultaneous procedure as used in
subsection 4.6.

An immediate recursion for the transfer functions of the p-th stage in fig-
ure 3 is

(P) (Z) = Z(P-1Z) - gpZ -e" 1)(z)

p
, p > 1,(157)

with starting values

(°(z)1 = °(z) =1. (158)

If we let transfer functions

(P)(z = (p- ) z- k ,

k=1

(p) (P)* -A -P -p (p)*-
((z) = - E a z-  z =z -)(z - ) (159)

kO p-k
k--0

the solution is

(P)= g , p : 1, (160)
p p

with the lower order coefficients given by (148). Thus, the only remaining
quantity, a(P) that was necessary for solution of (147) - (150) is given by (160)
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and (155), along with (152) and (153). To the three lowest orders, the solutions
are given by

N

p 0 P(0) N 2 (161)
n-1

(1
R , R o a

P(1) ,P(O) (I - 1j1)12) (162)

p 2, (2)
(2)

a(2) ( ) (2) _1)"

aI  -faI a 2 -f a 2

2 2 R11 o a

p(2 ) p(1) (1 - 1(2)12). (163

It will be observed that for p = 1, a(1) is identical to (144); in fact, the proce-Idures are identical in this case. It should also be noted that at each stage, an
estimate, Rp, of the true correlation value Rp becomes available via (149), and
is unchanged by the addition of any further stages (larger p).

It was demonstrated in (A-9) that the magnitude of a was bounded by
unity if the known correlation matrix t was nonnegative definite. The same
property,

is true here in the case of unknown correlation when 1j; is determined by (160)
and (155); see appendix F. This is sufficient to show that all zeros of (A-10)
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lie nside 0; see reference 11, for example. Therefore, the recursion (149)
can be used in the form

p
R' , R,- a. ) ' I p P 1(, (165)kt 1

k- I

to extrapolate the estimated correlation values beyond p-th order, with the p-th
order coefficients Ia' P, and is guaranteed to be stable. Division of (165) by
Ro yields the normalized correlation coefficients. Recursion (165) is similar
in form to those encountered in (75), (111), and (118).

The quantity P(P) that results as the solution (150) of matrix equation (1-t7)
is not the minimum average magnitude-squared error as it was for known cor-
relation; see (A-3), (A-7), and (67). In fact, P(P) has no direct physical sig-
nificance; it is merely the variable left over in that position in the normal equa-
tions (147) when mofdified from the case of known correlation values, (A-3).
Rather, Fo in (154) and (156) is the minimum average magnitude-squared
error of the forward and backward residuals, (153), of the available data.
Thus, as far as picking an "optimum" value of p at which to terminate the re-
cursion In (147) - (150) is concerned, the latter quantity has more physical sig-
nificance. However, the two quantities are very close to each other for no bad
data points, especially for N-p large; see appendix G. Both quantities are
readily calculated at any stage via (150) and (156), respectively.

The transfer functions from input x to the p-th order residuals are given in
(159). Therefore, the spectra of the residuals are given by

G )(f) = G =(f) ( (exp(i2vffi) G (f). (166)f b iix

Now if the chain in figure 3 has been carried to the stage where further values
of cross-gain gp would be substantially zero, then the residuals are approxi-
mately white. 'Therefore, an estimate of the input spectrum is available from
(166) and (159) according to

8 x(f) = ,.) f <1 - :a ) exP (-i2irfki)

k=1
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where the residual power has been set at unity; see the discussion under (108).
Two alternatives to this scale factor are discussed in appendix H; namely, it is
shown that P(P) and FP) are both meaningful scale factors that could be applied
to (167).

The estimated correlation values in (149) are generally biased. This may
be anticipated from the complicated forms of (149), (148), and (155), s -e
additional statistics than simpi.Xkpxk need to be known in order that R be
capable of evaluation; that is, % depends on much more than just xkpxr, for
the Burg method. This biasedness may be proven for a simple example with
p 1, N=3. (Ro i (151) is unbiased; andforp- 1, N=-2, we find Ri-x 2xi,
which is unbiased.) For real data, with random variables Jxk being zero-
mean unit-variance Gaussian, and 7 2xK0, we f (i3

71- 1 12 - 2,/3 1
appendix I) that R1  + , 9 z - (. 9484). The bias is slight but non-

zero.

In summary, the Burg algorithm for data processing consists of initializa-
tion (152); followed by the cross-gain calculation in (155); filter coefficients via
(160) and (148); and normalized correlation coefficients (149) (if desired)
at every stage. The update required at each stage is given by (153), and
the extrapolated normalized correlation coefficients at any stage are available
from (165),upon division by fo.

4.8 SUMMARY OF PROPERTIES OF
TECHNIQUES

The solution for the filter coefficients in the techniques considered above
can be put in the form

F . (168)

The properties of the estimated correlation matrix A (if desired) are tabulated
in table 1. (Actually, several of the "No" entries should be "Not Necessarily.")

It will be seen that none of the techniques possesses a "Yes" for all the
properties. The Yule-Walker and Burg techniques possess everything but the
unbiased property; however, the unbiased property, per se, of the correlation
estimates is not necessarily a desirable feature for spectral estimation, as will
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Table 1. Properties of Estimated Correlation Matrices

Nomneg-
Correlation ative Stable

Technique Estimates Unbiased Hermitin Toeplitz Definite Recursion

Yule-Walker (114) No Yes Yes Yes Yes

UnbiasedUnisd(116) Yes yes Yes No No
Yule-Walker

Least Squares
of Box and (119) No Yes No No No
Jenkins

Approxunate
maximum
likelihood of (123) Yes Yes No No No
Box and
Jenkins

Prediction (126) Yes Yes No Yes No

Forward an
Backward (138) Yes Yes No Yes No
Prediction

Burg (149) No Yes Yes Yes Yes

be seen by later simulation results. On the other hand, simultaneous satisfac-
tion of the three properties of Hermitian, Toplitz, and nonnegative definite
guarantees that a stable recursion and nonspiky spectral estimates result, see
reference I, page 567.
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5. CORRELATION UNKNOWN: FINITE DATA SET
WITH BAD DATA POINTS

In some applications, some data values can be bad as a result of malfunc-
tioning equipment or human errors In reading or recording, for example. Also,
some data values can be missing as a result of equipment being inadvertently
or intermittently turned off for calibration purposes, for example; or some sec-
tions of data can be contaminated by strong burst-like noise and be virtually
useless in those sections. All of these problems can 1P characterized mathe-
matically by saying that of the available data set jx n1  , the values xn for the
distinct integers

n - M1 , M 2 9 .. . MB (169)

are known to be bad (or missing). The B bad locations {M B are presumed
to be known. Tht bad data points can be regularly spaced, or randomly spaced,
or a combination, depending on the application, it will make no difference to
the techniques to be developed here.

In this section, we wish to estimate the input spectrum despite the presence
of Imown bad points. The last two methods in subsections 4.6 and 4.7 will be
extended to cover this case. The reason we do not extend the other methods in
section 4 will become clear when we compare the various techniques by simu-
lation in section 6.

5.1 FORWARD AND BACKWARD PRE-
DICTION USING VALID ERROR POINTS

The method to be presented here is very similar to that given earlier in
subsection 4.6; accordingly the treatment will be briefer. For convenience and
to enable a better estimation of the true spectrum with a limited number, p, of
parameters, we subtract the sample mean of the N-B good data points so that

N
N BZ x - 0, (170A)

U1

where T denotes that we skip those values of n in the set (169); that is. we
simply ignore the bad data points -- this is, in fact, the main theme of the
methods to be presented. We attempt no interpolation on the bad points, nor do
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we set them equal to zero or the sample mean. We also scale the good points

so that the sample variance is unity:

N

N--1 I x2n1 (170B)
n=1

This helps avoid overflow and underflow problems in the numerical manipulation
of large arrays encountered for large p.

A forward prediction of xk is afforded by

p
a p i_ k N, (171)

n=1

provided that k-1, k-2, ... , k-pJ M 1 , M2 , ..., MB. Then a valid forward
error can be defined as

p

k~ - a=  p 1Xk- (a=-1),p + < k N, (172)
n=0

provided that k, k-i, ... , k-p $ M I, M2 , ..., MB; that is, ^k is defined for
p + 1 < k < N except for k in the set of integers

M1 M1 + J, .... M1 + p

M 2, M 2 + 1, 2 + p

Ip (173)

MB ,  M B + 1, . B + p

If any numbers in set Ip are < p +-I or > N, they are not encountered in the error

definition (172). Let Bp denote the number of distinct integers in Ip which are

2 p + 1 and <N; this is the number of gaps (bad points) in the error sequence
(172).
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We now define an average forward error over the valid error points as

N 12

F = N-p-B - (174)
P k=p+l

where $ denotes "not contained in," and N -p - BP is the number of terms in the
sum. Substituting (172) in (174), we obtain

p N
= ' a a* .1x x .(15

m n N-p-B E xk-m xk-n (175)
m,n=0 P k=p+l

kfIp

A backward prediction of xk is available as

p
= a x , 1 k < N - p, (176)

n=1

provided that k+1, k+2, ... , kp M1 , M2 , ... , MB. And a backward error

p
E kk"Xk= a xk+ n  (a=-1), 1_< kSN- p, (177)

k I'k 'k n 

is available if k, k+1, ... , k+pJ M1 , M2 , ... , MB. Letting = k+p in (177),
we can write

p
-p= n a -x, p + 1 A N, (178)

n-0

if .9 Is not contained in the set Ip defined in (173). The we can define an average
backward error over the valid error points as
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N
N-p- Bp

P N

= a a* 1 X X- (180)
m n N-p-B I-~ (180)

=0 P I

where we have substituted (178).

We are now in a position to define an overall average error as

p
F (F F) a a*s (181)

m,na 0

where, from (175) and (180),

N

S 1 2(-~~ E (x~ + Xkv) (182)nm '2(N - p-B Bpkffi+ 1 (kmx- -~ kpm

It should be noticed that (182) does not tell us merely to sum over the "good"
products, but rather to exclude set IP. The number of terms in the sum (182)
is the same for O<n, masp and is N-p-Bp. (For no bad points, (182) reduces to
(138).) Two useful properties of Snm are

S =S , S =S* . (183)
mn nm p-n, p-m rm

The quantity Snm is an unbiased estimate of Rn.m; however, the presence of
bad points will increase the variance of Snm; see reference 5. The matrix

[Snm] P is Hermitian and nonnegative definite.

The optimum predictive filter coefficients J-Xmj P are obtained by mnini-
mizing (181):
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p
S Slo 1_. _S p. (184)

mil

The minimum average error is

p
F= S - E S* ' (185)

0 00 mo m
m=1

And since the sample variance of the good data points was set equal to unity in
(170B), (185) is a relative error measure that can be used to decide what value
of p should be used in (171) and (176); see reference 1, equations (41) and (89)
et seq. The spectral estimate we adopt is obtained by substituting the solution
of (184) into (108), as usual. The quantity F. in (185) could be used as a scale
factor, if desired, according to

E =F 0 (186)

5.2 BURG TECHNIQUE

The problem setting is the same as that for the previous subsection, in-
cluding (169) - (170). The solution is identical to that for subsection 4.7, up to
(150). Now we define zero-th order forward and backward sequences as

f(0) = x, b( 0) = x, 1_< n <_ N, n Io  (187)

where we again employ the definition (173). The first-order sequences are de-
fined as

f(1) = f(0) - b (0)
n n n- 1

for 2 :_.n <eN, nti ,  (188)
b.(1) = b( g) f(O)

n n-i i n

where the restriction of set 11 is due to the fact that the first-order sequences
cannot be formed (evaluated) in set 11. We choose cross gain g, to minimize
the average error
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()N 2 2

2(N-1-B 1) n=2 (I0 1 n nb~)) 19

n=2jn $ 1

where N-1-B 1 is the number of terms in the sum. The solution is given by

N f(o) b(0)*
2 ,fn bn_1

n=2

W= .I (190)
N Iffi2 1 + In-l' 2)

n=2I

With this value of gl, we can now compute values for residuals f b in
(188) and continue the procedure.

At stage p, we have

f(P) = f(p) - g (P-1)
n n 9P n-1

= for p + I < n < N, nI (191)b (P) b(P-1) , P f -1)- - ' P

n n-1 g n

The choice of cross-gain gp that minimizes average error

_ (p)I = 11 (~ F(0) (192
F E(-- ) (P) In -1 12

S2(N-p-Bp n=p+l0 n

5f4Ip
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is N

2 If(p-) b(P-1) *
n n-1

n=II+l _

n I pNum(p)

gp N f IP 2 e12 b*2 (193)

n=p+l
n $Ip

and the minimum value of (192) can be expressed as

F(p) = ( 1 - gp1 2 )  Denp) B (Fo(0)= 1) . (194)

This is also a relative error, due to the normalization (170B), and can be used
as an indicator when to terminate the recursion procedure in (191).

It may be seen from (192) and (193) that the sums are merely taken over
those values of n where the summands are defined. The number of terms in all
the sums is N-p-Bp.

As in subsection 4.7, the filter coefficients are given by

a(p ) = g , p>l1 (195)
p p

and for p >2, by

P) = aP - 1) - a(p) a(p- I )*
ak ak p p-k 1 -

Equations (147) through (150) still hold true. The starting value of p(O) is now
1, by virtue of normalization (170B). Recursion (165) for I >p+1 is still valid
and is stable since

I a(P) Ijgpj 1, (197)

as may be seen from (193) and appendix F. The spectral estimate is again
given by (167). The discussions in appendixes G and H are relevant here also.
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6. COMPARISONS

All the techniques considered in section 4 will now be compared in terms- of
their resolution capability, bias, and statistical stability, by means of a simu-
lation approach. In particular, the fourth-order autoregressive process which
was intensively investigated in reference 2 (see figures 4a and 5a) will be the
basic process of interest here also. It is characterized by

4
xk E an Xk-n + wk ,  (198)

n=1

where

a, = 2,7607, a2 = - 3.8106, a3 = 2.6535, a4= - 0.9238, (199)

and where 1wk1 is Gaussian white noise. We restrict consideration to real
processes here. We will not address the problem of how best to pick the value
of p used in the techniques of sections 4 and 5, but shall instead set p equal to
the known value, 4, and concentrate on the ability of the various techniques to
estimate the parameters in (199), and thereby the spectrum of IxkI , from a
finite set of N data points.

The simulation method consists of the generation of 100 independent reali-
zations of the process in (198) in steady state. The coefficients in (198) are
estimated for each of the 100 realizations, and the corresponding 100 estimated
spectra are computed by means of (108), for every technique in sections 4 and
5. The examples to be considered are summarized in table 2, where N is the
number of data points in each realization (trial), and B is the number of bad
points in each realization. The corresponding figures are collected together at
the end of this section.

6.1 NO BAD DATA POINTS

In figure 4A, the 100 different estimated spectra, one for each of the 100
independent trials, are plotted for the Yule-Walker approach, and for N = 40
data points. In figure 4B, the (power) average spectrum of the 100 estimated
spectra is plotted, along with the true spectrum of process (198) and (199).
The true spectrum is scaled so that its area is equal to that of the average
spectrum. It will be seen from figure 4A that there is a great deal of variabil-
ity in the individual spectral estimates. From figure 4B, we observe that the
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Table 2. Simulation Examples

Figure Number of Number of
Number Data Points Bad Points

N B Technique

4 40 0 Yule-Walker

5 40 0 Yule-Walker, Unbiased

6 40 0 Least Squares of Box and Jenkins

7 40 0 Approximate Maximum Likelihood
of Box and Jenkins

8 40 0 Prediction, Valid Error Points

9 40 0 Forward & Backward Prediction

10 40 0 Burg

11 40 0 Burg, Uniform Noise

12 40 4 Forward & Backward Prediction

13 40 4 Burg

14 100 0 Forward & Backward Prediction

15 100 0 Burg

16 100 10 Forward & Backward Prediction

1.7 100 10 Burg

18 100 20 Forward & Backward Prediction

19 100 20 Burg

20 100 30 Forward & Backward Prediction

21 100 30 Burg
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average spectrum does not resolve the two narrowband peaks of the true spec-
trum*; in fact, this same conclusion is true for the individual spectra in figure
4A. A severe bias exists in the skirts of the average spectrum, which gives a
gross overestimate of the power in bands away from the peaks. Thus, the
Yule-Walker approach has poor resolution, severe bias, and substantial vari-
ability.

The corresponding results for the unbiased version of the Yule-Walker ap-
proach are displayed in figure 5. Rather than improving the situation, it is
found that the spectral estimates are worse in every regard. The spectral
estimates with strong spikes near f = Mare manifestations of pole-pairloca-
tions of estimate (108) that are very close to the unit circle 0. Recall from
subsection 4.2 that the zeros of (112) need not lie inside 0; see the discussion
below (118).

The unbiased correlation estimates utilized above in the normal equations
are of the same form as those suggested in reference 5 for missing data, when
spectral estimation is attempted directly via (2). But since the performance of
these unbiased correlation estimates is so poor here, they are not considered
worthwhile in the presence of bad data points, when spectral estimation is ac-
complished via (108). Whether they are worthwhile for use in (2) is not known.

Results for the least-squares approach of Box and Jenkins are given in fig-
ure 6. The variability is less than that for the Yule-Walker estimates in figure
4A. And some resolution is achieved in figure 6B, in addition to good skirt
selectivity. There is still, however,, a large number of spiky spectral esti-
mates, as anticipated in the discussion under (121).

Conditions are not much improved for the approximate maximum likelihood
method of Box and Jenkins presented in figure 7. There happens to be one par-
ticular spectral estimate with a very large spike (a zero virtually on 0) that
severely influences the average power level. The variability in the estimated
skirt level is quite small for this technique (as well as for the previous one).

In figure 8, the results for prediction using only the valid error points are
presented. The resolution and bias in figure 8B are observed to be very good,

*This same conclusion is reached in reference 2, figure 5b, for the same

number of data points. Increasing p (above 4) does recover some of the resolu-
tion of the two narrowband peaks, but it does not reduce the severe bias of the
Yule-Walker approach.
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and except for some spiky estimates in figure 8A, the variability of the individ-
ual estimates is fairly small.

The situation is still better when we consider forward and backward predic-
tion, using only the valid error points, in figure 9. There are a couple of spiky
estimates, but they are not excessively large, as they were previously. The
bias and resolution are very good in figure 9B. Although the zeros of (112) need
not remain inside 0 for this technique, it was found that in all 100 trials, no
zeros were ever located outside of 0. The presence of the two spiky estimates,
however, indicates that on two occasionsa zero came close to the periphery
of 0.

One of the major drawbacks of this technique is the need to invert a non-
Toeplitz matrix (or an equivalent operation) in order to evaluate the optimum
filter coefficients; see (140). For large p, this is a significant numerical prob-
lem. We therefore attempted to convert the matrix ISpm] in (140) to a Toeplitz
matrix, so that the recursive solution in appendix A could be utilized. We first

averaged (Sim] P down the diagonals and left the right-hand side of (140) as is;

however, we lost resolution and got badly biased and more variable spectral

estimates. Next we diagonally averaged ISml P and left the right-hand side of
(140) alone, but got the same bad effects. Finaly, we diagonally averaged
I Sim) P and also replaced the terms on the right-hand side of (140) by the ap-
propriate averages, but again to no avail. Thus, we are unable to significantly
modify (140) without dire effects on the spectral estimate.

Finally, when the Burg tec.hnique is considered in figure 10, we observe the
complete absence of spiky estimates, this is due mainly to the guaranteed loca-
tion of the zeros of (A-10) inside 0. In other respects, the results of figures 9
and 10 are very similar. There is a small bias in figure 10B, with the peaks
being rounded off and the valley filled in; this is similar to figure 5 in refer-
ence 2.

All the results above have been conducted for Gaussian white noise lwkl n
(198). To see the effect of the statistics of Iwk1 upon the spectral estimates,
we changed to a uniform distribution. The results in figure 11 are virtually
identical to those in figure 10. Accordingly, Gaussian statistics are kept for the
remainder of the simulation.
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6.2 BAD DATA POINTS

By virtue of the results of che preceding subsection, further consideration
is limited to the forward and backward prediction technique and the Burg tech-
nique. The first example we consider is B - 4 bad data points out of a total of
N - 40 data points; that is, in each of the 100 realizations of 40 data points, 4
points (no more, no less) were randomly selected as being bad, and the corre-
sponding values of xk were suppressed. In some of the realizations, the four
data points may have been close together (for example, 10, 12, 14, 15), whereas
in other realizations, they might have been far apart (for example, 1, 14, 27,
40).

The resulting spectral estimates are given in figures 12 and 13. The vari-
ability in the skirts is less for the forward and backward prediction technique
than for the Burg technique. However, the spiky nature of the former technique
is quite evident in comparison with the latter technique. Both techniques have
suffered a significant loss of resolution near the narrowband peaks.

The reason for the significant degradation in performance of both tech-
niques is that although only B/N = 4/40 (10%) of the points are bad, the number
of valid error points, N-p-Bp in (174) and (192), can decrease significantly.
For example, for p-4 and spaced bad points at M1 - 11, M2 - 16, M3 - 21,
M4 = 26 (see (169)), we have

Bp = 20, N-p-B p - 16. (200)

On the other hand, for contiguous bad points at M1 = 1, M2 = 2, M3 - 3, M4 =
4, we have

B = 4, N-p- B -32. (201)
p P

Thus, anywhere from 16 to 32 valid error points can be achieved. The stability
of the spectral estimate for (200) will be less than that for (201). Generally,
contiguous bad points are less damaging than spaced bad points, because more
valid error points can be formed when the bad points are contiguous.

One of the points of the above example is that 4 bad data points out of 40 is
rather detrimental. We consider now N - 100 data points. The first example
of interest will serve as a comparison case and is B - 0. The results of spec-
tral estimation for the forward and backward prediction technique and Burg
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technique are given in figures 14 and 15, respectively. The results are virtu-
ally identical; there is excellent resolution and almost no bias for both tech-
niques.

When B is increased to 10, the results in figures 16 and 17 are obtained.
Despite 10% bad points, good performance in terms of stability, bias, and reso-
lution is attained. The number, N-p-Bp, of valid data points can vary from 46
to 86; however, the likelihood of realizing as few as 46 on a random basis is
very remote. The Barg technique has less-spiky estimates near the narrow-
band peaks, as expected; however, it is more variable in the skirts than the
forward and backware prediction technique.

When B is increased to 20, the results in figures 1 and 19 indicate that the
Burg technique has more variability, but is less spiky and has better resolution.
The same conclusions hold true for B = 30 in figures 20 and 21. however,
neither technique resolves the two narrowband peaks for this many bad data
points.
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7. DISCUSSION AND CONCLUSIONS

Several methods of spectral estimation via linear predictive techniques have
been considered for a univariate process, both with and without bad data points;
the bad points can be regularly spaced, randomly spaced, or a combination.
Two particular methods have been found to have better performance than the re-
mainder, namely, the forward and backward prediction technique and the Burg
technique. The former technique tends to have less variability on the skirts,
but has more spiky estimates near the peaks of the spectrum; the latter tech-
nique has very few spiky estimates. Both techniques have comparable resolu-
tion and bias.

Since the best choice of filter order, p, is not known a priori, it is neces-
sary in practice to make several guesses at this parameter and compute some
error criterion that indicates when to terminate the recursion. In particular,
Akaike's Information Criterion (reference 22) is often adopted as a termination
procedure; it takes the form (reference 1, equations (91) and (41) or reference
22, page 719)

AIC = In (Relative Error) +-- (AIC (p = 0) = 0) , (202)

e

where Ne is the "effective" number of data points, and is taken as N-p (or
N-p-Bp for bad points) here, at the p-th stage. The value of p at which (202)
is a minimum is taken as the best estimate of this parameter; however, criterion
(202) is not absolute, and the user can adjust it to fit his application (reference 1,
page 575). A wide range of values of p may have to be investigated if little is
known about the true spectrum a priori; an upper bound on p is given by Akaike
as 3N 1 / 2 (Ibid).

One of the ramifications of this successive guessing procedure is that for
the forward and backward prediction technique, a different p x p matrix [SnmJ P
mast be inverted (or an equivalent operation conducted) at each stage (see
(140) and (138)) in order to determine the filter coefficients and minimum
error, (141). Although the matrix terms can be updated according to

x X* + XX

S(p+I) - N-p S p)- Xp+l-m p+1-n XN-p+n N-p+m (203)
nm N-p-i nm 2(N-p-1) (

p
in addition to the relations in (139), the size of the matrix [Snm] 1 grows with
p, and the solution of (140) can be a time-consuming procedure, if many large
values of p mist be investigated. This fact, coupled with the fact that this
spectral estimation technique can yield spiky estimates and an unstable recur-
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sion relation (149), leads to the conclusion that, of the methods considered, the
Burg technique is the recommended procedure for spectral analysis of univari-
ate processes. A comparison with the maximum likelihood technique (reference
23) is underway and will be documented in a future report.

The solution for the filter coefficients in the Burg technique is accomplished
recursively as shown in subsection 4.7 and automatically progresses through
successively larger values of p at which error measures (150) and (156) are
readily calculated. There is, of course, the need to update the forward and
backward residuals via (153), and the calculation of cross-gain gp in (155), both
of which take time to effect. But the effort required actually decreases as p
increases, since fewer terms are involved in (153) and (155); in exchange, the
stability of the estimates also decreases.

FORTRAN programs for the Burg technique, both with and without bad data
points, are given in appendix J. Some representative execution times on the
Univac 1108 for the computation of the filter coefficients (SUBROUTINE BURG)
are given in table 3, where N is the number of data points and PMAX is the
maximum order of filter considered. The times are approximately linearly
proportional to N and P.%LAX. The execution time for the evaluation of the
power density estimate itself is governed by the FFT technique employed to
evaluate (167) (SUBROCTINE POWERS).

Table 3. Execution Times; No Bad Data Points

N P.NLA.X Time (sec)

100 10 0.038

100 20 0.073

1000 10 0.33

1000 50 1.78

10000 50 17.9

10000 150 48.4
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The presence of bad data points is easily accommodated in the Burg tech-
nique, as shown in subsection 4.7. If the bad data points are contiguous, the
loss in stability of the estimates is not as great as when the bad data points are
spaced. The worst possible locations of bad data points occur when the closest
spacing is >p + 1, since each bad data point causes the loss of.p + 1 valid error
points. Interpolation of spaced bad data points has proven poorer than the tech-
nique utilized here (of ignoring bad points) when the spectral content of the input
process extends fairly close to the Nyquist frequency (2 A)-l. Since the exact
extent of the input spectrum is unknown a priori, interpolation can be a damag-
ing procedure in some cases.

The spectral estimation technique investigated here is particularly advan-
tageous for short data segments, where other methods are inapplicable. For
example, if a piece of equipment fails frequently, short disjointed pieces of data
may be all that are available. Or if a process is nonstationary, it may be nec-
essary to cut the total data record into small segments in each of which it is
believed that conditions are substantially stationary. For longer data records,
where standard FFT techniques can be applied, it has been recommended that
both spectral estimation procedures be applied and the results plotted together
to glean maxim-im information about the true spectrum (see reference 12).
This seems particularly useful when some pure tones are present in the input
data; the standard FFT technique is ideally suited for the analysis of pure tones
or very narrowband components.
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Appendix A

RECURSIVE SOLUTION

If we employ (52) in (46), there results

p a
k 1R - * c t -- 6- O < i < __p . (A -I)

k= 0 00

Now define

= - a , 0 k <p , (A-2)

0

where the dependence of the coefficients on the order p in (31) is indicated ex-
plicitly. Then (A-1) becomes

R R_ ... R 1 1/c (p )

0 -p 00

R R -a(P) 0
1 0 1

(A-3)

R R -a (P )  0
p 0 p

where the matrix R is Hermitian and where we have also indicated that the real
quantity coo is dependent on p; see (47) and (51). Equation (A-3) constitutes
p+1 linear equations in the p+1 unknowns ap), .. ,a 1) /c~'?.j

The solution to (A-3) can be obtained recursively as follows (see, for ex-

ample, reference 11 or reference 24, appendix B):

a( = R1/R °  = R - R =R - a ; (A-4)

A-i
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for p > 2:

p-1

(p=i) [Rp -k 1 ) -k 00-1) (A-5)

R- 1 ak Rk k°
k=1

(p) (p-1) (p) (p-i) kkp p- k 1p 2, ... I p -1, (A- 6)

p p-i2I a )R = a(P)R - - P I ')1)

(p- R k )* R ° - a
oP) 0 p p k-i k k (-1)p

00 k=1 k= 1 00 (A-7)

The last step in (A-7) is obtained by substituting (A-6) and employing (A-5). It
is very important to notice from (A-6) that once a(P) is specified, all the p-th
order filter coefficients can be calculated from (p-i)th order coefficients. The
same is true of (A-7).

If we use (A-2) and (53), the maximum entropy spectrum in (55) can be ex-
pressed as

0 p 2(p)
E (P) exp(-i27ffkA)

k=O

The similarity in form to (14) will be complete when it is shown (in (67)) that
1/c(P) is the minimum value of the average magnitude-squared error for a p-th00
order predictive filter; therefore c(P) must be positive for all p, for non-negative00
definite R. Equation (A-7) offers a recursive calculation of the average error; it
can be started with -1

-= R 0 . (In fact, (A-5) through (A-7) can be used for p> 1
0

when that starting value is used.)

A-2
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Since c(p) must be positive for all p, (A-7) indicates that

at)I < 1 fork 1,2, p. (A-9)

This is equivalent to having all the zeros of

P (P) z-k (A-10)

k=0

(where the remaining coefficients are determined via (A-6)) inside the unit cir-
cle, O, in the complex z-plane; see reference 1, page 567. Therefore

P

B V)Wz I= a ) zk (A-I)
k=O

has no zeros inside 0.

A-3/A-4
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Appendix B

EVALUATION OF MAXIMUM ENTROPY

The optimum spectrum is given by (36) and (37). The maximum entropy
then follows from (30) as

Ent =_ a dfln G (f)= - df[.ny(f) +.Iny*(f)] E 1 +62 (B-1)

Consider

df.2n { ak exp(i2frfkA} . (B-2)

Letting z = exp(i2rfA) and using (38), (B-2) becomes

6 = - 1 ' ' z-'" In B(z), (B-3)

where f denotes counterclockwise integration around the unit circle, 0, in the
complex z-plane. Now

k
B (z) E ak z = ap 17 (z - Ok (B-4)

k=0 k=l

where, from (A-14), zero locations 1k satisfy

loki > 1, all k; (B-5)

that is, all the zeros of B(z) lie outside 0. (There can be multiple-order
zeros in (B-4).) Also assume p 1. for now. Then (B-3) can be expressed as

B-i
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k=1

p1I - np f =t '.-" SIn (z - ok  (B-6)

~jj~lap+k=1J

But

In (z -ok) =in (- o.) + In (1 _
0k

2
= .n (-Ok) - ... for I ; (B-7)

that is, expansion (B-7) converges for IzI < 1OkI. But since Ok' >1., the region
of integration in (B-6) remains in the convergence region of (B-7). Therefore,
the integral in (B-6) is

Lz I(z-o Ldzj" 0 ;n\ o2 nz ok) i2 Yz{ k 0ok (kk

Then from (B-6) and (B-4)

- [n a + .Qn - = - fn fi (-
k=1 kk=1

= - IJn B(O) = - In a (B-9)

And from (B-1) and (B-4)

E2 I n -yf) f df In E a/ exp(i2,fik )
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I f dz i p kI d I n
f k= 0

1 dz (* I1 00
P k=

f-d [_Q n n(L- o*)<
L27TJZ[P k=1 \Z/

[2-n p I d2"z Qn(.O1 . (B-10)

k=1

Now

In - o)=In o) + In (1( 71 -k k ' 1
in o - 1 (1) - ... for -. < ; (B-i)

1

that is, expansion (B-i1) converges for IzI >---. But since Ok >1, the10 I

region of integration in (B-10) remains in the convergence region of (B-11).
Therefore, the integral in (B-10) is

" - I Jn( - * Ok =jIn ( o') z--"' =  In -Ok).

(B-12)

Then from (B-10) and (B-4)

n*+ZIn (- o =In 17 o0
r P p

k=1~ kjk=

-In B*(0) = - Ina (B-13)

B-3
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Combining (B-9) and (B-13) in (B-i), there follows for the maximum entropy

Ent= In 12 = n (a/coo (B-14)

where we have also employed (52). (For p = 0, a separate derivation yields
(B-14) also.) Recall from (51) that coo is the upper-left corner element of R- 1,
where R is defined by (47).

B-4
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Appendix C

IMPLICATIONS OF ASSUMPTION OF WHITE SPECTRUM
FOR MINIMUM ERROR; KNOWN CORRELATION

We define the crosscorrelation function between minimum error 7 and input
x in figure 1 as

C, k k-i, all . (C-1)

Substituting (59) and utilizing (1), this becomes

p
C, = la. R,-,' all. (C-2)

n=0

Now from (64) and (65), we can express

1 1
i -- a (C-3)

c
00

Thus, (C-2) immediately yields

Ct = 0 (C-4)
0, 1 S_1 : p

that is, minimum error value *k is uncorrelated with the past p inputs xk-1,
xkp.

Now using (59) and (C-i), the.autocorrelation function of the minimum
error is

p p

E - t = k- n ek Xk-I-n C ,. all (C-5)
n=O nf=O

C-1
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In particular, using (C-4),

E =  C (C-6)p p-4

But from (C-2) and (66),

P P c
no R R R (C-7)p+1 0 n p+-n :- p+- = c 0 pi-1-nn ffi 0 1. 00O

Therefore, assuming El = 0 is equivalent to assuming Cp1,, = 0, (that is, mini-
mum error #k uncorrelated with input Xk-p_1), which in turn is equivalent to
requiring

P c P
p f --_" R p-.l1n (C-8)

n= 1 00 n= p

This relation, which may not be true for the actual process Ixkl , is a direct
result of assumption (70); the quantity Rp j in (C-8) is really an approximation
to the true (unknown) correlation value.

Next from (C-5),

E fa Ca - Cp. (C-9)2 p '-l Cp-.- p' p, 2

Assuming E2 = 0 (in addition to El = 0) is equivalent to also assuming Cp-2 = 0,
which in turn from (C-2) and (66) requires that we approximate according to

p c pP no

P+2 = E -p- =  an Rp2-n. (C-10)
n=1 00o n=

Continuing in this way, it follows that assuming white noise for I Tk that
is, assuming

Ef= 0 for >2 , (C-11,

is equivalent to assuming that C, = 0 for. >p 1; that is, the minimum error
is uancorrelated with all past inputs. There follows the approximations

C-2
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P C P

R -nL R,_n- = R '- R for >p + 1. (C-12)
E c I _nn f-n

n=1 00 n=1

This recursion relation (starting with known values R 1 , R 2 , ... , Rp) can be

considered to be an extrapolation of the known correlation values into regions
where they are unknown.

If we augment (C-12) according to

R_= R for I>p+1, (C-13)

then it can be shown that the spectrum defined by

A/c
A L RF exp(-i2ifA) 02 o(C-14)

t=- p
1 4 n exp(-i2rfnA)

n=1 I

which is identical to (71). The transform in (C-14) converges if R, decays
with increasing I that is, if B(z) of (56) has no zeros inside 0 .

C-3/C-4
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Appendix D

STABILITY OF RECURSION RELATION

The recursion relation for approximated correlation values R, is given in
(C-12)and (75) as

p
R1 = a k R1 -k forI > p + 1. (D-1)

k=1

Therefore,

)R -1 P -k -+k-

(-_ R, z = ER,k z (D-2)
t=p+l k=1 I=p+l

But

I+k a) P

R 1-k - R R =z- R'z-
I=p+l j=p,+l-k j=p+l-k

Vk(Z) + U(z), (D-3)
j=p+l

where

Vk(z) = Rp+ k z- (p+k) + Vk-l(z), k>2; Vl(z) = R z. (D-4)

Vk(z) involves the starting values Rp+l k , ... , Rp for 1 < k < p. Employment
of (D-3) in (D-2) yields

z -k -k= (Z z v k (Z) + U (Z) E kz, -S
k=1 k=1

D-I
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or

P P-k
SVk(z) - Cko z Vk(z)

k=1 k=1
U(z) (D-6)

-k p -k1~E3~kZ E Ck
k=1 k=O

where we have utilized (66). In order that recursion (D-1) be stable, the de-
nominator of (D-6) must possess aUl its zeros within the unit circle 0 in the
complex z-plane. Therefore, B(z) of (56) must possess all its zeros outside
O if recursion (D-1) is to be stable. This is guaranteed by the results in
(A-0) et seq.
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Appendix E

IMPLICATIONS OF ASSUMPTION OF WHITE SPECTRUM;
UNKNOWN CORRELATION

The minimum error sequence is given by (96) and (101) as

pf k = 2: a ,. xk l k. (E-1)
n=0

The sample autocorrelation of I-kI is defined here as(ks

p

F- N T ekk, = r km n S2+n-m (E-2)
k m,n=0

using (E-1) and (98). The sample spectrum of EkI is defined here as

H-(f) = F, exp(-i27f.9A) = Hx(f) A f)A- I (E-3)

where we have employed (E-2) and (107) and defined the sample spectrum of
iXkl as

a) 1Hx(f) =a S, exp(-i2Tfla), I fl < . (E-4)

I= -GD

Therefore, (E-3) yields

H T(f) 1
H (f) ='- , IfI < (E-5)

Now we will assume that the sample spectrum of fk is white; that is, we
set

E-1
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-,, 1H7(f) - KA, I f I < -" (E-6)

where K is a constant. We then adopt an estimate of the sample spectrum of
sequence jx according to

x T(f) - KA Ifi (f 1 - E-7)
E 2

and adopt a scaled version of this quantity as a spectral estimate of process

2 (f pIfl 1 <E8

T exp(-i2rfna)
t~nn

n=0

The white assumption in (E-6) forces us to assume that

F, = 0 for I 1 0, (E-9)

as (E-3) shows. In order to see what this implies, we utilize the definition of
the sample crosscorrelation in (109), along with (96) and (98), to obtain

pD, Nk -r E anS-nall .I (E-10)

k n=0

.Use of (101) then shows that

D, = 0 for < I < p. (E-11)

Meanwhile, th sample autocorrelation in (E-2) can be written in the form

p
F, - n D+n . (E-12)

n=O

E-2
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upon employment of (E-10). There immediately follows from (E-9), (E-11),
and (E-12)

F, = D + = 0. (E-13)
1 p p1

But then (E-9) and (E-10) indicate that

p

SP+ = i = Span +_ n ,  (E-14)
n1l

where p are the solutions of (102). But relation (E-14) may'not be true

for the quantity Sp+i actually obtained from data 1xnt N via (98). Thus, as-

sumption F 1 = 0 is forcing us to assume that Sp+ 1 can be obtained via (E-14)
and (102), when ISIIp are obtained from (98).

-p

Next from (E-12) and (E-11),

F 2 D P+1 D 2  (E-15)p-i p+l p

Assuming F 2 = 0 (in addition to F 1 = 0) is equivalent to also assuming Dp+2 = 0,

which in turn from (E-10) requires that

p

S 2S (E-16)
p+2 F- n Sp+2-n

n=1

Continuing in this way, it follows that assuming

Ft = 0 for .9 >I (E-17)

is equivalent to assuming Dp = 0 for .9 >p + 1; that is, the minimum-error se-
quence is uncorrelated (on a single member function basis) with all past inputs.
There follows the estimates

p

S =n I - n ' I P +  . ( E - 1 8 )

Stability is discussed in (111) et seq.

E-3/E-4
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Appendix F

BOUND ON CROSS-GAIN

The value of the cross-gain gp in (155) can be written as

N N N
gn=p fn n-i n b+ gp +A 2~ +N122

jf(P-i)j Ib~ipi)lf N P1 / Ibpi)I)n n- 1 nn~~ n-

n=p+l n=pi n=p+l F-i)

The first factor in (F-i) is of the form of a correlation coefficient of the (p-l)-
th order forward and backward sequences and can never exceed unity in magni-
tude (by Schwarz's inequality). The second factor in (F-i) is almost always
very close to i: let the pair of sums

{ If l and E b (P-)12 =1A and A(l+r) (F-2)

n I n=p+ A n-1 I'

where r 0 without loss of generality. The second factor in (F-i) then equals
(1+r) 1/2
i+r/2 , which is never larger than 1 and is tabulated below. Thus, gp in

(F-i) is virtually identical to the correlation coefficient of the forward and back-
ward sequences, since r is near zero with high probability.

Table F. 1 Second Factor in (F-i).

r 0 .i .2 .3 .4 .5

(i+r)1/2 .999 .996 .991 .986 .9801+r/2

F-i/F-2
REVERSE BLANK
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Appendix G

CLOSENESS OF ERROR MEASURES

Two possible error measures for the Burg technique were presented in
(150) and (156). For p = 0, employing (154) and (152),

F(o)_I N X 2 (G-1)

n=1

Comparing this result with (151), we find

F(0) = P() (G-2)

Thus, the two error measures are identical for p = 0.

Next from (150) and (151)

n=i

whereas from (156), (160), (155), and (152),

F (  (1 I(1' ) Den(1)
0 2(N-1)

N(1 a()1  0 + Ibo 2
n=2

x +I 1 2 + I... + 12~ l +2 X r
a -l)~i21 1 21 + 1x31 N- N-iN +1j

(G-4)

G-1



TR 5303

But now reference to (151) and (G-3) reveals that, for N-1 large,

F 1 : (1 - I a1) 12 ) P(0) = PMl (G-5)

Continuing with (150),

~(2) = () ( a) 2 ). G

And (156), (160), and (155) combine to yield

F(2) ( 12)12) Den(2) = (, ja , _(-2 1N ).F _a =2 12)2 1b(') 120o 2 (N-2) a2 )  2-) f n-l "

(G-7)

But from (154),

N
F (= 2(-f (1 + b~l 12." (G-8)

n=2

Comparing (G-7) and (G-8), we see that, for N-2 large,

F - I a( 2) ) (G-9)2 0

Then employing (G-5) and (G-6), we have

F 2 ) = (I - 1(2)12) (1) = , (G-1)

which is the desired relationship. In general, for no bad data points, we have

F (p ) : P(P) for N-p large (G-1l1)o

Numerical computations have borne this result out, with the two quantities not
having any ordered relationship; that is, either quantity can be larger (or
smaller) at different stages, p. (G-9) generalizes to

F(P)- - a(p)12) F(P-) for N-p large. (G-12)

G-2
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Appendix H

SCALE FACTORS IN SPECTRAL ESTIMATES

Instead of using a unity value for the average minimum error or residual
power in the numberator of (167), we could use the value given by (156). Then

our spectral estimate would be

a F (p )

GX 1-) p 2pA 2'-1)

I - E exp(-t ika)

k=1

An alternative approach is to use an arbitrary scale factor K and choose it

so that the area under the spectral estimate is equal to the sample power (151),
as suggested under (108); that is, set

AK 1
G (f) - fI< H2x p ()2' 2A' 12

1 - )exp(-12 irfkA)

k=1

and force

1

2A N

= Po1 (H-3)
f 1 n=1

Substituting (H-2) in (H-3), and using (159), we have

1

p(0) a 4K K

fJ 1 p 2 p 2 (H-4)

1 - E exp (- i2 ir fk.) m1 - Iam) H
k=1

H-1
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The last step in (H-4) is proven as follows: from (A-8) and (29), we know that

1
2.1

SA(p)
dLf = R c 00 (H-5)

1 - k N expi20

But from (A-7),

R c (p - l )

Rc ) 0 00R cU)" (Ho-6 =

I In

where we have employed R 0  = 1. The relationship in (H-4) holds when the
filter coefficients are determined via (148).

Therefore, (H-4) yields, with the aid of (150).

K = P(0) 1 7 - a = p'M, (H-7)
m=1

and the estimate (H-2) becomes

. P (P) f -
x(f  p2

- N exp(-i2-fkA

k=1

The very close similarity of values between the alternatives (H-1) and (H-8) is
made evident by the results of appendix G, in particular (G-11). Thus, there is
virtually no difference between estimates (H-1) and (H-8), for no bad data
points.

H-2



TR 5303

Appendix I

BIASEDNESS OF BURG'S CORRELATION ESTIMATE

For the Burg technique with p = 1, N = 3, we find from (162) and (144) that
(for real data)

2x(xl - x 3 )( 1  2 )3
1 3 x2 -- 2 2 

x1 -2 2  3

The mean of this random variable depends on more than just x2x (= x3 x2 ); in
fact, it depends on the third-order joint density of (xJ, x2 , x3 ). As an exam-

ple, let

1
x1 =u,x =+ (u+v), x3  v, (1-2)

where u and v are independent, zero-mean, unit-variance, Gaussian random

variables. Then x 1 , x2 , x3 are zero-mean, unt-variance, Gaussian random
variables with

- - 1
x2 x = x 2 f_--, x =0. (1-3)

2 ~ ~ 1 F

Employing (1-2) in (1-1), we obtain

1 1 (u v) 2(3u 22uv - 3v 2

R1 2 (1-4)
u+uv +v

Therefore,

-" 1 1 (u v + v)2 (3u2uv+3vR 1 =If du dv exp( -u .

U 4UV +V

1-1
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r exp(-r 2/2) dG (C 2S 2 (C 2 + 2CS + 3S2)drr - 2 ( I S)
Cw2 +C+S2 -  (1-5)

67 C 2+CS+S2

where we have changed to polar coordinates and let C = cos 0, S r sin 8. The
integral on r in (1-5) is 2, and the integral on is 4n(2.
Therefore. 1- 1. 12 - 2 %5 1

R= + - 9 - (.9484), (1-6)

which is not equal to

"2 X, '3 '2 /-

1-2
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Appendix J

FORTRAN PROGRAMS

The programs in this appendix are written for real data, but mav be readily
generalized to complex data by means of the general equations in the main text.
From (H-8) and (H-7), for real data, the spectral estimate is given by

C~ ()k 1 - (k) P ~(0)1
P

Gx P 2' 2JA1

1- ak exp (- i2fffk
k=1

Let frequency increment

1 1 1 N
T -== -7a /

"Af =' J = J/2 2A J/2' (J-2)

where fN is the Nyquist frequency, and J is an integer. Then, using (H-3) and
the real behavior of the data,

1

(0) 2P(0) 
(k)2  J/2

0 k=1 m=O

em

k;in1 -k = ) 2

1 - Lak exp(-i2y!mlfkA%)

p 2 J/2 J/2
2 (0) ~ (k) Em

=-P i17 1 a *
J k=1k m=0 a -pm

1 = - ( axp(-i2 mk/J) m0

k= 1 (J-3)

J-i
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where 14m is a set of integration weights (for example, trapezoidal). So we
can compute (independent of time increment .1) the quantity

m = 17 1 1 ep for < m<

k= 1 eN2,mk/j (J-4)

which represents the fractional power in the frequency band

m - LA --
1 J1

that is,

J/2 P

(m (0) (J-6)
m=0 P

if estimate Gx(f) in (J-1) has been sampled finely enough tthat is, large J). The
denominator of (J-4) is recognized as a J-point FFT of p-I nonzero numbers.
hence, J should be chosen as a power of 2 for speed purposes. The programs
below yield the fraction of power in frequency bands of width (J.I- 1 , if J is an
integer large enough that the spectral estimate (167) or (H-8) is adequately sam-
pled to keep track of its peaks.

NO BAD DATA POLNTS (SUBSECTION 4. 7)

The data generation is accomplished via function URAND, which generates
integers uniformly distributed over (0, 235- 1); by RAND, which generates num-
bers uniformly distributed over (0, 1); and by TLNORM, which generates zero-
mean unit-variance Gaussian variables. The FFT used below is that presented
in reference 25.
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SSPLCTKAL ESTIMATION USEk: CHANGE LINE 13 AND REPLACE LINES 17-31
C N zr1tm.tbEN OF UATA POINiTS
C =()..,N INPL7 DiATA
L P#'AX Z 1AXIMUP ORDER OF FILTER
LPdLT =BEST OkLER OF FILTLR

C A(I)r@..A(PbEsT) PkLuICTIVE FILTER COEFFICIENTS
C PHOL Z PWJUUL0 l-AcP)e.Z) FOR Pzi TO POEST
t, NHwI1),*v.,hPMAX) Z 1ORMALIZED CORRELATION COEFFICIENT$

L bIZL OF FFT (MUST UE A POER OF 2)
(. AX1e.,=(J~ FRACTIONAL POWEKS, FROPM DC TO NYQUIST Fk(EQUENCY
C CC )..,.(.i"1 UAkTER COSINE TABLE
C Y Aii4j YY ARL I4LQWIREU AUAiLIARY AkRAYS

liIidGEN PbEST
C1P.ELN$Si,~ X(14j.YCN) .A(PMAX).RHO(PMAX) .KX(.J) ,YYG~j) CO(..4x)

LINPsT LATA IN X(13e...eE(N)

Lc.FiIIE IRAIIS=150*154((1SIGN(IIo*5*15) )/2)*3'4359738367
LLJ1I"E RA.ND=FLQA7 1) /34359738367*
IZ5261
ISTAHI=N,4CO 6 ILL DISCARD INITIAL 400 POINTS
XA tII :0,
AA(23=O.

AA * 3-0,
L6~ 11 L:z.t.STAkT
I=IRANu
AAt)i.7OXA(L-I)-3.16XX(L2,2.S53.XA(L-3)-

12 A(I)AA(I+N'START-N)
PHI!.! 1.

I Pom'wATt/f INPIUT AA:I)

6 EVALJATE PKLwICTIVdE F4LTEm CUEFFICIENTS
CALL dUk,.tN.PMAXAeYePbEST .APROOPk1401
f"LIT lot XCN)

4P FP.JAT(/$ MEAN zOeLI4.64
Pi~NNT IC. Y0.h)

40 FiJ.kAT(I STAt4DARL LEVIATION 'E56
frmINI 2, PuEST

Pe.INT Js
- Fl.ThA~/# 1-HE61CTvE FILYLP C0E.PFICIENTt):')

F4~ jn-wATC5L20.b)
FMINT zo pkCC

PR(INT u.

c wftoAT/v I.0Np'4ALIdLL Cv~RKLATION COEFFICIENTS:')
FxINT '4. (koq0(1)PI:1.PMAX)
CALL QTk ~.US(C0..I1

L. LVA6WATE FRACIiOt'.L PQWLkS
CALL PCLS(e'bLSTeAPkOUC..,eXXYYeCC)
P.K,.T 7.
FOhMATC/' F-RACTIONAL PC..LMS:')
L:.j/g I

e mN D.n.TCA1- i5G

1-,om4T (ZP IrJ-..6
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SUbROUTINE, bURG(N.PPqAX.AYopBEST.A.PROQ.Rhqo) 2 2 FEb 197b

C TIS SUBROOTZNE COMPUTES THE PREDICTIVE FILTER COEFFICIENTS
C N z NUMBER OF DATA POINTS. INTEGER INPUT
C PMAX Z MAXIMUM ORDER OF FILTERj INTEGER !NPUT
C X(l)pXC2J#..XCNJ Z Q.ATA ARRAY ON INPUTf ALTEREL ON OUTPUT
C ON OUTPUT# X(1)vX(2)p*...A(PMAX) = A(LIPMAX).A(2;PMAX).....APVAX.pmAx)
C Y~1),'V(2)..,#y(N) 2 AUXILIARY ARRAY$ SCRATCH INPUT
(. ON OUTPQTo 1(1)eY(2)t..#Y(PMAX) zACI1).A(212Jv,..A(PMAXlPMAX)
C ON OUTPUT. X(N) = MEAN, ANO Y(N) Z STANDARD LEVIATION OF INPUT DATA
C POES7 z BEST ORDER OF FILTER$ INTEGER OUTPUT
( A(1)rA(2)#..vA(PdEST) = PREDICTIVE FILTER COEFFICIENT ARRAY
C A(liPcEST) ,AC2.PbEST) e..oA(PBESTIPUEST)I OUTPUT
C PA~OG Z PRO0UCT(1-A(PfP6EST)*.2) FOR Pi;i To PbESTI OUTPUT
L iROCJ~h....RHO(PMAX) z NOR~MALIZED CORHELATION COEFFICIENTSi cuTPuT
C DIMENSION X(N)pyCN)#A(PmAX)pRHO(PMAX) IS REQUIREO IN MAIN PROGRAM

INTEGER PMAX#PdESTeP
C06BuLE PRECISION SA#SB
LIOENSICN X(i) .Y(2J A(I) IRHO(I)
lE(PXAXoGTo.*SGRT(N)) PRINT 29 PmAXoN

a FIJRRAT(/# PMAX :=,Id..* 1S TOO LARGE FOR~ NUm8E^' OF CATA POINTS -4

C COMPuoTE MEAN
51:0.
UO I Izisa.

SI:51/N
C SUOIRACT MEAN@ ANL SCALE T(Q UNIT VARIANCE

Sd':0.

SZ:SGRTC52/cN-L,))
T=I./S2
(;0 5 IZI.N
A CI)=X(CI)*

b 15:)X(lI
c d~i. REC6RSiON

Pmt.uC:I,

.bLST=O

L. CAIuCvI.ATE C.4OSS-GAIN, EQ. 155
SAGO.CO
So=O.LQ

CLd 7 1ZL.N
SA:SA.A (I~ ST(I-1)

.7 $dZS3A(I3SS2+y(I-I)s*2
bz..~ abA/5b
P"CPAiOOLCo.-4

%, CALCwLATE FILThY COEFPICILNTSi EQ%.L1.. STCRc4 IN X(1s#..#X 1 PS

~E(..1) G TO b

Lv Ij 1=10L

TA 1PI):zckp-36.) k

~.C^L&CV6ATE NORO.AL14E.C COR~RELATION. COEFFICIENTI EQ. 14.9
* TZt.(P)

A0tI.L.l) GO TO 14
Lz-

7zT:T.AI,.Rhocp-U)

J-4
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L CA6LCATE 4.KAIsKE.S INFORMATION CRITERION1 EQS. 166204

ALC:=LOG(RELEI'R)*2.*FLCATCI)/(NP)
lr-tA!C.Gc .AIC)AN) 60 TO 10
ALCMINZAIC
ra.S T:P

'-'. 11 1:10P
AI i)=X(Ij

10 IF(P.Ei,,.AX) 40O TW~ 16
C uPDATL FORAuARi AND BACKWAkw SEQUENCES1 EQ. 1b53

60Q 12 I=iiL,1

12 X(I):T
Y(P)MG
69 TO 6

16 Y(PMAX)=G
IF(PBESTLQPMAX) 6O TO 4

C CQmPw~TE EXTRAPOLATED NORMALIZED CORRELAtON
C COEFFICIENTS FROM P8EST,1 TO PRAXI EQ. 165

L=PBESTI
Do 17 P:LePMAX
A(P)=O.

(JO l8 I:LeP9EST
lb TzlA(I)*BhOCP-1)
17 SQ1QCPJ:T

Y(N)j:S2
RLTUkh
END

SudR~uTIt*k POwERS(PBES1.A#PROOJvXXtYtCO)
C THIS SUBROUTINE COMPUTES TSIE FRACTIONAL POWERS IN BANDS 1/iJ*GELTA)I EQ. J-4
C PSEST aBEST ORDER OF FILTER$ INTEGER INPUT
C A(L)v ... #A(PBEST) a FILTER COEFFICIENT ARRAYS INPUT
C PRO4I1  PRODUCT(I-ACP)**2) FOR P1l TO PIESTS INPUT
C 4 SIZE OF FFT CqJ/2*IzNum8ER OF FREQUENCY POINTS)$ INTEGER INPUT
C XX AUXILIARY ARRAY ON INPUT
C XX(1)v...#XXJ/2*I) 2 FRACTIONAL POWERS ON OUTPUT
C YY =AUXILIARY ARRAY$ SCRATCH INPUT
C C=I..,O.J~l QUARTER COSINE TABLE FOR FFTo INPUT
C DIMENSION XX(43.YYtja).CO(.J/4*j) IS REQUIRED IN MAIN PROGRAM
C DIMENSION AIPMAX) IS REQUIkED IN MAIN PROGRAM, hHERE PWAX.GE.PBEST

INTEGER POEST
DIMENSION AcIL eXXCI) ,YY(I) eCOCI)

YY(I)20.
(JO I ImI.PbEST
XX C1+1) :wA( I)

I YYI.I)20.
L2PDEST*2
Go 2 Iz...I
XACI):0*

i: YTCI):0*
L.4 1 27.LQG(.J),.5 Q LOGZIJ)

CALL MKLFFT(XXPYYPCO#Lt-I)

60O 3 IzIL.~
3 XA(II2F/CXX(I)..2,YYCI)*.2)

kETUMN
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jlW~j1 1 ATA;
-b2957096+01 .11340011+0,2 .15902'4L5+02 .4268cl -.227271'iJ.QI

.o71lg0 7*06b+0O1 .20620527+02 .495~5656OZ 1E3'4
-. 16d+i -..jO993711+12 j916 G .38769337#02
juQ744Jj+C2 -. 725La2098,t .%38690 -6*3453

*.9"66+g7a6816,77+01 .4687120'4+C2 .60200199+02 .911 0
-.. 3Co7Q -. 991l+2 -. bf5 MS128+0 -. 37%373fl1,3 2  -. 58956464+01

.2551691 4..65448G2.*103l*02.27,48z0J.C2 -.36984i612#01

.*d0jl+g.7431+2.378'4645+02 .4993+i -. 36173+,.2
- - oOa7300+02 -. 1~8068573+92 .93&..Q..+C2 .4a6787n'..02

-. 19sw~ace. 17""%0+0~2 e662O957202.938d 2
.4e ~ .Gu10 7

8 5
o.77+0O1 -. 14015275+02 -..s243b875+uj .?l~5j

j,435C0034+04 Lj89945iC7+CZ ..S14,.26+2.32eb0
-. 1a~z9az2. -.3507e2.j8*c: -. 802-+i .16q91

-.1302,50+,2 ~ Q4112Fll312.2 .. 477~302 - L17-'.3+

*O17, .7bOL693.U'C .!?4 9J

-LkN : NU8ER F DTA PIN0
C X(1)...DXCJ506NPt,00ATA

C A(IL. ..mAfET s PRFCE~i)ITVFLTRCOFICET

C PODR ESRUTMAION. FORBD AT PONTO USE;ESTNG
C LHIE 17 ANDREOPLACE LNORMALIZE AD 4&-EAI46 CEFIIET
C N z NUMZER OF DTA PMUSTS ~E F~
C XALI)o,...,X(N =INPUT D FATOA OES RMD T US RQEC
C COA Z MAXIMUM NUMBE OF QUATE COSINTSL
C 8 = ATUA AN ME OF AR BAUD DAAXILIARY (MSTHAE .LY5

C PAZMAXITUM ORCE OF0 FILT2ERMX1. :o4,~~/,

C IPTEGE ROWTIAP*2 FORPPLTO STS

C INPUSIZ DAT FT X(MUSTBE POER F 2

C DCINE.*C(/41 QAUDRFLEA COSIN /3ABLE67

C o TvATN O0 AR RGILLDIAD INTLIAYAL 40 PINT

PAAEEJz10p-MX 5 PA=0 =040jl./+
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xx (1) =0,
X(2)=0

XX (43 0.
LU 11 L:5.NsTAKT
IzLRAND
XX(L)2. 7bO7*XA(L-I)-3.8106*XX(L-21.2,653b*XX(L-3)-

SO.'i238*XA(L-'4) *TINORM(NANJSII)
ii1 CONTINUE

co 12 I=1,N
12 xi)XxL14.NsTART-N)

FRINT lo
FOKMAT(/' INPUT UATA'9)

L E-vTEtK Bt AND ENTER BAD DATA LOCATIONS IN M(Il2,... #M(B)

fr 2 ) =71

C EVALUATE PREbcITvE FILTER COEFFICIENTS
CALL BuRGBJ(NoPMAXDXbeMe IPYPBEST.A.PRODRHO)

9 FOKMAT(/! kLAN :',E1'4ob)
PRI1NT lo, Y(tJ)

.L FQkm.AT(' STANDARD UEVIATION =IPE13%81

PR~INT at PBEST
4 FOKMAT(It P8EST ',#Ii)

PRINT 3o
.5 tUQMAT(/# PREOiCTIVE FILTER cotFF~cZENTS:')

4 F nKMAT(5E20.8)
r "NrT 5, PkOw
FwvNMATC/I PRODtjCT(l-A(P)$*2) ='#E15.S)
PRIlNT bo

b Fot~,.ATC/v NORMALI4LD CORREL.ATION COEFFICIENTS:')
PmINT '4p (kHOCI)vI=1,PMAX)
CALL GTRCUS(CO.fl

C EVALUATE FkACTIONuL POWERS
CALL POhERS(PBESTvAtPRODp.JvXXpYYvCO)
PmIrT 7#

7 FOAMAT(/f FRACTIO14AL PoviRS:')

0 FQJKMAT(zAvioEi3.b)

S~bROUTINE BURGBD(INPMAX.XBpMePPYPBESTPAPRORiHO) 6 2 FEB 1976
C THIS SUBROUTINE COMPUTES THE PREDICTIVE PILTER COEFFICIENTS FOR B BAD POINTS
C N z NUMBER OF DATA POINTS. INTEGER INPUT
C PMAX ZMAXIMUM ORDES OF FILTER U INTEGER ZNPUT
C X(I1hXiZ)v*#.,X(N) =DATA ARRAY ON INPUT4 ALTERED ON OUTPUT
C ON Ov.TPUT, ACI)fX(2),*.#X(PMAX) ZA(1;PMAX),A(25PMAXJ,...,A(PMAXIPMAX)
C 8B NUMBER OF BAD DATA POINTSi INTEGER INPUT
C M(I~pMc2).,*#M(B) = LOCATIONS OF BAD DAYA POINTS1 INTEGER INPUTS
C THESE LOCATIONS MUST OE DISTINCT AND LIE IN THE RANGE E1.Nj

L P(1hIP(2)m...FIP(NI = AUXILIARY ARRAY1 SCRATCH INPUT
C 'V(1JYc2)#..#Y(N) = AUXILIARY ARRAY! SCRATCH INPUT
*ON GuTPUT, Y(I)fY(2)vs.,,YCPMAX) = Alil1)PA(212ht... pAPAXIPMAXi

ON OUTPUT, :(N) =MEAN, AND0 Y(N) =STANDARD DEVIATION OF INPUT DATA
*PbEST =BEST ORDER OF FILTER$ INTEGER OUTPUT
fkt1),A(2Zh..A(PdEST) z PREDICTIVE FILTER COEFFICIENT ARRAY
a. 4'.LST,,A(2PBEST)..,A(PESTIPBEST), OUTPUT
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C PttOO PROOuCT(l-A(PlPBEST)o*2) FOR P;2. TO PBESTI OUTPUT
C ItO(L),...,RHO(PMAX) = NORMALIZED CORRELATION COEFFICIENTSs OUTPUT
C DIMENSION X(NJvY(ft)#A(PMAXJvRHO(PMAX) IS REQUIRED IN MAIN PROGRAM'
C DIMENSION M~bMAXhIlP(N) IS REQUIRED IN MAIN PROGRAM

INTEGER PMAXpBpP6ESTvPvBP
DOUBLE PRECISION SAoS8
DIMENSION X(1),M(1).IP(1)Y1)A(11.,RO(1)
IF(S*GT.o) GO To 21.
CALL BURG(NPMAXXeY*PbESTAPRODeRHOI
RLTURN

21 L=N-8
IFCPMAX.GT%3**SQRT(L)) PRINT 2p PMAXtL

itFORMATC/l PMAX ='I14#0 IS TOO LARGE FOR NUMBER~ OF GOOD DATA POINTS
S N-B =0,151

C SET UP IP ARRAY FOR P=01 EQo 173
0O 22 I=1,N

22 IP(I)=1
QO 23 L=L,&
I=M(~L)

2. IP(I)=O
C COMPUTE MEAN OF GOOD uATA POINTS

Sio
U.O L 1=10N
IF(IP(I).EQ.O) 6D TO I

ICON'TINU.E
SISl/ CNu8

C SUBTRACT MEAN# AND SCALE To UNIT VARIANCE, Fog 6000 DATA POINTS
Sk=04
0O 3 1=18N
IF(IP(I),EQ.O) GO TO 3
X(1,=X(I1-SL
S2=S2+X(1)0*2

3 CUtITINUE

T:1./S2
CQ 5 I=1,N
IF(IP(I1,EQ*OJ GO To 5
X(I)=XCI)*T
YV(I)-XCIj
CONTINUE

C BEGIN RECURSION
P=O
PRODUC=1j
AICMIN=C,
PcsEST=O
FRCuj:.

C WPW'it. IP AKRATI EQi. 173

LU 2'4 L=1,d

IF(I.GT.N) GO To 24

f.4 COeiTINvE

L=P+1
CO 25 1:LPN

IFtK(.LT.abJ PNINT 26p K..P
t.6 FuHmAT(/$ NU~bER OF VALID ERROR POINTt IS ONLYIP13o' FOR PZ'e13)
C CALCIA.ATE CROSS-GAINS EQ. 193

SA=060O

J -8
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SB:O .00

D.O 7 I=L@N
IF(IP.CZ),EG.0) GO TO 7
SA=SA*XCL)*Y(I-1)
So=Sa+XCZ)**2+Y (1-1issa

7 CONTINUE
6=2.*SA/SB
PRODU.C=PHODUC. (1 *-G*G)

C CALCULATE FILTER COEFFICIENTS1 EQS. 1958196. STORE IN X(1)t.*o.XcP)

IF(P.E(i.1) 60 To 8

i9 I=1,L

C CALCULATE NORMALIZED CORRELATION coEFFICTENTj EQ. 149
6 IZA(P)

IF(P.Ew.1) 60 TO 1'4
L=P-1
0O 15 I=1,L

15 1:T4Acl).RIIo(P-1)
1'4 RHOCP)=T
C CALCULATE AKAIKEfS INFORMATION CRITERION EQS. 1948202

NLLERR=C1.-G*G)*SNGL(SB)/ C2.*K)
AiCzLOGctELERR) ,2.*FLOAT(P)/K
IF(AIC9GEoAICMIN) 60 TO 10
AICMIN=AIC
PdEST=P
PkOD=PHO0UC
Do 11 I=j.P

11 A(l)=X(I)
10 IF(P.EGoPMAX) GO TO 16
C UPDATE FORWARD, AND BACKWARD SEQUENCESt EQ.191

L=P.1
U0 12 I:NeLt,1
IF(IP(I).EQd.O) 6o To 12
TzACI)-G.YCI-1)

Xt)TYIlmGX

12 CONTINU~E

GO TO 6
16 T(1MAX)ZG

IFCPoEST.Lw.PMAX) 6O TO 4
~,COM4FUTE EXTRAPOLATED NORMALIZED CORREI.ATION

c. COEFFICIENTS FROM PBEST+1 TO PMAXI EQ. 165
L=PBEST+1
LUo 17 P=LPPMAX
AjP)zO.

fwo 18 I:1,PBEST

07 RIIu(P)=T
4 AtN)ZS1

Y(NJZ)S2

Rt.TURh
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SUBROUTINE POWERS(PBEST*AtPROD.J#XX#YYPCO)
C THIS SUBROUTINE COMAFU THE FRACTIONAL POWERS IN BANDS I/(j*OELTA)I EQ. J-4
C POEST = BEST ORDER OF FILTER) INTEGER INPUT
C A(I)&.,.IA(PBEST) = FILTER COEFFICIENT ARRAYS INPUT
C PROD = PRODUCTCI-A(P)**Z) FOR P=1 TO POESTI INPUT
C dj SIZE OF FFT (J/2+I=NUMBER OF FREQUENCY POINTS)J INTEGER INPUT
C XX AUXILIARY ARRAY ON INPUT
C XX(l),t#,#XX(J/2 1) = FRACTIONAL POWERS ON OUTPUT
C YY 2 AUXILIARY ARRAYS SCRATCH INPUT
C CO(l)og,,CO(U/4+I) = QUARTER COSINE TABLE FOR FFTJ INPUT
C DIMENSION XX(J)YY(J)PCO(J/4++) IS REQUIRED IN MAIN PROGRAM
C DIMENSION A(PmAX) IS REQUIRED IN MAIN PROGRAM# WHERE PMAXGEPBEST

INTEGER P8EST
DIMENSION AUl)pXX(I),YY(I)tCO(1)
F=PROD*2o/
XX(LI:L,
YY(1)2O,
O0 1 I=IPBEST
XX(1+ 1=-A(I)

I YY(I+I)=O.
L=PBEST+2
DO 2 I:LpJ
XX(I)zO,

2 YY(I):O,
L:I,4427*LOG(J)+,5 LOG2(J)
CALL MKLFFT(XX#YYPCOPLP-I)

DO 3 I:I.L
3 XX(I):F/(XX(I)**2 YY(I)**2)

RETURN
ENO

J-1O
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ABSTRACT

A FORTRAN program for multivariate linear predictive
spectral analysis, employing forward and backward
averaging, is presented. The program is written for
general M, where M is the number of processes, with
the exception of an internal function and three in-
ternal subroutines which are written for M = 2 in
this version of the program, but can easily be
generalized to general M. This program generalizes
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FORTRAN PROGRAM FOR MULTIVARIATE LINEAR
PREDICTIVE SPECTRAL ANALYSIS, EMPLOYING

FORWARD AND BACKWARD AVERAGING

INTRODUCTION

The Burg algorithm for spectral analysis has proven to be a very attractive
method for a univariate process. * Extension to a multivariate process has been
desired for some time and has now been accomplished, and is documented here
in the form of a FORTRAN program. Publication of this program will make
immediately available to those interested users a powerful method of spectral
analysis; the theory behind this program will be published soon in a NUSC
Technical Report. The basic analytical problem was to minimize the sum of
the traces of the forward and backward error matrices by choice of the partial
correlation coefficients, subject to a linear matrix constraint which guaranteed
that the forward-extrapolated and backward-extrapolated correlation estimates
were Hermitians of each other. Solution of a bilinear matrix equation is required
in the process.

It has just come to the.author's attention that a similar procedure has been
presented by R. H. Jones-t Comparison of the details of the two procedures
and programs has not been undertaken yet.

*A. H. Nuttall, "Spectral Analysis of a Univariate Process with Bad Data

Points, via Maximum Entropy and Linear Predictive Techniques," NUSC
Technical Report 5303, 26 March 1976.

tR. H. Jones, "Multivariate Maximum Entropy Spectral Analysis, " Applied
Time Series Analysis Symposium, Tulsa, Oklahoma, 14-15 May 1976.

1/2
REVERSE BLANK
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Multivariate Linear
Predictive Spectral

Analysis Employing
Weighted Forward and

Backward Averaging:
A Generalization of

Burg's Algorithm

Albert H. Nuttall

ABSTRACT

A method for multivariate linear predictive spectral
analysis, employing weighted forward and backward
averaging, is presented and programmed in FORTRAN.
The method constitutes a generalization of Burg's
univariate algorithm to the multivariate case. The
essential analytical procedure is to minimize the
trace of the sum of the weighted forward and back-
ward error matrices by choice of the partial corre-
lation coefficients, subject to a linear matrix
constraint which guarantees that the forward-extra-
polated and backward-extrapolated correlation matrix
estimates are Hermitians of each other. The choice
of error weighting is important and is discussed.
Solution of a bilinear matrix equation is required
in the algorithm.

Approved for puMic relem; distributIon unlimited.
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INTRODrCTION

Spectral analysis of stationary random processes via linear predictive,

maximum entropy, and autoregressive techniques has attracted much attention

lately, especially for short data segments; see, for example, the biblio-

graphies listed in referencesl, 2, and 3. For a univariate process, it

appears that the Burg algorithm (Ref. 4), which guarantees a stable correla-

tion recursion, is as good as any of the currently available techniques of

similar nature that employ an all-pole model of the available process (Ref. 3).

Accordingly, it is desirable to develop a spectral analysis technique

for the multivariate case in such a way that: we employ a physically mean-

ingful error minimization for the determination of the filter coefficients;

the technique yields a stable correlation recursion; and it reduces to Burg's

algorithm for the univariate case. It will be shown in the following that

we have accomplished these goals, with the exception that we have not proved

(or disproved) the stability requirement. A FORTRAN program for this spectral

analysis technique was published in Ref. 5, along with an example of its

application. Virtually simultaneously, the same technique was investigated

independently and published in Ref. 6. In this report, we will document the

derivations and equations that lead to the program presented in Ref. 5, and

indicate an extension of that result.

Our approach in this report will be to investigate, in some detail, first

the case where the correlation of the multivariate process under consideration

is known for a limited range of argument values, and to extract all the

relevant important properties of the solution so that they may be forced to

be satisfied later when we treat the unknown correlation case. This property-

I
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extraction procedure will be found to: furnish guides to the analysis of

the unknown correlation case; allow us to cut down on computer execution

time and storage by employing the properties; and make us aware of some of

the shortcomings of the unknown (versus known) correlation cases. This

procedure should also be helpful to those who are not thoroughly familiar

with spectral analysis of multivariate processes and their properties.

Throughout this report, we assume we are dealing with equispaced

samples of a stationary zero-mean complex random process X(t) of dimension-

ality M; that is, sample
X(, T ()

is an M x I column matrix, where A is the common sampling interval for all

the component processes of X(t). It is not assumed that X(t) is Gaussian.

In section 2, we will assume that the correlation matrix of process

{Xn}, namely the M x M matrix*

R," .X " (2)
& itX. . -N_

is known exactly for a limited range of values of k, and will show how

an approximation for the spectrum of process {Xn) can be obtained. In

section 3, the input correlation matrix Rk will be unknown, and all that

is available is a finite set of N data samples, X,, X2, ... , XN, from

which an estimate of the spectrum of process {Xn} is desired. The end

result will be a FORTRAN program for multivariate spectral analysis.

*The case of complex samples is treated so that we can handle complex
envelope or complex demodulated processes. Specialization to real processes
is immediate, and (2) becomes R An overbar indicates an ensemble
average, superscript T denotes a transpose, and superscript H denotes a
conjugate transpose. Matrices are indicated by capital letters.

2
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2. KNOWN CORRELATION

If the correlation in (2) is known for all k, the standard (double-

sided) definition of the spectrum of process {Xn} is

The complex M x M matrix G(f) is Hermitian and non-negative definite for

any value of frequency f (see appendix A), but need not be even in frequency

f. When Rk is not known for all k, but only for a range IWIsp, an approxi-

mation to (3) must be accepted; this problem will be pursued below.

2.1 DERIVATION OF EQUATIONS

Suppose M-dimensional samples Xk-p, ..., Xk-l are available, and we

attempt a one-step linear prediction of Xk according to the p-th order

operation

A. Y.(4)

where complex coefficient matrix An is M x M, n = 1, 2, @.., p. The

instantaneous error at time kA is defined-as
A, I A ., -x .. A . (5)

The linear operators in (4) and (5) constitute stable linear filters regard-

less of the choice of coefficients; the filter of (4) is called the predictive

filter, that of (5) is called the predictive error filter. Notice that we are

not assuming that process {X n} actually satisfies an autoregressive relation;.

rather we are simply attempting to linearly predict {Xn } on the basis of the

most recent p past values.

3
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The minimum value of the scalar error

Y n (6)

by choice of coefficients {An 1  is given (in appendix B) by the solution

of the linear matrix equations

(7)

where the explicit dependence on the order p is indicated. Knowledge of

Rk for W-sp is required in (7).

Before we discuss the solution of (7) for (AI*: , we consider one-step

linear "backward prediction" of process {Xn}. Suppose samples Xk, Xk..l,

Xk.p+l are available, and we attempt a one-step linear prediction of Xk.p

according to
,,_ ,, ,.(8)

The instantaneous error is defined as

- - (9)
Zi'X)N- X, ~3XIB . .~ 9

The minimum value of the scalar error

14 (10)

by choice of coefficients {Bnl?, may be shown (in a manner similar to that

of appendix B) to be given by the solution of the linear matrix equations

Br, - R , (11)

For the optimum coefficients in (7) and (11), we find (see appendix B)

that the optimum error matrices take the form

4
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Opt VZ= . r~1  , (12)

In general, these two matrices, their diagonal elements, and their traces are

unequal (as the simple example of p=l will show). However, their determinants

are equal, as will be shown in subsection 2.2.

The solutions of (7) and (11) can be accomplished simultaneously in a

recursive fashion (Ref. 7). Define
,

(13)

ThenA'zC I'-
?' ? (14)

and

At'2 p -A'B. -,-, () (15)

These relations will be simplified somewhat in subsection 2.2. For M=l,

a univariate process, (7) and (11) immediately yield

A! BZ." M-, (16)

where we have used (2) in the form R = R for a univariate process. No
k _-k

such simple relation as (16) holds for M > 2.

We will now derive a chain interpretation of the above results that will

prove very useful later when we have to deal with the unknown correlation case.

For the optimum filter coefficients f( P  and (F)3 P , define the p-th

order forward and backward residuals (see (5) and (9)) as the outputs of the

forward and backward predictive error filters:

5
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OZO (17)

Then using (15), we can express

Y r)

, - C

" - •4- A" (L
"I t) -y

- 'Y~ A' IBAY? (18)

And similarly

H+ (19)

Thus p-th order residualsYK~ and Z(P are related to the(p-l)th order residualsK (P
simply through the coefficients AY) and 6' A block diagram of the relation-

ships in (18) and (19) is given in figure 1, where I denotes an M x M matrix

filter of unit delay.

6
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y(P-1) (P-1)
k Z k

l (o) Z(o)

k k k

Bp p

Y(p) ZP
k k

Figure 1. Chain Representation of Residuals

Thus matrix operators " and -9can be interpreted as those coefficients

which minimize

~Y~J 2~(20)

respectively, at the output of the p-th stage in figure 1, wheref~lf and

tun are determined by minimizations at lower order stages. and P
Pp

are called the partial correlation coefficients. Stated alternatively, stage

by stage minimizations of (20), via choices of partial correlation coefficients

Aand; respectively, results in the same overall filter as if the powers

in

were minimized by the choices of {An} p and {Bn}P, respectively, each in one

simultaneous optimization. This will furnish an important reference point

7
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for the unknown correlation case in section 3.

If we let the transfer functions (z-transforms) to the outputs of the

p-th stage in figure 1 be denoted by %"(z) and (z), it immediately
A

follows, from figure 1 or equations (18) and (19), that

-1 01(. (22)

In closed form, these predictive error filter transfer functions are express-

ible as (see (17)) P = (P .2 - "A

-

1 c)- iP (23)i

2.2 PROPERTIES AND INTERPRETATIONS

Suppose that process {Xn} were scaled according to

<" 
(24)

where M x M matrix D is arbitrary, but invertible. Then the correlation of

the scaled process is

Now from (7), since the solutions {TA7 and{'P ] must satisfy

(26)
b I

8
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I(27)

respectively, the solutions are related by a similarity transformation:

T.) A!, (28)

This is called the scaling property. A similar property holds for the back-

ward coefficients fB}.

An immediate by-product of the scaling property is that Ar and An) havenAn

the same eigenvalues:

4 et(A!)- \I) = &f (tA!T'- \I) dej(r\) (29)

Similarly, B? and " have the same eigenvalues, regardless of scaling matrixn n

D.

The remainder of this subsection will deal with the quantities Up and

Vp defined in (12), and Cp and Dp defined in (13). The quantity Up can be

interpreted physically as the correlation matrix of the p-th order forward

residual; see (12), (5), and (17). Similarly, Vp is the correlation matrix

of the p-th order backward residual; see (12), (9), and (17). That is,

Hr'T Y (30)

Thus U and V are Hermitian:

V~=V *(31)

P P?

and Up and Vp are non-negative definite:

I/HUT Y.V,, VN (32)

for any M x 1 matrix '. In appendix C, it is shown that simple recur-

sions hold for Up and Vp

9
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F r (33)

It immediately follows from (33) that (see appendix C)

44 4 = et r o 0(34)

This property was proved in Ref. 8, page 240.

The quantity Cp defined in (13) can oe interpreted as the :r-or-e-

lation matrix between the p-th order forward and backward residuals at onp

unit of delay: ~ ~ ~ ~ ',4
S ao 100 (35)

B! 'A a -fl.,

where we have used (17), (2), (7), and (13), Similarly

logo, , r M h- --1 ,

where we have used (17), (2), (11), and (13). It immediately follows frr

(35) and (36) that

Dr: c (37)

Thus it is not necessary to do the additional calculation of Dp in the

solution given in (13).

Another interpretation of Cp is available as follows:
p0

FT Y v X- (- (38)

where we have employed (17), (2), (12), (7), and (13) in order. Thus the

p-th order forward residual is uncorrelated with the p most recent past

10
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values of the input, and the crosscorrelation at p + 1 units of delay is

just C Similarly, the backward residual satisfies

'Wi m 0:= p .

Yet another interpretation of Cp and Dp will be given in subsection 2.3.

As the order p in the linear prediction (4) increases, (38) yields

J--V C Uas i_ .(40)

Therefore the autocorrelation matrix of the forward residual becomes

X A. 0 P (41)

That is, p-th order residual Yktends to white noise with a correlation

matrix at zero time delay of value U., which is not necessarily diagonal.

The Hermitian property in (37) allows us to combine (14) into the

equation

(42)
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where we utilized (31). This constraint on the partial correlation coeffi-

cients will be of paramount importance in the unknown correlation case. It

immediately follows from (42) and (34) that

Nosuch simple relation holds between det A;and det S(P for n-, exce;t

for M - I. a univariate process.

2.3 EXTRAPOLATION OF CORRELATION VALUES

In subsection 2.1, we minimized the er-or in prediction 14 ano '),nc

that for a p-th order prediction, knowledge of Rk for jKiap was re'''ec

see 7,. Now suppose that this is all the knowledge avai'at'e

that is, suppose Rk is unknown for k "o. What can Oe Jone a:: -.-. "

these unknown values?

One approach is as follows: we assume that the p-th order res5c'a"

process i n 17) is white (i.e., uncorrelated for a, ncr-:er- e'3,s J

that (ibO.otnerwise we ould reduce the valie of p That 's, ve 3 e .e

cdn do nothing more in prediction by choosing more terns ir the s *

which is tantamount to assuming maximum uncertainty lentropyl aboit tne

residual process ~Y.' This is a very extensive assumption, we no% "-es5'-

Qate its ramifications.

We know from '38, that
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a , , (44)

must satisfy

Additionally, employing (17), the autocorrelation matrix of the p-th order

residual is

Y X MML - ) 40(46)

1 zI a- k %J-0Itjiff
Now for j * 1, the white noise assumption on process J'ym}yields. via (46)

and (45). 0 - -FO A, i.e F", 0. (47)

via* *1 0 ?+1 P

And for j z 2, the white assumption (in conjunction with (47)) yields

-e .
(48)

Continuing in this way, the white assumption is tantamount to assuming that

F"~ 0~ +45  (49)

Returning to expression (44), this means that we are assuming that

I o (50)
" so

that is,

Using more explicit notation, and denoting these assumed values of correlation

as forward extrapolations ,, we have

13
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lo t (52;

where "starting values" .0

Equation ,Z is ca',ed the :orre~ation recursion equation. :t is interes'ing

to note that the 4orm. of the correlation recursion '52) is 'dentica, to the

form '4, for the individually predicted waveformn values.

The correlation values in (52) are called the maximum entropy cor-elatton

extrapolations. The recursion is stable if and only if (see ,23 ))

possesses all its zeros within the unit circle in the complex z-plane,

this property wi1 l be treated in subsection 2.4.

A similar procedure for backward correlation extrapolation, assuming

that residual process j 'j is white, yields

where

(56)

14
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Backward recursion (55) is identical in form to the backward prediction (8).

The recursion (55) is stable if and only if (see (23)).

possesses all its zeros within the unit circle.

As a special case of (52) and (53), the one-step forward extrapolated

correlation based on a p-th order prediction is

je A A 0)(58)

But from (13), we now can see that

7 ='R -'k ~(59)C -a pe.-

That is, Cp is the difference between the true correlation value Rp+ 1 and the

one-step forward extrapolated correlation 0 based upon knowledge of {Rk}
p Op.

A similar procedure shows that

R W (60)

That is, Dp is the difference between the true correlation value R-p- l and

the one-step backward extrapolated correlation bk
-p-I based upon knowledge

of (Rk) ?.P

When (59) and (60) are combined with the Hernitian property in (37), we

see that

Ip* t 
(61)

15
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This is a special case of the more general property (demonstrated in appendix

D) that

.4 a- A! I?1 9F (62)

that is, the backward and forward extrapolated correlation matrices are

Hermitians of each other. This is a desirable property of the extrapolations

and is consistent with the same property, (2), which holds for the known

correlation values,

It was noted in (54) and (57) that the zeros of dete"(z) and det"(z-l)

must be within the unit circle in order that recursions (52) and (55), respect-

ively, be stable. It is shown in appendix E that

That we need consider only the zeros of one of these quantities; the location

of these zeros is considered below.

it is also shown in appendix E that

{y A 64)

an

2.4 SPECTRAL APPROXIMATION

Equations (52) and (53) define the forward extrapolated correlations for

all m)O. We extend these to negative m via

0 .(66)

16
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which is consistent with (2). We will now use the Fourier transform of this

infinite sequence, as- in (3), as an approximation to the spectrum of process

{Xn}. In appendix F, it is shown that the approximate spectrum is given by
N

where

14-2. '7) rf AA (68)

is the forward predictive error filter transfer function. Since Up is non-

negative definite by (32), spectral approximation G(P)(f) is nonnegative

definite for any f; it is also obviously Hermitian by (31). Thus the desir-

able properties of appendix A are achieved by approximation (67). In order

to evaluate (67), one M x M matrix inverse (of H"(f)) is needed at each

value of f of interest.

A similar procedure applied to the backward correlation recursion of

(55) and (56) yields the spectral approximation

?u~( )V H "(4< (69)

where - 2 " )

is the backward predictive error filter transfer function. Since the extra-

polated correlations via (52) or (55) are equal, as shown in subsection 2.3,

the same notation, GO'(f), is used for both (67) and (69); however, we have

two different factorizatlons for the unique spectral approximation G(P)(f).

In appendix F, it is also shown that the zeros of det7X(r) (see (22)

and (23)) all lie inside the unit circle in the complex z-plane. Additionally,
the polall lie inside the unit circle, and the zeros of

17
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all lie at z = 0. Thus the recursion (52) is stable. This point is

discussed in Ref. 7, p. 132.

2.5 EXAMPLE

A simple example for M = 2 will be considered. Let the process be

genera ted according to i'p

where

5":. '"I" ', -

and white noise Wk satisfies

Then it may be shown that

with solution 
4-1 + 

I?

It2 2 1. 43 R012 1506 4 (75)

By means of (7) and (11), we find

[L ]5(76
and A, A, ,Amz 0, 2sv-- p . We observe k*1',, .,s,'*'B.,

and Am-, t'. The determinants of (76) are both .955.

Evaluation of (12) gives

U- , 1  34--161 (77)

18
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These matrices and their traces and eigenvalues are unequal, but their

determinants are both 1.

3. UNKNOWN CORRELATION

In this section, the correlation values {Rk} are unknown, and the only

information available about the random process is a finite set of N data

points X1, X2, ... , XN, from which we have removed the sample mean. From

these N data points, we desire an estimate of the spectrum G(f). But we

cannot minimize or utilize any ensemble averages as was done in section 2,

since we have only a finite segment of one member function to work with.

3.1 PHILOSOPHY OF APPROACH

For the known correlation case above, we had the set of normal equations

S I(7)
(78B)

where and were the unknowns. Now in the unknown correlation

case, we make a change by assuming that 40 and are known* (along with

for 19%s p-I, from lower order solutions), and by letting it, andlt. be unknown.

The equations in the unknowns are still linear, and the solution is given by

1 -' V)'~ ~-0f vs,- ? (79A)

(798)

*The manner of specifying; Aand will be considered in subsection 3.4.

19
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~ (80A)

#I~~r(80B)

(It must be noted that1tin this section denotes an estimate of the true

(unknown) correlation value; for notational convenience, no distinguishing

symbol has been added to R, to emphasize this distinction.) However, we

shall insist that the correlation estimates (80) that we obtain at the p-th

stage satisfy =1H

"-r (81)

in keeping with property (2). Since equations (78) and (81) are identical

to those encountered in the known correlation case, the mathematical defini-

tions and interrelationships employed there can be applied here also. How-

ever, some of the properties and physical interpretations may be different,

since we are now dealing with estimates, rather than true values.

To solve (78), we begin by defining

~H (82)

Now consider p=l in (78); we have

,,o (83)

Now if and I are known, we can compute unknowns R, and R.,. But by

constraint (81), A') and must be chosen such that

A ) O 1 6(84)

Thus when we select A, and ,', constraint (84) must be kept in mind; that is,

20
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A, and i cannot be specified independently of each other.

At stage pt2), if AV is known (and I ' are known from earlier

stages with property 1L, ,-sr-I ), we could solve the linear equations

(78A) for pand according to (79A) and (80A), where the lower order

quantities in (79) and (80) are available from earlier stages. Similarly

if is known, we use (79B) and (80B) to solve (78B). However, by (81),

we must constrain the selection of and

To see exactly what constraint (81) implies about the selection of

At and notice that, for pa_2, (and defining 50

= EAS'g R AI R rot

3 ~ ~(85)

where we have employed (80A) and (79A). Now define forward extrcpolated

correlation estimates based on order p-l according to (see (52) and (53))

(P r Mtr;(86)

where

S0 < -(87)

Then, in particular, the one-step forward extrapolated correlation estimate

based on order p-l is
= = /( R .. (88)

Also define (see (12))

21
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" (89)
Rao

This quantity has the physical interpretation as the e of the corre-

lation matrix of the (p-1)th order backward residual at zero time delay

(see (30)); its properties are considered in subsection 3.3. Then by means

of (88) and (89), (85) can be expressed as

~ = ,r, "  (90)

(This equation is similar to a combination of (14) and (59) for the known

correlation case.)

At the same time, by (80B) and (79B) (and defining Ar ")

± X. (91)

Now define backward extrapolated correlation estimates based on order p-I

as (see (55) and (56))

M 2t (92)
mle I

where

. _. _. 0(._ -j.(93)

Then, in particular,

22
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""P I q=.=. "(94)

Also define (see (12))

Y Vr (95)

This quantity is an estimate of the correlation matrix of the (p-l)th order

forward residual at zero time delay (see (30)). Then by means of (94) and

(95), (91) can be expressed as

P (96)

(This equation is similar to a combination of (14) and (60) for the known

correlation case.) But now it can be shown (see appendix G) that the

extrapolated correlation estimates in (88) and (94) satisfy

1 4 ,( 9 7 )

Therefore, if (81) is to be satisfied, (90) and (96) in conjunction

with (97) force

(This reduces to (84) for p=l.) Thus the selection procedure of Ar and

at the p-th stage must be done according to (98), where V,., and Urfare

quantities already available from the (p-l)th stage, according to (89) and

(95). The precise selection procedure will be undertaken in subsection 3.4.
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3.2 COMPARATIVE FEATURES

There are alternative techniques to the estimation of the correlation

matrices and the spectral density matrix that could be considered. For

example, the standard Yule-Walker technique (e.g., Ref 2, page 186) uses

correlation estimates

~R *L jVV N(99)
SN K

where the sum is over all nonzero summands, and then solves recursively for

and via the method in subsection 2.1. This apriori decision

on the form (99) of the correlation estimate gives poorer spectral estimates

for M=l (Refs. 2 and 3), and probably does so for M>l. The estimated

correlation matrix is Hermitian, block Toeplitz, and nonnegative

definite.

where°r, is~IxI. However the stability of the correlation recursion (52)

is unknown to this author. The estimate (99) is unchanged by the addition

of more stages, that is, larger values of p.

24
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Another technique would be to minimize the prediction error

Y. a X, p+ ki J (A. -) (101)

over the available data points directlyby choice of IA,}). We have the

error matrix

K k+ %Is (102)

where

The optimum coefficients for minimum trace of the error matrix, (102), are

solutions of

3 i4 (W~~p(104)

Matrix 15,],p is not block Toeplitz, and a significant computer problem

exists for M>l when it is noted that solution of linear equations (104) must

be done anew for each different value of p. This was a good technique for

spectral estimation when M=l (see Ref. 3); however, computer time was

greater than for the Burg technique. Moreover, stability of the correlation

recursion (52) is unlikely in view of the (occasionally unstable) results

for M=l in Ref. 3.

This technique could be extended to include backward prediction in

addition to (101). However, the lack of the block Toeplltz property and

lack of stability make it a very undesirable technique.
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The technique suggested here (in subsection 3.1) lets the correlation

estimate be yielded according to solution (80), once partial correlation

coefficients and have been specified. And we shall see in subsection

3.4 that these latter quantities are determined according to a physically

meaningful minimization problem. Stability of the correlation recursion

(52) has not been proved; however, numerous examples have all yielded stable

solutions. The estimate (80) is unchanged by the addition of more stages,

that is, larger values of p. And it will be seen that the current technique

reduces to Burg's algorithm (Ref. 4) for M=l. Thus the current tecrriqje

appears to be very attractive among those techniques that employ an all-pcle

representation of the input process.

3.3 PROPERTIES AND INTERPRETATIONS

The quantities 4., and V, were defined in (95) and (89) and were

interpreted as estimates of the correlation matrices of the (p-l)th order

forward and backward residuals, respectively, at zero time delay. It is

shown in appendix H that they satisfy the recurrence relations

N., U.(105)

just as for the known correlation case. It is also shown that

L~wU~ ~(106)

and

~ ~dVT .(107)
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However, we are not able to prove 4 or Y. nonnegative definite without

specifying the method by which K.and Nr are selected; no relations like

(30) and (32) exist here.

By means of (106), the constraint (98) on selection of and takes

the form (see 42))

jq V =U (108)

This will be used in the next subsection.

3.4 EVALUATION OF PARTIAL CORRELATION COEFFICIENTS

We recall from subsection 2.1 that, in the known correlation case, the

partial correlation coefficients A and minimized

+r y)O Qw (109)

respectively, when lower order stages had already been optimized. We extend

this idea to the unknown correlation case as follows: let (as in (18) and

(19))

K (110)

and for l , define errors (residuals)

The block diagram for (Ill) is identical to that in figure 1 on page 7.
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Define for pit, the error (residual) matrix over the available data

points as

N-p Xw~~k(112) I.

this nonnegative definite matrix is an unbiased estimator of YI'

Substitution of (111) in (112) yields

W- -0 )Aj# Aits A (113)

where

-= /-, (114A)

! (1 14C)

Also define for rz , error matrix

= F (115)

Substitution of (111) in (115) yields

F. 5- 3 - ~ - (IB'5+ S:ThP (116)P .' P- P P )

Now error matrices E and F are Hermitian and nonnegative definite.

Therefore matrix .A4E A is Hermitian and nonnegative definite for any

MxM weighting matrix A4:

((117)
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for any Mxl matrix /. Also since

+y.(.Aa EpA : {rG (A." A.OE ) 1 V(w (118)

only the product.Af -. A.matters in so far as the trace of.,44A is concerned;

notice thatA is Hermitian and nonnegative definite. We shall be interested

in minimizing the traces of weighted error matrices A.4E. and r F r";

the exact choice of, and the reason for, weightings A. and P will be under-

taken in the next subsection.

Now if we were to minimize *vIr,E) by choice of A;, we would find

(see appendix B for method) that we must solve

and the choice of.l would be irrelevant. Also, if we were to minimize

4 F3 by choice iB! we would find that we must solve

and the choice of r, would be irrelevant. Furthermore, we would not satisfy
r

constraint (108) generally. But since the behavior of error matrix F, is

just as important as that of E1 , we should take both matrices into account

in any error minimization; in fact, for known correlation, recall that the

determinants of residual matrices Uand were equal.
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We therefore choose to minimize the sum of the traces of the weighted

error matrices

(Art~ E? .(A , +P F;) (121)

where A,., and r., are Hermitian and nonnegative definite,

by choice of A and lsubject to constraint (108). If we let

ArV~,=U ~ -(122)

then we can express

-T,, ; C +: v,, -, (123)
+.

in terms of the single unknown matrix G . Our problem therefore is to

minimize the trace of (123) by choice of the single quantity Gp, subject

to no constraints; we can then solve for the best coefficients according to

(;P PV?, -I9 H -1 (124)
P P UP-I

Also we can compute the correlaticn estiTate from (90) and (22) according

to

-~=~'+Q (125)

:n aopendix 1, it is shown that the minimum of the trace cf ,]2> is

reaI ie, ,enen p is tre solution of toe bilinear '-3tri edtior Pe.
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where

V Sv,2
~ .J.77  ut: -J(127)v ' v/-'~-

Uniqueness of the solution of (126) is considered in subsection 3.6. (It

is interesting to note that the separate minimizations in (119) and (120)

yield

rr (128)

Thus whereas both these quantities had to be equal separately to the zero

matrix, we now require only that they be equal to each other.)

For the special case of M=l (a univariate process), (105) and (108)

yield

Then (126) and (127) can be solved for the scalar

(P.1+ , . U ). (130)
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Now, if and only if

(M (131)

(130) reduces to Burg's algorithm (Ref, 4); in fact, it can be shown that

(131) is the only choice of weights in (130) which guarantees a stable

correlation recursion for M=l. Thus we shall insist that the weights

satisfy (131) when we deal with their selection below.

3.5 WEIGHTING OF ERROR MATRICES

It is necessary to apply weighting to error matrices Ep and Fp in (112)

and (115), prior to minimization of the trace in (121), for several reasons.

First, without weighting, the larger amplitude compor.nts of errors (111)

would receive most of the emphasis in the minimizazion; thus, some weighting

inversely proportional to the component strengths is desired. Second, it

is desired that stable correlation recursions result and that matrices Up

and Vp be nonnegative definite, Without weighting, it has been discovered

(by an example to be presented in subsection 3.9) that both of these require-

ments can be violated. Third, we will insist that the scaling property

introduced in subsection 2.2 hold for the unknown correlation case as well;

that is, if

T)rj(Cl )Q (132)

we shall insist that the coefficients satisfy

D ( ci) (133)Jt
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The matrix equation (126) can be combined with (122) to yield the

simultaneous set of equations

?-1 (134)-UP-
We now consider several possible choices of weightings,.A and r that tend

to simplify the form of (134). The first choice is no weighting:

The problem with this choice is that the weighting is not related to the

error component strengths, and it may be readily verified that the solutions

to (134) and (135) do not satisfy the scaling property (133). Also an unstable

correlation recursion can occur. However, the solutions do reduce to Burg's

algorithm for M=l; see (131).

Our next candidate weighting is

i i-t -I

) h I'' Choice 2 (136)

which are Hermitian and are nonnegative definite if Up_ 1 and Vp- l are

nonnegative definite. This weighting is inversely proportional to the

component strengths, as desired; more will be said on this below. The

equations (134) become 01 L

-I ) (137)

The solutions of (137) satisfy the scaling property (133), and they reduce

to Burg's algorithm for M:l; (129) shows that (131) is satisfied for the

choice (136). Although stability of the correlation recursions (52)
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and (55), and nonnegative definiteness of Up and Vp, have not been proven

for general MW2, no counter examples have been discovered.

We next consider

-t, ., ~., i., p. , C~oce ~ 18U?-1 Co 'Ce(138)

in which case (134) becomes

A " + D P '- ' k ? (139 )

Po.
However, the weighting (138) is not necessarily Hermitian, is not necessarily

nonnegative definite, and is not directly related to the error component

strengths. Also the solutions of (139) do not satisfy the scaling property.

Furthermore, the solutions do not reduce to Burg's algorithm for M=l, and

can yield unstable correlation recursions for M=l.

The last choice is

U, ) (140)

which are Hermitian and nonneqative definite, and for which (134) becomes

A 3 (141)

This choice is a very interesting one in that the solutions of (141) are

immediate and do not require that a bilinear matrix equation be solved. The

weighting (140) is inversely proportional to the error component strengths,

and the solutions of (141) do satisfy the scaling property. In fact, this

choice is very close to Choice 2, since U and Ware both estimates ol

the correlation matrix of process I at zero time delay, and should be
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fairly close to each other, However, the solutions of (141) do not reduce

to Burg's algorithm for M=l, and the correlation recursion (52) can be

unstable, even for M=l. In fact, the solutions to (141) are identical

to those for Choice 3 for M=l.

Therefore, of the four choices considered, only Choice 2 in (136)

yields solutions that satisfy the scaling property (133) and reduces to

Burg's algorithm for M=l. The stability of the correlation recursions has

not been proved or disproved for choice (136) of weighting.

There is another strong reason for choosing weighting (136), which has

to do with a whitening interpretation. We recall that U,-, and V

defined in (95) and (89), are estimates of the correlation matrices of

processes [y")l and I ', respectively, at zero time delay. Now let

(for non-negative definite and Vp- )

V = (142)

where 4I4, and V , are (lower triangular) square root matrices. Then scaled

processes V Z- ; , , , k N, (143)

each have estimated correlation matrices at zero time delay equal to I; that

is, all the components of [JP-(')j (or " ) have unit power and are

uncorrelated with each other at zero time delay.

Now define, for p+i-!sN,

- "-, r -)
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where I (145)

- (145)

Also define the estimated correlation matrix at zero time delay of process

as j q a(1 
6

where we have used (144) and (112). Therefore

+r .~*~ ED If) (147)

where we have'used (1-1) and (142). Thus, minimizing the trace of U,- E

by choice of A ,is equivalent to minimizing the trace of 6', by choice of

(see (144)), where process ly is the error in prediction of (p-l)th

order processes with estimated correlation matrices at zero time delay equal

to I.

In a similar fashion, for F Nos -

z?'~~::~r v; (Z~- ~ r)Z'~-~) j*~(148)
where

4  V, B "' (149)

And

with

(151)
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If we solve (145) and (149) for A and , and then utilize constraint

(108) along with (142), we find that the constraint takes the form

4~Irn, ~(152)

This could be used as the starting point in ain.imization of error matrices

EP and !tp. In fact, if we minimize the unweighted trace of#,+*r , by choice

of we find the optimum choice to be given by

where the notation is an obvious modification of (114). By employing (145),

(143), and (142), we can show that (153) is equivalent to (137), as it must

be. (This alternative approach may be useful for proving the stability of

the correlation recursion.)

3.6 SOLUTION OF BILINEAR MATRIX EQUATION

If we substitute definitions (127) into bilinear matrix equation (126),

and premultiply by jl and postmultiply by rp.1, we obtain the equation

<+ i =/1 + (154)

where

~ (155)

g r r
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Now the Hermitian matrices and are non-negative definite; e.g.,

4VJ 0 4 (156)

for any MXI matrix ', since is non-negative definite. We have employed

the Hermitian property of Vr, and P,, above; see (118) et seq. This means

that the eigenvalues of ' and must be non-negative. Therefore the

solution of (154) exists and is unique (Ref. 10, eq. 3).

Solution of the bilinear matrix equation (126) or (154) has been addressed

by many authors (Refs 9 - 17). In particular, for the equation involving MxM

matrices, X B+ AX = C) (157)

one form for the solution is given by

X== Q -P (158)

where A-

0 (159)

are MxM matrices. The constants 10*1 are given by (Ref. 18, pp. 87-88)

4M = -_ .(A A X-..) I k M (L.I) (160)

and the matrices JAJ are given by

A -AA , + 1 .- k (,4 1 .) (161)

Here, M-2 full matrix multiplications are necessary when we note that AM = 0
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by the Cayley-Hamilton theorem.

For M = 2, (159) takes the form

? C B-(A414)1) C ir 2, (162)

where we have used the Cayley-Hamilton theorem to express

2~w 4r2. (163)

Equations (162) and (158) are the forms used in the FORTRAN program for M = 2.

3.7 SPECTRAL ESTIMATION

Having obtained correlation estimates {R,, by means of (82) and (80A),

we now extrapolate these, as in subsection 2.3 (equations (52) and (66)), to

yield Wa 0.R+

'Ro. (164)

This defines an infinite sequence LI~ which is assumed stable; its Fourier

transform will be taken as the spectral estimate of the process under consid-

eration. In a manner identical to that given in appendix F, it is found that

-". &VV ) Ifp26  (15

where U7  and H,4% are given by (95) and (68), respectively. It follows that

4, - k V .awpk pmoer (to). (166)

Also, as in subsection 2.4, an alternative factorization is available as

Hfo V rKL (167)
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where V7 and HW(f are given in (89) and (70). If U, or V is non-negative

definite, then C(f)(t) is non-negative definite, as desired for a spectral

estimate. Since (165) and (167) are equal, we concentrate henceforth on

form (165).
Since

U_ _ (168)

(165) can be expressed 43

[A [A J H'V (169)

Since 0"9)is Hermitian, matrix (P)(V) need be computed only on and above its

main diagonal, at each frequency of interest. Efficient computation of

HW(f) by means of an FFT is undertaken in appendix J. It is shown that we

need to perform& M -point FFTs of p+l non-zero numbers, in order to evaluate

H; ) at NF frequency cells in the frequency range (- , _AA

Real Multivariate Process

The results above have been derived for a complex multivariate process

JX *. For a real rmultivariate process, 4 is real and 1AO' }' are real. Then

HO)4 )-x for a real process, (170)

and -,

H V)ol (r4 for a real process. 177)
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Thus we need compute matrix &."(f) only for F.b, for a real multivariate

process.

In order to avoid complex matrix multiplication; we develop (169) more

explicitly; let

Ad~ ~)=RA f)+i(4),(172)

where and T are real MxM matrices at each f. Then since Up is real,

Un U , and upon substituting (172) in (169), we find

I~k V - I (173)

where

Mfu 4R f7 (174)

Since M(f) is real, the quantity iM(f)-iM(f) is zero on the main diagonal;

therefore we need not compute the main diagonal of M(f). All the matrix

multiplications in (173) are real.

Real Bivariate Process

We now further specialize to M = 2, a bivariate process. Let the real

and imaginary parts of the filter transfer function Htp be denoted by XX

and YY, respectively (where these symbols are unrelated to X and Y introduced

earlier); that is

X" )( ( 4 YY~ (175)

Then from (172), for 2 X 2 matrices,
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and

Substitution of (176) and (177) in (173) yields spectral estimate

~ veojPlvorilae process; 18
where

The 2X2 matrices involved in (178) are all real, and XXA(f) and YYJ A ar.:'A"

(5') - , - -the adjoints of the real and imaginary parts of A (f) respective. . ie

form (178) is used in the program for the spectral estimate of a real

bivariate process.

3.8 TERMINATION PROCEDURE

For unknown correlation, the correct value of p to use in (79) ar ,80,

is unknown. We adopt the Akaike information criterion (AIC) derive- ir

Ref. 19, page 719:

'N IF ce*V, 2 Wp,

where we have utilized (107); namely, we compute AICp for p = 0, 1).. ,pmax

and we use that value of p, pbest' for which AICp is a minimum. Selection

of p max is discussed below.

For purposes of updating Up and Vp, we can combine (105), (106), an,

(122) to yield
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S(181)

in terms of the solution, Gp, of bilinear matrix equation (126).

At this point, it is worthwhile to review the procedure adopted here.

From the actual data, we could have estimated the input correlation matrix

via (99) (or some scaled version of it). Also we could have used (112) and

(115) as error matrix estimates; in fact, these matrices are guaranteed

Hermitian and non-negative definite. However, since 4et E.# de F we would

have had to settle on some average like

W (182)

for purposes of the information criterion. As for the spectral estimate, we

could have adopted, instead of (165), the quantity &N ) W(E,

or A H for example.

Instead, we have chosen consistently to stick with the results of the

normal equations (78). Thus the estimate of the input correlation matrix is

obtained from (80)(and (82)); the estimates of the correlation matrices of the

residuals are given by (89) and (95) (or more computationally convenient via

(181)); and the spectral estimate is given in terms of or V by (165) or

(167), respectively, for P-Pbest' The major gap in this procedure is that

we have not proved that Up or Vp is non-negative definite for Choice 2 of

weighting in (136); however, no counter examples have been discovered.

Our selection of Pmax is accomplished as follows: in ref. 1, page 575,

Akaike is quoted as suggesting %,z3pfor M a 1, a univariate process. Since

the number of coefficients evaluated is p, and the number of available data
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points is N, this ratio was upper bounded by 3N6. We extend this idea

directly to the multivariate case: the number of scalar coefficients

evaluated is heP , and the number of available scalar data points is MN.

Upper bounding this ratio by 3N Y , we find we should choose the filter

order

MI (183)

in terms of the number of data points, N, and the dimensionality of the

time series, M.

3.9 EXAMPLES

It is worthwhile to summarize here the sequence of calculations required.

For data X1, X2,.., XN available (with the sample mean removed), we have

NH

' -I X x

0 -A (184)

Then forr-,i and choice (136) of weighting,

V"

C, v, (,110

4(185)

44



TR 5501

-, J (186)

N-p-i g - '

(187)

For p = Pmax' it is not necessary to compute (186) through (187). When the

best value of p, p b is found from AIC , we can then compute the spectralbest p

estimate (165).

We now consider an example for M = 2, N = 4:

Then for weighting (136), we find

The igevaBusto (189)

The eigenvalues of, are (-3±Ii3,)/i2  which are both bounded by 1 in magnitude,

as they must be for the correlation recursion (164) for p = 1 to be stable.

Also,

(190)
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which is non-negative definite. Thus, for weighting (136), all the

desirable properties are realized.

However, for no weighting, (135), we find, for the same example (188),

r 20 A' 'z [o J'' )0 1 (191)

The eigenvalues of A, are 4/9 and -10/9; since the latter is larger than 1

in magnitude, the recursion 9,,= R,., ,m?1, is unstable. Also

V 2 _ 1_ _11 (192)

which is not a non-negative definite matrix. It is found that the spectral

estimate obtained from (165) has frequency rangeswhere the two autospectra

(diagonal terns of (165)) are negative, and where the magnitude-squared

coherence can be negative or greater than 1. These are all unacceptable.

For the alternative example for M 2, N = 4, of

\14-2.,L , :,, X+ 41 (193)

and no weighting, we find a stable correlation recursion, but U1 and V, are

not non-negative definite, and values of the magnitude-squared coherence

greater than 1 are realized in some frequency ranges. Because of these

unacceptable behaviors, the choice of no weighting, (135), is discarded from

future consideration.

An example for M = 2, N = 100, and weighting (136), generated via (71) -

(73) of subsection 2.5 yielded the results below; the program and its output

are given in appendix K. We find p best=l and
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.6L432 .57603 sj [ 6342 U ~57J, (194)

L0111 1007 1. 02 36+_ V, / 1OD0

It is worthwhile to compare these estimates for N = 100 with the exact values

in (76) and (77). The scale factor .09110 in (195) is unimportant and is due

to the fact that the white noise used here had variance 1/12 rather than 1

as in (73); except for the scale factor, the matrices in (195) have

determinants equal to 1. The estimated magnitude-squared coherence reaches

a maximum of .999745, versus the true peak of .999013.

Observations from other examples of real bivariate processes have pointed

out that: the eigenvalues of A ana B, are identical and are bounded

by 1 in magnitude; the eigenvalues of P and 4. ) are not identical for

p- 2 , and can be larger than 1 in magnitude; and the eigenvalues of AF

and 4 for n<p can be larger than 1 in magnitude.

Timing Results

Some sample execution times on a UNIVAC 1108 for SUBROUTINE PCC,

which evaluates the partial correlation coefficients, are presented below

for M = 2, a bivariate real process.
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Table 1. Timing of Subroutine PCC

N Pmax Time of Execution (sec)

100 10 0.25

100 15 0.35

1000 10 2.63

1000 40 9.23

10000 50 120

10000 150 326

The execution time is almost linearly proportional to N and Pmax' The

execution time for PEFTF was 1.25 seconds, and that for SCM was C .55

seconds, both for NF = 1024 frequency cells; see appendix < -or Dr~gram.

4. SUMMARY

A method for multivariate linear predictive spectral analysis,

employing weighted forward and backward averaging, has been presen7ec and

programmed in FORTRAN. The method constitutes a generalizat"cn o' jrq's

univariate algorithm (Ref. 4) to the multivariate case.

The choice of weighting in the error minimization is very important,

and several candidates have been considered. The weighting retained, (136),

is the only one of those considered that satisfies both the scaling property

(133) for all M, and reduces to Burg's algorithm for M = 1. Also, the

weighting retained is equivalent to minimizing the unweighted traces of
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error processes that are the differences of approximately white processes;

in fact, (136) could be used as the starting point of the error minimization.

The major gaps in the analysis are that we have not proved that Up and

Vp are non-negative definite, and we have not proved that correlation

recursion (164) is stable; however, no counterexamples have been encountered.

The major analytical block in this endeavor is the bilinear matrix equation,

(126), which requires special treatment for its solution.
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Appendix A

PROPERTIES OF A SPECTRAL DENSITY MATRIX

Suppose an arbitrary linear filter with impulse response {Hn is

excited by input {Xk}. The output at time kA is

where the sum is over all non-zero summands. Xk and Yk are M x 1 matrices,

whereas Hn is M x M. In steady state, the spectra of the processes in (A-l)

are related by

cT "V) = H ( 1 TX M  (A-2)

wnere transfer function

and f frequency in Hz and is real.
Now

a ± txrei?14 Q -fI -)4 7 (A-4)
ka-.eWM (i24AR xW

where we have employed (2). Thus G x(f) is Hermitian at any value of f.

Similarly Gy(f) is Hermitian at any f.

Also

.- Y (A-5)

is non-negative definite for any H(f), because

Oy Hy (A-6)
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for any M x 1 column matrix/ , Therefore
L.

is non-negative definite for any H(f), It then follows that

xx
To prove this, assume that Gx (fl) is not. on-negative definite; tnaoi ,

choose H(f)- I 4(f-fl), that is, an impuIsive zransfer functcr e

frequency fl, we get R (Y) Gf', ) from (-,, .inich contrJ -s n t c- i

that R N 1 must be non-negative definite.
0

Thus a spectral density matrix must aiways be Hert- ;, .t _-."'a-

definite for all f. ir particular, this ii<ies that a1 6 e aun; :;

(diagonal terms of the matrix' -usz Le re" and nor-nruiav . .

that all conerences are :)oundeo by uri: 41- -,agriz.ae.

.
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Appendix B

MINIMIZATION OF TRACE OF ERROR MATRIX

From (4) and (5), we have

Y" \ i- iA XK-ft a,~ ^X, (B-1)

o: g~,.,I
where

1(B-2)

Let

Herea is M x Mp, % is Mpxl, . is MxMp, and Q is MpxMp. We notice

that QH = Q, and XVQI- 0tVNY,.r o for any Mpxl matrix 'Y# 0, if no exact

linear relation exists between the elements of , ... , Xk- ; that is,

Q is Hermitian and positive definite.

Now

- - (B-4)

(B-5)

Let

O-C~ (B-6)

whereV is an Mpxl matrix. Then for the M x M matrix in (B-5),
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LH
L (B-7)

where complex scalar

Ov.j O (B I(-8)

The real quantity ),O>ofor anylO , since Q is Hermitian and positive

aefinite; the minimum value of .2.. is zero and is attained I, and on>y if

=0 Therefore, tr L is minimized, attaining value zero, .y the :noice

I/w ij-M. Thus rY ' :- is minimized by the onoice ofda as

43-9)

since the leading two terms in (B-5) are independent of a.

Then we have opt L = 0 and

opt Y7 0-0~~.

Also

It should be noted that the solution (B-9) is attainable directly from

(8-4) if the coefficient ofa H(orG) is set equal to zero; this observation

will be useful later.

Equations (B-9) and (B-l0) can be developed as follows:

0Q: yields, with the use of (8-2) and (B-3),

R-2 'R, R
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that is,

i I (B-13)

And (B-10) can be expressed as

mm" (B-14)

Equations (B-13) and (B-14) are the main results of this appendix.

If an exact linear relation exists between the elements of

then

IY C'.r5 e (B-15)IL j~

In this case, (B-i) yields

Y14- Y, IA. X,.. - XX - I XY A,'+ (8- 16)

Therefore we can get zero error by choosing

W f 0 (B-17)

Thus if an exact linear relation exists between the elements of

Also we have the following general theorem:

No exact linear relation is positive definite. (B-18)
between elements of

To prove this, let

B-3
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Then FK.-9 is a scalar. Now if and only if an exact linear relation

exists, F. = 0 for some 0 0, no matter which member function of the

ensemble we select (with probability one). We also notice that

IkI 1 (B-20)

and that the ensemole average in (B-20) is equal to the matrix in (3-18).

Assume that F. # 0 -or any D # 0. Then )j', 5C for any 3 # 0, and

the right-hand side of (3-20) is positive for any 0 # 0. Therefore

is positive definite.

Conversely if is positive definite, the right-hand side of

(B-20) is positive for any 0 0 0. Then IF-I>O for any 0 $ 0, yielding

FX # 0 for any D # 0.

B-4
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Appendix C

INTERRELATIONSHIPS OF Up AND V

We start with the definition (12) and develop Up as

,~~..~ (AB>.AK, (by (15))

4 o B(by (12))

- 0 A ,(by (13))

- (by (14))u•- -t "r Fr Uri"

This relation holds for p2l, with UL= R. A similar derivation for Vp

yields

, V . (C-2)

The determinant of Up is given by

whereas the determinant of Vp is

J, jet (r- B;p," p,
(C-4)

C-I
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Now if det U p 1 = det V p 1 , then (C-3) and (C-4) indicate that

IJ =4det V
But since U = V, = R , detb U det *. Therefore (C-5 heir h

pzO, by inouction.

C-2
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Appendix D

HERMITIAN PROPERTY OF EXTRAPOLATED CORRELATIONS

We know that

We then solve

k. k Ks (D-2)

for s and set

(01 = I~ J1 -o :iJ k? 3 o h~~ (0-3)

We then define

(D-

In a similar fashion for the backward case, we solve

for tDj ,and set

-R( P"0; all k,,, Rv(,'

We then define

for p+1 ik. (D-7)

D- 1
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We know from the definitions above that

Now we assume that

'RIF) I)J A4 ew4e M~q a

-K k

that is, from (D-6) and (D-3.,

P = R'- " - -t-

Now from recirsion definition (D-E:,

'I'D

.s I '°tw4"'
j'i 

D-3)

J rn . .,

Tnerefore we have extended D-9i by ore step, ar -' :, -

? +l by induction.
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Appendix E

RELATIONSHIP OF DETERMINANTS

The forward correlation recursion is given in (52) as

, ,(E-1)

The z-transform of this sequence is

= : - ..=.. (E-2)

The inner sum on m can be expressed as (see (53))

Therefore,

~iwA~R~) ~(E -4)

or

At the same time, we define the z-transform of the backward correlation

recursion as

P (E-6)

and note that, via (62),

N A (E-7)

bszE-1
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A comment on notation is timely here. If matrix

eE-8)

where z is a complex scalar variable, then

But

H
= )--10)

which is not always equal to 'E-9), unless z is real.

But let us also develop definition (E-7) by means of backward recursion

'55), in a manner similar to that above in (E-l) through (E-5B. We find

00 o0 I)

ne inner sum. in 7 4s

H COVP

where we seo 156, ', E-3 , and (E-11'. Therefore

or

E-2
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Combining (E-5) and (E-14) according to (E-7), we see that

v~)Qi4 .8jI (E- 15)

must have the same zeros, since these two quantities determine the singul-

arity locations of (E-5) and (E-14). The quantity Pn(z) defined in (E-3)

is singular only at z 0.

Furthermore M

et~jr A 11) M? (E-16)

and

( r B - (E-17)

where we have utilized the observations that the quantities in (E-15) have

the same zeros, the same pole at z=O, and the same scale factor. Therefore

the two determinants in (E-15) are equal.

Also since

Cqn -1 . (-8

it follows that

H (E-19)

and

4'a Alp, {~ (F-20)

E-3
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Numerical examples show that generally

and

At (-2

.. ...... .. • -"---- M m , nmm mm m um m • m mIk
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Appendix F

SPECTRUM FROM EXTRAPOLATED CORRELATIONS

The forward correlation recursion is given by

A = p" (F-i)

where

and

r + (F-3)

We wish to evaluate the z-transform of I&

W

In order to do so, consider a fictitious process {.] with the corre-

lation given by (F-i) through (F-3). Consider the output of the optimum

predictive error filter, given by

A - - 1 1. (F-5)

The crosscorrelation

Cm %-No " .0

Using (7) and (F-i), we see that

F-i
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A

that is, predictive error filter output YK is uncorrelated with all past
A

values of input v

Also, output autocorrelation

A A

Y k A"4(FS

using (F-5) and (F-6). But now employment of (F-7) in (F-8) shows that

Also (F-7), (F-6), (F-2), and (12) yield

c0  p 1#1  -

And since, from definition (F-8),

A 7 7)'--

we have

01(F-12

that is, predictive error filter output YA, is white for input Xk"

course, Up is not diagonal).

A

At the same time, autocorrelation Dm can be expressed (by means of

(F-5)) as

- ),- 3 . ± AA,,,, A1'.

Therefore the z-transform of fa 5.1 is

F-2
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-- c.#'c.>(F-14)

where we have used (F-13), (23), (F-4), and (E-9). When we couple (F-14)

with (F-12), we obtain

(F-15)

or(F-16)

where matrix Up is independent of z. This is one of the main results of

this appendix.

If we let (for f real) (F-17)

and denote the forward predictive error filter transfer function and spectral

estimate as e (G iA)) _ - ,erp(_, ir')A )

e'p&2i;-)) ;i iLe -; -;.27 r 6), (F-18)

respectively, then the spectrum of process IQ can be expressed as

where we have utilized the result that (see (E-8)) through (E-10))

1 "II 

-' =I

F-3
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The procedure for the backward correlation recursion parallels that

above to yield (using (23))

= v[(p)(9)] (F-21)

and

P (F-22)

ZERO LOCATIONS OF JPA -

Assume that r. Q(z) has a zero at z=z, 0 0; that is,

where 0 < I,. But

Therefore Waf)( ,o is finite for OI1,, yielding

Therefore assumption (F-23) is invalid, indicating that

Q(-) 0 C),- < ( .F-26)

Now from (F-24)

F-4
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therefore,

F (F-0-

Thus Q(z) has a p-th order zero at z=O, but is not equal to the zero matrix

for 0<ij. Of course, the individual elements of matrix Q(z) can have zeros

anywhere.

POLE LOCATIONS OF

Since from (F-24)

-r~Q~) (F-29)

where Qp(z) is a matrix of polynomials in z of order p, it follows that

Q(~)~ ?cQ~.)'= -(F-30)

A

where is a matrix of polynomials in z of order (M-l)p. Therefore

the poles of Q(z) are caused by the zeros of det Qp(z); that is, the poles

ofw(p)(4)- , are caused by the zeros of det As Jej--, (e)~I"(v F-24);

therefore, Q(z) - I as jeI-i, so that Q(z) has no poles at IIt'.

Thus the poles of Q(z) are located where det X (a) 0.

We now consider the problem of determining when det'%{(")=O; the

following derivation is based upon Ref. 7. Let

LI (F-31)

be an Mpxl matrix. Define prediction

A C 
(F-3")

F -5
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where C is MpxMp. And define error

Then _--_. ___,- ________-_,_____
*A

1P = 2fC (F-34)

,.,here

The minimum value of S4 is realized when (see appendix B) we select

(F-36)

The corresponding value of

Since'% , . Now let the left eigenvectors and eigenvalues of the optimum

C te denoted as

H<sI<M (F-3-3

(The eigenvectors {fM may not all be linearly independent). Then

F-6
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Now E4 is Hermitian, block Toeplitz, non-negative definite, and has

the form %

W

L . (F-40)

Therefore % J I-I for Is ,_ M; that is, all the eigenvalues of C are

bounded by unity in magnitude. Furthermore, Ref. 7, p. 134, shows that

if there is no exact linear relation between the elements of

then I .j< ( for I-m-/Mp (see also appendix B).

Now we develop the error in (F-33) in more detail:

V x. (F-41)tx-t cx- "

Minimizing ty can be seen to make C of the form

A .. A r
To 0

C t 0 (F-42)

0 1

Therefore (Ref. 7, eqs. (35) and (36)),

F-7
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If we were to assume that where ,-I , we would have det(C-Z,I)=O.

But this contradicts I,,I-I for Is wiM?. Therefore, the zeros of det kP) ()

all lie inside the unit circle; that is, the poles of Q(z) all lie inside

the unit circle.

F-8
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Appendix G

HERMITIAN PROPERTY OF ONE-STEP EXTRAPOLATED
CORRELATION MATRIX ESTIMATES

From (78), at the (p-l)th stage, we know that

Now we start with (94) and express

jet

z ('Rn) (G-2)

Thus, the one-step extrapolated correlation matrix estimates, based on

order p-1, are Hermitians of each other.

G-I/G-2

Reverse Blank
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Appendix H

INTERRELATIONSHIPS OF U AND V FOR UNKNOWN CORRELATION CASEP p

We develop the definition (95) as follows:

P, A"

116 ? 4A?

-"4) 0- (togi~))(H)

Now

ei mj RJ (H-2)

Therefore

ur' e2 !L

A? Br up,-,

• - )u ?_, . (H-3)

In a similar manner, we can show that

V,- (- BA") V, (H-4)

In order to show that Up is Hermitian, we recall the constraint (98)

and express

H-i



TR F501

Therefore if Ua-,- U-'4 , it immediately follows that

H(H6)

Similarly since

it also immediately follows that

3ut properties (H-6) and (H-7) are obviously true for p = 0, because

Uo:V: ° R~(H-8)

Therefore (H-6) and (H-7) are true for all p, by induction.

In order to relate the determinants of Up and V , we express --2P p

and (H-4) as Q1) ,(;-1 Vp% , ))A (P"') V,
Ay k(A"r koU- ) PPAp _,P

Therefore if det U - V- t -

But (H-l0)is obviously true for p:O by -8, Therefore ,--l, is tre

for all p, by induction.

Properites (H-6), 'H-7}, and (H-13 apolied to '8' imreo~ate] s"co

that

J~ ~= 1 ( - A_'
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Appendix I

MINIMIZATION OF TRACE OF WEIGHTED ERROR MATRICES

We wish to minimize the trace af W23 oy choice of matrix Gp, We

use the fact that, for square matrices P and Q,

to express

Now (1-2) is an analytic function of the variables Re(G mn) and Im(G mn).

Therefore the minimum of (1-2) is realized simply by setting the coefficient
of GH equal to zero (Ref. 20). W, obtain, after premultiplying by and

post-multiplying by ,the equation for G
p

ji _ p.. ' " P p-,V, -+ U -(1-3)

(Gp is not Hermitian or Toeplitz, as numerical examples will show.) In

terms of A P)and BW), we have the simultaneous equations
p

where we utilized (122).

1-1/1-2Reverse Blank
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Appendix J

COMPUTATION OF FILTER TRANSFER FUNCTION

The forward predictive error filter transfer function is given in

(68) as

- ,.(J-I)

Ir (f - - ofi fwidth, 2AJ1

Now divide the frequency range -, ,-) into NF cells of width

_I - (J-2"

Then for M "I 4//,

where

Now if we let the sum in (J-3) be denoted as an NF-Point

then (J-3) becomes
li ) 0-~ "4m" .

HT( )

Then quantity _ in (J-5) is ar ,-,.
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Appendix K

PROGRAM FOR SPECTRAL ANALYSIS

In this appendix we present the program for the procedure summarized

in (184) - (187) and (165). The spectral estimate, (165), is computed

at frequencies CI/(4JFA)"

-Up (K-i)

where the forward predictive error transfer function K )is giveA

by (J-6). The specific scaling adopted is based upon (166), which takes

the sampled form

a 1?. ,(K-2)

where [w.] is a set of integration weights (e.g., trapezoidal). The

approximation is a good one if G(P)(f) is sampled finely enough; that is,

if NF is large enough to resolve the peaks and valleys of G(P)(f). If we

employ (J-2), (K-2) becomes

W, tG t(K-3A)

or, for trapezoidal weighting,

-1Z,4 (K-3B)

where we have employed the periodic nature of GMP(f) (See (165) 'and (68)).

K-1
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Thus the sum of samples G!')_) equals the sample power, (80).

For a real multivariate process, we can employ (171); a modified fc;..

emerges:

Pe o %F \sA +br re'Pe cY

where is another set of integration weights. Thi3 is tne -

programmed in the following; the quantities computed are

FL

The real part of their weighted sum equals the sample power, -' 7e .-

0

used here to evaluate (J-5) is given in Ref. 21; it is limited to powers o'

2, but could be replaced if desired. Input parameters are N, c,4., aid

NF in line 22, and the input data call is in line 37 and SUBROUTINE DATA;

all these quantities have to be changed by. the user to fit his particular

application. The program is written for a real multivariate process

(general M), with the exception of FUNCTION DETERM, SUBROUTINEs SOM,

INVERT, and SOLVE, and the printout of the spectral density matrix, *K-5.

Arrays used in the program are explained by comment statements. A sample

printout follows the program.

K-2
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G MULTIVARIATE LINEAR PREDICTIVE SPECTRAL ANALYSISp
C EMPLOYING WEIGHTLU FORWARD AND BACKWARD AVERAGING.
C THIS PROGRAM IS WRITTEN FOR REAL PROCESSES AND GENERAL Me WITH THE
C EXCEPTION OF FUNCTION DETKRM AND SUBROUTINES SDMv INVERT# AND SOLVEP
C AWU THE PRINT OUT OF THE SPECTBAL DENSITY MATRIX.
C USER: CHANGE LINES 22 AND 37. AND REPLACE SUBROUTINE DATA.
C M4 = IMENSIONALITY OF MULTIVARIATE PROCESSi INTEGER INPUT
C N : NUMBER OF DATA POINTS IN EACH PROCESS$ INTEGER INPUT
C X(l,)...X(Nvl).t..eXIlM)...X(NM) C INPUT DATAI ALTERED ON OUTPiiT
C PMAX MAXIMUM ORDER OF FILTER; INTEGES INPUT
C NF = SIZE OF FFT (MUST BE A POWER OF 2 TO USE MKLFFT)l INTEGER INPUT
C AVE z MEANS OF INPUT UATAI OUTeUT
C H = COVARIANCE MATRIX OF INPUT DATA; OUTPUT
C AIC : AKAIKEIS INFORMATION CRITERION$ OUTPUT
C PBEST = BEST ORBER OF FILTER INTEGER OUTPUT

UoEST = MATRIX OF COEFFICIENTS IN SPECTRAL ESTIMATE$ OUTPUT
f AP = MATRIX OF FORWARD PARTIAL CORRELATION COEFFICIENTS$ THEN a

MATRIX OF FORbARD PREDICTIVE FILTER COEFFICIENTS FOR PSESTI OUTPUT
C UP = MATRIX OF BACKWARD PARTIAL CORRELATION COEFFICIENTS$ OUTPUT
C XXvYY = SPECTRAL MATRICES; OUTPUT

PARAMETER M=2 W BIVARIATE PROCESS
PARAMETER N= 100 v PMAX= 10p NF=102IO# uF"=NF/4+1
INTEGER PbESTeP
DIMENSION X(NeM)eY|N.MlZ(NpM)eUBEST(MM)eAP(IeMeP4AX)e
SBP(M.M.PMAX)tAVE(M)tXX(NFM M),YY(NFMM)eCOSICNF41)
SU(MeM) .V(M.M) eUI(MqMkeVI(MeM) eA(MtM) eBCMeM) e.W(Mm)
St.ACMM) .UbMPM) eWCIMeM) ,WD(MDM) ,WE(MPM) eAIC(PMAX) ,AICO (2)
EiUIVALENCE (XpY),|AIC(I)*AIC0(2t)

C PRINT OUT VALUES OF PARAMETERS
I:N
II=PMAX
KZM
LNF
PRINT 1. ItJ.KPL

I FORMAT(IMI.' N :t169IlOXtlPmAX =I tl.0X'M : 9 122OXe'NF :'IS)
C INPUT DATA IN X(lel).o.X(Npl)..eoX(M)..X(N4)

CALL DATA
PRINT 2

2 FORAT(/ INPUT DATAz')
.JN-99
L=14-2 0 0
DO 3 1:1M
PRINT 4p I
IF(N.LE.200) 6O TO 5
PRINT be (X(KPI)ZKuIelO0)
PRINT 7. L

7 FORMAT-In t INPUT DATA POINTS NOT PIINTED HERE )

PRINT to (X(KoI)#KTJ#N)
GO TO 3

5 PRINT be (X(NoI)#KfleNj
3 CONTINUE

S F)RMAT(I PROCESS NUMERsI,2)
6 FOKMAT(5M2O.I)
C EVALUATE PARTIAL CORRLATION CoEFFICIgNTS

CALL PCC
PRINT a

K-3
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FORMAT(/ MEANS OF INPUT DATA:)
PRINT bo (AVE(I)PI31uM)
PRINT 9

9 FOKMAT(/! COVARIANCE MATRIX OF INPUT DATA:$)
PRINT b, ((R(IpJ)IlvM)#j~j#M1
PHLNT 10

10 FORMAT(/f AKAIKE INFORMATION CRITERION:')
PRINT lit (P#AIC(P)#P=OpPMAX)

It FORMAT(110#EgOS)
PRINT 12t PBEST

12 POKMAT(/' PSEST :'eI3)
PFIINT 13

13 IOKtATW/ UBEST:')
PRINT 6t (4U8EST(I#J)#I:1,M)#J:1.M1
PRINT 1L4

lit FOK~MATC/ FORWARD PAR~TIAL CORRELATION COEFFICIENTS:*)
00 L5 P=LPPMAX

L5 PRINT 16# P#((AP(I.vJ#P)vI=LvM)#Jz1,m)
lb FOKMAT(ILO.bE20,G)

PR4INT 17
1V FOHMAT(/? bACKOARD PARTIAL CORRELATION COLFFILIENTS:1)

DO 18 P:1.PMAX

IF(PdE5TgEQ,0) GO TO 19
t EVALUATE PREDICTIVE FILTER COEFFICIENTS

CALL PFC
PWINT 20

W0 FQNMATW/ FORWARD PREDICTIVE FILTER COEFFlCIEN-15 FOR PbEST:')
LO 21 P=LPPBEST

C EVALUATE PRELJICTIVE-EKRQR FILTER TRANSFER FUNCTIOIN
L9 CALL PEFTF
C EVALUATE SPECTRAL DENSITY MATRIX AND COHERENCE

CALL SUDM
PRINT 22

22 FQNMAT(/t SPECTRAL DENSITY MATRIX AND COHEPE~jCE FOR V=:1:)
PRI14T 23

Z3FOHMAT(8Xe'btN',1QXeAUTO19.14XeUAVTOi42'e1OXe'REAL(CROSS12J','Xe'
SIA.AG(CIOS62)'#9X#9MAG SQ COH'v31XpoARGUMENTt)
PRINT 16p ILXX(L,1,1),XX(L,2,2) ,XX(LP.2) eYY( ..1e2) YY(LeII) ,Yy(
9Lva.2)# LJ.#K)

SUSROUTINE DATA
C Tmis SUSAOuTIO GENERATF.S DATA FOR Msle BIVARIATE PROCESS

DEFINE IRNV**&tllNLl**g5)2*45786
DiLFINE RAh9XfLOAT( I)I3*3&973&367o
IZ5241
TAXO.
TbZrC,
Do I KZI100O 9 WILl. DISCAB0 TIUESE INITIAL POINTS
IzIKANU
Txo. sTAI'.75WTB*RANvo.5
IxZNAN0

K- 4
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TBX*65*TA*56TBIR*NP-. 5
TAMT
x cl .)=TA
Xc 1.2) zTB
DO 2 KZ21N
IRAND
* 8SS*TA-o*75fT8+RANO,. 5

ImI RAND
TBZ.O5*TA+95§*TBIRANP-95
TAzT
X(tK,1) zTA

2XtKP2)zTB
RETURN
SUUROUTINE PCC

C THIS SUbHoljTINE COM4PUTES PBEST# UbESTe AND THE PARTIAL
C CORRELATION COEFFICIENTS FOR P :I TO pMAX$ ANY Po

I =14
.j=PMAX
IAZ3**SQRTIN) /M
IFCPI4AX.GT91A) PRINT Le JeIvIA

IFO)HMAT(/9 PMAX :'.I'&.' IS TOO LARGE FOR NUMSEk OF DATA POINTS kd
Splb.'l SEARCH LIMITED TO P z'I14)
IAZMINCIAPPMAX) 0 UPPER BOUND ON PMAXI EQ 183
FACz29Sm*M/N 9 FACZO, %OULD FORCE POEST EQhUAL TO kMAX

C SUdTKACT MEANS; FILL IN DATA ARRAYSI Ea 110
(O 2 XIiM
TAO,*
(0 3 KzleN

3 7A=TA+Y(KtI)
T ATA/N
AVE(I)=TA
Du 2 Kzj#N
Y(Ktl)zYKtI)iTA

d Z(KpI)=YIKeI)
C INITIALIZE CORRELATION MATRICESI EQS 82t 11'4p AND 105

CALL AUTO(2pN-'1,YPWC)
Do '4 1=1#M
Do '4 J:ItM
TAZYC I) YC IJ)
Td2YCNeI)SY(NPJ)
k(lej)2(WCIIPJ)+TA1Td)/N
%A(IPJ)=WCIeJ)+Tb
wdtIeJ)zWC(Ie#J)+TA

R(J#I)ZW(IeJ)

CALL EQUALIRPU)
CALL EQUAL(R#V)
CALL CROSS(2#NvY#Y#WC)

C BEGIN RECURSION
AIC(0)ZLOGIDETERM(U))
AICMINZ-AIGC )

K-5
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CALL EQUAL(U#UdEST)
W~~ 5 P21olA

fEVALuATE MATRICES REQUIRED IN BILINEAR MATRIX EaUATIlt4 LQ 126
CALL IrVEkT(VPVI)
CAL.L MULT(VI.*dwL,)
CALL EWUAL100o,,v)
LALL li4VLHT(UPUI)
(ALL LWUAL(*ApoC,)
CALL Mdt.LT(WOPUIOA)
CALL ALiOLWCPWCPjC)

C So..vE 51ZLIN~EAR MATR~IX EQUATIONS EGmS 157-161
CALL SOLVE

EvIALUATE PAR4TIAL CORRLLATION COEFFICIENTSI EQ 124
(,A6L MULT(wCvVIA)
CALL TRANbLWCv*O)
,.ALL MULTIWULJI~d)
CALL EwUAL(A@AP(1uleP))
CALL E~uAL~bv8P(1eleP))

C UPUATt. MATRICJ S U AND \#; E4 181
CAL MULT(AowpwL)
CALL $uB(UwE#U)
CALL MtjLT(bwC~wE)
CALL SUfH(VPWE#V)

C CAL(.JLATE AKAII(E'S INFORMATION CRITERIONS EQ 180

1p4AIC(P)*GEoAICMINv) GO TO6
A1CMINZAICIP)
PdLSTZP
CALL E~iUALCUoUdEST)
IF(P*EG.1A) GU TO 5

UPUATL JATA SLGUL14CES Y ANO Zi EQ III

LO 7 Kz:N.Lt-1
Lv 0 I=1,M

'O 9 j~lem
9 lA=TA-6( Iej)9Y (Koj)
0 ap)T

co 10 1=10M
TAZY(Ke1)
LV 11 J:IPM

11 AT-I0)ZKIJ
10 (o=T
7 COr*TjNuE

(.CALCIJLATE ?4EW CORRELA71ON mATRICESI EQ 11'*
CALL ALTOLP*2eNeYeOA)
CALL AUTO(P,1,N-1,4#WB)
CALL CN0Sb,(P+ZvNoY#ZoWC)
C OkTN N
IF(M*E(..1) REYUHN

sk zm- I
L'O 1 1DN

Lz*1
L'0 12 j=LevM

K-6
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UaIEST(I.J):.5*(UBESTCIeJ)4U5ESTCJeI))
12 UtLST(J#I)=UBLST(IPJ)

RETURN
C

SUbKOUT INk. PFC
C~ TIS SUbROUTINE COMPUTES THE PREDICTIVE
C FILTER COEFFICIENTS$ ANY M; EQ 79

IF(POESTLL.1) RETURN
0O 1 P=2ePbEST

UO 2 L:IeIA
I8=P-L
CALL MULTCAP(1pveP)pbPCleleIB)#WA)
CALL SUB(APCItl#L)PWAPWA)
CALL MULT(bP(II1IP)eAPCjelvL)ehB)
CALL SU6(bP(1pleI6)#WB#BP(1u,IB)j

2 CALL EQi.JAL(WA#APCitl#L))
1 CU14TINUE

RET URN

SUBROUTINE PEFTF
C THIS SUdROUTINE COMPUTES THE PREDICTIVE-ERROR
C FILTtH TRAfJSFER FuuCTIONI ANY ml EQS 68 AND UJ-3)-(J%)

K=19d4427*LOG(NF)+,5
CALL QTRCOSCCOSI#NF)
Lo I I=leM
CIO I J1,tm

X v(I e e J) =0

IF(PbESTiEQ.O) 6O TO 2
I AZPBEST*1
DO 3 L=201A

J YY(Ltl.j)0.o
it IAZPBEST+2

LO '4 LZIAPNF
XX(Le I.J)=0.

44 YY(LetetJ)0.*
I CALL MKLFFT(XX(JIeIJkeYY(IltJ) .COSI.Ke.'1)

kE71URN
C

SUbROUTINE SON
C THIS SUBROUTINE COMPUTES THE SPECTRAL DENSITY
C MATRIX AND COHERENCE FOR M=28 EQS 176 AND K-5

Tz2*/NF
UO I LZIPK

WA(1.1)=XX(LtZ,2)

NA (2. 1) zXX (Le#e L
WA 12.2) SXXlLt 1. )
*8 C 1. ) YY IL 2v2)

wd(2,1):inYY(Lp2p1)
1B2. 2) :YY IL. 11)

K-7
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TA=OCTERM (WA) -QETERM (W8)

TA:T/ (TA**2+Tb**2)
CALL TRANS(WA#*C)
CALL MULTCUBESTWCPWO)
CALL MULT(*B#WUPWC)

CALL MULT(WA#W(JeWCI
CALL TRANSIWSeWO)
CALL MULT(UbESTwDpWE)
CALL MULT(wbtWEpWO)
CALL ADO(WCPWU#*C)
YYLll=W(*) P+T*2/W(t)W(#) * AG SQ COH
YY(Lv2p2)=ATAN2(TdrWCtlv2)) ARGtJMENT
)i(Llt)=TA*WC(iUJJ iv AUT011
?XtL2p2)=TA*WC(2vi) io AUT022
XA(Lpl#2)=TA**C( 3eZ) 6 REAL(CROSS12)

YY(L1#2)TA*. IMAG(CROSS.a)

)A(L#2pl)0.*
YY(Lt2o1)0.*

1 CONTINUE
KE TURN

t;
SUoROUTINE CROSS(NIPN2eAtB#C) 9 APBPA NG

C T~ilS SUOROUTINE COMPUTES A CROSS CORRELATION MAThIXI ANY Ml EQ 114B
CIMErJSION A(N#M)#BtN#M)pCtMpM)
W:WOiLL PRECISION T
LuO I 1=l,0M
LO 1 J=leM
T=0.00
LO 2 K=NIPN2

I C(I#J)=T
kETURN

SUbROUTINE AUTO(NJIN2,A#8) 9 APA NG
LTHIlS SUBRJLJIINE COMPUTES AN AUTO CORRELATION -iATRIX; ANY A; EG ll,

LIMENSlON A(NpM)rb(MpM)
LOU6LL PRECISMOi T
LO I IZIPM
LO 1 ~j:Im

LO 2 I(:NIeN2
de 7t.A(Kpl)*A(K#%))

bI~jvI)=8(Ivj)

C
SUaROUTINL EQUAL(APS)

THIS StoQfOUTINE SLTS TWO MXM MATRICES EQUAL
LLMENSICN A(M#M~hbjMtM)
LO I I=lM
LQ I J=1#M

kEURN
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SUBROUTINE TRANS(AeBl 9 APA NG
C TH1IS SUBROUTINE TRANSPOSES AN mXM MATRIX

DIMENSION A(MOM)PBJM*M)
co 1 I:1,M
L)0 I i~lpM

kE TURN
C

SUBROUTINL ADU(AvBpCl 9 A#B#A OK
C THIS SUa3ROUTINE ADDS TWO MXM MATRICES

LIMENSION ACMpM)tBIM#M)rC(MvM)

DO I I:1#M

RETURN
C

SUdROUTINE SUBCAPOPCI Q APBPA OK
C THIS SUBROUTINE SUBTRACTS TWO MXM MATRICES

DIMENSION A(MPM)PB(MeM)PC(MpM)

00 1 11,pM

RETURN
C

SudROUTINE MULTCAebC) 9 APBPA NG
C THIS SUBROUTINE MULTIPLIES TWO MXM MATgICES

DIMENSION A(MM)pBiM#M)PCIMtM)
D0 1 I=jem
DO 1 J=1,M
T=:0.
DO 2 K~lpM

id T=T+A(IPK)*B(KPJ)
1 C(LJ)=T

RETURN

SUdROUTINL INVERT(APB) r. APA NG
C THIS SUBROUTINE INVERTS A 2X2 MATRIX

wIMENSION A(2p2)eBj2p2)
TA=1 ./DETERM(A)
Bc 1, ):A (2, 2) *TA
o(2p2)=A(1I1)*TA
b(1p2)=-AC1.2)*TA
6C2#1)=-A(Zp1)*TA
RETURN

C
SUbROUTINL SOLVE

C THIS SUBROUTINE SOLVE$ BILINEAR MATRIX EQUATION
C FOR m=2, BIVARIATE PROCESS; EQ$ 157o J58# AND 162

TA=WA( 1, ) WA (2, 2) dpl+W% wB (2 2).
TB=DETERM C A )-DETERM (WB)
CALL MULT(WC#WBPWD)
*L ( 1. ) WA 12.2)
*bL(1,2):-WA(lt2)
*Ec(2. 1) -WA (2. 1)

K-9
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CALL MULT(WEpWCpWA)
CALL ADD(WuDvWAvWD)

*I6(2p2)=TA*WB(2#2)tTb

*8i(2e I)=TA*WB(2pl)
C.ALL INVERT(WB~wE)
CALL MULT(wDPWEPWC)
kETURJ

C
FUN4CTION U TERM4A)

C THIS FUNCTION COMPUTES THE DETERMINANT W--. 2x: ' T?;:
0IMENSION AC22)

S~jbRQUTINL M'(LFFT(AvYPCcM fSN

i404P2=Nr04P+ j

I .L)P2N04*ND4P2
LO 8 Luj:1,m
LMvA=2*P (M-LO)
LIA.:2*LMX*
ISCL=N/LIX
CDQ 8 LM:1,LMX
IARG(L-In) *ISCL+l
IF(IARGeLE.,N4P1) GO TO 4
C=:CC (r2P2-lARG)
S=ISN*CC CIARG-N04)
670 TO 6

* C=CC(IARG)
S=ISN*CC (ND4P2-IARG)

* UO :3 LI=LIX#NPLIX
Jl=L1-LIX+LVM
J2=J1 +LMX
71=X(J)XI~J2)
T2=YCJl)-YJJ2)
X(J1)X{(Jl)+X(J2)

xC J2) :C*T1-S*T2
YtJ2)=C*T2+S.11

8 CONTINUE
CO 40 J=1e12
L(J)=l
IF(J-M) 31#31P4O

.31 Lt)2*(M+..J)

K- 10
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'40 CONTINUE

DO 60 .i1~1,Ll
00 60 j.2JtL2pLl
bv 60 J3=J2pLpL2
CU 60 J4=.J3pL4tL3
u O 60 J5J'4tLSL4
tjO 60 J6=~J5LbPL5
DiO 60 J=6tL?,Lb
D~O 63 J.B=,J7pL8pL7
L.O 60 J9=J8pL9tLB
00 bO J0=J9#Ll0eL9
00 60 J11=Jl0,LlltLlO
UU 60 JR=JllPL12PL.1

51 'H:X(JN)

X (JR)=H
F =Y (JN)
Y (JN)=Y(JR)
Y (JR)=FI

5e iN=JN+l
60 CONTINUE

RE TUR N
c.NU

SubROUTINE UTRCOSICtN)
LlMENSION CM1
N41=N/4+1
SCL=6. Z83185307/N
DO 1 I~lPN41

1 C(L)=CQS((I-1)*SCLJ
RETURN
E14UJ
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Predictive Spectral Analysis of a

Complex Univariate Process
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ABSTRACT

A FORTRAN program for evaluating (1) the linear
predictive complex filter coefficients and (2)
the power density spectrum of a complex univartate
process is presented, and its use is demonstrated.
A pitfall of using this approach for estimating the
cross-spectrum of two real processes is pointed
out, and a limitation of the complex predictive
filter for waveform estimation is considered.
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FORTRAN PROGRAM FOR LINEAR PREDICTIVE SPECTRAL
ANALYSIS OF A COMPLEX UNIVARIATE PROCESS

1. INTRODUCTION

Spectral analysis of a complex univariate process via linear pre-
dictive and maximum entropy techniques is considered in reference 1,
and Fortran programs for real data are presented there in appendix J.
In this report, we present a program for handling the case of complex
data, yielding as an output the auto-spectrum of the process.* Complex
data can be encountered, for example, when a narrowband real process is
couplex-deuodulated to a low frequency and sampled at a rate comparable
to the bandwidth of the process. When the new center frequency is
zero, the process is called the complex envelope.

In section 2, an example of the use of the program is presented,
and the changes that the user must make for his application are pointed
out. In section 3, the possibility of using this program to estimate
the cross-spectrum of two real processes is investigated and found to
be undesirable. In section 4, a tinitation of the complex predictive
filter for complex waveform estimation is considered, and a possible
generalization is indicated to alleviate the problem.

*The theory and notation for this case were developed fully in
reference I and will not be repeated here, for sake of brevity; the
reader is referred to that earlier material for all details.

m m m m• • • • •1
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2. USE OF PROGRAM FOR SPECTRAL ANALYSIS

The program for spectral analysis of a complex process consists of
five parts: a main program and four subroutines, as listed in appendix A.
Input parameters to the main program (listed in statement 15) are

N, number of complex data points,
PMAX, maximum order of filter considered, and
J, size of FFT for spectral estimate.

The sample program generates a data example in lines 20-33 and must be
replaced by the user to fit his particular applications.

A sample output for N = 100, PMAX = 10, is presented below. It
indicates that PBEST = i, which agrees with the actual value of p (see
statement 21 of the main program). The fractional powers sum up to
0.99999829 instead of 1; the difference is a measure of whether the
spectral estimate has been adequately sampled in frequency. (If the
error is too large, J may be increased.)

Since the autospectrum of a complex process is real, but not
necessarily even, it is necessary to compute the spectrum over both
negative and positive frequencies. Thus bin I corresponds to zero fre-
quency; bin J/2 + I corresponds to + Nyquist frequency, .I/(21); and
bin J corresponds to frequency -l/(JL), where A is the sampling inter-
val in time.

An example of a spectral estimate of 1000 samples of a complex
envelope of surface-bottom forward scatter at a 200 grazing angle at
frequency 750 Hz over a 20 nautical-mile path is presented in figure 1,
where the sampling rate is 1 H:. There is observed to be a pair of
spectral peaks at -1/4 Nyquist frequency, a strong very low f iequencN
component, and a rather s-metric spectrum about zero freGquency. In fig-
ure 2, the direct path is employed instead, the sampling rate is 0.1 Hz,
but 1000 samples are still used. The center portion of the spectral
estimate reveals a double peak near zero frequency and a rapid drop-off
away from this frequency. With these few data points, resolution capa-
bility of this quality is very hard to achieve by any other spectral
analysis techniques.
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3. ESTIMATION OF CROSS-SPECTRUM OF TWO REAL PROCESSES

Suppose that processes u(t) and v(t) are real, zero-mean, and sta-

tionary. If we form the complex process

x(t) = au(t) + sv(t), (1)

where a and 8 are complex, then the autocorrelation of x(t) is

R (,) -- x(t)x*(t - ,) = R*(-T)

=- alR uu(T) + 12R vv () + aB*R uv(T) a*R uv(-T), (2)

where the crosscorrelation of u(t) and v(t) is

R u(T) =_ u (t)v (t - -) .(3)
uv

The auto-spectrum of x(t) is the nonnegative real (noneven) function

Gxx(f) =f dT exp (-i2yrf)R xx(T)

- 2Guuf_ + 1812G (f) + ca*G (f) + a*BG* (f), (4)
uuvv uv uv

where the cross-spectrum of u(t) and v(t) is

G (f) I d T exp (-i21rfT)R (T) = Guv(-f). (5)uv _D uv uv

Now let us decompose the cross-spectrum as

G uv(f) = R(f) + iI(f), (6)

for which (5) yields

R(-f) = R(f), I(-f) = - (f). (7)

7
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Utilizing (6) and (7) in (4), we obtain

G (f) : (f) + 1B2G VV(f)

2Re(ca8*)R(f) - 2Im(aB*)I(f),

G xx(-f) !t '2Guuf)

+ 2Re(ca*)R(f) + 21m(ae*)I(f). (8)

Solving (8) for R(f) and I(f), the real and imaginary parts, respec-
tively, of cross-spectrum Gu (f), we obtain

R(f) [G (f) + G (-f) - 210"Gu (f) - 2J131Gv(f)],
T Re(ct2*) xx xx uv

I(f) [ - ) - (, (-f)]' (9)
4 m(a;I) xx xx

if Re(aE*) i 0 and Tm('*) A 0. Since D and E are arbitrary, we choose
a.* = (I - i,2, for which -- -= 1/2. For simplicity, we
choose 1 - i/,2; then (9) becomes

G (f) + G (-f) C (f) (f)
R~) : xx xx uu %'%'(f

R(f) =X XU

C(f) + G' (f)~
- E E N C( -f ) ,,-tuV

xX
X.¥.

C (f' - C (-f)1(f) = ___x ____ - ODD{Gxx(f) }. (10)
2 xx

Now we need only comrute R(f) and I(f) for f > 0, as (fl indicates.

An alternative method to (10) was presented in reference 2, equa-
tion (4. However, that method required calculating four auto-spectra,
whereas the current method requires calculating only three auto-spectra:
Guuff) and C,,.(f') are real and even, whereas Gxx(f) is real, but not
necessarily even.

8
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The choices of a and B in (1) are still not unique. If we let

= 2 -1/4ie B 1/4ei ,  (1)

then

aa* 2-1/2 i(e- ) 1 - i 2-1/2 e-ii7r/4 (12)c*= 2  e - -2

Therefore, we must have e - = -ff/4. There are two obvious choices:

Choice 1

e = 0, = /4

= 2- 1/4, B = 2-1/4(1 " 71)

x(t) = 2-1/4[u(t) + 1- v(t)], (13)

which is not very symmetric.

Choice 2

e = -ir/8, = W/8

a = 2-1/4 e-i7r/8 a - ib

= 2-1/4eir/8 a ib

a 2 2 1 / 4 cos (V/8), b = 2 "- / 4 sin ( /8)

x(t) = a[v(t) + u(t)] + ib[v(t) - u(t)], (14)

which is the preferred form.

For known autocorrelations or auto-spectra, (10) furnishes a valid
way of calculating the real and imaginary parts of the cross-spectrum
of real processes u(t) and v(t). However, when the auto-spectra are

9
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unknown, spectral estimates must be substituted in (10). Although R(f)
and 1(f) can both take on positive or negative values in any frequency
range, there is a constraint on their magnitudes. Namely, the magni-
tude-coherence is upper-bounded by unity. However, several numerical
examples using the programs in appendix A, for cases where the true
magnitude-coherence was near unity, yielded estimated magnitude-coher-
ences greater than unity in some frequency ranges. This was traced to
the fact that the estimate of Gxx(f) can be too small and/or the esti-
mates of Guu(f) and Gvv(f) can be too large. This ty.pe of coherence
estimate is intolerable; hence, estimation of cross-spectra of real
processes by means of the auto-spectrum of a complex process is dis-
couraged. The same conclusion is offered for the method in reference -.

10
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4. A LIMITATION OF COMPLEX PREDICTIVE FILTER

The theory behind the program presented in appendix A has been
given in reference 1 and is based on a linear predictive technique.
Specifically, given p past values of complex process (xkl, a linear
one-step prediction of xk is attempted according to reference 1, equa-
tion 58:

p
x k n axk-n" (15)

n=1

If we express all the quantities in (15) in terms of their real and
imaginary parts according to definitions

A A .A
Xk Uk lvk, xk uk vk, an * n 1 n  (16)

then (iS) can be expressed as

P
A
U k a ( nuk-n - 8nvk-n)'

Pn* 1
A

v - n u -n 3nk-n)(P

But (17) is not as general as the form for prediction given by

I('n, 6n, n ,n real):

p

n= 1

p
Vk " I (enUk-n 'n'k-n) (18)

nal

It is apparent that the mean-square errors of predictions in (18) could

be made smaller than those in (17), in general.

The complex estimate of xk that can be formed from (18) is

P

x a Uk * iv (gnXk-n * hnX-n)' (19)
nl n

11
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where
19n " +  •iB .)]

ni 2n n n nhn " 2[4n " an + i(Sn + vn)]" 20

(The form (19) is the one alluded to in reference 1, footnote to eCua-

tion (58).) The coefficients {gn"P and Ihn"P in 19) are twc c ,-.-

pletely independent sets of complex constints that zan be choen. :nce
the complex predictive filter in 15) is obviousl.. a specia. case C:
19, it is expected to have a more uImited ab i t .;7:7er -red:c-

tion than (19'" however, r15) ma, suffice for s'ectra' a. "
purposes. 'For a real process, '19) reduces to 13.

Now suppose that a pair of real processes were ictual1'. generito
according to p-th order autoregressions,

p
n k-n n k-n

n-l

p

k  (S nUk-n nk-n
nil

where all the quantities are real. Then conplex process

p
Xk  u - - h + - , Xn n -n n ,-

where gn and hn are given by (20), and

wk dk  + ibk.

Now If -n n - n -" 'n, for I < n < p in i21 , we Ket e * .,
* 1 'n, and . ields autoregresson

P

hn k-n "

12
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So a linear prediction according to (15) is not expected to do too well
on the actual waveform values given by (24), no matter what the statis-
tics of {wk) are. However, the spectral approximation available via
(IS) of Gx(f) for process (24) can be ver good if p is chosen large
enough in (15).

As an example, let p - 1 in (24):

Xk h 1 * wk, (25)

where h and wk are complex with

1h < 1, (26a)

W kwn ' 'on' WkWk-n O. (26b)

The excitation process described in (26b) is an analytic process, as
witnessed by the zero value for the second ensemble average. We find
averages

k x 0, w kx* 6on n > 0, (27)
k k-nk-n

and correlations

Rn  Ink a , 2 4n k k-n 1 - 1h,2  0, n 1, 3, S, (28)

Rhx I 0, 02,4, (28)

On X k Xk-n 1 -h 2

-1 - h 11 h In , n 1, 3, 5, .. (29)

Since (29) is not zero for all n, process {xk) of (2S) is not an anal-

ytic process.

If we use the facts (derivable from the definitions above) that

R *R, #Z 0 (30)

-n n -n n

13
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we find that the spectra

GC~i )  I Rn exp (-i2wfnA)

1 h 2 h31 1

1-1h12 exp (-i2lf2L)

and

C(f) - n exp (-i2,rf nL)
n

2h cos (2rft)

I1 - :hK exp (-i2,f2)

Generally, spectrum G(f) is real and positive and C' f"  s conplex
and even about f = 0. For this particular example, .3, s also
even about f = 0.

If we attempt prediction on the process 2S accor-in_ t.c " an-
we minimize

Ek k '

we find

A = 
3-

an " n n .

and

(m nh! ) -
2

A p
'h p >

Now (34) is hardly the same result as the actual 3ut regre >on .-
Nevertheless we find spectral approximation

14
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p|

G ("), p u2 (36)

from (34); that is, the spectral approximation is exact for p .2, de-
spite the obvious error of (34) in terms of waveform prediction.

If instead we attempt prediction on process (25) according to (19)
and we minimize

IT 1 ~ (37)

we find, of course,
• O h I0, n 0 1

gn h, n -1 (38)

and

•inje '- I • a (39)

For 'h12 near 1, the error (35) for p > 2 is approximately twice as
great as (39).

For the general autoregression in (22), it is shown in appendix B

that for analytic white noise {wk), (hn)1 - 0 if and only if fgalP a 0.
IN 

0
Thus, given a complex data sequence {xn 1 of unknown origin, we can de-
fine

N
A 1

_-in xx 0 < m,unos N I n-s ' -

N
A 1 2R 0 I iI (40)

nal

Then, if tgI/ o < I for 0 < m < q, the autoregressive model (19) with

(hnIP - 0 can be used with some confidence for p < q to predict the ac-

tual waveform. But, even if some k 0 0, the autoregressive model (19)

with (hnIP - 0 can still be used to estimate the spectrum of the process

15
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{Xkl; however, in order to attain equivalent spectral estimates, it has
been observed that more data points, N, are needed when some hn # 0

than when ;hn} z 0.

If a process is generated according to autoregression

p

Xk :zg n Xk-n * wk' (41)
nal

where process wk- is not analytic, then {'m} are not necessaril." zero.
Thereby prediction (15) will not necessarily give accurate predictions,
although the spectral estimate can still be adequate; this situation is
discussed further in appendix C. Generation of analytic processes is
considered in appendix 0, and a more thorough look at the prediction
capability of (19) is considered in appendix E.
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5. DISCUSSION

A program for estimating the autospectrum of a complex univariate
process via linear predictive techniques has been presented. Although
it can be used to estimate the cross-spectrum of two real processes, it
is not recomended because estimated values of magnitude-coherence
greater than unity can result. Instead, the methods of multivariate
techniques presented in reference 3 should be employed; in fact, the
theory for complex multivariate processes is developed there and a
working program given.

Although the program presented here presumes that none of the data
points are bad, it may be readily generalized to include bad data
points. The method and program presented in reference 1 furnish the
necessary background for this extension.

Application of the linear predictive technique in (15) is most
successful when the complex process under investiagtion is analytic.
Otherwise, the more general prediction technique in (19) is worthy of
consideration.

17/18
Reverse Blank
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Appendix A

FORTRAN PROGRAM FOR SPECTRAL ANALYSIS

The following program for spectral analysis of a complex process
consists of five parts: a main program and four external subroutines.
The subroutine BURGCX computes the complex predictive filter coeffi-
cients, POWERC computes the fractional power in bands (J) -1 Hz wide,
MKLFFT effects a fast Fourier transform (reference 4), and QTRCOS gen-
erates a table of cosine values (reference 4).

A-i
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6. SPCIIAL LSTINTION FOR COiiPLc. DATA
f. USt~t CHA,%GE LIIJL 15 AM.) HEPLACE LI14ES~ 20-33
C; N = .,Lta3Em~ OF COMPLE.X O.ATA POI-.tTS; 1.*4TFGER Ilm-ur
c AWO),0.A(N) = CO?.PLEX INP'UT :jATA; ALTERLJ '.r. OUTPUI
L. PMA^ = MAxIM'UM UHt)EK OF FILTEHc; If\ITEGEI I'
C J = L&-E UF FFT CAUST BE A PO'.EK OF ;; To UrE. --(LFFT); 1V.TEGt~k 1?.PVT
C PdES$T =BEST ORL)ER OF FILTLR; LNTLGER' CUTPUT
C A(l)t ... PA(PoEST) = CUMPLEX PREDtCTIVF FILTI( CILFFICIENTSi CUTPUT
C PROL =PFRU(;UCT(1-A,,S(A(P))**2) FOfK P 1j TO PuEST. AjLTPtiT
C RHO(JjP,..,RIIO(PMAX) ZCOILPLLA PJOl%,NAL 1?ED C'hrf--LLTIt;i.SlJ UTPtT
C X*((l)f*.,eXX(.J) =FRALTIONAL PoWErS; O&'TPUT
C. CO(I)v ... PCO(/%h+1I Z QUAkTER C0511D, TABLt Fu.F :FT PUrPOSES
ko Y IS A REIUJINED COmPLEX AUXILIAPY ARRAY
C Yr IS A H40UIRED AUXILIARV AR14AY

1ITEGER PUEST
(.VMPLEX X(It4)eY(N)eA(MCIAA).iirO('IAX)

C COAFLX INrUT UATA IN XI1),..,X(I.)
CIJMPLEX Al#Z(14o00
LEFINE
EULFIrE RAN.):FLOAT11)/34.. 597383b7.

AI-( *b5, bb)

LC1JC0. .0.)
6v 21 L=2# 1400
I=IRANLI

I=JRANL
R2RAN-o.b

21 ZCL)zA*Z(L)+CMPLXtR1.R2)
00 22 I=1.N

22 Xtl)ZZ(1t14O0N)

I INFURF4AT(IMIPI INPUT DATA:')

C EVALUATE PRgICTIVE FILTER COEFFICIENTS
CALL 8URGCX(hI*PMAXXtYP8ESTAPROU,RHO)
PR4INT 9, XIN)

9 FOR4MAT(/' MEAN:
kj=REAL( y(r)l
PRINT 10t ki

10 FvkMAT(' STAUDARO uEVIATION ='#E13.8)
PKIt4T 2P POEST

2 FONMAT(/# PbEST =fPI3)
IF(PdESTEQ.0) GO TO 12
PRINT 3
FO.(t4AT(/' PRADICTIVE FILTEkt COVfFICIENTS O uEST:')
PRIuT 4, (A(X)vI:1,-Pl3EST)

4 FORMFAT(41E18P8E1598it
12 FR.NrT b. PROD

A- 2
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FORr4AT(/l PRODUCT11-A83b(AP))**2k :h.El3.6)
PvRidT 6

b FoQrIAT(/' NOKMA614rLD Cu'ARELATICN CoEFFICIL'iTS:')

CALL QTRCOS(COJ)
C EvALUATE FRACTIONAL PO*ERS

CALL Pov.RC(bESTAPRu.JXXYYCOSUM)
FiiijT 7

7 FORi4ATC/' FRACTIONAL POAEKS:f)

b FQKCMAT(2Xt10EI3.b)
PkiNT 11. SUM

11 Fo8RAAT(/* SUM OF FkACTJUNAL POhc.RS =OPE13.6)

L .4 z = ,- .A UF (,Utf-rLLX LATA POI, TS; I*4't GEH II"I-,uT
L il i,4 :.AAI-'iUN' Ok~tK vF F11 ..TL,'c; I'.TEGH-j IN4Pul

~~~..~~ AfI),ve,..AI) PLFEx jTA ARRAY o'014 PT; ALlEHEt, or. OiTpiT

~ 'Y1),(2),,.,(N)= LMPLLX ALXIL.'ARy Api~i4Y; SC,ATCta IN ;UT
.G, (-Tp"jiTp Y(1),Y(e)p ... pyCPmo%) =
Su.. -vlr~uTp (P, =C ALEi'i, AN,~ YVP) = STjDOANL LEIvjkIQI OF INPUT DATA

L. PoESI = bLST UkUJLN OF FILhtR; IriTL,,,E CUTPUT
L. A(1 Mt(2)#.veMIP0LST) Z C,)MPLc-X ir<kDILTIVL I'ILTEj. CUoEFFICIENT APqAY
t- A(1;PLzTj.A(2;tbEST)P....PuFST;PaEsT); OLIPUT
L. Prv = P'UC.T(I-AbSm(P,..,EST))**ke) j..R r'l TO joESTs OUTPUT

ktj((,)...AHU0f-,A) CUPLEX NOr'.AL 1 EL COHRLTICJSI OuTPLT
~.Cv;IP- -. A X(i.IeY(J)A(PfiAX)NI(p~,MAX) IS PECUIF'E'j) IN r.AIN PRObR,.M

I.jl~GE(i VMAA#PutST#P

..AJtILL ,'Kr-Cl$IU'4 bSdKeSA1,St

'i-PLEA Xli) rrCI)A(l)t~mH(J)
JF(0-AAX.GT.3.sbHTI.l3 ,.R1NT 2t PMAX.Nt

IL I-f.-fAT(/' Pl-AX =601409 IS Tr'O LARGE FON *oU',.Pzrm OF CATA POIN-TS iJ =1

S1:I))

,j 1 I=j#N

SI =C.AS1*XI KA S) ArA3 l)/s

SJblihMCT ;-LAra. ANLJ SCPLL %C UNIT vARI~fCE
Se.=O*
LJ .5 I:IeN

LO 3 =P

A- 3



et3LST=G

L. CA&.Lui.ATE CROSS-GAIN; E.Qo 155

Lv 7 I=0L14
1 IhEALtXCI) l

T3,)REALtyCI-1))
l4=AP AGYi-ij)
5AKSAkTlT5+T4*T4

7 S6Sb+T*2+T2*2+T3+*ZT4**2
b*k*SAR4'Sb

C=2. *SAX4'Sb
G=CM4PLXCBPC)
b:1 .-B*BwC*C
PH)DUC=PHODUF,*b

C CALCULATE FILTEB CUEFFICIEtiTSI EQ$. 16C&1'48 . ST*>L. 114 XUl)to.,,X(P)

IF(P.Ewi,1) GO TO 8
L=P/2
L~O 9 I=JIL
T=A( £)-G*CONJG(X(P-11)

C CALCULATE NORMAI.IZED CORRELATICN COEFFICIE.T; E . 149
a T=A(P)

IF(P.EOI) GO TO 1'4

CO 15 XzJ.L

14 RmO(P)=T
C CALCIJLATE A6AIKE'S INFORMATION~ CRlTEICNI E, b. 1'-&202

RELEJR:B*SNGLCSB)/ (2.**0.-P))
AIC=LOG(RLLESRI+4.*PF.OAT (P) /(N-Pi
1F(AjCG~oAICMIN) (70 TO 10
ATCm I1-AIC'
P8ESTZP
PH~O=PROPUC
LAJ 11 L:PP

11 AcI=X(Zl
10 zF(P.EQ,PmAxj Go TO 16
C UP'DATE FORWARD AND BACKSARU SEoUEN.CESI EQ. lb3

LZP+1

DO 2 I=N#*Y6 -lj
YV(I )Y(jII11..ONJGf(7j*XC )

A- 4
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y1(P) =(6
(60 TO 6

Lt, y(PMAX)=G
IF(POESTEQ.PMAX) 60 TO '4

C COMPUTE EXTRAPOLATED NORMALIZEu CORRELATION
C COEFFICIENTS FROM PBESTt1 TO PMAXA EQ. 165

L=PBEST, 2
U0 17 P=:LDPMAX
A(P)Z(.,#O*)
T=(0. 0.1
LUQ 18 I=2.PbEST

18 T=T+A(I)*I*IO(P-I)
17 RHU(P)=T
'4 X(N)=Sl

Y (N)CmPLXCS2po.)
kET URN

S5joROU1INt POHEC(-bSTAPkO,..JXXYYPCOSLJ')
C T,-dS !zUf3RCPL,TINE COAPUTES THE FRACTIONAL P0O-0'S t1, BA,..,S 1/(J*DFLTA)
~.PdLST L~sT OkUER OF FILTER; INTL6,ER INPUT

r- A(l)v9**vAcPbf-ST) = CUM.PLeX FILTEK COEFFICIF hT 1k.,%siAY; INPU'LT
C PRUL~ = PRWijUCT(l-AcS(ACP))**2),FOh P=1 TO IFiLSTs INPU.T
C J =SIZE OF FFT1 I(TLGER Ii-PUT
C XAw AUXILIARY ARRAY U14 INPUT
C XX(1)P...,XX(J) =FRACTIONAL PoWE1RS Oj, OUTPUT
C YY = AUXILIAkY ARRAY1 SCRATCH INPUT
C C(,cl)t...CO(.J/'4*1) Z GUARTER COSIa-E TABLL Ff.,vA FI Tl Lip(IJT
C DIMENSION XX(J)fYY(J.U(.J/'4+1) 15 RFGUIREV IN 1,AIt,' PHO5tAM
CCO1Ap6.X A(pMAX) I~i RLGUI$.EO IN. M/IN pF;OGKA-1v f.tiE 4AX.,E.rBFS1

INTEGER PbEST
DIMENSION XX(1)#YY(lY#CQ(1)
COMPLEX Ail)
F :PROD/j
XX(1)=1.
YY(1)=0.
IF(PoLST..V) O 10 '4
L~v 1 =1#PIUEST
xX(1+1)=RLAL(A(I1k)

1 Yy(I,1)vrAIMAG(A(I)i
4 L=PdEST.2

LO 2 I=LeJ

XXCI)=Oo

L:1'4'427*LOG1~J)+p5 0 LoG2(J)
CALL MKLFFT(XXPYYPCC#Lt-l)
SUM= 0
0') 3 I:1fj

.3 SUM=SU1N4AA(1)
kETURN
L NOe.

A-5
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".roUTINL 'i4LFFTfAPYtCCo-vySN4j
LV'EdJSLCN )'i1) .r(1) *CC(jJ eL( 12J
r4IVALENCE L4LIIe(I L~ LOL. )eu. 9 i.'))*(c.I(~

-2(~L.L12I I

LV 8 L0=10"

LIA=2*L 'A-L

IF(IARG.LLdjO')4rJl) %.C T., '4

S$i1Si*Cc i lAiG-'j4
bo TO o

'4 c:CC(IAPG)
s= i S. iCC VI'L4R- IAF~v
r v6 L.I=LIXd.J.LIX

wl=UL'LI Ar

w4=AJI 3 L ' ,A
l =..J)v~lX(Z)
Uzrw (.1: sp~y Ijz)

otCoiirTINUE
LO 40 J=1012
L. (,J) =1

LvJ bn .~J3lLI,..

... 60 .J6;J5#LboL5
6bI ,J7%JL7tLb

UO 611 .w9=:.J6L9eL8
60 61 jliQJ9pLlltL9

LO 60 ..RJ11PJQLI1LXO

IFC..J-Jki 5jblIb2
SL F'.:A(%r4)

x~r)=(K
A (.I))=
F IZY (.jt4)

A- 6
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Y (%)R) =F I
5Z .jN=JN+1
60 CuNTINUE

kEl UJRN

Sw~okOUTINE jaTNCuS(Cp,gj
L ii-iEijSioei cC 1)
1c~ *1./+

1 I:1qN41

rmt.Utif4
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Appendix B

PROPERTY OF AUTOREGRESSIVE MODEL

The process of interest here is given by the autoregressive model
(22): p

xk = n (gnx1_n + hX .n ) + wk ' (B-i)
n-i

where excitation {wk is analytic white noise. That is,

w w_ m  w6 wW O. (B-2)

k k-r orn' k k-rn

It then follows easily that

wkx*_m a 
6om, wkXk m  O, m > O. (B-3)

Use of (B-2) and (B-3) then yields correlations

p

xkr x (g~ .Z+h R ) m r>0, (B-4)m k kk-m l Cgnm-n n m-n

p
Rn l

R k k-r I (g R + h #E* + 6 , m > 0. (B-5)n=1 -n n m -n om_

For given coefficients {g n and {hn}l, (B-4) and (B-S) constitute si-

multaneous equations in thelunknown crrelations.

Now let us suppose that

hn = 0, 1 < n < p (B-6)

Then, from (B-4), the first p + 1 equations yield

B-1
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4z 0 - gl1 .1 g p - 0

R p glp-i " g p O .0B-)

Therefore

RM = 0, 0 < m < p,

and from (B-4) and (B-6) it follows that 4Z. is :ero for al. m.

Conversely, assume that

Rm a O, 0 < m < p. B-9'

Then, from (8-4), the first p equations yield

hR + hR + ... h R = 0
1 1 22 p p

h IR 2-p  h2 R ... + hpR 0. (B-l0O

Therefore

h = 0, 1 < n < p, (B-11)

and from (B-4) and (B-li) it follows that Rm is :ero for all m.

Thus we have shown that {hn}p = 0 if and only if (Rmp = 0 in the

autoregression (B-i) with analytic white noise excitation.

B-2
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Appendix C

NONANALYTIC WHITE NOISE EXCITATION

Suppose a process is generated according to autoregression

p

X k I gnxk *wk' (C-1)

where excitation {wk) satisfies

w w*- M B6w w =66 .(C-2)
k k oiW k k- om

6 is complex and nonzero; therefore NOk is not an analytic process,
although it is white.

Then {f~1 need not equal zero, even for autoregression (C-1). For
example, for

p =1, g1  g, IgI < 1, g complex, (C-3)

we find correlations

R z B RM =g mRotm > , R-a R', (C-4)
o 1- 'i -i i

0 B 2' M g ' 0 , Mn > 1, R- (C-S)

1-g

The corresponding spectra are

G(f) AB (C-6)____

-i21rFa-,2(C6Ige I

Asf 2 (C-7)
1I 2g cos (2vtf&) + g

C-1
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Since the {} are not zero, appendix B shows that the coeffi-

cients {hnl would not be zero in model (B-i) with an analytic excita-
tion.

Optimum prediction on process (C-i) using (15) gives

an 0, n 1 (C-8)

with a minimum mean square error equal to B, and the spectial estimate
is identically (C-6). Thus, for this example, the nonanalyticity of
the excitation is no problem.

For the more general model of (C-I) with p > 1, it can be shown
that all {Rm} are independent of the value of 6. Then, although (151
may not be too accurate for waveform prediction, it can still be used
for spectral estimation purposes.

Optimum prediction on process (C-i) using (19) gives

= go other coefficients = 0, (C-9)

with a minimum mean square error equal to B. This yields the same re-
sult as above.

C-2
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Appendix D

A METHOD OF GENERATING ANALYTIC PROCESSES

Suppose linear filter H(f) is excited by complex input x(t),
yielding output y(t). Then correlation

R (T) = y(t)y*(t - T) f df exp (i2lfT)G (f) H(f) 2 (D-l)

y x

and spectrum

G (f) f dT exp (-i2VfT)R (T) - G (f)IH(f) . (D-2)y y x

Also correlation

4Z y( y (t) y(t - 7

- f df exp (i2yrfT)4;x f)H~f) H(-f), (D-3)

and spectrum

G y (f) E f dT exp (-i2wfr)R (T) - Cx (f) H(f) H(-f) (D-4)

Complex process y(t) is defined as being analytic if (D-3) is zero
for all T. Suppose that filter

H(f) a 0 for f < 0. (D-5}

Denote the output of filter (D-S) by y.(t). Then (D-4) shows that
6 (f) and 1y(T) are both identically zero for all argument values.
Therefore single-sided waveform y.(t) is an analytic process.

Let complex envelope

z(t) ( +t) exp (-i21rf t). (D-6)

D-1
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Then

- ,tvt - Z= (-) exp (-i2-f 7" = 0 (D- )
+4 0

tor an,. fo. Thus the comrlex envelope of any stationarv: process is an

anal"tc 7-ocess.

In the other hat'd, -;r the two real processes ut and v t', no

l:ear co"binat:or., * rv , where a and are ::'ex, ever

Ies an an.a: t Ci nrcces' ur.n ess Q , -, an' - sat sf'

very 5rez-a: ret:r,_:,:ns. Thus the nrocess :crstrvcteu n .as not

ana ,: C a D ,. I net -_.e heen expezted t- ,.=eld Keo "re:ction. : a:-

a b2 ' a
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Appendix E

CAPABILITY OF A MORE GENERAL PREDICTION MODEL

If p is infinite in (19), we have prediction

xk= i(gnx hnX*n (E-1)
k n~ln k-n +n k n

Minimization of I'k[2  - Xkj2 yields the simultaneous equations

i (gnRm + hnm ) 
=Z R , 1 <_ m,

n=l n -n n m-n rn -

n=l

It can then be shown that c"k is a white process with

rinlk l 0 = R+ hn')' (E-3)

Also it can be shown that

Ck k. rn, 0 for m 0 0, (E-4)

with

2 on~n h1R). (E-S)
nul

However, ?k is not an analytic process since (E-S) is not zero.
The simplest example to demonstrate this is

Rn o Ro6on' Rn = 6o6on' (E-6)

for which (E-3) and (E-S) yield Ro and o, respectively.

E-1
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The spectral relations for (E-l) take the forms

GF(f) = Gx(f)IA(f) i2 + Gx (-f)IB(f) I'

+ * ( (f) A(f)B*(f) + [ x(f)A(f)B*(f)]* (E-7)xx

and

CZ(f) -= x(f)A(f)A(-f) + Gx(f)B(f)B(-f)

+ G (f)A(f)B(-f) + G (-f)A(-f)B(f), (E-8)X x

where

A~f) I gn exp(- "n.

n=l

and

B(f) h exp (-i2"fn,' (E-9)
n=l

are considered known after solution of (E-2) for coefficients 'gn' and

hnI.. Equations (E--) and (E-S) can be solved for Gx(f" and Vff):

A A* B B* A B* A*B- - "

B B- A A* A S* .,*B G
xx

AB AB AA BB G G.
- - - X x

A*B* A*B* B*B* A*A* C,* I '

- - - _ (E-l )

where

A : A(f), A - A(-t),

C - C (f), C -C (-fs,
Cx Gx (f X- xf

S-- J , C- C*Cf). (E-11)
x x x x

E- 2
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This requires the inverse of i 4 x 4 complex matrix at each value of
frequency f.

Thus an alternative spectral estimation technique is available
from the more general prediction model in (E-1). Whether it is worth-
while in terms of stability and resolution is unknown, as it has not
been pursued.

E-3/E-4
Reverse Blank
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ABSTRACT

The characteristic function of spectral estimates
obtained via overlapped FFT processing of windowed
data is presented for a random process containing a
signal tone and Gaussian noise. For the special case
of noise-alone, the probability distribution of the
estimate is plotted and compared with an approxima-
tion utilizing only the first two moments and found
to be in excellent agreement in probability over
the range (.0001, .9999) for several data windows,
overlaps, and time-bandwidth products. This result
means that knowledge of the equivalent degrees of
freedom of the spectral estimate is adequate for a
complete probabilistic description, even when the
overlap results in significant statistical depend-
ence of the component FFT outputs.
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PROBABILITY DISTRIBUTION OF SPECTRAL ESTIMATES
OBTAINED VIA OVERLAPPED FFT PROCESSING

OF WINDOWED DATA

INTRODUCTION

Estimation of the autospectrum of a stationary random process by

means of overlapped FFT processing of windowed data (the so-called

direct method) is a popular and efficient method, especially for data

with pure tones present. Stable spectral estimates, as measured by

the equivalent degrees of freedom of the spectral estimate, result

when the product of the available record length and the desired

frequency resolution (the time-bandwidth product) is large in com-

parison with unity. (See, for example, references 1 and 2 and the

references listed therein.)

The equivalent degrees of freedom of the spectral estimate is an

incomplete probabilistic descriptor, because it depends only on the

mean and variance of the random variable. In this report, we address

the problem of obtaining the characteristic function of the spectral

estimate with overlap processing,of a signal tone present in Gaussian

noise, and thence the cumulative probability distribution (perhaps by

numerical means as given in references 3 and 4). For the case of

signal-absent also, we wiil compare the exact probability distribution

with an approximate distribution that uses only the first two moments

of the spectral estimate, to see when the approximate distribution can
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be used as a valid probabilistic description. Some related work is

available in reference 5 and the papers cited therein.

A discussion of the relative stability of the spectral estimates

with signal tones present, and of a cross-spectral estimate,completes

the presentation.

CHARACTERISTIC FUNCTIr'4 FOR SIGNAL PLUS NOISE

The method and conditions of processing are described fully in

reference I and, for sake of brevity, will not be repeated here. The

power spectral estimate at analysis frequency, f, is given by

(reference 1, pp. 2-4)

G(f) - 'P p

p=l

where P is the total number of weighted data seg-nents. Here"

Y(f) =fdt exp(-12,rft) 'X(t ) 4w L - (p-l

where x(t) is the available complex) data process, (t is the data

window of length L, and S is the amount of shift each adjacent data

window undergoes. The fractional overlap is therefore 1 - S L.

*Integrals without limits are over the range or non-:i<3 :ttr..:

• - • ' . m a i I i2
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If we let x(t) be composed of a pure signal tone*

s(t) = A exp(i2rfot+iG) (3)

and zero-mean Gaussian noise n(t), (2) can be expressed as

Yp = Yps + Ypn , (4)

where the variable f is suppressed for notational convenience and

complex (non-random) constant

Yps = A W(f-fo) exp[ie"i2r(f-f )(l L + (p-l)S] , (5)
PS 02

where

W(f) -fdt exp(-i21Tft) w(t). (6)

IW(f)1 2 is called the spectral window (see equation (5),reference 1),

and has analysis bandwidth B. Now if analysis frequency, f, is not

within a bandwidth, B, of tone frequency, fo, (5) will be zero; there-

fore,we limit consideration to If-fol<B. The remaining term in (4),

Ypn dt exp(-i2wft) n(t) w - L - (pl)S (7)

is complex Gaussian since n(t) is Gaussian.

Substituting (4) in (1), the spectral estimate is given by

P

G(f) = Ypn (8)

Pal

*The generalization to several separated tones will be obvious,
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where Y ps} are complex constants and {Ypn} are complex correlated

Gaussian zero-mean random variables, and the correlation is due to the

overlapped processing.

In appendix A, the characteristic function of forms like (8) is

evaluated; it specializes here to the form

i i11 X ;7/P
C() (1-ix PU/P)- exp P (9)

P., I( l..iy~/P

where {ip} are the eigenvalues of P x P matrix

pn qp

and

H -1 Q K m '

,here Q is the normalized modal matrix of K and

m= [, ... Y IT 12

The evaluation of K in (10) is considered in appendix B. 1,

K = [K qP] = G nif  ' , CR

where t, ( f, i> the noise spectral density it analvsz frequen ,, f,
n

[T) :t W~t)W,*(t-7111
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and

I r r ...r
1 2 P-i

Rt [rq-p] =r . (15)

r
L-P 1

where

Sw(ms) (16)
r -

m ow(0)

A Fourier transformation of (9) would yield the probability

density function of the spectral estimate (8), for a tone present.

This would have to be done numerically, but has not been pursued here.

MEAN AND VARIANCE FOR SIGNAL PLUS NOISE

By means of (A-16), the mean and variance* of spectral estimate,

G(f), in (8) can be expressed as

o lk 2 (17)
Mean {G(f)~ K Im I (7

k=l

P-i

1a G fLk)I H (18)
Var k(f) = L - JKkI + £2 m Km

k=l-P

in terms of the quantities in (12) and (13). Employing the explicit

relationships in (12) and (13), there follows

Mean e (f)l = G(f) (O) A2iW(f-f)12 (

*More generally, the cuinulants are given by (A-7).
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and
P-1

Va kf)(0P r k
k=-PP-1

k=1 -P

where we have employed (15) and (5).

At this point, it is convenient to define the output signal power

of a window filter with transfer function, W, centered at f as

Q s(f) = A21W(f_f )12 , (21)

and the output noise power of the same filter as

Qn(f)f d  n  n (f)fd f) 2 = G (f w(0). 22)

Then (19) and (20) take the forms

Mean (fI = Qn) Qs 3

and 
1kVar {G(f)~ Q2 (f) (- L' ) Irk

=n P
k=l-P

2Q s(f )Qn(f)l 1k1 rk exp(ik2'T(f-fo)SJ).

k=l-P

From (24), we see that the presence of signal (A # 0) always increases

the absolute level of the variance of the spectral estimate over that

for noise-alone. If the noise is absent, the variance of the estinmate

is zero. If the signal is absent, the equivalent degrees of freedom,

defined as

,6 ,.,,.. mm mmmm I m lIl lIRl
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2 (Mean) 2 2
n Variance P-1

E (. 1) I r 12

k=l-P

is identical to equation (8), reference 1, as it should be.

On the other hand, for Qs(f) >> Qn(f),

2(Mean)2  Q (f) (26)

EDF Varanc , (26)Ik
IQ (f) I- r ) k exp(ik2w(t-f 

)S)

k=l-P

When a strong signal is present, EDF s is larger than EDFn by approxi-
15

mately the ratio Qs(f)/Qn (f)>> 1, since the ratio of sums in (25)

and (26) is approximately unity for f - f and reasonable overlaps

(see (27) below). That is, the relative fluctuation in the spectral

estimate is reduced by the addition of signal, even though the absolute

variance increases.

For Hanning weighting and 50% overlap (S = L/2), we find r = 1,

r = 1/6, r= 0 for ka2. Then the two sums in (25) and (26) take on+1 rk

the values

1 + (l-)T1-, 1 + (l-F) - cos 21r(f-fo)S (27)

respectively. The former value is slightly larger than unity, whereas

the latter value varies between approximately 2/3 and 4/3, depending on

the exact location of the signal tone frequency, fop with respect to

the analysis frequency, f. For an FFT approach, at least one bin has

7
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its frequency location, f, such that If-f0 I (2L)-1; thus, at least

one frequency bin is located such that the latter value in (27) is

larger than unity.

Figure IA represents the power spectral estimate, (1), plotted on

a linear scale proportional to watts. The "ribbon width" in the region

of noise-alone is denoted by a. The amount of fluctuation of the

estimate at fo is denoted by b and is larger than a. (The quantity b

is observable only by rerunning the spectral estimation procedure for

independent noise segments.)

G(f) 10 log 0(f)
i.d

lb~_b b ) a T d <c

F t _ t__

fo fo

Figure 1. Spectral Estimates for Signal Plus Noise

If, instead, the power spectral estimate is plotted on a dB scale

(see figure 1B), the noise-alone ribbon width, c, is larger than the

fluctuation, d, of the estimate at fo" The mathematics behind this

8
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conclusion follows. Let the spectral estimate at frequency f be

expressed as

t(f) = m+x, (28)

where m is non-random and x has zero-mean and variance a2. Then

AB=- 10 log G(f) = 10 log m + 10 log(l+-.) (29)
m

Now suppose that alm<<l, which could be realized by means of a large

number of pieces, P, or a high signal to noise ratio; then
^ 1 10
dB - 10 log m + (30)

In 10 m

The last term in (30) is proportional to the relative stability of the

spectral estimate (28); in fact
j 2

Var dB- (31)
(7nl 1 m2

which can be made arbitrarily small. Thus a plot like figure 1 is

easily achievable and should be anticipated for a pure tone in Gaussian

noise.

PROBABILITY DISTRIBUTION FOR NOISE-ALONE
A

For noise-alone, the mean and variance of spectral estimate, G(f),

are available from (19), (20), and (16) as

Mean {G(f)} = Gn(f)w(O)j

P-1

Var 4G(f)} G G2(f) I. (1- IL) I (kS) 12 , (32)

k=l-P

9
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which agree with equations (5) and (6), reference 1, respectively.

More generally, the characteristic function follows from (9) as

C(Q)= I I -pu/pt (33)

psl

Now let us define a normalized random variable

- (f) (3o*

G n(f) 1*1 (0)

notice that the scale factor is independent of P and the amount of

overlap. Thus the mean E{~g,  1, and the characteristic function of

g is

pp-

Cg9 PR
p=I

where A\(R), are the eigenvalues of matrix R in (13). Then by a

partial fraction expansion, the probability that random variable '

remains belo" a threshold value, v, is found to be

P

Prob ( <v) IE B k exp (R' , v>O,

k-= k

%here

flfR) A$

k 

p
PSI
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We have assumed all the eigenvalues of R to be unequal; this is the

case if the overlap is greater than 0, which is the case of most

practical interest. The eigenvalues are all non-negative since R is

a non-negative definite matrix (see appendix B).

Equation (36) is an exact expression for the cumulative probability

distribution in terms of the eigenvalues of matrix R. If we consider

another random variable, t, with the same mean and variance as g, a

candidate approximate characteristic function is (guided by form (35))

-ib (38)Ct ( )= (l-i /b) b, (8

where, in order to maintain the same variance, we choose

P P P-1

11 X (R) 2 1 r 12 = I I k 2 (39)
SP 2 p-q p- Irki

p=l p,q=l k=l-P

Equation (8), reference 1, shows that b = K/2, i.e., half of the

equivalent degrees of freedom. Then the approximate probability

density function is

1 bb-l -bt
p(t) - b t e , t>O, (40)

r(b)

and the approximate cumulative probability distribution is (equations

6.5.2 and 6.5.12, reference 6):

dt p(t) = (by) e by F (l;l+b;bv), v>O. (41)
0r(b+l) 1 1

0

11
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(A further simpler approximation, not pursued here, would be to set

bI = integer part of b, b2 = b + 1, and bracket the results above by

two simpler sums.)

We shall now make quantitative comparisons between exact result

(36) and approximation (41) which has the same mean and variance. The

question is: is b in (39) and (41) a sufficient statistic to accurately

quantitatively describe the exact cumulative probability distribution

(36), for representative data windows, overlap, number of pieces, ar.

time-bandwidth products, over the range of probabilitieR of interest

to most users? If so, then attention can be confined to the equivalent

degrees of freedom and its maximization alone, as was done in reference

1; this simplification would be most worthwhile and of obvious imgor-

tance.

The actual numerical computation of the ou;,nulativo pro.ab:7a v

distribution Prob( v), is considered in appendix C. In f;.g,.re , tne

exact cumulative probability distribution for Hanning windown,

presented for time-bandwidth product BT = S, lo, 3. n4, her"

the available record leingth and B is the des r.J rest l t ! andw>:..

In each plot, the overlap is varied from 0 to approximatel -. D- and

the distribution plotted on a normal probability ordinate covering the

range (.0001, .9999). The fact that the curves are not straight lines

over this range means that a Gauss ian approx imat ion to the power

Spectral est imate would not suftfice. However, the Gaussi.an approx imi-

tion would be a fairly good one for larger BY and P (vee figure 21), for

example).

12
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The fact that the curves in figure 2 are virtually identical for

overlaps greater than 50% means that there is little point in choosing

overlaps greater than this amount. This confirms the choices of over-

lap made in reference 1, where attention was confined to the equivalent

degrees of freedom. The ideal distribution would be a vertical line

at v = 1; the closeness of these curves to the ideal is a measure of

the spread of the spectral estimate.

The corresponding results for the approximation (41) are presented

in figure 3. The curves are virtually identical to those of figure 2

over the complete range of probabilities considered, for various values

of BT and overlap.

For a cubic window, the exact results and the approximation are

given in figures 4 and 5, respectively. The conclusions are identical

to those made for the Hanning window.

13
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FLUCTUATIONS OF CROSS SPECTRAL ESTIMATE

This topic is not directly related to the earlier material on

autospectral estimation; however, it is an important observation and

merits a comment, For two uncorrelated processes, x and y, the cross

spectrum G x(f) = 0. However,the cross spectral estimate,Ux.v(f1,

satisfies the equations (reference 2):

E 0,(f) 0,

E G 2(f)} = 0,xy

and

E {G (f) == G f)G f .2,XV ' K xx '

where K is the euivalent egrees of fr-eedom. o > , t

approximatelv complex Gaussian. Therefore, if we define the amplitude

estimate

it has prohahility density f'nction

, ,xp x>. -4

Then the mean of A is

E A(: O

.hich is a rather slow decay w:th K, Then the ratio of the can

.Lmplitude, 1-3 , to the square root of the product Of t, .i.:o-:uri.

is

11 - nn nunn n I plni
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E _J Tr 1.253 (46)

[Gxx(f)Gyy (f)] (2K K

If, for example, K = 32, this ratio is .222 which is -6,55 dB; this is

not very far down relative to unity coherence, though the two processes

are uncorrelated.

Also,

Var JAI = (2)a2 (T)Gxx(f)G y y (f).... (47)2) 2 K

and, therefore,

Standard deviation JAI _ 4 0.52, (48)
Mean JAI \41

independent of K (or P), So for a zero cross-spectrum value, A =

iG (f)l will always have the same amount of relative variation,
xy

regardless of the number of pieces P (for large P); thus, on a dB

scale, the "ribbon width" of the cross-spectral estimate is indepen-

dent of P, when the two processes are uncorrelated.

23/24
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DISCUSSION

An exact expression for the characteristic function of the power

spectral estimate of a pure tone in Gaussian noise has been attained,

and then specialized to noise-alone. In the noise-alone case, a

numerical computation of the cumulative distribution function has been

conducted. Comparison of the latter with an approximation utilizing

only the mean and variance shows excellent agreement over a wide range

of probabilities, regardless of the exact window, overlap, or the time-

bandwidth product. This means that concentration on the equivalent

degrees of freedom, particularly on its maximization, is sufficient

for a probabilistic description of the auto-spectral estimate.

Maximizing the equivalent degrees of freedom results in a narrower

probability density function, as witnessed by the increased steepness

of the cumulative probability distributions presented.

An entirely different method of auto- and cross-spectral estimation

has been presented in references 7 and 8, and is mentioned here as a

viable, attractive alternative, particularly for short data segments.

Since only a few parameters are estimated, the estimates are potentially

more stable, whereas the technique considered here (and in reference 1)

assigns independent degrees of freedom to each and every frequency

cell of interest and, therefore, requires the estimation of many more

parameters.

25/26
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Appendix A

DERIVATION OF CHARACTERISTIC FUNCTION

The first half of appendix C of reference 9 considers the Hermitian

formH F =.X HBX, 
(A-1)

with mean and covariance of.the complex random variable matrix X,

E JXJ = M, Cov JXI = E (XM)(XM)H = K , (A-2)

where matrix X is P x 1, and matrix B is Hermitian and P x P. Defining

P x P matrix

A = K BK , (A-3)

with corresponding normalized modal matrix Qand (diagonal) eigenvalue

matrix X, we can express (A-I) as

P

F = VH\V =E XkJVk1 2I (A-4)

k=l

where matrix V is P x 1 with mean and covariance

E JV =QHK' m = , Cov V 1 (A-S)

Then a slight generalization*of the second half of appendix C

of reference 9 (see also reference 10) yields the characteristic

function of random variable F in (A-4) as

*We must also have E(X-M)(X-m)T - 0 in addition to (A-2).

A-i
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C(~ =T (1-ix k I exp i k 1 'k (A-6)T- kiA

where , and k' are the elements of matrices X and L. The cumulants

of F follow easily from (A-6) as
P

C= 1 Z <(lnkk ) •

kl

In particular, the first two cumulants are
P

Mean JF} = c, Z1 x k (111k )

p k=1

Var IF$ c j A (l k 2 s

k=l

For the case of zero-mean variables, i.e., m= 0, , viei.ds

= 0, and the characteristic function becomes

p

= fi VI_1Akk )-I for zero-mean variables.

k=l

Fhe cumulants are then
P

c (n1)!ZX k  for zero-mean variables. v.\-10)

k=1

(It is not necessry to ea luaIte K for eigenvalue purposes alone,

)CCIUSe the vci-nviIjV< ort matrix Adefincd in i-3 jre the -amc

as the C1 L'crvnviLULS of KBor BK )

A - .2
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As a specific application of the general results above, we consider

B= I, m = [ml...ipn T, K = [Kp-q] (A-11)

Then from (A-3), we see that A = K. In order to evaluate (A-8), we

notice that
P PZ xk E= App = PK 0 (A-12)

k=l p=l

I H_ H _-
fu Xkllki2 =Hk m K QxQHK 2m

k 1 H
=m HK- AK m m m Imk , (A-13)

p P P P-1

X2 = AA = KpqJ2 = (P-Ik)IKkI2  (A-14)

k=l pq=l pq=l k=l-P

x2 k I XX = H K_ QXXQ K mkk

k=l

- H - = mH -M H KA-15)=mHK AQXQHK m:m K-hKKK m :m Kmn, (-

Then (A-8) yields
P

Mean FJ cl = PK 0 E mk 12

k=l

Var IFJ = c2 =E (P-lkl)IKkI 2 1 2 MHKm. (A-16)

k=l-P

The specialization to zero-mean variables is obtained by dropping the

last terms in (A-16).

A-3
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Appendix B

DERIVATION OF COVARIANCE MATRIX

We are interested in deriving the two averages

Epn qn and E 4 pn~qn }  (B-i)

because they are needed for appendix A and to see if the conditions

required there are satisfied. We have, from (7),

E YpnYnI =ffdt du exp(-i2Trf(t-u)) E n(t)n*(u)} w[t-.LL- ( p - 1 ) S ] .

Letting the noise correlation in (B-2) be denoted by Rn(t-u), and its

spectrum by Gn, (B-2) becomes

E YpnY n =Pdi Gn01)/dt exp(i2Tr(p-f)t) w -1-L-(p-l)S .

jfdu exp(i27T(pf)u) w -L q

This quantity is a function only of the difference of indices q and p.

If spectral window 1W1 2 is narrower than the detail in noise

spectrum Gn in the neighborhood of analysis frequency f, (B-3) simplifies

to

B-1
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E jypflyqn* '= G n(f)f du I W(f -i) 1 2 exp[i27f- i)(q-ps]-

= G (f)Ow ((q-p)S), B-4

where

Itw () -!fat w(t)w*(t--[)B-

is the autocorrelation function of data window w.

Now let

Ow (mS)
= rOw(O )  m

Then

E YpnYqn* = Gn(f)¢w(O)r B--

and from (10),

K= G nf) w(O) R B-Sn

where P x P matrix

"I r I1 r .rP_ I

r I-P

is Hermitian, Toeplitz, and non-negative definite.* For real weighting

w, R is a real symmetric Toeplit: matrix. The matrix in (B-8) is the

one required in (A-i) and (10).

*This property is easily proven by use of definitions (B-S) and

(B-6).

B-2
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The second quantity we desire is, by use of (7),

E {YpYqn =Jfdt du exp(-i2Trf(t.u)) E{n(t)n(u4 w[t-' -(P-l)s]

Letting the noise correlation in (B-10) be denoted by n(t-u), and its

spectrum (Fourier transform) by qn' (B-10) becomes

E{ Ypnyq4 =jf duG n (Uf dt exp(i21rh~u-f)t) w It - jt(p-l)S]

=fd2 (i)W(fLI)W(f.I4) exp [ i2Trf(L-2S+pS+qS)-i2T1 (q-p)S] (B-11)

If analysis frequency f is greater than the bandwidth B of spectral

window W, then W(f-p) and W(f+w) do not overlap on the p-axis, and

(B-11) yields

E{YpnYqn} Z 0 if f>B. (B-12)

Thus, the property desired in appendix A (footnote to equation (A-6))

holds true if f>B.

B-3
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Appendix C

NUMERICAL COMPUTATION OF CUMULATIVE PROBABILITY DISTRIBUTION

The numerical computation of the cumulative probability distribution

Prob(^<v) is not accomplished here directly via the sum in (36). The

reason is that, for large P, (36) is an alternating sum of terms of

large magnitude, and accuracy is lost in the final resu1lt. Instead,

the methods in references 3 and 4 are utilized on characteristic

function (35): for a random variable limited to positive values, the

cumulative probability distribution can be expressed as (reference 4)

P(v) = I - Re d 1 exp(-i~v) , v>O, (C-l)

where fi (C) is the imaginary part of the characteristic function f().

We have fi(C)/&- E (A} = 1 as 0 - 0. We approximate (C-1) according to

P()2' Re o 2 fi(E) ex(ivl(C-2)P(v) m 1 - Re{J2d --- ex(iv)i(2

0

and then sample and approximate this expression according to

P(n Av) - 1 - .1 Re{ kk exp [kA, n A (C-3)

k=O
where L A = E2, and IWk are Trapezoidal weights of integration. We

choose sampling increment
2n2-- 

(C-4)
N Av

where N is chosen large enough that fi( )/& does not change much in

C-1
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AL. Then

L

P(n Av) i -Re ALZ w 2k  exp i27Tkn/.fl
IT k -L

k=O
N-i

A1C Re I N- exp [-hTkn/NI (C-5)
1T Z g.d

k=O
where

9k = w f((k-jN) L2

k+jN (k~jN) A

j=O

L+1 I L (C-6)

Equation (C-5) is an N-point FFT; therefore, we choose % as a power of 2

for speed purposes.

The only remaining question is the choice of limit : in ,-"

From (35), we know that

f 1
1 P

max r
p=l

where r. - R)P. Therefore
P

1

2 P

p=IP

C-2
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where IP can be 1 or 2 or ... or P. Therefore the error, E, in using

(C-2) rather than (C-i) is bounded according to

E 2 d& -P+IP-2 = E2_ (C-9)

i Y p -i rP P+-IP

p=IP

This equation can be solved for

1P 2 IP~l-lP

2 = P  1E ^ P
L p=IP

with the guarantee that the error will be less than E if we choose 2

according to (C-10). Since IP is not unique, we choose 2 to be the

minimum value over the range of IP=I, 2,..., P, for then the integration

range in (C-2) can be kept to a minimum.

In summary, we:

specify Av, E, P, BT

compute X4(R) 1 and 2

choose N = 1024 (say)

27r
compute =Nv

compute L =W/

let J = (L+1)/N

compute (C-6)

compute FFT igk and printout (C-S)

choose N = 2048, go back to step 4, and observe change in printout.

C-3
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A program for this procedure for the Hanning window follows. The

subroutines TRIMXD and EIGVLD are presented in reference 11, and sub-

routines DPMCOS and DPMFFT are given in reference 12.

In order to execute the approximation (41), the line under state-

ment number 2 is changed to CALL PROBA(BT, P, Y). This subroutine for

the Cubic window is also presented below.

P

.. I. ' jy" A' ) ) t ( 3)Z(203) ' ;.)

* ,..l .1.2 i5%,1.bw.85,2. 5375,2 .32635,2 .57%3,2 .c7e16,3. Cg023,

C=I.440582, 1 , ,

CA~.L, PjT (I) v 3 5.. . YIXP; 275)

L0 Li 416T:2 u

CALLI
CALL L"'E:u(2,l,0.#Y R- (1))

CAL,-Li. E G t i 3 o 'C I(2

CALL LIi EQ ( P P. o 3F-( 1)l
CALL r1TSMG(Z#!0P1.)
CO 21 zlIj

CAL" Lir4ESG(ZPvQ., 5#.'- ())

4 CALL LINESo{(Z, ,i...C#R(.J)2

LO 23 I:I,51

P:(UT/C) *IP

SL:U(T/C-1,)/(--1)
PR1(.T , dT,PSL
FOk:OT('//i, ST 'EI13.t3,' P 'I' S/L :'E13.8)

CALL PRoEjP(dT,Py)

PRI.,T 3, Y

3 FORMAT(/5E20.8)

00 '4 1=1#51
Q=MIN(Y(l),.99999)
Q:TAX(Q,.000001)
¥(I]:TXNOHM(G,$1)

CALL LINE)G(Z,51 ,Y)
L CONTINUE

CALL PAGEG(Z,0,1,1)

C-4
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CALL EAIT4(Z)
END

SUBROUTINE pNCbDP(dTpP,AfiS)
PARAMETER P=100 G P'AXIM'UM NUmBER OF PIECES
PARAMETER N=2048PN41=N/441
DOUBLE PRECISION N(NMtM) PDCU') t80-) PEV') ve40-) tF0d) PGR(10 vGI 0.) o,(4N4
Sl),CERROROELVePIPSLTPEXI2PRATOELXIPSI~.PhFICAI
INTEGER Pp
DIMENSION AN4S(l)
C=1,4405825800 Q HANNING
IF(P.LE.W) Go ?C I

2 FORMAT(/' P ='14o' IS GREATER THAN = 31

DO 3 Jl5l
3 ANS(J)=-1.

RETURN
1 ERROR=1.0-12

DELv=.06D0
PI=3. 141592653b8979324J0
P1=P-I

DO 4 K=0,PI
4 O(K+1)=U(K*SL)

DO 5 J~ltP
D0 5 K:LP
L=Aas(,J-K)+l

5 R(,.JPK)=D(L)
CALL TRIFMXU (PvmR,0p8)
CALL EIGVLoJ cP.DpdpwpF)
TPE=2.iJO/ PIsEkROH)
X12:1.D100
PR=Q*DO

PR:PR. LOG CE C.J )
AT=1.0.0/ (P-j4 .00)
S=P*EXPCAT*(LOG(TPE*AT)-PR))

6 XI2=MI14Cxl4,S)
NF=N /2

7 DELAI=2.UO*PI/(NF*UELV)
S:= I2/LEL~j

N1:NF-1
DO 6 K=Otf~l

5=0100
D0 g J=0..JC

9 S:S~wFIDXLI (K4w~fNF)*flLLXI)
GRCK+l )=S

a GICK41)=0.00
CALL DPMCUSCCONF)
,J=.4427*".OGCNF )+*5
CALL DPmFFT (GRtGI .CcvJ,-l)
S=200ODELXI/PI
DO 10 4=:1.51

c-s
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IF (,.F.rC, ) HETURji

11 PRIN4T 1A;,S.PASJ
PRI,4 12P AfNS(5l)

12 F0R4~ATC/5L 2C,8)

GO TO I
FUNCTI',;N U(T)
COudLE PRECISIt~N To$!

SI:2.DC*Plsr

RETULR I.

RERl.
FUNCTIZ s oFILXI (X)
0OOLZ PRtLCSIL.., Af. T0P,ALvF;Et9IvT,'P

IF(A.GT.0.0:) GC TO 1.
AToi=1 .0100

RETURri
I IF(X,GT.XTP) Q C TO 3

AL=1..00

D0 2 JI:1,P.
81=E(jI)x/
TEN'p=AL.8E.J I
aE~dE-AL'dZ

i AL=TEI
SO: AL*sAL. E6
IF (SQ* CX*ERkR) S*2.*,jT .'.00) A TCP=' j. ( xTC,)

RE TOR

RETURi4

SUBR0OUINL. PRCEA(bT#P#ANS)
DOUBLE PRECISICN~ GC#C~bVtF1].L
INTEGER( PP].
DIM~ENSION ANS(l)
C=1.82009566 CUBIC
P1=P-1

8:1. /c1./P

00 1 K:1.PP
I8=,2.*(1.-FLOAT(K)/P) .U(,KeSL)0s2

CAPK=2 *P/
PRIN~T 101, CAPK

101 FORM.AT(/ CAPK IS 'E15.a)

18=8

CALL GAMP'A j. ,t Gr~S2, S2)
G0:LOG(C6LE(GJ)
DO 5 KIl
0zF8+K
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5 60260LOG(C0
00 3 K:)ebI
V.*06*(K-1)
IF(V,G1.0.) 60 TO 6
At4S(K) 30.
60 TO 3

6 eV:6.v
ANS(K):EXP(B.LCG(bV)-SV.P11L(OBL(B.1.).DV)-60)

3 CONTINUE
RETURN

a PRINT 4o 8
41FORtMATW/ PROBLEM AT 6 a 9EIS*8)

RETURN
FUNCTION FjjLIAtXU)
OOUHLE PRECISICN SD#TD*AO.XO.A
S021,00
1081,00
AM:-1.0
00 1 K:I#100O
TD=To.X0/ (AO*K)
SDz$0,TO

I P(ABS(T),LE.1.0-e.A8s(S0)) 60 To 2
PRINT 3.

3 FORMATW/ 1000 TERMS#/)
a FI1L:LOG(SO)

RETURN
FUNCTION U(T) 6 CUBIC
IF(T*GE.1.) Go TO I

IF(7.GE.0*75) RETwRN
63U-192/151..( .75-T)..7
IF(TGE.0.5) RETURN

IF(T,GE.0.aS) RETURN
U2U-534*/j19o( .25-T).s
RETURN

RIETURt.
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