AD-R182 299

UNCLASSIFIED

2RCHI;§CTUR&L TRADEOFFS IN THE DESIGN OF MIPS-X<U)

D UNIY CA COHPUTER SYSTEMS LAB
1987 MDA9@3-83- C-.

P CHOW ET AL.
F/G 12/6

1/1

CRLO b TR
| mg g o 2 |
| Ll

e

3

"
an

!
™

MICROCOPY RESOLUTION TEST CHART

U a L
4‘.”4:\01
! v;s,
LR
Ay N
,;’|
AR

S

‘, ‘.,o o M %
.y , V. » \‘Y
R A

[}
.u‘

[T !,

o
- »

Lt el e

To appear in The 1l4th Annual International Symposium on
Computer Architecture, June 3-6, 1987, Pittsburgh, PA.

Architectural Tradeoffs in the

Abstract

mdetignofaRlSCpmcemnequituammlmdy:il

the tradeoffs that can be made between hardware

complexity and software. As new generations of processors
0 take advantage of more advanced technologies,

new and different tradeoffs must be

- the design of a second generation VLSI

MIPSX. s 2o, o)

MIPS-XhtbemocmbdleMPSpmJectnStnfoﬁ
and like MIPS, i*a singlechip 32-bit VLSI
mmnmuit?phﬁedinma\onm,pipeunmg'md

AD-A182 299

5
E

.y We examine
processor,

hxmﬁaumudwhevuﬂngodof@gyckexewﬁon
using & 2-phase, 20 MHz clock. This

inclusion of an on-chip instruction cache and careful
consideration of the control of the machine. Many tradeoffs
were made during the design of MIPS-X and this paper
examines several key areas, They are: the organization of the
on-chip instruction cache, the coprocessor interface, branches
and the resulting branch delay, and exception handling. For
each issue we present the most promising alternatives
considered for MIPS-X and the approach finally selected.
Working parts have been received and this gives us a firm
basis upon which to evaluate the success of our design.

A
Introduction ’

The first generation reduced instruction set
(IBM 801!, RISC23 and MIPS*3) have shown the
importance of making the correct tradeoffs across the
boundary that separates hardware complexity and software
. Hardware should only be used 1o support
features that clearly improve performance. As
implementation technology improves, new features can be
considered and new tradeoffs must be made.
The goal of the MIPS-X project was to combine a new
technology, a8 2um, 2-level metal CMOS process, with the
and experience gained from the first generation
RISC machines, to build a single processor with a peak rate of

Permission to copy without fee all or part of this material is
greated provided that the copies are aot made or distributed for direct
commercial advastags, the ACM copyright actice and the title of the
publication and its date appear, and actice is given that copying is by
permissioa of the Associstion for Computing Machinery. To copy
otherwiss, or 10 republish, requirss a fee and/or specific permissica.

for public 1olease and sale; 8
distribution is unﬂm“ﬂ4

[This document has been opprave

‘ ‘ . Q
BIOA0 GOSN IUNMAGOADOOOOCNNMN, Wb Fa Sl ot e

) Design of MIPS-X
OTE FILE COP) ELECTE
Paul Chow and Mark Horowitz JUN 2 9 1387
Computer Systems Laboratory
Stanford University
Stanford, CA 94305 A

0,
DTIC

20 MIPS and then to use 6-10 of these processors as the nodes
in a shared memory multiprocessor. The resulting machine
would be about two orders of magnitude more powerful than
& VAX 11/780 minicomputer.

We deacribe here the design of the single processor, MIPS-
X. The overriding principle was to keep the design as simple
as possible. The original MIPS team was heavily involved in
the initial architectural discussions, and they helped stcer
MIPS-X away from the kinds of trouble that they faced with
MIPS. The major arcas of concern were control related, of
which the most important were considered to be instruction
decode and exception handling. Both were not considered
carly enmough in the MIPS design and created difficult
implementation problems in the final chip.

The design of the instruction format was straightforward
since we religiously adhered to a maxim given in the first
working document on MIPS-X. It stated, "The goal of sny
instruction format should be:

1. Simple decode,

2. simple decode, and

3. simple decode.
Anymmumvedcodedendtyuﬂnumofﬂu
performance should be ridiculed at every opportunity.”
Needless to say, all instruction sets considered for MIPS-X
were fixed format 32-bit words and the amount of decoding
was minimal. The effects of having this simple instruction
format is discussed in the conclusions.

Not all areas were as stable as the instruction decode.
Before presenting the major tradeoffs we made in the MIPS-X
design, the next section describes the basic architecture of the
processor and the following section gives an overview of the
hardware and orgsnizstion of the machine. This is followed
by several sections, each discussing & major design issue in ,
MIPS-X, the solution used and the rational for that decision.

MIPS-X Architecture

The goal of the MIPS-X project was to design &
with sn order of magnitude more performance
than the original MIPS processor. MIPS-X borrows heavily
from the original MIPS design; it is again a heavily pipelined
machine, and the resulting pipeline interlocks are handled by
the supporting software system. MIPS-X differs from MIPS
in that it aims for single-cycle execution using a much faster
clock (20 MHz), a decper pipeline and better implementation
technology.
The high instruction rate means that memory bandwidth is
an important consideration. At the projected clock frequency

|
|
87 5 o ooy |

L WA DM TV S S LN i T S

RGN M e

of 20 MHz it is very difficult to satisfy instruction and daia
fetch requirements across the available package pins. To
alleviate this problem, MIPS-X has a 2K-byte,
instruction cache (Icache). Ouly instructions that miss in the
through the package pins. The lcache is placed
the datapath, in the ares of the chip that is normally
for microcode storage and processor control. Data
and instruction references that miss in the Icache
by & large 64K word external cache (Ecache).
uses a shared bus 0 communicate with main
. benefit of this two-level cache is that it
provides a second port to memory; the processor can feich an
instruction from the Icache at the same time it is accessing
off-chip data.

A deep pipeline is used to allow the machine to start a new
instruction every cycle. Each instruction is divided into five
pipeline stages. They are described in Figure 1. All control is
hardwired.

Instruction fetch.
Instruction decode and register fetch.

ALU or shift operation

Wiit for data from memory on a load and output
data for a store.

Write the result into the destination register.

Figure 1: MIPS-X Pipestages

The machine uses a load-store architecture; the oaly
memory operations are explicit loads and stores. The use of
the ALU cycle depends on the instruction being executed.
For compute instructions, this cycle performs the desired
computation, for memory instructions it is used to compute
the address of the desired memory location and for branch
instructions, it is used to compute the condition. All memory
operations use the same addressing mode; the contents of a
register are added to a 17-bit signed offset to produce a 32-bit
address. There are 32 general purpose registers in the
datapath with a 32-bit ALU and s funnel shifter for compute
operations.

Although a compute instruction finishes its computation
during the third pipeline cycle (ALU), the result is not written
back into the register file until the last pipeline cycle. This
delayed writcback is done to make instructions only change
machine state during their last pipeline cycle, making
exception handling much easier. Bypassing is used to reduce
the number of pipeline interlocks.

All instructions are restartable so MIPS-X will support a
dynamic, paged virtual memory system. To help implement
such a system, MIPS-X supports both maskable and
nonmaskable interrupts. For sysiems requiring more complex
interrupt handling, an external interrupt coprocessor can be
added. MIPS-X also provides two operating modes, sysitem
and user, that execute in separate address spaces 10 provide
the protection nceded to implement an operating system. The
current mode is stored in the PSW and it can only be changed
v hile executing in system mode.

A Hardware Overview

PC unit and the tag store for the instruction cache. The
ion of these parts is shown in Figure 2.

Figure 2: MIPS-X Floorplan

The instruction cache is organized as an 8-way set-
associative cache, with 4 sets (rows) and 16 words in each
block (line). A sub-block replacement scheme is used %0
there are 512 valid bits, one per word, as well as the 32 tags.
These are located in the datapath to decrease the time needed
to detect an instruction cache miss.

The instruction register latches the output from the
instruction cache and predecodes some fields of cach
instruction. It also controls the flow of data during cache
misses 30 that instructions can be written into the cache.
During a cache miss, the instruction is latched in the
instruction register from the data bus while it is going 10 the
cache memory array. This latch provides & very useful testing
feature by allowing the processor o run with the cache
disabled.

The register file contains 31 general purpose registers and
a hardwired constant zero register. It is useful w0 have a
read-only register as a place o write unwanted data. The
constant zero was chosen because it is used as a source value
for many instructions such as loading immediate values by
doing an add immediate to Register 0. Registers to handle
two levels of bypassing and the memory dats regisiers are
also in this section.

Shifting and ALU operations are done in the execute unit.
It contains a 64-bit to 32-bit funnel shifter and a 32-bit ALU.
There is also a special register, called the MD register, that is
used during multiplication and division instructions.

The program counter, or PC unit, contains s displacement
sdder for branches, an incrementer and s chain of shift
registers to save the PC values of the instructions curreatly in
execution. Having both the displacement sdder and the
incrementer means that as soon as the branch condition is
determined the PC bus can be driven with the correct value.
The PC viiues in the shift chain are ueeded to restart the
machioe after an exception.

In a small arca sbove each section of the datapath is local
instruction decoding and control for that section. The overall
contro] of the machine is handied by two finite state machines
located in the PC unit. One of them is used to handle kcache
misses and the other one does instruction ing during
exceptions and branches. Squashing an instruction converts it
into a no-op instruction.

Critical Paths

To run the processor at or above 20 MHz mesat that much
atieation had 10 be paid © possible critical paths. In each

address pads during ¢2. The Ecache would be accessed
during the MEM cycle. Even assuming that the address could
be driven off the chip by the end of ALU, completing a fetch
in 50 ns would be tight because of the address buffer delay,
memory sccess time and setup time for the fetched data.
Getting the result of the tag compare back in s cycle seemed
impossible since this would also involve delay through some
comperators. To ease the comstraint on getting the tag
compare back, we decided 10 use a late-miss signal. This
meant that the cache would inform the processor at the
beginning of the WB cycle whether the cache access during
MEM was successful. If there was a miss, then the processor
would effectively go back and re-execute $2 of MEM to try
the access again. This loop would continue until the cache
got the data and signaled a hit. Throughout the design we had
10 be careful not to unnecessarily add delay w0 the memory-
fetch path.

Other paths that we tried 10 optimize included the path
from branch condition geperation 10 driving the PC Bus,
instruction cache hit detection, squeezing the ALU time into 1
phase 10 get the address out by the end of the cycle and doing
register reads and writes in one cycle. The latter two were
strictly circuit design issues and are not discussed any further
bere.

The Instruction Cache

Advances in processor architecture and VLSI technology
have increased faster than the improvements in packaging
technology. This hes meant that high-performance VLS|
processors have become memory bandwidth limited. For
example, if we assume that one instruction is fetched every
cycle while, on average, data is only fetched every third cycle,

thea MIPS-X will have an average bandwidth of 26
MWords/s and a peak bandwidth of 40 MWords/s. Clearly,

the tradeoffs made in its design are described in detail
clsewhereS. We will only discuss the salient features here.

The instruction cache was the first part of the chip 1o be
designed. We first fixed a die size that we feit had enough
area to implement the functionality we desired yet small
enough that we could expect a ressonable yield of working
parts. The datapath and control would take about half of the
area inside the padframe so the cache was allocated the
remaining area fixing its area and aspect ratio. The other
main constraint on the cache was that the cycle time had ‘0 be
less than the S0ns clock cycle. Given these constraints we

investigated many different floorplans and organizations,
trying to minimize the average cost of an instruction fetch.
This cost is a function of the cache hit rate, the miss penalty,
and the cache access time.

We found that the performance of the cache was more
sensitive 10 the the miss service time than the miss ratio. This
meant that the implementation details of the cache were more

than the cache organization because the
implementation affected how quickly we could determine
whether sn address hit in the cache. With our pipelining, this
meant the difference between stalling the machine for 2 or 3
cycles on a cache miss. By placing the tag and valid-bit
stores in the datapath close to the PC unit s 2-cycle miss could
be realized. This lengthened the datapath by the number of
cache tags and meant thst we could not have smaller block
sizes because more tags would make the datapath too long.
However, the benefits of having fewer cache miss cycles far
outweighed the stightly lower miss rates achievable by having
smaller blocks.

Initial simulations of this organization yielded
dissppointing results. Using & set of medium size
we achieved miss rates that averaged over 20%. We felt that
real programs would have worse miss rates, pushing the cost
of an instruction feich close to 1.5 cycles. We found & way 0
reduce the number of cache miss cycles 10 1 by writing the
missed instruction into the Icache as soon as it got back onto
the chip, but since accessing external data was already onc of
the critical paths we did not want (o risk extending the cycle
time 0 complete the write. Instead we realized that the 2
cache miss cycles could be used to fesch back 2 instructions,
the one that missed and the next one (0 be executed. Doing
this double fetch did not affect the critical peth and, in fact,
was easier 10 do than feiching back oaly one instruction
because it minimized the disruption of the pipeline. Fetching
beck 2 words almost halves the miss ratio, driving down the
cost of an instruction fetch 1o that of s singlecycle miss. The
key realization here was that there was extra cache bandwidth
available and that we could use it o feich back the next
instruction, significantly improving the cache miss ratio
without impacting the cycle time of the machine. Fetching
back more words would not be advaniageous because the
bandwidth of the cache is fully used.

Trace driven simulations show that with our set of large
Pascal and Lisp benchmarks, the cache has an average miss
rate of 12% resulting in an average instruction cxecuting in
1.24 cycles.

The Coprocessor interface

The coprocessor interface was considered from the very
beginning of the design. It also led to some of the most
interesting discussions within the MIPS-X design team. We
spent considersble time trying o find an efficient interface
that would give reasonable performance and still fit within the
constraints of VLSI packaging and design. This problem was
exacerbated by the presence of the on-chip instrection cache,
since now all instructions would not be visible 1o the outside
world.

The proposal for the first instruction set had s single bit in
every instruction ®0 specify whether the instruction was for
the CPU or a . For instructions with the
coprocessor bit set, MIPS-X would perform all the addressing
calculations, but would not affect any of its stored data. That
is, all coprocessor memory instructions still used the
processor (0 generate the addresses and the required coutrol
signals, while the coprocessor either acted as a source or sink
of the dats. To make the coprocessor instructions visible
outside of the processor, a dedicated bus was required to
transfer the instruction off the processor chip. This scheme
had 2 disadvantages: all interprocessor communication had to
go through memory, and & coprocessor bus was required. A
minor concern was that half the opcode space was devoted to
the coprocessor; there had 1o be a more efficient encoding.

The pext instruction format divided the opcode space imto

compute operations.

had s 3-bit field to specify the coprocessor number, branches
were only done on the main processor. If Coprocessor 0 was
specified then the instruction was for the main
mumﬁawfumofthe‘llnﬂable
coprocessors. To branch om a coprocessor coodition, the
coprocessor would first be 1old 1o assert a single input 0 the
main processor and a dranch on coprocessor true or branch
on coprocessor false would be executed 10 test the status of
that input. Several could be connected by wire-
oring their outputs. This scheme still had the problem that
data transfers between processors must be done through
memory.

It was then proposed that all coprocessor instructions must
be non-cached, removing the need for a coprocessor bus. The
issue of pins and pin bandwidth was heavily debated within
the MIPS-X design team. Pins on the processor were in short
supply and devoting approximately 20 of them 10 the
coprocessor interface seemed excessive. The question was
00t just whether there were enough pins available. Without
the coprocessor bus, MIPS-X would need omly about 90
signal pins, s relatively small number by today’s standards.
Rather the argument focused on what would be the best use of
these pins if we had them. It was not at all clear that using
them for the coprocessor interface was the most effective use
of the pins. To prevent coprocessor instructions from being
cached, & bit in the instruction cache would be set when an
instrection being loaded was detected 10 be a coprocessor
imstruction. If the bit was set during an instruction fetch that
missed, the coprocessor would get the instruction off the
memory bus as the main processor read the instruction from
memory during the cache miss cycle.

The obvious disadvantage of this approach was that all
coprocessor operations incurred an overhead from the internal

the coprocessor scheme that was finally chosen.

The opcode encoding of the machine was changed again,
this time making coprocessor operations a form of memory
operation or more accurately, memory instructions became a
type of coprocessor imstruction. instructions
work in this scheme by using the sddress lines to transmit the
coprocessor instruction. A memory instruction takes a 17-bit
offset constant and adds it to the conteals of a register o
compute the memory address. If the memory system ignores
the cycle, it is possible to pass the 17-bit offset constant to &

as an instruction. The instruction would include
s 3-bit field to specify the coprocessor being addressed,
although the processor does not need to know the format of
these instructions. This scheme has several advantages over
our earlier ideas. A coprocessor instruction bus is not
required, since the instructions are sent out over the address
pins. Only one extra pin is required to tell the memory
system to ignore the cycle. Additional pins can now be used
for alleviating the pin bandwidth problem in other parts of the
system. Using coprocessor losd and store instructions, data
can be directly transferred between processors by making the
coprocessor supply or read data on the dats bus instead of the
. Also, the coprocessor instructions can be cached
just like all the other instructions. The disadvantages of this
scheme are that there are fewer bits to specify the coprocessor
instructions, and all data to and from the coprocessor’s
registers must be transferred through the main processor
registers first before it can be sent 10 memory.

Having o transfer all data through the main processor
registers was still thought 10 be inefficient for heavy flosting
pomtcomputmn This lead to a further modification of the
instruction set to add load floating and store floating
instructions. These instructions provide ooe special
coprocessor with its own load and store instructions, which
we assume will be a floating point unit (FPU). The interface
pow allows one special coprocessor (o load and store its
registers directly 0 memory, without passing through the
main processor, in a single instruction. All other coprocessors
require one extra cycle for memory loads/stores.

Oupe final tweaking of the interface was to remove the
coprocessor branch instructions. The main reason for their
removal was the problem of saving state in the coprocesson
scross exceptions. The solution was % just read a
coprocessor siatus register into 8 main processor register and
then branch according to the value of that register. This
change climinated the last set of probiems we had discovered
with the coprocessor instructions.

By using the address lines, the resulling coprocessor
interface has instructions that can be cached, does not require
s large coprocessor bus, allows efficient communication
between the processor registers and the coprocessor registers,
and lets s single coprocessor have direct access 10 memory.

Branches

Having set out the initial architecture of the machine, we

computer
X. The effects of branches in s pipelined machine are

problems. In particular, ;mnﬁngcodehmcondm
codes efficicatly is oot as straightforward as ooe might
expect. All the branch schemes considered for MIPS-X
contained an explicit compare in the branch. This actually
reduces the amount of control logic required because there is
00 need 10 worry about how 10 save this state.

PC+] or the next sequential instruction depending o the
computed condition. An observation was made that many
inner loops contain several forward branches due o constructs
like if-then-clse statements 30 it would be good © have
MPC¢IW Four was felt 1o be sufficient. This
would allow the 10 hoist the destination address
calculations out of the loop. Without this feature, the contents
of PC+1 would have 10 be loaded from a register for each
branch within the loop for cach iteration of the loop.

This scheme still had the problem that there was some state
that mmst be saved (the PC+/ registers) when e exception
occurred. Also, deciding how 1o use the PC+/ registers could
be cumbersoms for the compiler system. Finally, with four
special registers, it was 50 longer clear thel this solution was
easier © implement than simply including a separate adder to
compute the destination while the ALU performed the
comparison. At this point in the design, adding a little
herdware 10 the datapeth 1o make the control simpler was the

occurs is called the branch delay. Filling these delay slots is
ot a simple task® % 10 and affects the overall performance.

In the MIPS-X pipeline, it is most straightforward o

comparison would be performed at the end of the RF cycle by

The main question that needed 0 be resolved initially was
what percentage of branches could be handled by a quick
compare. Statistics from Katevenis’s thesis indicate that by
changing the compiler slightly, about 80% of all branches can
be converted into quick

quick compare was between 70% and 80%.

The quick compare was cventually dropped becasse it
could potentially lengthen the processor cycle time. The
comparator circuit must operate on the source buses ieading
10 the ALU and since the values oo the buses could come
from a bypass source it was possible that the buses would not
be stable until late into that cycle, particularly for a previous
memory feich because the data would only be back at the very
end of the cycle. For the quick compare to operate, we would
need 1o perform a compare on these values and then use this
result 1o select the correct address of the next instruction. The
potential increase in cycle time discounted its slight advantage
in the average number of cycles it takes to complete s branch.
In retrospect, our decision was correct. In the final machine,
the delay from the generation of the branch signal 1o driving
the correct value on the PC Bus is long (measured to be abowt
20 ns). Even providing s full phase to drive this path lcaves it
on a critical path.

LeR with a branch delay of 2, we investigated branch
prediction as a way to reduce the effective branch delay.
There were two prediction sigorithms tried: branch cache, and
siatic prediction. The branch cache was quickly discarded

0
‘"
‘6

o

0 move an instruction from before the branch into the slot. If
20 instrections can be moved past the branch the next choice

we decided ©0 use static prediction, snd in the static case most
branches go, MIPS-X oaly has the first two types of branches.
This requires oaly cae bt in the instruction 1o specify how o
deal with the instructions in the slots.

Varions combinstions of one and two-slot schemes with
and without squashing weore evalusted. The results are shown
in Table 1. The no sqguash scheme is the same a8 wsed in
MIPS where the instructions ia the siots are always executed.

2-siot 0o squash 20
2-slot always squash 1.5
2-slot squash opticoal 13
1-siot 8o squash 14
1-siot always squash 13
1-slot squash optional 1.1

Table 1: Average Cycles per Branch Instruction
for Various Branch Schemes

et r Lt A,

A S S S I SR TP TR SN N o
PR L RV VA NS P SR A T S R Al TN A S A '.p}.ﬁi

'-
.

not completely sure how it would affect exception bandling at
the time we made the commitment to use it. It turned out that
they mesh together very well as described in the next section.

Exception Handling

As the design of the machine progressed, owr concentration
shifted from the functions the machine was going o perform
0 how these functions were going to be controlled. MIPS-X
benefited greatly from the experience gained during the MIPS
design. Handling exceptions in MIPS caused the most
complexity in the machine because of the large number of
possible states in the processor during an exception. These
siates were the result of the processor trying to complete the
instructions that occurred conceptually before the fault but
still in the pipeline, and reicading the partially full pipeline on
a return from an exception. The goal for MIPS-X was to
require as few states as possible to handle an exception so the
state machine design would not be difficult. The underlining
rule was (0 keep it simple, stupid'3,

In some ways exception handling in MIPS-X followed the
MIPS model. Exceptions are not vectored so the exception
handler must first determine the cause of the exception. On
MIPS there was an on-chip swprise regiser where this
information was storod. MIPS-X relics instead on a scparate
off-chip interrupt control unit that contains this information.
The PSW does contain bits that determine whether the
exception was caused by an interrupt, arithmetic overflow or &
non-maskable interrupt.

MIPS-X differed from MIPS in how exceptioos affected
the pipeline. The MIPS exception sequence started with the
pipeline being flushed of as many instructions as possible that
were already executing. Thea the program counter (PC) was
zeroed snd the return PCs saved from the PC chain. The
flushing of the pipeline caused a greal many extra states and
added s lot of complexity.

In MIPS-X the pipeline is halled when an exception
occurs. No instructions are completed. The PC is
immedistely set 10 zero and the shift chain of old PC values is
frozen, saving the addresses of the instructions that are still in
the pipeline. The currest PSW is placed in PSWold,

sysiem space, begins execution by first saving the three PCs
from the PC chain and PSWold onto the system stack. Once
the siate of the interrupted process is saved, then PC shifting
can be enabled and interrupts unmasked if desired. The
restant sequence involves reloading the PC chain with the
three saved PCs and then doing three special jumps using the
contents of the PC chain; the PC chain is used 0 store the

" ~4 . ,’-".- " __--.-v

RO IO WOBOCUIAL)

return addresses during the return sequence. Interrupts must

be dissbled both during machine state saving and restoring.
During the discussions about how branches were © be

wm“mmwhmum

The general scheme used 10 no-op an instruction is quite
simple. All that needs 10 be done is t0 set & bit in the
destination specifier for that instruction. This bit is used by
the register file 10 determine whether 1o perform s write or
There are 2 lines in the machine that can set this bit,
Exception and Squash. no-ops the instructions in
the ALU and MEM stages of the pipeline, while Squash
180-0ps the instructions currently in the IF and RF stages of

g

trap on overflow in the ALU or the mulitiplication/division

Overflow instruction that caused a branch if the result of the
branch comparison overflowed. These were minimal
hardware solutions that would provide some small support for
overflow detection.

At this point the exception hardware had been designed

ovarflow bit. We decided 0 sbandon the sticky overflow bit
for a masksble trap on overflow.

B e L il {a a Ch

o P e AT g g e e

Control

Our overriding goal for the control section was to keep it
-uimpleupouible In part we accomplished our goal by

hardware features that would complicate the
machine without providing significant performance
advaniages. We also tried to keep a uniform view of the
hardware, trying 0 reuse the same control mechanism for

globllconuollﬂforﬂlenuclnnemdmphcednﬁthnletd‘
smalier controllers, one for each section of the datapath. We
further partitioned the design so that s single designer was
responsible for both the datapath and control in his section,
giving cach designer the incentive t0 make his control section
simpler. Most of the machine control is simple decoders,
many generated automatically using PLA generstors.

One technique that MIPS-X used 10 great advantage was a
qualified clock, called wl, 1o lsich the control state of the
machine. This clock is the ¢1 clock qualified with mot
external cache miss sod not internal cache migs. Whea either
cache misses, the w1 clock does not rise, and the coatrol state
does not shift down the pipeline control latches. The lack of &
w1 clock causes the machine to execute the previous ¢$2 phase
before retrying the ¢1 phase. This simple technique made
temporary stalling of the entire pipeline very casy, and
allowed us to implement the late miss described earlier
without greatly increasing the machine complexity. Since the
vl clock is only allowed to clock control state latches, its
pulse width can be quite narrow (about 10 ns). As long as the
miss signal is monotouic, it is possible to detect & cache hit
afier the data has been latched in the machine without stalling
the machine.

Together these control techniques were quite successful
The control was nicely divided among the 4 main datapath
sections, with the only two finite state machines (FSMs)
residing in the PC wait. These FSMs handle instruction cache
misses and instruction squashing during exceptions and
squashed branches. The state diagrams for the two machines
are shown in Figures 3 and 4. These FSMs are implemented
as simple shift registers with a very small amownt of rendom
logic and occupy less than 0.2% of the total area of the chip.

Status and Conclusions

The MIPS-X project began in carnest during the summer
of 1984. By January 1985, we had settled on an initial
version of the instruction set, and had writien an instruction
level simulator for the machine. We were able (0 use much of
the software sysiem that was created for MIPS for MIPS-X s
well. This greatly reduced the software development effort
The compiler/simulstor system genersted instruction traces
that we used 10 gather cache statistics and fine tune the
architecture. By April 1985, the architecture had stabilized
and work on the detailed design accelerated. We ran our first
instruction through a detailed functional simulstor of the
entire processor during the summer. The final design was
taped out at the end of April 1986 and we received first
silicon back in October.

The processor was designed (o run at a clock rate of 20

".L.P. n L{LfoL.A'

A

and & rens ot the projected 16 MHz clock rate. We are sow
fixing the critical paths 20 that we can achicve our goal of 20
MHz. The die is §.5 mm by 8 mm and has a total of 108 pins
of which 34 are for signals and 24 are for power and ground.
There are about 150K transistors, two thirds of which are in
the instructios cache. The power dissipation is less then 1 W,

Figure 4: Cache Miss Finite State Machine

VO gy N P P I P P I B e e W N R A A s

Siomlations of our large Pascal benchmarks show that
156% of sl instructions are no-ops duc © unused branch
or other pipeline interlocks that cannot be optimized
For Lisp, this sumber increases slightly to 18.3% due
blm«majmmdmibd-bdhuﬂocb
caused by chasing car and cdr chains!®. When the memory
system overhead is included (delays from Icache and Ecache
misses), the average instruction requires sbout 1.7 cycles
MIPS-X should have a sustained throughput above
11 MIPs. Owr benchmark programs have static code sizes in
the range of 50 KBytes 10 270 KBytes so we cannot get exact
numbers for the effects of the external cache because most of
the benchmarks fit entirely. Smith’s numbers!$ are not large
enough 30 we used much larger traces!$ 1o derive the Ecache
effects.

The performance of 8 machine is based on three factors:

docrease the latter two factors without adversely affecting the
length. of Pascal programs with a VAX
117780 shows that MIPS-X executes sbout 25% more
instructions but executes the programs about 14 times faster
for unoptimized code. The static code size for MIPS-X is also
about 25% greater than VAX code. The Stanford compiler
system was used and the only difference was in the back end
code generators. However, when MIPS-X code is compared
0 the Berkeley Pascal compiler, the path length is 830% longer
and the speedup is only 10 times faster than the VAX. Much
of this difference may be due %o poorer code from our VAX
code generator. We feel that when we get the resuits for
optimized code, the numbers will be somewhere inbetween.

The goal of the MIPS-X project from the beginning was to
learo from MIPS and design a simpler yet faster processor.
The emphasis in all design decisions throughout the project
was simplicity: minimize state and keep the control simple.
The implementation of MIPS-X has shown that it is possible
0 implement a high performance microprocessor that
supports coprocessors, without requiring complex control or
bundreds of pins.

Acknowledgements

The MIPS-X research project has been supported by the
Defense Advanced Research Projects Agency under contract
#MDA903-83-C-0335. Paul Chow was partially supported by
a posidocioral fellowship from the Natural Sciences and
Engineering Research Council of Canada.

Many people have coatributed to the MIPS-X research
effort. Maicolm Wing, Arturo Salz, Karen Huyser, Anant
Agarwal, Scott McFarling, C.Y. Chu, Steve Richardson,
Steve Tjiang, John Acken, Richard Simoni, Glean Gulsk,
Kathy Cuderman, Takeshi Tokuda, Eugen Reithmann, Steven
Przybylski, Chris Rowen, Norm Jouppi, Thomas Gross, John
Gill and John Hemnessy deserve special thanks for their
contributions to the project.

K

s ¢ O ¥

L

10.

11.

12

13.

14.

13.

References

G. Radin, “The 801 Minicomputer’’, Proc.
SIGARCHISIGPLAN Smoam on Archmal

Support for Programming Languages and Operating
Systems, ACM, Paio Ako, March 1982, pp. 39-47.

D. Patterson sod C. Sequin, “A VLSI RISC”,
Computer, September, 1982, pp. 8-21.

M. Katevenis, ‘‘Reduced Instruction Set Computer
Architectures for VLSI*’, Computer Science Division
(EECS) UCB/CSD 83/141, Univ. of CA st Berkeley,
October 1983.

J. Hennessy, et al, ‘“The MIPS Machine”’,
COMPCON, IEEE, Spring 1982, pp. 2-7.

S. Przybyhki.‘l' Gross, J. Hennessy, N. Jouppi,
C. Rowen, ‘‘Organization and VLSI Implementation
of MIPS", Journal of VLSI and Computer Systems,
Vol. 1, No. 2, December, 1984, pp. 170-208.

Anant Agarwal, Paul Chow, Mark Horowitz, John
Acken Arturo Salz and John Heanessy, ‘‘On-chip
Instruction Caches for High Performance Processors®’,
Proceedings, Stanford Corference om Advanced
Research in VLSI, March 1987, pp. 1-24.

J.L. Hennessy, N. Jouppi, F. Baskett, T.R. Gross and
J. Gill, **Hardware/Software Tradeoffs for Increased
Performance*’, Proc. SIGARCHISIGPLAN Symposium
on Architectural Support for Programming Languages
and Operating Systems, ACM, Palo Alto, March 1982,
pp- 2-11.

Thomas Gross, Code Optimization of Pipeline
Constraints, PhD dissertation, Stanford University,
December 1983, Availsble as Stanford University
CSL Technical Report 83-255,

John Hennessy and Thomas Gross, ‘‘Postpass Code
Optimization of Pipeline Coostraints’’, ACM
Transactions om Programming Languages and
Systems, Vol. 5, No. 3, July, 1983, pp. 422-448.

Scoit McFarling and John Hennessy, ‘‘Reducing the
Cost of Branches'’, Proceedings, 13th Symposium on
Computer Architecture, June 1986, pp. 396403,

J.E. Smith, *‘A Study of Branch Predition Strategies’’,
Proceedings, Eighth S i on Computer
Architecture, May 1981, pp. 135-148.

Johony K. F. Lee, Alan Jay Smith, *‘Branch Prediction
and Branch Target Buffer Design”,
Computer, January, 1984, pp. 6-22.

Butler W. Lampson, ““Hints for Computer System
Design"’, I[EEE Software, Vol. 1, No. 1, Jamary,
1984, pp. 11-30.

Peter Steenkiste, LISP on a Reduced-Instruction-Set
Processor: Characterization and Optimization, PhD
dissertation, Stanford University, 1987, To appear in
1987.

Alan Jay Smith, ‘‘Cache Memories’’, Computing
Surveys, Vol. 14, No. 3, September, 1982, pp.

16.

473-530.

Anmat Agarwal, Richard L. Sites and Mark Horowitz,
*“ATUM: A New Technique for Capturing Address
Traces Using Microcode’’, 13th Amual International
Symposium om Computer Architecture, 1EEE, June
1986, pp. 119-127.

3
]
g
]

[Raliatiesed

