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Abstract

This paper reviews the requirements for a distributed fault tolerant
real-time operating system. Various aspects, In addition to the scheduling,
are analysed to emphasise the Importance of developing such operating
systems separtely, rather than modifying or building on top of regular
ones.

I Introduction

1.1 What is an Operating System?

There are many definitions and approaches for stating what an operating system
is. Peterson and Silberschats open their book [18] with the following statement:

An opemting syatem is a program which acts as an interface be-
tween a user of a computer and the computer hardware. The purpose
of an operating system is to provide an environment in which a user
may execute programs. The primary goal of an operating system is
thus to make the computer system convenient to use. A secondary
goal is to use the computer hardware in an efficient way.

Traditional operating systems have been built up with the above incentive.
However, the development of microcomputers changed both the emphasis and
the order of significance of the goals as listed above. Tanenbaum and Van
Renesse [251 express it as follows:

An operating system is a program that controls the resources of a
computer and provides its users with an interface or virtual machine
that is more convenient to use than the bare machine.
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It becomes even more complicated when we try to define what a distributed
operating system is. Tanenbaum and Van Renesse ([251) find traspareftcy as
the key concept:

A distributed operating system is one that looks to its users as
an ordinary centralised operating system but runs on multiple, in-
dependent central processing units (CPUs).

Bayer et al. [31 describe the needs in an operating system as it has become
more and more complex:

It is a principle of science that as complexity increases, the need
for abstraction& to deal with this complexity also increases. The
evolution of operating systems is no exception. Early abstractions
were files and processes. In each instance the abstraction takes the
form of some non-physical resource and benefits both the system
and the user.

...The abstraction of the system permits more efficient systems
management of the central processors as well as indirectly contribut-
ing to the ease of management of all other resources.

Caspi and Halbwachs ([71) try to focus on time dependent systems when
presenting their model for temporal proof system:

Though time independent approaches present many advantages
(portability, versatility, easy design and proof), they cannot apply
to systems whose correctness is explicitly time dependent, that is,
mainly, to two important classes of systems:

" So called 'real-time systems, which can be found in the field
of industrial control: On one hand the specification of such
systems contains real-time constraints (response times, sam-
pling frequencies ...), and on the other hand, in order to meet
these time constraints, the implementation of such systems of-
ten takes advantage of the knowledge of execution times, so as
to save time consuming synchronisation mechanisms.

" Hardware systems, which implementation is also often opti-
nised by taking into account the response times of the elemen-
tary devices, which can be quite precisely known.

Modern languages for real-time applications, as ESTREL [41, implement a
large portion of classical operating system facilities, thereby achieving in some
properties run time independence of any particular operating system. The moti-
vation for having independence of operating systems, especially in the ESTREL
cas, is to achieve a verifiable system of timing properties. Using different meth-
ods and based on both static semantics and behavioral semantics, a transition
system may be defined. For example, in [41 a set of structural conditional rewrite
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rule. ('a I& Plotkin) is used. Such a transition system derives the proof system
for the timing properties. The language is therefore totally synchronous, and the
run time libraries are more of an integral part of the operating system. More-
over, side by side with achieving independence of operating systems, a strong
dependency on the language is developed. The possibility of having a provable
process written in a different language is lost. The dependency on the language
becomes too strong. In 141, artificial statements should be added, since only
explicit time-related instructions are allowed to consume time. Implicit time
consuming process needs additional artificial explicit time consuming instruc-
tions to provide a basis for temporal reasoning. The result obtained is that run
time libraries absorb a portion of the operating system, while reducing in some
came the generality of using more than one language, and the expectability of
performance in cases of real systems in which synchronicity is not total.

More asynchronous languages, as ADA - US MIL-STD 1815A [11, implement
task facilities and synchronisation between tasks, such that programmers don't
have to deal with invoking system calls from lower level programs. In ADA
only one type of synchronisation is supported, the rendesvous. If another type
of synchronisation is required by the application program then services of the
operating system should be invoked. In Unix (161) and many other operating
system, services of operating systems are given by a high level programs, and
thereby the bridge between an operating system and language run time libraries
is provided.

1.2 What is a distributed real-time system?

So far most of the real-time applications have used non-real-time operating
systems, and have implemented their real-time properties within the application.
Real-time operating systems, such as Data Generals RTOS and Digital's RMX-
22M, have been implemented.

However, these systems are real-time only in the sense that they support
'hard' scheduling priorities; they do not support the notions of critical timing
deadlines or fault tolerance. Furthermore, the above operating systems are
not distributed operating systems, although some adaptations were made for
network structure systems. The most common scheduling method, implemented
in operating systems as the above, is through a user's "supervisor" program (or
procedure). This supervisor, invoked by the timing hardware, maintains the
priorities assigued to each task according to its own internal time counters. The
operating systemn's dispatcher then sorts the queue accordingly. The supervisor
itself is kept with the highest priority possible, such that other programs would
not mask it easily.

An enormous effort was invested in developing 'regular" distributed oper-
ating systems [251, whose main goal is maintaining a multiuser programming
environment. The architectural differences between centralized and distributed
systems emphasis* issues, out of which some were of no concern when using
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centralized operating systems.
The first issue is the communication, which plays an important role in a

distributed architecture. Unlike centralized systems, and even unlike network
oriented systems, the communication is needed for executing tasks that consti-
tute the distributed environment. Examples for such tasks are remote proce-
dural calls or migration of data and programs. The concurrent nature of a dis-
tributed system emphasizes issues of sharing programs and data, such as mutual
exclusion [211 deadlocks [8,141, termination [9,10,26,21 etc. Interprocess commu-
nication algorithms allow the composition of various degrees of atomicity [13]
while maintaining concurrency and asynchronous behavior of the system. Many
operating systems use the request/reply communication (Amoeba, Cambridge,
V) with different sizes of packets, and some other systems are implementing
communication which is closer to remote procedural call (e.g. Eden). However,
most of the distributed operating systems known to us still fail to address prob-
lems which are of timing dependency nature. Two examples of such problems
that are rarely solved with respect to real-time are the overhead requirements of
preparing, sending and receiving, and the idempotency problem (guaranteeing
that a remote call is executed only once).

The second issue which is important in a distributed operating system, even
more than in a centralized one, is the naming mechanism and the way data is
accessed. Various approaches for naming concepts and file services are found
in today's operating systems. The differences are fundamental and govern the
whole architectural concept of each of the systems. Protection mechanisms also
differ from one system to another, in concept as well as in implementation ar-
chitecture. Various aspects affect objects binding in a distributed environment.
In particular, aspects concerning high level context of naming, or file systems
[221, where directory management and context initialization (binding) are much
more complicated due to the difficulties in mapping objects that are distributed
at the lower level.

The third issue that is significantly different in a distributed system is re-
source allocation. To begin with, processors in a distributed system are a re-
source one should allocate. One can find processor allocation policies that vary
from fairly static ones (as in V or Cambridge processor bank) up to dynamic al-
locations (as in Amoeba's pool of processors). The optimal solution, as always,
lies somewhere between maximizing the parallelism, thereby achieving as much
computation in parallel processors as possible, and minimizing interprocessor
communication, achieved by grouping as many related processes as possible at
the same site.

Finally, fault tolerance issues are of major importance in distributed sys-
tems. A distributed operating system inherently has the potential to be more
reliable than a centralized one, because the latter maintains only one instance
of a critical component. Having distributed resource pools, one may maintain
redundancy to a specific level in order to compensate for failure occurances [12]
due to hardware or software malfunctions. Moreover, in some cases one may
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control "graceful degradation" of performance when failure is detected. Some
existing distributed operating systems do not support fault tolerance issues (V).
Most of them rely solel) on reset and boot services (Cambridge, Amoeba), and
only few support more sophisticated features, such as check-point update (Eden)
etc. Fault tolerance features relate strongly to reconfiguration services that are
supported by the operating system. The simplest service is the boot or login
service, but further steps are needed to support reaction to failures, such as
tracking the progres during execution etc.

Different approaches are found in various distributed operating system de-
signs concerning the above issues. Most of the designs, even those where the
system is built on top of a centralized one (as in Eden which is built on top of
Unix), try to maintain the principle of transparency of resources used.

However, the need for emphasizing real-time issues in application support
has spread. Examples of such applications are nuclear power plant control,
industrial plant control, medical monitoring, digital fly-by-wire avionics and
weapon delivery systems. All these systems are of real-time type, but as can
be seen immediately, their nature requires high safety and reliability as well.
Although real-time constraints and fault-tolerance requirements don't always
coincide, these two disciplines should be both considered in many applications.
The environment in which real-time system design takes place includes the pro-
cessor, the operating system, the programming language with its compiler and
run time libraries, the network structure in which a distributed computation
takes place, and special aids used during the implementation phase. Each of
the above components is of crucial importance to real-time properties, therefore
designing real-time systems is thought to be one of the most complex pro-
gramming activities 1271. In addition, real-time systems usually have strict
reliability and safety requirements which severely increase the programming
complexity. Furthermore, unlike non-real-time programs, real-time systems are
implementation-dependent. Therefore, unlike traditional operating systems, a
real-time operating system is extremely application-oriented. Its major task is
to support real-time application programs, although programs with no timing
constraints can be served a well. A real-time program that was executed suc-
cessfully when implemented in one environment does not necessarily execute
successfully in another environment. Changes in the computer hardware, com-
munication network, operating system, or peripheral device response time may
change the system's behavior to a point where it no longer satisfies a particular
set of requirements. Usually it is not possible to modify a traditional operating
system by adding a 'timing - package' to obtain a real-time operating system,
and the required properties such a system should have are listed later in this
paper.
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1.3 The Orthodox against the Liberal

Two key properties characterize the different nature of a real-time operating
system with respect to a traditional one:

1. Bounded time - Each job should be finished within a bounded time. Fur-
thermore, the relative progress of a set of tasks should be controlled and
predictable.

2. Design controllability - The real-time operating system should allow (within
limits) control to an application designer on the above.

Both properties are derived from two basic characteristics of the real-time
environment: the need to execute programs within a deadline specified, and the
high dependency on the application. The term "real-time' itself is application
dependent. Dealing with a biological system may require a response time whose
order of magnitude is seconds, whereas with electronic systems it might be
micro-seconds or less. A liberal interpretation of the above two key properties
finds them sufficient to categorize the class of real-time operating systems. The
orthodox approach defines the required properties much further, and includes
explicitly more features of the operating system.

Although run time libraries which implement 'operating system' functions
may serve equivalently in execution, this approach does not appear to show any
performance advantages with respect to an operating system. A distributed
system, where a total synchronicity is impossible and fault tolerance aspects
are a major factor, emphasizes the need for an operating system in the wide
sense. In such a system, resource allocation should be supported in a way in
which the above two key principles are guaranteed. However, one cannot ignore
the needs for other services from the system. Moreover, unlike in a regular
system, the performance with respect to real-time should be well defined for
any service because of the nature of resource allocation. Even the case where
only one of the jobs is a hard real-time job, and all the rest are not, is to
be taken into account as a real-time problem, and proper allocation and load
balance should be derived. As we show later in this paper, even naming and
access control have a great influence on real-time performance of the system,
and should be designed especially for real-time applications.

The orthodox approach might appear to be somewhat too traditional, yet it
serves the basic incentive of defining the system in a way that prevents unex-
pected "surprises' during run time, as well as providing a verifiable tool with
uniform behavioral properties.
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2 Properties of a Fault Tolerant, Distributed,
Real-Time Operating System

2.1 Resource Management / Allocation

In real-time operating systems the resource management and allocation mech-
anism should adhere to application requirements. In regular operating systems
this mechanism is entirely application independent, and is maintained as an
internal issue of the operating system.

2.1.1 Scheduling

Servers that are shared between processes need queues that are manipulated
by schedulers in order to set the order in which the service is given. In regular
operating systems we find schedules for processing, for I/0 services, for network
services, etc. Many scheduling disciplines are possible, and each discipline may
be suitable for scheduling a specific service. A particular scheduling policy for a
particular service should adhere to the requirements of the jobs it serves. How-
ever, each scheduling discipline influences the implementation of an application
very strongly. The strong interaction between a real-time operating system
and the application programs implies that when a real-time application job is
running, the system's global discipline state is relatively stiff. Yet, there are
scheduling disciplines that a real-time system can never support. One example
is a round robin discipline, in which the overhead of switching control between
processes does not adhere to timing efficiency. The most general scheduling is
divided into two parts:

" Off-lins scheduling: a process in which the management of the policy of
a discipline of a service scheduling is dynamically updated. For example,
when a resource is added to the system, a new discipline may be adequate,
as well as recognizing the availability of that resource.

" On-line scheduling: application of current discipline.

In order to describe how the scheduling should be based on real-time constraints,
we have to define a model that describes both the scheduling process and the

items we want to schedule - the computation processes. One should note that in
a real-time operating system the order in which grants for service are given are
such that timing requirements are met. The 'hard* scheduling priority levels
should be used as measures of emergency rather than as measures of urgency of
execution due to real-time constraints.

Scheduling can be considered as maintaining ordered lists (queues), whose

items are members of a given set, and the items are sorted according to a

specified key. In our model, the given set is the set of active processes. From a
real-time point of view, the set of active processes can be partitioned into two
disjoint subsets:
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1. Synchronous processes which are required to be activated regularly in a
given particular frequency.

2. Asynchronous processes, each of which appears irregularly, but within a
bounded frequency.

Each of the above processes, say P, is characterized with a real-time constraint
expressed as a triple (1171)

where ci is the computation time of Pi, d, is its deadline and fi is its frequency
(for the asynchronous case it is the bound). Two important properties of the
above model hold in case a working solution is feasible.

1. Vi in the model: ci < d, < 1/f,.

2. E, cf, : the number of available resources.

The first property must hold continuously, and is a consideration of the "on-
line" scheduler, while the latter is a condition for the 'off-line" scheduler. The
latter requirement is stronger than what is really needed: it is based on the
maximal demand rate the system can find due to asynchronous processes.

From the above model we can derive the property that distinguishes a real-
time operating system from others:

e In a real-time operating system the scheduling decisions are based on
the real-time constraints (the above triples) of the active processes in the
system.

The following scheduling examples ([17]) demonstrate the meaning of the above
statement.

Examples: Various algorithms may be applicable for an architecture that has a
local queue for a specific resource. The most obvious scheduling algorithm
is the 'earliest deadline' algorithm. The scheduler chooses to execute
the process whose deadline is the earliest to happen. A second approach
is to use a scheduling policy which chooses the process whose maximal
delaying possibility is the lowest. This approach is called the 'least slack'
algorithm, where the slack of a process at time t is defined as the maximum
time which a run time scheduler can delay it, without disobeying the
constraints.

slack(P, t) = ma(d(t) - t - c(t), O)

A third example of real-time scheduling is the "latency' scheduling, in
which one considers the whole global state of the system constraints as a
graph, calculates the latency of the constraints, and allocates the "next-
time-slice' to the system constraint with the appropriate latency.
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The on-line scheduler is activated by process requests and by time servers. Its
implementation should be very efficient, at "kernel' level, so that the overhead
of management is minimized. The off-line scheduler can be implemented at a
user process level and not necessarily in the kernel level. User processes are also
allowed to be off-line (in other words their deadline can be oo), e.g. for log-in,
compile, link and so on. As such, they can be served in any time independent
discipline (LIFO, FIFO etc.), a policy which is used for ordering processes that
have the same non-critical "latency".

2.1.2 Processor allocation

The allocation of a processor as a resource by the real-time scheduling algo-
rithm might be governed by special processing constraints. Such an allocation
might be in conflict with architecture-timing optimization. The next paragraph
reviews one way of modelling and solving such situations.

Software tasks in time-critical real-time systems are usually divided into sev-
eral threads, and each of the threads must satisfy an execution-time constraint,
denoted as the port-to-port processing time. For example, in the Balistic Mis-
sile Defense application, 23 tasks were divided into 7 threads. A model of the
execution time of a thread can be constructed ([151) of four components:

1. Execution time of the task on the processor (E.) which depends on the
task size (Ti) and the processor MIPs rate ():

E, =

2. The communication network and operating system overhead (Ov), which
is used for concurrency control, integrity checking, recovery check-point
update, etc.

3. Inter-processor communication (IPC), whose cost is higher if communi-
cants reside on different processors.

4. Waiting time (WT1, which is consumed when the task waits in the proces-
sor enablement queue. This figure depends highly on the sizes and number
of tasks, the processor load, and the number of enablements. (Especially
if large tasks are assigned to the same processor.)

Therefore,
ET =Z(E,) + Ov +IPC +WT.

Enhancement of the performance of a system, as well as increasing the sys-
tem's margin away from being unable to satisfy the demands, is done by mini-
mizing ET. For a given network, Ov and the number of enablements is relatively
a constant. Hence, in order to reduce E2. the following steps should be adopted:

9
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" Reduce WT: large tasks should be assigned to different processors.

" Reduce IPC: tasks with high IPC cost with each other should be assigned
to the same processor.

" Reduce E1 : large tasks should be assigned to processors with higher MIPs
rate.

The above considerations yield the following sequence of activities in design-
ing an allocation scheme:

* A set of constraints is determined, to reduce the waiting time and the task
execution time. It may be performed in the following method:

1. Information is entered to the model about the tasks (sizes, execution
frequency of each task, number of data units exchanged between each
pair of tasks) and the network (Inter-processor distance, constraints).

2. Constraints are imposed on the model. In a matrix notation it is
expressed as follows ([151):

- Task preference matrix: Certain tasks (out of m) can be executed
only on specific processors (out of n). These restrictions are
formulated as an m x n matrix of O's and ls. Element(i, j) = 0
means task i can't be assigned to processor j. Element(i, j) = 1
meas no restriction on task i with respect to processor j.

- Task exclusive matrix: Defines mutually exclusive tasks, and
expressed as an m X m matrix. Element (i, j) = 0 means no
constraint between task i and task j. Element(i, j) = 1 means
task i and task j can not be assigned to the same processor.

" A cost function that measures the IPC cost is formulated.

* An algorithm that searches for the allocation with the minimum total cost
is determined.

2.1.3 Architecture dependency

Architecture of resources should be a significant consideration when allocating
them to processes. Distances between required resources may imply different
execution time, and thereby may shrink the set of possible allocations within
given timing constraints. Minimizing the UPC to meet timing constraints can
be considered using the above model. The cost function of the IPC depends on
the following parameters:

* Task coupling factors cj, %: number of data units transfered from task j to
task k.

10



e inter-processor distance d,,p: the cost of a transfer of one data unit from
q top.

The allocation in matrix notation is expressed as element(j, p) = I when
task j assigned to processor p, and sero otherwise.

The algorithm to derive a proper resource allocation might use the task
preference and the task exclusive matrices, and the minimization of the IPC
cost uses both the task coupling factors and the inter-processor distances. In
[15] a branch and bound technique is considered, using a two phase algorithm:
setting and back-tracking.

2.2 Time Services

In addition to simple time services, which are found also in "regular" operating
systems (e.g. Get time, Get date, Time stamp), some very complex services are
needed in a real-time operating system. One example is the clock-reset service,
which is important as an inter-process service (for physical synchronization)
as well as an internal service for a process. A time service in a distributed
system uses an algorithm that keeps a collection of clocks locally monotonic
(between updates), synchronized and adequately accurate with respect to some
time standard. Keeping the clocks locally monotonic is simple, and can be
achieved with logical clocks that obey some rules ([11]), but this solution arises
both anomalous behavior and a large drift between different clocks. In order to
examine the adequacy of a service, we have to define a model that describes it.

* Let C (t) denote a function that maps real time to clock 'i time.

* A standard clock i" is one with Vt : Ci (t) = t.

* A clock "i is correct at time to if C,(to) = to.

* A clock "i is accurate at time to if the first derivative of Ci(t) is 1 sec/sec
at to.

The use of a set of physical clocks {Ci(t)) improves the system's performance,
with respect to drift, up to a limit. However, applying some synchronisation
procedure is required. This procedure can be regarded as

C,(t) .- F(Cl(t), C,2(t), .., Ch(t))

where the function calculates its result from a distributed data. L. Lamport
shows in [111 that with physical clocks, and with a set of processes that form
a strongly connected communication graph whose diameter is d, and with a
network in which the message delays are bounded, bounds for clock accuracies
and for clock correctnesses may be derived. In particular, each clock accuracy
is bounded by

yt1d t - 11 <8 C1
dt

11



The correctness of each clock is obtained by sending messages from one clock
to another every r seconds, with an unpredicted message delay that is smaller
than q, and the bound is

Vi :V: [CI(t) - G,(t)I < d(26r + '7)

for all t.
Marsullo and Owicki, in 1161, consider two additional synchronisation func-

tions. Their work makes a use of the local knowledge of the errors of the
local clock. Suppose every clock "knows' it is correct within the interval
[Ci(t) - Ei(t), C,(t) + Ei(t) . Hence, E,(t) is a bound on the " clock maximal
error, a quantity it is able to calculate by combining the error sources that can
be expressed by the following model ([161):

* The error that comes into effect right on the clock reset, such as discretisa-
tion and other constant errors.

e The delay between the time this clock is read until another clock uses this
readout for its reset.

o The degradation of time counting that develops between consecutive resets.

According to this model, we can define a property that is weaker than correct-
ness. A time service is consistent if the intersection of the intervals, defined by
the set of its clocks (C,(t)), is nonempty. For example, in case there are two
clocks in the system time service, then consistency means

IC,(to) - Cy(to)I E5.,(to) + E,(to).

Two synchronisation algorithms are presented in [161, using the above error
source model. The incentive is to obtain a time service that is at least as
accurate as the best clock in the system.

1. Minimize maximum error is an algorithm that obeys two rules:

" Upon receiving a time request it answers with its current Ci (t) and
its current Ei(t).

" At least once every r time-units each clock requests the time from
its neighbor clocks. Any response which is inconsistent with its own
readout is ignored. In case the response is consistent, and the error of
the just-received response (combining both the error upon its being
sent and a bound on possible additional drift) is smaller than the
local one, then the response overwrites the local readout.

The update results in a smaller error, since it is constructed from the
smallest clock error in the system and the error generated since the last
reset. Examining the error obtained, one can see that the "long term'

12



error growth is due to the drift of the most accurate clock in the system.
In some ways, the goal of having a service as accurate as the best clock
in the system is achieved, but one should recall two flaws in the above
algorithm.

First, the algorithm is based on having valid upper bounds on the clock's
drift rates. (Without these bounds ,or in other words using infinite in-
tervals, the algorithm is of the same order as [111). Secondly, the case in
which a clock finds itself inconsistent with all the rest is not regarded.

2. Intersection of time intervals is also an algorithm that consists of two
rules:

" Upon receiving a time request it answers with its current C (t) and
its current E-(t) (exactly as in the previous algorithm).

" At least once every r time units each clock requests the time from its
neighbor clocks. Each clock collects all the answers and calculates an
interval from the highest lower edge and the lowest higher edge. If
it is consistent, then the clock is reset to the resulting interval. The
error of the resulting interval is smaller or equal to the smallest in
the system.

This algorithm originates in the logical assertion that if a formula p is true
over the period TI, and a formula q is true over the period T2, then the
formulapAq is true over the intersection of T, and T2 , if they do overlap.
Although the above assrtion is too simplified for a general deductive sys-
tem, since there are causality relations in which the consequence appears
only after the cause is finished, it is accurate for clock synchronisation.
This algorithm achieves better (small) eors than the previous one, based
on the fact that the overlap of two intervals must be smaller than or equal
to the smallest between the two. Yet, it still comes short due to the re-
quirement of having a correct upper bound for every clock's drift rate.
Another weaknew is that this algorithm is also less fault tolerant than the
first one, since there are consistent states recovered by the first that the
latter ignores. Such a trivial example is the case where only one readout
is bad enough to cause inconsistency to be obtained.

In (161 an interesting approach of applying the same idea to rates as to inter-
vals (a "velocity' feedback) is mentioned. We find statistical treatment (as in
confidence intervals) even more interesting. To conclude this section, recall that
the complexity of a time service in a distributed fault tolerant real-time oper-
ating system, and the accuracy requirements emphasise the need of having an
operating system solution to these requirements.
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Figure 1: The two clock synchronisation algorithms.

2.3 Communication

In addition to functional requirements of communication, " supported by any
operating system, the two key properties mentioned above (bounded time for
jobs and design controllability to application designers) should be maintained
by the communication support of a real-time operating system.

2.3.1 Message Passing

The type of model used (e.g. Master/slave, balanced, centrally controlled, Post-
Office like, etc.) influences strongly both fault tolerance issues and real-time
constraint issues. In casm where communication is more synchronous, processes
have to poll and wait for their turn to send messages. For example, consider
a centrally controlled communication network, in which one process dictates
to all others when each is allowed to transmit to a network. Such a system is
often found in a unibus network (e.g. the Mux-Bus), and it reduces significantly
real-time performances, unless a special hardware (buffers and communication
control) is added to each processor.

Parameter passing in remote procedure calls emphasises the interaction be-
tween the real-time properties of the communication network and the distributed
solution implemented. Consider the reference versus value parameter passing.
Using reference parameters assures a better concurrency control in cases of data
sharing, yet it complicates the execution, thereby imposing longer access times.
Using value parameters requires additional control to allow sharing, treating the
block of data to be shared as a resource, but execution time is well defined for a
specific allocation. Furthermore, in case the shared object is a program, 'alue'
transfer allows concurrent execution of the replica. The above considerations
suggest that in a real-time system, parameter pasing for remote procedural calls
should use value parameter-transfer in addition to a mutual exclusion control.
In addition, different formats of information should be excluded, such that no
irregular addition of 'translation time" would be added to the execution time of
a job. The above considerations influence the storage and access management,
and even the issue of file structures.
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Fault tolerance of communication, has a tremendous effect on timing bounds
for messages. However, the communication network must adhere to the corivct-
ncss of timing requirements of the application ([23,241), as well an supporting
failure modes. For example, consider the error model we introduced for a syn-
chronisation of a distributed physical clock system. In order to have a reasonable
estimate for E(t), one has to have a reasonable bound for the communication
duration, otherwise the time from the moment a readout has been sampled, to
the moment it is used to reset a clock, is not well defined. These aspects are
expanded in the next section.

2.3.2 Error Handling

The ability of the communication subsystem to handle errors and failures is an
important measure of a system's robustness. Two possible error types should
be handled: errors that originate in hardware failure (either a site failure or a
communication network failure), and errors due to the design. While the first
can be treated via redundancy and checks, the latter has to be treated with
special techniques to allow detection and diagnostics of the problem. Some of
the potential error detection and recovery procedures in a real-time systems has
a lot to do with the communication architecture and activities, emphasising the
special considerations due to real-time constraints.

When a remote site crashes, the use of a timeout mechanism in order to
prevent endless waiting is found in some communication sub-systems of regu-
lar operating systems. In a real-time environment it should be noted that late
delivery of a message may violate timing constraints of execution, and thereby
may lead to a system crash. Therefore, possible timeout retries should be taken
into account prior to scheduling in a real-time operating system, when the com-
putation time is considered.

Ackatouedgements are commonly used to obtain a s&fer communication pro-
tocol. Yet, communication duration thereby grows along with the network load.
The trade-off between high fault tolerance and execution times should be one
of the controllability features given to the application designer. Choosing be-
tween real-time performance and fault tolerance performance might be strongly
influenced by the possibilities currently available.

Idempotency is a problem in any distributed construction. The requirement
to allow transmission repetitions due to communication recovery procedures
affects other desired system properties. For example, consider the use of a shared
counter. Suppose a process has sent an increment command to this counter,
and failed to receive an acknowledgement from the counter. If the recovery
procedure sends another increment command, the result may be an increment
by two. However, using some kind of 'commit' protocol might overload the
network, and naturally increase execution time of jobs.

Channel properties affect many other system properties and architecture
issues. Some examples are: reordering of messages, message lose probability,
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bounded delivery time, etc.

2.3.8 I6=@@ of effieleey In hnplementation

Some implementation issues might affect the real-time and fault tolerance effi-
ciency parameters of the system.

9 The effects of reducing the over&@" of the communication system to a
minimum might enhance real-time parameters, whereas fault tolerance
might be degraded.

e The usage of spe¢eW purpose short messages (e.g. for remote synchronisa-
tion) may complicate the communication software and hardware, while
time consumption can be reduced, compared to sending empty packets
with such message types.

o The question whether to have end-to-ead ackmowleemeat or not, can be
considered as a trade-ol between robustnem of intermediase nodes versus
end-to-end acknowledgement of delivery.

2.4 Name servers

Name service usually provides the mapping for three name spaces, keeping it
unique for all three (1191):

1. Character &*via# names: used in the Ls system and in se program.

2. Segment mumberr used by a running process to refer to an active segment.

3. A known segment table (of a user) provides physical addresses for the page
table of a corresponding segment.

Each name is always interpreted with respect to a particular contest ([221). The
context is a set of bindings of names to objects. Context initialising (also called
binding, or linking, or loading) is the bridge between the high level human
oriented names, to the low level machine oriented addressing world. A context
initialising procedure usually consists of resolving and installing actions. The
resolution of a name involves seamrching a existing object that is identifed by a
given name in a given context. The unknowns in such a search disqualifles it as
a possible run time procedure in a real-time system. In a real-time system the
context isitialisor must be allowed only as an o-line taok, probably executed
before running a real-time job.

A Ale system (a high level context) in a distributed real-time operating
system sbould support:

" human oriented names,

_ multiple users,
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a selectively shared contexts,

* the ability to distinguish user's intent from the programmer's,

* and the ability to adhere to a given timing constraint.

The result of this requirements (1221) is a naming service that includes the
following.

" A multiple directory system.

" A naming network, in which directories appear as named objects in other
directories.

" Usage of a mechanism (closures) that connects an object that refers to
other objects by name, with the context in which those names are bound.
The simplest implementation of such a mechanism is through the usage
of a directory as such.

In addition, in order to be able to adhere to timing constraints, the response
time of a name service should always be reasonably bounded.

Name servers might be limited to small-sise unique names, in order to reduce
search time. Such a restriction arises issues of reusability of names, recalling the
need to maintain the uniqueness of names in a given context, especially regarding
the selectively shared contexts objective. However, implementing such a service
coirectly, allows any user to disconnect itself from external objects, but requires
some additional tools for deletion of objects because other users may be linked
to them.

The search rules in a name service in a real-time operating system should
be efficient from the real-time point of view. As such, a direct entry in a
directory should point to an object, and an indirect entry should specify the
whole accea path of the shared context to the closure in concern. Applying such
an approach allows limiting the number of directories that should be searched
for an access; for example, the user's working directory, a language library and
a system library. The lnguage and system librarys can be kept ordered and
balanced, and thereby reduce search time to a minimal bounded time.

2.5 Data Access Strategy

2.4.1 Protetiom

Real-time embedded systems usually neglect protectioa mechanisms. Howeve,
a real-time operating system cannot. The real-time requirements, being the
dominant ones, necessitate keeping protection timing cost as low s possible.
For example, consider the issue of uses being given direct access to required
resources on remote sites. The acce time is reduced, hand in hand with increas-
ing the availability of a potentially restricted information. Protection systems
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are divided into two categories: list oriented systems and ticket oriented sys-
tems (as capabilities). Access control lists imply a search procedure that is not
adequate for real-time systems. Capability system, in which authorization is a
prior phase to run time, provides a better real-time environment.

2.5.2 Remote storage and directory services

In a distributed system an application program does not have an explicit knowl-
edge about storage locations it uses. Therefore, a service which maintains a link
to remote sites must be given. Furthermore, timing properties of different al-
location instances may differ significantly. Therefore, the eciency of such a
service is very significant.

2.6 Fault Tolerance

It is not just desirable but may be necessary to support both safety (guarantee of
not happening) properties and reliability (guarantee of happening) properties.

" Different modes of operation may be applicable in cae of a node fiailre.
During a recovery procedure, one may maintain a backup mode, as long
as the recovery is not complete. The whole system might be reconfigured
for such a procedure.

* Communication failure may require reconfiguration of the system to in-
crease link robustness.

" Rsdusdenr. Data and process replication may be needed to support a
resilient computation. Reconfiguration schemes have to be devised when
switching to any backup mode. A redundant execution of a proem con-
sumes a large amount of resources, and thereby slows down the system's
real-time performance. A solution which is less time consuming, is to
maintain the backup program in a standby mode, and activate it only upon
failure. This solution requires that a failure will be detected early enough,
to provide recovery procedure time, even in degraded performance mode.
It also requires a continuous check-points update, to provide a starting
point to the backup process.

" GrscafW degmdsti na: As parts of the system fail, it may no longer be
possible to satisfy all the requirements of the application. Techniques for
graceful degradation may be very useful to ensure that critical activities
do not fail.

2.7 Other Services

Other services which might be offered to application programs are important as
well.
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2.7.1 Service architecture

Determining the way in which application programs use the system calls / ser-
vices has an enormous effect on its real-time performances. There are many
possible architectures to implement services. For example, a service may poll
continuously, waiting for a request to appear, or it may be awakened as a classic
procedure. Another example is to have a service treated as a resource, and in
case more than one user requests it, to maintain a queue for it. The latter ap-
proach is not adequate for real-time applications, because it forces an uncertain
execution time into a job.

2.7.2 Reconfiguration services

This service is very important in a dynamic system. Sites which are turned on
should boot themselves, sites that fail must reboot themselves, and sites that are
turned off should be detected by the resource management and allocation task.
Moreover, in cue of fault detection and recovery procedure, the reconfiguration
is of extreme importance.

2.7.3 I/0 device services

I/O services se used in real-time as well as in regular operating systems. How-
ever, device speeds may signifcantly influence application performance, espe-
cialy in jobe in which such services are in series with other timing constraints.

3 conclusion

Summarising the properties required from a real-time fault tolerant distributed
operating system, the following list is obtained.

1. Allocation of resources and scheduling of jobs should be in accordance
with the bounded time given to execute the job. Furthermore, the relative
progress of a set of tasks should be controlled and predictable.

2. Control (within limits) should be allowed to an application designer on
the above. For example, in cases where timing efficiency and protection
might reach a conflict, the application designer should be able to decide
what a trade-off to make.

3. Time services should be given within specified accuracy and correctness.

4. Communication should support a reliable data transfer, while satisfying
real-time constraints imposed.

5. Remote procedural calls should avoid migrations as possible, and pas
value parameters side by side with maintaining a mutual exclusion support
for shared objects.
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6. Communication acknowledgement should rely on an intermediate robust-
nes, instead of waiting for an end-to-end acknowledgement.

7. Naming network should be used, based on a multiple directory file system,
using closures for shared objects.

8. Context initialisation (binding) should be allowed only in off-line jobs.

9. Protection mechanism should be atickets oriented.

10. Redundant backup jobs should use check points and be activated only
when a failure occurs. Data replica should be updated via check points,
and migrate upon failure, as an off-line recovery procedure.

11. A reconfiguration service should be activated both upon request (failure,
login, boot, etc.) and periodically (turn off, etc.).

In general, all 'unknown' parameters in the execution time of a job should be
avoided, allowing them to occur only under an off-line discipline.
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