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The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate
Under Impulsive Loading

by Wang Xintian, Hong Shantao, and Weng Zhiyuan

Tongji University

Paper received on August 25, 1983.

n this paper the effects of the physical
and geometrical nonlinearities in a thin plate
are treated as equivalent body forces and
equivalent loads. Using the concept of
influence functions, an analytical method for
the thin plate problem with both kinds of
nonlinear effects is presented. In theoretical
analysis, the influence of plastic region which
extends in depth is considered and an
incremental formula of plastic strain is derived
by applying the incremental plastic theory. In
the calculation of practical examples, the
numerical solutions for nonlinear dynamic
responses of an elastic-plastic thin plate are
obtained for various hardening coeflicients and
different impulsive loads, all of the results
are quite regular. (Ok\t_ - ,
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I. Preface

Due to the requirement of the antiknock and anti-seismic

design of a structure, the nonlinear dynamic response analysis of

a structure has been widely recognized.

Two different kinds of nonlinear problems will be encountered

in the structure dynamic analysis if the structure undertakes

short-duration and large impulsive loads. One is the physical

nonlinearity which is the nonlinearity of the relationship between

material stress and strain. The other one is geometrical

nonlinearity which is the nonlinearity of the relationship between

strain and displacement which occurs while the structure

deflection exceeds the small deflection range. In the engineering

application, more attention is paid to the dynamic response

analyses which cover both kinds of nonlinearity. It is a rather

complicated problem. Generally, using numerical computation

methods is the only way to obtain the approximate solution. Among

those numerical methods, the finite element method is the most

effective one. The method presented in this paper is an

"influence function" numerical method. It is conceived from A. A.

.V ayushchin's elastic method for a plastic problem, A. S.

Vel@mir's method for a large deflection problem, and T. M.

Lin's method for a dynamic problem. Furthermore, the concept of

influence functions is applied to solve the dynamic response of a

thin wall problem with both kinds of nonlinear effects. Compared

with the finite element method, the method presented in this paper
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is simpler. Its computational time is much less than the finite

element method. Its precision is higher also.

II. Basic Assumption and the Influence Function of a Simple
Supported Plate.

1. Basic Assumption

1) The loading is a suddenly increased uniform load
which varies with time.

2) The structure is an elastic-plastic thin plate. Both
elastic and plastic regions follow the Kirchhoff
assumption.

3) The material of the structure contains the dual-linear
hardening characteristic as shown in Fig. 1.

4) The plastic theoretical analysis adopts the isotropic
hardening model. The material follows the von Mises
yielding function and the associated Prandtl-Reuss
flow rule.

S) The inertia force effects at both x and y directions
are neglected in the dynamic response calculation.

Fig. 1
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2. The Influence function of a Simple Supported Plate

The motion differential equation of a thin plate can be

written as

DV'w+ _.eluq() (1 )

Its resonance frequency is

* '--+ (2)

Assuming its particular solution is

.. t -1

After normalization, choose X.(x)-/$i-sin , Y. (V) 2 sin

Applying the orthogonality of the trigonometric function, and

choosing the initial condition as wi-kO when t=O, we have

T.(t) - I./OT -,.q(r)siaP.. (- r)dr (4)

The dynamic response of a simple supported rectangular plate

due to the point load of an unit strength at (, V) is

rm .-,dkn:.(5)

x (I -€oguatJ)

This 1. the Green function of the dynamic response of a simple

supported thin plate. After the time and spacial variables in the

Equation 5 are separated, the dynamic influence coefficient of a

thin plate deflection is

4
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- ~ ) i %--j~~i mxx (kx si-nS-(

rhab %.I was

x l -coI(JS.(p.A) (6)

Equation 6 represents the deflection response at grid (i, j) when

time step is equal to p due to the step load of a unit strength

act on grid (k, 1) when t=O.

Similarly, the static influence coefficient of a thin plate

deflection can be obtained from the thin plate static differential

equation.

Ssinn,, si - sin( kx)sx)

Both dynamic influence coefficient G and static influence

coefficient S of a thin plate are called influence function for

short in this paper.

III. The Dynamic Responses of an Elastic-Plastic Thin Plate Small
Deflection When Hardening

The non-hardening case of the dynamic responses of an ideal

elastic-plastic thin plate small deflection has been discussed in

Ref (3). This section will depict the dynamic response of an

elastic-plastic thin plate small deflection while considering the

hardening.

S
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The motion equation of an elastic-plastic thin plate (small

deflection) is written as

DV'w+ !A re=9q) +4(zvt) (8)9

where q(xg) is the lateral equivalent loading caused by the

plastic strain inside the plate, and is written as

4£'' E • -PW.+ e)xd (e: + ve.) zdz

where .:, ., 4 are time varied plastic strain components.

The thin plate is divided into uniform grids while the time

history is divided into equal intervals. Considering the case of

simple supports of four sides of the plate, substitute the dynamic

influence coefficient G shown in Equation 6 into it, then the

dynamic response successive substitutional equation of a thin

plate at time pAt is

N N

w(i, j, P) G(i. j, k, I, p) CAq (k, 1, o) + (k, I, o))
I-1 I-I

P-2 A'
+ : L j,; (i,j, k,1, p -r) Aq (k.1,r0 + A4 (k,1,0)J

,-a hI 1 ,., (10)

le1 I-a

Where Aq(k,l,r) is the lateral loading increment act on grid (k,

1) at t-t0-r.At, and A(k,I,r) is the plastic equivalent loading

increment act on grid (k, 1) at t-,ur.gt while hardening is

considered.1]

6
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Considering the dual-linear situation of the material

stress-strain relations (see Fig. 1), ais a hardening

coefficient, ais a plastic yielding limit. Using the

Prandtl-Reuss flow rule and the broad sense of the Hooke law, the

relationship between pre-plasticized strain increments Ae'.,Ae:,. A:,,

and full strain increments Ae,. e,,. A e, at time pat is

{ TC (A + ,B)*A., + (B + PA) Ae + ( -v) CAe.,
-2-C (A + vB) A., + (B + v A) &e" + Q1 - ) C e.) (1

v-CA B) Ae.,+ (B + vA) &e,,+ (1- -)te,

where

A/ -- (2 a,. - Cr,.,) B = -L (2o,,_- a.,-,)1 101
C - 3r,.,,-, (12)

T :) a--- + A(A+ PB) + B (B + vA) + !- OC
l-a 2

the stress strength .,., is

,,. ,( , + ,., +a,..,o,., + 3r.:,1 (13)

The increment form of the plastic strain equivalent loading is

E V
V, NE ae- + vb-d 'r&.w , +,d e-) zdz

+20-( V)j -Ae (14)

Notice that the plastic strain increment formula, Equation 11,

derived in this paper which considers the hardening situation, is

consistent with the matrix forms used in the elastic-plastic

finite element methods which are presented in Ref (161, (18).

7



The form of the dividing point I(x,y,t) between elastic and

plastic along the depth in the plate can be expressed as

.8'w 82W 62W 01W)

(X- ( M- 0 +Z j (15)

During the successive substitution process, based on the

Kirchhoff hypothesis, the full strain increment can be obtained by

using the formulas below

Me, - W(Awd

a' (Aw,)I te,, -z y

I 8 (Aw) (1

where Aw,=w,-w,4. The total stress at time pAt is

{ = O- I + / aO

o - ,,-= + A(.17

For the convenience of comparison, the same rectangular plate

used in Ref [31 is selected to calculate the dynamic response of

an elastic-plastic thin plate small deflection when the hardening

occurs.

8



The thin plate is shown in Fig. 2, where a=25.4cm, h1.27cm,
5 2 3 2

E=7.03x10 kg/cm , P=0.3, r=2.77 g/cm , 0,=2109kg/cm,

and its four sides are simple supported. q=21kg/cm , the time

interval is chosen as 1/48 of the basic period T ,

-4 1
At=0.223x10 a. Take the advantage of symmetry, divide the one

quarter of the plate into 4x4 grids, and divide five intervals in

the depth of the plate. Based on four different conditions OL= 0,

0.2, 0.5, and 1.0, the results of calculation are plotted in Fig.

3. From Fig. 3, it shows that the maximum deflection decreases

while ( increases, and the thin plate appeared to have a hardening

tendency. The curves are quite regular.

E. P.S.D

o.I•~~~~~~ --- -- -- 0 .. . .,

S0 20 30 40

Fig. 2 Fig. 3

When the load is further increased, the deflection will exceed

the small deflection range. In this case, the geometrical

nonlinearity effects must be considered at the same time. This

will be discussed in the next section.

9



IV. Analysis of a Problem which Contains both kinds of
Nonlinearities

In the anti-knock and anti-seismic design of a structure, the

impulsive loads are usually violent. This often introduces both

physical and geometrical nonlinear effects in the structure.

Therefore, this sort. of problem has obvious engineering

significance.

In order to systematically analyze the problem, we shall

attack the topic start from the static part then extend to the

dynamic part.

1. The static analysis of an elastic-plastic thin plate large
deflection

The coordinate system is shown in Fig. 4. Based on the

Kirchhoff hypothesis, we have

O+ 2 Ox 1  8wI X'

au, I OW' I ' &W a
a y +2 Oy ay. ay

1Ou OL' Ow w 02wI .,N" + -2!!L OW W-v 2W

where e.,. e,, e,, are plane strains. The total strain is composed of

the elastic strain and the plastic strain. For the plane stress

problem, the stress-strain relation is

10
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ECF, - (,- , + (e,- )]

oj--((e,-e) + v (e.- e'))
E

1 /"S

Fig. 4

Substitute Equation 18 into Equation 19, and then integrate it

along the entire plate depth, and we have

N. + av + O, + V (Ov '

v• : O"- x " 2' •o • -y- J Ox-

(e: + ve:)dz N -N.

Eh O _ BEV V_ (Bt i E (20)

N, -f- + , 1( )+ F

N., (76y) '8 x _ Vfe ' + ve. dz = NV, - NV.

N,, 2(1+,) Eh + - + & , l+IE 'zj Ox ax ey IVl
a N. - N.,

where N, , N,*. N, are the film forces of the corresponding middle

plane strains, while NV., T,. I.,are the film forces of the

corresponding plastic strain in the large deflection condition.

a,, - D(Z+vW) E e (.+4)adz

MI ,- D( + (a:+)Pre.)we :d (21)

m-(1+ J,

11



The static equation of an elastic-plastic large deflection is

~V'=+FI (22)

where q is the lateral load, j is the plastic strain equivalent
1

load, and q is the large deflection lateral equivalent load.

elm0# n W '00' _ WO WW (23)

F is the plastic strain equivalent body force of the stress

function, written as

- E(-J.dz + .'d- () .,

"W " --j 7&r & a ( 24 )

1

F is the large deflection equivalent body force of the stress

function, written as

1t Ek[ ( (.n..) V W (26)lWkV(25)

The relationship between the stress function *, the middle plane

film force, and the middle plane strain is

Noi No N., -(26)I4
(27)

12v 46
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The successive substitution formula can be written as

N N

w,(i, j) = , .. (i,,k,l)(xq,(k,l) + Aq:(k.l) + Aq,(k.fl) (28)
h-I I-I

Solutions can be obtained by solving the Equation (28) and the

second equation of Equation (22) simultaneously. The entire

process can be stated briefly as follows: The load q is increased

by the same increment Aq, the rth load increment is called the

rth load. Let =A4,=AF.=A=0 , substitute it into Equation (28)

and obtain w:, . This we can be used as the initial value of

successive substitution. The first approximate value of the

plastic strain increment of this stage can then be calculated by

considering the total stress created under the final load of

previous stage load, and the load increment Aq of this stage.

FindAr,, AF"and substitute them into the second equation of

Equation (22), then AO!, can be obtained by applying the finite

difference method, thus &g, and Aq can be calculated. Again

substitute both values into Equation (28) to obtain the

approximate value after the first successive substitution ! ....

Repeat this process until the converge criteriaAw-&e-j'<eis met,

which means the difference is negligible. Then add one more load

increment &q. Repeat the entire above processes until the final

load reaches q. The final solution w(i, j) is the static solution

of the elastic-plastic thin wall large deflection under the load

q.

13



This paper takes the square plate shown in Fig. 2 as a

practical example and conducts the calculation by treating it as a

static problem. The boundary condition is that the four sides of

the plate are hinge-supported. This is the simpler case. Four

difference conditions are considered in the calculation: Elastic

small deflection (E.S.S), Elastic large deflection (E.L.S),

Elastic-Plastic small deflection (E.P.S.S), and Elastic-Plastic

large deflection (E.P.L.S). Four resulting curves are plotted in

Fig. S.

l.S /S FL..
J .

t ,

,I
I

Fig. 5

For the case of elastic large deflection problem of a thin

plate, A. C. Volnmas- gave the first stage approximate

calculation formula of a square plate,

Under the four-side hinge-supported conditiong A=7.S, B=22. The

nondimensional parameter '.c(nj,,* o . d(-') , where f is the2 V _ M

maximum deflection. The more precis* solution should be located

14



at the left side of this approximate solution, Ref [41.

Meanwhile, based on Ref (101, this paper obtains one curve by

using interpolation method. From Fig. 6, it shows the method

presented in this paper has higher precision.

() (2)

ISOIOSO *:)' (if)Ill!Il 4( ( 4)

leO /'N4.MC io)

ELS.S

Fig. 6 2 4
Key: (1) Method in this paper; (2) Ref (4);
(3) More precise solution; (4) Ref (101

Fig. 7 and Fig. 8 show the plastic region distribution on the

upper, lower surface of the plate and along the depth of the plate

of the case which considers large deflection effects. Fig. 9

shows the deflection curves at the different cross sections of the

plate which again are the results of the four different cases.

2E

SO
4. 3

30 4.

200

0a X
?Owaeg6o) -E e"j'

Fig. 7

-ais



Fig. 8

.
iOe

I S

(Sao/$ w(cm) a30

a--. In .aI --. 15.5

IL .3.33.L

Fig. 9
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2. The dynamic response analysis of the elastic-plastic large
deflection of a thin plate

The motion equation of the elastic-plastic large deflection of

a thin plate can be written as

9 (31)LV'4 + F' + 4

Compared with the static equation, the above equation contains

only one term, an inertia term, more than Equation (22). Other

than the time factor need to be added, the expression forms of the

stress, strain, internal force, internal torque as well as
1 _ 1

q , F, F , * and etc. for the thin plate in the dynamic case

are similar to those in the static case. In this paper, the

inertia term is handled by applying T. H. Lin's dynamic problem

solving method and introducing the dynamic influence coefficient

G(i, j, k, 1, p) of a thin plate deflection. The successive

substitution formula is

w(j-p) U 1) Eq.Gi , 1p)( +(hg 64(h , ),) ( 1.',)I.o (2
*- I 8.8

* N, N, *"&(,,~~-)(lllr t(hl,r) * I(,.)

$Ne # Aa

where 49'(Ir)is the large deflection equivalent load increment

which acts on grid (k, S) at time to#,. The finite difference

17



incremental form of the second equation of Equation (31) on the

grid (i, j) at time pAt is

o- + , + 'A.-,i9I + Idj-) +2(&O.,i,.-,

+ A#.,.P. -Si. + 10'0-,01-1) + (A ,.i# + .+ AO,- ( 33)
SA.-,) &F. + AF.,.i

The successive substitution process is similar to the previous

case. For the convenience of comparison, the square plate shown

in Fig. 2 is still used as a practical example to calculate its

dynamic response. The boundary is still the hinge-supported

points.

The impulsive load is a suddenly increased platform load.
2

Three difference loads which are q=28, 35, 56 kg/cm ,

respectively, are used in the calculations. Four different cases

are analyzed in this paper; they are: elastic small deflection

(E.S.D), elastic large deflection (E.L.D), elastic-plastic small

deflection (E.P.S.D) and elastic-plastic large deflection

(E.P.L.0). The dynamic response curves are then obtained as shown

in Fig. 10, 11, and 12. In order to discuss the geometrical

nonlinear effect, the impulsive load was increased to q=70
3

kg/cm in this paper. The cases of E.S.D, E.L.D, and E.P.L.D

were calculated. The dynamic response curves for these three

cases are shown in Fig. 13.

This paper also calculates the cases when the impulsive load

is a triangular and a square function. The associated dynamic

response curves are shown in Fig. 14 and 15.

18
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wcm)

U 13 4 LP.S.D2.0 cm) I. 3.5 /

/ 0.5s N

E.E.P.Ld0.637 1.1

LS.US. 4.253D\

EE.LLP

Fig. 14. Fig. 1 5.

From these curves, we notice that the thin plate is "softened"

when the plastic effect is considered, while the thin plate is

"hardened" when the geometrical nonlinear effect is considered.

Furthermore, the geometrical effect abruptly increases along with

the increasing of the impulsive load. The curves show the

particular regularity.

Due to there being no literature which discusses the influence

of plastic region which extends in depth and also considers the

thin plate dynamic response with both kinds of nonlinearity

effects, a direct comparison and discussion can not be made.

However, a "degraded" situation is made in this paper to conduct

an indirect comparison and discussion.

Ref [11] applies the finite difference method to the studying

of the dynamic response of a thin plate elastic-plastic small

20



deflection problem. That paper uses nondimension parameters. For

the case of the four-side simple supported square plate, we have

P, Me 4-000406-u- = 2a'
0 0.481 L 18.-73 (34)

,0,- 9 S

p, T= ,
1

where Mo=-1o' is the thin plate yielding moment. Notice that. Ref

[111 uses the finite element method to obtain T which is
1

inconsistent with the result obtained by the analytical method

presented in this paper. The period used in Ref [111 was

converted into the analytical solution value when plotted in Fig.
0

16. For the square plate shown in Fig. 2, q =2 is equivalent to
2

q=54.Skg/cm . From Fig. 16, the curve obtained by the method in

this paper in terms of calculating the case which degraded to the

elastic-plastic small deflection, matches quite well with that

obtained by using the finite element method presented in Ref

[111). Both curves appear even closer for the maximum deflection.

i

Ref iiii LP.S.D

2 ,-

E '.P.L.D

3O 4o SO

Fig. 16
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If the plastic effect is neglected in the case of two

nonlinearities, the problem will "degrade" to an elastic large

deflection condition. The results of such a "degraded" case by

using the method presented in this paper, therefore, can compare

with those presented in Ref [6].

Let's introduce the related parameters in Ref [6],

4,' D E lp P 169
a' r/ aIa'r xrh (35)

Ref [6] points out that the maximum amplitude A of the
max

dynamic response of an elastic thin plate large deflection in fact

is one of the real roots of Equation E(A)-A'+-2w&A-4P •

Obviously, the solution based on the elastic small deflection
3

theory can be obtained if A =0. This paper uses WLm, wsot to

represent the maximum deflection of an thin plate elastic dynamic

response which is obtained according to the large deflection

theory and small deflection theory, respectively. It Tust be

pointed out here that only the first term (N=I) of the

trigonometric series is taken in Ref 16] which implies that the

thin plate is analyzed by treating it essentially as a single

degree of freedom system. Both WLm, WtM are the first stage

approximation only. This paper applies the method of influence

function where N=7 is taken in the trigonometric series. The

results are listed in Table 1.

22



Table 1

()P i ws.v(cm) WLM (CM)
kg 1(2)(2) ( 4)

k12 -7 izf)

35 0.923 0.881 4.85 0.845 0.913 5.06

42 1.108 1.056 4.88 1.001 0.953 5.09

56 1.477 1.408 4.89 1.264 1.205 4.87

70 1.846 1.761 4.88 1.494 1.427 4.68

Key: (1) Load; (2) Ref [6] ; (3) Method in this paper;
(4) Error.

In order to further eliminate the effect of the grid division

in the finite difference form and the number of the term in the

trigonometric series, this paper introduces a large deflection

influence coefficient h:

91 2 WL/WSH (36)

This parameter reflects the reducing rate of the maximum

deflection of a thin plate dynamic response when a large

deflection effect is considered. Thus, Table 2 is obtained.

Table 2.

(1)" (2) (3) (4)

35 0.9252 0.9233 0.21

42 0.1037 6.901 0.20

0 0.8555 0.8557 0.02

70 4.6991 0.8106 0.18

Key: (1) Load; (2) ke obtained by Ref [61;
(3): ke obtained by this paper; (4) Error.

23
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From both Table 1 and 2, the dynamic responses of an elastic

large deflection obtained by using the influence method presented

in this paper have higher precision.

This paper also calculates the case of choosing N=1 in the

trigonometric series, and compares the result with Ref [6]. It is

found that the error can be further decreased to 2-3%.

In the practical example calculation of finding the dynamic

responses of an elastic-plastic large deflection, when even the

time interval At is doubled, the difference of the maximum
2

deflection will not exceed 10% in the q=S6kg/cm case. This

states that the convergence of this paper's method is better also.

In a word, the thin plate dynamic response curves of different

conditions obtained by using the method presented in this paper,

contain the particular regularity. Because no compatible

literature was found, this paper compared the results of the

"degraded" condition with the corresponding literature. The

results show remarkably well. This explains indirectly that it is

feasible to analyze the problem with both kinds of nonlinear

effects by using the influence function concept.

24



V. Discussion

1) This paper applies the concept of influence function,

considers the influence of the plastic region which extends in

depth and in the x, y direction of the plate, and analyzes the

thin plate dynamic response problem with both kinds of nonlinear

effects. Through calculation and comparison of the results of a

degraded case with the related literature practical examples, it

indirectly proves that the method presented in this paper is

feasible. From the given elastic solution, this paper solves the

influence function. For those more complicated problems, if their

elastic solutions are not given, they can be found through finite

element methods as pointed out in the Ref [3] abstract.

Basically, the method presented in this paper, therefore, can be

applied to the nonlinear dynamic response analysis of complicated

structures whose elastic solutions are given. The calculation

time takes around 35 minutes for each case in a 719 machine.

2) It is noticed through calculation in examples that the

physical nolinearity makes a thin plate "soften" while the

geometrical nolinearity makes it "harden". Although they both are

coupling each other, their effects on the structure are contrary.

Along with increases of the impulsive loads, both nonlinear

effects build up; however, the effect of geometrical nonlinearity

builds up abruptly. From the response curves, we noticed that the

majority of a structure E.P.L.D curve fell inside of the E.S.D

curve when the impulsive load reached a certain level. N. Jones

25
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pointed out that the plate strain rate is the primary factor when

the impulsive loads are small, while the film force of the plate

middle plane is the primary one when the impulsive loads are

large. However, it. lacked precise numerical results. This paper

has now given the quantitative results and the associated

conclusions. Moreover, they are consistent with the viewpoint of

N. Jones.

3) After considering the geometrical nonlinear effect, the

neutral plane of a thin plate deviates from the plate middle

plane. The plastic strain of the plate extends in depth, its

distribution is not symmetrical with respect to the plate middle

plane. The examples show that such a situation can cause the

reduction of the elastic core in the plate layer, thus forming a

plastic yielding region. This phenomenon is very significant

while studying the development regularity of a thin plate plastic

region or a plastic hinge line along with time.

4) When the impulsive loads are large, under a finite

deflection situation, we notice, from the calculated curves, the

ratio between the difference of two maximum deflections obtained

from a thin plate E.P.S.D curve and E.S.D curve, and the maximum

deflection of E.S.D curve, far exceeds the value under the 30%

conclusion drawn by some literature which is based on the small

deflection theory. When the impulsive load is large, the thin

plate dynamic response has exceeded the small deflection region.

Therefore, the geometrical nonlinear effect has to be taken into
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account; otherwise, the error will abruptly enlarge along with the

increase of load. This is also where the significance of this

paper lies.

5) The nonlinear dynamic response of an elastic-plastic thin

plate studied in this paper belongs to the cases where the ratio

of the maximum deflection and the thickness of plate is not too

large. Because when the deformation of an elastic-plastic plate

is large, the precise analysis becomes complicated, and it is

beyond the scope of this paper.

6) The method presented in this paper can only obtain the

approximate solutions, because this method adopts the following

approximations to find out the numerical solutions. They are a

successive substitution method to approaching the solution step by

step, a time and spacial variables separation method, finite

difference forms as well as the method of finding a plastic strain

increment of the current step by using the final full stress of

the previous step, and so forth.
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