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ABSTRACT

A new type of gait and steering algorithm for use by a six-legged walking

machine is developed and presented in this study. The spatially oriented tripod

follow-the-leader gait is an extension of previous studies of temporal follow-the-

leader gaits, and should prove useful for all-terrain walking vehicles, such as the

Adaptive Suspension Vehicle. Tractor-trailer style steering is introduced as an

effort to tailor steering control for this type of gait. Both gait and steering

algorithms are implemented on a color graphics computer simulation for 'tudy

and comparison with other walking algorithms..,- -
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I. INTRODUCTION

It is estimated that nearly half of the Earth's land surface is inaccessible to

wheeled and tracked vehicles [Ref. 11. Yet almost all of this same area can be

successfully traversed by animals and man. This great difference in mobility has

motivated research into the creation of a practical legged vehicle or

walking machine.

The advantages of legged locomotion can largely be attributed to the

flexibility offered in leg placement and support. Wheeled vehicles, and to a lesser

extent tracked vehicles, are confined to a more or less continuous, relatively flat

and obstruction free paths along the ground. The leg's flexibility allows the

utilization of discontinuous support regions on the ground and the adaptation to

terrain slope. A legged vehicle may potentially use obstructions for support as it

climbs over those obstacles which it decides to not simply ignore.

A second advantage of legs involves the means of obtaining traction in soft

soil. A wheel or track creates a depression or rut from which it must continually

work to climb out. Slippage causes the wheel or track spin. possibly digging a

deeper hole. A leg, however. may be lifted vertically out of its depression,

minimizing the work required. In addition. any back slip caused by the vehicle

stepping pushes up soil behind the foot and improves traction. [Ref. 2]
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The combination of flexible coordination and increased traction provides a

potential for greater speed and less power consumption while operating over rough

and otherwise unsuitable terrain. Other advantages of legged locomotion include

possible improved comfort in ride due to the adaptive nature of legged support on

uneven terrain, the ability to test soil conditions prior to placement of weight on

the legs, and the relatively small footprint left in the soil. The latter may prove

especially important for agricultural work, where the disturbance of crops is to be

minimized, or for military vehicles navigating areas suspected of containing

landmines.

A. GOALS

The purpose of this study is to explore a new type of gait and steering

algorithm for the use of legged walking machines. The gait is a particular type of

tripod gait, which can be considered as an extension of the temporal follow-the-

leader gait [Ref. 3], into the spatial domain. The steering algorithm to be

investigated along with this style of gait borrows from the concept of driving a

wheeled tractor-trailer vehicle. It is believed that this steering algorithm may be

particularly well suited for the fixed foothold position requirements of follow-the-

leader gaits.

The machine chosen as a physical reference for the study is the Adaptive

Suspension Vehicle (ASV). This is a self-contained, six-legged vehicle currently

8



being evaluated at the Ohio State University for rough-terrain locomotion. The

ASN' is a Defense Advanced Research Projects Agency (DARPA) proof of concept

project.

A secondary goal is to develop a simulation model with which to study

walking gaits and control algorithms in general for the ASV. This model is

developed along the general lines of the simulation previously presented by Lee

,Ref. 4], incorporating several of his model's features, including omni-directional

control. foot movement, and body attitude and altitude regulation algorithms. In

addition. this simulation is to have the features of operation in either the new

follow-the-leader tripod gait mode or in Lee's "forward wave" tripod gait mode.

an enhancement of realism with a detailed color graphics display, and a menu

system controlled with a single mouse button.

B. ORGANIZATION

Chapter II provides a brief overview of the previous work relating to this

study. It includes a discussion of state of the art legged vehicles, tripod follow-

the-leader gaits, tripod gaits. stability and simulation displays.

A detailed discussion of the ASV simulation problem is presented in Chapter

III. This ihapter covers the configuration of the vehicle, the gait and steering

algorithms, the simplifications assumed in the construction of the model, and the

kinematics involved in making the ASV' model walk. The final sertion in this

0
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chapter describes the IRIS-2400 simulation hardware and software on which the

model was developed.

The simulation program's operation and functions are presented in Chapter

IV. This includes a complete description of the operation of the program controls

and display features. This is followed by a discussion of the means by which

graphics are programmed on the IRIS. and by a description of the organization

and flow of the program and its modules.

Chapter V is a review of the performance of the simulation. It includes a

brief subjective view on the feel of driving in the two modes.

The final chapter summarizes the contributions of this study. It also contains

comments on possible directions for future research. The program code is listed in

the appendix.

10
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I1. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

The last quarter of a century has witnessed intense efforts to build machines

that walk. Difficulties facing researchers include the problems of controlling the

many degrees of freedom necessary in a maneuverable leg. maintaining vehicle

stability, creating energy efficient motion, and adapting the walking motions to

unstructured terrain. With the advent of compact computer technology and

computer-aided simulation and design, serious progress is now being made in

overcoming these problems. [Ref. 5J

Several promising working designs have emerged in the last ten years. Some

of the most prominent include the Perambulating Vehicle II (PVII) at the Tokyo

Institute of Technology, the Carnegie-Mellon University hexapod. the Odetics Inc.

ODEX 1, and the Adaptive Suspension Vehicle (ASV) developed at the Ohio

State University.

The PVII is a light-weight laboratory model quadruped. developed in 1980.

It features one of the first pantograph leg constructions designed specifically to

provide simplified leg coordination and energy efficient walking. Using tactile foot

* sensors and a microcomputer mounted near the vehicle, the PVII is able to probe

for footholds and maneuver over obstacles. [Ref. 61



The hexapod developed at the Carnegie-Mellon University in 1982 is a self-

contained walking machine large enough to carry its operator. It uses a gasoline

engine to provide power to the legs via a set of hydraulic actuators. The

movements of the individual legs are controlled by a series of passive hydraulic

circuits. A built-in microprocessor interprets the driver's commands and specifies

the correct series of leg movement patterns to be used. This arrangement frees

the single microprocessor from the need to compute each foot trajectory. [Ref. 7]

The ODEX I is a commercial design introduced in 1983 [Ref. 8]. An

improved version. sometimes referred to as ODEX II, is being developed for near-

term use in nuclear power plants [Ref. 9]. The ODEX series makes use of a

unique circular arrangement of six planar pantograph legs which allow the

vehicles to adjust their profile for negotiation of narrow passages. The ODEX

walking machines are directed through a radio or fiber-optic link from the

operator to an on-board supervisory-level microprocessor. Each leg is controlled

by a dedicated lower-level microprocessor which receives instructions from the

supervisory level microprocessor. The new ODEX hexapod is also being equipped

with a center-mounted arm for remote manipulation of objects, such as valves, in

hazardous environments. [Ref. 81

The Adaptive Suspension Vehicle (Figure 2.1), currently being tested at Ohio

State University. is the first computer-coordinated legged vehicle designed and

built for operation on natural terrain [Ref. 101. This hexapod walking machine is

completely self-contained, and is capable of carrying the driver, a 500 lb. internal

12
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payload, computer and control circuitry, and power system. in an outdoor

environment. The ASV is the vehicle modeled in this study. A more detailed

description of the ASV follows in Section 3.B.

The remaining sections of this chapter concern gaits used by walking

machines, vehicle steering, the walking machine stability problem, and graphical

representation of the vehicle's motion. The gait and stability sections are oriented

towards six-legged vehicles such as the ASK.

B. GAIT SELECTION

1. Definitions

A gait is a mode of locomotion for a vehicle or animal distinguished by a

specific pattern of lifting and placing of the feet. Gaits in general may be

described using the event 8equence notation introduced by McGhee and Jain [Ref.

11]. The integer i in such a sequence corresponds to the event of placing foot i on

the ground. The lifting of the same foot is represented by the integer i + n,

where na equals the number of legs. For the ASV, legs are numbered on the left

side (1. 3, 5) from the front to the rear, and on the right side (2, 4. 6) in the same

order.

A periodic gait is one that repeats the lifting and placing pattern, and

thus is represented by one cycle of events. A periodic gait is said to be

non8ingular if no two of its events occur simultaneously. McGhee [Ref. 12]

demonstrated the existence of 39.916,800 possible nonsingular periodic hexapod

14



gaits. The total number of possible hexapod gaits is a much larger and unknown

number [Ref. 51. This makes the selection of an optimum gait a very difficult

problem. However, this thesis is concerned with a single type of gait sequence,

the tripod sequence. These are singular gaits, in that more than one leg is placed

at a given instant [Ref. 3].

A periodic gait is considered symmetrical when the stepping pattern on

one side of the body is identical to that on the opposite side and separated in time

by exactly one-half of the gait period [Ref. 121. Symmetry tends to simplify the

required leg coordination algorithms.

The pitch of a gait is the distance between footholds, measured in body

lengths (defined as the distance between the front and rear leg reference

positions). Leg stroke is the linear distance the foot travels with respect to the

body when occupying a particular foothold. Leg stroke is also expressed in terms

of body lengths.

2. Follow-the-Leader Gaits

A follou-the-leader(FTL) gait is one in which the middle and rear legs

on each side of the body step in the foothold locations previously occupied by the

leading legs [Ref. 13]. Creeping FTL gaits (in which at most one leg is in the air

at any time [Ref. 14]). were first studied by Ozguner, Tsai, and McGhee [Ref. 31.

Using a temporal framework. they narrowed the number of possible FTL creeping

gaits to 30, of which they found five to be symmetrically realizable.

15
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Expanding to a spatial reference frame greatly increases the number of

gaits in this category. A tripod creeping gait can be defined as one in which the

legs are placed in alternating groups of three, with each group forming a tripod of

support. In the case of the ASV, the two possible tripods are the leg sets (1 4 5)

and (2 3 6).

The possible distinct tripod creeping gaits can be ennumerated using an

approach similar to that in Ozguner et al. [Ref. 3]. Choosing the placement of leg

1 as a reference, evidently there are two possibilities for the relative ordering of

legs 4 and 5, and three possible locations in each sequence for the insertion of the

alternate group of legs. Furthermore, the placing of the alternate leg group (2 3

6) can be accomplished in six distinct ways. Table 2.1 lists the 36 possible

nonsingular placing sequences.

It might first appear strange that the sequence ( 1 2 3 6 4 5 ) is included

in Table 2.1. However taking two periods together. the sequence becomes

(1 2 3 6 4 5 1 2 3 6 4 5 ), which clearly shows that the placement of the legs

occur in alternating groups of three.

Comparing the entries in Table 2.1 to those in the table of Ozguner et al.,

one can see thht none of these sequences are listed in the latter work. This is

because the sequences here are not temporally follow-the-leader. Yet they all are

spatial FTL gaits. This can be seen from the gait kinematics of the example

shown in Figure 2.2.

16



TABLE 2.1. PLACING SEQUENCES FOR TRIPOD CREEPING FTL GAITS
Gait Placing Tripod 2 -- Tripod 1 -- Tripod 2

Number Sequence Insertion Subsequence Subsequence
Position

1 123645 1 145 236
2 126345 1 145 263
3 132645 1 145 326
4 136245 1 145 362
5 162345 1 145 623
6 163245 1 145 632
7 123654 1 154 236
8 126354 1 154 263
9 132654 1 154 326

10 136254 1 154 362
11 162354 1 154 623
12 163254 1 154 632
13 142365 2 145 236
14 142635 2 145 263
15 143265 2 145 326
16 143625 2 145 362
17 146235 2 145 623
18 146325 2 145 632
19 152364 2 154 236
20 152634 2 154 263
21 153264 2 154 326
22 153624 2 154 362
23 156234 2 154 623
24 156324 2 154 632
25 145236 3 145 236
26 145263 3 145 263
27 145326 3 145 326
28 145362 3 145 362
39 145623 3 145 623
30 145632 3 145 632

31 154236 3 154 236I
32 154263 3 154 263
33 154326 3 154 326
34 154362 3 154 362
35 154623 3 154 623
36 154632 3 154 632

17
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Figure 2.2 Sequence of Stepping for a Tripod FTh

with Pitch of 1/3 and Continuous Body Motion
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It is possible to alternate body motion with leg placement in the tripod

gait (Figure 2.3). This yields a pattern of movement that is compatible with the

general notion of a creeping gait [Ref. 3I. It should be noted, however, that while

such a strategy may improve the static stability of the gait IRef. 3], the

intermittent body motion increases the leg stroke by a factor of two, which

greatly increases the required working volume of the legs. For this reason, and

also because intermittent body motion slows the average vehicle forward speed,

only the continuous body motion alternative will be considered further in this

thesis.

3. Singular Tripod Gaits

Tripod gaits have proved to provide a good compromise between

stability. maneuverability, and ease of control for the Ohio State University

Hexapod. the ODEX 1, and the ASK. For this reason tripod gaits were chosen for

this simulation study.

It can be seen that a tripod gait is actually a special limiting case of a

creeping gait, where the time between the placement of individual legs within a

tripod grouping approaches zero. Of the very large (unknown) number of gait

sequences possible. only one can be classified as a singular tripod gait sequence.

All differences among varieties of tripod gaits are therefore a function of

kinematics only.



Move legs

00

All legs
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o 0

Move body

0 0/ 0 (3 0

0 0 0
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Figure 2.3 Sequence of Stepping for a Tripod FTL with

Pitch of 1/3 and Alternating Body and Leg Motion
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The most frequently used tripod gait is the limiting form of the

forward wav'e gait, where the duty cycle', 3. approaches 1/2 [Ref. 4,1 This

study introduces the singular FTL tripod gait. Both of these gaits are

implemented in the walking algorithms of this simulation and are described

further in Chapter III.

It is interesting to note that potentially the fastest forward wave tripod

gait for the ASV is an FTL tripod gait with a pitch of one (Fig. 2.4). This of

course can only be considered a true FTL gait if the feet are assumed to be

dimensionless. In order to prevent the legs from interfering with one another, the

duty cycle might be made slightly less than 1/2. This would momentarily leave

the vehicle with no supporting legs in contact with the ground. It would also

have the disadvantage of not providing sufficient time for possible foothold

searches by the leading legs.

C. STEERING

There are several different approaches to steering currently used by ground

vehicles. The most familiar method is articulated, or automotive style steering

[Ref. 151. With a steering wheel, accelerator and brake, the driver of an

automobile can directly control the vehicle's turning radius and forward velocity.

The duty cycle is the fraction of the leg cycle used for supporting the body.

21
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Tracked vehicles, on the other hand, most frequently utilize skid steering. By

operating the sets of tracks at differing rates. the driver controls the turning rate

and forward velocity of the vehicle.

Tractor-trailers use still another type of steering. Here the driver steers far

forward of the vehicle's center of gravity. The trailer follows along in the path of

the cab. with the steering of its center of gravity lagging behind the steering of

the cab. Furthermore. since the trailer's wheel axle orientation constrains its

motion, the trailer is restricted to a larger turning radius than the cab is capable

of steering.

Specially designed wheeled vehicles may use omni- directional steering [Ref.

16]. This rarely used method allows the driver to specify turning rate and

velocity in any horizontal direction.

Legged vehicles have historically used similar steering approaches. McGhee

and Iswandhi [Ref. 17], introduced a two-axis joystick control, analogous to

articulated steering, in which one axis controlled the turning radius and the other

controlled forward velocity. Orin [Ref. 18], applied three-axis joystick control to

the Ohio State University Hexapod, a small laboratory scale walking vehicle.

This allowed forward. lateral and rotational velocities to be specified by the

driver, providing steering control much like that experienced in a helicopter. The

current ASV uses a similar three-axis joystick control.

Tractor-trailer style steering has not yet been applied to walking vehicles.

This approach, which will be developed in this thesis. should give improved two-
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axis control to the driver for moving through areas of restricted maneuverability.

The driver need only be concerned with maneuvering the front end of the vehicle.

The body of the vehicle will follow along the proven path established by the

footholds used by the front pair of legs.

D. STABILITY

The problem of vehicle balance is a vital concern for walking machines and

ha-s been a focus of many studies. Legged vehicles may maintain their stability

using one of two methods. static balancing [Ref. 19) or dynamic balancing [Ref.

20].

Static stability is attained by maintaining the vertical projection of the

vehicle's center of gravity within the polygon defined by the supporting legs [Ref.

51. This method is conceptually simple. It is. however, only valid for stationary

or slow moving vehicles, as it neglects the effects of inertia on stability.

Dynamic balancing is a complex process which places fewer restrictions on

vehicle velocity. The vehicle may be allowed to momentarily move into a

statically unstable configuration, so long as. over time. an adequate base of

support is provided [Ref. 20]. This is the mode of balancing normally used byI

man and most vertebrate animals. It remains an extremely complex process.

however. which is difficult to reproduce with legged vehicles.

This model uses only the static criteria for stability. Having the vehicle

limited to reasonable velocities and the six legs placed in alternating tripod
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support patterns ensures a high degree of stability. To guarantee stability, the

usable working volume for each leg is reduced. Figure 2.5 shows a worst case

situation demonstrating that, if the legs are confined to their respective

constrained working volumes, the vertical projection of the center of gravity will

always fall within the triangular pattern formed by the supporting legs. A further

discussion of the constrained working volume can be found in [Ref. 4].

E. GRAPHICS

There is a wide spectrum of available options from which to choose in the

field of graphic displays. Decisions are required as to running the simulation on

monochrome or color monitors, the type and number of dimensions for the

projection, the use of line or solid figure representation, acceptable display

resolution and update time, and whether to employ special hardware options.

State of the art graphics machines also offer possibilities which include shading,

reflectivity of surfaces, and multiple light sources. A compromise must be made

between functionality, visual realism, and cost in order to realize an effective

simulation.

Past simulation models featuring the ASV [Ref. 4,21,22] have concentrated on

basic functionality in the display. The vehicles and terrain were represented by

simplified line drawings on a monochrome monitor. This study attempts to take

advantage of recent developments in special hardware and software for graphics

workstations, in order to create a more realistic and convincing simulation. It is
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for Adaptive Suspension Vehicle

26



simulation. It is believed that the IRIS-2400 [Ref. 231 represents a good

compromise between state of the art quality, cost, processing time and

availability. This system was therefore selected to support the work of this thesis.

F. SUMMARY

This chapter provides background information on previous research leading to

this study. Discussions include a brief survey of examples of the state-of-the-art

walking machines, follow-the-leader and tripod gaits. vehicle steering, and the

question of stability for walking machines. In addition, several concerns are

expressed regarding the graphics displays used to portray the action of the

walking vehicles.

The following chapter contains a detailed statement of the ASV simulation

problem to be solved in this thesis.
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III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

This chapter is intended as a description of the nature of the simulation

modeling problem. In it is a discussion of the configuration of the ASV, the

mathematics governing its motion, and foothold selection and steering algorithms

for two selected gaits. Also covered are the simplifications deemed necessary in

the creation of the model. The final section includes a brief description of the

modeling facilities.

B. ASV CONFIGURATION

The Adaptive Suspension Vehicle (ASV) is a self-contained, six-legged

walking machine designed to traverse uneven terrain. The operator, sitting in a

cockpit at the front of the vehicle, controls the vehicle either at a supervisory level

by selecting body translational and rotational velocities and allowing the vehicle

to automatically place the feet. or by coordinating the individual legs in a

precision-footing mode. The various control modes are discussed in [Ref. 10].

The vehicle is equipped with an optical scanning rangefinder, mounted above

the cab. for short-range sensing. The laser rangefinder has a range of 10 m and a

field of view of 40 degrees on each side of the body axis, and from 15 to 75 degrees

below the horizontal. [Ref. 10: p.8]
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A single 900 cc four-cylinder motorcycle engine is sufficient to power the ASA-

over sustained periods of time. This is possible due to the aluminum construction

of the frame and legs. which make the vehicle relatively light (2700 kg) for its size

(3.0 m height, 5.2 m length) [Ref. 10:pp. 8-10]. Power is distributed to eighteen

hydraulic actuator pumps through an energy storage flywheel and a series of

shafts and toothed belts.

Seventeen Intel 86/30 single-board computers are used for onboard processing

and control. One board is dedicated to each leg for motion control and leg sensor

data processing. Four more boards compute stability, check actuator motion

limits, and generate leg commands based on the operator's control inputs and the

internal terrain model. Two additional boards are used for cockpit displays and

controls. The terrain model is generated by the remaining five single-board

computers using the data gathered from the optical rangefinder. [Ref. 10: pp. 8-

10]

The design of the ASV's legs features a two-dimensioned pantograph

mounted on a baseplate hinged to the body (Fig. 3.1 and 3.2). This design offers

the advantages of energy efficiency resulting from decoupled ground reaction force

components, and simplicity of control [Ref. 5.6, and 24]. Vertical and horizontal

motion relative to the baseplate are provided by independent actuators mounted

to the plate. Abduction and adduction motion is provided by a third actuator

mounted on the body.
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Figure 3.1 ASV Leg Configuration (I of 2)
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C. SELECTED WALKING ALGORITHMS

1. Gaits

The model used in this simulation study currently supports two styles of

walking patterns. The first, closely following that used by Lee [Ref. 4] features a

periodic tripod forward wave gait. The second is a periodic tripod

follow-the-leader (FTL) gait [Ref. 3]. Both gaits have unique advantages to

offer the operator.

The great advantage inherent in the forward wave gait lies in the

maneuverability it offers the walking vehicle. The ASV, operating in the forward

wave gait mode, is free to place its feet anywhere within a constrained working

volume during the leg placement phase of the walking cycle [Ref. 4:pp.59 -6 2].

This freedom allows the vehicle great flexibility in range of movement; even to the

point of permitting turning in place.

The price for this freedom of choice for leg placement is that a foothold

must be found and tested for each time a leg is placed on the ground. In rough or

obscured terrain the process of probing and testing could occupy virtually all of

the vehicle's onboard processing capability. Thus, the vehicle's speed over ground

could be severely limited.

In this type of terrain the follow-the-leader gait could prove more

advantageous. The follow-the-leader gait requires probing and testing only for

the forward two legs. Since the following legs step precisely where the leading

legs have gone, no further searching is needed. On difficult or dangerous terrain.
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where extensive probing and testing of foothold is required. the FTL gait promises

both greater ground speeds and more security.

* The notable disadvantage of the FTL gait is that its use drastically

constrains the vehicle's movement. Maneuvers such as sideways stepping and

turning in place are not possible. Turning the vehicle requires a large radius

turning circle, similar to that needed by a tractor pulling a long trailer.

2. Steering

The two walking algorithms utilize different control schemes matching the

unique gait characteristics. The forward wave gait steering mode allows the

operator to independently specify longitudinal velocity, lateral velocity. and

azimuth angle rate (ideally using a three-axis joystick). This allows the operator

to take fully advantage of the gait's maneuverability. In the absence of a three-

axis joystick for this simulation, these body translation and rotation rates are

input through three sliding bar controls using a mouse-driven cursor on the

display screen.

The vehicle in the follow-the- leader gait mode. with its inherent

restriction that the body remain between the two parallel foothold tracks, behaves

very much like a tractor and trailer or a wagon. Just as the truck driver steers

the cab allowing the trailer to follow in its path, the ASN' operator in this mode

steers by specifying the desired motion of the vehicle steering point. This point

lies just behind the cockpit, mid-way between the two front legs. along the line

joining the centers of the two working volumes. In the place of a steering wheel
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and acceleration pedal. the operator uses a two-axis joystick (simulated with a

mouse-driven cursor on a steering pad), to specify the desired magnitude and

direction of the cockpit's relative velocity vector.

The truck and trailer or wagon style steering commands are translated

into desired longitudinal and lateral translation and azimuth rotation rates in

order to maintain compatibility with the wave gait control algorithm in the

program. This is done by first transforming the steering point (vehicle head)

actual position and desired velocity to Earth coordinates, (ihE' YhE' ZhE) and
('dhE' dhE' zdhE) respectively. The desired cockpit position ('dhE , YdhE' zdhE) is

determined by

dhE = ZAE 'dhE At (3.1)

YdhE =hE - dhE (3.2)

ZdhE hE ZdE At (3.3)

where At is the program display time increment. Using the desired cockpit

position and the centroid of the middle and rear legs' footholds (in Earth

coordinates) (fh 1 ,fh,fh), the desired azimuth angle %d is obtained.

d = tan-l ydhE- f h (3.4)

XdhE - fh,,I
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The desired new position of the body's center (xdEydE. ZdE). is then found by

L
• dE = ZdhE - - COST'd (3.5)

2
L

YdE - YdhE -- sin'd (3.6)
2

ZdE = ZE (3.7)

where L is the length between the center of the working volumes of the forward

and rear legs.

The desired Earth translation rates (zdE and YdE) and Euler azimuth

angle rate (OdzE) are determined as

xdE - X E

'dE - (3.8)
At

YdE -

Y Yd= (3.9)
At

AdzE - (3.10)
At

with %P being the current azimuth angle. These Earth and Euler rates are then

translated to body rates (zdB, dB' WdZB) by

"dB = zdEcOsT + y*dE s i n x! (3.11)

tdB = tdECOST - zdEsinT (3.12)

.;dzB L"dzE (3.13)
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3. Foothold Selection

As indicated in the above section, a new foothold must be selected for

each leg while operating in the forward wave gait mode. In order to maximize the

foothold's usefulness it should be placed so that the foot remains in the

constrained working volume during the leg's support phase for a maximum length

of time. The optimal foothold position is determined as the "point on the surface

of the constrained working volume such that [the leg's] support trajectory is

predicted to pass through the foot reference position" [Ref. 4: p.1001. To simplify

the computation, the reference position is taken as the center of the working

volume and a straight line is used to approximate the foot trajectory. A line is

projected opposite to the direction of the predicted foot velocity vector at the

reference point. The intersection of this line and the boundaries of the

constrained working volume is then the desired foot position. Subsequent

variation of the body velocity will alter the supporting foot trajectory, potentially

resulting in a suboptimal foothold.

The follow-the- leader gait foothold selection process is much different.

New footholds for the leading two legs are found by projecting a line along the

velocity vector of the vehicle's cockpit. At a set distance (1/12 the length

hetween the forward and rear hip joints). along this line, another line

perpendicular to it is projected. This distance is one half the leg stroke of the

vehicle while operating with a pitch of 1/3 (Figure 2.2).
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The desired foothold is determined by where the second line intersects a line

running through the center of the working volume parallel to the body's

longitudinal axis (Figure 3.3).

As a front leg abandons its current foothold. that position is recorded for

to use by the middle leg behind it. In turn, the middle leg foothold positions are
zhi

X saved for use by the rear legs. Thus, during each complete leg cycle, two new
I-
z foothold positions are computed. This compares favorably to the six new
w

0:, footholds needed while using the forward wave gait.
hi

0

0hi
W

0a
a, YB

selected
foothold longitudinal

.... -axis of the
working volume

relative heading

L/12

Figure 3.3 New Foothold Location
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The current program allows the driver to start operation of the vehicle

either using the forward wave gait or the follow-the-leader gait. Once started, the

program must be reset before switching modes.

D. MODELING SIMPLIFICATIONS

There are many simplifying assumptions contained within this model of the

ASV. These simplifications were made largely in an effort to speed the

development of such features as the follow-the-leader gait. However. the program

framework was devised with future work in mind. Thus. wherever possible room

was left for generalization and expansion.

The most notable simplification in the simulation model deals with terrain.

The ground is represented by a smooth, level, checkerboard pattern. Although

the ASV was developed to be able to traverse unstructured terrain, there are no

obstacles or obstructions in the current model. Uneven terrain will require

inclusion of an algorithm for estimating the support plane beneath the vehicle,

foot sensors, and a new terrain display routine. A foothold probe and testing

routine will also be needed.

As a consequence of the use of flat terrain, the constrained working volume

adjustments for uneven terrain IRef. 4: pp. 109-117] and body regulation plans for

varying slopes [Ref. 4: pp. 87-891 were not required. However, the basic structure

for body attitude and altitude regulation has been retained in the program
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modules of this thesis. Consequently. inclusion of sloped terrain should

necessitate only minor program changes in these areas.

The model contains only kinematic features of the ASV operation. This

means that there are no limits on vehicle acceleration imposed by the model. In

order to prevent unrealistic performance on the part of the displayed vehicle, a

filter was placed between the commanded inputs and the response of the vehicle.

The kinematics and filter for simulating dynamic constraints are described in the

section below.

E. MODEL KINEMATICS

The kinematics of the model of the ASV presented here closely follow those

developed in the computer simulation of Lee [Ref. 41. Body motion is specified in

terms of translation rates along the body's forward, lateral, and vertical axes (x.

y. and z repectively) and rotation rates around these axes. The driver of the

vehicle may directly or indirectly control the desired forward and lateral

translation rates and the rotation rate around the vertical axis. The remaining

three degrees of freedom are automatically regulated to maintain a desired body

attitude and altitude with respect to the ground.

Vehicl -dynamics are simulated through the use of a simple control filter

inserted between the ordered rates and the actual body rates. As a result the
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body moves with a smooth, exponential transition in response to driver and body

regulator control commands.

In order to realize these filtered body rates, the rates are first converted to

earth coordinate translation rates and body Euler angle rates. Euler integration is

then performed to produce translation distances in earth coordinates and angular

displacement around the three body Euler axes.

1. Coordinate Systems

The ASV model makes use of two coordinate systems, earth (ZE. YEP z)

and body (x,, YB" -',). in its calculations. The earth coordinate system is used

wherever it is required to specify absolute position or velocities of the body, feet.

or terrain. The earth coordinate system is defined such that the zE axis is positive

upward and the unit vectors XE, yE and zE are mutually orthogonal.

The body coordinate system is useful in describing operator control and

the coordination of body and legs. The origin is defined as the center of the main

body section (excluding the cockpit). The z. axis is projected upward through

the top of the body, while the x axis is forward along the longitudinal axis and

the YB axis is projected to the body's left. forming the transverse or lateral axis.

Earth coordinates are transformed to body coordinates using the

relationshiR of equation 3.14.
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YE H Y' (3.14)
ZE ZB

1 1

where the position vectors IZE, YE!, zE. I] r and [xSB Y' ZB' 1IT describe the same

point in space in earth and body coordinates respectively and H is a 4 x 4

homogeneous transformation matrix [Ref. 25]. The homogeneous transformation

matrix can be derived by decomposing the transformation into a translation from

the earth coordinate origin and a series of rotations about the Euler axes:

H = TzyT, T, Te (3.15)

The homogeneous transformation matrix T 2 represents the translation

of the body's center to its current position (d., d , di). The first rotation about

the body's vertical axis by the azimuth angle % is represented by the matrix T.

The body is then rotated about its new lateral axis by the elevation angle. 4b. and

then about the newly formed longitudinal axis by the roll angle. 0.'

Other notations are sometimes used for these angles. For example, in !Ref. 191, e signifies
elevation angle and 0 denotes roll angle.
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The four homogeneous transformation matrices [Ref. 25: p3 0] are:

100d

0 10d
T = (3.16)

7 z 0 0 1 d

000 1

cosF -sinP 0

sin' cosF 0
0 0 1 (3.17)

-0 0 01

-cost 0 sint 0-

0 10 0
= (3.18)

T# - sin t 0 cost 0

0 0 0 1

-1 0 0 0-

0 cose sine 0
T= (3.19)

T 0 -sinE cose O

-0 0 0 1-
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Substituting equations 3.16, 3.17. 3.18, and 3.19 into 3.15 yields:

cos Pcosq cosPsin4bsinO-sinTcosO sin %PsinE) -cos'sincosE d

sin'Pcos4 cos'Pcose +sin PsinbsinE sin %Psin4bcosE -cosPsin9 d (.
H= (3.20)

- sin ¢ cossinE cosbcosE d2

0 0 0

2. Body Regulation

A simple control algorithm is used in this and Lee's model to maintain

the attitude of the vehicle and its height above the ground. The inputs are the

estimated support plane and the plane formed by the body's lateral and

longitudinal axes.

Body attitude regulation is accomplished by rotating the present body

plane towards the desired body plane. The desired plane can be expressed as a

function of the terrain slope and be adjusted to suit the driver3.

The unit vector Bk along the rotation axis. (Fig. 3.4) is given by

Bk B -[kz  kz]T (3.21)

where zB and 'D are the unit normal vectors of the current and desired body

3 In the current level terrain model, the desired body plane angle is set equal to zero.
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0

planes and k 0. The rotation angle, -y, is given by

-v cos-( Z" ) (3.22)

These values are used in the control function to obtain the rotation rates around

the body's longitudinal axis, w., and about its transverse axis wY.

Body altitude is defined as the distance along the body plane's unit

normal from the estimated support plane to the body's center of gravity.
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A mapping function similar to that used for the body plane can be used to relate

the desired altitude. hD' to the current terrain slope. h. 4

3. Rate Computation

The differential equation describing the simulated dynamics of the control

filter is

1
Y(t) - - y(t) (3.23)

where r is the time constant of motion and y(t) is difference between the desired

and actual position variable. Integrating both sides of equation 3.10 yields an

exponential response

Y(t) = e(324)

The control filter for altitude is then

S--- (hD-h). (3.25)
11

Similarly the equatiin producing the attitude control response is

1
= -- - . (3.26)

4 In the current model the desired height is set to a constant value
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The rotational vector "Yk decomposes into rotation vectors about the forward and

lateral axes. yielding:

1
U:z = - kz -y (3.27)

T!

1
y kYY. (3.28)

Velocity is related to acceleration using the same filter. This is

accomplished by letting

Y(t = i(t) (3.29)

and substituting into equation 3.23, yielding:

i(t) = - z(t). (3.30)

The accelerations for the remaining three rates are

'B = - (B commanded - ZB current) (3.31)

1r2

r2 comned - B current) (3.32)
T

z=_ ("7z commanded - Wz current). (3.33)

Using the lixrear approximation.

Avelocity -_ Atime'acceleration. (3.34)

the rates are determined by equations 3.35 through 3.37.
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At

Xnew ' commanded B current) ~B current (3.35)
T2

At
Y8 new - (/B commanded - /B current) - YB current (3.36)

1'2

At
Wz new - - (.z commanded - Uz current) - current (3.37)

T2

where At is the time increment and r, is the time constant of motion.

Body positioning in this computer model is achieved by translating the

body center to its proper earth coordinate position and then successively rotating

the body about its vertical, transverse and longitudinal axes. In order to do this.

body rates are first transformed into earth coordinate translation rates and body

Euler angle rates using the method presented by Frank and McGhee [Ref. 19].

l 1 tantsinO tan4bcos - W

0 cose sine W I (3.38)

0 s e c s i n O s e c c o s e W ,

Roll, elevation and azimuth angles and translation distances are then found

through simple Euler integration:

Yrew -Yold Atime. (3.39)
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4. Leg Kinematics

The ASV's pantograph leg contruction yields relatively simple kinematic

and inverse kinematic equations. These equations differ slightly from those

presented by Lee [Ref. 4]. This can be attributed to the use of more accurate

dimension measurement than those assumed by Lee.

For the front left leg (leg number one) shown in (Fig. 3.1 and 3.2), the

foot position is given by

! f 5d2 - z  (3.40)

y= (513 4d,)sine + 14 coso - hy (3.41)

zf 1 4 sinO - (513 - 4d1 )cosO (3.42)

where the hip position (h . h h) and foot position (Zf. yf. zf) are given in body

coordinates, and d,. d2, and 0 are the joint variables.

The inverse kinematic equations for the joint variable d2. derived from

equation 3.40 is

1
d2 - (Zf - h'). (3.43)

5

Rearranging and squaring both sides of equations 3.41 and 3.42 yields,

a2 n2 E) - aI i~oEe 4 12 Cs 2 0(yfh) 2  (3.44)

2 2 214 sin"'G- -' a 14 sinecose - a cos e = (z - h') (3.45)
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where a (513 - 4d,). Solving equations 3.31 and 3.32 gives,

51) - -I. (3.46)

* 4

a (Yf - hy) + 14(zf - hz)I asin- 2 (3.47)

2a 2 - 42

In addition to the joint parameters, this model requires leg upper (thigh)

angle, ct, the lower leg (shank) angle, .and the knee position in body coordinates

(zk. k, zk). The thigh angle is given in terms of joint variables as

7r d1_ - 1 1 d, (d1  13)

o = --- tan os- o(3.48)
2111(3- d- -dd2 11 V/I3-dl)2_ dz

and the knee position as

rk = l1coso t (3.49)

Yk = (12sina d,)sinO - 14cosE) + hY (3.50)

= 2sinE- (I sina - d,)coso (3.51)

The knee angle is

tan -
( :- zJ (3.52)

All -six legs of the ASV share similar geometries. The remaining

kinematic and inverse kinematic equations can be obtained from equations 3.40

through 3.52 with appropriate sign changes.
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F. SIMULATION FACILITIES

1. Hardware

The computer simulation presented here is designed to run on either of

the two Silicon Graphics. Inc. IRIS-2400 workstations currently in the computer

graphics laboratory in the Department of Computer Science at the Naval

Postgraduate School. The IRIS (Integrated Raster Imaging System) consists of a

Geometry Pipeline, a general purpose microprocessor. a raster subsystem. a 60Hz

non-interlaced high-resolution RGB display monitor and a keyboard. In addition

each unit has been equipped with two 72 megabyte disk drives, a cartridge tape

unit. a floating point accelerator. and a three-input mouse. The Geometry

Pipeline is a series of ten or twelve custom VLSI chip matrix multipliers. Under

the control of the applications grap iics processor. it performs matrix

transformations, clipping and scaling of coordinates. The output is sent to the

raster subsystem which performs functions such as filling in pixels, shading,

depth-cueing and hidden surface removal.

The first IRIS system is based on a Motorola MC68010 processor with 5

megabytes of CPU memory and a 1024 x 786 x 8 bit display memory. It is also

equipped with a digitizer tablet. The second IRIS system is a more capable

Turbo-2400. It is based on a Motorola MC68020 processor and has 4 megabytes

of CPU memory and a 1024 x 768 x 32 bit display memory. An Ethernet network

connects both workstations to two VAX 11/780's and one VAX 11/750.
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2. Software

The IRIS Graphics Library contains a large number of graphics

commands and utilities. This allows the user great flexibility in the choice of

coordinate systems and display techniques. While the software is written in C.

the graphics commands may be called in C. FORTRAN, Pascal, and Lisp. The

code for the model presented in this study is written exclusively in C.

G. SUM.MARY

The previous sections of this chapter outlined the physical constraints.

simplifications. and tools used in the development of this simulation. The next

chapter describes the operation and construction of the actual simulation

program.



IV. SIMULATION PROG;RAM

A. INTRODUCTION

In this chapter the simulation program is presented. The first section consists

of a user's guide, with complete instructions on how to use each program feature.

The second section introduces the working environment for graphics on the IRIS-

2400. The final section describes the internal operation of the simulation program

and discusses the flow through the major modules. A complete listing of the

program is provided in the appendix.

B. USER'S GUIDE

1. Starting Up

The program u'alk. c is relatively simple to use. It is entirely menu-driven,

with a single mouse button and cursor performing all selection functions. To start

the program. type the command "w'alk".

Immediately displayed on the monitor is a split screen view of the control

panel and the ASV on its terrain (Fig. 4.1). The right half of the screen featu'res

a three-dimensional projection of the ASV' on a green and white checkerboard

plane against a blue backdrop. The user's vantage point is fixed relative to the

center of gravity of the vehicle (above and initially to the vehicle's left side). so

that the vehicle will continuously remain in view while walking.
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The left half of the screen contains a two-dimensional representation of

the control panel. Initially it features only the six yellow selection panels of the

main menu on a cyan background.

2. Menus

A menu item is selected by placing the cursor over the corresponding

panel and clicking the middle mouse button. Pressing the button down will cause

the panel beneath the cursor to be highlighted in red, as a potential choice.

Releasing the button selects the highlighted menu item. If no changes are desired

in the current menu selection, simply move the cursor to a portion of the screen

outside the menu selection region and release the mouse button. Selected menu

items are highlighted in bright yellow.

3. Forward Wave Gait

In the forward wave gait mode, vehicle velocities are specified in terms of

body axis translation and rotation rates. Three of these rates - longitudinal

velocity, lateral velocity, and yaw rate, are directly controllable by the operator.

The rates for the remaining three degrees of freedom are automatically adjusted

by the vehicle in order to maintain proper attitude and altitude. All rates in this

mode are defined with respect to the body's center of gravity.

Selecting the forward wave gait panel produces a secondary menu

displayed immediately below the main menu (Fig. 4.2). This secondary menu

contains three additional panels for use in specifying the vehicle's body rates. The

panels are operated in the same manner as those in the main menu. To the right
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of the menu panels are six simulated LED readouts. used for displaying the

magnitude of the curren ind ordered rates.

Releasing the middle mouse button while the cursor is inside the bounds

of one of the secondary menu panels results in a sliding bar control panel being

displayed on the left edge of the screen (Fig. 4.3). Velocity commands are input

by placing the cursor within the black center region of the bar control area. A

yellow bar level indicator will rise or fall to match the cursor level, indicating the

commanded velocity value. No clicking of the mouse button is required. To set

the commanded input at the desired level, move the cursor to the desired height

and then slide the cursor horizontally until it is outside the center region of the

sliding bar panel. A red bar level indicator displays the current velocity of the

vehicle.

4. Follow-the-Leader Gait

Control while in the follow-the-leader gait mode is achieved by specifying

the desired relative velocity vector of the ASV's steering point. The operator, in

essence, points the vector in the direction in which the steering point should

travel, relative to the body longitudinal axis. As stated in the previous chapter,

the steering is very much like that of a long tractor-trailer type of vehicle. The

control algorithm factors in the magnitude of the desired velocity, footholds and

current velocity and automatically regulates the body's motion.
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The follow-the-leader gait control mode is invoked by using the lower left

panel of the main menu. When this panel is selected, a white rectangular control

area appears directly beneath the main menu (Fig. 4.4). If the middle mouse

button is held down while the cursor is within this region, the cursor controls a

simulated two-axis joystick. The vertical axis represents the magnitude of the

relative velocity vector and the horizontal axis represents the direction. A solid

yellow line is used to indicate the current joystick position, and thus the input

values. The vehicle's actual relative cockpit velocity vector is indicated by a solid

red line.

5. Status and Warnings

The status menu option exists to provide the operator with numerical

data on leg and body position and movements. Selecting this item causes a

yellow and black display panel to appear below the main menu (Fig. 4.5).

Featured on this panel are the translation and rotation rates (with respect to the

body axes), the position of the vehicle's center of gravity (in Earth coordinates).

the vehicle's orientation (in Euler angles), the walking cycle period, the position of

each foot (in body coordinates) and the angles of various components of the legs.

The values are updated each display cycle.

During the operation of the vehicle, checks are made on operating

parameters. If a leg become positioned so that the foot is outside its

corresponding constrained working volume, a red warning box is flashed in the

lower left corner of the screen. Similarly, if the walking cycle period becomes too
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small, a yellow warning box is displayed. In addition to the warning, a

deceleration routine is activated to slow the vehicle until the period comes up to

an acceptable level [Ref. 4: pp. 66-71].

6. Reset and Exit

The reset option returns all vehicle parameters, including position. to

their original values. This feature was included to save time when making a series

of test runs. The exit option ends the program, clears the screen and returns the

user to the current UNIX shell.

C. GRAPHICS ON THE IRIS-2400

Figures are displayed on the IRIS-2400 by calling a series of short graphics

commands, called primatives. The primatives are interpreted into graphical

displays by the software and special hardware of the IRIS system. These include

commands for specifying color, drawing lines, circles, irregular polygons. and

printing text characters on the screen. There are also a series of primatives

designed to manipulate coordinate transformation matrices for the purpose of

scaling, rotating and translating figures.

A sequence of graphics commands may be grouped into a listing called an

object. This object list may then be conveniently executed using a single call.

Once creafted. the object list may at any time be edited as desired through the use

of object tags. The object, in essence. functions as a reconfigurable graphics

subroutine.
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Objects and figures in this program are displayed in the reverse order in

which they are called. The last object is overlaid in front (with respect to the

viewer's vantage point), of the previously called objects. An important exception

to this is the treatment of the back face of polygons. The reverse side of a

polygon, in the back face polygon removal mode, is considered transparent and is

automatically removed from the image as a hidden surface by the IRIS hardware.

This feature enables the display of more realistic appearing three-dimensional

objects.

In the double buffer display mode utilized by this program, the special display

memory is divided into two sets of bit plane buffers. As one buffer is having

display data written into it, the other is used to refresh the monitor. Once the

writing is complete, the functions of the buffers are swapped, and a new cycle of

writing commences. This display mode provides for a smooth simultaneous

update of the entire screen.

D. PROGRAM ORGANIZATION

The simulation program can be divided into three general sections;

initialization, simulation loop, and termination. The heart of the program, the

simulation loop. cycles through an input phase, which serves as the operator's

control interface for the vehicle; the calculation phase, in which the parameters

for the position and orientation of the ASV's body and legs are determined: and a

display phase. The initialization section performs tasks, such as defining
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coordinate systems and creating object lists, required to start up the loop. The

termination section clears the screen and buffers in preparation for the next IRIS

user. A flow chart featuring the program's primary modules is shown in Figure

4.6.

Since the order in which objects are called is critical in this display mode,

special provisions are needed to create a full 360 degree viewing coverage of the

maneuvering vehicle. Specifically, four separate ASV objects lists are created in

the object construction module of the initialization section. Each object has the

vehicle components ordered for proper viewing from one of four viewing

quadrants. The display section therefore needs only to determine from which

quadrant the vehicle is to be viewed and call the appropriate object.

The simulation loop is the dominant part of the code, containing the

overhelming majority of the program modules. The loop begins with a call to the

driver's command interface module. This module controls the operation and

display of the menu system, the status panel, and the sliding bar and joystick

controls, as well as processing F.T.L. gait steering commands. The organization

of the control module is shown in Figures 4.7 and 4.8.
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Immediately following the command module are two checks on the program

status. If the exit option was selected in the command module, the loop is

interrupted and the program enters the termination stage. The reset option

causes a module call to re-initialize all working parameters.

The calculation phase of the loop is begins with the support module, where a

determination of the estimated support plane directly beneath the vehicle is

made. The position and velocity of the ASV's body is then calculated in the

body rates module (Figs. 4.9 and 4.10). The body kinematics used in this module

are discussed in section III.E.

The gait period is next calculated in the optimal period module. This module

uses a optimal period control algorithm which considers the kinematic limit of the

supporting legs. In this algorithm, a period is calculated for each leg. based on

the time required for its foot to reach the limits of its corresponding constrained

working volume. The minimum of all of the supporting leg's periods is chosen as

the vehicle's optimal period. No foot should therefore be required leave its

constrained working volume while supporting the body. A backward gait period

is also computed for the use of the wave gait walking in the reverse direction.

[Ref. 4: pp. 63-69]
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The deceleration module checks the output of the previous module. If the

period is below the set threshold, the vehicle is slowed. Each time the period falls

below the minimum value, longitudinal body velocity is cut ten percent and

lateral velocity and yaw rate are cut twenty percent. This slowing occurs in each

pass until the walking period rises to acceptable limits.

The leg phase module is used to update the movement phase of each leg.

The phase, expressed as a modulo one floating point number, indicates at what

point the leg is in its cycle of supporting, lifting off from the ground, being

transferred toward the desired foothold, and being placed onto the ground. The

relative phases of the legs in this simulation are set to move the legs in two, 180

degrees out of phase tripods.

The foot trajectory module uses the leg phase information and the period in

calculating the position of the feet relative to the body. The algorithm is shown

in the flow chart of Figure 4.11. The transfer time is the length of time allotted

for moving the foot from one foothold to the next. This determines the speed in

which the transfer is made.

The phase of the leg relative to the beginning of foot liftoff is referred to as

the transfer phase. When the leg's transfer phase is negative, corresponding to

being on the ground in a supporting role. the foot's relative position is determined

by the support trajectory module (Fig. 4.12). When the leg's transfer phase is

greater than zero but less than the liftoff-transfer transition value, the relative

foot position is returned by the liftoff trajectory module (Fig. 4.13). Likewise a
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transfer phase value between the two transition point values yields a response

from the transfer trajectory module (Fig. 4.14 and 4.15), and a phase value

greater than the transfer-placement transition value yields a relative foot position

calculation from the placement trajectory module (Fig. 4.16).

The foothold selection algorithms contained in the transfer trajectory module

are discussed in section III.C.3. Note that within this module the desired end foot

position is treated differently in the follow-the-leader and forward wave gait

modes. The forward wave gait, with its high degree of maneuverability, has a

considerable greater probability that the projected ideal position toward the end

of the transfer phase will be much different from that at the start. Therefore the

desired foot position in the case of the forward wave gait is updated on each pass.

In the follow-the-leader gait case it is only calculated during the first time through

the the module.

The results of the calculation phase are the position and orientation of the

body and the relative position of each of the feet. These values are used, with the

inverse kinematic relations derived in section III.E.4, in the display phase to

obtain the rotation angles and translation distances required to position the

ASV's component parts.
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The ASV object lists are then edited and the updated parameters inserted

into their corresponding rotation and translation commands. Once this is

completed, the display calls are made for the background. the terrain object and

then the properly ordered ASV object. Swapping display buffers completes the

loop.

The ASV simulation program presented here consists of fifteen separate files

linked, together with the graphics, math, and standard input-output libraries,

using the UNIX make utility. The program files and Makefile listings are

presented in the appendix. The routines were created in a modular fashion for

ease of development and testing and to assist in future program changes.

Constants are grouped into a single header file walk.h, for convenient reference

and modification.

E. SUMMARY

This chapter describes the ASV simulation program. The first section is a

guide for the operation of the program. It details the use of the menu system and

the operator controls. The following section discusses the display of graphics on

the IRIS-2400. The final section covers the organization and flow of the main

routine and its modules.
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V. SIMULATION PERFORMANCE

This chapter provides a brief review of the performance of the ASV

simulation program. The review is largely subjective and is based on the author's

experience with the operation of the simulation.

A. MODELING FIDELITY

The image of the vehicle on the screen appears to be a reasonable likeness of

the actual ASV. This is believed, to a great extent, to be due to the proper

scaling of dimensions of component parts, based on available blueprints of the

ASV. Details such as the leg hydraulic actuator housings and the optical

scanning radar. mounted on the cab of the vehicle, add to the visual effect. The

color scheme of the simulation vehicle has been altered to enhance the visibility of

the vehicle and its parts.

The walking motion of the model is very similar to that of the real vehicle.

This observation is based on viewing of videotapes produced at the Ohio State

University. A notable difference is that the simulation model is perceived to

operate at a much slower speed. A simulation time increment of 1/100th of a

second yields a display time to real time speed ratio of 1:30. Operating the

simulation with a simulation time increment much greater than 1/100th of a

second to compensate for this causes problems related to the optimum period and
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leg phase modules of the program. This leads to gross errors in the foot trajectory

planning algorithms.

B. FORWARD WAVE TRIPOD GAIT

Driving in the forward wave tripod gait mode is a very simple task. Although

a three-axis joystick would be prefered, the mouse-driven sliding bar control is

easy to use and effective. Switching between control bars for forward. lateral. or

rotational control can be accomplished with reasonable ease.

The external vantage point of the vehicle causes very little problem for

maneuvering the vehicle. This may change as the model's speed increases and

obstacles are introduced into the environment.

Overall. maneuverability of the ASV in the forward wave tripod gait mode is

clearly demonstrated with this model.

C. FOLLOW-THE-LEADER TRIPOD GAIT

The follow-the-leader tripod gait appears to work especially well for forward

straight-line locomotion. Turning. however, is extremely restricted. Preliminary

investigations indicate a minimum turning radius of 18 times the body length,

ulling the constrained working volumes depicted in Figure 2.4. This is far greater

than expected. An estimated envelope for turning, based on initial simulation

trials, is Thown in Figure 5.1. Steering commands falling outside of this envelope

result in fault- within the foot trajectory planning algorithms. These faults
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usually occur within the first four degrees of the turn attempt. Decreasing the

display time interval extends the maximum magnitude of the command envelope.

but only marginally improves the permitted relative direction command input.

The shape of the steering envelope is rather unexpected, and as of yet.

unexplained. Factors likely to have the greatest influence on the envelope are the

geometry of the leg's constrained working volume and the implementation of the

optimum period and foot trajectory planning algorithms.

Expanding the constrained working volume to the full working volume has a

remarkable effect on the maneuverability of the vehicle, while operating in the

follow-the-leader gait mode. By doing so, the minimum turning radius improves

to approximately five times the body length. This indicates a great potential

advantage in utilizing dynamic stability algorithms for future gaits.

Overall the follow-the-leader gait and tractor-trailer steering appear to be

successful for level, relatively obstruction-free terrain. Further research is needed

to determine the nature of the limitations and the means to expand the vehicle's

maneuverability while operating in this mode.
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VI. SUMMARY AND CONCLUSIONS

In this thesis a tripod follow-the-leader gait class is introduced for use by six-

legged walking vehicles. The class represents an extension of previously defined

follow-the-leader gaits and should prove useful for legged vehicles traveling in

rough or treacherous terrain conditions.

A new style of steering is also developed for follow-the-leader gaits. This

steering mode exhibits a general response similar to that found in steering a

wheeled tractor-trailer vehicle. With this mode, the driver is concerned only with

specifying the velocity of the front of the vehicle. The algorithm ensures that the

body of the vehicle follows along the path of the front.

An improved simulation model constructed to study the gait and steering

algorithms is also presented in this thesis. The vehicle selected as a physical

reference for the model is the Adaptive Suspension Vehicle (ASV). which is

currently undergoing testing and development at the Ohio State University. The

model developed is intended as a general tool for analyzing a variety of walking

control algorithms for legged vehicles.
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A. RESEARCH CONTRIBUTIONS

Previous research on follow-the-leader gaits [Ref. 31, has concentrated on gaits

that are temporally oriented. Since foothold,+ are used by the following legs

immediately after being abandoned by the lead leg, this produces a creeping

motion with alternating leg and body movement.

Extending the class of follow-the-leader gaits into the spatial domain relieves

the requirement of immediately utilizing a foothold as soon as it is abandoned.

This gives a greater degree of freedom to leg movement and allows the possibility

of smooth, continuous body motion with shorter leg stroke.

The nature of a follow-the-leader gait greatly constrains the maneuverability

of the walking vehicle. The vertical projection of the vehicle's center of gravity is

required to fall within the support pattern of the legs and is therefore confined by

the history of footholds produced by the lead legs. The similarity of this problem

to that of a trailer pulled by a tractor cab has inspired the adoption of the term

"tractor-trailer" steering. With tractor-trailer style steering, the driver controls

the path of the front of the vehicle. As long as the driver does not turn too

sharply (possibly causing a wheeled tractor-trailer to jack-knife). the vehicle's

body follows along this path.

The selection of footholds for the leading legs is based on projecting the

relative heading vector provided by the operator. The location of recently

abandoned footholds is retained within the control algorithm for use by the

middle and rear legs.
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The simulation presented in this study models the kinematics of the ASV.

The model incorporates many of the simulation features presented by Lee [Ref. 4].

including omnidirectional control, automatic body altitude and attitude

regulation, leg motion planning, body deceleration, and filters between the control

inputs and reaction which provides the operator with the "feel" of vehicle

dynamics. A simplified variation of constrained working volumes is also used.

The simulation program has a modular design which creates a flexible

environment for studying various gaits and control algorithms. The program as

currently configured has two modes of operation. The first features a forward

wave tripod gait with three-axis control for steering in body coordinates. The

second mode utilizes the follow-the- leader tripod gait and two-axis control

tractor-trailer style steering, developed in this study. The program's displays and

* controls are operated with a mouse-driven menu package using a single mouse

button.

The graphics presentation is greatly improved over Lees monochrome line-

drawing representation. Three-dimensional, solid body, color graphics are made

possible through the implementation of the model on the special purpose softwar-

and hardware of the IRIS-2400 system. This provides a notable enhancement of

realism for the vehicle simulation.



B. RESEARCH EXTENSIONS

It has become clear, through the work of developing this study. that there are

many directions in which future research could be pursued. Four major areas to

be considered for extension are: quantitative measurement of the FTL tripod gait

performance, improvement of program features. improvement of display speed,

and expansion of upper level control algorithms using artificial intelligence.

Developing performance criteria for the simulated ASV is critical if one is to

effectively use the program as an aid for developing and evaluating walking

algorithms for the actual machine. Initial research might well -concentrate on

measuring turning radii, steering reaction times, stability margins and basic

parameters of mobility.

As with any simulation model, there are many desired features which could

be added to enhance realism. Perhaps the most important improvement for this

type of mobile vehicle would be the inclusion of rough or uneven terrain into the

model. Provisions were made in the development of this model for that

eventuality. A few new algorithms, for functions such as estimating the support

plane beneath the vehicle and adjusting the constrained working volume to

conform to the terrain slope, will need to be written. It should be possible to

follow the work of Lee [Ref. 4J, at least initially, in improving the simulation in

this direction.

Because the ASV' is designed for rough terrain locomotion, developing a good

foothold search algorithm is iimportant. In atddition. the inclusion of foothold



search into the simulation model would enable the FTL gait to be better

evaluated with respect to other types of gaits in various terrain conditions. This

would quantify the advantages of reduced foothold probing requirements for the

FTL gait.

This simulation could also be used to further develop steering mechanisms for

the ASV. Most notably, the algorithm for the tractor-trailer style steering uses a

simple method for body positioning based on the centroid of the established

footholds. A different method for body steering which minimizes the maximum

leg excursions might improve the vehicle's turning radius.

Dynamic modeling and supplementing the model's kinematics would greatly

improve the realism of vehicle movement. Moreover, it should also notably

increase mobility, as the vehicle would be free to utilize its leg's full working

volumes. This should also lead towards the development of a great number of

new gaits, which are dynamically, but not statically, stable.

Graphics techniques can be improved to enhance the realism of the displayed

image. Features such as shading, depth-cueing, reflectivity of surfaces, terrain

definition, and increased vehicle detail are all possible using current state-of-the-

art techniques. Higher resolution monitors and an enlarged number of bit planes

in the display hardware are also highly desirable.

Adding additional features to the model has the decided disadvantage of

requiring more cpu time for the simulation. As the program now exists. the

simulated vehicle move* and -eacts markedly slower than the actual vehicle.
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There are, however, ways to improve the display time for the model. The prime

means is of course to upgrade the hardware. using newly developed and more

capable machines. The code may also be streamlined for efficiency. Possibly

several of the interactive features could be reduced or eliminated.

Another possibility for improving display time is the replacement of the

integration routines within the body kinematics section of the program with an

incremental homogeneous transformation matrix technique used by Lee [Ref. 4].

Integration is used here because of the simplicity of the technique and the

author's familiarity with the IRIS-2400 special hardware commands for rotation

and translation. It may be that the homogeneous transformation matrix could

also be used directly with the special hardware to provide the full transformation

with fewer trigonometric computations. This possibility has not been investigated

by the author.

An interesting avenue of research to explore is to automate tht iipper levels of

the control hierarchy. It may be possible to use an expert system shell running on

a special purpose LISP machine to provide driving commands to this simulation.

As of this writing, efforts are underway by others to establish communications

between the IRIS-2400 system and a Symbolics 3675 LISP machine.

Extensions to the work presented in this thesis are possible and will likely

prove very fruitful. It is hoped that this line of research will lead to more efficient

and practical gaits and control algorithms for legged walking vehicles in rough

terrain.
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APPENDIX

PROGRAM LISTING

This program is written for the iris-2400
walk.c

This is the main program for the simulation.
Relle Lyman 04 May 1987

#include "gl.h"
#include "d&vice.h"

*include "walk.h"
4include <stdio.h>
*include <math.h>

main()

Object machineobject 4!.leg'7114 .textobj,vertextobj ,thighobj!7'211[4j,
actuatorobj'7[2l14l,shinobji7121 4I, walker 41,groundobject;

* NOTE: this program uses only elements 1-6 of arrays and vectors.
Legs are numbered to remain consistent with original research .

Tag transrottag[,41,trend _tag[4j. legmovetag 7,14
actmovetag!7)12! 41.bodytagl)4',
thighmovetag 71'214 ,shinmovetag!7]1 2]114;

Colorindex wmask:

int ij,k,n.
programstatus. /* desired status of program: RUN, HALT or RESET *
selectedgait, ,. indicates which tripod gait is to be used *
slowflag, /* flag indicating deceleration is needed /
warning. ,' flag indicating supporting leg is outside of working volume */
leg_status7i; /* status of leg (supporting, liftoff, transfer, placement) */

static float
hxJ7}= {0,155.,155.,0.,0.,-155.,-155.} , * Leg attachment points *
hy7 = {0,50.,-50.,50.,-50.,50.,-50.),
hz[7l= 10,23.,23.,23.,23..23.,23.},
14 7 = J0,L4.-L4,L4.-L4,L4,-L4};

static Angle theta 71=10,0.0,0,0,0,0). * Leg component angles *

alpha ! 7 =364,364,364364.364.-564.-364),
gammai71 1317,317,317,317,317.-317,-317};
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walk.c *

float temp.temp1.temp2.temp3,top,bottom, /* Temporary variables
alpharad 7,. * Leg component angles in radians
thetarad.
legcoord x7 Foot position in leg coordinates *'
legcoord y!7,.
legcoord z17.
azimuth,elev,roll, /* Body Euler angles (rads) ,

ordered _vel mag, /* Ordered velocity of the cockpit (magnitude)
ordered _vel dir, /* Ordered velocity of the cockpit (direction) *

d17;, /* Joint variables */
d2(7>.

knee7[21, /* Relative position of knee *
foot7112], /* Relative position of foot */
h[41[4!, /* Homogeneous transformation matrix /
invh[41i41, /* Inverse homogeneous transformation matrix *,

legphase[7', /* Phase of individual legs *'
rel-legphasel7l, : * Phase of individual legs relative to leg one'
period, /* Period of leg cycle */
min _period. * Minimum allowed period *

tx,ty.tz: * Earth coordinates of body position *

vector rot rate. '* Body rotation rates */
trans rate. /* Body translation rates *

ordered rate, /' Ordered lateral and longitudinal translation and yaw rate,
foot pos7 , * Position of foot in earth coordinates */
b-footpos71, ,* Position of foot in body coordinates *
fh71, /* selected footholds (earth coordinates)
oldfh 7 ; /* old selected footholds (earth coordinates) "

work vol cwvl7]; /* Constrained working volumes *

plane spe; /* Estimated support plane */

/* Initialize the IRIS graphics */

ginit() /* standard IRIS graphics initialization 5/

doublebuffer() ; /* double buffering mode */

gconflg() ; '* configure the IRIS (use the above commands

wmask:=(J <.getplanes))- /* enable all the bit planes for writing */
set to 2 *(getplaneso minus one

/* all bit planes on
writemsk(wmask)

backface(TRUE); ' set backface polygon removal on
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*walk-c

qdevicr(MI)DLEMOl.SE) set up the queue for the menu
tad MI]DDLEMOi~SE.MOISEX.MOLUSEY*)

mapco lor(LTY'ELLO% .225,225.0), create new colors
mapeolor) WHITEI .230.230.230):

%ie~port41IU.1023.0.767) set world view*
perspective(O00(614.0 768).0.0.1023.0)

.make the ground*
makeground(L-groundobject).

.make the. robot '
m akewalkerm mac h neobet dl I.d2.t het a. knee.gam ma.alph a. transrot. -tag.

tr end tag. walker~ieg.t h ighobj. act uatorobj.sh inobj,
legmovet ag.t high movetag. act movetag.shinmovetag.t x.ty tz.rol.
elev azimuth.hx.hy.hz,14)

Initialize the ASV walking routine parameters. /

init alze(h.invh.&rot _rate.trans rat~e,&ordered _rate.&spe.&period.
leg _statuslegphase.rel _legphase, footpos,b footpos,cwv .fh
oldfli .&selected -gait,&-ordered _ vel _ mag.&ordered _veI dir.
&min period.& program -status.&tx,&ty.&tz,&,rol.&elev.&azimuth);

while(TR IF) Main program loop ~

Input the driver's commands. s

driver com mand( &ordered rate.&zrot _rate,&trans _rate.&program stat us,
b -foot. pos. & period.alpha.gam ma, theta,&-slow -flag, &roll. Lelev,
Lazim uth. &tx. &ty. &tz.&ordered -vel -mag,&ordered -vel d ir,fh,
&selected -gait);

if (program-_status HALT)

'Quit program. '
break;

if (program-_status RESET)

Reinitialize the ASV walking parameters.
initialize(hinvh.&rot _rate,&trans rate,&ordered _rate. kspe,& period.

leg _status. legphase,rel _Iegphase, footpos,b _footpos,cwv.fh.
oldfh.&selected -gait,&-ordered _ vel m tag,&o-rdered vel dir.
&min Period,& program -status,& tx,&ty.&tz.&rolI.&,elev. &az irn ut h I
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walk.c "

,' Calculate the estimated support plane. /
,* Future revision needed for rough terrain. */
support _plane(&spe);

/* Calculate the body rotation and translation rates.

body rates(&rot rate,&trans-rate,&spe,h.invh ,&ordered -rate,
&tx,&ty,&tz,&roll,&elev,&azimuth).

, Calculate the constrained working volume for the legs. /
con workvol(cwv,b_footpos,leg status,&warning);

/* Calculate the optimal period for walking. *,'
optimal -period (Iegphase. b foot pos,&rot _rate,& transrate,cwv,

leg _status.&period);

Decelerate if necessary.
decelerate(& trans -rate.&rot _rate,& period.&slow_flag,&min_period);

'/* Calculate the phase of each leg. *,/
legph ase(legphaae.rel _legphase. &period);

'* Calculate the new position for each foot. */
foot trajectory(legphase,&period,legstatus,footpos,b footpos,fh,oldfh,

invh,h.cwv,&transrate,&rot _rate.&selected_gait);

• Display the ASV on the screen.

• This section computes the new parameters to position the legs
relative to the body. based on the relative position of the feet.
It then check to ensure that no actuator positions exceed the limits. /

' Convert foot position to leg coordinates. */
forli=l; i<5; i+-)
4

legcoord xlii = bfootposlij.x - hxiil;
legcoord yil = b footposij.y -hyjil;
legcoord-zi = bfootposli .z - lzii);

}

• The foot position of the rear legs are changed to compensate for

the 180 degree rotation used in the leg construction routine. */

for(i-5; i<7; i- -)

legcoord xlii = hx'i -b footposli.x:
legcoord_y[i! = b -footposii.y - hy i ;

legcoord _z - b footposii .z - hz il;
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,walk.c ~

for(i=l; i<7;

geeaerequired parameters dl,d2, theta *

d2[il= legcoord-xlil/5.O;
temp= legcoord yj * legcoord yi;
temp2=legcoord-zii *legcoordz ljj;
dliii = .(5.0*L3-sqrt(temp~.itemp2-L4L4))/4.0;
templ=5.O*L3+4.O*d1Iil

switch (i)

case 1:
case 3:

case 5: temp3 = templ*legcoord yliJ + L4*legcoord-zii;
break;

case 2:
case 4:
case 6: temp3 = templ*legcoord y~i] - L4*legcoord-zlil;

thetarad ~-asin (temp3/ (tempil*tempi + L4*L4));
thetalii = thetarad *573 + 0.5;

for(i=l ;i<7 i++) /* prepare parameters for graphics*/
4 /* update on all 6 legs *

temp =L3+di ;
tempi =d2jii*d2lil 4- temp*temp;
temp2 =(Ll*LI L6*L6 + templ)/(2.0*L1*sqrt(templ));

alpharadfil=((PI/2)-atan(d2i/temp)-aeos(temp2));

/* Note: One half of a degree has been added to all angles ,

alphaji]= (alpharadlij*573+ .5);

knee ii101 = (L2cos( aipharadlIil ) --. .5); / ' relative to baseplate*/
!neei'IlJ= -((L2*sin(alpharadjij)- dlIiJ)±0.5)./* relative to baseplate '

foottill0l= (5.O*d2Ii-+ .5); /* relative to baseplate *

footli]Il1= .(5.0*L3+4.0di.t-.5) ; /* relative to baseplate *

bottom=(kneei: I 1-foot[iJIllI);

gamma ij =(atan (top/ bottom) *573 s+.5)
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/* waljc.c/
for (n=O; n<4; n+-) /* The walker is updated in each quadrant *

editobj(thighobjiIIO1inj) ; , edit each leg to new
objreplace(thighmovetagi!Ollnj) ; ~location

- rotate(alphalii,'Y')
closeobj();

* editobj(thighobjijjIjnj)
objreplace(thighmovetagil~ljnj)
translate(O.O,O.O,dlliJ)
closeobjO ;

editobj(actuatorobjjiiOljfn])
objreplace(actmovetagli (0] Ini)
rotate(alphali],'Y')
closeobj();

editobj(actuatorobjJ'i~(j~n])

objreplace(actmovetagliij)
translate(d2'i ,0.0,-L3);
cioseobj()

editobj(shinobjjij 01 [n])
objreplace(shinmovetaglil OiinJ)

- rotate(gammalij,'Y')
closeobj();

editobj(shinobji]1](n])
objreplace(shinmovetagil1inJ)

closeobj()

editobj(leg'jn])
objreplace(legmovetagi ij(n]);
rotate(thetaii,X)
closeobj();

} I end quadrant loop /

}/* end for leg loop i=1

for (n=O; n<4; n++)

editobj(machineobjectlnl)
objdelete(transrot-tag InaJ,tr -end _tag n
o bj insert (tran srot -tagnj);

translate(tx,ty,tz);
rotate((int) (azimnuth 573),'Z');
rotate ((int) (elev *573),'V*):

closeobj();
) ' end of quadrant loop
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/* walk.c w/
/" set up the background */

color(BLUE):
clearo;

/= Keep the viewing relationship constant. */
perspective(600,(614.0/768),0.0,1023.0) ;
lookat(800.0-tx,800.0+ty,550.0,tx,ty,-5O.0.1 100);

/* CALL THE GROUND */
callobj (groundobject);

/* Display the ASV in the correct quadrant configuration */
if (azimuth < 0.0)
(
a
azimuth += 2.0 * PI:}

if (azimuth > 2.0 * PI){
azimuth -= 2.0 *PI;)

if (azimuth < 0.25PI)4
callobj(machineobjectiO]);}

if ((azimuth >= 0.25*PI)&&(azimuth < 0.75*PI))4
callobj(machineobject[3j);

if ((azimuth >= 0.75*P)&&{aimuth < 1.25PI)){
callobj(machineobject[2]);}

if ((azimuth ?=1.25*PI)&&(azimuth < 1.75"PI))
{

callobj (machineobject[ IJ);
}
if (azimuth >= 1.75'PI)
{

callobj (m achineobjectl[0l):
}

swapbuffers()
'* end of main program loop */
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'~walk.c ~

1 " Clean up the screen.

color(BLACK);
V clear();

swapbufferso;
color(BLACK);

* clearo;
swapbufferso;
finish()
gexit()

} *END OF MAIN PROGRAM *
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/ S**S*S***.****It, laSRs *Im SU*** * S*m**Sm IS*t *.*..** S*S**Ss

This is the header file for the program walk.c.
walk.h

Relle Lyman
14 May 1987

.a,...*. ***i'S ***.u*.*s******S S ***S* S****i**S*S *. ** *** s~se,/

#define BETA 0.5
#define DELTA TIME 0.010
#define TIME _ONSTANT 1 0.1
+define TIME CONSTANT-2 0.25
+define TIME CONSTANT-3 0.5
#define FTL GAIT 1
#define FWD WAVE GAIT 2
#define FORWARD - I
#define BACKWARD 0
#define END LIFT PHASE 0.2
#define BEGIN PLACE PHASE 0.8
#define SUPPORTING - 0
#define LIFTOFF I
#define TRANSFER FORWARD 2
#define PLACEMENT 3
#define ON I
#define OFF 0
#define LENGTH 310.0 /* The length between the forward

and aft hip joints */
#define HALFLENGTH 155.0 ,* Half the length between the forward

and aft hip joints */
#define FOOTLIFTHEIGHT 40.0
#define LONGTIME 1000000
#define HO 160.0 /* Desired body height (cm)*/
#define OUTER LIMIT 6.08 /* cm/see /
#define INNER_LIMIT 1.52 /* cm/sec /
#define RUN 0
#define HALT I
#define RESET 2
#define NORMAL 0
#define SLOW 1
#define PI 3.14159

#define UP 1
#define DOWN 2
#define IN I
#define OUT 0
#define LTYELLOW 100
#define WHITEI 107
#define TEXTCOLOR BLACK
#define NOHIGHLIGHT LTYELLOW
#define ACTIVEHIGHLIGHT RED
#define INACTIVEHIGHLIGHT YELLOW
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" walk.h ,

#define LI 20.0
#define L2 102.0
#define L3 24.0
#define L4 32.0
#define L6 30.0

struct mag in xys /'* magnitude along x, y, and z axes "/
I

float x,y,s;

typedef struct mag_inxyz vector;

struct plane _coefficients /* plane coefficients * /
I

float a,b,c,d:
};
typedef struct planecoefficients plane;

typedef struct
4

float min,
max,
center;

} dimensions;

typedef struct

dimensions x,
Y,
Z;

} work vol;

typedef struct
I

int left,right,topbot tom,xO,yO.x I,y l,x2,y2;
char *textO.*text l.*text2;

} menubox;
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This is a function for the iris 2400 program walk.c.
init.c

Relic Lyman 27 Apr 1987

#include "gl.h"
#include "device.h"
#include "walk.h"

initialise(hinvh,rot _ratetrans rate.ordered _rate.spe,period,leg status,
legphase.rellegphase,footpos,b_footpos.cwv,fh,oldfh,selected _gait.
ordered _vel mag,ordered _vel _dir,program status,tx,ty.tz.rol, elev.azimuth)

/* This function computes the body rotation and translation rates. *

vector *rot rate. /* rotation rate */
*trans rate. translation rate /
*ordered rate. ordered x translation, y translation.

and z rotation rates *,/
fh'7 /* selected footholds (earth coord.) */
oldfh7l * old selected footholds (earth coord.) */
foot pos 7. position of the foot in earth coord. * /
b_footposi7l; /* position of the foot in body coord. */

plane *spe; /* support plane in earth coord "/

work vol cwvj7,; /* constrained working volume *

float hf4 4 , "'* homogeneous transformation matrix *

invhI4'14i, /* inverse of transformation matrix */

legphasel71, /* phase of the phase =/
rellegphase!7, /* phase of the leg relative to leg one *

period, /* body support period */
•tx,*ty,*tz. /* position of body in earth coordinates *
*roll,*elev,*azimuth, /* body euler angles */
*ordered _vel mag. /* ordered velocity of the steering pt (magnitude)*/
*ordered vel dir: /* ordered velocity of the steering pt (direction)*,'

int leg _status7 i . , status of the leg *
* program-status. /* desired status of program * I
*selected gait: /* type of tripod gait to be used * /

int i,j:

float modulus one); /* modulus one function*/
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/* init.c */

/* initialize the transformation matrix
hIOl:O1 = 1.0;
hio]l I I=0.0;h10}1 , = 0.0;
h,,Ol:1 2 0.0;

hol1O1= 0.0;

hil 1 -- 1.0;
h!112- 0.0;
h.11;3. 0.0;
h 2J. 0, 0.0,
h'2] 1O0 = 0.0.,

h11'l 0.0;
h'21 2i  1.0;
h 21 3 HO; ,* initial height of the center of the body * /

h'31O 0.0:
h 3 1' 0.0;
h. 312! 0.0:
h 3 13 1.0:

/* initialize the inverse transformation matrix */
for (i=0: i<3; i---){

for (j=O; j<3; j++)
{

invh1i]ljl = hij ii];

invh':3ji = 0.0;
invhi 13i = -(h 0]1i1*hr0[3 + hlji,*hJ1j[3 -

h1,2j[i1*h[2jf3');

}
invh[3][3; = 1.0:

/* initialize the body rotation and translation rates */

rot rate->x = 0.0;

rotrate->y = 0.0;
rot rate->z = 0.0;
trans rate->x = 0.0;
trans rate->y = 0.0;
trans rate->z = 0.0:

/* initialize the commanded body rates */

ordered rate->x = 0.0; 1* translation *

ordered rate->y = 0.0; /* translation *,
ordered rate->z = 0.0; /* rotation *,

*period = LONG TIME;

*selectedgait = FWDWAVE GAIT:
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*~ initialize the relative leg phase
ret _ legphaselji 0.0;
ret _legphase[21 = 0. 5;
reliegphsel3' = BETA;
rellegphasel4l = BETA-0.5;
rel-legph&se5i 2*BETA - 1.0;
ret legphael6l = mod ulus-one(2 *BETA - 0.5);

/* initialize the leg status and phase *
for (in;. i<7; i-+)

leg-statusil = SUPPORTING,
legphase~i rel-legphase~i];

/* initialize the constrained working volume for each leg ~
cwvll].x.rnin =95.0;

cwvili.x.max 215.0;
cwv I .x.center 155.0;

cwV lj.y.min =60.0:

ewv! ;y.max 131.0:
cwv I .y.center =95.0;

cwv I;.z.min -240.0;
CwVj I .z.max -80.0;

cwvi1l.z.center =-160.0;

cwv[2!.x.min =95.0;

cwvr2l.x.max =215.0;

cwv!2).,.center =155.0;

cwv[21.y.min = -131.0;
cwv;21.y.max 6 0.0;
cwvi;21.y.center =-95.0;

cwv1:21.z.min =-240.0;

cwv 2iLz.max =-80.0;

cwv 21.z.center -160.0;

cwvisi. x. mm 6 0.0;
cwv'31x.max 60.0;
cwv'3!x.center 0.0;

cwv31'.v .min 60.0;
cwv;31.y.max =131.0;

cwVi3I.y.center =95.0;

cwvj3J.z.min =-240.0;

cwvi3i.z~max =-80.0;

CWV1SJ.z.center =-160.0;
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cwv,4..x.min =-60.0;

cwv ;4 .x.max 60.0;
cwv14 .x.center = 0.0.

cwv!4.v.min =-131 .0;
cwv14 .v.max -60.0;

cwv!4,.y.center -95.0;

cwv*.z.min -240.0;
cwv'4'.z.max =-80.0;

cwvj4'.z.center =-160.0;

cwvj5i.x.min -215.0;
cwvl5K x.max -95.0;

cwv 5'.xxcenter -155.0;

cwv:51.v.min 60.0;
cwvj5 .v.max 131.0:
cwv 5'.vxcenter 95.0:

cwv;5.z.min =-240.0;

cwvi5 .z.max -80.0;

cwv 5.z.center -160.0;

cwvi6,.x.min -215.0;
cwv 6'.x.mnax =-95.0;

cwvI6'.x.center = -155.0;

cwv!6,.Y.min =-131.0;
MVCwv .max =-60.0;

cwv'6!.vxcenter -95.0;

cwvi6. .z.mnin -240.0;
CwvW6 z.max -80.0;

cwvi6:.z.center =-160.0;

/* initialize the selected foothold positions /

(Ii I Ix =cwvII1Lx.center -+ LENGTH/12.0;
fh, 2. x cwv12:.x.center - LENGTH'112.0;
fh,33 x = cwvI31.x.center - LENGTH!' 12.0;
fh, 4J xA cwvI41.x.center +t LENGTH'12.0;
Th, 5 '.x = cwr15j.x.center -+ LENGTH/12.O;

fh:it x cwvI~j.x.center - LENGTH/12.0;

for (i=1I:i..7:i---)

rh ijy) c wv ',ycenter;
fhit ijz 0. 0:

L 
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/ initialize the earth relative foot positions
for (i-- 7;i-- +)

footposji'.x = fhlil.x:
footposlii.y = fhli].y:
footposlii.z = fhjii.z;

initialize the old selected foothold positions */

for (i=l;i<;i-)

oldfhi.x = fh'i..x - LENGTH/3.0;
oldfhii.y = cwvji:.y.center;
oldfhii.z = 0.0:

/ initialize the body relative foot positions * /

for {i=1;i<7;i- )

b footposli].x = cwv i'.x.center;
b footposli].y = cwvi .. center:
b footposjij.z = cwv i .z.center;

initialize the estimated support plane */
spe- > a = 0.0;
spe->b = 0.0;
spe->c = 1.0:
spe->d = 0.0;

/* initialize the ordered velocity of the steering point /
*ordered vel mag = 0.0;
*ordered vel dir = 0.0;

initialize the body attitude and position *
Wroll 0.0;
*elev 0.0;
*azimuth = 0.0:
.tx 0.0;

•ty 0.0;
*tz HO;

* initialize desired program status *

*program status = RUN;

}* end of initialize
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This is a function for the iris 2400 program walk.c.
driver.c

Relle Lyman 13 May 1987

#include "gl.h"

#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

menubox boxjl={
0.0.0,0,0,0,0,0,0,0,"itnot"," used"," here",

100,200,670,525,120,567,120,597,120,627,"G AIT","W A VE","FWD",
200,300,670,525,220,567.220,597,220,627,"ATTITUDE"," AND"," ALTITUDE",
300,400,670,525,320.567,320,597,320.627," "."RESET"," ",
100,200.525,380,120.422,120,452,120,482,"GAIT"," ","FTL",
200,300,525,380,220.422,220,452,220,482," REPORT"," "."STATUS",
300,400,525,380,320.422,320,452,320,482,"PROGRAM"," ","EXIT",

100.200,310.230.120.250,120,270,120,290, "REVERSE"." FOR WARD"."TR A NSLATE".
100,200,230,150.120.170,120,190,120,210,"R IGHT"."LEFT","TRA NSLATE",
100,200.150.70.120,90,120,110,120,130."RIGHT"."LEFT","ROTATE".

100,200,310,230,120.250,120,270.120,290," "." "," ",

100,200,230.150,120.170,120,190,120,210," "." "," ",
100,200,150,70,120,90,120,110,120,130," "," "," "}

driver command(ordered _rate.rot rate.,trans -rate,program _status,
b footpos,period,alpha,gamma,t heta,slow flag,roll,elev,
azimuth,tx,ty,tz.ordered _vel _mag,ordered vel _dir,fh,selected -gait)

/'* This function inputs the driver's commands using a menu and
the mouse. */

vector *ordered _rate, /* ordered x translation, y translation, and z rotation rates */
*rot rate. /. actual rotation rate vector * /
*trans-rate, /* actual translation rate vector

b_footposJ7 ,  ,'* position of foot in body coordinates */
fhf7'; /* selected footholds (in earth coordinates) 5/

int *program status, /* desired status of the program RUN/HALT'RESET /
*selectedgait. /* desired tripod gait */
*slow flag; /* flag indicating deceleration is required

float *period, /* body support period * '
*tx,*ty,*tz. /* body translation distance (Earth coord) */
*azimuth, elev, roll, /* body Euler angles *,
*ordered vel _mag, /* ordered cockpit velocity (magnitude) */
*ordered vel dir; /* ordered cockpit velocity (direction) */
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*driver.c

Angle alpha 71. 'thigh angle *

gamma! 7, shin angle ~
thetal7 leg lateral angle 2

Device dummy,x,y;

static int buttonflag = UP, pick,poten tialpick,m ain men upic k,su bmenu,slidebar

int

float barvalue;

static float time;

char str-orx 1001 ,str oryf 100! ,str or: lO0f,
str _trxI1001.str try:1001,str rrz 100},str _timeflooj;

pushmatrixo;
pushviewporto;

view port (0. 500,0.767):
ortho2(0.0,500.0.0.0.767.0);

color(CY AN), '* screen background color *
clearo;

/* Display simulation time on top of screen ,

color(TEXTCOLOR);
time i-= DELTATIME;
sprintf(str -time, "simulation time %8.3f" ,time);
cmov2i(10S.700);
charstr(str-time);

if (qtest() == MIDDLEMOUSE) i/2 Button just pressed or released *

qread(&dummy):
qreadf&x);
qread(&y);

if (buttonflag = DOWN) /* Button was just released. /

buttonflag UP;

if (potentialpick ==0)

,/e No change/
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else if (potentialpick < 7) ,/* Main menu chosen

niainmenupick = potentiaipick;
pick = 0;
pick = potentialpick;
polentialpick = 0;

else /* submenu chosen/

pick = potentialpick; /* no change to main menu pick *
potentialpick = 0;

else f* Button was just pressed. *

buttonflag =DOWN;

}jend of qtest ~

if (buttonflag DOWN) ,'Find the box over which the
cursor lies for highlighting. *

x evlatrMUE)
y = getvaluator(MOUSEX);

potentialpick = 0;

for (i= 1:i<7;ii-t-i) /* Check the main menu.

if (x < boxij.right k& x > boxli left &&
y < boxlii.top && y > boxiji.bottom)

potentialpick = i

if (submenu ==1) /* Check submenu #1. '

for (i=7;i<10:i-+)

if (x < boxii.right && x > box~il.left &&
y <. boxiij.top &&)y > boxlilbottom)

potentialpick = i
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driver.c

if (submenu ==2) /* Check submenu #1. *

for (i l IO;i< 13;i+ +)

if (x < boxrij.right && x > boxlij.left &&
y < boxiil.top && y > boxi.bottom)

poentiapik 0

else if ( butto mi upic

coolNCIEIHIH)

pele lic 0

if t( = potetpc)

caor(boACT! VEHoxiGHyLG);

elsro if (i .tex 1)n;npik

covl~or I ACTWEHox iGHLIGHT
chrtI oli~et)

else0



/driver.c

if (submenu 1) Display su bmen u .

for (i=7;i<10i--.)

if (i potentialpick)

color( ACTIVEHIG HLIG HT);

else if (i == pick)

color(INACTIVEHIG HLIGHT);

else

color(NOHIGHLIGHT);

rectfi (box' i .Ieft, boxliibottom, boxjii.right, boxi.top):
color(TEXTCOLOR);

cmov 2i( boxji .xO, box [i}.yO);
charstr(boxlil.textO);

cmov2i(boxjii.x2,boxfii.y2);
charstr(boxfii.text2),

color(WHITE); /* Draw LED gages. ~
rect fi (200, 70,400,370);
color(BLACK);
recti(200,70,300,150);
rect 0(00,70,400, 150);
recti( 200,150.300,230);
recti(300, 150,400,230);
recti(200,230,300,310);
recti(300,230.400,S1O);
recti(200,3 10,500,370);
recti(300,3 10,400,370);
color(RED);
cmov2i(205,350);
charstr("ORDERED"I);
emov2i(205,330);
c harstr(" RATE");
cmov2i(305.350);
cbarstr("'ACTUAL");
cmov2i(305.330);
charstr("RATE"l);



driver.c *

!* Display the parameter values. ,

sprint f(str orx, "%7.2f",ordered _rate- >x);
sprintf(str _ory,"%7 .2f" ,ordered -rate- >y);
sprintf(str-orz."%7.2f" ,ordered -rate- >z);
sprintf(str-trx, '%7.2f".trans_rate- >x);

sprintf(str-try .t%7.2F1,trans rate- >y);
sprintr(str-rrz,"% 7.2f",rot -rate-> z);

cmov2i(205.270);
charstr(str -orx);
cmov2i(205,190);
charstr(str-ory);
emov2i(205,110);
charstr(strorz);
cmov2i( 305,270):
charstr(str _trx);
cmov2i(305.190);
charstr(str try);
crmov2i(305. 110);
charstr(str _rrz);

if (submenu == 2) /* Display submenu #2. *

for (i=10;i<13i--)

if (i == potentialpick)

color( ACTIVEHIGHLIGHT);

else if (i == pick)

color(IN ACTIVEHIGHLIGHT);,

else

color( NOHIG HLIGHT);

rectfi (boxi il. left, boxfilbottom, box iJ.right, box i'.top):
color(TEXTCOLOR);
recti(boxiij.left, boxliJ.bottom, box'i'.right. boxtiltop);
cmov2i(boxji.xO.boxjij.yO):
charstr(boxiltext0);
cmov2i( boxji I.x 1.box j1 .yl):
charstr(boxi.text1);
emov2i(box; ij .x2.boxjij.y2):
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*driver.c

color( WHITE); /* Draw LED gages.
rectfi(200,70,400,370);
color(BLACK);
recti(200,70,300, 150);
recti(300.70.400. 150);
recti(200. 150.300,230);
recti(300. 150,400,230);
recti(200.230.300,3 10);
recti(300.230.400.310);
rectif 200.310.300,370);
recti(300.310.400,370);
color(RED):
crnov2i(205,350);
charstr("ORDERED");
cmov2i(203,330);
charstrf "ANGLE"l):
cmov2i(305,350);
charstr(" ACTUAL");
cmov2i(305,330).
c harst r(" ANGLE"):

Action! ~

switch (pick)

cas4e 1: submenu = 1;
*selected _ gait =FWD WAVEGAIT;
break;

c ase 2; subrnenu = 2;
break,

case 3: submenu = 3;
*pormstatus = RESET;

break,

case 4: submenu = 4;
joystick(trans _rate,rot _rate,ordered vel m agordered -vel -dir,&button flag);
steeri ng -con v(ordered _rate,ordered -vel magordered vel dir,

azirnuth,tx,ty,fh);
*selected --gait =FTL GAIT;

break;
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*driver.c

case 5: Eubmenu =5;

status -report(ordered rate.Lrans tate,rot rate.
b -foot pos. period.a lph a,gammna. t.het a.
slow _flag,roll.elev.aummuth,tx,ty.

break;

case 6: ,"exit

*program status =HALT;
break;

c ase 7: bar (- 200.0,200. 0,&Itsl1ide bar, &barv a]u e, trans3 -rate- > x):
if (slidebar == IN)

ordered rate->x = barvalue;

break;

case 8: bar(- 100.0, 100.0,&Sslidebar.& barv alue,trans -rate-> y);
if (slidebar == IN)

ordered _rate->y = barvalue;

break;

case 9: bar(A. .0, J.0,&Jsidebar,& barvaiue,rot rate- >z);
if (slidebar == IN)

ordered rate->z =barvalue;

break;

case 10: /* Future expansion *
break;

case 11: /* Future expansion ~
break;

case 12: /* Future expansion ~
break;

default: color(BLACK):

popviewport o;
popmatrixo;

*end of driver -command * t
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*driver.c*

bar(minval, maxval,slidebar.barvalue.act ualvalue)
float minval. maxval. 5 barv.alue act ualvalue:
int *slidebar:

register i;
char str.20 ,
int x'y;
static ant barlevel;

/* Draw the sliding bar. 5

cursoffo;
color(BLACK);
rectfi(9,69,90,690);
color( RED);
recti( 10,70.30.670):
for (i=0;i,-5:i---)

mnove2i(30,70 i* 150):
draw2i(40.70 i*150);
crnov2i(34.73 i*150):
sprintf(str. "%6. lf",minval -i*(rnaxval-minval)/4.0);

charstr(str);

cursono;

/* Check the location of the cursor. If it is inside the
sliding bar, then calculate the value for its position. ~

x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
if (10 < x && x < 30 && 70 < y && y < 670)

barlevel = Y
*siidebar IN,
*barvaiue minval +± (rnaxval.- minval)*(y - 70)/600.0;

else
I

slidebar =OUT;

,/* Draw the bar showing the actual level. 5

color( RED);
rectf( 1 5.0,70.0,25.0,(370. 0 - 600.O* act u alvalue/(maxval-rnin val)));

/ * Draw the bar showing the ordered value. /

color( YELLOW):
recti(l I l70,29.barievel);
}/* end of bar
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joystick (trans -rate.rot rate,ordered vel _mag,ordered _vel _dir, button flag)

vector * trans-rate. ,* translation rates of the center of gravity in body coordinates 3

* rot _rate; /* body Euler angle rotation rates * /

float *ordered vel mag, /* ordered velocity of cockpit (magnitude) ,

* ordered -vel-dir; /* ordered velocity of cockpit (direction) 5

ilt *buttonflag; /* indicator for middle mouse button/

mnt x,y,i;

float vx,vy, '*velocity of cockpit in body coordinates/
magn~dir: /* magnitude and direction of cockpit velocity vector 3

/* Display the steering box. 5

color( BLUE);
recti( 100.80,400,380);
/* Display the grid ~
for (i=1;i<15;ii--4)

move2(90.0-4-i*20.0,80.0);
draw2(90.0-i*20.0,380.0);

for (i=1I;i< 15;li-)

move2( l00.0,80.0+i*20.0);
draw2(400.O,80.0-4-i*20.0);

/ * Display instructions.*/
cmov2i( 110.65):
cbarstr("Hold the middle button down");
cmov2i(1 10,50);
charstr("'to control the joystick");

/* Display the current velocity of the cockpit. *
vx = trans-rate->x;
vy = rot -rate->z *HALFLENGTH + trans rate->y:
magn = sqrt(vx~vx vy~vy);
dir = atan2(vy,vx);
if (vx == 0.0)

dir = 0.0;

linewidt h(5):
color(YELLOW);
move2(250.0,80.0);



/* driver.c

if (Vx == 0.0)

dir = 0.0;

Iinewidth(5);
color(YELLOW);
move2( 250.0,80.0);
draw2( (250.0-400.0*dir) ,(80.0-t-ragn *3.0));,

/' Check the location of the cursor.
x =getvaluator(MOUSEX);
y - getvaluator(MOUSEY);
if (*buttonflag == DOWN)

if (100 < x && x < 400 && 80 < y &&y < 380)

* ordered _vel mag = (y.8O) '3.0;
*ordered -vet-d ir = (250-x)/400.0;

Display the ordered velocity of the cockpit. '
li new idth (3):
color(RED);
niove2(250.0,80.0);
draw2((250.0.- 400.0 **ordered -vet -dir),(80.0 + *ordered -vel _mag 3.0));
Iinewidth(J):

~end of joystick *
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This is a function for the iris2400 program walk.c.
steering.c

Relle Lyman 28 Mar 1987

#include "gl.h"
#include "device.h"
f include "walk.h"
#include <stdio.h>
pinclude <math.h>

steering conv(ordered _rate,ordered _vel mag.ordered _vel dir,azimuth,tx,ty.fh)

This function calculates converts ordered head velocity to
ordered body translation and rotation rates. */

float *ordered vel mag, /= ordered velocity of the cockpit (magnitude) *,
*ordered vel dir. '* ordered velocity of the cockpit (direction)
*azimuth. body azimuth angle (radians) *
*tx. tv: current position of the body's center of

gravity (in earth coordinates) *

vector *ordered rate. ordered forward and lateral translation
rates and azimuth angle rate */

fh:7,; * selected foothold (in earth coordinates) ,'

float hx,hy, current head (cockpit) position (earth coord.)*/
dhx,dhy, desired head position (earth coord.) */
fhcenx,fhcen y, ,' foothold centroid (earth coord.) */
dcgxdcgy, /* desired center of gravity (earth coord.) /
dazimuth, /* desired azimuth angle (earth coord.) */
diffazm; /* difference between desired and current azimuth 5/

vector desired rate; /* desired earth translation rates and azimuth
angle rate *,/
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/* steering conY

/* Note: This module uses a level terrain assumption. *

f. Calculate current head position (earth coordinates). *,

hx = *tx - HALFLENGTH * cos( *azimuth);
hy = *ty - HALFLENGTH *sin( *azimuth);

,* Calculate the desired head position (earth coord.). *,
dhx = hx + DELTA TIME * *ordered vel mag * cos( *ordered vel dir 'azimuth):
dhy = hy + DELTA-TIME * *ordered vel mag * sin( *ordered vel dir - *azimuth):

,* Calculate the foothold centroid. (Forward gaits only) */
fhcen x = (fh!3].x+fh;4I.xtfhi5l.x+fh61.x)/4.0;
fhceny = (fh3.y4fhi4].y+fhi5l.y+fh[l.y)/4.o;

/* Calculate the desired azimuth angle. */

dazimuth = atan2((dhy-fhceny),(dhx-fhcen x));
diffasm = dazimuth - *azimuth;

/* Adjust the difference to a value between pi and -pi. *

if (diffazm < .3.14159)

f
diffazm += 6.2831855;

}
if Idiffazm > 3.14159)

diffazm -= 6.2831853:

"* Calculate the desired center of gravity. * /

dcgx = dhx - HALFLENGTH * cos(dazimuth);
dcgy = dhy - HALFLENGTH * sin(daimuth);

"* Calculate the desired rates (earth coord.). '/
desired rate.x = (dcgx - *tx)/DELTATIME;
desired-rate.y = (dcgy- *ty)/DELTA TIME;
desired rate.z = diffazm/DELTA TIME;

* Convert to body translation and rotation rates. */

ordered rate->x -- cos( *azimuth) * desired rate.x
- sin( *azimuth) * desired _rate.y;

ordered rate->y = cos( *azimuth) * desired rate.y
- sin( *azimuth) * desired rate.x;

ordered rate->z = desired rate.z;

end of steeringconv
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This is a routine for the iris-2400 program walk.c.
status.c

This routine creates a status report to be displayed
on the viewing screen beneath the ASV.
Relle Lyman 27 Mar 1987

iinclude "gl.h"
4include "device.h"
4include "walk.h"

status report (ordered _rate trans rate,rot rate,b -footpos,period.alpha,gamma.
theta,siow _flag,roll,elev,azimuth,tx,ty,tz)

int *slowflag; /* flag indicating deceleration is needed *

Angle theta!7, '* leg component angles
alpha 7i.
gamma[7:

float *period, ,'* period of leg cycle
*tx,*ty,*tz, * position of body in earth coordinates *
*roll.*elev,*azimuth; /* body Euler angles *7

vector *rot rate. /* body rotation rates *
* trans rate, /* body translation rates * /

*ordered rate. '* ordered lateral and longitudinal and .a% rates */

b footpos.7 : /* foot position in body coordinates *

int i.k:

char str fpx 7 100,str fpyI7111001,str fpz'711001,
str orx 100 .str ory[lOO1,str orzi10j,
str trxO100i.str_tryjiOo ,str trzO00j,
str rrx00],str_rr I100,str rrzI100],
str-alpha'7 'I001,strgamma[7; 100],str theta:7 1001,
strperiodll0 ],str slow 1100:,
strtxjlO0,strty[100J, str _tzl100].
strrollV100;,str _azimuth[ 100,str _elev 100
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st at usc

sprintf(str -orx.ttC7.2r,ordered _rate- > x);
sprinif(str _ory. " 7.2r" ordered _rate->y);
spri ntf(str -orz. ." /7 .2r, ,ordered -rate-> z);
sprintf(str-trx. "0 72f',trans-.rate->x);
sprintf(str try, "%7.2r",,trans rate- > y);
sprintf(str-trz,"%7.2f".trans-rate->z);
sprintf(str -rrx,"'%7 .2f",rot _ rate- >x);
sprin tf(str-rry, "%7.2f" ,rot -rate-> )
sprintf(str_ rrz,"%7.2f" .rot -rate-> z);
sprintf(str_period "%9.Sf" *Period);
sprintf(str tx,11%7.2r1,*tx);,
sprintf(str ty.1Y%7.2V',*ty);
sprintf(str tz,' t %7.2hI,*tz);
sprintf(str roll, "%7d", ((int) (*roll * 573.0)));
sprintf(str azimuth, "1/7d", ((int) (*azimuth * 573.0)));
sprintf(str_elev."%7d"1,((int) (*elev * 573.0)));

for (k=1;k<7;k-+-)

sprintf(str fpx k ."'%7.2r,b -footpos~kj.x);
sprintf(str _fpyik 1."%7.2r',b footposikl.y);
sprintf(str -fpzfkl,"%7.2f".b footposjklz):
sprintf(stra-Iphlki ,"%/7d",alphalkl):,
sprintf(str gammajk 1 ,%7d",gamma
sprintf(str-thetakl ,"%7d",theta'k i);

pushmatrixfl;
viewport(O.400,0,767);
ortho2(0.O,400.0,0.0,767.0);
color(BLACK);
rectfi(I0,1O,400,370);
color(YELLOW);
rectfi(20.20.390,360);
color(BLACK);
emov2i(220,340):
charstr("X"):
crnov2i(280,340):
charstr("Y");
cmov2i(340.340):.
charstr("Z");

cmov2i(30,325):
charstr( "ordered _rate");
cmov2i(30,3 10):.
c harstr(" trans -rate");
emov2i(30,295):
charstr("lrot _rate");
cmov2i(30,280):
c harstr(" position"):
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' st&Lus.c *

cmov2i(2 10,265):
chanstrf "ROLL");
cmov2i(260,265);
charstr("ELEV.");
cmov2i(310,285);
charstr("AZIMUTH"I);

cmov2i(SO,250);
charstr("current attitude");
cmov2i(30,235);
c harstr ("ordered attitude");

cmov2i(30,2 10);
charstr("period");

if(*slow-flag == SLOW) /* moving too fast *

emov2i( 750,220);
color(RED);,
charstr("TOO FAST");
color(BLACK);

cmov2i(30, 185);
charstr("x ft pos (1.3)");
cmov2i( 110. 170):
charstr("(4-6)");
cmov2i(30, 155);
charstr("y ft pos (1-3)");
cmov2i( 110,140);
charstr( "(4-6)");
cinov2i( 30,125);
charstr("'z ft pos (1-3)");
cmov2i(110, 110);
charstr("'(4-8)");
cmov2i(SO,95);
charstr("ALPHA (1.3)");
cmov2i(1I0,80);
charstr("(4-6)");
emov2i(30,65);
charstrf"GAMMA (1-3)"):
cmov2i( 110,50);
charstr( "(4.6)"):
ctnov2i(30.35);
charstr("THETA (1-3)");
cmov2i( 110.20);
eharstr(" (4.6)"):
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cmov2i( 180..3125):
charstr(str _orx);
cmov2i(240,325);
chastr(str-ory);
cmoir2i(300,325);
charstr(str _orz):

cmov2i( 180,310):
charstr(str _trx)-
cmov2i(240.3 10);
charnr(strtry):
cmovZi(300,3 10):
charstristr- trz);

cmov2i( 180,295):
charstristr _rrx):
cmov2i( 240,295):
chanristsr _rry):
cniov2i(300,295):
charstr(str _rrz):

cmov2i( 180,280);
charstr(str _tx);

cmov2i(240,280).
charstrfair ty);
cmov2i(300,280);
charstr(str _tz);

cmov2i( 180,210);
c harstr(str -period);

cmov2i( 180,250):
charstr(str -roll);
cmov2i(240,250).
charstr(str _elev):
cmov2i(300.250):
charstr(str -azimnuth)-.
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/*status.c

for (i=1;i<4;i-+)

emov2i(k. 185);
charstr(strfpxil);
cmov2i(k, 170);
charstr(str-fpxl i+ 3 );
cmov2i(k, 155);
charstr(str fpy 1i 1);
cmov2i(k, 140);
charstr(str -fpy[i+31);
cmov2i(k,125);
charstr(strfpzil;
emov2i(k. 110);
charstr(str_fpzli- 31);
cmov2i(k,95);
charstr(str alpha
cmov2i(k,80);
charstr(str _alpha i+3 ):
cmov2i(k.65):
charstr(str _gammajii)
cmov2i(k,50);
charstr(strjgammaji-3S );
cmov2i(k,35);

charstr(strt beta[ji1);
cmov2i(k .20);

charstr(str _Lheta~i--3);

popmatrixO;
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This is a function for the iris 2400 program walk.c.
support.c

Relle Lyman 21 Aug 1986

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

supportplane(spe)

/ This module will compute a new estimated support plane based on

the position of the supporting legs. As a temporary measure it
is assumed the support plane is flat and at "sea level" (i.e.
z = 0 ). The equation for the plane is Ax-By-4-Cz+D=O. */

plane *spe: /* estimated support plane in earth coordinates *;

{
spe->a = 0.0;
spe->b = 0.0;
spe->c = 1.0;
spe->d = 0.0;
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This is a function for the iris 2400 program walk.c.
body _rates.c

Relle Lyman 19 Apr 1987

#include "gl.h"

#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

body _rates(rotrate.transrate. spe. h,in vh,ordered -rate, tx, ty, tz,
roll,elev,azimuth)

* This function computes the body rotation and translation rates. */

vector *rot rate, /* rotation rate * /
*trans rate, /* translation rate
*ordered rate: /* ordered x translation, y translation.

and z rotation rates */

plane *spe; /* support plane in earth coord */

float h[4114], /* homogeneous transformation matrix */

invhi4j 41, /* inverse transformation matrix */
*tx,*ty,*tz, /* position of body in earth coordinates *
*roll,*elev,*azimuth; /* body Euler angles */

int ij;

float eta, * body plane attitude wrt earth plane
etad, *desired body plane attitude */
height, I/ distance form CG to est. support plane */
heightd, /* desired height */
gamma, /* angle between desired and present body unit normal vectors */
kx, /* x component of rotation unit vector in body coord */
ky, /* y component of rotation unit vector in body coord */

ka, /* control law gain *I
a,b,c, /* body plane desired unit normal in body coord */
length, /* rotation vector normalizing factor */
celev,selev,telev, /* sine.cosine,tangent of elev
croll,sroll,casim,sazim, /* sin and cos of roll and azimuth *
m;

plane spb: /* support plane in body coordinates ,

vector db unit norm, /* desired body plane unit normal in earth coordinates */

trans rate e, /* Translation rates in earth coordinates *
rot rate e; /* Rotation in body Euler rates "'
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/= body rates.c

1 Calculate the body plane attitude. (level ground assumption!)*
eta = 0.0;

I* Calculate desired body plane attitude (level ground assumption!)*/
eta d = eta:

/* Calculate the desired body clearance. (level ground assumption!)*
height-d = HO:

,* Calculate the support plane coefficients in body coordinates. */

/* [spbl T = jspej T * h
spb.a = spe->a * hO0ojio spe->b * hililo + spe->c * hl 10 + spe->d h 3Oi;
spb.b = spe->a * h[Ol -- spe->b * hl['l + spe->c * h2 [1' + spe->d * h 3:!l;
spb.c = spe->a hO1[21 - spe->b * hil] 2 - spe->c h12]12 -- spe->d h 31l2;
spb.d = spe->a * h]0'13} -- spe->b * hil1I3 + spe->c h'2 !3 + spe->d * h3 3

/* Height of body CG above support plane *
height = spb.d:

. Calculate desired unit normal for the body plane in earth coord.
m , sqrt(spe-:a * spe-. a -+ spe->b * spe->b);
'. check for division by zero
if (m>O.0)
I

db unit norm.x = spe->a = sin(eta d) m;
db-unit-norm.y = spe->b sin(etad)/ m;

}
else

u
db unit norm.x = 0.0;
dbunit_-norm.y = 0.0;

}
db unit norm.z = cos(etad);
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body -rates.c /

/* Transform the desired unit normal vector or the body plane
from earth to body coordinates. [a,b,c!T=invhrb unit norm

'~Note: invhr is the inverse of the rotational transformation
submatrix (first three rows and columns of h). -

a =invh;0101 *db -unit -norm.x + invh[O01 1*db unit-norm.y
invh 0 '1db unit norm.::.

b = iflvh I1j0'*db-unit _norm.x + invbhl1I1!*db _unit-norm.y 4

in:h 21db unit -norm.:;
c = invhi2'db unit norm.x + invh;'2)1j1db unit norm.y

invh.2.i2ldb-unit _norm.z;

,Control law yielding an exponential response
,~d gainma/dt = -ka * gamma *

ka = 1/TIMECONSTANT_1;
gamma = acos(c);
length = sqrt(a~a + b)
if (length < .00001)

kx =0:
ky =0:

else

components of rotation unit vector in body c-oordinates
kx =-b.'length;
ky =a/length;

*Calculate rotation and translation rates
trans-rate->: = -ka * (height _d - height):
rot rate->x = -ka *kx *gamma;

rot _rate->y = -ka ky *gamma;

* Rate = dt acceleration + old rate /
trans rate->x =DELTA TIME * (ordered _rate-> x - trans rate->x)/

TIMECONSTANT 2 + trans-rate->x;
trans rate->y D 1ELTA TIME-* (ordered rate->y - trans -rate-> y),/

TIMECONSTANT_3 -trans rate->y;
rot -rate->: DELTA TIME * (ordered _rate- >z - rot _rate->:z)/

TIMECON STANT_3 -, rot-rate->:;

Conversion to Earth coordinate translation rates. ~

croll -= cos(*roll);
sroll =sin(*roll);
telev =tan(elev);
celev = cos('eiev);
selev = sin(*elev);
cazim = cos(*azimuth);
sazim = sin(*azimuth);
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body -rates. c

trans rate e.x =trans rate->x *croII*cazim i

trans rate->y * (cazim*sroll'selev -sazirn*celev)
trans rate->z * (sazim*selev - cazim *srolI*celev):

trans rate-e-y = trans rate->x * crollssazim +
trans-rate->y * (sazim*sroll*selev - cazim*celev) +
trans rate->Z * (cazim*selev -sazim*sroII*celev);

trans rate e.z = -trans rate->x * sroll +t
trans rate->y croll*selev -

trans rate->z *cazim*celev;

/*Conversion to body Euler rates * '/
rot-rate e.x = rot rate->x ±rot-rate->y * telev * sroll +

rot rate->z * telev croll;
rot _rate e.y =rot _rate->y *croll - rot rate->z *sroll;

rot-rate e.z rot _rate->y *sroll / celev +~
rot rate->z * croll /celev:

SIntegration routine
* tx - trans rate e.x *DELTA TIME:
*ty - trans -rate e.y *DELTA-TIME:

*tz += trans rate e.z *DELTA _TIME;
*roll rot rate e.x *DELTA-_TIME:

*elev -+- rot rate e.y *DELTA _TIME;
*azimuth -r= rot rate e.z *DELTA TIME;

/* Update the H matrix

croll = cos(*roll);
sroll = sin(*rolI);
telev = tan(*elev);
celev = cos(*elev);
selev = sinf*eiev);
cazim = cos(*azimuth);
sazim = sin(*azimuth);
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*body -rates.c ~

htjIjji = croII*cazim;
h!0j!1j = cazim*sroII*selev - sazim*celev:
h10112i = sazim'selev - cazim*sroIlscelev;
hiOll3i = *tx;
hililol = sazim*croll;
hIlIIII = cazimscelev .+ sazim*sroll*selev;
h!1112j = sazirn'srolI*celev - cazim*selev;

h[1101O = -sroll;
h 121111 = crollselev;
h 121121 = croll*celev,
h[2!1[31 * Lz:
h131101 = 0.0;
h1311 11 = 0.0;
h 131121 = 0.0;
h 13J131 = 1.0;

1* inverse homogeneous transform matrix
for (i=O; i<3; i--)

for (j =0: j <3 ; j-,--+)

invhi'lj = hijl'ii;

invh 311i] = 0.0;
invhTi!3 = -Wfh i'*WO1l3 h' lfi.*hij31 hJ211ii*hI2;3.);

invhI3II3 = 1.0;

end of body-_rates
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This is a function for the iris 2400 program walk.c.
con work vol.c

Relle Lyman 19 Apr 1987

#include "gi.h"
*include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

con work _vol(cwv.b_footpos,leg status,warning)

This module will compute a new constrained working volume for
improved stability on rough terrain. Currently all values are
set for a perfectly flat support plane. Dimensions are
expressed in cm. */

work vol cwvl7; / constrained working volume in body coordinates */

vector b-footpos7; /' foot position in body coordinates /

int leg status!7],/* status of leg (supporting, liftoff, transfer.
placement) *

*warning; /* flag indicating supporting leg is outside of
the working volume */

{
int i;

* warning = OFF:

for (i=1;i<7;i+ ) /* check each leg */
{

if (leg status'i == SUPPORTING)
{

if ((bfootpos'ij.x < cwvjij.x.min)ij
(b _footposi .x '> cwvlil.x.max)II
(b_footposji'.y < cwvjij.y.min)j
(b footposi .y '> cwvlij.y.max)ji
(b footposli[.z < cwvii!.z.min)!
(b _footposi .z -> cwvi'..z.max)) /* outside limits *

w warning ON;
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1con work vol.c ~

if (*warnin~g == ON)

pushmatrixo;
pushviewportO;
viewport (0, 130,0,80);
ortho210.0, 13O.,0.0.80.O);
color(RED);
rectfi( 10,10,130,70);
color(BLACK):
cmov2i( 10,30);
charstr(" OUTSIDE CWVt'),
popviewport();
poprnatrixo,
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This is a function for the iris2400 program walk.c.
opt _period.c

Relle Lyman 29 Apr 1987

tinclude "gl-h"
#include "device.h"

#include "walk.h"
#include <stdio.h >
#include <math.h>

optimal _period (legphase,bfootpos,rot _rate,trans rate,cwv,leg status,period)

/* This function computes the optimal period for walking. * /

vector *rot rate. /* body rotation rate *7
•trans rate.,* body translation rate *,
b footposiT: 7 * position of foot in body coordinates /

work vol cwv 7.; ,/ constrained working volume

float legphase[7', /* phase of leg *
*period; /* body support period * /

int leg status[7j; /* status of leg 0 = supporting ,

vector b footvel; /* foot velocity */

float fx.fyfz, /I* foot position
tmin. /* minimum temporal kinetic margin
tx,ty,tz. /* temporal kinetic margins */

d, /* distance to cwv limit */
speed, /* magnitude of body velocity */

fsperiod, /* forward support period */
bsperiod, /* backward support period */
min fsperiod, /* minimum forward support period */
minbsperiod, /* minimum backward support period */

fsphase, /* forward support phase */
bs phase. /* backward support phase *

mvx.mvy,mvz;

int i.
minleg:

static int gait=FORWARD; /* Wave gait direction *
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optimal period ,

Initialize variables *
tmin LONG TIME;
min fs period = LONG TIME:
min bs period LONG TIME:

/- For each leg compute the maximum instantaneous support period. * /

for (i=1: i<-7; i++)
{

• Support check */
if (leg status~i == SUPPORTING)
4

* Compute foot velocity. */
b footvel.x = -(trans-rate->x)-(rot,_rate->z * b-footposiij.y)

-(rot _rate->y * b footpos i .z);
b footvel.y = -(trans _rate->y)-(rot _rate->z * b footposlil.x)

-4(rot rate->x *b footpos[ii.z):
b footvel.z = -(transrate->z)+(rot rate->y * b _footpos'i .x)

-(rot rate->x* b footpos i.y);

'* Check to see if foot is in cwv.

fx = bfootpos i .x;
fy = b footpos i:.y;
fz = b footposi .z:
if ((fx< cwv.i .x.min) ! (fx .cwv'i .x.max),'

(f' cwv i .y.min): (fy; cwv i .y.max)
(fz' cwv i:.z.min)l (fz > cwvli,.z.max)) /* outside cwv

tmin = 0.1:

else

/* Compute distance to x limit and the temporal
kinetic margin in the x direction. */

if (b footvel.x > 0.0)

d cwv'ir.x.max - fx;
tx = d / b footvel.x;

I
else if (bfootvel.x < 0.0)

d fx - cwv'il.x.min;
tx = d / -b footvel.x:

else

tx- LONG TIME;
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**optimal-period

,/' Check for minimum value.
if (tx<tmin)
I

tmin = tx;

/* Compute distance to y limit and the temporal
kinetic margin in the y direction. ~

if (b-footvel.y > 0.0)

d =cwvlil.y.ma~x - fy;
ty =d / b-footvel.y;

else if (b _footvel.y < 0.0)

d =fy - cwvlil.y.min;
ty =d / -b-footvel.y;

else
I

ty =LONGTIME;

/ * Check for minimum value. ~
if (ty<tmin)

tmin = ty:

*Compute distance to z limit and the temporal

kinetic margin in the z direction. ~
if (b-footvel.z > 0.0)

d =cwvfil-z.max - fz;
tz =d /bfovlz

else if (b-footvel.z < 0.0)

d =fz - cwvlii.z.min;
tz =d / -b footvel.z;

else

tz =LONG TIME;
I
/ * Check for minimum value. ~
if (tz~ctmin)
I

tmin = tz:

/* end inside cwv
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optimal-period *

*Compute the support phase for forward and backward gaits.
fs_phase l egphasei/BETA;'
bsphase -(BETA - legphaselil), BETA;

,*Compute support period. *

fs_period (tmin-O.1)/(I.O.- fs phase);
bsperiod =(tmin-O.1)/(I.O - bi phase);

11* Find the minimum support period. ~
if (fs-period < minfs-period)
I

minfs-period = fs_period;

if (bs-period < minbs_period)

min _bs-period = bs-period;

}/* end support check *

*~end leg loop ~

IChoose gait. */

speed -sqrt(trans -rate->x *trans rate->x +
trans rate->y * transjrate->y);

if ((speed OUTER -LIMIT)&& (trans -rate-> x> INNER _LIMIT))

gait FORWARD:

else if ((speed< OUTER_-LIMIT)&& (trans -rate-> x< -INNERLIMIT))

gait = BACKWARD;

else

/* No gait change. ~

if (gait == FORWARD)

tperiod = min Is period;

else

tperiod = mm -bs-period,

}!*end optimal -period ~
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This is a function for the iris 2400 program walk.c.
decelerate.c

Relle Lyman 04 May 1987

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

decelerate (rot rate,transrate, period ,slow _flag ,min _period)

This function computes the foot transfer rate and slows the
vehicle if the maximum rate is exceeded. */

vector *rot rate. /* body rotation rate */
*trans rate: / * body translation rate */

float *period. /* optimal period for the leg cycle */
*ain -period: /* minimum leg period */

int *slowflag: '* flag indicating vehicle has been slowed. */

int ij:

float transfertime; /* time from liftoff to placement * /

if(*period < *min-period) /* slow down 3/

{
slowflag = SLOW;

*period = *min period;

trans rate->x .95;
trans rate->y *= .7;
trans rate->z * .95;
rot rate->x = .95;
rot rate->y *=.95;
rot rate->z *= .7;
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'decelerate.c /

,'* display warning on screen/
pushmatnixo;
pushview port()-,
viewport(200,330,0.80);
ortho2(200.0,330.0,0.0,80.0);
color(YELLOW);
rectfi (2 10, 10,330,70);
color(BLACK);
cmov2i(210,S0);
charstr(" DECELERATION")
popviewport 0;
popmatrix0;

else

tslow-flag =NORMAL;

}*end of decelerate*/
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This is a function for the iris2400 program walk.c.
leg phasexc

Relle Lyman 24 Aug 1986

#include 'tgi.h"
#indude Itdevicehtti
#include "walk.h"
#include <stdio.h>
#include <jnath.h>

leg _phase( !egphase, rel-legphase, period)

/*This function computes the phase for each leg.

float legphase1', /~phase of leg ~
reljlegphasej7.. /* relative phase of leg *
period; /* body support period */

static float body phase = 0.0; ,/* kinematic phase of body*/

float modulus-oneo; /* modulus one function ~

int i:

'Calculate new body phase. ~
bodyphase - modulus one(bodyphase + DELTA_-TIME/(' period) )

'* Calculate new phase for each leg. (mod 1)

fo{ i l -7 -
legphasei' = modulus-one(bodyphase - rel-legphaselij);

}, end of leg-phase *
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This is a function for the iris2400 program walk.c.
ft _traj.c

Relle Lyman 19 Apr 1987

#include "gl.h"

#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

foottrajectory (legph ase,period,leg st at us,foot pos.b -foot pos,fh,
oldfh, invh,h ,cwv, trans rate, rot rate,selected -gait)

/* This function calculates the trajectory for each foot. */

float legphasel7, '* Phase of individual leg */
*period, /* Optimal period *

h41141, /* Homogeneous transformation matrix /
invhl4!14 * Inverse transformation matrix */

vector footpos!7.
b-foot pos[7 i,

fh7:, /* Foothold selection (earth coordinates) */
oldfh'7 , /* Old foothold selection (earth coordinates) */
*trans rate, /* Body translation rate */
*rot rate; /* Body rotation rate *

workvol cwv'7';

int legstatust7V /* State of individual leg */
*selectedgait; /* Desired tripod gait */

float trans time. /* Time required to go from leg liftoff to leg touchdown */
end lift phase, /* Point in transfer phase where liftoff ends */
beginplacephase, /* Point in transfer phase where placement begins */
transphase; /* Leg transfer phase */

static int liftoffflagJ7)=OFF, /* Indicates first time entering the
subroutine in the current leg cycle. */

transferflagI7!=OFF,

place_flag 71 =OFF;

static vector d footposl7 ; '* Desired foot position */

int i; /* Leg number */
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* foot trajectory */

/* Calculate the time required to move a leg from liftoff to

touchdown. (Transfer time) */
trans time = (1.0 - BETA) * ABS(*period);

/* Calculate phase points marking change of transfer mode

(direction). Note: Modify later to account for transfer
time. */

end-lift phase = 0.2;
begin _place _phase = 0.8;

/* For each leg */
for (i=l: i<7; i-+)
{

* Calculate transfer phase. */
' (lift = 0.0 place = 1.0 ) */
if (*period < 0)
{

trans-phase = (1.0 - legphasei])/(l.0- BETA);

}
else
{

transphase = ( legphaselii - BETA)/(1.0- BETA);}

Find the leg transfer state. *
if (trans _phase < 0.0)
{

leg statusji ! = SUPPORTING;
support trajectory (liftoffflag,place-flag, transfer flag,footpos,

b _footpos,invh.i);
I
else if (transphase < end lift phase)

leg statusil = LIFTOFF;
lift _trajectory(liftoff flag,place _flag,transfer flag,footpos,

b_footpos,invh,&trans-time,&trans_phase,&end lift phase,i);
}
else if (trans-phase < begin -placephase)
{

legstatus[i i = TRANSFERFORWARD;
transfer trajectory (liftoff flag,placeflag,transfer _flag,footpos.

b _footpos,h,invh,&trans time,&transphase,
&beginplacephase,i,cwv,transraterot _rate,fh.oldfh,
period,selected _gait);
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,'foot-_trajectory *

else end _place-phase < trans _phase . 1.0 ~

leg status i =PLACEMENT;
placement _ trajectory (liftoffNag,place-fl agtransfer _flag,foot pos,

b footpos,invh,&trans time,&trans-phase~i);

}/* end of root-_trajectory ~
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foot trajectory */

//

lift _trajectory(liftoffflag,placeflag.transfer _flag.footpos,b footpos.
invhtranstime, trans_phase.end -lift _phase, leg_number)

/* This function calculates the trajectory of the foot while it is
being lifted from the ground. It is called from foot _trajectory().*,/

vector footposl7], /* Present foot position in earth coordinates */
b_footpos[71; /* Present foot position in body coordinates ,

float *trans time.
* end _lift phase,
•t ransphase,
invh-41;4 ; /* Inverse homogeneous transformation matrix */

int liftoff_flag!7, /* Indicates the first time entering subroutine
in the current leg cycle. */

transfer_flag7',
place_flag'7i,
leg_number;

float lift time;

int i:

static vector d footpos*7 : * Desired foot position
in earth coordinates *1

i= legnumber:

/* Calculate the desired footposition. */
if ( liftoffflagiil != ON)
{

d-footposli].z = footposlil.z + FOOTLIFTHEIGHT;
liftoff flagil = ON;
transfer_flag[i] = OFF;
place flaglil = OFF;

}

* Calculate the time required to reach the desired height
from the present foot position. */

lift time *trans time * (*end lift _phase - *trans phase);
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f oot -trajectory

* Calculate the new toot position. (Earth Coordinates) '

it (DELTATIME ,. lit-time)

foot pos I i!.z -=(d _footpos 1i .z - foot pos ijz)
DELTA _TIME / lift-time;

else /* Last increment of time /

footposli).z = dtfootposi).z;

,"Transtorm to body coodinates. '

,~ bootps iJT = invh * ftootposliiT '
transform _point (b -toot pos. inv h.footpos, i);

* ~end of lift -trajectory I
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/* foot-_rajectory *

transfer trajectory (liftoff flag,place -flag .transfer _flag,footpos.
b_footpos.h,invh. trans-time,trans phase.begin -placephase,
leg _n u mber,cwv,trans rate,rot _rate,fh,oldfh,period,selected _gait)

/* This function calculates the trajectory of the foot during the
phase in which the foot is transfered forward. The function
is called from foot trajectory).*/

vector footpos 71, /* Present foot position in earth coordinates/
b footpos!71, /* Present foot position in body coordinates */

fhf7i. /* Selected footholds (earth coordinates) */

oldfh17>. /* Old selected footholds (earth coordinates) */
•transrate, / * Body translation rate */
* rot rate; /* Body rotation rate */

work vol cwv]7 /* Constrained working volume in body coordinates */

float *trans time,
* begin _placephase,
•transphase.

* period. /* Optimum period of gait */

h'4 14.  /* Homogeneous transformation matrix */
invh'414]; /* Inverse transformation matrix */

int liftoffflagl7l, /* Indicates the first time entering subroutine
in current leg cycle */

transfer_flag[71,
placeflag 71.

*selectedgait, ,/* Desired tripod gait 5/

leg number-

float trans fwd -time, /* Time remaining in the transfer forward phase */
vxvy, /* Velocity of cockpit in body coordinates */

relhd, /* Relative heading of cockpit velocity */
projdist, /* Projected distance forward for new footholds */
mintime; /* Minimum time to reach any cwv limit 5/

int i;

vector cwv velocity, /* Instantaneous velocity of the center of
the cwv (earth coodinates) */

time to limit, /* Time to reach the cwv limits /
bfhl7 , /* Selected foothold in body coordinates */
bd footpos17: '* Desired foot position in body coordinates

static vector d footpos i7: /* Desired foot position in earth coordinates
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foot -trajectory

ileg-number;

if (*eece -gait FTL GAIT)

if (transfer-fiagii != ON)

transfer flagi = ON;
liftoff fiaglii = OFF;
place fiaglii = OFF;

/* Save foothold position.*/
oldfh~iJ.x = fhii].x;
oldfhlilJ.y = fh: ij-y;
oldfhil~z = fh iJ.z;

proj-dist = LENGTH *0.21666.

switch (i)

case 1: * find new left foothold
vx= trans-rate->x;

vy = trans rate->y - rot rate->z *HALFLENGTH:

rel _hd =atan2(vy,vx):
bfhIJI.y =82.0;
bfh1i.x = HALFLENGTHsproj dist*ccrs(rel hd) '82,0-

proj _ dist*sin~relhd)) *tan (rei hd):
bfhI!.z =-160.0:
/* Transform to earth coordinates. *

/ t
jf 0i7 = h * !bfh'ifT */

transform _point (fh,h,bfh, 1);
break:

case 2: 7* find new right foothold ~
vx= trans-rate->x;
vy = trans rate->y - rot rate->z * HALFLENGTH;
rel _hd =atan2(vy,vx);
bflh,2 ' y = -82.0;1
bfh 2 .x = HALFLENGTH~proj dist*cos(relhd)-(-82.0-

proj -dist*sjn(rel-hd))*tan(rel_hd);
bfhJ2J.z =-160.0;
/* Transform to earth coordinates. *

./* lfhiiT = h * [bfhjiijT */
transform _point (Th,h, bfh,2);
break;

default: / * back leg uses old front leg foothold *

fhi.x oldfhli-21.x;
fh'i;.y =oldfb~i-2J.y;

fh i z =oldfhbi-2:.Z:
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'* foot trajectory *

/ * determine the desired foot position i

d footposlij.x = fhliJ.x;
dfootposri.y = fhlil.y;
djfootposii .z = fhii,.z;

}
}
else /* FWD WAVEGAIT Calculate a new desired foot position

at each time increment. /

/* Calculate the desired touchdown point.
/* Future change note: Change from cwv center to midstance. */

/* Calculate foot velocity at center of cwv (body coordinates) */
cwv velocity.x = trans rate->x - rot rate->z * cwvlil.y.center

rot rate->y cwvjii.z.center:
cwv velocity.y = trans rate->v- rot rate->z * cwv i:.x.center

- rot rate->x * cwvli .z.center:
cwv velocity.z = trans rate-*>z - rot rate->y * cwv;iL.x.center

rot rate->x cwv[iI.y.center:

/* Calculate the time to reach the limits of the cw%'.
if (cwv velocity.x < 0.0)
{

time to limit.x = ( cwv ii.x.min - cwv i'.x.center)icwvvelocity.x;

else if (cwv velocity.x > 0.0){
time to-limit.x = ( cwv:i].x.max - cwvli].x.center)/cwv velocity.x;

else
{

time to limit.x = LONGTIME;}

if (cwvvelocity.y < 0.0)
{

time to limit.y = (cwv~i.y.min- cwv'i .y.center) /cwv _velocitv.y:

else if (cwvvelocity.y > 0.0)
{

time to limit.y = ( cwv'i].y.max - cwv'i y.center) cwv velocity.y;

else
{

time to limit.y = LONG TIME:
}
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foot _trajectory

if (cwv_velocity.z < 0.0)
4

time to limit.z-- (cwvli].z.min - cwv'i.z.center) cwv veiocityoz;
}
else if (cwvvelocity.z > 0.0)
{

time to limit.z ( cwvlil.z.max - cwvlil.z.center)/cwv velocity.z;
}
else
I

time to limit.z LONGTIME:

* Determine the minimum time to reach the cwv limit. */

min time = time to limit.x;
if (time to-limit.y < mintime)

f
min time = time to limit.y:

if (time -to limit.z < min time)

min time = time to limit.z;

* Calculate the desired touchdown point in body coordinates. */

* Note: This point changes if the body is in motion. */

bd footpos i .x = cwvlil.x.center + cwv velocity.x m min time * .9;
bd footpos i.y -- cwvjij.y.center + cwv velocity.y * min time * .9:
bd _footpos i .z -= cwvii .z.center - cwv velocity.z * min time .9;

/* Transform to Earth coodinates. *,'
/* d _footpos i T = h * ;bd footposIijT /

transform _point (d -foot pos,h,bd _footpos,i);

/* Calculate the time remaining in the transfer forward phase. * /
trans fwd time = *trans-time * (*begin _placephase - *trans phase);

/* Calculate the new foot position. (Earth Coordinates)
if (DELTATIME < trans fwdtime)

footpos i.x - = (d footposi'.x - footpos i .x)
DELTA TIME / trans fwd time:

footpos i'. (d footpos i'.y - footpos .y)
DELTA TIME/ trans fwd time;

footpos i .z = footpos'il.z: * Level ground assumption! *
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,foot -trajectory

else /* Last increment of time

footposi'.x =d-footposilx;
4 footpos~i .y =dootposlij.y;

footposli:.z = footposji .z; /* Level ground assumption! *

/* Transform to body coodinates. 4

/* lb_footposlill = invh *Ifootposiil'T
transform _point (b footpos, invi',footpos,i);

}/ end of transfer-trajectory ,
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f~ oot-trajectory *

placement trajectory (liftoff -flag, place -flag, transfer -fl ag.foot pos.
b -foot pos. inv h.trans-t ime. trans -phase. leg number)

/* This function calculates the trajectory of the foot while it is
being lowered from the ground. It is called from foot _trajectoryo.*/

vector footposj7], /* Present foot position in earth coordinates ,

b-footpos17J; /* Present foot position in body coordinates

float *trans-time,
* trans-phase,

invb[4'[4' ,'* Inverse homogeneous transformation matrix ~

mnt liftoff flagl7l, /* Indicates the first time entering subroutine
in current leg cycle ,

transfer-flag7j,
place flagi7'.

leg-_number.

float place-time.

int i;

static vector d _footpoaJ7j; /* Desired foot position in earth coordinates ~

i leg-_number;

./* Calculate the desired foot position. ~
if (place flaglil !=ON)

d-footposiil.z =footposlil.z - FOOTLIFTHEIGHT;
liftoff-flagi OFF;
transfer flag~il = OFF;
place_flag ii = ON:

I"Calculate the time required to reach the desired height
from the present foot position. */

place-time = *trans-time * (1.0 - *trans-phase);

/* Calculate the new foot position. (Earth Coordinates)
if (DELTATIME < place-time)

footposji .z + = (d _footposi'.z - footposli .z)
*DELTATIME / place-time;
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'foot-_trajectory ~

else Last increment of time *

I
footpos i .z = d _footposjij.z;

/* Transform to body coodinates. ~
/* [b footposij; = invh * IfootposliflT *
transform_paint (bfootpos,invh,footpos,i);

}/* end of placement-trajectory
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foot-_trajectory *

support -trajectory (liftoff-fiag,place -flag, transfer-fl ag,foot pos,
b -foot pos, invh, leg -number)

/* This function calculates the trajectory of the foot during the
foot support phase. It is called from foottjcorO*

vector footposi 71, /* Present foot position in earth coordinates
b footposj7]; /* Present foot position in body coordinates

float invh[41i; 1* Inverse homogeneous transformation matrix

mnt liftoff flagJ7 1, /* Indicates the first time entering subroutine
in current leg cycle *

transfer-flagi7J,
place_flagJ71,

leg-number;,

mnt i:

/* In this phase the foot is kept stationary on the ground. It
is assumed that the foot will not slip or move accidently. ,

i= leg-number;

STransform foot position to body coodinates. ,

' b footposi T =. invh * 1footposliji ~
transform _point(b b-foot pos,invh,footpos, i);

11* Turn off flags. */

liftoff flag'[i OFF;
transfer flaglil = OFF;
place-flagjij = OFF;

}/* end of support -trajectory ~
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This function is for the program walk.c on the iris-2400.
conwalk.c

Based in part on J.H.Kessler's
R. L. Lyman program "conwalker.c"
24 Apr 1987

#include "gl.h"
#include "device.h"
#include "walk.h"

/* This function calls up the walker from constructwalker (with legs
already properly positioned) and then rotates and translates it as
commanded. * /

/* Note: Due to the limited number of bit planes available
four separate walkers are constructed, one for each viewing
quadrant. The walker for each quadrant is drawn from furthest
component to nearest. This provides a quasi- Z buffer effect
while in double buffer mode. */

m akewalker( machineobject,d 1 ,d2,theta.knee,gamma,alpha.transrot_tag,
tr end tagwalkerleg.thighobj,actuatorobj,shinobj,
legmovetag,thighmovetag.actmovetag,shinmovetag ,tx,ty,tz,

rolJ,elevazimuth,hx,hy,hz,14)

Tag transrot tag[4',trend tag[4 I,legmovetag[4,

thighmovetag11 2i 14[ actmovetag[ 1[2[4 ,shinmovetag[] [214;

Object machineobject 41,walker[4l,thighobj[] [21141,actuatorobji [2J 41,
shinobjl]12] 14,legi][41;

int dI>,d21j,knee[j2!;

Angle thetai[,alpha ,gamma[;

float tx,ty,tz,roll,azimuth,elev,
hx,71,hy]7J,hzJ7],14[7J;

{
int n;
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Sconwalk.c

constructwaiker(walker,d l,d2, knee,alph a, gam ma, thet a.leg,t highobj,
actuatorobj ,shinobj .legmovetag,thighmovetag.actmovetag,
shinmovetag.hx.hy,hz,14)

for (n=O; n<4: n+-+) /* Rotate and translate the walkers in each
quadrant. */

machineobjectini =genobjo;
makeobj(rnachineobjectjn]);

pushmatrix();

/* Note: Each walker is built on the origin. Rotations are done
before translating to the proper location. ~

transrot tagin, gentagO;
maketag(transrot tagin');

translate(tx,ty,tz);
rotate((int) (elev 573),'Y');
rotate((int) (roll *573).'X');

rotate((int) (azimuth * 573),'Z');

tr end _taglnl=gentago;
maketag(tr-endtag~n,);

callobj (walker[ n );

popmatrix()
closeobjo;
,'* end quadrant loop ~

} end of makewalker *
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/* conwalk.c

makeground ( groundobject)

/* This function creates a checkerboard groundplane below the ASV' object.*'

Object *groundobet;

Object squareobject;
Tag transqrtag;

static int
ground114113'={f 1000..500,0),{ l000,500.0),{-1000,500,0},{.1000,.500,0),
ground2l4j1S;={ {2000,-1000,0} ,{2000,1000,0},{-2000, 1000,0) ,{-2000,-l000,0} },
squarel4jI31={{O,-10O,0},{0,0,O},{-100,O.O},{.100,-100,o} };

int ij:.

float tx,ty;

squareobject :genobjo)
makeobj(squareobject);
color( WHITE);
polfi (4,square);

closeobj 0:

* groundobject=genobj 9;
makeobj(*groundobject);

0 color(RED); /* fill outer background squares ~
polfi(4,ground2);
color(GREEN); /* fill inner background squares *
polfi (4, ground 1);

for (i=0; i<40; i-+-+)

for (j=0; j<20; j-4-+)

if ((i+j)%2 < 1)

tx=(i-20)*(-100.0);
ty=(j-10) *4100.0);
pushmatrix 9;
translate (tx, ty,0.O);

callobj(squtreobject), /* plac' the white squares ~
popmatrixo;
} ! end if *

} , end forj *
* end for i

closeobjo:;
* ) ,/* end makeground ~
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i* conwalk.c *

constructwalker(walker,d 1,d2,knee,alpha,gamma,theta, leg.t highobj,
act uatorobj,shinobj,legmovetagthighmovetag.actmovetag,

shinmovetag,hx,hy,hz,14)

/* This is where the walker is made. Here each part is assembled

and then the parts are put together. This assembled walker is
then rotated and translated in makewalker which is called by
the main program. */

Tag legmovetag[j[4! ,thighmovetag] 12] 4],actmovetag[ 12] [4',
shinmovetag,]]21[41;

Object walker14'.legii[4 ,thighobjl]21!41,actuatorobli2i]4l,shinobj[1 214';

int dl"I,d2-.kneeJ121;

Angle alpha[!,gamma[],theta];

float hxi7!,hy]7J,hz[7', /* leg pivot position */

147!;

{
Object body,head.eye.boxobj 171

static float legx71= {O.0.155.0.155.0,0.0,0.0,-155.0,-155.0),
legy' 7 = ( 0.0,82.0,-82.0,82.0,-82.0,82.0,-82.0),
legz17 {0.0,0.0,0.0,0.0,0.0,0.0,0.0};

Coord x,y,z ;

int ij,k,n,legnum

static int
/* Coordinates for building the body of the asv
blackbody141l31= {( 206,50,22},{206,-50,22},{206.-30,- I01 },{206,30,- 01} 1
lbodyarry 4][3]={ {-200,30,-101},(-200,50,22},{ 206,50,22) ,{ 206,30,-01 } },
rbodyarryl4]II= { {.200,-30,-101),{206,-30,-01 },{ 20.-50,22},{-200,-50,22)},
tbodyarry14JI3j=({-200,50 72},{-200,-50,22},206,-50,22},{206,50,22}},
bbodyarryl4i3l={ {206,-30,-101},{-200,-30,. 101) ,{-200,30,-101 },{206.30,-I01 )},
backbodyarry]413 I={ (-200,30,-101},{-200,.30,-101 },{-200,-50,22},{-200,50,22}},
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/* Coordinates for building the hydraulics housing structure *

front _rt _top4j[Si={((27,-25.16),(38,-25,-13),{38,-13,-13 1,{f27,4l3, 16},
front _rt bttrnI41I3j~{{38,-25.-13),138,-25,-46),138,-13.-46),138,-13,-13),
rt interior 51i31 ={ 20,-25,381,{38,-25,-13},{38,-25.-461,{.38.-25.-46) ,{-38,-25,38)},
rt _sidel51331={ -38,-25.38} j.38,-25,-46},138,-25,-46},138.-25.-13} .{20,-25,38)},
It -interior(51Sj1= {-38,25,38),{-38,25,-46),fS8,25,-46),{38,25-13},{20,25.38 1,
It sideIS 1543 ={ 20,25,38),{38,25,-13),{38,25,-46),1-38,25,-46),{(-38.25.38) }
top boxI141I3;{ { 20,-25,38),(20,2 5,38),(-38,25.38)+{38,-25,38,))
back box 4113:= {-38,25,-46},{-38,-25,-46),{-38,-25.38),{-38,25,38})
front -top i4 3={(20,25,38 1,{j20,- 25,381,{27.- 25,13),{27.25,13J1.,
front _It topJ4 J131= 1 (27,13,161,{38,13,.131,(38,25,-13},{27,25,16) ,
front _It bttm! 41 31= 113,3-3,3,3-6,3,5.6,3,5-3
bttm_1 t141131=(38,25,.46)138,1S,.46},{.38,13,-46},{-38,25,-46 },
bttn_rtI4]b3j={{fS8,-25,-4O),{38,.IS,-48),{-38,.i3.-46),{.-38,-25,46) 1.

highboxtop j4113 1={ ({-8,-25,88 ),18,-25,88),f{8,25,88),1-8,25.88) ),
high box-front 14131 ={ { 8,25,88),{8,-25,88),{ 10.-25,38),4 10,25,38)),
highbox back 141 31={ 11-8,-25,88 ),{-8.25,881 ,1-10.25,38J ,(-10,-25,38))},

high box -it 14'1 3' 14-8,25,88 1, (825.88)110 I,25,38), f- 10,25,38} }

rt _spar front)4 43 = I f79,13,~20).179,~25,40),f{79-25,-30),f 79,4l3,40)),
rt. _spar top,4 '31,={{79,-13.-20),{38..13.-19},{38.-25,-19},{79,-25,-20)),
rt _spar bitm'4jS3 ={138.-13.-32)179.-.3..SO,{79.25,-3O1,{38,-25.-32)},
rt _spar rt'4 3:=({38,-25,.32).{79,-25.-30),179.-25.-20),{38,-25,-19)).
rt, spar It:4',31={79,-13,-3OI,438.-13.-S21,(38.-1S,-19),{79,-13,.20}},

* It _spar front: 41]={(179,25,-20),{79.13,-20),{79. 13,-30),179,25,-30))I,
It _spar _top;4llSI3={{79,25,-20),{38,25.-19),i38.13,-191.{79,13,-20)),
It -spar bttzn[4113={{38.25,-32),179,25,.3O1,{79,13,-30),f38,13,-32)),
It spar rt4[Sl={{S8,1S,-32},{79,13,-3O},{79,1S,-2O},(S8,13,.19) },
it -spar_-it I41 SJ3(79,25,40O},138,25,432), 38,25,-19,79,25, 20)j

/ * cab construction arrays */
cab bottoml14]l3'={ { 305,-30,-101),{ 206-30,- 101 },206,30,- 101),{f305,30,-1O 101
cab top 4;_3 ={ {250.33,74},{206,33,74),{206,-33,74),{250,433,74} 1,

cab -fwd _support'4Ij3-r{{35,3O,-I11),{305,41,-16},{305..41,16},4305,-30,-1OI }},
cab -fwd _ lowerI4]l31={{305,41,-16),{318,48.8),1318,-48,81305.-41,.16)),
cab _ fwd _ upperi4ll={(318,48,81{302,33,68},{302-33,68},(318.-48,8}1,
cab-fwd _ovhdI4if31={ 275.33,68},1250.33,74},4 250,-33,74}.1 275,-33,68} I.

cab _ rt, _support[14 I3]J={{13O5..3O,-lO1},{3O5.-41.-16},{2O6,-41.-161,{2O6,-3O,- 101)),
cab-rt _lower14i3={3O5-4.-6),3l8.-488,26.-48.8,26,-4l.-16)),
cab _rt _upperI44S1-4=3I38,-48,8,3O2,-33,68),126,-33,8,126.-48.8I.
cab rt ovhdI4Ji3J={{275,-33,68}.{250,.33,74},{206.-3.,74},{206.-33.68}1,
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cab_ It _supportL4l 3 1(206,30,-101},(206,41,-16),1305,41,-161,(305.30.-101))1
cab _It_lowerl4 113' 4 206.,41,-16),{208.48,8},{318,48.8),1305,41,.16)},
cabIt _upper 4: 3=f41 206.48,8),{208,S3,88),{302,33,68),1318.48.8) },
cab-It ovhd'4"l3p={ 206,33,68),{206,33,74},{250,33..74} ,{275,33,68} 1,

cab -aft -support J4; 131={{206,-30,-101),{206,.41,-16),(206,41,16,206,3, 101 } ,
cab -aft lower 4] f3'={1206,-41,-16},(206,-48,8),(206,48,8},1206,4 1,-181),
cab -aft -upperl41I3J={{2O6,-48,8),{2O6,-S3,68},{2O6,33,68),{2O6,48,8} },
cab-aft-ovhdI4]131={{206,-33,68),{206,-33,741{206,33,74},{206,33,68) I'

scanner -fwd lowerilj3l=(302,33,68),{322,33,95),{322,-33,95),(302,-33,68)),
scanner-fwd_ upperl4JISJ={{322,33,95},{322,33,1O1I,(322,-33,I11,{322,-3,95 },

scannr~rt5}31={ (302,-33,68),1322,-33,95),{322,-3,101),{275,-33,101),{275,-33,68))I,
scanner _It 15J3S={ {1302,33,68},{275,33,68), f275,33,101),{322,33,101 },(322,33,95} },
scanner _aft 1411 3:={{f275.33,101)},127 5,33,68),127 5,- 33,68),{275,-3, 101) },
scanner -topi 4131={ 11322,33,101},1275,33, 101), J275,433,101),1322,433, 101);

i The making of the leg is quite complicated. Each leg consists of an
upper link (thigh), lower link (actuator). and a shank (shin). These
segments are first defined in a standardized orientation, and are then
rotated and translated into the proper position. This is done by using
2 objects for each segment. The first object is the correctly rotated
segment, and the second object is the correctly translated first
object. Thus the segment is then in the proper position. To hold the
screen coordinate system fixed the matrix is pushed before each translation
or rotation and then popped after the object is constructed or called. */

for (n=O; n<4; n++t) /* Make a set of legs for each viewing quadrant.
Each quadrant must have unique tags.

for(legnurn=1 ;legnum<7;legnum++)

/* Each segment is constructed and positioned 4

buildthigh(n,legnum,dl,alpha,thighobj,thighmovetag)
build act uator(n, legnum,d2,alpha,actuatorobj,actnovetag)
build sh in( n, legnum,knee,gamma,shinobj ,shinmovetag)

leg: legnum] inj =genobJO;
makeobj(eglegnum1~nJ);
pushmatrixo;

/ * translate(legxflegnumj,legylegnum!,legz:legnum:)
translate(hxllegnuml,hyllegnumi.hzlegnumi);

legmovetag~legnumlin=gentago; /* The leg is assembled from ~
maketag(legmovetag~legnuml'nJ); /* its parts and the entire leg is ~

/* then rotated to the proper angle.
rotate~theta'Iegnum*,'X');

transiate(O.O,14[legnum,O.O); /* extend leg outward
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'~conwalk.c ~

if (((n > 1)&&(legnum < 5))!
((n < 2)&&(legnum > 4))) j* Build the left side first. *

- if (legnurn > 4) I' Reverse the back legs. ~

pushmatrixo;
* rotate(1800,'2');

color(BLACK);
polfi(5,lt -interior);

color(GREEN);
polfi(5,It -side);
polfi(4,frontIt top);
polfi(4,front _It -bttrn);

polfi(4,bttm_It);,

poifi(4,lt-spar-front);
polfi(4,lt -spar-bttrn);
polfi (4,lt -spar_-it);
polfi(4,kt-spar rt);

color(BLUE);
polfi(4,It-spar top):

color(BLA CK);
polyi (4,It -Spar _rt):

color(CYAN)
callobj(thighobjllegnum1 linJ);
callobj(actuatorobjlegnuml~IfJn);
callobj(shinobjilegnumnj tin]);

color(GREEN)
polfi(4,rt -spar-front);
polfi(4,rt _spar_bttm);,
polfi(4,rt _sparIt);
polfi(4,rt-spar rt);

color(BLUE);
polfi (4, rt -spar -top);

color(GREEN);
polfi(4,front _rt _bttrn);

polfi(4,front rt _top);
polfi(4,front_top);
polfi(4,bttm _rt);
polfi(4,back-box);
polfi(4,top-box);
polfi (5,rt -side);
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/* conwaik.c /

color(BLACK);
poly i(4. top -box);
polyi(5.rt side);
poly i(I4rt _spar-rt);

color(GREEN);
polfi (4, high box-front);
polfi(4,highboxIt);
polfi(4,highbox back);
polfi(4,highbox rt);
polfi (4, high box -top);

color(BLACK);
polyi(4,highbox -top);
polyi (4. high box _rt);
polyi (4,.high box -back);

if (legnum > 4) For reversing the back legs.

popmatrixo

else Build the right side first. 2

if (legnum ,4) /2Reverse the back legs. ~

pushmatrixo:
rotate( 1800.'Z'):

color(BLACK);
polfi (5,rt -interior);

color(GREEN);
polfi(5,rt side);
polfi(4,front -rt-top);
polfi(4,front -rt -bttm);

polfi(4,bttm-rt);

polfi (4,rt -spar -btm);
polfi(4.rt _spar _rt);
polfi(4,rt _ spar-it):
polfi(4.rt -spar_front);

color( BLUE);
polfi(4,rt _spar-top);
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color(BLACK);

poly i(4,rt -spar -it):

* color(CYAN);
callobj(thighobj~legnum'illnD);
calIobj(actuatorobjllegnum)1IllnJ);

* callobj(shinobj~legnumi i infl;

color(GREEN),
polfi(4,back-box);

poifi(4,bttm _ It),
polfi(4,front _top);
polfi(4,front _it _ bttm);

polfi (4, front-It -top):

polfi (4,It -spar- bttm);.
polfi(4.it-sparr)
polfi (4, It -spar_-it);
polfi(4.It-spar-front);

color( BLUE);
polfi(4.It _spar-top);

color(GREEN);
polfi(4.top box);
poifi(5,It _side);

color(BLACK);
polyi(4,top box);
polyi(5,It _side);,
polyi(4.It _sparit);

color(GREEN);
polfi(4,highbox back);
polfi(4bhighboxjt);
polfi (4,.high box-front):
polfi(4.highbox _It);
polfi (4highbox -top);

color(BLACK);
polyi(4,highbox -top);
polyi(4,highboxIt);
polyi (4,bighbox -front);
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if (legnum > 4) ,'* For reversing the back legs. ~

popmatrix()

popmatrixxo
closeobj():
I ,* end of leg loop *

}/* end of quadrant loop *

body=genobj() /* The body is constructed *
makeobj(body);

color(LTYELLOW);
polfi(4,Ibodyarry);
polfi (4, back body arry)
polfi(4,bbodyarry)
polfi(4,rbodyarry)

(-olor(X ELLOW):
polfi (4. tbody arry);

color(BLACK):
polfi (4,black body)

closeobj();

head=genobj() /* construct the head */!
makeobj(head)

color(YELLOW);
polfi(4,cab-top);
palfi(4,cab -fwd _ ovhd);
polfi(4,cab_ rt _ovhd);
polfi(4,cab -It ovhd);
polfi(4,cab_aft_ovhd);

color(BLACK);
polfi(4,cab bottom);
polfi(4.cab _fwd _support);
polfi(4.cab rt -support);
polfi(4,cab _It support);
polfi (4,c ab-aft -support);

colorC WHITEI);
polfi(4.cab _fwd -lower);
polfi(4,cab rt -lower);
polfi(4.cab _It _lower);
polfi(4,cab aft lower):
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color( WHITE)
polfi(4,cab fwd -upper);
polfi (4,cab rt _upper);
polfi (4,cabIt _upper);
polfi(4,cab-aft _upper);

color(BLACK);
polfi(4,cab-top);
polyi(4,cab-fwd -lower);
polyi(4,cab-fwd -upper);
polyi(4,cab-fwd-ovhd);
poly i(4.cab-rt -lower);
polyi(4,cab-rt -upper);
polyi(4,ca~b-rt-ovhd);
polyi (4,cabIt -lower);
polyi(4,cabIt -upper);
polyi(4,cabIt ovhd);

closeobj(),

eye=genobj() /* contruct the radar (eye)*/
makeobj (eye)

coior(RED);
polfi(4,scanner -fwd _upper);
polfi(4.scanner _fwd _ lower);
polfi(5,scanner rt):
polfi(5,scannerIt);
polfi (4,scanner -aft);

color(BLACK);
polfi (4, scan ner_top);

color(BLUE)
closeobj()

walker101=genobjo; /* assemble all the parts for quad I ~
makeobj(walkerlo]); /* back and right first ~

callobj(legj6j 0]);

caflobj(legJ41101;
callobj(legJ21j0)
callobj(body);
callobj(head);
callobj(eye);
callobj(legJ51,1O);
cailobj(Iegj3',10.);
callobj(legJl1 IO)

closeobj()
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walkerjIj=gevobjO; /*assemble all the parts for quad 11 *
makeobi(walkerlli); /*front and right first ~

callobj(1eg!2]flJ);

callobj(legi61111);

caflobj(head);
callobj(eye);
callobj(body);
callobj(leg 111111):
caIlobj(legjIj1J);
eaflobj(leg 511);

walkerl2J=genobjO; /* assemble all the parts for quad III*/
makeobj(walkerj 2j): / front and left first ~

caffobj(leg!11(21);

callobj(legJ31121);

callobj(head);
callobj (eye);
callobj(body);,
callobj(leg[2121);

callobj(legIGJ 121);

walkerl3l=genobjo; '~assemble all the parts for quad IV *
makeobj(walkeri3i); '~back and left first ~

caliobj(leg'5j 131);

ca.lobj(body);
callobj(head);
callobj(eye):
callobi(legfO1131);

cahlobjfleg2j4113);
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buildthigh(n,legnum,d 1,alpba,thighobj .thighmovetag)

I/* this function constructs the thigh (upper link) and rotates, then
translates it into the proper position *

Tag thighrnovetagi12114];
mnt n,legnun',dlJ
Angle alphall]
Object thighobj112Jj4j;

static mnt
thighItside4Jf3, ={{0,10,7,{1O2,1O,7}?{ 102,1O,-7),{O,1O,.7} 1,
thighrtside[4JI3j={{0,.1O,-7} 1,102,-10,-71,{ 102,-1O,7},{O.-10,7} },
thighfront14il3l=f{0,10,7),(102,-10,7},{ 102,10,7),{0,10,7))
thigh bttm[4113 1=J{(, 1,-7),1102,10,- 7),{f102,-10,41},{OI,40,41),

thighobj~legnum!JI f~n 1 -genobi 0;
makeobj(thighobjlegnum] 101[nj);

pushmatrix();

thighmovetaglegnui 0lln] zgentago; /* rotate thigh *
maketag(thighrnovetaglegnum; 0 ni);
Fot8Lea~ph&Jiegfum,'Y')

-~~ if(legnum.,4) *Build the left side first. ~

color(CYAN);
poifi(4.thighbttm);
polfi(4,thighltside);
polfi(4,thighrtside);

color(RED);
polfi(4 ,thighfront);

color(BLACK);
polyi(4,thighrtside);
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else /*Build the right side first. w/

color(CYAN);
polfi(4,thighbttm);
polfi(4,thighrtside);
polfi(4,thighltside);

color(RED);
polfi(4,thighfront);

color(BLACK);
polyi (4, thighlItside);

popmatrix()

closeobj();

thighobjjlegnumjfljln}=genobj()
makeobj(thighobjllegnumjlitlni)

pushmatrixo :

thighmovetagilegnumlllj nJ=gentago;
maketag(thighmove~ag[Iegnumj 11 Jn]); /*translate thigh I
transateO.O,O.O, (float.)(-d I legnuml))

callobj(thighobj legnum][OjlnJ);
popmatrix()

cioseobif)
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build actuator( n,legn um 42 ,alpha. act uatorobj, act movetag)

/* construct the actuator (lower link) *

Tag actmovetagi]121141;

int n,legnum,d2l];

Angle alpha[];

Object actuatorobJll[2141;

static int actltside141lsl={ (0,10,51,{83,10,5},18.-,10,-5),,10,-5))},
actfront[4lls ={0,-1o,5},{83,10,5},{83.1o.5},{0,10,5}))
actrtside[41[3J={{0,-1O,-5),{83,-10,-5},{ 83,40,5),10,410,51),.
actbttmI4lI31={{0,1O,-5},{83,10,-5},{83,-1O,.5},{O,10,-5} }

actuatorobjIlegnum) OIni =genobj0l;
makeobj(actuatorobj legnumliIn');

pushmatrixo:

actmovetagi egnumJlOjfn =gentago;
maketag(actmovetag~legnumJ OilnI); /* rotate actuator
rotate(alphalegnumJ,'Y')

if(legnum>4) /* Build the left side first.*/

color(CYAN);
polfi(4,actbttm);
polfi (4 ,actltside);
polfi (4,actrtside);

color(RED);
polfi(4,actfront):

color(BLACK);
polyi(4,actrtside)-,
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else /* Build the right side first. /

color(CYAN);
polfi(4,actbttm);
polfi( 4,actrtside);
polfi(4.actltside);

color(RED);
polfi(4,actfront);

color(BLACK);
polyi(4 ,actltside);

popmatrix o;
closeobjo;

actuatorobjllegnumjIil in =genobj 0;
makeobj(actuatorobjlegnunll 1i n1);

pusbmatrixo:
actmovetag~legnumlli ln =gentag();
maketag(actmovetaglegnum[1j~n!); /* translate actuator*/
translate((float) (d2!legnuml),O.O, (Boat) (-L3));
callobj(actuatorobjllegnum 101 ml);

popmatrixo;
closeobjo;

}/* end of buildactuator/
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/* conwalk.c ~

buildshin (n,legnum Iknee, gamma,shinobj,shinmovetag)

/* construct the shank (shin

Tag shinrnovetagiJf2114:
* mnt n,legnuni,kneeji2J;

Angle gammafl;
Object shinobjfl'21141;

static int
shinltside{6I13ij 655, 05-9){75-0,-,,},{356,{,,f}
shankltside:4. ] 3f ( 0,5,.59}, {-23,5,- 102},{-36.5,-100}, {.7,5,-50)1 ,
shinfront'413-{{,,'{,5,){1=5-9)4f,,5)}
shankfront14'131= I4 Il0,-5,-59)f {-23,-5,-102) ,(-23,5,-10211(7,5,-59)),
ankleltside[Gf131={(-2.5,-1021,(,5,-15311{2,5,-157),{.-5,5,-1581,(-6,5.-1581,{-36,5,-100} I,
shinrtside&61l31={(3,5,1-3-,,1,5,,17-.5)105.6,(,,3,
shankrtsidel4llsl={{-7,.5,.50),{-36,-5,-I00},{.2,5,-102}.{ IO,-5,-59)
anklertside16l1S1={{4O6,-5,-1O0,{-8,.5,.I58},I-3,-5.-1581,1 2,-5,-1571.{3,-5,-153}. {-23.-5.-102} V
anklefrontl4113]={ {-23,5.-102),{-23,-5,-102),{3,-5.-153},{3.3,-1531).
shin back 141!31: = JI7,-5,-50)+,{-5,S) <(6,5,3) .f.7,5,-5O} 1,
shankback[41131=1 {-36,-5,-100),(-7,-5,-50),{-T,5,-50),(-36,5.1-1001),
anklebackl4I3; = {.6,-5,.158),{-36,-5,-100),{.S6.5,-100),{.6,5,-158) },
bottom _fwd!41131={ (3,5,.153),J2, 5,-157),{2,-5,-15T),{3,-5,.153)),
bottom _mid 41!3'= f(2,5,-157),{-S,5,.158),(-3,.5,-1581,{2,-S,-1571 1,
bottom _aft 141[3 J={{S5.5)IO,,l8,-5,4581J{.3,-5,4l58)J

3hinobjilegnumIlloilnl-genobj0;
makeobj(shinobj~legnumnl1011ni);
ptashmatrix()

shinmovetaglegnumlloi nJ =gentago;
maketag(shinmovetagilegnum[oj In]); /* rotate shank *

rotate(gammajlegnuml,'Y');

if(iegnum>4) /' Build the left side first. ~

color( BLACK);
polfi(4,bottom-fwd);
polfi(4,bottom mid);
polfi(4,bottom aft);

color(CYAN);
polfi(4,ankleback);
polfi(6,ankleltside);
polfi(6,anklertside);

color(RED);
polfi(4,anklefront)
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, conwalk.c ,

color(CYAN);
polfi (4.shan kback)
poifi(4,shankltside);
palfi (4,shankrtside);

color(RED);
polfi(4.shankfront);

color(CYAN);
polIII(4.shin back);
polfi(6,shinltside);
polfi (6,shinrtside);

color( RED);
polfi(4.shinfront)

color(BLACK):
polyi(6,anklertside);
polyi(4.shankrtside);
polyi(6.shinrtside);

else /* Build the right side first. ~

colorf BLACK);
polfi(4.bottom -fwd);
polfi(4, bottom _mid)
polfi(4,bottom-aft)

color(CYAN);
polfi(4,ankleback);
polfif8,ankiertside);
polfi(6,ankleltside);

color(RED);
polfi(4.anklefront);

color(CYAN);
polfi(4,slianiiback);
polfi(4,shankrtside);
poll (4,shankltside);

color(RED);
polfl(4,shankfront);

colorfCYAN);
polfi(4,shin back);
poffi(dOshinrtside);
poll (O,shinitside);
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/*conwalk.c /

color(RED);
polfi(4,shinfront):

color(BLACK);
polyi(6,ankieltside);
poly i(4,shankltside);
polyi(6,shinltside);

color(BLACK);

push matrix 0;
rotate(-900,'X');
transiate(0.O,0.0,5.0);
circf(0.0,0.O,7.0);
circflO.0,32.O.5.O)
popmatrix0:,

pushmatrixo;
rotate (900.'X');
transiate(0.O,O.0,5.0);
circf(0.O,0.O,7.0);
circf(0.0,-32.O,5.O)
popxnatrixo;

papmatrixo;,
closeobjO,

shinobjlegnumj1 1Jjnj =genobjO;
makeobj(shinobjllegnuml Ilini);

pushmatrixo;

shinmovetaglegiiumi 1 llnl=gentago;
maketag(shinmovetaglIegnumJ 1j(nJ); /* translate shank /

translate( (float) kneel legnum 1101 ,0.0, (float) kneel legnuml 111);

callobj (shinobji legnumll ojfn i);

popmatrixfl;
c loseobj ()

}/* end of buildshin *
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This is a function for the iris2400 program walk.c.
toolbox.c

Relle Lyman 25 Aug 1986

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

transformpoint (p2,m,pl ,i)

/* This function changes the coordinate system for a point vector
using a homogeneous transformation submatrix. p2 = m * p *

int i; /* Leg number */

float mi4J141; /* Homogeneous transformation submatrix */

vector pi171, /* Vector represented in first coordinate system */
p217]; /* Vector represented in transformed coordinate system */

{
p2!i.x = m[oOI*plji.x - m00]11]*pl[iI.y + m[0]21*plil.z -- m[0][3?;
p21 il.y = mJlJ[0*pljil.x + ml[l1j*pl[i].y + mll][2]*plji,.z + mJlJ[31;
p2ril.z = m'2101*plil.x + m2I11t*plil.y + m2112 *p1~i .z + ml21!51;

) /* end of transformpoint */

float modulus one(temp)

/* This function performs the modulus one operation on numbers of type float. */

float temp;

while (temp >= 1.0)
I

temp 1.0;
}
while (temp < 0.0)
{

temp += 1.0;
}
return temp;

} /* end of modulus one
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/* Makefile,

# This is Makefile. It is used in the utility make to speed
# compilation of walkec. To use it, just type "make". /

CFLAGS = -Zf -Zg -g

SRCS = walk.c
conwalk.c
supportc
toolbox.c
steering.c
body _rates.c
ft _traj.c
opt-period.c
leg _phasexc
con -work vol.c
driver.c
status.c
deceleratexc
ilitLc

OBJS = walk.o
conwalk.o
support.o
toolbox.o
steering.o
body rates.o
ft _traj.o

A opt-period.o
leg phase.o
con work vol.o
driver.o
status.0
decelerate.o
init.0

walk: (OBJS)
cc -o walk (OBJS) -Zg -Zr

(OBJS) walk.h
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