
AZD-A1eI 989 HE JUfLI PMEN ?F UISUAL. NfjgjjA

EYVCA" L LlJERMAR87.Op
/

UNCLASSIFIED FIG 12/5 NI.

- II;'

I A

25LM I ~

OTINAVAL POSTGRADUATE SCHOOL

Monterey, California

000

DTIC
ELECTE

JUL 0 1 1987

THESIS E

THE DEVELOPMENT OF VISUAL INTERFACE
L ENHANCEMENTS

FOR PLAYER INPUT TO THE JTLS WARGAME

by

Stephen L. Lower

March 1987

Thesis Advisor Joseph S. Stewart II

Approved for public release; distribution is unlimited.

--

SECURITY CLASSIFICATION OF r1'T AGE o019-4h-- 90e5"
REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION lbo RESTRICTIVE MARKINGS

Unclassified___________________
2. SECURITY CLASSIFICATION AUTHORITY I DIST RIBUTIONI AVAILASILII Y OF REPORT

2b ECLSSIICTIO10ONGROIG SHEDLEApproved for public release;
2b ECLISIICAIOFIO*NGADIG SHEDLEdistribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a NAME OF MONITORING ORGANIZATION
(if apphorable)

Naval Postgraduate Schoo Code 74 Naval Postgraduate School
6c ADOREs (S q~t. State. and ZIP CodC) lb &OORESS(Cty Slaw,. and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

@a NAME OF FUNDING ISPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Sc A004E SS (City, Statl. "an 11 Code) 10 SOiJRCE OF .FUNING NUMBERS

PROGRAM IPROJECT TASK(WORK Jjtr
ELEMENT NO INO NO jACCESSION NO

I I TITLE (Include S#cue'ly ClIAss' lCateni

The Development of Visual Interface Enhancements for Player Input to the

I' PERSONAL AGTHOR(S)
itephen L. Lower

3ar11 FREPORT]bIME COVERED14DTOFRPR (YaMnh y) i F (E 0,N

MatrsThesis _T FROM TO =ATE MOFa rEPR c Y. hon 82)PAf(
'6 SLPPLEMENTARY NOTATIONMac

'7 COSATi CODEs 18 SUBJECT TERMS (Contiue on reverse of necessary and identify by block number)
F ELD GROUP ISUS.GROUP Computer Simulation, Computer Graphics, Window

Management.

9 ABSTRACT (Cntne on revorie of flftuagv and odontflo bv bNock number)
This thesis examines the design and development of a desktop

prototype of a computer wargame. The prototype specifically deals with
the ability to format the Joint Theater-Level Simulation's Model
Interface Program (MIP) into the visual interface format of computer
graphics known as window management. In this case, the Apple Macintosh
microcomputer, a desktop computer, was used as the operating system for
implementation of this prototype. The development of the prototype is
examined with respect to the current version of the MIP. The prototype
development is based on software design applications which include

* design models, correlation of programming languages to operating
systems, and a breakdown of the design into a modular format. The
thesis concludes with recommendations for changes which can enhance the

* use of the prototype from both a technical and managerial standpoint.
,0 0 SVlt-UTION iAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

C 'NCLASSIFIEOflJNLIMITEO 03 SAME AS RPT 0 OTIC USERS Unclassified
fla NAME Of RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Co*e) 22c OFF;((SYMBOL

osenh S_ llu~li 408) 646-2493Ce5
D FORM 1473.84 MAR B3 APR4tion ny be used unil ciu sted SECURITY CLA8SSIFICATION OF THIS PAGE

All other oiditsons art obsolote

All.

A-pproved for public release; distribution is unlimited.

T..1he Development Of Visual Interface Enhancements
For Player Input To The JTLS Wargame

by

Stephen L. Lower
Captain, United States Air Force

.B.A., Missouri Western State College, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(Comimand, Control and Communications)

from the

NAVAL POSTGRADUATE SCHOOL
March 1987

Author: I'd.__________________A"._________

Approved by: % w 4p S Stewa Adiso

sepm rw, esis dvisodr

t;?...---ichae G. Sovereign, Caiman.

Joint Command, Contr nnd Co unications Academic Group

2

ABSTRACT

this thesis examines the design and development of a desktop prototype of a

computer wargame. The prototype specifically deals with the ability to format the

Joint Theater-Level Simulation's Model Interface Program (MIP) into the visual

interface format of computer graphics known as window management. In this case,

the Apple Macintosh microcomputer, a desktop computer, was used as the operating

system for implementation of this prototype. The development of the prototype is

examined with respect to the current version of the MIP. The prototype development

is based on software design applications which include design models, correlation of

programming languages to operating systems, and a breakdown of the design into a

modular format. The thesis concludes with recommendations for changes which can

enhance the use of the prototype from both a technical and managerial standpoint.,,

Accession For
NTIS GRA&I
DT IC TAB U I
Unannounced ']I
JustifloatiorL.: -

Ditribution/..
Availability Codes

Avail and/or
Dist Special

3

..- V

& 5- -~ .- ,-~. - - -

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

4

. . '~ ~ . -. . . .

TABLE OF CONTENTS

INTRODUCTION .. 9

A. PURPOSE OF THESIS 9
B. BACKGROUND ... 10
C . SC O PE .. 12

II. THE MODEL INTERFACE PROGRAM 14
A. THE RELATIONSHIP BETWEEN JTLS PROGRAMS 14

B. THE MIP STRUCTURE 14
1. The Fundamental M odel : 15
2. The Data Flow Diagram 16

3. The Data Structure 18
C. THE MIP FUNCTIONS EXAMINED IN THIS

PROTOTYPE .. 20
I. The Comm ands 20
2. The D irectives .. 22
3. Sum m ary .. 25

D. A COMPARISON OF SOURCE CODE VERSIONS 27

1. Step I ... 30
2. Step 2 ... 32
3. Step 3 ... 35
4. Step 4 ... 39

III. THE PROTOTYPE OF THE VISUAL INTERFACE 45

A. THE METHODOLOGY OF DESIGN 45
1. The Basics of a Window Management System 45
2. The Qorrelation of the MIP and the Macintosh User

Intertace . .. 48
B. THE PROTOTYPE - MACMIP 54

I. The Prototype Abstraction 55
2. Background Issues of Prototype Design 60

! 5

C. CREATING DIRECTIVES WITH MACMIP 61
D. THE FUTURE UTILIZATION OF THE PROTOTYPE 64

1. Technical Aspects of Prototype Utilization 64
2. Managerial Aspects of Prototype Utilization 66

IV. CONCLUSIONS.. 68

APPENDIX: IMACIMIP: THIRD-LEVEL ABSTRACTION................ 70

LIST OF REFERENCES ... 87

INITIAL DISTRIBUTION LIST 88

6

LIST OF TABLES

1. STEP I - CURRENT VERSION 31

2. STEP I - PROTOTYPE ... 32
3. STEP 2- CURRENT VERSION :.. 33

4. STEP 2 - PROTOTYPE ... 34
5. STEP 3 - CURRENT VERSION 36

6. STEP 3 - PROTOTYPE ... 38
7. STEP 4 - CURRENT VERSION 40

8. STEP 4 - PROTOTYPE ... 43

7

.

LIST OF FIGURES

2.1 Functional Programs of JTLS 15
2.2 The Fundamental M odel ... 16

2.3 The Data Flow Diagram of the MIP 17

2.4 An Example of Set Organization 19

2.5 Exam ples of Entities .. 19

2.6 The AWACS Directive Data Structure 20

2.7 The AWACS Directive Menu 24

2.8 The Air Route Directive ... 26

2.9 The Sensor List Directive 26
2.10 The Basic SIMSCRIPT Timing Routine 28

3.1 The Restructured Data Flow Diagram 49
3.2 The Refined Data Flow Diagram 49

3.3 The AWACS Directive PASCAL Data Structures 51

3.4 An Overview of MacMIP's Program Structure 55

3.5 The MacMIP Menu Bar with Menu Items 62
3.6 The AWACS Directive as drawn by MacMIP 63

3.7 The Directive with the Dialog Box 64

8
-

I. INTRODUCTION

A. PURPOSE OF THESIS
The purpose of this thesis is to examine enhancements of the human interface to

an interactive computer simulation program by applying computer graphics techniques

to the interface. These graphics techniques are known as the visual interface and have
found widespread applications in man-machine interaction. In this study the viability

of applying such an enhanced interface to an existing application is based upon three

factors: I) The casual user of such an application does not have or maintain the

necessary skills to efficiently utilize the application. 2) The technology which supports
the enhanced interface has advanced past the technology of the current application's
design since the design. was frozen and implementation of the design into a finished

product was begun. 3) The low cost of computer's with large amounts of memory and

extremely capable CPUs has led to a proliferation of advanced microcomputers. Given

these factors, the development of an enhanced interface is achieveable.

The achievement of the enhanced interface requires a knowledge of backgrond

information about the interface subject. The subject is the Joint Theater-Level
Simulation (JTLS) and it's user interface. By beginning with the purpose of JTLS and

how it is utilized, the scope and organization of the research of this thesis may be
established. The background information about JTLS and the scope of the research
follow later in this section. Chapter 2 examines the current JTLS interface (the Model

Interface Program), it's design and structure, it's current functions, and it's modus
operandi. Chapter 3 discusses the design of an enhanced interface, the correlation of

the current interface with the enhanced version, the enhanced versions modus operandi.
concludes with proposals and observations about various aspects of the enhanced

interface development and utilization. Chapter 4 concludes the thesis with a
summarization of the enhanced interface prototype design and it's usage. These

sections flow from the basic design and operation to an enhanced design and purported

operation which is achieveable. The research begins with the background review of

JTLS.

9

B. BACKGROUND

The goals and scope of this thesis are predicated upon understanding the object

examined. The nature of the object, it's reason for being to include a brief review of

it's history, and it's prescnt technical configuration provide a basic foundation upon

which this research may be built. The object is JTLS and it's nature is that it is an

interactive computer simulation model used for wargaming. The original objectives

behind the design of JTLS and how those objectives have evolved are discussed to

provide a link to future JTLS use. Finally, the present technical configuration of JITLS

presents it's hardware and software elements which are the backbone of JILS

implementation. A more detailed discussion of these elements follow.

Computer simulation is an efrective, economical method of analyzing military

plans and operations without actually employing the military forces which carry out

those plans and operations. It is possible, using computer-based simulation, to trace,

in detail, the consequences and implications of a proposed course of action [Ref' 1: p.

1-21. One such simulation (or wargame) is the Joint Theater Level Simulation tJTLS).

A complete set of manuals documenting JTLS, from it's inception to it's

implementation, has been published. Much of the following background inflormation is

taken from the JTLS Executive Overview manual. JTLS is a computer-assisted

wargaming system that models two-sided air, ground, and naval combat. It was

designed for use in warfare training, joint operational. planning, and doctrinal analysis

with an emphasis on rapid production of results, theater-independence, and ease of use

for non-programmers. The original design objectives of JTLS were to 1) provide a

contingency planning analysis tool for the United States Readiness Comunand. 2)

provide an educational wargame and analytic capability for the United States Army

War College, and 3) provide an analytic tool aiding contingency plan evaluation for the

United States Army Concepts Analysis Agency.

In 1985, the Joint Analysis Directorate of the Organization of the Joint Chiefs of

Staff assumed responsibility lbr the control and direction of fluture JTLS developmcnt

efforts. (The Joint Analysis Directorate is now the Force Structure. Resource, and

Assessment Directorate (OJCSiSJ). This was done as part of a program to upgrade

the analytic tools available to the unified Conuanders in Chief for use in wvar

planning. Included in their interests are future developments of JTLS which enhance

user friendliness through advanced technologies such as the visual interlace of window

management.

10

.

The need for enhancements to the human interface are due to the nature of the

use of JTLS. As an analytic tool it is used sporadically to test doctrine, strategies, and

tactics by a variety of users. Frequently, these users are not computer operators by

trade nor do they spend many hours playing JTLS. Their primary interest in JTLS is

the outcome based upon a preformatted and staged input to the game. They do not

need a complicated, difficult to learn (and easy to forget) computer simulation that is

not readily usable when they are trying to develop and conduct an experiment with

warplans. The Model Interface Program (MIP) can be such a program for the casual

user. Unless the user frequently plays JTLS, the operation of the MIP is moderately

difficult on which to maintain proficiency and it is not conducive to quickly

resurrecting lost proficiency.

The JTLS system is designed to operate on Digital Equipment Corporation's

VAX minicomputer systems, including the 11/780, 11/785, and 8600 computers. The

minimum hardware configuration for JTLS consists of four video terminals and one

on-line printer. The maximum configuration consists of 28 video terminals. 10 graphics

displays, and one or more line printers.

The following support software is required to implement JTLS:

1) A VAX, VMS operating system.

2) A SIMSCRIPT 11.5 programming language compiler.

3) A "C" programming language compiler.

4) An INGRES data base system.

Most of JTLS is written in the computer'language SIMSCRIPT 11.5 (a registered

trademark of CACI, Inc.). The language is designed to facilitate the simulation of

large, complex systems. The simulation constructs are embedded in the language,

which is free-form and English-like. SIMSCRIPT I.5® also has such automated
features as statistics-gathering mechanisms, dynamic storage management, and flexible

report generating. For these reasons and others, SIMSCRIPT 11.5® was selected as

the high level programming language for the simulation applications. [Ref 21

JTLS may be summarized as being a complex, sophisticated set of computer

programs which may have more extensive capabilities when properly configured and

used. With these facts about JTLS in mind, the examination of the player interface to

the JTLS may be conducted.

I

C. SCOPE

The Joint Theater-Level Simulation (JTLS) is an interactive computer simulation

model used for wargaming of theater conflicts. The nature of a two-sided computer

simulation, such as JTLS, is to produce an outcome as the result of the interaction

between the two opposing sides. In this case, the two sides simulate combat by

directing simulated military forces into proximity, with the result being an outcome of

a battle. The whole impetus behind this simulation is the involvement of the player,

i.e., the human interface. The main area of interest in this study is the Model Interface

Program (MIP). It is through this program that the human interaction with the game

is conducted and is what the prototype design will enhance.

Several avenues of research may be taken to develop the aforementioned

prototype. The method used here is to develop the prototype using as much of the

existing MIP source code as possible. This approach provides an economical, quick

ability to implement a full-scale visual interface. The efficiency of such a prototype

compared to a total redesign of the MIP in terms of future expansions or computer use

will not be addressed in depth.

The general operation of a JTLS simulation is to conduct an interaction within
the combat simulation by issuing orders to the available military forces. The Combat

Events Program (CEP) compares the actions of the forces, within the limitaiions of

their environments, and yields the results of the combat. As a result of the interaction,
the commanders of the forces must continually make decisions during the course of the

game. These decisions (the issuance of orders) are transnitted to the CEP via the

Model Interface Program (MIP). Thus, the MIP is an interactive program used by.all

players.

The present version of the MIP, while fully capable of interacting with the CEP.
is considered unwieldy for the occasional user, difficult to learn, and slow in terms of

conducting a fast paced simulation. Of primary concern is the methodology of issuing

orders to the CEP. While this methodology is examined in depth later in this thesis, it

may be safely stated that the MIP lacks user friendliness for the occasional user and is

not meeting current and future requirements for the purposes of player interaction with

the game.

One method of enhancing player interaction to JTLS is the use of the visual

interface. The visual interface was borne out of the "need for creating easy-to-learn
and easy-to-use applications" [Ref. 3]. Some advantages of the visual interface are to

12

Af.

increase the data absorption rate by the user, reduce input/output errors such as those

which occur during the typing of data, provide the user a "positive transfer of learning"

to the new system, and the reduction of user anxiety caused by a lack of control or a

lack of information [Refs. 4,5]. The visual interface simply allows the user to "see"
what is going on; a much faster process than "reading" what is going on.

Implementing the visual interface is done through a variety of computer graphics

applications. The visual interface application examined in this thesis is that of window

management. Window management deals specifically with the methods of creating
graphical forms (windows), and displayingmanipulating information within those

windows. The Apple Macintosh' is an excellent machine for implementing the use of

window management techniques in microcomputer application programs.
The scope of this thesis will be to investigate the current methodology of creating

a player order (a directive) and issuing it to the Combat Events Program(CEP),
breaking down the methodology to create and issue the order, and reconstructing the

methodology using the visual interface format. The particular case study will create an
air directive, with it's associated utility directives, and send it to the game. In doing so.

much of the material to follow will examine particular commands and directives as

representative functions of the overall MIP. The methodology developed and used in
the course of designing the prototype will be a useful tool in the expansion of the

prototype to include all MIP functions in a Macintosh interface. In the opinion of the

author, the basic constructs of the visual interface prototype should also be useful in
the event of a total redesign of the MIP. The study begins with a detailed examination
of the current Model Interface Program.

13

I

II. THE MODEL INTERFACE PROGRAM

A. THE RELATIONSHIP BETWEEN JTLS PROGRAMS
The JTLS Executive Overview addresses the overall structure of JTLS. The

JTLS system consist of several independent programs which work together as a system
of functions. The functional programs of JTLS are described below. The functional
programs of JTLS have a variety of interrelationships as shown in Figure 2.1. It is
through these relationships that the MIP initializes itself; obtains data from databases,
files, records, and displays; and performs its functions.

The functions of the Model Interface Program are:

1) Entering orders.

2) Processing orders.
3) Communication between players and game controllers.
4) Communication between the players and the combat simulation.

5) Accessing and using support information.
6) Saving directives in archive files.

7) Analyzing post-processor data.
8) Controlling graphics output.

9) Stopping or temporarily halting the game.
To accomplish any of these functions the MIP must depend on the other JTLS

programs for support. For example, the CEP and Executive Program provide the
information required by the MIP to create and process orders. The game's scenario
database, which provides the players units, equipment, etc., is created by the Scenario
Preparation Program. While the M[P does not communicate directly to all JTLS
programs, it does have an indirect relationship to those outlying programs. In concept,
since the MIP is a critical function of the execution phase of JTLS, its importance
demands the support of the other programs and, in turn, results in the relationships
shown. [Ref. 21

B. THE MIP STRUCTURE
The structure of the MIP can be derived from its functions, its relationships, and

the high level language SIMSCRIPT 11.5® used to program the MIP. In deriving the
structure, several system models were developed to express the why, what and how of
the MIP. These models are discussed below.

14

'-B- -

1 ati

Figure 2.1 Functional Programs of JTLS.

15

-A .~d

1. The Fundamental Model

The overall system model is the fundamental model, Figure 2.2. In this model

the various user inputs to the program are shown as well as the outputs of the

program. Note that the functions are not delineated here since they are inherent to the
MIP in this model form. The purpose of the fundamental model is to define the
desired results and identify the necessary inputs while leaving the identification of
specific contributors to any given function to the program. The 'how' is examined in

greater detail through data flow diagrams.

iAll done is

INPUTS K ybond ,) OUTPUTS

Player Function

Directive Types Player Orders

Directive Attributes MODEL
INTERFACE Messages

CommandsPRGA

Messages Reports

Queries

Figure 2.2 The Fundamental Model.

2. The Data Flow Diagram.
The data flow diagram, Figure 2.3, displays the flow of information from the

player to the game. Although not intricately detailed here, :t does show the basic
transformations which take place, what type of information is passed, and the location

of sources or sinks of information.
A significant portion of the flow of information from the player (the input) to

the game (the output) deals with the directive. The directive is the heart of the game in
that it literally causes an interaction to take place in the game thus producing some

outcome. Without the directive, there would be no simulation model. Due to the
directive's importance to this application, much of the design is described with the
directive as it's focal point. To appreciate the directive's impact on the flow of

16

L-A

....... :"............,,T ~ a ..

- Wte A, S. , o

Figure 2.3 The Data Flow Diagram of the MIP.

information, one must understand that most of the data is manipulated with the goal
of developing and exercising a directive.

At this point it is necessary to understand the performance of the various
elements of the data flow diagram. in the case of the player creating an order, the
player first enters a command. The transformation of the input is the perormance of

that command. If the command was a create conmmand then the next transformation
would build the dircctive using the attributes entered by the player. When all the
attributes have been entered, the play'er enters another conmmnd to tell the M I P the
directive is completed and to manipulate the directive. For example, this could be a
verf.;,, hold, save, or send conmmand. Any command other than a seisd conmmand would
require the player to enter more conmmands before the directive could be sent to the
CEP. When the player issues a send command, the directive is fornmattcd into an order
message the CEP can read and understand. The order message is then placed in the
CEP~s mailbox.

A key issue here is that the player is constantly entering data directly into
transformation modules without the data flowing in a "fluid" manner towards an
output. The superimposed box outlines a bottleneck of data flow in the data flow
diagram. This bottleneck places a great demand on the player to provide data in this

17

-.

K Y loo In a t

model. The source of the player's data is a computer printout of function specific

information printed prior to playing the game. This is undesirable since all (or nearly

all) of the data necessary for transformation during the creation of a directive is

available in a database or file in the game itself. In particular, a file called the Player

Initialization File (PIF) exists for each player and contains much of the information

needed by that player to perform transformations, i.e., developing directives. Ideally,

the transformation mechanism , vice the player, would do the work of sourcing and

entering the data. Such a mechanism can be created using the graphics interface

environment.

3. The Data Structure

The data structure of the MIP is a hierarchical system that is implemented by
using multi-linked lists containing scalar items, vectors, and n-dimensional spaces. In

SIMSCRIPT these concepts are established first as entities. These entities are

characterized by their attributes. If there are logical associations or groupings of

entities, they are described as sets. [Ref. 1: p. 1-15]

A set is a logically ordered collection of entities organized through a system of

set pointers. A pointer is the address in memory of a data item. For example. the

MIP has a set of targets with pointers to (i.e. the addresses of) the first and last

members of the set and the number of members (targets) in the set. Figure 2.4. These

attributes of the .set are considered to be owner attributes. Each member (target) has

pointers to (addresses of) the preceding and succeeding members of the set as well as a

flag to record membership in a set (to disallow multiple membership).

Entities may be permanent or temporary. The permanent entities exist

throughout the simulation unless they are explicitly destroyed. Temporary entities are

those which are short-lived during the simulation or for which the number of copies
varies within the execution of the simulation.

Figure 2.5 shows an example of some permanent and temporary entities. While

AIRCRAFT_(I) and AIRCRAFT (2) exist in storage throughout the game, the

RECOGNIZEDCOMMAND is only put into storage at the time it is created.

All of the data used in the game by the MlI P is stored in these sets, entities, or
attributes. Their definitions may be found in the MIP's source code preamble. All of

the data needed to create player directives is found in these data structures (primarily in

the PIF). However, the data structures aren't effectively used. This was demonstrated

in an earlier section and will be discussed later in this thesis. For example, the

18

... . .. ------- - A

FP.Targez

SE figr 2. na mpic ofST Organtin

Pemnn Entt TmaryEntit

Fiue24A_ Ex..anof SRt Orgaizntion

AC_.X_Fune RC_AMeaning

__________ACXjlme RCShort_-Text

3.L RCHelpText
AQX...Speed

Figure 2.5 Exaniplcs of Entities.

AWACS air directive only uses data fromn the permanent and temporary entitics listed

in Figure 2.6. The PIF's function here is simiply error checking to ensure the data
entered is correct with respect to the scenario's data. The poor use of the P1 F results

in the increased burden of furnishing data being placed upon the user.

19

Permanent Entitles Temborarv Entitles
DirectivePrototype Directive-
AttributePrototype
Create-Routine
Word-Indicator

NOTE: These do not include type
checking, help, or graphics entities.

Figure 2.6 The AWACS Directive Data Structure.

C. THE MIP FUNCTIONS EXAMINED IN THIS PROTOTYPE

1. The Commands

The MlP has 36 commands which perform environmental, directive specific,

or group of directives specific tasks for the player. These commands essentially

instruct the MIP to take further actions which have been defined by the player to

accomplish his decisions. The environmental commands perform the adninistrative

tasks such as printing, spooling, scanning, finding, etc. The other two categories of

commands manipulate the directive(s) by creating, changing, sending, etc. At times,

the delineation of these commands into the three categories seems vague. l-low:ver,

this delineation will become clear later when the visual interface is applied to the Ml Pf

functions.

The specific commands of interest and their definitions are as follows:

* CREATE The create conunand allows the player to create a directive within
the domain of the player's function.

* GCREATE The gcreate command allows the player to create a group of
directives within the domain o" the player's function.

" QUERY The query command allows the player to request that the ClP send
the player standardized reports 'which pertain to the player's
functiof.

" FIND The find cpnmand allows the player to hold a directive that was
previously in existence.

* COPY The cop y command allows the plaver to create a directive whose
attributes, except For the identi.iei, are identical to those of an
existing directive of the same type.

20

-AL.-

* GCOPY The gcopy command allows the player to create a group whose
attributes, except for the identifier, are identical to those of an
existing group.

* JOIN The join command allows the player to place a directive into a
group.

* LEAVE The leave command allows the player to remove a directive from a
group.

" GCLEAR The fclear command allows the player to empty a group of all it'sdireclves.

" DISPLAY The display command allows the player to see which directives of a
particular type have been created in the past and still exist, i.e.,
have not been deleted.

" GDISPLAY The gdisplay command allows the player to see which directives are
in a particular group

" MENU The menu command allows the player to view the menu of any
existing directive without holding ontb it.

* SAVE The save command records all of the players undeleted directives
onto a file called the Archive File.

" LOAD The load command is used to bring directives firom an Archive File
into the MIP.

* TRANSMIT The transmit command is used to transmit messages to other
players.

" SCAN The scan command allows the player to view several messages in
succession.

" SPOOL The spool command allows the layer to put several messages in his
or her pnnt file without taking t&e time to examine them.

" PRINT The print command prints out a hard copy of all messages filed or
spooled.

• REFRESH The refresh command brings up a fresh MIP screen.

" SET The set command allows the player to set various parameters that
tailor the use of the MIP to the player's liking.

" ADJUST The adjust command allows the player to adjust the display of his
graphics station.

" RETURN The return command is used in coniuction with the exclamation
mark to allow the player to use the OVERMIP feature. The return
command conveys the player's intent to abandon the current
overmip and resume action that the plaver had previously
interruxted with the most recent exclamation mtark. (NOTE: The
OVERMIP feature freezes the current player action allowing the
player to perform some other action anl then return to the boint
wn re the frozen action was interrupted. Not all player flunctions
can be perflormed in the 0 VERMIP feature.)

" SEND The send command is used to send the information contained in a
directive to the CEP in the form of a plaver order. The command
only applies to the held directive, if there is one. (NOTE: The send
command applies only to action directives. Utility directives cannot
be sent to the CEP xplicitly; rather, the inflormation contained in
them is sent as part of he action directives that refler to them.)

21

A , I[.. ,...L

* GSEND The gsend command is used to send, one at a time, all of the
directives belonging to a particular group.

* CHANGE The changxe command is used to change specific attributes of the
held directive after its initial creation.

* RESTORE The restore command allows the player, to override all change
commands performed in the held directive since it was last held.

e PAGE The page command lists the menu of the held directive and, if the
directive menu is contained on more than one page, it will cause the
MIP to enter the paging mode.

e VERIFY The verify command performs all validation checks not performed
during the creation of a directive or the changing of attributes.

e GVERIFY The gverify command performs the verify command for each
directive m a particular group.

e DELETE The delete command permanently removes the held directive from
the MIP.

* GDELETE The gdelete command permanently eliminates a group of directives
from the MIP.

e DONE -The done command returns the MIP to a state in which it is not
holding any directives.

2. The Directives

The directives are essentially the actions the player wants to take in the course
of playing JTLS. They tell the game what unit will take what action at what date,time
with What resources. When the player begins to create a directive, a template appears

on the terminal screen listing the attributes that comprise the directive. The directive
template displays indicate if a data input for a particular attribute is optional or

mandatory.

While all directives contain attributes, those attributes only consist of a few
basic types. The data input to those attributes are the distinguishing factors among

directives. The most frequently encountered attributes are as follows:

* REFERENCE A player selected name which uniquely identifies the
directive.

* UNIT, SQUADRON The name of the unit or air squadron being given thedirective.

9 TIME The time for the directive to be implemented by the CEP.

* DURATIONS The number of days, hours, and/or minutes the directive
action is to be conducted.

* COORDINATES The latitudeslongitude pairs which indicate geographicpoints of interests (for a variety of reasons) in the
lirective.

e ROUTE, LOAD, LIST These are utility directives used as attributes in action
directives. They must be created before an action
directive may be'sent to the CEP and implemented.

II

a,3 a- -Af -.....--- . . .

One extremely useful feature of JTLS is the ability of the graphics system to

send names of units and targets and latitude/longitude points to the MIP. When
graphics is used to enter any of these attributes, the MIP acts as if the player entered

that data. A shortcoming of this feature is that the player has to establish a

communications link between the MIP and the graphics station used. This must be

done at both the player and graphics terminals.

a. Creating the Action Directive

To fully understand how the creation of a directive is accomplished, the

reader should step through the process of directive creation. For example, the AIR
player would enter the create command. If the player didn't know the type of

directives he or she could create or didn't know the proper syntax for the name of a
directive, the player could enter a question mark (?). The MIP would then display a
list of the air directives and associated utility directives. From that list the player
would determine the type of directive to create, enter a "Q' to quit viewing the list, and
when prompted, enter the name of the directive.

Upon receiving the directive type, for example AWACS, the MIP would
display the AWACS directive template on'the terminal screen, Figure 2.7 . Of the nine

AWACS attributes, three of them are utility directives. Five of the attributes have
their data values checked for validity when the verify or send commands are entered to
the MIP. As the player begins to enter data, each attribute is sequentially entered as a

single entry or, for the expert player, as a stack of entries. At this point, close
examination of the AWACS directive creation will show the reader what the MIP is

doing during the process.
The first attribute is fhe Mission. This must be a unique identifier to

distinguish this directive from other air missions sent to the CEP. The MIP help
function (the ?) describes the format for the identifier. When verifying or sending the
directive, the MIP will check the identifier for uniqueness.

The next attribute is the Squadron. This must be the name of a squadron
type unit that the air player has under his or her auspices. Only a syntax check is
performed here.

Aircraft is the third attribute. This is a number that cannot exceed the

number of aircraft in the squadron. The MIP will accept any value during data entry,
but will match the value to the Squadron when the verify or send commands are
entered.

23

--------------------- ... -

MSG: 0 0.000 TO t 040000ZJULS5 0.0000 NIGH4T

AWACS (AW) DIRECTIE:

i. MISSION: X . ORBIT LATALON: dd-nn-woD ddd-mm-sD

2. SOMUA ON: xxxuz . SENSOR LIST: xxx
3. 0 AIRCRAFT: nnM

4. ROUTE IN: (xxxnx)
S ROUTE OUT: (M1Mnx)

S. ORBIT ENTRY TIME: ddnwnZMMMYY
7. ORBIT DURATION: ddOhhIIbM

MP COMUItC CR AW

MISSION:

Figure 2.7 The AWACS Directive Menu.

Route In and Route Out are attributcs which are utility directives. The

data values of these attributes are the names (identifiers) of routes created separatcly

using the Air Route directive. These are checked to determine if the routes exist when

the verify or send commands are entered.

The Orbit Entry Time attribute is a time for the AWACS mission to begin

surveillance in its flight pattern. It is entered as a date-time-group sometime in the
future. When the game receivis the directive it takes into consideration the time it

takes for the aircraft to reach the orbit pattern and the time it takes to prepare the

aircraft for launch when determining the validity of this time. If the squadron doesn't

have enough time to prepare, launch, and fly the aircraft to the orbit pattern by the

assigned time, the game will advise the player of that fact. The only real-time check is
for syntax.

The Orbit Duration attribute is a time which tells tile game how long the

aircraft will orbit in its pattern. This time is checked by the game by comparing it to

the crew's maximum allowable flight time and advising the player if the duration is too

long. The only real-time check is for syntax.

24

• . .. --... . ---

The Orbit Pattern is entered as a set of latitude/longitude coordinate pairs.
The coordinate pairs determine the two end points of an elliptical orbit pattern. The

only real-time checks are to determine if the points are on the surface of play and for

syntax.

The Sensor List is a utility directive. The data value of this attribute is the
name (identifier) of a list of sensors to be loaded onto and used by the aircraft. The
sensor list directive is created separately. The attribute is checked to determine if the
list exists when the verify or send commands are entered. Since this is also the last

attribute, the player must enter some command to manipulate the directive. It must be
noted that this is the "held" directive until the directive is manipulated in some manner
which "unholds" it.

b. Creating the Utility Directive.

Utility directives, as previously mentioned, are created separately from

action directives. They must exist when the player attempts to verify or send to the
CEP a directive which references them. There are two avenues to create a utility

directive. One is to create the directive when the player has a blank screen. The other

is to use the OVERMIP feature while creating an action directive, suspending the

player's interaction w ith the action directive, and allowing the player to then create the

utility directive as if a blank screen existed.

The Air Route directive has two apparent attributes as shown in Figure 2.8.
One is the Route ID which is unique to that route. The other is the Latitude and
'Longitude. This coordinate pair is entered for every point of the air route except the

origin. A null entry (NE) is entered after the last pair. The MIP then prompts the
player for altitudes for each point. Altitudes are from 500 to 60,000 feet. A null entry
is then used to quit.

The Sensor List directive, Figure 2.9, specifies the sensors to be included in

a particular sensor package configuration used for various air directives. The two
attributes of this directive are the List ID and Sensor. The List ID is the unique
identifier of that list. The sensor is a category of sensors which indicate which type of'

sensors to put into the list. A null entry is used to quit.
3. Summary

This section has described the relationships between the programs which

constitute JTLS, the structures of the Model Interface Program, and the MIP functions
to be examined in the prototype. One very important aspect of JTLS which will have

25

-----0 - 0000 7NO 0i ------ O4000ZUS57 -0.0000 ---- I- ----------T--

AWACS (AW) DIRECTIVE:

1. ROUTE ID: KXUxxNxx

2. LATITUDE LONGITUDE ALTITUDE

MIP COMMAND, CR ARTE
ROU~Tll

Figure 2.8 The Air Route Directive.

_457a----- doyl -t----- zadUi57--adw-----4-----------------------

SENSOR-LIST (SI.) DIRECTIVE:

1. MISSION: xxxxxxxx 2. SENSCR"

MU' COMMAND: CR SL
UIST ID:

Figure 2.9 1The Sensor List Directivc.

26

an impact on the approach to development of this prototype has not been addressed.
That is the operating system and sequence of execution in SIMSCRIPT 11.5® The

foundation of the SIMSCRIPT system and the sequence in which JTLS (and the MP)
source code is executed is the basic timing routine inherent to SIMSCRIPT, Figure
2.10.

Execution of a SIMSCRIPT program begins with the first statement in the
IAIN program and continues through a series of steps. Resources must be created

and initialized before they are used by processes. Then the initial processes are
activated in MAIN (since SIMSCRIPT requires that something be awaiting execution
before a simulation commences). A simulation begins when control passes to a system-
supplied timing routine. This is done by executing the START SIMULATION

statement. The significance of "something must be awaiting execution" is understood
when the main program is examined.

The MAIN Program contains several processes. One of these is the terminal
process. This process is literally the keyboard read process, i.e., how the player inputs
data through the keyboard to the MIP. When the player uses the keyboard, the
process is activated. In terms of the timing roitine, this means that the process is

placed on the pending list and is executed by the timing routine. When the player's
keyboard is idle (the player has used the return key to enter something), the process is
not on the pending list and the timing routine waits for another process to be placed
on the pending list. During this idle time, the MIP (and operating system) are
essentially waiting for the -player to do something in the interactive mode. Here the
MIP can still be performing some non-interactive tasks. The significance of this idle
time created by the MIP is a temptation to the designer to interface directly with the

MIP rather than the system. It will be demonstrated in Section III that this is not a
particularly effective approach for development of this prototype.

D. A COMPARISON OF SOURCE CODE VERSIONS
To further illustrate the operational behavior of the Model Interface Program. a

comparison was made between the current version of the MIP source code and the
source code of a prototype version. In the comparison, a particular objective was
selected to be accomplished by the source code. Both versions of source code began at
the same point and finished with the same result. The current version is written in
SIMSCRIPT while the prototype version is written in Pascal for operation on the

27

START SIMULATION

ANYO

_ SELECT PROCESS WITH2

EARLIEST (RE)ACTIVATION TIME RETURN

UPDATE CLOCK TO

TIME OF EVENT

DETERMINE TYPE
OF PROCESS

REMOVE PROCESS

FROM PENDING LIST

EXECUTE PROCESS
ROUTINE

Figure 2.10 The Basic SIMSCRIPT Timing Routine.

28

L " '. :' .'L . ,' .. , . ,, . ;* ;,:" ., "* " , ;" ," .'. ," .:, ,; ., .= . ' . , ' . "f~ ".t : : .. .:,',: , . " ' ,.

Macintosh. Tables 1, 3, 5, and 7 are the current versions of source code for steps 1-4

respectively. Tables 2, 4, 6, and 8 are the respective prototype versions of source code.

There are several noticeable differences between the two sets of source code. These

differences will be pointed out in the following narrative.

The comparison was made using the creation of a Sensor List directive as the

objective of the source code. Both versions of source code begin that process at the

point where the player must select the directive type. The process then is broken down

into a series of steps. Step 1 is to select the type of directive to be created. In this

case, Sensor List is selected. Step 2 is to display the directive on the screen. Step 3 is

to assign an identification reference to the directive. Step 4 is to assign sensor

packages to the sensor list. The process ends at this point. From here, for example,

the player could save, verify, or send the completed directive.

It should be noted that in the current version the steps must be taken in strict

sequence. The prototype version permits the reversing of sequence order for steps 3

and 4. The order of sequence is left strictly to the player's discretion as to what step to

do when. The player can even go back and redo a step in the prototype version. This

is not permitted in the current version. To do so the player must exit this process after

it is completed and begin a totally different process.

A significant assumption was made regarding this process. This should be noted

so the reader may gain a greater appreciation for the results of the comparison. First,

it is assumed that the player will always enter syntactically correct, accurate data.

Thus, format and type checking source code has been left out of the example in the

current version. The prototype incorporates the checking into its code due to the

nature of its operating system. Except for one case, no prototype case requires any

explicit checking.

It was also assumed that the player would not abort the process. The current

version source code to do this was also left out. The prototype version did not require

explicit code as this is inherent to the operation of the system. Also, any code dealing

with error messages to the player was deleted from the listings. The current version

has quite a few error messages while the prototype version would only require one for

this process and its message is inherent in the operating system. The "help command"

code was also omitted from the current version. It literally is not needed in the

prototype version.

29

4
I

A readily evident result of the comparison now exists and should be mentioned

despite the risk of prejudicing the overall outcome. The result is that quite a reduction

of source code can apparently be made between the two versions in the areas of

checking, process abort, and error messages. This is not a hard and fast result in the

final outcome however. The reduction in source code now may be offset by an

increase in code to perform other functions later. It is the opinion of this author that

this will not be the case.

I. Step I
The process of selecting the directive type is straight forward. The presentation of

information to the player requesting a selection is quite different. The current version
presents a blank screen in the content region (the middle of the screen) while the scroll

area (the bottom portion of the screen) contains the prompt "directive type:" with a
blinking cursor a few spaces to the prompt's right.. Here the player would bqgin the

process by typing in the words "sensor list". The prototype version presents the player

with a box in the middle of the screen. The box contains a list of directive types which

are currently available to the player. The player moves the cursor to the "sensor list"

item in the list and selects it.

The determination of what type of directive to create has been completed.

The type selected in both versions was the Sensor List. A breakdown of the step

reveals several interesting contrasts between the versions. The first is the display itself.

The current version puts it's information for the player near the bottom of the screen.

While it is out of the way for the main portion of the screen, it is also "out of the way"

in terms of the player's visual focal point. In general, a person's initial focal point is

the middle of a display and then the person examines the display area to seek out the

required information.

The prototype version places it's display in the middle of the screen which is the
player's initial focal point. The player doesn't have to search for the information. This
contrast is subtle, but nonetheless significant throughout the process and in terms of

information transfer to the player.

The player's actions also represent a contrast worth review. The current

version requires the player to type in characters from the keyboard. The prototype

version requires the player to position the cursor and press a button (an item click), an
action which is always at the player's fingertips. The two actions are quite different

and ease of performance for typing varies significantly tfrom player to player. The

30

-' l.

TABLE I

STEP 1 - CURRENT VERSION

Determine. the .Directive .Type
Use 55 for input
Let prompt.v = "Directive Types "
Now Interpret. the.DirectiveMeaning

Given 100
Yielding meaning
CC number = 100
Find the first CommandContext(CCNumber) in Vocabulary_
Do until terminated

Now Determine, the.Response
Until finished do

If Input Line is not empty
Use buffer for input
Remove first Input-Word from Input Line
Let Response - upper.f1(IWextIn-utWord))
Let Last.Source = IWSource(InputWor2)
Destroy Input_Word
Return

Else If Last.Source = 0
If Last.Source = I.Terminal

Activate Terminal Process
Else use 55 for inputNow Write.A.Text.String

.Given prompt.v, 23, i, 0, 0
Use buffer for input

Activate Graphics ProcessSuspend
Loop

IF Directive % 0
Now Display.a.List

Given Dir_Henu, 2;
Let Menu Status = "display"
Let Lines = Dim.f(Dir 1enu(*))
Let lines.per.pge = lines-2-2
If lines p 15

For I = 1 to lines do
Now Write.a.Text.String

Given Dir Menu(I), 2+1-1,1, 0,0
Call LIB$Sut Screen(Descr.F (Text.String),
line+ i,column, local .graphics)Return

Let Menu Status = "menu"
For each Recognized Command in CC SET OF ENTRIES(CC Number)

With RC Name = "rensor List" oFRC4litrnate-Name-= "SL"
Find th-e first case
Let meaning = RCMeaningNo (* = 706 *)

Return

preference of one action over the other varies according to the individual's tastes.

These two contrasts are again subtle but their significance, .specially typing, is closely

tied to an individual's physical skills.

31

4N
C.

TABLE 2

STEP I - PROTOTYPE

ModalDialoq(NIL. theltem)
I - GetDItem (theDialog, theltem Handle, Display);
12 ,= GetNewControl (Ii, theDialogS
DPLongName := GetCTitle (12, title);

DisposDialog (theDialog);

The most significant contrast is in the source of the data. The current version

requires the player to be the source of data and it is entered via the keyboard. The
prototype version provides the source of .data (in all but one case) via computer
memory with input made through the item click. Since the input is made through
computer memory there is no chance of a syntax error and less of a burden upon the
player to enumerate the choices of directive types available to him. The prototype
enumerates the choices and makes a syntactically correct entry of data to the process. •

In summarizing the contrasts of versions in the first step, it is worth noting
the amount of source code reiquired to perform the step. The prototype performs the
same step with only an estimated 15% of the source code needed in the current
version. The primary difference in the amount of code is due to the large amount of
current version code required to display, retrieve, and interpret information i'ritten to
the screen from the keyboard. The prototype version gains this advantage by using
operating system functions and procedures to perform comprehensive accomplishment

of tasks. Another reason is that fewer tasks are required in the prototype version due
to the nature of the operating system. It will be evident as the process continues that
the contrasts of display, player actions, and source of data will be factors in each step
of the process. The reader is cautioned that task accomplishment may not always be a
prototype advantage in the performance of the process. Now step 2 is ready to be
done.

2. Step 2
This step in the process displays the directive Sensor List on the screen. The

display includes the directive title, the directive's attribute and the attribute's field

codes. The display is oriented toward the middle of the screen on both versions'

32

&.-

TABLE 3

STEP 2 - CURRENT VERSION

For each DirectivePrototype with DPMeaning = 706
Find the first case

Now Create. the. Directive
Now Erase. the .Menu.Area

For I = 3 to 17
Call LIBSERASELINE(I, 1)

Let Menu Status = "blank"
Create a Directive
Store DirectivePrototype in O.DPDirectivesSet
Reserve Menu Array as size = 15
Store DP Menu Template in Template Array
For I = T to 15

Let Menu(I) = Template(I)
Store Menu(l to 15) in DirjMenu
Now Display.a.List

Given Menu(I), 2
Let Menu_Status = "display"
Let lines = Dim.F(Menu i))
Let lines.per.page = 18-2-2
If lines S15

For I = I to 15
Now Write.a.Text.String

Given List(I), 3+1-I, 1, 0, 0
Call LIBSPut Screen(Descr.F(Text.String), line+1,
column, local.graphics)Return

Let MenuStatus = "menu"

display layout. In both versions the step begins with a directive meaning and then

searches the data structures for a directive prototype having a meaning of "sensor list".

When the code finds that data, it displays it on the screen, At this point the versions

begin to differ.

The current version first calls a VAX library routine to erase the screen. It

then develops a generic display template consisting of 15 lines. Once the template is

made, the current version gets each attribute of the directive prototype and draws it to

the screen, line by line, according to the AP Line and AP Coll values of each

attribute. When each line is drawn the display is complete.

The prototype version begins by creating a pointer to a new directive and then

invoking the directive display module. Every directive reads in a generic display

template and, for each display control item, changes the control's generic title text to

the attribute's menu prompt. At the same time each control item is changed. it makes

33

A

TABLE 4

STEP 2 - PROTOTYPE

For Directive Prototype with DPLongName do
NewDirective = Directive;
Directive Display*

N := NuerAK;' (* the total number of attributes *)
For I = 1 to 12 do

GetNewControl(ID, theWindow);
For J = 1 to N do

If I = J then
SetCTitle(J, AP Prompt);
ShowControl (J);

Else For I > N do
For DP Attribute Prototype (I) do

HideControl(I);
HiliteControl(I, 254);(* disables control

DrawControls (theWindow);

it visible. For each control item not changed that control item is made invisible and

inactive. The module then draws the display to the screen in its completed form.

The contrasts here are speed and amount of code. The speed is

inconsequential here since the prototype -uses the same repetitive loop as the current

version to produce the display. However, speed could be tilted considerably in favor of

the prototype version if each specific directive display existed in a resource file and was

explicitly called when needed. This would result in a much faster time for the

Macintosh to draw the display to the screen (this will be discussed later in this thesis).

The current version has no capability to do this.

The other contrast, amount of source code, again favors the prototype

version. The reduction of an estimated 35% of the current version is primarily due to

graphics overhead on the VAX. For example, a repetitive loop is used to erase the
VAX screen line-by-line, another loop is used to create the display template line-by-

line, and finally a repetitive loop is used to draw the display. The prototype version

uses a single, doubled-nested repetitive loop to assign text to display items and then

draw the display to the screen. The ability of the prototype to do this in a simpler

manner than the current version is owed to the operating system functions and

procedures comprehensively performing tasks.

34

The summary of contrasts for step 2 again results in a favorable rating of the

prototype over the current version. This leads to step 3. Although the prototype

version would permit the execution of step 4 at this time, for simplicity in conducting

this comparison, both versions will perform the same step.

3. Step 3

This step deals with getting an ID for the directive. Keeping in mind it must

be unique, the assumption made here (for simplicity) is that the player will enter a

unique ID. In this step both versions differ from the start. Here the prototype version

waits for an event to occur while the current version must write the prompt to the

screen. The advantage is immediately tilted toward the prototype version. :The process

will indicate why.

The current version begins by sequentially stepping through the attributes and

stops at the first one. It reads the APMenu.prompt, "I. List ID:", and rewrites it
over the existing "I. List ID" btit this time emphasizes it graphically. It then draws

the AP Create Prompt, with a flashing cursor as emphasis, into the scroll area at the

bottom of the screen. Then, invoking the attribute's create routine, it awaits the

player's keyboard response. Once the player inputs a string, the current version checks

to make sure it is not more than 8 characters. If it is more than 8, an error message is

generated and the prompt in the scroll area is rewritten. (This check was intentionally

left in the process due to its significance in the comparison.) If the response is
acceptable, it is written into the field code space replacing the attribute field code. The

current version then deemphasizes the AP menu prompt and then invokes the Retrieve

the Directive Attributes module. Here it reads the attribute's wordinteger and assigns

the ID to the appropriate word in Directive

The prototype version begins by waiting for a player action known as an

event. In this case, a click in the "I. List ID:" item. The prototype version determines

an event occurred, what to do to handle the event, finds out the location of the click

event, and then invokes the CRRGet module for the given AP Create Routine. Now

the prototype gets a dialog box and draws it in the center of the screen. The dialog

box includes a text edit rectangle, 8 spaces long, with a flashing cursor in it. Now the

prototype waits for the player to input a string, which is also another event. It

determines an event occurred, that it was a keypress event (of a legal character), and

enters the character string into the text edit rectangle. Note that since the text edit

rectangle is only 8 spaces long it implies the player can never enter a string that is too

35

, .) ;; , "' .' '. , ,'- : 1 .
" '

,.7 '. ',""' ; " " '. " " ! - -. -,.:. , .. ,/ : ,... .. ,: ! .. - - - :. ', " :. , . -t'I

TABLE 5
STEP 3 - CURRENT VERSION

For each Attribut*_.Prototype in DP_.AttributesSet(SensorList)Do
Us. 55 for input
Let promt.V a AP_.Create..Prompt (* "List 10:" 5
Us., buffer for input
Now Writse.Text.String

given APjlenu_.Prosptp AP_.Line, APCol O, Emphasize_
Call LIBSPut-.Screen(Dsor.FI APjiMeni rmt), AP-Line, AP-Coll,
0, Empasize-,)

Write AP..Agmmets_.String as text
Lot Subrout ine a CRR...Mms(AP_.Creste_.Rout ins)

Call Set.m.Directive.1dentifier
Read Search.Cade
Until finished do

Now Determinea. Respone
Until finished do
If InpulLine Is not empty

Use buffer for input
Remove first Input-Hord from Irput_.Line
Lot Response- a Upper. F(IN..Text(InputWord))
Let Last.Sourca IHSou,-celInput_..ord 1)
Destroy InputHYord
Return

Else
If Last.Source Z 0

If Last.Sourome I.Terminal
Activate Terminal Process

Else use 55 for input
Now Nrite.a.Text.String

given prompt.v, 23, 1, 0, 0
Use buffer for input

Activate Graphics Process
Suspend.

Loop
If Response_ a 11NE"1

Now writo.a.bottom.Line
Given "A null entry is not valid"
Call LI5$Set-Cursori 24,, 1)
Call LlIU*Put-.ScreentDescr.FlCcncat.F(text.string, CRLF)),

24", 1, 0)
Now Skip.Rest.Of.Line

For each Input-Hord in Input-Line do
Remove Inputjord fro Input-.Lins
Destroy InputWord
Loop

Cycle
Otherwise
If Length.F(Response-). > 8

Now Write.* Bottom. Line
given 111D can be no more then a characters"
Call LIB$Set..Cursor(24, 11
Call LIB*Put-.Screeng Oescr.FEConcat.F(text.string, CR_.LF))p
249 1t 0)

Now Skip.Rest.Of.Line
For each Input-Word in Input-.L ins do

Remove Input-Ward from Inpt..Line
Destroy InputWord
LOop

Cycle

36

.............................

TABLE 5

STEP 3 - CURRENT VERSION (CONT'D.)

If Length.F(Response_) 8
For I a I to Length.F(Responseaj do

Let This.Char Substr.F(Repose_., 13 1)
If This.Char * "" or This.Char a ""

Nrite This.Cher as /,
"Entry cannot contain" This.Char "character"

Read Output.Line
Now Write. Sottom.Line

Given Output.Line
Call LIBSetCursor(24, 1)
Call LIBPut=Screen(Descr.FlConcat.F(text.string, CRLF 3),
24, 1, 0)

Now Skip.R st.Of.Line
For each Inputlord. in Input_Lins do

Remove Input-Hord from Input-Line
Destroy Inputjlrd

Loop
Let Bad.Char a I
Leave

Loop

If Sed.Char a 1
Bad.Cher a 0

Cycle
Write Response_ as text
If Henu-status a "manu"

Now Nrite.a.Text.String
Given Response-, AP.Line, APColZ 8, 0
Call LZSPutScreen (Descr. F(Response 3,

AP_.Line, APColZ, 8, 0)
Now Replace. the.Menu.Field

Given Response-
Now Write.s.Text.String

Given APjHenuPrompt, AP_Line, APColl, O 0
Call LIBSPutScreen(Descr.F(APlenu_Proet), APL ine,
APColl, O, 0)

Now Retrieve. the.Directiv..Attributes
For each Hord_1ndicator in Mordl_ListAttribute_Prototype) do

Case of (Nllnteger)
(13 Read Oir_1O

Loop
Loop (* to do next attr' te

long and thus never commit an error. The transparent error checking will not accept

the player's entry of an illegal character or more than 8 legal characters. The dialog

box then assigns the AP field code the value of the string, moves the graphics pen to

the field code space on the screen, and draws the string in as the field code. The
prototype version then invokes Retrieve the Directive Attributes, reads the attribute's

word integer, and assigns the ID to the appropriate word in Directive.

37

.. A .. .

TABLE 6

STEP 3 - PROTOTYPE

GetNextlvent(theEvent, everyEvent);
MouseClick;

HandleEvent;
HandleClick;

K := FindControl(thePoint, theWindow,
whichControl);
For DP Attribute Prototype (K) do

L :=AP Create Routine (K)
CRRGet (L); (* Get an. ID *

DialogPtr :=GetliewDialog (ID, dStorage,
theWindow);

TEPtr :=TENew (destRect, viewRect);
GetNextEvent;

Keypress;
HandleEvent;

TEKey(Key, TEPtr);
Moda lDialo(theIDFilter, ItemHit);

theLDL ter(thebialog, theEvent, ItemHit);
thelDFilter :=False;
ItemHlt :0;
If Length.F(string) :5 8 then

Case theEvent.What of
Keydown, Autokey:

Case of (theEvent.Message mod 256) of,
1' (.Z, 0. .9, bksPc):;S2~ . NOT (A Z O..9, bkspc)'

thelDI 1er True;
SystemBeep;.
Return;

Else (* for Length.F(string) > 8 *
If theEvent. Kessage mod 256 = bkspc then

theIDFilter :=False;
Else the IDFilter :=True

SystemBeep;
Return-

DisposDialog(theDialogY
MoveTo(AP Line, AP Co 2j; (* AP Line & AP Col2 converted
to pixel units *)dCd K)DrawStrinR(AP FieldCd K)

Retrieve irective Attributes;
For Q = Word Integer do

Case of Word Indicator(Q
DirID :=AP Field Code(K); (.*

In this step the contrast focuses on the extra code required by the current
version to do the process, the display of the focal point, and ease of input for the
player. Once again the advantage pendulumi has swung over to the prototype version.
The first contrast deals with the fert that the current version is constantly doin2y
graphics tasks of emphasizing, changing, and rewriting. The fact this is done so maily

38

A Abu-.

times encumbers the process in the current version while the prototype version

performs it's tasks once. The prototype version reduces code execution an estimated

58% from the current version.

A significant contrast is the display focal point. Again the prototype version

centers it's focal point immediately grabbing the player's attention. The current

version creates two focal points which could be distracting. The first focal point is the

emphasized attribute positioned in the mid-upper left portion of the screen. The

second focal point is the prompt and cursor down in the screen's scroll area. This is

really where the player wants to focus his attention. The advantage regarding this

contrast is with the prototype version.

The final point in contrasting the versions is the ease of player input. In the

prototype version the player had to select the attribute himself vice having it done for

him automatically in a predetermined sequence. This is fairly negligible when

compared to the actual entry of data such as the ID string. Here the prototype

ensured the player kept the ID within limits while the current version could permit the

player to commit an error. This subtle contrast favors the prototype version.

Finally, both versions are ready to enter their list of sensor packages.

Considering the wide margin of adyantage of the prototype version compared to the

current version, the final outcome of the comparison could be predicted. However.

step 4 should be examined to complete the process comparison.

4. Step 4

This step is a lengthy process for both versions of s6 urce code. Similar

processes occur in that both invoke the appropriate create routine, get the sensor

package names and display all of them, and invoke Retrieve the Directive Attributes.

The similarities end there.

The current version expends a lot of code doing graphics displays,

emphasizing, writing prompts, determining responses, rewriting prompts. and

deemphasizing. In the end, the current version uses two focal points (moving back and

forth between the two points), forces the player to explicitly input whether or not a

displayed sensor package is assigned to the list, and requires the player to explicitly

close out the list of sensor packages.

The prototype behaves as expected. It waits for an event, in this case the

click of the item "2. Sensor", draws a dialog box onto the center of the screen with all

the sensor package names included in the box. It also invokes the List Control module

39

TABLE 7

STEP 4 - CURRENT VERSION

Use SS for input
Let prompt.Y a APCratePromqt
Use buffer for input
Now Mrite.a.Text.String

Given APMenu_Prowpt, APLine, AP-Col1, 0, Emphasize-
Call LIBSPutScreon(Oescr.F(APenu.Pr t), APline, APColIP 0,
Emphasize_-)

Write APArgmintsString as text
Let Subroutine 2 CRRNameiAPCreate_Routine)

Call Get.a.Sensor.List
If Saved.Flag a 0

Let Saved. Flag z 1
Create Com -ndContext
Let CCNumber x 1120

Let CC-Message = "Enter (something) or NE to and list."
For each SensorPackage

Wi th SP-Name ;f " " do
Create a RecognizedComeard
Let RC-Name = "NE"

Let RC-Meaning-No = 100
File Recognized Comand in CCSETOFENTRIES

File ComandContext in Vocabulary-
Store DirHenu in Menu (1 to 15)
Let tenu.Status = "list"

Let Line = APLine + Z
Let Items.in.List a 0
Until finished do

If Line = 18 - 2
Let Line APLine + 2

Use 55 for input
Let prompt.V a "Name of category:"
Now Interpret. the. Vocabulary. Entry

Given CC-Number z 1120
Find CoumandContextt 1120)

Until finished do
Now Determine. the.Respanse

Until finished do
If InputLine is not empty

Use buffer for input
Remove first Input_Hord from InputLine
Let Response_ Upper. F INText1 Input_-ord))
Let Last.Source a IlSource1InputHord))
Destroy InputWord
Return

Else
If Last.Source A 0

If Lsst.Source a I.Terminal

Activate Terminal Process
Else use 55 for input

Now Write.a.Text.String
Given prompt.v, 23, 1, O, 0

Use buffer for input
Activate Graphics Process

Suspend
Loop

40

& a- -- *

TABLE 7
STEP 4 - CURRENT VERSION (CONT-D.)

If Q a 1
Let Q0 S0
If Directive_. r- 0

Mow Oispiay.a.List
given Dir-.Manu, 2
Lot MerwL-Status a "display"
Let Lines a Dim.F(LarttWI)
Let Lines.per.pege a 14
If Lines :5 IS

For I a 1 to Lines
Now Write.a.Text.String

given List(I), 3+1-29 Is Os 0
Call LIB4Put-Screen(0oer.F(Listtl),p 3+1-I, 1, 09 01

Return
Mow-Sta tusn a 1SI'i"

for Recoonize4.Comnd if CC..SET.OF-ENTRXES(1120)
With RC-.Neme a Response-. or IC.Alternatej-mae a Reopen%*-.
Find the first case

Let nmeing z RC...MmainjMo
If nmming x 100

Leave
Let Substr.F("meuj Line-1), AP..CoI, 15) aSPjlawetmeaning)
Now IMrito.a.Text.String

given SP-jaameaning), line, AP-Coll, 15, 0
Call LI8*Put_.Scree(Descr.F(SPNsaeJ line, AP..Coll, 1S, 0

Lot Iteua.in.List a 1
Create an Element-.
IndexEd Rwsmnt.) x mening
File Eleamt. in Vector_.

Add I. to line
LOOP
Reserve Rarrayl 5) a* N.Sensor-.Peckage
Reserve TArray *) asur N.Seneor-ecKage
Let Categories.per.page z 18-4-5
For each SensorPackage with SP)4Me os

Add I to Total.Sensor.Pecage.Dn.This.Side
Add 1 to Saetor.Packages.0n.This.Side
for each Elson.. in Vector-.

With Indexi Elemnt_) a Srniorjacdage
Find the first case
If found

RArrayt Senor..Package) a 1.0
TArrayt Senor_.PsckAge) a "yes"

Else
TArrayl Sensor_.Package) a "no"

If Sensor. Packtages. This. Side Z' Categorisa.Por.Page
Lot Substr. fa M j(AP_.Line*Senrnor .PacKage.Thin. Side),
AP..Coll, 15) a SPNme

Lot Substr. Ft Maul AP..Line+Ssesor. Packages. This. Side),
APCol2, 3) 2 TArray

LOWp

41

La- -da

TABLE 7

STEP 4 - CURRENT VERSION (CONT'D.)

Let Header = ITOT.F(N.SensorPackage)
Write Header as text
For each Sensor Package

Write RArray.(.ensorPackage)
Release RArray(*)
Now Empty. the.Vector

For each Element in Vector do
Remove Element- from Vecor
Destroy Element

Now Write.a.Text.Strini
Given AP Henu Prompt, APLine, APColl, 0, 0
Call LIBSPut creen

Now Retrieve. the. Directive .Attributes
Given WI Integer
Case of(WI Integer)

(53) Reiad Dim
Store 0 in Real Array(Dim)
Reserve Realhray(Dim)
For I = 1 to Dim

Read RealArray(I)
Store Real_A'rray(*) in Dir_GenericlDPointer
Cycle

assigning each package a check box control. It then waits for the player to "check" (an

item click) the sensor packages to be listed. The prototype version automatically

determines that non-checked sensor packages do not go into the list and automatically

closes out the list. It then assigns attributes to the appropriate words in Directive the

same as the current version does.

The Sensor List directive is now complete. Again contrasts between the

versions gives the prototype the advantage. Amount of code, display focal point, ease

of input for the player constitute the areas of difference between the two versions.

Amount of code contrasts resulted in the prototype version having an estimated 65%

reduction in lines of code executed from the current version. Repetition of graphics

code and use of numerous data structure elements not required in the prototype

account for the difference and the poor rating of the current version.

The focal point of the display heavily favors the prototype version. It's

display is centered on the screen and behaves exactly as the other prototype displays.

The current version, on the other hand, continually switched the focal point of the

player's attention from mid-screen (to see what was displayed) to the prompt in the

scroll area (to make an input). This is distracting and time consuming.

42

IL a-

TABLE 8
STEP 4 - PROTOTYPE

Ge tNextEvent
MouseClick;

HandleEvent;
Handle Click;

K i= FindfControl(thePoint, theWindow,
whichControl);
For DP Attribute Prototype (K) do

L -AP Create Routine K
CRR.Get (L; (* 7et a sensor package *

List Control(HE);
DialogPtr i= GetNewDialog(ID,
dStorage, theWindow);

Until Sensor Package EOF do
M := SPnumber ;SetlText (M, SP Name);
Repeat;

For P := F to Mdo
ModalDialog(NIL, theltem(P));

Il := GetDltem(thedialog, thettem,
Handle, Display)*

12 :=GetNew ontrol(I1,theDialog)
AP Field Code (index) :=GetCTitle(12,
tite); Line + 1 line, AP Col2 +
4 spaces); (* lines & spaces converted
to pixel units *)

Disposflialo g(theDialog);
Index :=Index + 1;
Retrieve Directive Attributes;

For Q Word Integer do (* Q=53 ~
Case of Word Indicator(Q

For Dim = 1 to M do
For Num = 1 to Index do.

If Sensor Package(Dim) =AP Field
Code (Num) then

Tarray(Difn) - "es";

Real Array (Dim) :=0.0;
TArray -"No"-

For Set of Directives
w.th DP Meaning = Sensor List(mean'ingr)
W Set of Directives := NewDirectie.Decv;

The final contrast is ease of use for the player. The player enters data through

the keyboard, is subject to committing errors, and must make repeated inputs when
using the current version. The prototype version only requires item clicks by the
player; no errors, no distractions, just a simple process. The advantage here again
heavily favors the prototype version.

43

In summarizing the entire process, a simplified one at that, the prototypeversion is distinctly easier to use for the player, a considerable savings of executedsource code, and a better presenter of information than the current version. Basedupon these comparisons of the two versions the creation of a graphically orientedreplacement for the MIP is desireable. The following material is predicated Upon thedesign of such a prototype.

44

i
I

IlL. THE PROTOTYPE OF THE VISUAL INTERFACE

A. THE METHODOLOGY OF DESIGN
1. The Basics of a Window Management System

Window management systems are relatively new to computer systems, just

barely a decade old. The computer industry as a whole did not accept window

management from the outset, but people interested in computer graphics have kept the
concept alive. Attempts at widespread usage of window management systems failed
until Apple introduced their Macintosh. The Macintosh has gained widespread

acceptance and is particularly a favorite of casual users. The reason for this is three-

fold:

1) Apple specifically concentrated on m.aking the user interface, as simple as
possible through the use of common visual symbols and association.

2) The company applied an extremely good and technically sound graphics
package to the system.

3) Apple took the best ideas of other attempts it developing window
management systems and applied them to their design.

As such, the Apple Macintosh has come to be accepted as the "unofficial" standard for
the methodology of window management systems [Ref. 61, and it's interface is the

foundation of this prototype design.
a. The Infrastructure of the Macintosh Interface

The Macintosh has been described as a universe with its own set of laws.
similar to the laws of physics, that describe the standard behavior of objects. These
"laws" are consistent which has a direct impact on how an application, and this

prototype, is designed. Thus, the application should be flat and user driven (i.e.

modeless) as opposed to being tree-structured and menu-driven. This allows the user
to focus on what the application does, instead of how it does it. [Ref. 7]

This "modeless" environment allows the user to do anything that makes
sense at any time. This means the user is in control of what is going on with the
computer and the application. It also means, in general, that if the user performs an
action that makes "sense' then the "laws of nature" are not violated and the user

doesn't get penalized for doing something wrong. This is a very desireable feature in
an application and is'the basis for the Macintosh User Interface Standard [Ref. 81

45

'-ft

The Macintosh User Interface Standard has nine basic concepts:

* Applications Tese enable the user to manipulateinformation.
* Documents These contain information which the

application manipulates.
• Views These present information.

* Commands These alter the information in specific ways.

* The Finder's Desktop Metaphor This provides an image of what is in
Macintosh's memory ind .is a working
environment for the information manipulation
carried out on the Macintosh.

9 Windows These divide a portion of the Macintosh screen
for a portion of the view.

* Selections These identify those portions of the information
that can be atTected by certain subsequent
commands.

* Editing Conventions These govern the manner of specifying
selections.

* Fonts These provide a basis for manipulating text
appearance.

The reader may gain a comprehensive understanding of the Macintosh User Interface

Standard by reading Inside Macintosh.

b. The Application of the Interface Standards

These concepts result in the user being presented, on the screen, a variety

of graphic objects which behave in expected ways and represent information which the

user understands. The user will see at the top of the screen a menu bar containing

classes of commands. At the user's fingertips is a mouse whose movements cause the

movements of a cursor on the screen. The user can position the cursor over a menu

title, press the mouse button down and, while pressing it down, "pull-down" a list of

menu items. These cursor movements which "pull down" something are commonly

referred to as dragging and have a direct correlation to "dragging" the mouse across a

table or desktop. If the mouse button is released over any menu item, that item is

selected as the command to be performed. The action of pressing and releasing the

mouse button is also known as clicking. Sometimes these menu items are "dinmed"

and cannot be chosen, indicating they cannot be performed at that time by the

application.

The user also sees a window which presents informatio i such as a document

or a message. The window may be "active" and have its objects manipulated. More

than one window can be presented at a time but only one may be active. The window

46

• " "................
!A

presents a view of its contents but not all of its contents may be visible. If so, the user

must scroll through the information to see it all. The user may move the cursor all

around the window and click in the window causing something to happen which the

user would expect to happen. When finished with the window, the user can click in the

close box and the window disappears. As with all user actions, the user sees and

identifies some object, performs some action with regards to the object, and gets an

expected result. This process happens because of the use of a set of Macintosh

operating system routines.

These routines are divided by function and are commonly called managers.

The various managers used in most applications reside in the operating system or the

User Interface Toolbox. The operating system performs such basic tasks as input,

output, memory management, and interrupt handling. The user interface toolbox, a

level above the operating system, helps implement the standard Macintosh user

interface. It is through the variety of managers that the prototype is developed. The

managers, all logically named, perform basic tasks as defined by Inside M1acintosh

[Ref 91. They are:

" Resource This manager performs operations on, and allows access to.
various applicauon resources such as menus, fonts, icons,• windows, etc.

* QuickDraw The heart of the Macintosh user interface, this manager
performs all .- raphics operations including drawing
something on ,the screen very quickly. It inteirfaces withi
many of the other toolbox managers.

" Font Manager This manager supports the use of the various character fonts
when text is drawn by QuickDraw.

* Event Manager The Event Manager monitors the user's actions and
coordinates the actions of the other toolbox routines.

" Window Manager This manager controls the creation, manipulation and
disposal of indows.

* Control Manager The Control Manager handles special objects on the screen
with which the user, using the mouse. can cause instant
action with graphic results or change settings to modify a
future action.

" Menu Manager This manager creates sets of menus and allows the user to
choose froffi the commands in those menus.

" Text Edit This manager handles the basic text formatting and editing
capabilities in an application.

* Dialog Manager This manager allows for implementing dialog boxes and the
alert mechanism, two means of comnmunication between the
application and the end user.

" Desk Manager The Desk Manaer supports the use of desk accessories
(mini-applications) in an application.

47

" -

o Scrap Manager This manager supports cutting and pasting among
applications and desk accessories.

e Toolbox Utilities These are a set of routines and date types, that perform
generally useful operations such as tixea-point athmetic,
string manipulation, and logical operations on bits.

* Memory Manager This manager dynamically allocates and releases memory for
use by the apphcation and other parts of the operhting
system.

* File Manager The File Manager handles file input and output for the
operating system.

* Device Manager The Device Manager manages the input and output devices
for the operating system.

2. The Correlation of the MIP and the Macintosh User Interface.
The design of any application must consider the operating system to be used

as well as meeting the user's needs. The Macintosh operating system supports the use
of high-level programming languages, primarily Pascal. One particularly fast and
efficient version of Pascal is Turbo Pascal© by Borland, Inc. Turbo Pascal was this
author's choice as the high-level programming language to use for testing some of the
concepts of design used in developing this prototype. Turbo Pascal was deemed
capable of meeting all requirements of the MI P in terms of functionability.

a. The Restructured Data Flow Diagram
A goal of any application design should be to provide for the smooth flow

of data. Figure 2.3 identified a bottleneck of data flow. A distinct advantage of using

the visual interface is that this bottleneck can be effectively removed while still leaving
the "flow of control" with the user. Figure 3.1 depicts the changes of data flow. The

player initiates the flow of data and subsequently controls it all, yet provides little or
no data input. The primary difference between this diagram and the first one is that
this design use the stored information available to it, primarily the Player Initialization

File (PIF), to transform data rather than the player providing the data to be
transformed. The application thus runs smoother, information-wise.

A refinement to the data flow diagram explicitly shows how this is
supported, Figure 3.2. The transformation prepare directive is broken down into three
layers. Each transformation's refinement is contained within the dotted lines in Figure
3.2. Note that for each layer the information inputs and outputs are the same

respectively. The input to the transformation is the create command and the output is
the completed directive. In layer two, the transformation is broken down into three
transformations which are get the directive type, get the directive attributes and assign

attribute values. All the information needed is retrieved from stored infbrmation. The

48

Offective prmtoty"
Unit. Aircraft. Targat.

Mme.r Dustm etc..@ Snk

prepars muititta am. traniormWtaOn

OOlv UAW* ba, an flow d dils

Iledr Vriy Player Place
cam~wI Clcive Uaflbo

TCoretnict

a

Figure 3.1 The Restructured Data Flow Diagram.

~ Ambuto AftrbDirectiveiv

AtAttribute

Tw t tm Atceluto vsk"Aaia

Typ Ila

* A Ir b

Figure 3.2 The Refined Data Flow Diagram.

49

attribute information is wholly acquired from the PIF. In layer three, refinement of

the transformation entitled assign attribute values results in the transformations find

ranges/choices available and assign choice to attribute. In following the data flow, the

data always exists in the flow pattern and the player controls the data by selecting a

choice. The player inputs the create command, is presented a list of directives, and

selects one. That directive's attributes are presented, and for each attribute the player

is presented a range or choice of values from the PIF and selects one to assign as the

attribute's value. When all attributes have been assigned values (as required) the

directive is complete. It is in this refinement that the MIP becomes an application of

the visual interface.

b. The Conversion of SIMSCRIPT to Pascal

(1) The Data Structures. The soutce code of the MIP is lengthy and

contains a large number of data structures of the type mentioned earlier in this thesis.

There appears to be a strong correlation of these data structures to Pascal data

structures. A SIMSCRIPT set is equivalent to a Pascal linked list. An entity is

equivalent to a record or an array, dependent upon the particular entity. In most

cases, an entity is of multiple data types so a record is an appropriate structure. An

attribute is equivalent to a pointer or a variable of various types (real, double extended.

integer, character, enumerated, subrange), or possibly even an array or record,

Temporary entities are dynamically created during the course of the execution of the

MIP, thus they would be created in Pascal as an addition to a linked list. Permanent

entities exist throughout the course of the execution. These are created during

initialization and their size is known. To correlate this to Pascal, the entities would be

subscripted variables of an array of records since the size would be the dimension of the

array. While SIMSCRIPT automatically provides some pointers and flags to indicate

membership in a set or ownership of an entity, these would have to be declared as

fields of a Pascal record.

An example of this correlation is shown in Figure 3.3. In

S[MSCRIPT, the AWACS directive needed all the entities shown in the figure as

records. The Pascal version shows the linked lists, the records, and the data fields

needed to create the AWACS directive. This correlation can generally be assigned

across the board for all the MIP data structures used by the visual interface.

It must be noted that all the data structures used for VAX terminal

graphics and for alert,'error messages are not needed for the visual interface

50

• = :: .:7 i .. " ; :" .:,. .. ," .:'": ' ". '" , ;- ," :' '.. ." i: .. "," . ". '" "" ",..,.. . '-. ,, " ":' =

Records Variables

Directive Prototype Simulation Time
Attribute Prototype Latitude East
Directive Latitude West
Unit Longitude North
Aircraft Longitude South
Emitter Suite Create Routine
Sensor Package

NOTE: This does not include graphics data.

Figure 3.3 The AWACS Directive PASCAL Data Structures.

application. The data contained in these structures is necessary due to the operating

system used. The data structures necessary for the Macintosh operating system are

inherent to it or can be explicitly addressed in the code or resource files. Specifi.cally,
the entities are interval-, database, interrupt_, input-word, element-, command context,

recognized command CEP j'araieter index, long word, menu line, and held-directive.

There are also several variables not needed which generally pertain to terminal

graphics. Should any question arise about the purpose of and necessity for any

SIMSCRIPT data structures to be used in the visual interface, the reader should refer
to the source code and the MIP Software Engineering Maintenance Manual, Reference

10.
(2) The Source Code. SIMSCRIPT 11.50 was designed to support

structured progranmming and modularity as applications of software engineering.
[Ref. 1: p. il. As such, many of the coding conventions of the SIMSCRIPT language

are similar to the language constructs of the high-level progranming languages such as

Pascal. The if-then-else, do-while, and case statements are examples of condition

statements common to both languages.
Reserve, deflne, mode, and dimension are typical assignment statements

in SIMSCRIPT, but must be handled through Pascal declaration and assignment

statements accordingly. The use of boolean arguments is common to both languages

51

and the operators are the same. A brief review of the SIMSCRIPT reference would

allow any programmer with just moderate Pascal experience the ability to read and

follow the source code.

c. The Prototype of the MIP Functions

(1) The Commands. The commands have a direct functional correlation

to menu items in the Macintosh environment. The commands can be grouped by class

in nearly all cases. The classes of commands are implemented as menu titles. The few

which are not associated closely with a particular class have been loosely grouped

together into a class entitled special. In one case, a single command was categorized as

a class itself. This was the find command. Several commands are also inherent to the

Macintosh operating system. An example of this is the hold command. It is equivalent

to the Macintosh open command.

The specific menu items and their functional definitions are as follows:

" About... 4bout... prompts the display of a window containing
information about this prototype.

" Desk Accessory This command calls the specified desk accessory to begin
operation (normally on-screen) tor the user.

" Create This calls a procedure to create an action or "utility directive.
* Open Open, an operating system feature is similar to the MIP's

hold command; it opens an existing tle or document.

" Save This operating system feature stores a named file.

" Save as... This operating system feature stores a file after prompting for
and receiving a fitename from the user.

" Close This operating system feature closes an open file. The user is
given a choice, i necessary, of saving changes or not.

" Print This operating system feature prints the open file at the
Macintosh printer.

" Send Send calls the send procedure to send a directive to the game.

* Verify This command calls the verify procedure to ensure a directive
is OK to send to the game.

" Quit This operating system feature quits executing the application
when selected.

" Group Create This command calls a procedure to create a group of
directives.

* Leave This command calls a procedure to take a directive out of a
group.

* Join This command adds a directive to a group.

" Group Send This command sends a group of directives to the game.

* Time Increment This command calls the lncGroupTime procedure to
increment the execution time o the groups directives by a
certain amount.

52

" Transmit Message This command allows a player to prepare and send a message
to another player or a group of players.

" Receive Message This command allows a player to read his messages which are
in the message queue.

* Query The query command lets the player request a report from the
game.

" Graphics This command permits the player to make adjustments to his
graphics station during the course of the game.

" Find This is a class of commands to find a specific group. directive.
message or report which the player may have filed away.

" Edit This class of commands is composed entirely of operating
system commands which the player uses to edit'text. etc.

" 'Trash' This command permits the deletion of any file by "dragging"
that item to the trash can so the can is highlighted.

These commands are incorporated into the Macintosh application by

pre-coding them into a resource file. The resource file is read by the application

program and the menu bar is constructed from the data contained there. Subsequently.

any time a menu item is selected by a player, the command is carried out by the

program. An interesting feature of the menu items (and an entire menu list), is that

they can be enabled or disabled as required during the course of execution of the

program. Certain MIP commands cannot be perfbrmed while other actions are being

performed by the player. The Macintosh program can handle these situations by

disabling the necessary commands in the menus.

The maintenance of the menu items must be done in three places.

dependent upon the maintenance required. The resource file must be updated, the

menu resource declaration in the program may need to be updated, and the source

code 'o handle the menu event must reflect the changes made, as required. While this

maintenance, on paper, seems elaborate, in practice it is relatively simple in most cases

and will probably be rare as the addition or deletion of commands is not anticipated

for the game itself. The source code may change as procedures called from the

commands are added or deleted.

(2) The Directives. The directives correlation to the prototype is that they

represent information to be manipulated. Manipulation of information is done via the

window. Hence, each directive is displayed in a window. The directive attributes are

displayed as information with predefined positions in the window. It is possible (and

very probable) that they will not all be visible to the player. The player will have to

scroll to view the attributes remaining out of view.

53

I

The method of assigning values to an attribute is consistent and

straight forward. The player moves the cursor over an attribute and clicks the mouse

button. This event activates a procedure which draws a dialog window. The contents of
the dialog window are dependent upon the range or choice of values which can be

assigned to that attribute as it's value. Controls are used to make the assignments. If a

number is needed, a control called a dial control is used with minimum and maximum
values representing the range of values for that attribute. If a string is needed, such as

a choice from a list, the list is displayed and each item has it's own button control. The

player selccts the choice and that choice is assigned as the attribute value.

The attribute values all represent some data base information stored in
the individual player's functional game file called the Player Initialization File (PIF).

The PIF gets created by the game director during game preparation and represents the

only correct and authorized set of information in any given game scenario., By using
the PIF, the range:choice of values can be determined based on the conditions of

directive type. units and their missions, unit resources, resource characteristics, and
environmental data. It should be stressed that direct usage of the PIF data to popu.ate

"pop-up" windows or dialog windows is very efficient and not now being done in the

current version. By reading the given PIF data into the dialog window, a value can be

selected by the player. This is a significant change since the player no longer has to
thumb through a sometimes large "player manual" to choose data and then correctly

enter that data via the keyboard. The player can see that data in front of him,

comprehend it quickly, and "enter" the data in syntactically correct format; all by

clicking a button!

This process is repeated many times during the course of a game and is
in keeping with the refined data flow diagram design, Figure 3.2. It is natural.

consistent, and permissive (for the most part) - three fundamentals in designing a visual

interface such as this prototype for the Macintosh [Ref. 9: p. 1-27. In the following
sections, the prototype is established as an application and the reader will be able to

see how the aforementioned processes are implemented in an application such as the

MIP,

54

n J n.n.nP ...

B. THE PROTOTYPE - NIACMIP
1. The Prototype Abstraction

The prototype, appropriately named Mac1MIP, was developed to provide the

JCS managers another way to use and play JTLS. This prototype takes on a different
appearance than most programs. Macintosh documentation stresses the point that

Macintosh programs like MacMIP "don't quite look the way they do on other
systems." In Apple's words, "Everything you know is wrong." [Ref. 9: pp. 1-4,

4(Draft)]

The reason is simply that event-driven programs behave differently and have a

different structure. The first-level abstraction of MacMIP, Figure 3.4, shows the set-up

of the program.

Program MacMIP (Input, Output);

Declarations
Libraries;
Constants;
Types;
Variables;

Utility Functions and Procedures;

Menu Driven Functions and Procedures;

Event Driven Functions and Procedures;

Initialization Functions and Procedures;

Cleanup Functions and Procedures;

Main Program.

Figure 3.4 An Overview of MacMll's Program Structure.

In the material that follows, the first-level abstraction is refined into an
abstraction level that is suitable for use as a guide for coding the prototype. The

refined abstraction is a third.level abstraction and it's elements are categorized and

55

.__ ~ ~ ~ 4 _ ., ...- ,,.

their purpose defined. In fact, the third-level abstraction was used to code the

prototype version used in the code comparison section of Chapter 2. The results of

that code comparison demonstrate the desirability of continuing with the development

of the prototype from an efficiency standpoint. A complete version of the third-level

abstraction may be found in appendix A of this thesis.

a. The Header and Declarations

The header is typical of any program. It simply invokes the program. The

declarations section is again typical. It identifies operating system libraries used,

establishes global variables by type, assigns values to constants (including the

identification of resource friles used), and formally sets up the data structures.

The first significant difference from most programs is in the declaration of

procedures. These application-specific procedures are categorically grouped together.

The categories are utility, menu-driven, event-handling, initialization, and cleanup.

(1) Utility Functions and Procedures. The utility category is generally used

as a catchall for the functions and procedures which do not belong to any other

category. The utility functions and procedures and their purposes are as follows:

" Directive This procedure draws a specific directive onto the
screen. It is called when a directive type has been
specified.

* Attribute Display This procedure highlights a directive attribute,
calls a lialog box and displays the attributes
range/choice of values for sele&ion. returns the
selected value, and assigns it to the attribute. It is
activated by an event.

" Assignments This is a set of procedures which matph up to
directive types. Thev handle anomalies in the
process of-assi ninf 'Uirective attribute values to
particular .field. o" player , orders. These are
necessary since the MiP does not have a generic
algorithmi to do this.

" Verify This is also a set of procedures which match up to
directive types. Each verifies that the specific
directive attibutes are correct (outside of stan4ard
type-.checking) and are assigned to the appropriate
Neld n the directive record. Thev are called bv the
Send, Verify, Group Send, afid Group VerifY
command procedures.

R Retrieve Attribute Values This simpld. assigns attribute values to specificdirective itetds.

" Player Order Assignment This procedure creates a player order record by
assigning a directive's attribute values into s pecifi
E layer order fields in order to "match up" to the
SEP.s equivalent of a player order record. To

handle the anomalies of any specific directive, the
procedure calls the necessary assinmeit
procedure. Player Order Assienmeht is called by
the Send. Gr6up Send, Qufery, and Transmit
Message conmmnids procedures.

56

* Mail a Player Order/Message This concatenates the player order or message intoa string for.purposes of sending it as an ASCII tile
to the CEP. It is called by Player Order
Assignment.

* Quick Order Display This procedure behaves similarly to Directive
Display. It is called by the Query and Graphics
Adjust command procedures.

* Quick Attribute Display This behaves similarly to Attribute Display.

* List Control This procedure takes a list, assigns each list
member a control, and then draws thfe control into
a dialog box. It is called by numerous procedures.

* Time Dial Control This procedure creates a dial control with range
values commensurate with a minimum and
maximum time, and draws the control into a
dialog box. It returns a time value.

* Lat/Long Dial Control Tlhis procedure creates a dial control,. with
-minimum and maximum values, and draws it into
a dialog box. It returns a latitude, longitude point.

e Integer Dial Control This procedure creates a dial control, with
minimum arid maximum values, and draws it into
a dialog box. It returns an integer value.

• Real Dial Control This procedure creates a dial control, with
minimum and maximum values, and draws it into
a dialog box. It returns a real value.

* Lat/Long Conversion This function takes the starting geographic
point(SW) and the number of x y nex.s and
determines the NE point ofthe playing surface. ,It
then converts that point to lat; long coordinates ror
use as game boundaries.

* Read From VAX This procedure is used to communicate with the
VAX "by receiving.

• Write To VAX This procedure is used to communicate to the
VAX by writing to it.

* PIF Update This is used to update a wide variety of the
player's database when Mac.Mip 'is used
interactively during game play.

e Write The Status This procedure writes and updates that status
dialog window. It is called by PIF Update.

* Write the Player This procedure writes and updates the player
dialog wAindow. It is called primarily during
initialization.

o CRR Get This is a set of procedures which Let lists, times.
geographic points, altitudes. etc. Each procedure
has a direct correlation to the MIP source code.
They are called by numerous higher-level
procedures.

(2) Menu-Driven Functions and Procedures. The menu-driven category is a

collection of functions and procedures which are called as a result of a player selecting

a menu item. These functions and procedures may in turn call a host of utility and

57

operating system functions and procedures. In general, these are called only from the
Handle Menu procedure in response to an event. They are essentially used to carry out
MIP commands which are not handled by the operating system. The menu-driven

functions and procedures are:
* Do This procedure simply draws a dialog box whose contents

are irformation about MacMiP. It calls nothing.
e Desk Accessory This procedure starts up a specified desk accessory for the

player's use.
* Create This procedure issues the command to create a new

directive. It calls a dialog window so the player may
select *a directive type. When the type is cho'sen, th
Directive Display procedure is called.

* Send This procedure prepares actions directives for "mailings
and then places the orders into the mailboxes. It cads
Verify, Player Order, and Mail a Player OrderMessage.

e Verify This procedure calls a directive specific verify procedure.

e Group Create This procedure establishes a group into which directives
may Be collected.

e Join This procedure assigns an existing directive to a group.

0 Leave This procedure removes a specific directive from a group.

* Group Send This procedure prepares a group of directives for
"mailing" to the CEP and then places them in the
mailbox. It calls the Verify and Sena procedures for each
directive in the group.

* Group Verify This procedure verifies that each directive in a group can
be sent to the game. It calls the Verify procedure for
each directive in'the group.

* Group Time Increment This procedure increments the time of execution for each
directi ve in a group. It calls the CRR Get and the Time
Dial Control procedures.

9 Transmit Message This procedure allows the player to create and send a text
message to another player or'players. It calls the Mail a
Player Orer' vessage procedure.

* Receive Message This procedure retrieves a message from the player's
message queue and displays it on the screen so the prayer
may view it.

o Query This procedure, similar to Create requests reports from
the game when MacMIP is in the interactive mode of
operation. It calls the Quick Order Display procedure.

e Graphics Adjust This procedure, also similar to Create, makes adiustments
to theplayer's game graphics stations. It calls the Quick
Order D splay procedure.

e Find These procedures find any particular group. action
directive, utility directive, message, or report that the
player has filed away.

58

AN& ~

(3) Event-Driven Functions and Procedures. The event-driven procedures

are those procedures which are performed as the result of the occurrence of some

event. An event is normally a mouse click or a keystroke performed by the player.

System events, such as the movement of the mouse, are also members of this category.

Parameters of the events are examined to determine what occurred, where it occurred,

and what is supposed to happen next. In turn, the event-driven procedures are

invoked to handle the event. In a sense, these procedures are the "brains and nerve

center" behind the application's "bodily functions." The procedures are:

* Mouse This procedure identifies where the mouse was clicked and then
calls another event to handle the task to be do-ie as a result of the
click and it's location.

* Keypress This procedure handles a keystroke event, including command
keys. It may or may not explicitly call other event procedures.

o Update This procedure handles updates to the three windows of MacMIP.
It calls various procedures dependent upon what needs to be
updated.

0 Handle Menu This procedure handles the eyent of a click in a menu item and
calls the necessary menu-driven procedure including operating
system procedures.'

@ Cursor Adjust This procedure changes cursors based upon the cursor's screen
position as a result or mouse movement.

* Handle Event This procedure determines what event occurred and oversees the
performance of the task to be done as a result of the event.

(4) Initialization and Cleanup Procedures. The Initialization and cleanup

procedures are the start and stop of the program. The initialization procedure

initializes everything in the program at the start of the program's execution. It could

be constructed as a combination of several procedures but here it has been treated as a

single giant procedure with' calls to a few utility procedures. The cleanup procedure is

invoked at the termination of the game. It simply erases the contents of the screen.

logs off the VAX, and shuts down the Macintosh. The initialization and cleanup

procedures are each invoked once during the execution of MacMIP.

b. The Alain Body of MacMIP

The main body of MacMIP is a short, concise set of statements which are

the "soul" of the Macintosh. After initialization, the program performs a repeating

loop until told to quit. The loop first checks to see if any systems-defined tasks need

to be done. If so, the Macintosh does them. The loop then checks to see if any events

are in the event queue. If so, the system gets the first event of the highest priority

class and performs the event-driven task. It then repeats the loop. When the system is

told to quit, it invokes Cleanup and erases the screen.

59

- - A.

2. Background Issues of Prototype Design

There were several issues which were (and still are) challenges to fully implementing

MacMIP. The challenges primarily of interest here are the transition of an application

(the MIP) from one computer system to another of a different format and the physical

data link between the different systems. These challenges are not impassible but they

do warrant special mention so the reader understands the task at hand.

The task of implementing a prompt-based program, designed and written for a
VAX minicomputer, into a graphics-oriented, event-driven operating system such as

the Macintosh provides several challenges. First, it is not a trivial process since the

Macintosh applications do not carry out a sequence of steps in a predetermined order.

Rather, the Macintosh program is driven by user actions (such as clicking and typing)

whose order of occurrence cannot be predicted. Thus, the SIMSCRIPT program

cannot be running parallel to the Macintosh and expect the Macintosh to emulate a

VAX terminal and still function in the visual interface mode. MacMIP must be

programmed to account for the occurrence of events; the MIP's prompt-based

applications are not event-driven.

Secondly, a thorough concept of graphics capabilities is necessary to

effectively apply the visual interface to the MIP through the Macintosh operating

system. Prompt-based applications such as the MIP generally use "menus" to display

the prompts. Moving through the prompts is done sequentially due to the

application's rigid tree-like hierarchical structure; one prompt must be answered

correctly before another one can be dealt with, especially if it resides on another level

of the hierarchy.. The code to set-up the prompts and move between them is usually

rigidly structured as well. The Macintosh system does all this through the use of it's

graphics toolbox QuickDraw and the Resource Manager. Thus, any MIP source code

dealing with the CRT display is totally unusable in MacMIP. To try to transfer it to

the Macintosh would require too much source code just to negate those CRT

instructions. Simply stated, reformatting is not trivial.

The other issue of establishing a link to the VAX is also one which is possible

but not trivial. Although the exact mechanics of establishing the link will not be dealt

with here, it must be noted that the capability to link the Maciatosh to the VAX has

been demonstrated by the Jet Propulsion Laboratory, the Naval Postgraduate School's

C3 Laboratory, and the Warrior Preparation Center, among others. The reason for

mentioning it is that the Macintosh runs only one application at a time. Therefore, the

60

AN.m

instructions to link to the VAX on an interactive basis must be incorporated into

MacMIP's source code. It is also likely that the JTLS Executive Level Program must

know that a particular link and game mailbox is a Macintosh and not a VAX VT-100

terminal. With these issues in mind, the general format and design of the prototype

can be implemented.

C. CREATING DIRECTIVES WITH MACMIP

The use of MacMIP to create the AWACS directive will result in the same

directive being created as examined earlier in this thesis. The method of creating it

now has a new look. To appreciate this prototype, the reader is invited to step

through the process again.

The process begins with the player. With the mouse at his fingertips, the player

moves the cursor around on the screen. As the cursor moves across the menu bar, the

player positions the cursor over one of the menu titles and presses the mouse button.

While holding down the mouse button, the player "pulls down" a list of menu items by

dragging the mouse, Figure 3.5. As the cursor passes over the pulled-down menu
items, the player releases the mouse button while the cursor is positioned over the

create command. This constitutes an event so the Macintosh software determines what

event occurred and where, and, having recognized the event, handles it. In doing so,

the menu-driven procedure Create is invoked.

The issuance of a conmnand starts the ball rolling. First, MacMip reads a

resource file to get a dialog window, gets a list of directives the player can create,

invokes list control, and finally draws all of them onto the screen, Figure 3.6. The

player can quickly and easily see what his options are. The player can select a specific

directive type or cancel the create and quit. If the player cancels, nothing happens

except the command is canceled. Actually, the player can quit at any time without
penalty, the main window is simply erased. If the player selects a directive type such as

AWACS, Directive Display is invoked.

When Directive Display is invoked, MacMIP reads a resource file which places

control buttons in a pre-determined order, assigns an attribute name to each button,

and draws the AWACS attributes onto the contents region of the main window. As

the player clicks on any attribute, the attribute control is enabled and invokes the

attribute display procedure.

61

Appl ." ..Fie 3.en Thee M aMi M enu arae ,ci M enu Im se

Abou... Creatern Udo Cribte Tx Msg Group
I Desk I Open utJoin

Ax Msg Directive

An etrmn Save Copy Leave ouery Utility

atriuts ale.Inte aseof sqadrthiSewod be aics irsquaoswihn

Close Clear VerifyReot

Print Select All Time IncSend Duplicate

Verify

Figure 3..5 The MacMIP Menu Bar with Menu Items.

Now MacMIP determines the type of attributes (squadron, for example) clicked

on and determines te range of values or choices eligible to be assigned as the
attribute's value. In the case of squadron, this would be a list of air squadrons with anAWACS mission. MacIP then dra%,s a dialog box, with the appropriate controlsand information, Figure 3.7, and waits for the user to slect a value. Once this is done.-MacMIP assigns te value to the attribute. For example, 73 AWACS SQ would beselected as the value of the attribute squadron. The dialog box is. erased and te

portion of the directive covered by the dialog box is redrawn.
When the player selects an attribute which is a utility directive, such as Air

Route, the player has the option of referencing the air route ID or creating the air
route directive. If the first option is selected, MacMIP behaves as normally expected
for an attribute and displays a list of choices. One choice is an empty textedit box so
the player can reflerence a yet to be created Air Route. If the player chooses the latter
option, MacMIP rem,.mbers the AWACS window, invokes Directive Display again,
given a type of "air route", and draws a new window over the AWACS window.
NOTE: This is similar to the OVERMIP feature of the MIP but this is not restricted
to just three windows or limited performance of commands. With a new window,
MacMIP can perform any command allowed for an active window and it's function,

62

...~~~~~~~~~~~~~~~.•-. :. "..
,-............-..

:;".Ti ' '"-.T,,I, : : ,
,"- .; """ ' . ."

.

.....

46 File Edit Group File Special Find
The Status Line
The Player Line
Directiue Type:

1. MISSIN:)oLxxxxxx S. ORBIT LAT/ILON: ddMsom-ssD ddd-vm-ssD

2. SWADRON: o 9. SENSOR LIST: xoaoa li
3. 9 AIRCRAFT: nwWM

4. ROUTE IN: (xxxxxxxx)
5. ROUTE OUT: (xxxxx:tx)

6. ORBIT ENTRY TIM: ddgwuBZ ZttYY
7. ORBIT DURATION: ddn v.ImM

Figure 3.6 The AWACS Directive as drawn by MacMIP.

regardless of the number of windows. Practical limitations of approximately 12

windows are dictated by Macintosh operating software but the only physical limitation

is with memory space on the system. Now Air Route is handled just like any other

directive. When the player is done with Air Route, he simply saves it. The Air Route

window is erased while it's information is stored somewhere in memory. The player is

now returned to the AWACS directive window and continues to process information in

it.

This process continues on for the player at his will. lie would never have to hold

a printout on his lap to find data. It would always be available to him on his

computer ^desktop." The player would control the data yet quickly move between

different tasks of varying modes as he deemed necessary and never lose any

"document." It would always be somewhere on his desktop!

63

Edit Group File Special Find

The Status Line
The Player Line
Directiue Tqpe:

0 73rd RWRCS Sq
o 103rd RWRCS Sq

o 9th RWCS Sq

OK]Ca ncelT

Figure 3.7 The Directive with the Dialog Box.

D. THE FUTURE UTILIZATION OF THE PROTOTYPE
I. Technical Aspects of Prototype Utilization

A brief review of the methodology used is in order to shape the prototype's
future. The methodology used to develop this prototype was simple and
straightforward. The ultimate goal was established as the application of the Model

Interface Program onto the Macintosh operating systcm. The process of doing this
can be mapped out in steps. First, understand the MIP operations, i.e. what it does.
Then understand the SIMSCRIPT program language and how it operates on the VAX
minicomputer. A collateral task is to understand the Macintosh operating system, it's
capabilities, and the programs it uses well. Then the task is to understand the design

and structure of the MIP and correlate it into a design using the visual interface. Once
this is done, the next phase is to translate the design concepts into a code-like format
so the prototype takes on a realistic look. This is the point where the prototype
development is now.

64

In getting the prototype to this point, much of the original source code was

examined to determine how the MIP works. In doing so, it became evident that much

of the logic and algorithms used would be effective in MacMIP. The reason is that the

"behind the screen" manipulation of information by the MIP is fairly effective so there
is no reason to re-invent the wheel. It is the format and presentation of the data which

sparked the idea for the prototype in the first place. With this in mind, it becomes self-

serving to use that code in this prototype. This is evident by the references made to

specific MIP modules in the MacMIP psuedocode. An underlying premise is that the
development and production of MacMIP would be considerably shortened compared

to a full re-design.
There were numerous ideas borne out of this development with regards to

future prototype development. One idea mentioned earlier was that of placing
individual directives into resource files. This would speed-up Macintosh operations

and provide A cleaner, sleeker display. The better the graphics, the better the visual

interface. The MIP currently reads in all commands and all of the various directives,
queries, adjustments, etc., from a database. The database is not expected to change

significantly over time so maintenance and currency should not be significantly

impacted upon. While the MIP currently reads the data in based upoh player function,
the same school of thought could apply to MacMIP. The answer is to have a separate
diskette per function and simply load that function's diskette into the Macintosh when

that function is used. One advantage to this is to effectively utilize memory space.

Another advantage, for game management, will be addressed shortly.

A second idea, which follows the lead of the first, is to place each player's PIF

on a separate diskette as well. The PIF is developed by the CEP upon initialization of

a scenario database. Since the PIF doesn't change unless the scenario does, it is

feasible to pre-load the PIF for each scenario used. A separate diskette per function

per scenario would allow great flexibility in the use of the prototype. An extension of
this advantage would be that only the function affected by a change to a scenario

would have to be updated. This idea would also save machine memory space, a

concept which closely relates to the way JTLS already reduces CPU input;output by
using video disc digital graphics.

Another feature of the MIP which has not been addressed in the prototype is

the system capability for the expert player. Presently the expert player can type all the
directive data into one string in a predetermined order (this is called stacking), enter it,

65

I

and have a complete directive. This capability is a natural for a prompt-based

application. However, with the Macintosh and the visual interface format in use, the

stacking capability is a diametrical opposite. As such, it was not designed into the

prototype. To fully realize the potential of MacMIP, this capability should be

incorporated into MacMIP as a text edit faculty.

Finally, an aspect of development to be considered is a total re-design of the

MIP. The key issue ,ith the MIP is it's ability to communicate the player's intentions

to the game. This is done by passing ASCII data between the two programs.

Therefore, the MIP could manipulate it's data in many different ways just as long as

the file passed was in proper order and format. Consider first that SIMSCRIPT is a

modeling programming language. The MIP per se models nothing. It is written in

SIMSCRIPT to be consistent with the other JTLS programs. Instead of being a model

which generates data, the MIP simply manipulates data. Since the MIP manipulates

data, consider the possibility that there is a more efficient method of manipulating that

data. That method is a data base management system (DBMS). Several excellent

systems exist which were designed expressly for the Macintosh. One of these or a

specially designed system might do a better job of dynamically manipulating the large

amounts of data used in JTLS. If a decision was made to use a very capable

workstation, such as the SUN or IRIS workstations, for a future generation JTLS

input device, a DBMS system coupled with a windowing and resident color graphics

environment becomes a very attractive system option. A single workstation could

easily function as a graphics station and M IP substitute.

2. Managerial Aspects of Prototype Utilization

JTLS was originally developed with military training in mind. As events have

transpired that original premise has been overcome. The issue of computer simulations

used as planning aids has come to the forefront. With the proliferation of the desktop

microcomputer, prototypes like MacMIP take on increased importance. One

important reason is found in the methods used by planners to test various strategies

and tactics. A planner develops a strategy and then must test it for feasibility. If the

planner could prepare in advance all of the missions expected to be used for a given

strategy, then the planner could do all that work in his office where all his references.

working papers, etc., are located. When the planner tests his plan, it is done in the

computer laboratory. Using a portable system of diskettes from a desktop computer.

the directives could be transported (so could the Macintosh for that matter) to the lab

66

and loaded into the game. This would save a considerable amount of time for the

planner as the game could be played faster, more repetitions could be run with more

variations of game parameters, and a greater spectrum of outcomes realized for

analysis of plan effectiveness.

A reason of secondary importance is found in the basic premise of the visual

interface. It is geared toward the casual user. The military planner is not a computer

systems expert by trade. The planner's expertise can range from the novice category to

the expert. By designing and using a system like the Macintosh, with it's visual

interface, the needs of all users can be met. One can assume that even the expert is

not likely to use JTLS on an everyday basis over an extended period of time. With so

much diversity in a planner's work, it would be easy for even the expert JTLS

gamesman to lose his grasp of the game's nuances. With a continual change of

scenarios, the data used by the player would change and further compound the

problem of maintaining game skills. The prototype would quickly return the planner

to a high level of effectiveness in game skills, or quickly train the planner new to JTLS,

du. to it's graphical orientation and it's ease of use. If correctly designed it will also

reduce input error rates at all stages of training of the player-analyst or player-planner.

67

i*

IV. CONCLUSIONS

The original purpose of this thesis was to examine enhancement of player inputs

to JTLS through computer graphics techniques. The overall result of the examination

is that a graphical application of the game is a very efficient and a desirable method to

effect player inputs. This result is supported by positive use of human visual

information transfer, the ability of computer software such as window management

systems to convey this information, and the capabilities of hardware such as the

Macintosh operating system. Symbolic association has long been recognized as a
positive method of communication. The use of computer graphics is a logical

extension of that school of thought and has found an application in window

management systems. The windowing capabilities in the Macintosh, when compared

to the prompt-based VAX, show a distinct advantage in providing ease of player input

and, at the same time, indicates a potential savings in the amount of code necessary to

perform the. same operations on the VAX. The results of this examination fully

supported the development of the prototype.

The prototype design shows how to improve the current methods of effecting

player inputs. The design of the prototype incorporates the advantages mentioned

above. The design identifies the areas of the Model Interface Program most in need of

enhancement and then breaks down the functions of each area by correlating them into

visual (graphical) objects. The design also identifies a very capable language (Pascal)

for coding such a prototype and correlates the original SIMSCRIPT source code (data

structures, logic, and language constructs) to it.

This road map of design leads directly to the pseudocode abstractions. These

abstractions show that the coding of the prototype is possible and goes so far as to lay

out the program's skeletal structure. The categorization of MIP functions allows for

explicit definitions and routines of MacMIP which in turn perform the MIP's

functions. The road map allows for a total rewrite of the MIP. The next step to be

taken in the design process is to actually begin coding. Although a total rewrite is a

large undertaking, and beyond the scope of this thesis, it is the most efficient and

economical method of implementing the graphical enhancements.

68

In the case of the Macintosh, the powerful capabilities of the microcomputer

would be lost if it was coded to simply emulate a VAX VT-100 terminal. Then the

Macintosh graphics would not provide any true enhancements to the player input

mechanism. Also, while the psuedocode was written with the Macintosh in mind, it is
purported to be general enough to provide decisionmakers a basis for which to apply

the MIP functions to other graphics-oriented window management computer
workstations. Indeed, the proliferation of low-cost microcomputers with graphics

capabilities give the prototype increased credibility.

In summary, the prototype can be a valuable tool to JTLS managers in the near
future. The design is generic enough to apply to any window management system but

is ready to be coded for the Macintosh. The best of the original source code has been

applied to the prototype to aid quick implementation. It's use in a desktop, office

environment will provide the manager greater flexibility in utilizing JTLS to it's full

capability and worth.

69

I .-.*

APPENDIX
MACMIP: THIRD-LEVEL ABSTRACTION

-------- ==:===:=== = HEADER %~m*% -------------

Progrm MasouiP (Input pOtput)

--------------------- ----- --- *. DECLARATIONS (of the globels) Z..

* Operating System Functions **

I9R "J) Crane checking, on/off
(") ±inpu4t/output error athecir, on/off
(10 <filermm>) *inclusion of filets)
(t "a ") *bundle bit, on/off
(4R <filnme>.Rsrc) *identify resource files used
I T APPLDMO1) *set application identification
1$U±)*auto-link to runtime units, on/off
(S " u) se of segmented code, on/off
I S Csagment nam>) e of segmented code used

5M* Mcintosh Interface Units *0*

LOmS
PasInOut *Implements the standard Pascal input/out-ut (I/O) routines.
HemTypes *Uefines special Macintosh data types and must be in any ac-style

application.

4uickDraw *The Macintosh graphics package.

SCSIZntf *Provides access to interface port and permits communications with
the port.

OSIntf *The operating system interface which performs lowest level basic
tasks.

TooIntf *Implements the user interface features of windows, menus,
controls, dialog boxes, text editing commands, etc., and must be
in any Ma-style application.

PackIntf *The interface to packages of dota structures and routines which

are stored as resources.

MeaPrint *Provides access to Macintosh printing mariger.

(*0 NOT USED- Any of the following may actually be needed when MacIP is actually coded,
however, they do not appear necessary at this time: PasControl, PasPrinter, SANE,
Filxsth, Gref3d, AppleTalk, SpeechIntf. *)

:=:===------------:*===*=*:*Constants, Types. end Variables

CONSTANTS
Menu List Count a 6 *total n -er of menus
Apple M& n xx *the resource
File M N exx *1D unique
grof file Menu xx *to each
Edit Menu *speci fic
Special Mi xx wmenu file
Find Mew =xx

AM a x *index

70

- C 7*t*.<**-*~ 2 ..v

An.-

CH X * into
E M x " m e n l i s t
Sm X *for

M in Window ZD a ote

u

Status Window ID ax, m ,ithe roeurec
Player Window ID a xxxx ftriu to each
Attribute Window aD x xxx *Seiioc

"window used
Buffer Size % xxxuffer Count a xx *for disk i/O

*for disK /O
TYPE

Player File - RECORD of
PF Concat.F char
PF Suffix char
PF unit integer

Player a RECORD of
PL side

charPL side number integer
PL function

charPL function no. integerPL receives input : integerPL graphics station : integer
Mailbox RECORD of

VBX logical namm chr
MBX size integer
VBX channel. integer

Message RECORD of
Me5 status : integer
M0 text : char

Unkit a RECORD of
UT Pointer

integer
I" namre: string

UT short nameUT type : string: integer
UT As aircraft av ilabl, : integerUT AS aircraft type : integerUT side

: integer
Diretive RECORD of

DIR ID
" charDZR unit 1 charDIR unit Z charDIR uit 3 : charDIR unit 4 charDIR target I : char

OIR target 2 charDIR let 1 t double extendedDIR It text: charDIR Ion 1 a double extendedDIR ion 1 text :cm

DIR let 2 caDIR let z tex double extendedDIR let 2 text :ce
DIR Ion 2 scharDZR Ion 2 tt double extendedDIR ion Z text :charDIR time double extendedDIR time text charDIR duration

double extendedDIR duration text charDIR generic I text charDIR generic z text : charDIR generic 3 text char

71

--

DIR generic I integer : integerDIR generic i Integer
DIR generic 3 integer 2 integerDIR generic 4 i integer
DIR generic 1 doubla : double extendedOIR generic 2 double : double extendedDIR generic 3 deable : double extendedDIR generic 4 double : double extendedDIR generic 1 Ipointer integerDZR generic I Tpointer integerDZR generic I Opointer integer

Attribute Prototype N RECORD ofAP prompt
stringAP field code stringAP arguments string stringAP rar integer

Directive Prototype a RECORD of

OP long name stringOP short name stringOP meaning sringr
OP CEP class integer
OP assignment routine integer
OP verify routine t integerOP attribute prototype itrry i to 12) of RECORD
OP number attributes integer

Qick Attribute Prototype = RECORD of

GAP prompt : stringQAP create routine : integer*QAP arguments string : stringQAP conversion type integerQAP PO word integerRAP all flag integer
Quick Order Prototype * RECORD of

" context
integerQOP full name stringQOP numeric name : stringQOP CEP class S integerQOP CEP specific type : integerQOP CEP nuer : integerQOP mesese:
integerQPUP

: array (I to 4) of RECORD
Air NMae RECORD of

AN um
: stringAN X air grond : realAN X weapon weight : realAN X supply category : realAN X night factor : realAN X Wetsther. factor : realAN X wean color : realAN X weapon effects : realAN X long range : realAN X Precision guided : realAN X weapon speed : real

Aircraft * RECORD Of
AC name

: stringAC X range : realAC X day night realAC X crew time realAC X fuel
realAC X weather factor : realAC X rtunay required realAC X type
realAC X wet weight S real

72

*. o .. ,. , .. .

.w

AC X dry weight reel
AN X EC factor real
AC X max altitude real
AC X speed 2 realAC X lcad time " real
AC X aircraft side realAC X demage ratio r-eal
AC X refuel realAC X spare real
AC X enemy detection real
AC X engage fuel reel
ANXAl range real

Supply Side, Supply Category a RECORD of
SS name string
SS units string
SS multiplier real

Function * RECORD of FN name string
Unit Type * RECORD of UTP TEXT string

Target Type z RECORD of TTP TEXT string
Emitter Suite 2 RECORD of ES name string
Nord Indicator a RECORD of Nrd Znteger integer
Sensor Package : RECORD of SP name string

SP number integer
CRRGet Routine a RECORD of Create Routine . integer
Associated Directive N RECORD of AD dir 1D : string

Month a RECORD of
Mth name string
Mth length integer

Order Record a RECORD of
OR time text string
OR time real
OR OP meaning integerOR status string
OR Message string
Associated Directive RECORD

Player Order RECORD of
PO class : integerPO specific type : integer
PO unit : integer
PO time effective : realPO word 1 integer : integer
PO word 2 integer : integer
PO word 3 integer : integer
PO word 4 integer : integerPO word S integer : integer
PO array I pointer. : integer
PO array 2 pointer integer
PO array 3 pointer Integer
PO array 4 Pointer integer
PO array S pointer integerPCsword I reel double extended
PO word 2 reel : double extendedPC word 3 real : double extended
PO word 4 real : double extendedPO word S real : double extended
PO word 1 text char
PO word 2 text char

73

Target a RECORD of
TR pointer : integer
TR rumer : string
TR name : string
TR type : integer

VARIABLES
Date Stamp,
Status Line,
Special Status,
Player Line,
User lop
Simulation Time Text,
Scenario Name,
Came Classification,
Supply Field char;

A1P Flagp
Starting Day,
Starting Nonth,
Starting Year,
No of Login Builds,
Air Refuel Index,
Supply Nidth,
Supply Precision,
Sun Status,
Number X Hexes,
Number Y Hexes integers

Simulation Time,
Supply inimum,
Supply Maximum,
Let Hex One,
Long Hex One
Lat East
Let Nest
Long North
Long South real;

----- ----- ----- Utility Functions and Procedures

*These subroutines may or my not be representative of original NIP logic. If there is a
correlation, then the 4IP subroutine 1D will be annotated within brackets to guide the

programmer to that original source code.*

Directive Display s

%This display is called from a resource file, develops a specific directive's display, and
tiraws it into the main window.*

Given a OP meaning;
Read the resource file for the generic directive display;
For each static item dos

index I from 1 to 121
Get attribute prototype of OP meenings

index J from 1 to N; UN is the number of attributes
for the given OP mening.

For I a J dos '

Change the static text to represent AP prmt and AP field codse
For each I > N doe

Hide the static item so it can't be seen or a bled;
Now draw the display into the min windows

End Directive Displays

Attribute Displays

74

, ."'i. ' " ' " " ''" " ': " ;:[," " ' ",' ' '' :: "
'
' ." .- " " ',' " ' " " ' " " " " , '" ' ' " "',":"., ,- -. " . •

*This is activated whim a directive attribute is highlighted. It determines whet type of
attribute it is, guts the appropriate type of control, gets a range/choice of eligible
values, and assigns each of them a control. It then draws the control into a dialog box
onto the screen. Hhon a particular control is activated, that value is assigned to the
attribute variable.*

Given AP(J) with a OP Meaning;
Read a resource file for the dialog box;
for AP create routine .1J) do CRRGet; [11001

Case of (1 to ZS); *et the appropriate create control routine
Draw the dialog box with the eligible values and their controls;

For activated dialog box assign a value to word)
*Of Nord Integer of AP(J).

End Attribute Displays

Ass ignments

*This procedure handles the anomalies found when assigning directive-speoific attributes
to the Player Order fields. All AIR directives (OP meaning 301 to 399) use assignment 300
as wll as their own specific assignments.*

Given a OP meanings
Invoke assignment.OP meanings (A101 to A104, A106, A123, A200 to A227, A300, A306,

A312 to A314, A401 to A407, ASO1 to A503, A8001

End Assigrment;

Verify;

*This procedure verifies that certain directive-specific assigrmonts were made before
allowing the Player Order to be sent to the CEP. The first pert of the assignment chocks
for the existence of a referenced utility directive and the remainder invokes the
directive-specific varifications.

The send flag is not set;
Given a OP meanings
For ech utility direotive in directives

Determine it exists:
No : Draw an error dialog box to alert the players
Yes : Then go on;

If utility directive is weapon load;
Determine weight of load for Aircraft is OK:

No : Draw an error dialog box to alert the player;
Ye : Then go on;

Invoke verify.DP meaning; N 2lO1. V104, V106, V123v V200 VZOZ to V209, V211 v'21'
V217, V218, V222, V225, V300, V306, V312, V401 to V407,
V5Ol, V8001

End Verifyo

Retrieve Directive Attributes) IU0191

*This procedure assigns a blank string to attributes with "Null Entry" as values. This
permits acceptable formatting of the Player Order.*

Given word integer;
Case of that word;

End Retrieve Directive Attributes;

Player Order Assignments [AO001

75

*This procdure assigns directive common attributes to specified Player Order fields.
Given a OP meaning it then Invokes that directives specified assigmmnt.10

Given Directive with OP meaning;
PO class a OP CEP class;
P0 specific type * OP meaning;
PO time effective DIR time;
PO word 2 text a DIR ID;
If DIR unit I namm 9 Null Entry;

For UT short rame v DIR unit 1 red;
Let PO unit a UT pointer;

Invoke Assigrment.DP meaning;

End Player Order Assignment;

Haill the Player Order/Messages [U018

*This procedure concatenates the Player Order into one string of char for purposes of
sending it to the CEP. After the Player Order is mede, it is reed to port. This is done
by inv iing Nrite To VAX. Then the Player Order is reset to 0.*

Given a Player Orders
For directive with OP meaning x 101;

Increment No of Login Builds;
Convert all integer and real values to character;
Concatenate all Player Order fields into one string) *This is knewn as a message.
Determine that the message will fit into the mailbox:

No : draw an error dialog box to alert the players
Yes If message is directive then;

OR time text : Simulation time text;
OR OP meaning : DP meanings
OR unit a DIR unit I name;
AD DIR 10 a DIR D)

.File Order Record;
If mode is "on-line" put the Player Order message into the mailboxi
Reset Player Order x 0; *For the next time.

End ail the Player Order/Message;

Quick Order Display;

This procedure is similar to Directive Display but on a smller scale.

Given a QOP context;
Read the resource file for the generic displays
For each static text item dot

Index I a I to 6s
Get Quick Attribute Prototype for GOP context;

Index J a 1 to Ht *N is the numer of attributes.
For I a J do;

Change the static text to represent GAP prompt;
For I > N do;

Hide the static text so it can't be seen or enabled;
Now drm the display into the main window;

End Quicik Order Displays

Quick Attribute Displays

This is similar to Attribute Display but on a smaller scale-

Given APIJ) with GOP context;
Read the resource file for the dialog box;
For RAP Create Routine (J) do CRRGet:

Case of I1 to 25) : Do Create Control; *As appropriate.
Draw dialog box with eligible values and controls;

76

End Quick Attribute Prototype;

List Control;

'This procedure develops and draw a dialog box with controls for each item in the list.
it returns a value of char.*

given N ntmber of items in list;
If List is multiple entry then

Assign a check box for each item;
Else

Assign a radio button for each item;
Map item to graphics position;
Draw the dialog box in the main windows

End List Control;

Time Dial Control;

'This procedure develops and draws a dialog box with a scroll dial to return a value of
time. Minimum time always a 1 minute.*

Given maximum day value;
Given game minim's time; *If time is for "Duration" then game minimum time = 0

since the value needed is a block of time for incre-
mental purposes.

Determine minimum and maximum values for the control:
Minimum value a game minimum time + 1;
Maximum value a game maximum time + maximum days;

Draw a scroll dial using minimum/maximum values;
Current value is minimum value;
Format is 2 places for days, 2 places for hours, 2 places for minutes;

Return a time value; *Usually is converted to a real number in terms of days.

End Time Dial Control;

Let/Long Dial Control;

*This procedure develops and draw a dial control onto the dialog box to return geographic
points. Only degree fields must have values. Direction value in text converts :f for
real values of lat/long.*

Given a minimu and maximu value; 4Usully the game boundaries.
Determine the nuaber N of points to be ade;
Draw a scroll dial with minim/asmaximua values;

Current value is minimum value;
Format is 3 places degrees, 2 places minutes, 2 places seconds, and I place

direction; 'For lst the first place has a value of 0.
For N points do;

Enter a latitude;
Enter a longitude;
Convert all points to real values;

End Lat/Long Dial Control;

Integer Dial Control)

'This procedure develops and draws a dial control in a dialog box and returns an integer
value.*

Given a minimum and a maximum value;
Drew a scroll dial with minimum/maximum values;

Current value is minim's value;
Format is 5 places;

Return an integer value;

77

- -.. .S - -

End Integer Dial Controlj

Real Dial Controls

*This develops and draws a dial control with minimum and maximum values and returns a real
value.*

Given minimm and maximum values;
Current value S minimu values
Format is 9 places with 5 decimal places;

Draw a scroll dial with minimum and maximum values;
Return a repl value;

End Real Dial Control;

Let/Lang Conversion;IU0l3, U014, U015, U0161

*This develops the game surface bounmries in terms of latitude/longitude for use as dial
ranges *

Given Let Hex One, Lon Hex One, Number Y Hexes, and Number X Haxes;
Convert to Let Hex X, ion Hex Y;
Convert hexes to coordinates;

Results in Latitude East/Mest and Longitude North/Southi

End Lot/Lon Conversion;

Read From VAX;

*This uses the RS-232 port as a device and reads an ASCII file from the device if
something is in the buffer. The buffer must be checked periodically.*

End Read From VAX;

Hrite To VAX;

*This writes an ASCII file to the RS-232 port when celled to do so by the Macintosh. It
contains protocol information for'the VAX and Macintosh to communicate.*

End Write To VAX;

PIF Updte; (CEP Process]

*This reads a mssage from the CEO, determines it's type and subtype, and take the
necessary actions depending upon the type.*

Reed From VAXs
For mossage type cose of

1I) Message : do
increment queue by 1;
file message in queues
Nrita The Status given queuel

(Z) Time - do Write The Status given times
(S) Interrupt pending : do Write The Status given special statues;
46) Target : do a nie target record;
(7) Game speed : do Nrite The Status given game speeds
(3) Stop password change the password)
19) PIF updates case of subtype :

(1) Aircraft available : find the unit, change it's numbers
(2) Cargo trucks available find the unit, change it's number;
(3) TanKer trucks available Find the umit, change it's numbers
14) Aircraft characteristics change the aircraft's ricordw

(U0281
(5) Air weapon characteristics change the air weapon's records

78

[U0291
16) Personnel weight change the personnel logistics load records
17) Aircraft rame change the aircraft's ramse
(8) Air weapon name change the air weapon's name;
(9) Sensor package name change the sensor package's names
(10) Emitter package rame change the emitter package's name;
(11) Supply category :change a supply category's record;

(10) Sunrise-sunset : do Write The Status given sunstatus;

End PIF Update,

Write The Status

This procedure develops and draws the status window and the information it contains.

Given queue, gam speed, starting time and date, and special status;
Read a resource file to get a dialog window;
For eah static text, change the static text to the necessary value)
Draw the dialog box;

End Write The Statue)

Write The Player;

This procedure develops and draw the player window and the information it contains.

Given classification, player function, scenario name;
Read a resource file to get a dialog window;
For each static text, change the static text to the necessary value;
Draw the dialog box;

End Write The Player;

CRRGet Procedures;

*Those procedures get certain information for attributes and directives. Each gets some
specific information, thus they are listed along with their HIP module number.*

Get an 1D [UIOLI'

Get a Duration [Ul10
Get a Lot and Long [U1221
Get a Now Target Name IU1061
Get a New Target Number [UIOSI
Get a Real Humber [U1141
Get a Route (U1151
Get Additioral Route Info EUOZ6
Get a Runway Name [U1241
Get a Sensor List [UIl8
Get a S pply Changes List [Ul2]
Get a Supply Load [U1161
Get a Target Name IU1041
Get a Target Types List CU1231
Get a Targets List U1131
Get a Time CU1091
Get a Unit Name [U1031
Get a Units List [UlZ]
Get a Heam Load IU117)
Get an Emitter List CU1191
Get an Integer [(U1121

End CRRGeti

----------- NNNNNx*t Menu Driven Functions and Procedures

79

-.

Apple Merw Functions and Procedures awe

Do About;

*This procedure simply tells the user some information about MacIIP,.

Read the information needed from resource files;
Put together a string of parameter text;
Get the dialog box and put it ups
ihwn it has been read, got rid of it;

End Do About;

Do Desk Accessory;

This gets the selected desk accessory and starts it up.

Save a port for the desk accessory;
Get the desk accessory nmes
Start the desk accessory;

End Do Desk Accessory;

F5* File Manu Functions and Procedures

Create; Comma(nd) of COOO

This procedure determines what directive to build and does it.

Determine the.directive type (Action or Utility); [C001]
For type selected put up a dialog window with list of OP mpanings;

Given list do List Cont' Dl;
Return the selected value a OP meaning;
Dispose of that window;

Given OP Meaning do Display procedure; [C0O2]
For each attribute highlighted do Attribute Display procedure; *Get a value

for the

attribute.
Do Retrieve Directive Attributes procedure;

End Create;

Send; Comon(101) of CO01

,Snds only action directives, not previously sent, to CEP. The file sent must be open in

Given OP meaning do Verify procedure;
Check verify flag case of:

Not set : verify and set flag;
Set : go on;

Do Player Order Assignments
Mail the Player Order/Message;

End Send;

Do Verify; (Command(106) of COWO0

Check verify flag case of :
Sat i Tell player that directive is OK;
Not set : For OP meaning do Verify procedure;

End Verify;

80

'.5----

Group File Mnu Functions and Procedures **0

Group Create; (Commnd5l1) of CO0D]

This procedure creates a group of directives.

Get a unique ID for the group;
List the action directives which do not already belong to a group; [C1031

0o List Controls
Return a value;
Place the selected directive in the group;

End Group Creates

Joint (Coamand(109) of CO00

This procedure adds a directive to a group.

Given en open directive put it into an existing group; [C1031

End Joins

Leave; IComand110) of CO00O

This procedure removes a directive from a group.

Given an open grop and a list of it's directives; [C1041
Do List Control
Returned value is selected directive;

Remove selected directive from groups *It will stad alone.

End Leave;

Groip Send; tCommnd(54) of COO0

This procedure sends a group to the CEP by sending a directive at a time.

Check group to ensure Oirectives with OP meanings 310 and 800 aren't in the group at
the same time; [C0091

Yes remove one of themI
No then for each DP meaning do Verify;

Nhen all are verified do for each : Sed; One at a time.

End Group Send;

Grop Verify; [Co .. nd(Sa of CO00

This procedure verifies a group of directives.

0o Verify procedure for ach directive in group; (CO09
Except if DP meaning - 800; "Verification not done on Air Mission Package.

Set verified flag;

End grow Verify;

Group Tim Increment; (Com=nd(S9) of COO0

This procedure creates a block of time to add to a group.

Check group directives for DIR Time Text : 0 and DIR Time Text "A Hull Entry;
ICOlO)

If so for that directivels) increment DIR Tim and DIR Time Text;
Do Tim Dial Control;

Return a block of time;

S1

-

End ar. Time Increment;

55* Special Minu Functions and ProceKures

Transmit Message; [Command(S) of Coo0]

This procedure allows the player to create a text message to send to another player.

Select Player(s) to send message to; [Colo]
Includes "all", "all Blue", "all Red";
From is entered as Player's furction and side;

Enter message as a text string;
Enter "//" To indicate the and of the messages

Invoke Player Order Assignments
Invoke Mail the Player Order/Message;
Do as a repeating loop to place into each mailbox as required;

End Transmit Message;

Receive a Messages ECmand(l4) of CO00

*This procedure is invoked only when their is a CEP message in the queue. It pulls out
the CEP message on a FIFO basis for the player to read or print.*

Read message file for first message; [C0061
Dr'a- , that message to the main windows

End Receive a Message;

Query; [Colmmnd(13) of COO]

*This procedure creates request for the CEP to send a progress report to the player. It
is similar to creating a quick order.*

For QOP context z 90 invoke Quick Order nsplay; [CO17]
Do List Control to return the type of report;

Given a report type do Quick Attribute Display;
Do Player Order Assignment;
Do Mail the Player Order/Message;

End Query;

Graphics Adjust;

This procedure makes adjustments to the player's graphics station.

For QOP context a 98 invoke Quick Order Displays IC0171
Do List Control returning the type of adjustment;

Given an adjustment type invoke Quick Attribute Displays
Do player Order Assignment;
Do Mail the Player Order/Message;

End Graphics Adjusts

*5 Find Menu Functions and Procedures se

Find Group;

This procedure invokes the operating tystem finder given the type of "group".

End Find Grosip$

82

it
.. - ,mmm.-----. ,..., .II I

Find Directives

*This procedure invokes the operating system finder given the type of "type of
directive" .*

End Find Directives

Find Utility;

*This prcedure Invokes the operating system finder given the type of "type of utility
directive" .*

End Find Utility;

Find Message;

This procedure invokes the operating system finder given a type "filed messages".

End Find Message;

Find Reports

This procedure invokes the operating system finder given a type "filed reports".

End Find Reports

---------- - Event Drive. Functions and Procedures

Hous&b Click;

This identifies where the mouse was clicked and invokes the necessary procedure.

For location case of • *Someihere in the ein window.
Menu bar Do Handle Menus
Content Do Handle Click *In the min window to handle the attributes.
Close box Do Handle Close
System window : Do System Click "This is a click in a desk accessory.

End Mouse Click;

Keypress s

This handles the event of any keystroke including the use of comend keys.

End Keypress;

Update;

"This invokes the necessary update procedure depending upon the event."

Case of :
Status wind Do Write The Status;
Player window Do Write The Players
HMin window

Get the new informtion to go into the cmntents;
Eras. the current contents;
Draw the noe contents in it's places

End Update;

Handle Event;

83

This datarminas what event occurred and handles it.

Cass of
House click Do House Click;
Key dowtu: Do Keypresss
Autakey: Do Keypress;
U~ats eet t :Do Update;
Activate event :Do Activate;

End Handle Events

Cursor Adjusts

*This changes cursors based upon the location of the cursor an the screen. These are
applicaticn specific changes, not those made by the operating system. These my not be
Wse for lbcIP but is includad hare Just in case.*N

Do Choig to cross# arrow, plus;

End Cursor Adjust;

Handle HMau

*This procedure handles the event of any menu item being hit and invokes the necessary
action to take place.*

Case Peu of
Apple Manu -Case of

About Do About$
DesK Accessory Do Desk Accessory;

File Menu Case of
Create Do Create$
Open operating system feature;
Save operating system feature;
Savo As... operating system features
ClO$* operating system feature;
Print operating system features
Send Do Send;s
Verify Do Verify;
Quit operating system features

Group Menu :Case of
Create :Do G.ot Create;
Leave :Do Leaves
Join :Do Join;
sawnd Do Grou~p Send;s
Verify :Do Grou~p Verify;
Time Increment :Do Increment Group Tim;

special Menu :Case of
Transmit Massage Do Transmit Message;
Receive Maossae Do Receive Message;
Query Do query;
Graphics Do graphics Adjust;

Find Menu :Case of:
group Do find Group;
Directive Do Fin~d Directive;
utility Do find Utilitys
Message Do Find Moesage
Report Do Find Report;

Edi t Mow: Casseof:
Unhdo toperating system feature;
Cut operating system feature;
Copy operating system features
Past* operating system featuresI
Clear operating system features
Select All operating system feature;
Cleer i operating system feature;

84

ILa A..

End Handle Meous

Initialization Functions and procedures

Initializationi

*This Procedure initializes the various Macintosh managers, variables. and procedures. it
also initializes the PIP by reading in the appropriate database information.*

Initializes
OrafPort, Font, Kir 1"s, Menu,. Text, Dialog,. Events Managers.
Cursors;

Hindowss
Variables;

Supply Field a I".wvwwv.nnII$
Supply Min a 0.0;
su.pply Max a 999999999.99999;
Su~pply Width z 15;
Su.pply Precision S ;
Month (1 to 12) =Jan. Decs
Month Length (1 to 12) z 31.-31;

Load database information; [10001
Write to VAX;

"Open E .datalmiscel.dat"
"Read E data Iuiscal.dat"

Repd From VAX;
Stor* data into appropriate files;
Write To VAXs

"Close C .datalmiscal.det";
"Open I .dstalexecutive.dat;s (10011
"Read C .detalexecutive.dat")

Read From VAXs
Write To VAX;

"Close C .datalaecutive.dat"s
"Open C.dataldrotvs<funsction nuaber>.dat";s (10032
"Read C .data Idrotvs<funct ion nu.sder> .dat";

Read From Vax;
Write To VAX;

"Close E data ldrotvs~funct ion nuainiar>.dat";
"Open (.datalalldrctvs.dat";& E10031
"Read (.datalalldretvs.dat's

Read Prom VAX;i Writ* To VAXs
"Close I.datalalldrctvs.dat;
"Open f.data lquick<function nunber>. dat";s
"Read I. data Iquickcfu.action n%,mvber.datII; (10031

Read From VAX;
Write To VAX;

"Close (.data Jquick'function nwmber> .dat;
For MIP moeU"on-line";

Write To Vaxi
Call VAX 'SYS$CREMSX; *ECreate the inilboxes.113O21
Read From VAX; *Get the mailbox names.

Load the PIP; [10031
Write To VAX;

Given function numaber aid type of gam $.Starts.;
"Open PF.LhnitE filetype)";

Read From VAX;
Rea game class, starting day, starting month, starting year;
Latitude/Longitude informations
Unit names ,types, anod resource informa.t ion;
Target names, types, numabers;
Supply side/category names, units, multipliers;
Aircraft informations
Air weapon informations

85

ene.Or Packae informatian
Emitter suite inforumtiono

Nrite To VAX:
CIO"e PF_%nt(fJil_type)

End Initialization$

.. .. --- % C L E A N U P -= .=

Cleaenrp
This procedure simply erases the scron Ouln the gme is finished, logs off the VAX, andshuts down the Macintosh.

End CleanupI

MAIN . 1F AMP
BEGIN MaaNIP;

Call Initializationj
RePeat until finished;

System Task; *For desk accessories.
Cursor Adjust;If GetNsxtEvent(everyEventtheEvvnt);

*If there is an event...Then Handle Event(theEvent); ... then do it.Call Clearp; *4hen finished.

END MIs mIP,.

86

OL 6 -A

LIST OF REFERENCES

1. Russell E.C Building Simulation Models with SIMSCRIPT II.5, CACI,
Inc.-Federal, Los Angeles, California, 1983.

2. Contingency Planning Subtask, Joint Theater-Level Simulation, Executive
Overview, Jet Propulsion Laboratory, Pasadena, California, 1986.

3. Fredericksen M N. Aiding Computer Application Programmers and Users with the
Tools of the Visuial nterf*ace, M.S. Thesis, Naval Postgraduate School, Monterey,
Calitornia, March 1986.

4. House W.C. Interactive Computer Graphics Systems, Petrocelli Books, New York,
New Vork, i982.

5. London, K.R., The People Side of Systems, McGraw-Hill, London, England, 1976

6. Hopgood, F.R.A., and others, M'ethodology of Window Management. Springer-
Vertag, New Xork, 1986.

7. Rossmann Alain, "The Macintosh User Interface," Outside Macintosh, Addison-
Wesley Publishing Co., New York, 1985.

8. Schmucker, K.J., Object-Oriented Programming for the Macintosh, Hayden Books,
New York, 1986.

9. Apple Computer, Inc., Inside Macintosh, Addison-Wesley Publishing Co., New
York, 1984.

10. Contingency Planning Subtask, Joint Theater-Level Simulation, Software
Engineering Mtaintenance Manual, Volume V, Model Interface Program(MIP), Jet
Propulsion Laboratory, Pasadena, California, 1986.

87

& . J _ -

INITIAL DISTRIBUTION LIST

No. Copies. Defense Technical Information Center
2Cameron StationAlexandria, Virginia 22304-6145

2. Library. Code 0142
2Naval 'Postgraduate SchoolMonterey, California 93943-5002

3. CDR Joseph S.Stewart II, Code 55 2Naval Post fraduate SchoolMonterey, California 93943-5000
4. Maj Thomas J. Brown Code 39

2Naval Post raduate SchoolMonterey, California 93943-500
5. C3 Academic Group, Code 39

2Prof .Michael G. SovereignNaval Posteraduate SchoolMonterey, California 93943-5000
6. OJCS'J8LtCol Richard H. Duff

2The Pentagon
Washington, D.C. 203017. Cat Stephen L. Lower

2222 Elm StreetSt. Joseph, Missouri 64505
8. Rolands & Associates Corp.500 Sloat AvenueMonterey, California 93940
9. CDR Gary PorterTactical rainin Grou AtlanticFLTCLANT Gallerv HallDam NeckVirginia Beach, Virginia 23461

88

_MEI

