AD-A181 989

UNCLASSIFIED

Sl

R I

F/G 1273

P4

NL

@ﬁmﬁ_ﬂ.
t EF Tt
Wum.m_m_“m.m_um L
=

B gl o

e
Lok E

‘ OTEC FILE COPY

|

AD-A181 989

.

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

ELECTE
JUL 0 1 1987

THE DEVELOPMENT OF VISUAL INTERFACE
. ENHANCEMENTS
FOR PLAYER INPUT TO THE JTLS WARGAME
by

Stephen L. Lower

March 1987

Thesis Advisor

Joseph S. Stewart II

Approved for public release; distribﬁtion is unlimited.

¥

T TP

URiTyY CLASSIF) I i A

AL GLEL 2EF

REPORT DOCUMENTATION PAGE

1a REPORY SECURITY CLASSIFICATION
Unclassified

16 RESTRICTIVE MARKINGS

| B T e e
2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION7 AVAILABILITY OF REPORT
Approved for public release;

2b OECLASSIFICATION DOWNGRADING SCHEDULE

distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING QRGANIZATION REPORT NUMBER(S)

6d OFFICE SYMBOL
(i apphicable)

Code 74

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate Schooll

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c ADDRESS (City, State, and 2iP Code)

Monterey, California 93943-5000

b AODORESS (City, State, and ZiP Code)

Monterey, California 93943-5000

8b OFFICE SYMEOL
{If applicable)

82 NAME OF FUNDING / SPONSORING
ORGANIZATION

9 PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER

8¢ aDORESS (City, State. and 21P Code)

10 SOURCE OF FUNDING NUMBERS

TaSK WORK JNIT

PROGRAM PROJECT
NO NO ACCESSION NO

ELEMENT NO

11 TITLE (inciude Secur:ity Clasufication)

The Development of Visual Interface Enhancements for Player Input to the

12 PERSONAL AUTMOR(S)
Stephen L. Lower

t1d T'ME COVERED

FROM 10 *
e ——— i —

“3a TYPE OF REPORT
Master's Thesis

4 DATE OF REPORT (Year Month Day) ['S PAGE (OUNT

87 March 89

*6 SUPPLEMENTARY NOTATION

17 COSATI CODES

FELD GROUP SUB-GROUP

18 SUBIECT TERMS (Continue on reverse if necessary and dentify by biock number)

Computer Simulation, Computer Graphics, Window
Management.

This thesis
prototype of a computer wargame,
the ability to format the

microcomputer,
implementation of this prototype.

Joint Theater-Level Simulation's
Interface Program (MIP) into the visual interface format of computer

graphics known as window management.
a desktop computer, was used as the operating system for

examined with respect to the current version of the MIP.

19 ABSTRACT (Com;nuc on reverse «f necessary and «gentify by block number)
examines the design and development of
The prototype specifically deals with

a desktop
Model
In this case, the Apple Macintosh

The development of the prototype is
The prototype

development is based on software design applications which include
design models, correlation of programming languages to operating
systems, and a breakdown of the design into a modular format. The

thesis concludes with recommendations for changes which can enhance the
use of the prototype from both a technical and managerial standpoint.

{0 D YTR'OUTION/AVAILABILITY OF ABSTRACT

P

21 ABSTRACT SECURITY CLASSIFICATION

Q@ -~cuassitieounumited O same as rer CJome users fUnclassif ied
228 NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE (include Ares Code) | 22¢ OFFICE SYMBOL

{408) 646-2493 code 22)

DD FORM 1473, sa Man

8) APR edition may be used unti exhausted

SECYRITY CLASSIFICATION OF TwWiS PAGE

All other editions are obsolete

1

e e e ————

"F—

- e . -

- cam— g =~

wa "‘»“‘«‘5‘““ -

- g

e

Approved for public release; distribution is unlimited.

__.Ihe.Dl_gvelgrment Of Visual Interface Enhancements
or

ayer Input To The JTLS Wargame

by

Stephen L. Lower
Captain, United States Air Force
- B.A., Missouri Western State College, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(Command, Control and Communications)

from the

NAVAL POSTGRADUATE SCHOOL
. March 1987

Author:

Approved by:

seph 5. Stewart 11, THesis Advisor

ZA&»——-

Brown, Second Reader

52 ‘ ;qlchael G. Sovereign, Chafrman,

Joint Command, Control'ind Co

Y,
Acadermc Dean
2

A T el n s - -<'-." < RO ~'\.(Wr . REERNS .
. A o et e RGN : N i
e e PP SO N V. . ————
e e - * ‘ LT Tl e R 2 T e iR Tase

m——_—’—ﬂv

[A L

ABSTRACT

N

,’i'his thesis examines the design and development of a desktop prototype of a
computer wargame. The prototype specifically deals with the ability to format the
Joint Theater-Level Simulation’s Model Interface Program (MIP) into the visual
interface format of computer graphics known as window management. In this case,
the Apple Macintosh microcomputer, a desktop computer, was used as the operating
system for implementation of this prototype. The development of the prototype is
examined with respect to the current version of the MIP. The prototype development
is based on software design applications which include design models, correlation of
programming languages to operating systems, and a breakdown of the design into a
modular format. The thesis concludes with recommendations for changes which can
enhance the use of the prototype from both a technical and managerial standpoint.

Accession For

NTIS GRA&I
DTIC TAB

Unannounced O
Justifiocation _ |

By.
| Distribution/ = |
Availability Codes

Avail and/or
Disat Special

Al

D

PNV A SRR ¥ € RN LN - SeLay SUE SR e T My el T L T TR 4R it i a8 ~t A

a A PRI, PR e PR NS S

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.

II.

I

PR S TR A Y, YIURNT YT LI T) R ST L A T SRR AR Wy

I —_
TABLE OF CONTENTS
INTRODUCTION ..ot ittt ettt tt e eecieneransaneanss 9
A. PURPOSEOFTHESISttt 9
B. BACKGROUND ... i i it cen e 10
O T 0 - 12
THE MODEL INTERFACE PROGRAMccoviinnn. 14
A. THE RELATIONSHIP BETWEEN JTLS PROGRAMS 14
B. THEMIPSTRUCTUREttt 14
1. The Fundamental Model; e 15
2. TheData Flow Diagramo, 16
3. TheDataStructurec.ciiuiinrnenvnnnennenenn. 18
C. THE MIP FUNCTIONS EXAMINED IN THIS

PROTOTYPE ... e it e i i 20
. TheCommandsciiitiiiiiiiiiiinennnennn. 20
2. TheDirectivesc.ovuiiniiiiiiiiiiiiiinineinensn. 22
RISV 415 1 Y- oA 25
D. A COMPARISON OF SOURCE CODE VERSIONS 27
' T TS X R 30
2 (- 7 2P 32
R] 7+ 20 35
I (- P 39
THE PROTOTYPE OF THE VISUAL INTERFACE 45
A. THE METHODOLOGY OF DESIGN 45
1. The Basics of a Window Management System 45

2. The Correlation of the MIP and the Macintosh User
Interface. 48
B. THEPROTOTYPE-MACMIP 54
1. The Prototype Abstraction [T 53
2. Background Issues of Prototype Design 60

N - LT T Ll e ade A oy

AL -

—— -
C. CREATING DIRECTIVES WITH MACMIP 61
D. THE FUTURE UTILIZATION OF THE PROTOTYPE 64
1. Technical Aspects of Prototype Utilization 64
2. Managerial Aspects of Prototype Utilization 66
Iv. CONCLUSIONS ..ttt ittt it it tiaet et iinae e, 68
b
APPENDIX : MACMIP: THIRD-LEVEL ABSTRACTION 70
LISTOF REFERENCES i i ittt 87
}r INITIAL DISTRIBUTION LIST .. oottt it i iee i ieiinaenn 88
¥
4
6

<

® NN AW~

LIST OF TABLES

STEP 1 - CURRENT VERSION

STEP 1 - PROTOTYPE

STEP 2 - CURRENT VERSION

STEP 2 - PROTOTYPE

STEP 3 - CURRENT VERSION

STEP 3 - PROTOTYPE

STEP 4 - CURRENT VERSION

STEP 4 - PROTOTYPE

ERNCZ i S-S Dl L NF A SR B ARSI

N s

LIST OF FIGURES

2.1 Functional Programs of JTLSo, 15
2.2 The Fundamental Model.uoiuniunernenneeneeneenaenneennn 16
2.3 The Data Flow Diagramofthe MIP il 17
24 An Example of Set Organizationcoieiiiiiannnenienanen 19
2.5 Examples of Entitiesttt iiiiiiineiinnnenanaas 19
26 The AWACS Directive Data Structureccoivteenernrnnrnnn. 20
27 The AWACS D Directive Menucoiiiiiiniiiinernnnnrarnnnanns 24
28 The Air Route Directivec.ccvvriiiniiiieiniierneininennnennenn, 26
29 The Sensor List Directive e 26
2.10 The Basic SIMSCRIPT Timing Routine 28
3.1 The Restructured Data Flow Diagram, 49
3.2 The Refined Data Flow Diagram ..o, 49 |
3.3 The AWACS Directive PASCAL Data Structures 51
3.4 An Overview of MacMIP’s Program Structure e 55
3.5 The MacMIP Menu Bar with Menultems 62
3.6 The AWACS Directive as drawn by MacMIP, 63
3.7 The Directive with the Dialog Box, 64
8
7
Y bilan ol ' PO - —

IR

I. INTRODUCTION

A. PURPOSE OF THESIS
The purpose of this thesis is to examine enhancements of the human interface to

an interactive computer simulation program by applying computer graphics techniques
to the interface. These graphics techniques are known as the visual interface and have
found widespread applications in man-machine interaction. In this study the viability
of applying such an enhanced interface to an existing application is based upon three
factors: 1) The casual user of such an application does not have or maintain the
necessary skills to efficiently utilize the application. 2) The technology which supports
the enhanced interface has advanced past the technology of the current applicaition's
design since the design was frozen and implementation of the design into a finished
product was begun. 3) The low cost of computer’s with large amounts of memory and
extremely capable CPUs has led to a proliferation of advanced microcomputers. Given
these factors, the development of an enhanced interface is achieveable.

Thé achievement of the enhanced interface requires a knowledge of background
information about the interface subject. The subject is the Joint Theater-Level
Simulation (JTLS) and it’s user interface. Bv beginning with the purpose of JTLS and
how it is utilized, the scope and organization of the research of this thesis may be
established. The background information about JTLS and the scope of the research
follow later in this section. Chapter 2 examines the current JTLS interface (the Model
Interface Program), it's design and structure, it's current functions, and it's modus
operandi. Chapter 3 discusses the design of an enhanced interface, the correlation of
the current interface with the enhanced version, the enhanced versions modus operandi,
concludes with proposals and observations about various aspects of the enhanced
interface development and utilization. Chapter 4 concludes the thesis with a
summarization of the enhanced interface ;;rototype design and it's usage. These
sections flow from the basic design and operation to an enhanced design and purported
operation which is achieveable. The research begins with the background review of
JTLS.

— T TR

B. BACKGROUND

The goals and scope of this thesis are predicated upon understanding the object
examined. The nature of the object, it's reason for being to include a brief review of
it’s history, and it's present technical configuration provide a basic foundation upon
which this research may be built. The object is JTLS and it’s nature is that it is an
interactive computer simulation model used for wargaming. The original objectives
behind the design of JTLS and how those objectives have evolved are discussed to
provide a link to future JTLS use. Finally, the present technical configuration of JTLS
presents it's hardware and software elements which are the backbone of JTLS
implementation. A more detailed discussion of these elements follow.

Computer simulation is an effective, economical mecthod of analyzing military
plans and operations without actually employing the military forces which carry out
those plans and operations. [t is possible, using computer-based simulation, to trace,
in detail, the consequences and implications of a proposed course of action [Ref. 1: p.
1-2]. One such simulation (or wargame) is the Joint Theater Level Simulation (JTLS).

A complete set of manuals documenting JTLS, from it's inception to it's
implementation, has been published. Much of the following background information is
taken from the JTLS Executive Overview manual. JTLS is a computer-assisted
wargaming system that models two-sided air, ground, and naval czambat. It was
designed for use in warfare training, joint operational planning, and doctrinal analysis
with an emphasis on rapid production of resuits, theater-independence, and ease of use
for non-programmers. The original design objectives of JTLS were to 1) provide a
contingency planning analysis tool for the United States Readiness Command, 2)
provide an educational wargame and analvtic capability for the United States Army
War College, and 3) provide an analytic tool aiding contingency plan evaluation for the
United States Army Concepts Analysis Agency.

In 1985, the Joint Analysis Directorate of the Organization of the Joint Chiefs of
StafT assumed responsibility for the control and direction of [uture JTLS development
efforts. (The Joint Analysis Directorate is now the Force Structure, Resource, and
Assessment Directorate (OJCS,J8). This was done as part of a program to upgrade
the analytic tools available to the unifiecd Commanders in Chief for use in war
planning. Included in their interests are future developments of JTLS which enhance
user friendliness through advanced technologies such as the visual interface of window
managenient.

10

The need for enhancements to the human interface are due to the nature of the
use of JTLS. As an analytic tool it is used sporadically to test doctrine, strategies, and
tactics by a variety of users. Frequently, these users are not computer operators by
trade nor do they spend many hours playing JTLS. Their primary interest in JTLS is
the outcome based upon a preformatted and staged input to the game. They do not
need a complicated, difficult to learn (and easy to forget) computer simulation that is
not readily usable when they are trying to develop and conduct an experiment with
warplans. The Model Interface Program (MIP) can be such a program for the casual
user. Unless the user frequently plays JTLS, the operation of the MIP is moderately
difficult on which to maintain proficiency and it is not conducive to quickly
resurrecting lost proficiency.

The JTLS system is designed to operate on Digital Equipment Corporation’s

VAX minicomputer systems, including the 11/780, 11/785, and 8600 computers. The
" minimum hardware conﬁguration for JTLS consists of four video terminals and one
on-line printer. The maximum configuration consists of 28 video terminals, 10 graphics
displayvs, and one or more line printers. '

The following support software is required to implement JTLS:

1) A VAX. VMS operating system.)

2) A SIMSCRIPT I1.5 programming language compiler.
3) A "C” programming language compiler.

4) An INGRES data base system. ‘

Most of JTLS is written in the computer language SIMSCRIPT I1.5 (a registered
trademark of CACI, Inc.). The language is designed to facilitate the simulation of
large, complex systems. The simulation constructs are embedded in the language,
which is free-form and English-like. SIMSCRIPT 11.5® also has such automated
features as statistics-gathering mechanisms, dynamic storage management, and flexible
report generating. For these reasons and others, SIMSCRIPT I1.5® was selected as
the high level programming language for the simulation applications. [Ref. 2]

JTLS may be summarized as being a complex, sophisticated set of com'puter
programs which may have more extensive capabilities when properly configured and
used. With these facts about JTLS in mind, the examination of the plaver interface to
the JTLS may be conducted.

11

-

- . T

n

C. SCOPE

The Joint Theater-Level Simulation (JTLS) is an interactive computer simulation
model used for wargaming of theater conflicts. The nature of a two-sided computer
simulation, such as JTLS, is to produce an outcome as the result of the interaction
between the two opposing sides. In this case, the two sides simulate combat by
directing simulated military forces into proximity, with the resuit being an outcome of
a battle. The whole impetus behind this simulation is the involvement of the plaver,
i.e., the human interface. The main area of interest in this study is the Model Interface
Program (MIP). It is through this program that the human interaction with the game
is conducted and is what the prototype design will enhance.

Several avenues of research may be taken to develop the aforementioned
prototype. The method used here is to develop the prototype using as much of the
existing MIP source code as possible. This approach provides an economical, quick
ability to implement a full-scale visual interface. The efficiency of such a prototype
compared to a total redesign of the MIP in terms of future expansions or computer use
will not be addressed in depth.

The general operation of a JTLS simulation is to conduct an interaction within
the combat simulation by issuing orders to the available military forces. The Combat
Events Program (CEP) cofnpares the actions of the forces, within the limitations of
their environments, and vields the results of the combat. As a result of the interaction,
the commanders of the forces must continually make decisions during the course of the
game. These decisions (the issuance of orders) are transmitted to the CEP via the
Model! Interface Program (MIP). Thus, the MIP is an interactive program used by all
players. ‘

The present version of the MIP, while fully capable of interacting with the CEP,
is considered unwieldy for the occasional user, difficult to learn, and slow in terms of
conducting a fast paced simulation. Of primary concern is the methodology of issuing
orders to the CEP. While this methodology is examined in depth later in this thesis, it
may be safely stated that the MIP lacks user friendliness for the occasional user and is
not meeting current and future requirements for the purposes of player interaction with
the game.

One method of enhancing player interaction to JTLS is the use of the visual
interface. The visual interface was borne out of the “need for creating easv-to-learn
and easy-to-use applications” [Ref. 3]. Some advantages of the visual interface are to

-~y —

— T

increase the data absorption rate by the user, reduce input/output errors such as those
which occur during the typing of data, provide the user a “positive transfer of learning”
to the new system, and the reduction of user anxiety caused by a lack of control or a
lack of information [Refs. 4,5]. The visual interface simply allows the user to “see”
what is going on; a much faster process than “reading” what is going on.

Implementing the visual interface is done through a variety of computer graphics
applications. The visual interface application examined in this thesis is that of window
management. Window management deals specifically with the methods of creating
graphical forms (windows), and displaying’manipulating information within those
windows. The Apple Macintosh'™ is an excellent machine for implementing the use of
window management techniques in microcomputer application programs.

The scope of this thesis will be to investigate the current methodology of creating
a player order (a directive) and issuing it to the Combat Events Program(CEP),
breaking down the methodology to create and issue the order, and reconstructing the
methodology using the visual interface format. The particular case study will create an
air directive, with it’s associated utility directives, and send it to the game. In doing so.
much of the material to follow will examine particular commands and directives as
representative functions of the overall MIP. The methodology developed and used in
the course of designing the prototype will be a useful tool in the expansion of the
prototype to include all MIP functions in a Macintosh interface. In the opinion of the
author, the basic constructs of the visual interface prototype should also be useful in
the event of a total redesign of the MIP. The study begins with a detailed examination
of the current Model Interface Program.

13

. ————- .. . o Bl A -

I

II. THE MODEL INTERFACE PROGRAM

A. THE RELATIONSHIP BETWEEN JTLS PROGRAMS

The JTLS Executive Overview addresses the overall structure of JTLS. The
JTLS system consist of several independent programs which work together as a system
of functions. The functional programs of JTLS are described below. The functional
programs of JTLS have a variety of interrelationships as shown in Figure 2.1. It is
through these relationships that the MIP initializes itself; obtains data from databases,
files, records, and displays; and performs its functions.

The functions of the Model Interface Program are:

1) Entering orders.

2) Processing orders.

3) Communication between players and game controllers.

4) Communication between the plavers and the combat simulation.
5) Accessing and using support information.

6) Saving directives in archive files.

7) Analyzing post-processor data.

8) Controlling graphics output.

9) Stopping or temporarily halting the game.

To accomplish any of these functions the MIP. miust depend on the other JTLS
programs for support. For example, the CEP and Executive Program provide the
information required by the MIP to create and process orders. The game’s scenario
database, which provides the players units, equipment, etc., is created by the Scenario
Preparation Program. While the MIP does not communicate directly to all JTLS
programs, it does have an indirect relationship to those outlying programs. In concept,
since the MIP is a critical function of the execution phase of JTLS, its importance
demands the support of the other programs and, in turn, results in the relationships
shown. [Ref. 2]

B. THE MIP STRUCTURE :

The structure of the MIP can be derived from its functions, its relationships, and
the high level language SIMSCRIPT 11.5® used to program the MIP. In deriving the
structure, several system models were developed to express the why, what and how of
the MIP. These models are discussed below.

14

(STUOND WViDOuq

| |

i
g3
-t
b
i
[[
-
{ ég
§ o7t
Figure 2.1 Functional Programs of JTLS

YOSSONd NOLLVOIqtYaA A...Du.ll
-1sod ONIYNIDS

NVHOORS
NOLLVIVdTIq

ORIYNIDS

|

WVIAHOUq AALLNDAXT STILS

e
-~ %‘!.4«.1\!.‘.\

15

Tt el b e ay « e ue u L
'

—
g e -

1. The Fundamental Model

The overall system model is the fundamental model, Figure 2.2. In this model
the various user inputs to the program are shown as well as the outputs of the
program. Note that the functions are not delinecated here since they are inherent to the
MIP in this model form. The purpose of the fundamental model is to define the
desired results and identify the necessary inputs while leaving the identification of
specific contributors to any given function to the program. The "how” is examined in
greater detail through data flow diagrams. '

INPUTS (*Keybourd QUTPUTS

Player Function
Directive Types

Directive Attributes EL

INTERFACE
Commands PROGRAM

Messages

Queries

Figure 2.2 The Fundamental Model.

2. The Data Flow Diagram .

The data flow diagram, Figure 2.3, displays the flow of information {rom the
plaver to the game. Although not intricately detailed here, .t does show the basic
transformations which take place, what type of information is passed, and the location
of sources or sinks of information.

A significant portion of the flow of information from the player (the input) to
the game (the outbut) deals with the directive. The directive is the heart of the game in
that it literally causes an interaction to take place in the game thus producing some
outcome. Without the directive, there would be no simuiation model. Due to the
directive’s importance to this application, much of the design is described with the
directive as it's focal point. To appreciate the directive’s impact on the {low of

16

BN e 8

Squares Are Sources Or Sinis
Subbles Are Tramslormations Of Data
Doubis Lines Are Swred infosmation
Linking Lines Are Flow O Data

§

wegenrrmerrconcnvevsaney

| (Order)

Figure 2.3 The Data Flow Diagram of the MIP.

information, one must understand that most of the data is manipulated with the goal
of developing and exercising a directive.

At this point it is necessary to understand the performanct of the various
elements of the data flow diagram. In the case of the player creating an order, the
player first enters a command. The transtormation of the input is the performance of
that command. If the command was a create command then the next transformation
would build the dircctive using the attributes entered by the plaver. When all the
attributes have been entered, the player enters another command to tell the MIP the
directive is completed and to manipulate the directive. For example, this could be a
verify, hold, save, or send command. Any command other than a sen/ command would
require the player to enter more commands belore the directive could be sent to the
CEP. When the player issues a send command, the directive is formatted into an order
message the CEP can read and understand. The order message is then placed in the
CEP’s mailbox.

A key issue here is that the plaver is constantly entering data directly into
transformation modules without the data flowing in a “flui1” manner towards an
output. The supcrimposcd box outlines a bottlencck of data flow in the data flow
diagram. This bottiencck places a great demand on the player to provide data in this

17

e e S

e

BN AR T e AR LE e e e, iy ® R AR T m e aeary s

model. The source of the player’s data is a computer printout of function specific
information printed prior to playing the game. This is undesirable since all (or nearly
all) of the data necessary for transformation during the creation of a directive is
available in a database or file in the game itself. In particular, a file called the Player
Initialization File (PIF) exists for each player and contains much of the information
needed by that player to perform transformations, i.e., developing directives. Ideally,
the transformation mechanism , vice the player, would do the work of sourcing and
entering the data. Such a mechanism can be created using the graphics interface
environment.
3. The Data Structure

The data structure of the MIP is a hierarchical system that is implemented by
using multi-linked lists containing scalar items, vectors, and n-dimensional spaces. In
SIMSCRIPT these concepts are established first as entities. These entities are
characterized by their attributes. If there are logical associations or groupings of
entities, they are described as sets. [Ref. 1: p. 1-15]

A set is a logically ordered collection of entities organized through a svstem of
set pointers. A pointer is the address in memory of a data item. For example. the
MIP has a set of targets with pointers to (i.e. the addresses of) the first and last
members of the set and the number of members (targets) in the set, Figure 2.4. These
attributes of the.set are considered to be owner attributes. Each member (target) has
pointers to (addresses of) the preceding and succeeding members of the set as well as a_
flag to record membership in a set (to disallow multiple membership).

Entities may be permanent or temporary. The permanent entities exist
throughout the simulation unless they are explicitly destroved. Temporary entities are
those which are short-lived during the simulation or for which the number of copies
varies within the execution of the simulation.

Figure 2.5 shows an example of some permanent and temporary entities. While
AIRCRAFT_(1) and AIRCRAFT_(2) exist in storage throughout the game, the
RECOGNIZED_COMMAND is only put into storage at the time it is created.

All of the data used in the game by the MIP is stored in these sets, entities, or
attributes. Their definitions may be found in the MIP’s source code preamble. All of
the data needed to create player directives is found in these data structures (primarily in
the PIF). However, the data structures aren’t effectively used. This was demonstrated
in an earlier section and will be discussed later in this thesis. For example, the

18

D T o B TS O Y S F

F.Target

L.Target 1 r 7

N.Target P.Target _l ‘ *

S.Target
TARGETS M.Target S Target l
TARGET P.Target
M.Target S Tarcel
“TARGET alt]
M.Target
TARGET
Figure 2.4 An Example of Set Organization.

Permanent Entity Temporary Entity
AIRCRAFT_(2) : J{R—EC(X?NZED_CMAND]
(1) (2)

AC_Name RC_Name
AC_X_Range RC_Meaning_No
AC_X_Fuel RC_AIlt_Maeaning
AC_X_Time RC_Short_Text

] RC_Help_Text
AC_X_Speed

Figure 2.5 Examples of Entitics.

AWACS air directive only uses data from the permanent and temporary entitics listed
in Figure 2.6. The PIF’s function here is simply error checking to ensure the data
entered is correct with respect to the scenario’s data. The poor use of the PIF results
in the increased burden of furnishing data being placed upon the user.

19

Jemporary Entities
Directive_Prototype Directive_

Attribute_Prototype
Create_Routine
Word_Indicator

NOTE: These do not include type
checking, help, or graphics entities.

Figure 2.6 The AWACS Directive Data Structure.

C. THE MIP FUNCTIONS EXAMINED IN THIS PROTOTYPE
1. The Commands

The MIP has 36 commands which perform environmental, directive specilic,
or group of directives specific tasks for the player. These commands essentially
instruct the MIP to take further actions which have becn defined by the plaver to
accomplish his decisions. The environmental commands perform the administrative
tasks such as printing, spooling, scanning, (indihg, etc. The other two categorics of
commands manipulate the directive(s) by creating, changing, sending, etc. At times,
the delineation of these commands into the three categories seems vague. However,
this delineation will become clear later when the visual interface is applied to the MIP
functions.

The specific commands of interest and their definitions are as follows:

e CREATE The create conunand allows the player to create a directive within

the domain of the player’s lunction.

¢ GCREATE The gcreate command ajlows the player to create a group of
directives within the domain of the plaver’s function.

¢ QUERY The query command allows the player to request that the CEP send
the plaver standardized reports “which pertain to the player's
function.

¢ FIND The find command allows the player to hold a directive that was

previously in existence.
e COPY The copy command allows the plaver to create a directive whose

attributes, except for the identifief, are identical to those of an
existing directive of the same type.

20

e GCOPY The_gcopy command allows the player to create a group whose
atgrib%teps{’ except for the identiﬁgr, yau'e identical to gthospe of an
existing group.

¢ JOIN The join command allows the player to place a directive into a
group.

e LEAVE Theuleave command allows the player to remove a directive from a
group.

¢ GCLEAR The gclear command allows the player to empty a group of all it's
directives.

e DISPLAY The,dis(lay command allows the player to see which directives of a
Eamcu ar type have been created in the past and still exist, ie.,
ave not been deleted. -

¢ GDISPLAY The gdisplay command allows the player to see which directives are
in a particular group

e MENU The menu command allows the plaver to view the menu of any
existing directive without holding onto it.
s SAVE The save command records all of the players undeleted directives
onto a file called the Archive File. ‘
¢ LOAD The load command is used to bring directives from an Archive File
§ into the MIP.
H e TRANSMIT Tlhe transmit command is used to transmit messages to other
players.
e SCAN The scan command allows the player to view several messages in
succession. : :
s SPOOL The spool command allows the player to put several messages in his
or her print file without taking the time to examine them.
Q e PRINT Theo r(xi'nt command prints out a hard copy of all messages filed or
spooled.
e REFRESH The refresh command brings up a fresh MIP screen.
® SET The set command allows the player to set various parameters that

tailor the use of the MIP to the player’s liking.

e ADJUST The adjust command allows the player to adjust the display of his
graphics station.

e RETURN The return command is used in con;,t}ctlon with the exclamation
mark to allow the plaver to use the OVERMIP teature. The return
command convevs the player's intent to abandon the current
overmip and résume action that the plaver had previously
mterruﬁted with the most recent exclamation mark. (NOTE: The
OVERMIP teature freezes the current plaver action allowing the
plaver to perform some other action and then return to the point
where the frozen action was interrupted. Not all player {unctions
can be performed in the OVERMIP feature.)

¢ SEND The send command is used to send the information contained in a
directive to the CEP in the torm of a player order. The command
only applies to the held directive. if there is one. (NOTE: The send
command a{)phes only to action directives. Ltility directives cannot
be sent to the CEP ex{)hcntly; rather, the information contained in
them is sent as part of the action directives that refer to them.)

21

R A I LY P T gt s e Sagain R [A R R S "SI SECIEY VR ST RS

P

M-

e GSEND The gsend command is used to send, one at a time, all of the
directives belonging to a particular group.

¢ CHANGE The change command is used to change specific attributes of the
held directive after its imitial creation.

® RESTORE The restore command allows the player to override all change
commands performed in the held directive since it was last held.

* PAGE The page command lists the menu of the held directive_and, if the
directive menu 1s contained on more than one page, 1t will cause the
MIP to enter the paging mode.

e VERIFY The verify command performs all validation checks not performed
: during the creation of a directive or the changing of attributes.

¢ GVERIFY The gverify command performs the verify command for each
directive iit a particular group.

e DELETE The_delete command permanently removes the held directive from

the MIP.

¢ GDELETE The gdelete command permanently eliminates a group of directives
from the MIP.

¢ DONE . The done command returns the MIP to a state in which it is not

holding any directives.
2. The Directives

The directives are essentially the actions the player wants to take in the course
of playing JTLS. They tell thé game what unit will take what action at what date:time
with what resources. When the player begins to create a directive, a tem.plate appears
on the terminal screen listing the attributes that comprise the directive. The directive
template displays indicate if a data input for a particular attribute is optional or
mandatory. . '

While all directives contain attributes, those attributes only consist of a few
basic types. The data input to those attributes are the distinguishing factors among
directives. The most frequently encountered attributes are as follows:

e REFERENCE A player selected name which uniquely identifies the
directive. .
e UNIT, SQUADRON }hg tn‘a}me of the unit or air squadron being given the
irective.
e TIME The time for the directive to be implemented by the CEP.
e DURATIONS The number of davs, hours, and/or minutes the directive

action is to be conducted.

* COORDINATES The latitudes/longitude pairs which indicate geographic
gpmtts of interests (for a variety of reasons) in the
irective.

* ROUTE, LOAD, LIST These are utility directives used as_attributes in action
directives. Thev must be created before an action
directive may be’sent to the CEP and implemented.

(84
[0

-——

One extremely useful feature of JTLS is the ability of the graphics system to
send names of units and targets and latitude/longitude points to the MIP. When
graphics is used to enter any of these attributes, the MIP acts as if the player entered
that data. A shortcoming of this feature is that the player has to establish a
communications link between the MIP and the graphics station used. This must be
done at both the player and graphics terminals.

a. Creating the Action Directive

To fully understand how the creation of a directive is accomplished, the
reader should step through the process of directive creation. For example, the AIR
player would enter the create command. If the player didn't know the type of
directives he or she could create or didn’t know the proper syntax for the name of a
directive, the player could enter a question mark (?). The MIP would then display a
list of the air directives and associated utility directives. From that list the plaver
would determine the type of directive to create, enter a "Q” to quit viewing the list, and
when prompted, enter the name of the directive.

Upon receiving the directive type, for example AWACS, the MIP would
display the AWACS directive template on the terminal screen, Figure 2.7 . Of the nine
AWACS attributes, three of them are utility directives. Five of the attributes have
their data values checked for validity when the verify or send commands are entered to
the MIP. As the plaver begins to enter data, each attribute is sequentially entered as a
single entry or, for the expert player, as a stack of entries. At this point, close
examination of the AWACS directive creation will show the reader what the MIP is
doing during the process.)

The first attribute is the Mission. This must be a unique identifier to
distinguish this directive from other air missions sent to the CEP. The MIP help
function (the ?) describes the format for the identifier. When verifying or sending the
directive, the MIP will check the identifier for uniqueness.

The next attribute is the Squadron. This must be the name of a squadron
type unit that the air player has under his or her auspices. Only a syntax check is
performed here.

Aircraft is the third attribute. This is a number, that cannot exceed the
number of aircraft in the squadron. The MIP will accept any value during data entry,
but will match the value to the Squadron when the verify or send commands are
entered.

23

s ve————

3 i AT RGNS RIS AN Ty T Y L T e R Bl N e M L e T O S I DN SE R R I P

WSGToTTTTTTTT 0000 7O 1 """ 'g4p000ZJUL8S _ 0.0000 NiGHT T

L PP

i R

AWACS (AW) DIRECTIVE:

1. MISSION: XAXAXNXK & ORBIT LATAON: dd-mm-ssD ddd-mm-ssD
2. SOUADRON: XXXXXUOX 9. SENSOR LIST: XXXRXXXX

3. # AIRCRAFT: nnnn

4. ROUTE IN: {xxxnxxxx)

S ROUTE OUT: (00 xxx)

6. ORBIT ENTRY TIME: ddhhmmZMMMYY
7. ORBIT DURATION: ddDhhHmmM

MIP COMMAND: CR AW
MISSION:

Figure 2.7 The AWACS Directive Menu.

Route In and Route Out are attributes which are utility directives. The
data.values of these attributes are the names (identifiers) of routes created separately
using the Air Route directive. These are checked to determine if the routes exist when
the verify or send commands are entered.

The Orbit Entry Time attribute is a time for the AWACS mission to begin
surveillance in its flight pattern. It is entered as a date-time-group sometime in the
future. When the game receives the directive it takes into consideration the time it
takes for the aircraft fo reach the orbit pattern and the time it takes to prepare the
aircraft for launch when determining the validity of this time. If the squadron doesn't
have enough time to prepare, launch, and fly the aircraft to the orbit pattern by the
assigned time, the game will advise the plaver of that fact. The only real-time check is
for syntax.

The Orbit Duration attribute is a time which tells the game how long the
aircraft will orbit in its pattern. This time is checked by the game by comparing it to
the crew’s maximum allowable flight time and advising the player if the duration is too
long. The only rcal-time check is [or syntax.

24

NE——"

The Orbit Pattern is entered as a set of latitude/longitude coordinate pairs.
The coordinate pairs determine the two end points of an elliptical orbit pattern. The
only real-time checks are to determine if the points are on the surface of play and for
syntax.

The Sensor List is a utility directive. The data value of this attribute is the
name (identifier) of a list of sensors to be loaded onto and used by the aircraft. The
sensor list directive is created separatelv. The attribute is checked to determire if the
list exists when the verify or send commands are entered. Since this is also the last
attribute, the play'er must enter some command to manipulate the directive. [t must be
noted that this is the "’held" directive until the directive is manipulated in some manner
which "unholds” it.

b. Creating the Utility Directive.

Ctility directives, as previously mentioned, are created separatelv [rom
action directives. They must exist when the player attempts to verify or send to the
CEP a directive which references them. There are two avenues to create a utility
directive. One is to create the directive when the playver has a blank screen. The other
is to use the OVERMIP feature while creating an action directive, suspending the
player’s interaction with the action directive, and allowing the player to then create the
utility directive as if a blank screen existed.

The Air Route directive has two apparent attributes as shown in Figure 2.8.
One is the Route ID which is unique to that route. The other is the Latitude and
‘Longitude. This coordinate pair is entered for every point of the air route except the
origin. A null entry (NE) is entered after the last pair. The MIP then prompts the
plaver for altitudes for each point. Altitudes are from 300 to 60,000 feet. A null entry
is then used to quit.

The Sensor List directive, Figure 2.9, specifies the sensors to be included in
a particular sensor package configuration used for various air directives. The two
attributes of this directive are the List ID and Semsor. The List 1D is the unique
identifier of that list. The sensor is a categorv of sensors which indicate which tvpe of
sensors to put into the list. A nuil entry is used to quit.

3. Summary
This section has described the relationships between the programs which
constitute JTLS, the structures of the Model Interface Program, and the MIP functions
to be examined in the prototype. One very important aspect of JTLS which will have

25

040000ZJULSS 0.0000

[AN

AWACS (AW) DIRECTIVE:
1. ROUTE ID: RXXAXXXX
2. LATITUDE LONGITUDE ALTITUDE

MIP COMMAND: CR ARTE

ROUTE D:
Figure 2.8 The Air Route Directive.
------------------------ Lmmmmmwan - - - -
M3G: 0 0000 TO 1 040000ZJULBS 0.0000 NIGHT
UHIGLA b PLAYL B - GLUL COMBIATILE R NG EARHG S S TATION
SENSOR.LIST (SL) DIRECTIVE:
1. MISSION: XXXXXXXX 2 SENSCR’

MIP COMMAND: CR SL

LIST 10:
Figure 2.9 The Sensor List Directive.
26
A [SP AR SIS P : sy tema . . Coaa s e s

UL SUOR e

an impact on the approach to development of this prototype has not been addressed.
That is the operating system and sequence of execution in SIMSCRIPT I1.5® The
foundation of the SIMSCRIPT system and the sequence in which JTLS (and the MIP)
source code is executed is the basic timing routine inherent to SIMSCRIPT, Figure
2.10.

Execution of a SIMSCRIPT program begins with the first statement in the
MAIN program and continues through a series of steps. Resources must be created
and initialized before they are used by processes. Then the initial processes are
activated in MAIN (since SIMSCRIPT requires that something be awaiting execution
before a simulation commences). A simulation begins when control passes to a system-
supplied timing routine. This is done by executing the START SIMULATION
statement. The significance of “something must be awaiting execution” is understood
when the main program is examined.

The MAIN Program contains several processes. One of these is the terminal
process. This process is literally the keyboard read process, i.e., how the plaver inputs
data through the kevboard to the MIP. When the player uses the keyboard, the
process is activated. In terms of the timing routine, this means that the process is
placed on the pending list and is executed by the timing routine. When the player's
keyboard is idle (the player has used the return Key to enter something), the process is
not on the pending list and the timing routine waits for another process to be placed
on the pending list. During this idle time, the MIP (and operating system) are
essentially waiting for the player to do something in the interactive mode. Here the
MIP can still be performing some non-interactive tasks. The significance of this idle
time created by the MIP is a temptation to the designer to interface directly with the
MIP rather than the system. It will be demonstrated in Section III that this is not a
particularly effective approach for development of this prototype.

D. A COMPARISON OF SOURCE CODE VERSIONS

To further illustrate the operational behavior of the Model Interface Program. a
comparison was made between the current version of the MIP source code and the
source code of a prototype version. In the comparison, a particular objective was
selected to be accomplished by the source code. Both versioas of source code began at
the same point and finished with the same result. The current version is written in
SIMSCRIPT while the prototype version is written in Pascal for operation on the

27

F R T P . e ee T e e @ s e

—~F

START SIMULATION

ANY
PROCESSES
ON PENDING
LIST?

SELECT PROCESS WITH

EARLIEST (RE)ACTIVATION TIME RETURN

/)
O/

UPDATE CLOCK TO
TIME OF EVENT

DETERMINE TYPE
OF PROCESS

REMOVE PROCESS
FROM PENDING LIST

EXECUTE PROCESS
ROUTINE

aVYAYaYe
AR,

Figure 2.10 The Basic SIMSCRIPT Timing Routine.

28

SR RGN S SN Ty T e T

Macintosh. Tables 1, 3, 5, and 7 are the current versions of source code for steps 1-4
tespectively. Tables 2, 4, 6, and § are the respective prototype versions of source code.
There are several noticeable differences between the two sets of source code. These
differences will be pointed out in the following narrative.

The comparison was made using the creation of a Sensor List directive as the
objective of the source code. Both versions of source code begin that process at the
point where the playver must select the directive type. The process then is broken down
into a series of steps. Step 1 is to select the type of directive to be created. In this
case, Sensor List is selected. Step 2 is to display the directive on the screen. Step 3 is
to assign an identification reference to the directive. Step 4 is to assign sensor
packages to the sensor list. The process ends at this point. From here, for example,
the player could save, verify, or send the completed directive.

It should be noted that in the current version the steps must be taken in strict
sequence. The prototype version permits the reversing of seqﬁence order for steps 3
and 4. The order of sequence is left strictly to the player’s discretion as to what step to
do when. The player can even go back and redo a step in the prototype version. This
is not permitted in the current version. To do so the player must exit this process after
it is completed and begin a totally different process.

A significant assumption was made regarding this process. This should be noted
so the reader may gain a greater appreciation for the results of the comparison. First,
it is assumed that the player will always enter syntactically correct, accurate data.
Thus, format and type checking source code has been left out of the example in the
current version. The prototype incorporates the checking into its code due to the
nature of its operating system. Except for one case, no prototype case requires any
explicit checking. .

It was also assumed that the player would not abort the process. The current
version source code to do this was also left out. The prototype version did not require
explicit code as this is inherent to the operation of the system. Also, any code dealing
with error messages to the player was deleted from the listings. The current version
has quite a few error messages while the prototype version would only require one for
this process and its message is inherent in the operating system. The “help command”
code was also omitted from the current version. It literally is not needed in the
prototype version.

29

B P R R TP RPN R TN ORI e et e e, N L L S LS VT o DL SO LT TR PR NN SIS s

g

A readily evident result of the comparison now exists and should be mentioned
despite the risk of prejudicing the overall outcome. The result is that quite a reduction
of source code can apparently be made between the two versions in the areas of
checking, process abort, and error messages. This is not a hard and fast result in the
final outcome however. The reduction in source code now may be offset by an
increase in code to perform other functions later. It is the opinion of this author that
this will not be the case.

1. Step !

The process of selecting the directive type is straight forward. The presentation of
information to the player requesting a selection is quite different. The current version
presents a blank screen in the content region (the middle of the screen) while the scroll
area (the bottom portion of the screen) contains the prompt “directive type:” with a
blinking cursor a few spaces to the prompt’s right.. Here the player would bggin the
process by typing in the words “sensor list”. The prototype version presents the plaver
with a box in the middle of the screen. The box contains a list of directive types which
are currently available to the player. The player moves the cursor to the “sensor list”
item in the list and selects it. '

The determination of what type of directive to create has been completed.
The type selected in both versions was the Sensor List. A breakdown of the step

- reveals several interesting contrasts between the versions. The first is the display itself.

The current version puts it’s information for the player near the bottom of the screen.
While it is out of the way for the main portion of the screen, it is also “out of the way”
in terms of the player’s visual focal point. In general, a person’s initial focal point is
the middle of a display and then the person examines the display area to seek out the
required information. : .

The prototype version places it’s display in the middle of the screen which is the
player’s initial focal point. The player doesn’t have to search for the information. This
contrast is subtle, but nonetheless significant throughout the process and in terms of
information transfer to the player. _

The player’s actions also represent a contrast worth review. The current
version requires the player to type in characters from the keyboard. The prototype
version requires the player to position the cursor and press a button (an item click), an
action which is always at the player’s fingertips. The two actions are quite different
and ease of performance for typing varies significantly from player to player. The

30

5 B UIFAREY S R e O S

VRS R R CTR LA

e

ak. -M» P N

TABLE 1
STEP 1 - CURRENT VERSION

Determine.the.Directive.Type
Use 55 for input
Let prompt.v = “Directive Type:"
Now Interpret.the.Directive.Meaning
Given
Yielding meanxng
CC_number =
Find the fxrst Command_Context (CC_Number) in Vocabulary_
Do until terminated
Now Determine.the.Response
Until finished do
If Input_Line is not empty
Use buffer for input
Remove first Inpu Word from Input_Line

Let Response_ = upper.f(IW_Text(In gut Word))
Let Last.Source = IW SOurce(Input ord)
Destroy Input Word

Return

Else If Last.Source 2 0
If Last.Source = I.Terminal
Activate Terminal Process
Else use 55 for input
Now Write.A.Text. Strln%
Given prompt.v, 23 0, 0
L Use buffer for input
Activate Graphics Process
Suspend

Qop
IF Directive_ 2 Q

Now Display.a.list

Given Dir_Menu, 2;

Let Menu_ Status = "dlsg

Let Lines = Dim.f{Dir enu(*)%

Let lines. ger .page = lines-2

If lines

For I =1 to lines do
Now Write.a.Text.String
Given Dir Henu(I), 2+I -1,1,
Call LIBsPut ScreeniDescr F(Text String),
line+l,column, local.graphics)
Return
Let Menu_Status = "menu
For each Recognized_Command in CC_SET OF ENTRIES (CC_Number)
With RC_Name = “Sensor List" or RC_Alternate_Name = "SL"
Find the fzrst case
Let meaning = RC_Meaning No (* = 706 *)
Return :

preference of one action over the other varies according to the individual's tastes.
These two contrasts are again subtle but their significance, sspecially typing, is closely
tied to an individual's physical skills.

31

R A NI e s . 0 DY RPN T Y T L
s : EERR PR . vt b ot F e . 4 A Sh e,

. L.

TABLE 2
STEP 1 - PROTOTYPE

HodalDulo%(NIL theltem);

:= GetDItem (theDlalog, theltem
I2 := GetNewControl (I1, eDialog
DPLongName := GetCTitle (I2, title

DisposDialog (theDialoq);

Handle, Display);

The most significant contrast is in the source of the data. The current version
requires the player to be the source of data and it is entered via the keyboard. The
prototype version provides the source of data (in all but one case). via computer
memory with input made through the item click. Since the input is made through
computer memory there is no chance of a syntax error and less of a burden upon the
plaver to enumerate the choices of directive types available to him. The prototype
enumerates the choices and makes a syntactically correct entry of data to the process.

In summarizing the contrasts of versions in the first step, it is worth noting
the amount of source code required to perform the step. The prototype performs the
same step with only an estimated 13% of the source code needed in the current
version. The primary difference in the amount of code is due to the large amount of
current version code required to display, retrieve, and interpret information written to
the screen from the keyboard. The prototype version gains this advantage by using
operating system functions and procedures to perform comprehensive accomplishment
of tasks. Another reason is that fewer tasks are required in the prototype version due
to the nature of the operating system. It will be evident as the process continues that
the contrasts of display, plaver actions, and source of data will be factors in each step
of the process. The reader is cautioned that task accomplishment may not always be a
prototype advantage in the performance of the process. Now step 2 is readyv to be
done.

2. Step 2

This step in the process displays the directive Sensot List on the screen. The
display includes the directive title, the directive’s attribute and the attribute’s field
codes. The display is oriented toward the middle of the screen on both versions’

a® _din _ e

TABLE 3
ﬂ STEP 2 - CURRENT VERSION

For each Directive_Prototype with DP_Meaning = 706
! Find the first case
Now Create.the.Directive
Now Erase.the . Menu.Area
For I = 3 to 17
Call LIBSERASE_LINE(I, 1)
Let Menu_Status = "blank"
Create a Directive_

s Store Directive_Prototype in 0.DP_Directives_Set
Reserve Menu Array as size = 15
Store DP Menur'gemplate in Template Array
)

, For I=11¢
 § Let Menu(I) = Template(I)
Store Menu(l to 15) in Dir_Menu
Now Display.a.List
Given Menu(I), 2)
Let Menu_Status = "display",
Let lines = Dim.F(Menu I)¥
Let lmesfer.page = 18-2-2
A If lines 18
For I =1 to 15)
Now Write.a.Text.String
Given List(I), 3+I-1, 1, 0, O) .
Call LIBSPut_Screen(Descr.F(Text.String), line+l,
column, local.graphics)
Return
Let Menu_Status = '"menu"

display lavout. In both versions the step begins with a directive meaning and then
searches the data structures for a directive prototype having a meaning of “sensor list”.
When the code finds that data, it displays it on the screen. At this point the versions
begin to differ.

The current version first calls a VAX library routine to erase the screen. [t
then develops a generic display template consisting of 15 lines. Once the template is
made, the current version gets each attribute of the directive prototype and draws it to
the screen, line by line, according to the AP_Line and AP_Coll values of each
attribute. When each line is drawn the display is complete.

The prototype version begins by creating a pointer to a new directive and then
invoking the directive display module. Every directive reads in a generic display
template and, for each display control item, changes the control’s generic title text to
the attribute’s menu prompt. At the same time each control item is changed. it makes

33

T T - .- .. P T P

Ak . P 78 - -

= ,‘,_-E‘tff

14}

TABLE 4
STEP 2 - PROTOTYPE

For Directive Prototype with DPLongName do
NewDirective = Dlrectlve,
D1rect1ve Dlsp a .
ra * the total number of attributes *)
For I 1 to 1
GetNewControl(ID theWindow);
For J =1 to N do
If I =J then
SetCTitle(J, AP Prompt);
ShowControl (J):
Else For I > N do
For DP Attrlbute Prototype (I) do
HideControl(I);
HiliteControl(I, 254);(* disables control *)
DrawControls(theWindow);

it visible. For each control item not changed that control item is made invisible and
inactive. The module then draws the display to the screen in its completed form.

The contrasts here are speed and amount of code. The speed is
inconsequential here since the prototype -uses the same i’epctitive loop as the current

version to produce the display. However, speed could be tilted considerably in favor of

the prototype version if each specific directive display existed in a resource file and was
explicitly called when needed. This would result in a much faster time for the
Macintosh to draw the display to the screen (this will be discussed later in this thesis).
The current version has no capability to do this.

The other contrast, amount of source code, again favors the prototype
version. The reduction of an estimated 35% of the current version is primarily due to
graphics overhead on the VAX. For example, a repetitive loop is used to erase the
VAX screen line-by-line, another loop is used to create the display template line-by-
line, and finally a repetitive loop is used to draw the display. The prototype version
uses a single, doubled-nested repetitive loop to assign text to display items and then
draw the display to the screen. The ability of the prototype to do this in a simpler
manner than the current version is owed to the operating system functions and
procedures comprehensively performing tasks.

34

R T e B e A T L R g T N LSRR UL AP I L AT

The summary of contrasts for step 2 again results in a favorable rating of the
prototype over the current version. This leads to step 3. Although the prototype
version would permit the execution of step 4 at this time, for simplicity in conducting
this comparison, both versions will perform the same step.

3. Step 3

This step deals with getting an ID for the directive. Keeping in mind it must
be unique, the assumption made here (for simplicity) is that the plaver will enter a
unique ID. In this step both versions differ from the start. Here the prototype version
waits for an event to occur while the current version must write the prompt to the
screen. The advantage is immediately tilted toward the prototype version. The process
will indicate why.

The current version begins by sequentially stepping through the attributes and
stops at the first one. It reads the AP_Menu_prompt, “1. List ID:", and rewrites it

over the existing "l1. List ID” but this time emphasizes it graphically. It then draws -

the AP_Create_Prompt, with a flashing cursor as emphasis, into the scroll area at the
bottom of the screen. Then, invoking the attribute’s create routine, it awaits the
player's keyboard response. Once the player inputs a string, the current version checks
to make sure it is not more than 8 characters. 'If it is more than 8, an error message is
generated and the prompt in the scroll area is rewritten. (This check was intentionally
left in the process due to its significance in the comparison.) If the response is
acceptable, it is written into the field code space replacing the attribute field code. The
current version then deemphasizes the AP menu pron'lpt and then invokes the Retrieve
the Directive Attributes module. Here it reads the attribute’s word_integer and assigns
the ID to the appropriate word in Directive_.

The prototype version begins by waiting for a player action khown as an
event. In this case, a click in the “1. List ID:” item. The prototype version determines
an event occurred, what to do to handle the event, finds out the location of the click
event, and then invokes the CRRGet module for the given AP Create Routine. Now
the prototype gets a dialog box and draws it in the center of the screen. The dialog
box includes a text edit rectangle, 8 spaces long, with a flashing cursor in it. Now the
prototype waits for the player to input a string, which is also another event. It
determines an event occurred, that it was a keypress event (of a legal character), and
enters the character string into the text edit rectangle. Note that since the text edit

rectangle is only 8 spaces long it implies the player can never enter a string that is too

35

e e e e e e . IR TR . B ATl R T . o . LT ‘
PR S L L > v . B N O N ¥ s SN et S ek e s

. .
e et -

o

TABLE §
STEP 3 - CURRENT VERSION

For each Attribute_Prototype in DP_Attributes_Set(Sensor_List)Do
Use 55 for imput
Let prompt.V = AP_Create_Prompt (% "List ID:" %)
Uss buffer for input
Now Hrite.s.Text.String
Given AP_Menu_Prompt, AP_Line, AP_Coll, 0, Emphasize_
Call LIBSPut_Screen{Descr.FIAP_Merw_Prompt), AP_Line, AP_Coll,
0y Emphasgize_)
Write AP_Arguments_String as text
Let Subroutine = CRR_Nawe(AP_Create_Routirne)
Call Get.a.Directive.ldentifier
Read Search.Code
Until finished do
Now Determine.a.Response
Until finished do
If Input_Line is not empty
Use buffer for input
Remove first Input_MWord from Input_Line
Let Response_ = Upper.FlIN_Text(Imnput_Word))
Let Last.Source = IKW_Sourcel(Input_kWord))
Dastroy Input_Word
Return
Else
If Last.Source ¥ 0
If Last.Source = I.Terminal
Activate Terminal Process
Elss use 55 for input
Now Write.a.Text.String
Given prompt.v, 23, 1, 0, 0
Use buffer for input
Activate Graphics Process
Suspend .

Loop
1f Response_ = "NE"
Now write.a.Bottom.Lline
Given "“A null entry is not valid"
Call LIBSSet_Cursori(24, 1)
Call LIB$Put_ScreentDescr.Fi{Concat.F(text.string, CR_LF)),
26, 1, 0}
Now SKip.Rest.Of.Line
For each Input_Word in Input_Line do
Remove Input_Word from Input_Line
Destroy Input_Kord
Loop
Cycle
Otherwise
If Length.F(Response_) > 8
Now Write.s» Bottom.Line
Given "ID can be no more then 8 characters”
Call LIBS$Set_Cursor(2¢, 1)
Call LIB$Put_Screen(Descr.F(Concat.F(text.string, CR_LF)),
26, 1, 0)
Now SKip.Rest.Of.Line
For each Input_Word in Input_Line do
Remove Input_Word from Input_Line
Destroy Input_Word
Loop
Cycle

36

D e b Toe

TABLE §
STEP 3 - CURRENT VERSION (CONT'D.)

1f Length.F(Response_) S 8
For I =1 to Length.F(Response_) do
Let This.Cher = Substr.F(Response_, I, 1)
If This.Char = "§" or This.Char = "8"
Write This.Cher as /,
"Entry camnot contain' This.Char "charscter”
Read Output.Line
Now WNrite.a Bottom.Line
Given Qutput.iLine
Call LIB$Set_Cursor(24, 1)
Call LIB$Put_Screen(Descr.F(Concat.F(text.string, CR_LF)),
26, 1, 0}
Now Skip.Rest.Of.Line
For each Input_Word. in Input_Line do
Remove Input_Word from Input_Line
Destroy Input_kord
Loop
Let Bad.Char = 1
Lesve
Loop
If Bad.Char = 1
Bad.Char = 0
Cycla
Write Response_ as text
If Mernu_status = "menu"
Now Hrite.a.Text.String
Given Response_, AP_Line, AP_Col2, 8, 0
Call LIBSPut_Screen (Descr.f(Response),
AP_Line, AP_Col2, 8, 0)
Now Replace. the.Mernu.Field
Given Response_
Now Write.a.Text.String
Given AP_Msrwi_Prompt, AP_Line, AP_Coll, 0, O
Call LIBS$Put_Screan(Descr.F(AP_Menu_Prompt), AP_Line,
AP_Coll, 0, 0)
Now Retrieve.the.Directive.Attributes
For each Mord_Indicator in Word_List{Attribute_Prototype) do
Case of (WI_Integer)
(1) Read Dir_ID
Loop
Loop (# to do next attr' te %)

(-

long and thus never commit an error. The transparent error checking will not accept
the player's entry of an illegal character or more than 8 legal characters. The dialog
box then assigns the AP field code the value of the string, moves the graphics pen to
the field code space on the screen, and draws the string in as the field code. The
prototype version then invokes Retrieve the Directive Attributes, reads the attribute’s
word integer, and assigns the ID to the appropriate word in Directive.

37

S N A SYSCIL Ay ST L AR, SRRPU BRI

I T I T N T S S TRV

TABLE 6
STEP 3 - PROTOTYPE

GetNextEvent(theEvent, everyEvent);

MouseClick;
HandleEvent-
HandleCllck
:= FindControl(thePoxnt theWindow,
whlchControl
For DP Attrzbute Prototype (K) do
L := AP Create Routine (K):
CRRGet (L); (* Get an ID
DlalogPtr := GetNewDialog (ID, dStorage,
theWindow);
TEPtr := TENew (destRect, viewRect);
GetNextEvent;
Keypress; .
HandleEvent;

TEKe{(K TEPtr)
ModalDi ogftheIDF11ter ItemHit);
theIDFi ter(thevlalo theEvent ItemHit);
theIDFilter := Fa se
ItemHIt : O;
If Length. F(string) < 8 then
Case theEvent. hat of
Keydown, Autokey :
Case of (theEvent. Message mod 256) of -
1 (A..Z, 0..9, bk spc :
2) NoOT (A..Z 0..9, bkspc) :
. theIDFilter := True;
SystemBeep,

Else (* for Le%?th F(strlng) > 8 *)
If theEvent.Message mod 256 = bkspc then
theIDFilter := False;
Else the IDFilter := True
SystemBeep;
Return;
stposbzalog(theblalogS .
MoveTo(AP Line, AP Col2 (* AP Line & AP Col2 converted
glxe units
Draw trlng (AP Fle d Code (K));
Retrieve Directive Attrlbutes,
For Q = Word Integer do
Case of WOrd ndicator ﬁ?)
DirID := AP Field Code(K); (* Q@ =1 *)

In this step the contrast focuses on the extra code required by the current
version to do the process, the display of the focal point, and ease of input for the
player. Once again the advantage pendulum has swung over to the prototype version.
The first contrast deals with the fzct that the current version is constantly doing

graphics tasks of emphasizing, changing, and rewriting. The fact this is done so many

38

18
“
“

C
-
L
’
&

coramcnsom e oo i,

times encumbers the process in the current version while the prototype version
performs it's tasks once. The prototype version reduces code execution an estimated
58% from the current version.

A significant contrast is the display focal point. Again the prototype version
centers it's focal point immediately grabbing the player’s attention. The current
version creates two focal points which could be distracting. The first focal point is the
emphasized attribute positioned in the mid-upper left portion of the screen. The
second focal point is the prompt and cursor down in the screen’s scroll area. This is
really where the player wants to focus his attention. The advantage regarding this
contrast is with the prototype version.

The final point in contrasting the versions is the ease of player input. In the
prototype version the player had to select the attribute himself vice having it done for
him automatically in a predetermined sequence. This is fairly negligible when
compared to the actual entry of data such as the ID string. Here the prototype
ensured the plaver kept the [D within limits while the current version could permit the
player to commit an error. This subtle contrast favors the prototype version.

Finally, both versions are readv to enter their list of sensor packages.
Considering the wide margin of advantage of the prototype version compared to the
current version, the final outcome of the comparison could be predicted. However,
step 4 should be examined to complete the process comparison.

d. Step 4

This step is a lengthy process for both versions of source code. Similar
processes occur in that both invoke the appropriate create routine, get the sensor
package names and display all of them, and invoke Retrieve the Directive Attributes.
The similarities end there.

The current version expends a lot of code doing graphics displays,
emphasizing, Wwriting prompts, determining responses, rewriting prompts, and
deemphasizing. In the end, the current version uses two focal points (moving back and
forth between the two points), forces the player to explicitly input whether or not a
displaved sensor package is assigned to the list, and requires the playver to explicitly
close out the list of sensor packages.

The prototype behaves as expected. It waits for an event, in this case the
click of the item “2. Sensor”, draws a dialog box onto the center of the screen with all
the sensor package names included in the box. [t also invokes the List Control module

39

TABLE 7
STEP 4 - CURRENT VERSION

Use 55 for imput
Let prompt.V = AP_Create_Prompt
Use buffer for input
Now Write.a.Text.String
Given AP_Menu_Prompt, AP_Line, AP_Coll, 0, Emphesize_
Call LIB$Put_Screen(Descr.F(AP_Merwt Prompt), AP_line, AP_Coll, O,
Emphasize_)
Write AP_Arguments_String as text
Let Subroutine = CRR_Name(AP_Creats_Routine)}
Call Get.a.Sensor.List
If Ssved.Flag = O
Let Saved.Flag = 1
Create Command_Context
Let CC_Number = 1120
Let CC_Message = "Enter (something) or NE to end list."
For each Sensor_Package
With SP_Name & " » do
Create a Recognized_Command
Laet RC_Name = "NE"
Let RC_Meaning_No = 100
File Recognized_Command in CC_SET_OF_ENTRIES
File Command_Context in Vocabulary_
Store Dir_Menu in Menu (1 to 15)
Llet Menu_Status = "list"
Let Line = AP_Line + 2
Lat Items.in.List = 0
Until finished do
If Line = 18 - 2
Let Line = AP_Line + 2
Use S5 for input
Lat prompt.V = "Name of category:"
Now Interpret. the.Vocabulary.Entry
Given CC_Number = 1120
Find Command_Context(1120)
Until finished do
Now Determine. the.Response
Until finished do
If Input_Line is not empty
Usa buffer for input
Remove first Input_KWord from Input_Line
Let Response_ = Upper.F(IH _Text({Input_Word))
Let Last.Source = IR_Sourcel(Input_Kord))
Dastroy Input_Word
Raturn
Else
1f Last.Source % 0
If Last.Source = I.Terminal
Activate Terminal Process
Else use 55 for input
Now Write.a.Text.String
Given prompt.v, 23, 1, 0, 0
Use buffer for input
Activate Graphics Process
Suspend
Loop

40

TABLE 7
STEP 4 - CURRENT VERSION (CONTD.)

IfQs)
Let Q = 0
If Directive_ £ 0
Now Display.s.List
Given Dir_Meru, 2
Let Menu_Status = “display”
Let Lines = Dim.F(Listi(%))}
Lot Lines.per.page = 16
If Lines S 18§
For I =1 to Lines
Now Write.s.Text.String
Given List(I), 3+4I-1, 1, 0, O
Call LIB$Put_Screen(Descr.F(List(I}), 3+41-1, 1, 0, O)
Return
Merwy_Status = "merw™
For Recognized_Command if CC_SET_OF_ENTRIES(1120)
Hith RC_Name ® Response_ or RC_Alternate_Name = Response_
Find the first case
Let mesning = RC_Meaning_No
If mesning = 100
Leave
Let Substr.F(Meru_(Line-1), AP_Coll, 15) = SP_Name(meaning)
Now Hrite.s.Text.String .
Givenn SP_Name(meaning), line, AP_Coll, 15, 0
Call LIB$Put_Screen(Descr.F(SP_Nama!), lire, AP_Coll, 15, 0
Let Items.in.List = 1
Create sn Element_
Index(Elemant_) = mesning
File Elemant_ in Vector_
Add 1 to line
Loop ‘
Resarve Rarray(#) as N.Sensor_Psckage
Reserve TArray(®) as N.Sensor_Package
Let Categories.per.pags = 18-4-3
For each Sensor_Package with SP_Name £ “ *
Add 1 to Total.Sensor.Packages.On.This.Side
Add 1 to Sensor.Packeges.On.This.Side
fFor sach Elament_ in Vector_
Nith Index{Elemant_)} = Sensor_Package
Find the first case
If found
RArray(Sensor_Package) = 1.0
TArray(Sernsor_Package) = “yes"
Else
TArray(Sensor_Package) = "no"
1+ Sensor.Peckages.This.Side S Categories.Per.Page
Let Substr.F(Menu(AP_Line+Sensor.Packages.This.Side),
AP_Coll, 18) = SP_Nawe
Let Substr.F(Menul AP_Line+Sensor.Packages.This.Side),
AP_Col2, 3) = TArray
Loop

4]

TABLE 7
STEP 4 - CURRENT VERSION (CONT'D.)

Let Header = ITOT.F(N.Sensor_Package)
Write Header as text
For each Sensor _Package
Write RArray(Sensor_Package)
Release RArray(*)
Now Empty.the.Vector
For each Element_ in Vector_ do
Remove Element_ from Vector_
.Destroy Element_
Now Write.a.Text.String .
Given AP Menu_Prompt, AP_Line, AP_Coll, 0, 0
Call LIBSPut Screen _
Now Retrieve.the.Directive.Attributes
Given WI_Integer
Case of (WI_Integer)
(53) Read Dim »)
Store 0 in Real_Array(Dim)
Reserve Real_ Array(Dim)
For I = 1 to Dim
Read Real Array(I). . . .
gtoie Real_Arrayz;) in Dir_Genericl_DPointer
ycle

assigning each package a check box control. It then waits for the plaver to “check” (an
item click) the sensor packages to be listed. The prototype version automatically
determines that non-checked sensor packages do not go into the list and automatically
closes out the list. It then assigns attributes to the appropriate words in Directive the
same as the current version does.

The Sensor List directive is now complete. Again contrasts between the
versions.gives the prototype the advantage. Amount of code, display focal point, ease
of input for the player constitute the areas of difference between the two versions.
Amount of code contrasts resulted in the prototype version having an estimated 65%
reduction in lines of code executed from the current version. Repetition of graphics
code and use of numerous data structure elements not required in the prototype
account for the difference and the poor rating of the current version.

The focal point of the display heavily favors the prototype version. [t's
display is centered on the screen and behaves exactly as the other prototype displays.
The current version, on the other hand, continually switched the focal point of the
player's attention from mid-screen (to see what was displaved) to the prompt in the
scroll area (to make an input). This is distracting and time consuming.

42

L eme

TABLE 8
STEP 4 - PROTOTYPE

GetNextEvent
MouseClick;
HandleEvent;
HandleClick; . .
K := FindControl(thePoint, theWindow,
whichControl);
For DP Attribute Prototype SR) do
L := AP Create Routine (K); ,
CRRGet (L):; (* get a sensor package *)
List Control(ME); .
DialogPtr := GetNewDialog(ID,
dStorage, theWindow);
Until Sensor Package EOF do
M := SP number;
SetIText(M, SP Name);
Repeat;
For P := to M do
ModalDialog(NIL, thelItem(P));
Il := GetDItem(thedialeg, theltem,
Handle, Dlsplag);]
I2 := GetNewCon rol(Il,theDlalqu;
Ai.gie%d Code (index) := GetCTitle(I2,
ltie);
MoveTo(AP Line + 1 line, AP Col2 +
4 spaces); (* lines & spaces converted
to pixel units
DisposDialog(theDialog);
Index := Index + 1; .
Retrieve Directive Attributes;
For Q = Word Integer do (* % = 53 *)
Case of Word Indicator (Q
For Dim = 1 to M do
For Num = 1 to Index do:.)
I1f Sensor Package(Dim) = AP Field
Code (Num) then
Real Array (Dim) := 1.0;
lTarray(D1m)~== Yes';

se
Real Array (Dim) := 0.0;
. TArray := "No";
Dir Genericl DPointer := TReal Array;
For Set of Directives . . :
with DP Meaning = Sensor List(meaning) . .
Set of Directives := NewD1rect1vé¥{Dzrect1ve;

.

The final contrast is ease of use for the player. The player enters data through
the keyboard, is subject to committing errors, and must make repeated inputs when
using the current version. The prototype version only requires item clicks by the
player; no errors, no distractions, just a simple process. The advantage here again
heavily favors the prototype version.

43

R

o A

replacement for the M[p is desirea
design of such a prototype.

v

III. THE PROTOTYPE OF THE VISUAL INTERFACE

A. THE METHODOLOGY OF DESIGN
1. The Basics of a Window Management System

Window management systems are relatively new to computer systems, just
barely a decade old. The computer industry as a whole did not accept window
management from the outset, but people interested in computer graphics have kept the
concept alive. Attempts at widespread usage of window management systems failed
until Apple introduced their Macintosh. The Macintosh has gained widespread
acceptance and is particularly a favorite of casual users. The reason for this is three-
. fold:

1) Apple specifically. concentrated on making the user interface as simple as
possible through the use of common visual Svmbols and association.

2) The company applied an extremely good and technically sound graphics
package to the system.

3) Apple took the best ideas: of other attempts at developing window
management systems and applied them to their design.

As such, the Apple Macintosh has come to be accepted as the “unofficial” standard for
“the methodology of window management systems [Ref. 6], and it's interface is the
foundation of this prototvpe design.

. @. The Infrastructure of the Macintosh Interface

The Macintosh has been described as a universe with its own set of laws,
similar to the laws of physics, that describe the standard behavior of objects. These
"laws” are consistent which has a direct impact on how an application, and this
prototype, is designed. Thus, the application should be flat and user driven (i.e.
modeless) as opposed to being tree-structured and menu-driven. This allows the user
to focus on what the application does, instead of how it does it. [Ref. 7]

This “modeless” environment allows the user to do anything that makes
sense at any time. This means the user is in control of what is going on with the
computer and the application. It also means, in general, that if the user performs an
action that makes “sense” then the “laws of nature” are not violated and the user
doesn’t get penalized for doing something wrong. This is a very desireable feature in
an application and is the basis for the Macintosh User Interface Standard. [Ref. 8]

45

B R e e I e ¥ JEO [EREEE N I

[§ = PV . e

.

The Macintosh User Interface Standard has nine basic concepts:

e Applications These enable the user to manipulate
ormation.
¢ Documents These _contain _information which the
application manipulates.
® Views These present information.
¢ Commands These alter the information in specific ways.

¢ The Finder’s Desktop Metaphor This, provides an image of what is in
Macintosh’'s memory and is a working
environment for the information manipulation
carried out on the Macintosh.

® Windows hese divide a portion of the Macintosh screen
or a portion of the view.

e Selections These identify thgse portions of the information
that can beé aflected by certain subsequent
commands.

¢ Editing Conventions These govern the manner of specifving
selections.

¢ Fonts These provide a basis for manipulating text
appearance.

The reader may gain a comprehensive understanding of the Macintosh User Interface
Standard by reading Inside Macintosh. '
b. The Application of the Interface Standards

These concepts result in the user being presented. on the screen, a variety
of graphic objects which behave in expected ways and represent information which the
user understands. The user will see at the top of the screen a menu bar containing
classes of commands. At the user’s fingertips is a mouse whose movements cause the
movements of a cursor on the screen. The user can position the cursor over a menu
title, press the mouse button down and, while pressing it down, “pull-down” a list of
menu items. These cursor movements which “pull down” something are commonly
referred to as dragging and have a direct correlation to “dragging” the mouse across a
table or desktop. If the mouse button is released over any menu item, that item is
selected as the command to be performed. The action of pressing and releasing the
mouse button is also known as clicking. Sometimes these menu items are “dimmed”
and cannot be chosen, indicating they cannot be performed at that time by the
application.

The user also sees a window which presents information such as a document
or a message. The window may be “active” and have its objects manipulated. More
than one window can be presented at a time but only one may be active. The window

46

presents a view of its contents but not all of its contents may be visible. If so, the user
must scroll through the information to see it all. The user may move the cursor all
around the window and click in the window causing something to happen which the
user would expect to happen. When finished with the window, the user can click in the
close box and the window disappears. As with all user actions, the user sees and
identifies some object, performs some action with regards to the object, and gets an
expected result. This process happens because of the use of a set of Macintosh
operating system routines.

These routines are divided by function and are commonly called managers.
The various managers used in most applications reside in the operating system or the
User Interface Toolbox. The operating system performs such basic tasks as input,
output, memory management, and interrupt handling. The user interface tooibox, a
level above the operating system, helps implement the standard Macintosh user
interface. It is through the variety of managers that the prototvpe is developed. The
managers, all logically named, perform basic tasks as defined by Inside AMacintosh
[Ref. 9]. They are:

¢ Resource This manager performs operations on, and allows access to,
various ap?hcauon resources such as menus, fonts, icons,

. windows, etc.

¢ QuickDraw The heart of the Macintosh user interface, this manager

performs all graphics operations including = drawing
somethmgh on the screen verv quickly. [t interfaces with
many of the other toolbox marnagers.

¢ Font Manager This manager supports the use of the various character fonts
when text 15 drawn by QuickDraw.

* Event Manager The Event Manager monitors the user’s actions and
coordinates the actions of the other toolbox routines.

¢ Window Manager This manager controls the creation, manipulation and

disposal of windows.

¢ Control Manager The Control Manager handles special objects on the screen
with which the usér, using the mouse. can cause instant
action with graphic results or change settings to modifv a
future action.

e Menu Manager This manager creates sets of menus and allows the user to
choose from the commands in those menus.

o Text Edit This manager handles the basic text formatting and editing
capabilities in an application.

¢ Dialog Manager This manager allows for implementing dialog boxes and the
alert mechanism, two means of comniunication between the
application and the end user.

* Desk Manager The Desk Manager supporis the use of desk accessories
(mini-applications) in an application.

47

s - . - - e a1 Cva oy e B L S Vel e e
NP WGV T RPN TR SRS PE CR SP ORI AL ! BN ISP+ 7ol 7 Ny . . A

¢ Scrap Manager This, manager supports cutting and pasting among
applications and desk accessories.

¢ Toolbox Utilities These are a set of routines and dat té'pes_ that ‘?erfor_m
generally useful operations such as fixed-point arithmetic,
string manipulation, and logical operations on bits.

* Memory Manager This manager dvnamically allocates and releases memory for
uset by thé application and other parts of the operating
system.

¢ File Manager The File Manager handles file inpﬁt and output for the
operating system.

¢ Device Manager The Device Manager manages the input and output devices
for the operating svstem.

2. The Correlation of the MIP and the Macintosh User Interface.

The design of any application must consider the operating system to be used
as well as meeting the user’s needs. The Macintosh operating system supports the use
of high-level programming languages, primarily Pascal. One particularly fast and
efficient version of Pascal is Turbo Pascal© by Borland, Inc. Turbo Pascal was this
author’s choice as the high-level programming language to use for testing some of the
concepts of design used in developing this prototype. Turbo Pascal was deemed
capable of meeting 3ll requirements of the MIP in terms of functionability.

a. The Restructured Data Flow Diagram

A goal of any application design should be to provide for the smooth flow
of data. Figure 2.3 identified a bottleneck of data flow. A distinct advantage of using
_ the visual interface is that this bottleneck can be effectively removed while still leaving
the “flow of control” with the user. Figure 3.1 depicts the changes of data flow. The
player initiates the flow of data and subsequently controls it all, yet provides little or
no data input. The primary difference between this diagram and the first one is that
this design use the stored information available to it, primarily the Plaver Initialization
File (PIF), ‘to transform data rather than the player providing the data to be
transformed. The application thus runs smoother, information-wise.

A refinement to the data flow diagram explicitly shows how this is
supported, Figure 3.2. The transformation prepare directive is broken down into three
layers. Each transformation’s refinement is contained within the dotted lines in Figure
3.2. Note that for each layer the information inputs and outputs are the same
respectively. The input to the transformation is the create command and the output is
the completed directive. In layer two, the transformation is broken down into three
transformations which are ger the directive type, get the directive attributes and assign
attribute values. All the information needed is retrieved from stored information. The

48

Directive Prototype
Unit, Alrcralt, Tarpet,
Route, Duration, etc.

Squares &re sources or sinks
Bubbies are {raned N
Double iinss are stored information
Unked lires are flow of data
Create Directive
Periorm Verily Place
0 Manipuise or Serd %:;: ns] cep
Cammend Directive Mailbox (Order)
Transmit
Vamegp Mestage
Congiruat . PLAYER
Westage (Message)

Figure 3.1 The Restructured Data Flow Diagram.

Ditective

Figure 3.2 The Relined Data Flow Diagram.

49

T N

attribute information is wholly acquired from the PIF. In layer three, refinement of
the transformation entitled assign atrribute values results in the transformations find
ranges/choices available and assign choice 1o arribute. In following the data flow, the
data always exists in the flow pattern and the player controls the data by selecting a
choice. The plaver inputs the create command, is presented a list of directives, and
selects one. That directive’s attributes are presented, and for each attribute the playver
is presented a range or choice of values from the PIF and selects one to assign as the
attribute’s value. When all attributes have been assigned values (as required) the
directive is complete. [t is in this refinement that the MIP becomes an application of
the visual interface.
b. The Conversion of SIMSCRIPT to Pascal
(1) The Data Structures. The source code of the MIP is lengthy and
contains a large number of data structures of the tvpe mentioned earlier in this thesis.
There appears to be a strong correlatioﬁ of these data structures to Pascal data
structures. A SIMSCRIPT ser is equivalent to a Pascal linked list. An entity is
equivalent to a record or an array, dependent upon the particular entity. In most
~cases, an entity is of multiple data types so a record is an appropriate structure. An
attribute is equivalent to a pointer or a variable of various types (real, double extended,
integer, character, enumerated, subrange), or possibly even an array or record.
Temporary entities are dynamically created during the course of the execution of the
MIP, thus they would be created in Pascal as an addition to a linked list. Permanent
entities exist throughout the course of the execution. These are created during
initialization and their size is known. To correlate this to Pascal, the entities would be
subscripted variables of an array of records since the size would be the dimension of the
array. While SIMSCRIPT automatically provides some pointers and flags to indicate
membership in a set or ownership of an entity, these would have to be declared as
fields of a Pascal record.
An example of this correlation is shown in Figure 3.3. In
SIMSCRIPT, the AWACS directive needed all the entities shown in the figure as
records. The Pascal version shows the linked lists, the records, and the data fields
needed to create the AWACS directive. This correlation can generally be assigned
across the board for all the MIP data structures used by the visual interface.
It must be noted that all the data structures used for VAX terminal
graphics and for alert'error messages are not needed for the visual interface

50

Records
Directive Prototype Simulation Time
Attribute Prototype Latitude East
Directive Latitude West
Unit Longitude North
Aircraft Longitude South

Emitter Suite Create Routine
Sensor Package '

NOTE: This does not include graphics data.

Figure 3.3 The AWACS Directive PASCAl‘, Data Structures.

application. The data contained in these structures is necessary due to the operating
svstem used. The data structures necessary for the Macintosh operating system are
inherent to it or can be explicitly addressed in the code or resource files. Specifically,
the entities are interval_, database_, interrupt_, input_word, element_, command_context,
recognized_command, CEP_parameter_index, long_word, menu_line, and held_directive.
There are also several variables not needed which gencrally pertain to termunal

graphics. Should any question arise about the purpose of and necessity for any

SIMSCRIPT data structures to be used in the visual interface, the reader should refer

to the source code and the MIP Software Engineering Maintenance Manual, Refcrence
10.

(2) The Source Code. SIMSCRIPT I1.5©® was designed to support

structured programuming and modularity as applications of software engineering

[Ref. 1: p. i}. As such, many of the coding conventions of the SIMSCRIPT language
are similar to the language constructs of the high-level programiming languages such as
Pascal. The if-then-else, do-while, and case statements are examples of condition
statements common to both languages.

Reserve, dcfine, mode, and dimension are typical assignment statements
in SIMSCRIPT, but must be handled through Pascal declaration and assignment
statements accocdingly. The use of boolean arguments is common to both languages

51

- PR, PRSI e

and the operators are the same. A brief review of the SIMSCRIPT reference would
allow any programmer with just moderate Pascal experience the ability to read and
follow the source code.
c. The Prototype of the MIP Functions
(1) The Commands.
to menu items in the Macintosh environment. The commands can be grouped by class

The commands have a direct functional correlation

in nearly all cases. The classes of commands are implemented as menu titles. The few
which are not associated closely with a particular class have been loosely grouped
together into a class entitled special. In one case, a single command was categorized as
a class itself. This was the find command. Several commands are also inherent to the
Macintosh operating system. An example of this is the Aold command. It is equivalent
to the Macintosh open command.
The specific menu items and their functional definitions are as follows:

of a window containing

* About... About... prompts the display

information about this prototype.

® Desk Accessory

¢ Create
¢ Open

e Save

e Save as...
e Close
e Print

¢ Send
¢ Verify

® Quit
® Group Create
¢ Leave

¢ join
¢ Group Send
¢ Time Increment

This command calls the specified desk accessory to begin
operation (normally on-screen) for the user.

This calls a procedure to create an action or ‘utilitv directive.

Open, an operating system feature, is similar to the MIP’s
hold command; it opens an existing file or document.

This operating system f{eature stores a named file.

This operating svstem feature stores a file after prompting for
and receiving 2 filename from the user.

This operating svstem feature closes an open file. The user is
given a choice, if necessary, of saving changes or not.

This_ operating svstem feature prints the open file at the
Macintosh printer.

Send calls the send procedure to send a directive to the game.

This command calls the verify procedure to ensure a directive
is OK to send to the game.

This operating system feature quits executing the application
when selected.

This command calls a procedure to create a group of
directives.

This command calls a procedure to take a directive out of a
group.

This command adds a directive to a group.
This command sends a group of directives to the game.
This command calls the IncGroupTime procedure to

increment the execution time of the groups directives by a
certain amount.

52

® Transmit Message This command allows a plaver to prepare and send a message
to another player or a group of players.

® Receive Message This command allows a player to read his messages which are
in the message queue.

® Query The query command lets the player request a report from the
game.
* Graphics _ This ¢command permits the plaver tQ make adjustments to his

graphics station during the course of the game.

¢ Find This is a class of commands to find a specific group, directive,
message or report which the player may have filed away.

¢ Edit This class of commands is composed entirelv of operating
svstem commands which the plaver uses to edit'text, etc.

¢ ‘Trash’ This command permits the deletion of any file by “dragging”
that item to the trash can so the can is highlighted.

_ These commands are incorporated into the Macintosh application by
pre-coding them into a resource file. The resource file is read by the applicadon
program and the menu bar is constructed from the data contained there. Subsequently,
any time a menu item is selected by a plaver, the command is carrted out by the
program. An interesting feature of the menu items (and an entire menu list), is that
they can be enabled or disabled as required during the course of execution of the
program. Certain MIP commands cannot be performed while other actions are being
performed by the plaver. The Macintosh program can handle these situations by
disabling the necessary commands in the menus.

The maintenance of the menu items must be done in three places,
dependent upon the maintenance required. The resource file must be updated, the
menu resource declaration in the program may need to be updated, and the source
code :0 handle the menu event must reflect the changes made, as required. While this
maintenance, on paper, seems elaborate, in practice it is relatively simple in most cases
and will probably be rare as the addition or deletion of commands is not anticipated
for the game itself. The source code mav change as procedures called from the
commands are added or deleted.

(2) The Directives. The directives correlation to the prototype is that they
represent information to be manipulated. Manipulation of information is done via the
window. Hence, each directive is displaved in a window. The directive attributes are
displaved as information with predefined positions in the window. [t is possible (and
very probable) that they will not all be visible to the player. The plaver will have to

scroll to view the attributes remaining out of view.

P

—~

The method of assigning values to an attribute is consistent and
straight forward. The player moves the cursor over an attribute and clicks the mouse
button. This event activates a procedure which draws a dialog window. The contents of
the dialog window are dependent upon the range or choice of values which can be
assigned to that attribute as it’s value. Controls are used to make the assignments. Ifa
number is needed, a control called a dial control is used with minimum and maximum
values representing the range of values for that attribute. If a string is needed, such as
a choice from a list, the list is displayed and each item has it's own button control. The
player selccts the choice and that choice is assigned as the attribute value.

The attribute values all represent some data base information stored in
the individual player’s functional game file called the Player Initialization File (PIF).

- The PIF gets created by the game director during game preparation and represents the

only correct and authorized set of information in any given game scenario. - By using
the PIF, the range/choice of values can be determined based on the conditions of
directive type. units and their missions, unit resources, resource characteristics, and
environmental data. It should be stressed that direct usage of the PIF data to popuiate
“pop-up” windows or dialog windows is very efficient and not now being done in the
current version. By reading the given PIF data into the dialog window, a value can be
selected by the plaver. This is a significant change since the player no longer has to
thumb through a sometimes large "player manual” to choose data and then correctly
enter that data via the keyboard. The player can see that data in front of him,
comprehend it quickly, and “enter” the data in syntactically correct format; all by
clicking a button! A

This process is repeated many times during the course of a2 game and is
in keeping with the refined data flow diagram design, Figure 3.2. It is natural,
consistent, and permissive (for the most part) - three fundamentals in designing a visual
interface such as this prototype for the Macintosh [Ref. 9: p. 1-27]. In the following
sections, the prototype is established as an application and the reader will be able to
see how the aforementioned processes are implemented in an application such as the
MIP.

54

B. THE PROTOTYPE - MACMIP
1. The Prototype Abstraction
The prototype, appropriately named MacMIP, was developed to provide the

JCS managers another way to use and play JTLS. This prototype takes on a different
appearance than most programs. Macintosh documentation stresses the point that
Macintosh programs like MacMIP “don’t quite look the way thcy do on other
systems.” In Apple’'s words, “Everything you know is wrong.” [Ref. 9: pp. 1-4,
4(Draft)]

The reason is simply that event-driven programs behave differently and have a
different structure. The first-level abstraction of MacMIP, Figure 3.4, shows the set-up
of the program.

Program MacMIP (input, Output);
Declarations

Libraries;

Constants;

Types;

Variables;
Utility Functions and Procedures;
Menu Driven Functions and Procedures;
Event Driven Functions and Procedures;

Initialization Functions and Procedures,

Cleanup Functions and Procedures;

Main Program.

Figure 3.4 An Overview of MacMIP’s Program Structure.

In the material that follows, the first-level abstraction is reflined into an
abstraction level that is suitable for use as a guide for coding the prototype. The
refined abstraction is a third-level abstraction and it's elements are categorized and

55

their purpose defined. In fact, the third-level abstraction was used to code the
prototype version used in the code comparison section of Chapter 2. The results of
that code comparison demonstrate the desirability of continuing with the development
of the prototype from an efficiency standpoint. A complete version of the third-level
abstraction may be found in appendix A of this thesis.

a. The Header and Declarations

The header is typical of any program. It simply invokes the program. The
declarations section is again typical. It identifies operating system libraries used,
establishes global variables by tyvpe, assigns values to constants (including the
identification of resource files used), and formally sets up the data structures.

The first significant difference from most programs is in the declaration of
procedures. These application-specific procedures are categorically grouped together.
The categories are atility, menu-driven, event-handling, initialization, and cleanup.

(1) Utility Functions and Procedures. The utility category is generally used
as a catchall for the functions and procedures which do not belong to anyv other
category. The utility furictions and procedures and their purposes are as follows:

¢ Directive) This procedure draws a specific directive onto the
screen. [t is called when a directive type has been
specified.

¢ Attribute Display This procedure highlights a directive attribute,

calls a_dialog boxX and displavs the attributes
range'choice of values for selection, returns the
selected value, and assigns it to the attribute. It s
activated by an event.

® Assignments This is a set of ¥rocedures which match up to
directive types. Theyv handle anomalies in the
process of assigning directive attribute_values to
particular fields o ?layer .orders. These are
necessary since the MIP ‘does not have a generic
algorithm to do this.

o Verify This is also a set of procedures which match up. to
directive types. Each verihies that the specilic
directive attributes are correct (outside of standard
ty%e-,checkmg) and are assigned to the appropriate
field in the directive record.” Thev are called by the
Send, Verity, Group Send, and Group Venfy

command procedures.

¢ Retrieve Attribute Values This simply assigns attribute values to specific
directive fields.

¢ Player Order Assignment This procedure creates a_ player order record by
assigning a directive’s attribute values into specific
Ela{)e,r order lields in order to "match up” to the
EP’s equivalent of a player order record. To
handle the anomalies of any speciftic directive, the
procedure calls the necessarv assignment
rocedure. Plaver Order Assignment is called by
he Send, Gréup Send, Query, and Transmit
Message commands procedures.

56

e

PO

¢ Mail a Player Order/Message

¢ Quick Order Display

* Quick Attribute Display
e List Control

¢ Time Dial Control

¢ Lat/Long Dial Control
¢ Integer Dial Control
¢ Real Dial Control

e Lat/Long Conversion

® Read From VAX
e Write To VAX

¢ PIF Update

o Write The Status

¢ Write the Player

¢ CRR Get

This concatenates the ?layer order or messaétf[into

a string for purposes ol sénding it as an AS file
tos ,theg CEPP. P It is calledg by Player Order
Assignment.

This procedure behaves similarly to_Directive
Dasplay. It is called by the Query and Graphics
Adjust’command procedures.

This behaves similarly to Attribute Display.

This procedure takes a list, assigns each list
member a control, and then draws the control into
a dialog box. It is called by numerous procedures.

This procedure creates a dial control with range
values commensurate with a minimum and
maximum time, and draws the control into a
dialog box. It returns a time value.

This procedure creates a dial control, with

-minimum and maximum values, and draws it into

a dialog box. It returns a latitude, longitude point.

This procedure creates a dial control, with
munimum and maximum values, and draws it into
a dialog box. It returns an integer value.

This procedure creates a dial control, with
minimum and maximum values, and draws it into
a dialog box. It returns a real value.

This function takes the starting geographic
point(SW) and the number of xy hexés and
determunes the NE point of the plaving surface. It
then converts that point to lat;long coordinates for
use as game boundaries.

This procedure is used to communicate with the
VAX by receiving.

This Brocedure is used to communicate to the
VAX by writing to it.

This is used to update a wide variety of the
plaver's database = when MacMip ’is used
intéractively during game play.

This procedure writes_and updates that status
dialog window. It is called by PIF Update.

This procedure writes and updates the plaver
dialog window. It is called prnimanily during
initialization.

This is a set of procedures which get lists, times,
geographxc points, altitudes, etc. Each procedure
as a direct correlation to the MIP source code.
They are «called by numerous higher-level
procedures.

(2) Menu-Driven Functions and Procedures. The menu-driven category is a

collection of functions and procedures which are called as a result of a player selecting

a menu item. These functions and procedures may in turn call a host of utility and

B T R O I LR L LR S S

57

B O N I R

“AA-—_—— RS I S S
Y S R I

ER - SR

SR

operating system functions and procedures. In general, these are called only from the

Handle Menu procedure in response to an event. They are essentially used to carry out

MIP commands which are not handled by the operating system. The menu-driven

functions and procedures are:

¢ Do
® Desk Accessory

e Create

e Send

o Verify

® Group Create

¢ Join
¢ Leave
® Group Send

¢ Group Verify

¢ Group Time Increment
¢ Transmit Message

® Receive Message

* Query

¢ Graphics Adjust

¢ Find

This procedure simply draws a dialog box whose contents
are in%ormation abc?ui MacMIP. It %alls nothing.

This procedure starts up a specified desk accessory for the
player’s use.

This procedure issues_ the command to create a new
directive. [t calls a dxalo% window so the plaver mayv
select a directive type.. When the type is chosen, the
Directive Display procedure is called.

This Rrocedure prepares actions directives for "mailinﬁ"
and_then places the orders into_the mailboxes. It calls
Verify, Player Order, and Mail a Player Order’ Message.
This procedure calls a directive specific verify procedure.

This procedure establishes a group into which directives
may be collected.

This procedure assigns an existing directive to a group.
This procedure removes a specific directive from a group.
This_ procedure pregares a group of directives for
mailing” to the CEP and then places them in the

mailboX. It calls the Verity and Send procedures for each
directive in the group.

- This procedure verifies that each directive in a group can

be sent to the game. It calls the Verily procedure for
each directive in the group.

This procedure increments the time_of execution for each
directive in a group. [t calls the CRR Get and the Time
Dial Control procedures.

This procedure allows the plaver to create and send a text
message to angther player or'players. [t calls the Mail a
Player Order; Message procedure.

This procedure retrieves a_ message from the plaver’s
message queue and displays it on the screen so the player
may Vview it.

This procedure, similar to Create, requests reports from
the game when MacMIP is in the interactive mode of
operation. It calls the Quick Order Display procedure.

This procedure, also similar to Create, makes adjustments
to the Bla}'er s game graphics stations. It calls the Quick
Order Display procedure.

These procedures find any particular group, action

directive, utility directive, rhessage, or report that the
player has filed"away.

58

Sy
e

(3) Event-Driven Functions and Procedures. The event-driven procedures
are those procedures which are performed as the result of the occurrence of some
event. An event is normally a mouse click or a keystroke performed by the plaver.
System events, such as the movement of the mouse, are also members of this category.
Parameters of the events are examined to determine what occurred, where it occurred,
and what is supposed to happen next. In turn, the event-driven procedures are
invoked to handle the event. In a sense, these procedures are the “brains and nerve
center” behind the application’s "bodily functions.” The procedures are:

® Mouse This procedure identifies where the mouse was clicked and then
calls another event to handle the task to be done as a result of the
click and 1t’s location.

¢ Keypress This procedure handles a keystroke event, including command
keys. "It may or may not explicitly call other event proCedures.

e Update This Yrocedure handles updates to the three windows of MacMIP.
It calls various procedures dependent upon what needs to be
updated.

¢ Handle Menu This procedure handles the event of a click in a menu item and
calls the necessarvy menu-driven procedure including operating
system procedures.

¢ Cursor Adjust This procedure changes cursors based upon the cursor’s screen
position as a result of mouse movement. -

¢ Handle Event This procedure determines what event occurred and oversees the
performance of the task to be done as a result of the event.

(4) Initialization and Cleanup Procedures. The Initialization and cleanup
procedures are the start and stop of the program. The initialization procedure
initializes everything in the program at the start of the program’s execution. It could
be constructed as a combination of several procedures but here it has been treated as a
single giant procedure with’calls to a few utility procedures. The cleanup procedure is
invoked at the termination of the game. It simply erases the contents of the screen,
logs off the VAX, and shuts down the Macintosh. The initialization and cleanup
procedures are each invoked once during the execution of MacMIP.

b. The Main Body of MacMIP

The main body of MacMIP is a short, concise set of statements which are
the “soul” of the Macintosh. After initialization, the program performs a repeating
loop until told to quit. The loop first checks to see if any systems-defined tasks need
to be done. If so, the Macintosh does them. The loop then checks to see if any events
are in the event queue. If so, the system gets the first event of the highest priority
class and performs the event-driven task. It then repeats the loop. When the system is
told to quit, it invokes Cleanup and erases the screen.

59

il e n v

2. Background Issues of Prototype Design

There were several issues which were (and still are) challenges to fully implementing
MacMIP. The challenges primarily of interest here are the transition of an application
(the MIP) from one computer system to another of a different format and the physical
data link between the different systems. These challenges are not impassible but they
do warrant special mention so the reader understands the task at hand.

The task of implementing a prompt-based program, designed and written for a
VAX minicomputer, into a graphics-oriented, event-driven operating svstem such as
the Macintosh provides several challenges. First, it is not a trivial process since the
Macintosh applications do not carry out a sequence of steps in a predetermined order.
Rather, the Macintosh program is driven by user actions (such as clicking and typing)
whose order of occurrence cannot be predicted. Thus, the SIMSCRIPT program
cannot be running parallel to the Macintosh and expect the Macintosh to emulate a
VAX terminal and still function in the visual interface mode. MacMIP must be
programmed to account for the occurrence of events; the MIP’s prompt-based
applications are not event-driven.

Secondly, a thorough concept of graphics capabilities is necessary to

effectively apply the visual interface to the MIP through the Macintosh operating

system. Prompt-based applications such as the MIP generally use "menus” to display
the prompts. Moving through the prompts is done sequentially due to the
application’s rigid tree-like hierarchical structure; one prompt must be answered
correctly before another one can be dealt with, especially if it resides on another level
of the hierarchy. The code to set-up the prompts and move between them is usually
rigidly structured as well. The Macintosh system does all this through the use of it’s
graphics toolbox QuickDraw and the Resource Manager. Thus, any MIP source code
dealing with the CRT display is totally unusable in MacMIP. To try to transfer it to
the Macintosh would require too much source code just to negate those CRT
instructions. Simply stated, reformatting is not trivial.

The other issue of establishing a link to the VAX is also one which is possible
but not trivial. Although the exact mechanics of establishing the link will not be dealt
with here, it must be noted that the capability to link the Maciitosh to the VAX has
been demonstrated by the Jet Propulsion Laboratory, the Naval Postgraduate School’s
C3 Laboratory, and the Warrior Preparation Center, among others. The reason for
mentioning it is that the Macintosh runs only one application at a time. Therefore, the

——___—__._-—-_—-——f>

g —

instructions to link to the VAX on an interactive basis must be incorporated into
MacMIP’s source code. It is also likely that the JTLS Executive Level Program must
know that a particular link and game mailbox is a Macintosh and not a VAX VT-100
terminal. With these issues in mind, the general format and design of the prototype
can be implemented.

C. CREATING DIRECTIVES WITH MACMIP

The use of MacMIP to create the AWACS directive will result in the same
directive being created as examined earlier in this thesis. The method of creating it
now has a new look. To appreciate this prototype, the reader is invited to step
through the process again.

The process begins with the player. With the mouse at his fingertips, the player
moves the cursor around on the screen. As the cursor moves across the menu bar, the
player positions the cursor over one of the menu titles and presses the mouse button.
While holding down the mouse button, the player "pulls down” a list of menu items by
dragging the mouse, Figure 3.5. As the cursor passes over the pulled-down menu

-items, the player releases the mouse button while the cursor is positioned over the

create command. This constitutes an event so the Macintosh software determines what
event occurred and where, and, having recognized the event, handles it. In doing so,
the menu-driven procedure Create is invoked. ’

The issuance of a command starts the ball rolling. First, MacMip reads a
resource file to get a dialog window, gets a list of directives the player can create,
invokes list control, and finally draws all of them onto the screen, Figure 3.6. The
plaver can quickly and easily see what his options are. The player can select a specific
directive type or cancel the create and quit. If the player cancels, nothing happens
except the command is canceled. Actually, the player can quit at any time without
penalty: the main window is simply erased. If the player selects a directive type such as
AWACS, Directive Display is invoked.

When Directive Display is invoked, MacMIP reads a resource file which places
control buttons in a pre-determined order, assigns an attribute name to each button,
and draws the AWACS attributes onto the contents region of the main window. As
the player clicks on any attribute, the attribute control is enabled and invokes the
attribute display procedure.

61

T T AT N T SN DS LB Ay ST T et ey sl e LT S v e e PPN .- . . o
]
v B et

Create

Apple Menu| Flle Menu

Edit Menu
Undo

Create

Tx Msg

Group Menu |[Special Menu| Find Menu

Group

Open

Cut

Join

Rx Msg

Directive

Save

Copy

Leave

Query

Utility

Save as...

Paste

Send

Close Clear Verify
Print Select All Time inc §
Sord o -

Duplicate §

Graphics

Messsages

Now MacMIP determines the type of attributes (squadron, for example) clicked
on and determines the range of values or choices eligible to be assigned as the
attribute’s value. In the case of squadron, this would be a list 6(air squadrons with an
AWACS mission. MacMIP then draws a dialog box, with the appropriate controls
and information, Figure 3.7, and waits for the user to sclect a value. Once this is done,
MacMIP assigns the value to the attribute. For example, 73 AWACS SQ would be
selected as the value of the attribute squadron. The dialog box is erased and the

Figure 3.5 The MacMIP Menu Bar with Menu Items.

portion of the directive covered by the dialog box is redrawn.

When the player sclects an attribute which is a utility directive, such as Air
Route, the player has the option of referencing the air route ID or creating the air
route directive. If the first option is selected, MacMIP behaves as normally expected
for an attribute and displays a list of choices. One choice is an empty textedit box so
the player can refcrence a vet to be created Air Route. If the plaver chooses the latter
option, MacMIP remumbers the AWACS window, invokes Directive Display again,
given a type of “air route”, and draws a new window over the AWACS window.
NOTE: This is similar to the OVERMIP feature of the MIP but this is not restricted
to just three windows or limited performance of commands. .With a new window,
MacMIP can perform any command allowed for an active window and it’s function,

62

r & File Edit Group File Special Find)
The Status Line
The Ploger Line

Directive Type: eI ———

1. MISSION: AAAICKKKK 8. ORBIT LAT/LON: dd-mm~ssD ddd-mm-~ssD
2. SQUADRON: HHAHIOROC 9. SENSOR LIST: 2OCHINNNK

3. ® ARCRAFT: nANDD

4. ROUTE N: (x30ex %)

S. ROUTE OUT: (rexxexncsexx)

6. ORBIT ENTRY TIME: ddhhmmZMMMYY

T. ORBIT DURATION: ddDhhHMmMM

Figure 3.6 The AWACS Directive as drawn by MacMIP.

regardless of the number of windows. Practical limitations of approximately 12
windows are dictated by Macintosh operating software but the only physical limitation
is with memory space on the system. Now Air Route is handled just like any other
directive. When the plaver is done with Air Route, he simply saves it. The Air Route
window is erased while it's information is stored somewhere in memory. The player is
now returned to the AWACS directive window and continues to process information in
it

This process continues on for the player at his will. 1le would never have to hold
a printout on his lap to find data. It would always be available to him on his
computer “desktop.” The player would control the data yet quickly move between
different tasks of varving modes as he deemed necessary and ncver lose any
"document.” It would always be somewhere on his desktop!

63

(& i cait_Group File_special _Find)
The Status Line
The Pla!er Line
Directive Type:

Select Squadion

O 73rd RWACS Sq
O 103rd AWACS Sq
O 89th AWACS Sq

Figure 3.7 The Directive with the Dialog Box.

D. THE FUTURE UTILIZATION OF THE PROTOTYPE
1. Technical Aspects of Prototype Utilization

A brief review of the methodology used is in order to shape the prototype’s
future. The methodology used to develop this prototype was simple and
straightforward. The ultimate goal was established as the application of the Modecl
Interface Program onto the Macintosh operating system. The process of doing this
can be mapped out in steps. First, understand the MIP operations, i.e. what it does.
Then understand the SIMSCRIPT program language and how it operates on the VAX
minicomputer. A collateral task is to understand the Macintosh operating system, it’s
capabilities, and the programs it uses well. Then the task is to understand the design
and structure of the MIP and correlate it into a design using the visual interface. Once
this is done, the next phase is to translate the design concepts into a code-like format
so the prototype takes on a realistic look. This is the point where the prototype
development is now.

In getting the prototype to this point, much of the original source code was
examined to determine how the MIP works. In doing so, it became evident that much
of the logic and algorithms used would be effective in MacMIP. The reason is that the
“behind the screen” manipulation of information by the MIP is fairly effective so there
is no reason to re-invent the wheel. It is the format and presentation of the data which
sparked the idea for the prototype in the first place. With this in mind, it becomes self-
serving to use that code in this prototype. This is evident by the references made to

_specific MIP modules in the MacMIP psuedocode. An underlying premise is that the
development and production of MacMIP would be considerably shortened compared
to a full re-design.)

There were numerous ideas borne out of this development with regards to
future prototype development. One idea mentioned earlier was that of placing
individual directives into resource files. This would speed-up Macintosh operations
and provide 4 cleaner, sleeker display. The better the graphics, the better the visual
interface. The MIP currently reads in all commands and all of the various directives,
queries, adjustments, etc., from a database. The database is not expected to change
significantly over time so maintenance and currency should not be significantly
impacted upon. While the MIP currently reads the data in based upon playver function,
the same school of thought could apply to MacMIP. The answer is to have a separate
diskette per function and simply load that function’s diskette into the Macintosh when
that function is used. One advantage to this is to effectively utilize memory space.
Another advantage, for game mahagement, will be addressed shortly.

A second idea, which follows the lead of the first, is to place each player’s PIF
on a separate diskette as well. The PIF is developed by the CEP upon initialization of
a scenario database. Since the PIF doesn’t change unless the scenario does, it is
feasible to pre-load the PIF for each scenario used. A separate diskette per function
per scenario would allow great flexibility in the use of the prototvpe. An extension of
this advantage would be that only the function affected by a change to a scenario
would have to be updated. This idea would also save machine memoryv space, a
concept which closely relates to the way JTLS already reduces CPU input output by
using video disc digital graphics. ,

Another feature of the MIP which has not been addressed in the prototype is
the system capability for the expert player. Presently the expert plaver can tvpe all the
directive data into one string in a predetermined order (this is called stacking), enter it,

65

and have a complete directive. This capability is a natural for a prompt-based
application. However, with the Macintosh and the visual interface format in use, the
stacking capability is a diametrical opposite. As such, it was not designed into the
prototype. To fully realize the potential of MacMIP, this capability should be
incorporated into MacMIP as a text edit faculty.

Finally, an aspect of development to be considered is a total re-design of the
MIP. The key issue with the MIP is it’s ability to communicate the player’s intentions
to the game. This is done by passing ASCIl data between the two programs.
Therefore, the MIP could manipulate it's data in many different ways just as long as
the file passed was in proper order and format. Consider first that SIMSCRIPT is a
modeling programming language. The MIP per se models nothing. [t is written in
SIMSCRIPT to be consistent with the other JTLS programs. Instead of being a model
which generates data, the MIP simply manipulates data. Since the MIP manipulates
d.ata, consider the possibility that there is a more efficient method of manipulating that
data. That method is a data base management system (DBMS). Several excellent
systems exist which were designed expressly for the Macintosh. One of these or a
specially designed system might do a better job of dynamically manipulating the large
amounts of data used in JTLS. If a decision was made to use a very capable
workstation, such as the SUN or IRIS workstations, for a future generation JTLS
input device, a DBMS system coupled with a Windowing and resident color graphics
environment becomes a very attractive system option. A single workstation could
easily function as a graphics station and MIP substitute.

2. Managerial Aspects of Prototype Utilization

JTLS was originally developed with military training in mind. As events have
transpired that original premise has been overcome. The issue of computer simulations
used as planning aids has come to the forefront. With the ﬁroliferation of the desktop
microcomputer, prototypes like MacMIP take on increased importance. One
important reason is found in the methods used by planners to test various strategies
and tactics. A planner develops a strategy and then must test it for feasibilitv. If the
planner could prepare in advance all of the missions expected to be used for a given
strategy, then the planner could do all that work in his office where all his references,
working papers, etc., are located. When the planner tests his plan, it is done in the
computer laboratory. Using a portable system of diskettes from a desktop computer,
the directives could be transported (so could the Macintosh for that matter) to the lab

66

cadiam.

and loaded into the game. This would save a considerable amount of time for the
planner as the game could be played faster, more repetitions could be run with more
variations of game parameters, and a greater spectrum of outcomes realized for
analysis of plan effectiveness.

A reason of secondary importance is found in the basic premise of the visual
interface. [t is geared toward the casual user. The military planner is not a computer
systems expert by trade. The planner’s expertise can range from the novice category to
the expert. By designing and using a system like the Macintosh, with it's visual
interface, the needs of all users can be met. One can assume that even the expert is
not likely to use JTLS on an everyday basis over an extended period of time. With so
much diversity in a planner’s work, it would be easy for even the expert JTLS
gamesman to lose his grasp of the game's nuances. With a continual change of
scenarios, the data used by the player would change and further compound the
problem of maintaining game skills. The prototype would quickly return the planner
to a high level of effectiveness in game skills, or quickly train the planner new to JTLS,
due to it's graphical orientation and it's ease of use. If correctly designed it will also
reduce input error rates at all stages of training of the player-analyst or player-plam{er.

67

Ad -, .

IV. CONCLUSIONS

The original purpose of this thesis was to examine enhancement of player inputs
to JTLS through computer graphics techniques. The overall result of the examination
is that a graphical application of the game is a very efficient and a desirable method to
effect player inputs. This result is supported by positive use of human visual
information transfer, the ability of computer software such as window management
systems to convey this information, and the capabilities of hardware such as the
Macintosh operating system. Symbolic association has long been recognized as a
positive method of communication. The use of computer graphics is a logical
extension of that school of thought and has found an application in window
management systems. The windowing capabilities in the Macintosh, when compared
to the prompt-based VAX, show a distinct advantage in providing ease of plaver input
and, at the same time, indicates a potential savings in the amount of code necessary to
perform the same operations on the VAX. The results of this examination fully
supported the development of the prototype.

The prototype design shows how to improve the current methods of effecting
player inputs. The design of the prototype incorporates the advantages mentioned
above. The design identifies the areas of the Model Interface Program most in need of
enhancement and then breaks down the functions of each area by correlating them into
visual (graphical) objects. The design also identifies a very capable language (Pascal)
for coding such a prototype and correlates the original SIMSCRIPT source code (data
structures, logic, and language constructs) to it.

This road map of design leads directly to the pseudocode abstractions. These
abstractions show that the coding of the prototype is possible and goes so far as to lay
out the program’s skeletal structure. The categorization of MIP functions allows for
explicit definitions and routines of MacMIP which in turn perform the MIP’s
functions. The road map allows for a total rewrite of the MIP. The next step to be
taken in the design process is to actually begin coding. Although a total rewrite is a
large undertaking, and beyond the scope of this thesis, it is the most efficient and
economical method of implementing the graphical enhancements.

68

In the case of the Macintosh, the powerful capabilities of the microcomputer
would be lost if it was coded to simply emulate a VAX VT-100 terminal. Then the
Macintosh graphics would not provide any true enhancements to the player input
mechanism. Also, while the psuedocode was written with the Macintosh in mind, it is
purported to be general enough to provide decisionmakers a basis for which to apply
the MIP functions to other graphics-oriented window management computer
workstations. Indeed, the proliferation of low-cost microcomputers with graphics
capabilities give the prototype increased credibility.

[n summary, the prototype can be a valuable tool to JTLS managers in the near
future. The design is generic enough to apply to any window management system but
is ready to be coded for the Macintosh. The best of the original source code has been
applied to the prototype to aid quick implementation. It's use in a desktop, office
environment will provide the manager greater flexibility in utilizing JTLS to it's full
capability and worth.

69

SN oA R EeWO D e MR akm e

| I B

APPENDIX
MACMIP: THIRD-LEVEL ABSTRACTION

IHHHHHHHEHHHHHHHHHHHHHBHHHHHHENHHHEEHOHEEE HEADER 3HHHHBHEHBHHHHENHEHERHEHHHEHOHEHHHEHOHEEHE
Program MacMIP (Input,Output)
FHHHHBHHBHOHINEHERHHHEORaHE: DECLARATIONS (of the globals) MHBHEHESHHEUHOHEHBHHOHRHHHEEE

W Operating System Functions »ee

(R) s*range checking, on/off

(s1) ninput/output error checking, on/off
(90X <filerame>) #inclusion of filels)

(k) npundle bit, on/off

(SR <filename>.Rarc) #identify resource files used

(8T APPLDMOL1) #set spplication identification
1wk #suto-link to runtime units, on/off
testH *use of segmented code, onv/off

($S <sagment name>) ¥name of segmentad code used

e Macintosh Interface Units wee

USES

PasInOut #Implements the standard Pascal input/outiut (1/0) routines.

MemTypes #Dafines special Macintosh data types and must be in any Mac-~style
. application. ’

&uickOraw #The Macintosh graphics package.

SCSIIntf s#Provides access to interface port and permits communications with

the port.

OSIntf »The opor;otim systems interface which performs lowest level basic
: tasks.

ToolIntf #Implements the user interface features of windows, menus,

controls, dialog boxes, text editing commands, etc., and must be
in sny Mac-style application.

PackIntf #The interface to packages of data structures snd routines which
are stored as resources.

MecPrint #Provides sccess to Macintosh printing manager.
(s NOT USED: Any of the following mey actually be needed when MacMIP is actually coded,

howsver, they do not appesr necessary at this time: PasControl, PasPrinter, SANE,
FisMath, Gref3d, AppleTalk, SpeschIntf,ws)

HHHHHHHHBHHHHHEOHHHEEOHHEE Cons tants, Typess; and Variables MHOHHEHHHEHHEHEHHHHEHHHEHHEHE

CONSTANTS
Mers List Count = ¢ xtotal rumber of menus
Apple Meru 3 xx #the resourcs
File Marnu =xx #ID unique
Group File Menu =xx ®to each
Edit Merw ngpecific
Special Menu = x #mernu file
Find Merws =xx
MM s x #index
70
ST S Y S W AT A R DAL SRS

RN SRR

i

Y et

RN VRN VTP SRS e

Badadcatain 2™

FM = x #into
M = ¥menu list
EM = x Kfor
SM = x Heach
FOM = x narny
Mein Nindow ID = 3000 *the resourceld
Status Window ID = 200K *unique to each
Player Window ID = 2000¢ %specific
Attribute Window ID = 2000 *window used
Buffer Size = 00¢ *for disk 1/0
Buffer Count = *for disk 1,0
TYPE
Player File 2 RECORD of
PF Concat.Fr : char
PF Suffix : char
PF Unit : integer
Playar = RECORD of
PL side ! char
PL side rnumber t integer
PL function : char
PL function no. t integer
PL receives input : integer
PL graphics station integer
Msilbox = RECORD of
MBX logical name char
MBX size integer
MBX channel. integer
Message = RECORD of
MSG status integer
MSG text : char
Unit = RECORD of
UT Pointer ! intager
UT long name ¢ string
UT short neme ¢ string
UT type ¢t integer
UT &S aircraft aveilable integer
UT AS aircraft type ¢t integer
UT side : integer
Oirective = RECORD of
DIR 1D ! char
DIR wunit 1 : char
DIR unit 2 ¢ char
DIR unit 3 : char
DIR unit 4 : cher
DIR target 1 : char
DIR target 2 ¢ char
DIR lat 3 i double extended
DIR lat 1 text : r
OIR lon 3 : double extended
DIR lon 1 text B r
DIR lat 2 ¢ double extended
DIR lat 2 text s r
DIR lon 2 i double extended
DIR lon 2 text B r
OIR time : double extsnded
DIR time text H r
DIR duration t double sxtended
DIR duration text : chare
DIR generic 1 text : char
VIR generic 2 text : char
OIR generic 3 text : char
71
S e Nma i 3 a - Rl B S B AW L O
L
asle

OIR generic 1 integer
DIR generic 2 integer
DIR generic 3 integer
DIR generic ¢ integer
DIR generic) double
OIR generic 2 double
DIR generic 3 double
OIR generic ¢ double
DIR generic 1 Ipointer
DIR generic } Tpointer
OIR generic) Dpointer

AP prompt :
AP field code H
AP arguments string

Pumber H

Directive Prototype = RECORD of

oP 1 name

op u?.ft name

OP meaning

DP CEP class

0P assigrment routine
OP verify routine

OP attribute prototype
0P mumbaer attributes

Quick Attribute Prototypa = RECORD of

QAP prompt

QAP create routing
* QAP arguments string
QAP conversion type
QAP PQ word

QAP all flag

% ov s ae s ae

Quick Qrder Prototype 2 RECORD of

Air Maspon

Aircratt

QOP context

Q0P full neme

Q0P numeric name

Q0P CEP class

Q0P CEP specific tyre
Q0P CEP rumber

Q0P meassage

QOPQAP

RECORD of

AR name

AN X air ground

AW X weapon waight
AN X swpply category
AN X night factor
AW X westher factor

AN X waspon oolor

A¥ X wespon effects
AN X long

AN X precision Suided
AW X waspon speed
ORD of

AC name

AC X range

AC X day night

AC X crew time

AC X fuel

AC X westher factor
AC X ruaway required
AC X type

AC X wet waight

72

s et es oy 4e

e o ee

T % % e e ee we e e ae

R D R S TR

nnnu-.nuuuuu

intager
intager

intager

integer

double extended
double extended
double extended
double extended
integer

integer

integer

string
string
string
integer

o

[T S P

string

string

integer

integer

integer

integer

array (1 to 12) of RECORD
integer

string
integer
string
integer
integer
integer

integer
string

string

intager

integer

integer

intager

srray (1 to 61 of RECORD

string
real
real
real
real
real
real
real
real
resl
resl

string
real
real
real
real
real
real
real
real

Supply Side, Supp

Function =
Unit Type =

Targat Type

AC X dry weight 2 resl
AN X EC factor : resl
AC X max altitude : real
AC X speed : reaal
AC X load time : real
AC X aircraft side : resl
AC X ratio ¢ real
AC X refue : real
AC X spare 2 real
AC X enamy detection : real
AC X angage fuel ©: resl
AN X AI range : resl
ly Category = RECORD of
SS rnane : string
SS units : string
SS multiplier real
RECORD of FN name : string
RECORD of UTP TEXT : string

Emitter Suite

Mord Indicator = RECORD of Word Integer
Sensor Package

RECORD of TTP TEXT string

RECORD of ES name ;. string

= RECORD of SP name
SP number

CRRGet Routine = RECORD of Create Routine integer

Associated Directive = RECORD of
Month = RECORD of

Order Record =

Player Order

TN e e v - L e

Mth name : str

AD dir ID string

ing

Mth length : integer

RECORD of
OR time text
OR time

OR DP meaning
OR status

OR Massage

: string

i real

: integer
2 steing

2 string

Associated Directive RECORD

RECORD of

PO class

PC specific type
PO unit

PO time effective

3
5535233332
iddjddaia

" " ~
33333333
284441

% pointer
Y 5 pointer
real
real
real
real
real
text
text

3333333332223333
3

i

integer

integer

integer

real

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

double extended
double extended
double extendad
double extended
i double extended
2 char

: char

oe se an ae

* %% 4 es as ws ot ae s

73

"'Ahe“--. Wy ey

e et M

Target = RECORD of
TR pointer
TR rumber
TR name

TR type

integer
string
string
integer

VARIABLES
Date Stamp,
Status Line,
Special Status,
Player Line,
User I0,
Simulation Time Text,
Scenario Name)
Game Classification,
Supply Field : chars

AMP Fl”,

Starting Day,
Starting Month,
Starting Year,

No of Login Builds,
Air Refuel Index,
Supply Nidth,
Supply Precision,
Sun Status,

Number X Hexes,
Number Y Hexes : inteager)

Simulation Time,

Supply Minimum,

Supply Maximum,

Lat Hex One,

Long Hex One

Lat East

Lat Nest

Long North

Long South : reals

IBHEHHHBHHHBIEHHEHEHENEHENE Utility Functions and Procedures MHHEHHEHHEHEBHEHHHHHEHHHHEE

¥Thase subroutines may or may not be representative of original MIP logic. If there'is a
correlation, then the MIP subroutine ID will be annotated within brackets to guide the
programmer to that original source code.®

Directive Displays

%This display is called from a resource file, develops a specific directive's display, and
draws it into the main window.» .

Given a DP meaning
Read the resource file for the generic directive display:
For each static item dos
index I from 1 to 123
Get attributa prototype of DP meaning)
index J from 1 to N3 #N is the number of attributes
for the given DP mesning.
For I = J dos

Change the static text to represent AP prompt and AP field codes
For each I > N do}

Hide the static item so it can't be seen or snebled:;
Now draw the display into the mein window’
End Directive Display)

Attribute Displays

74

R PR 8 L A o R Sowta et . T O A A BT - S A

e

nThis is sctivated when a directive attribute is highlighted. It determines what type of
attribute it is, gets the sppropriate type of control, gets s renge/choice of eligible
values, and assigns each of them a control. It then drsws the control into a dialog box
onto the scresn. Nhen a particular control is activated, thet value is assigned to the
attribute variable.x»

Given AP(J) with a DP Meanings
Read a resource file for the dialog box;
For AP creats routine (J) do CRRGets [I100]
Case of (1 to 25)3 ¥Xget the appropriate create control routine
Draw the dialog box with the eligible valuss and their controls;
For activated dialog box assign a value to word)
#0f Word Integer of AP(J).

End Attribute Displays

Assigrments

#This procedure handles the snomaliss found when assigning directive-specific attributes
to the Player Order fields. All AIR directives (DP meaning 301 to 399) use assignment 300
as well as their own specific assignments.»

Given a OP meanings
Invokes assigrment.OP mesnings [(Al101 to Al04, Al06, Al23, A200 to A227, A300, A306,
A312 to A3l4, A401 to A407, A501 to A503, A8001]

End Assigrments

Verify)

#This procedure verifiss that certain directive-specific assigrments were made before
allowing the Player Order to be sent to the CEP. Tha first part of the assigrment checks
for the existence of s referenced utility directive and the remainder irwokes the
directive-specific verifications.»

The send flag is not sets
Given a DP meanings
For eech utility directive in directives
Determine it exists:
No : Draw an error dialog box to alert the plavers
Yes : Than go ony .
If utility directive is wespon load;
Deterwnine weight of loed for Aircraft is OK:
No : Draw an error dialog box to alert the plavers
Yes : Then go onj .
Irvoke verify.DP meanings (V101, V104, V106, V123, V200, V202 to V209, V211, V214,
V217, v218, V222, V225, V300, V306, V312, V401 to V407,
v501, v8001l :

End Verifys

Retrieve Directive Attributes; [U019]

#This procedure assigns a blank string to attributes with "Null Entry" as values. This
parmits acceptable formetting of the Player Order.®

Given word integer)
Case of that word)
End Retrieve Directive Attributess

Player Order Assigrments; [A000]

75

#This procedurs assigns directive common attributes to specified Player Order fislds.
Given » OP meaning it then invokes that directives specified sssigmment.¥

Given Directive with DOP meaning;

PO class = DP CEP class)

PO specific type = DP meaning;

PC time effective = DIR times

PO word 2 text = DIR ID»

If DIR unit 1 name ¥ Null Entry;
For UT short name = DIR unit 1 name)
Let PO unit = UT pointers

Invoka Assigrment.DP meaning;

End Player Order Assigment;

Msil the Player Order/Messages [U018]

%This procecurs concatenates the Player Order into one string of char for purposes of
sending it to the CEP. After the Player Order is made, it is read to port. This is done
by invoking Write To VAX. Then the Playsr Order is reset to 0.

Given a Player Orders
For directive with DP wmeaning = 101)
Increment No of Login Builds)
Convert all integer and real values to characters
Concatenate all Player Order fields into one string; *This is krown as a message.
Determine that the message will fit into the mailbox:
No : draw an error dialog box to alert the players
Yas : If message is directive thens
OR time text = Simulation time text:
OR DP meaning = DP meanings
OR unit 2 DIR unit 1 name;
AD DIR ID = DIR IDj
- File Order Record)
If mode is "on-line" put the Player Order message into the mailbox;
Raset Player Order = 03 ¥For the next time.

Fnd Mail the Player Order/Message;

Quick Order Display; ,
#This procedure is similar to Directive Display but on a smaller scale.®

Civen a QOP context:
Resd the resource file for the generic display;
For each static text item dos
Index I = 1 to 63
Get Quick Attribute Prototype for QOP context;
Index J = 1 to N3 #N is the rnumber of attributes.
For I = J doj
Changs the static text to represent QAP prompt)
For I > N dos .
Hide the static text so it can't be sesen or enshled:
Now drase the display into the main window;

End Quick Order Display:

Quick Attribute Oisplays
#This is similar to Attribute Display but on & smaller scale.®

Given QAP(J) with QOP contexts
Read the resource file for the dialog boxs
For QAP Create Routine (J) do CRRGet:
Case of (1 to 25) : Do Create Control; »As sppropriste.
Oraw dislog box with eligible valuas and controls

76

End Quick Attribute Prototype)

List Control)

#This procedure develops snd draw a diaslog box with controls for esch item in the list.
It returns a valus of char.®

Given N mnumber of items in lists
If List is multiple entry then

Assign a8 check box for sach items
Else

Assign a radio button for each items
Map item to graphics positions
Draw the dialog box in the main windows

End List Controls

Time Dial Controls

#This procedure develops and draws a dialog box with s scroll disl to return a value of
time. Minimum time always = 1 minute.®

Given maximum day value)

Given game minimm time) *If time is for "Duration" then game minimum time = 0
since the value needed is a block of time for incre-
mental purposes.

Determine minimumw and maximum values for the control:

Minimum value = game minimum time ¢+ 1

Maximm value = game maximum time + maximum days;
Draw a scroll dial using minimm/maximun values;

Current value is minimum values

Format is 2 places for days, 2 places for hours, 2 places for minutes;
Return a time value; *Usually is converted to a real number in terms of days.

End Time Dial Control;

Lat/Long Dial Controls

#This procedure develops and draw a dial control onto tﬁo dialog box to return geographic
points. Only degres fields must have values. Direction velue in text converts T for
real values of lat/long.*

Given 3 minimum and meximm value; #sually the game boundaries.
Determire the rmammber N of points to be mades
Draw a scroll dial with minimum/maximum valuess
Current value is minimum values
Format is 3 places degrees, 2 plasces minutes, 2 places seconds, and 1 place
directions ¥For lat the first place has a value of 0.
For N points dos
Enter a latitudes
Enter a3 longitudes
Corwart all points to real valuass

End Lat/Long Dial Controls

Integer Dial Controls

#This procedure develops and draws a dial control in a dialog box and returns sn integer
valus . ®

Given a minimm and a maximum value;

Draw a3 scroll dial with minimum/maximum values)
Current value is minimum value)
Format is 5 places)

Return an integer value}

77

End Integer Dial Controls
Real Dial Control)

#This develops and draws a dial control with minisum and maximuw values and returns a real
valus.®

Given minimm and maximum valuess

Current value * minimm value)

Format is 9 places with 5 decimal places;
Draw 3 scroll dial with minimum and maximum valuesi
Return a resl value;

End Real Dial Controls

Lat/Long Conversion;(U013, U014, U015, U0l16]

#This develops the game surface bounderies in terms of latitude/longitude for use as dial
ranges . ¥

Given Lat Hex One, Lon Hex One, Number Y Hexses, and Number X Hexes;
Convert to Lat Hex X, Lon Hex Y3
Corvert haxes to coordinatess

Results in Latitude Eagst/Mest and Longitude North/Souths

End Lat/Lon Conversion;

Read From VAXs

¥This uses the R$S-232 port as a d.cvic. and resds an ASCII file from the device if
something is in the buffer. The buffer must be checked periodically.»

End Resd From VAX: ’ .

Write To VAX)

#This writes an ASCII file to the RS-232 port when called to do so by the Macintosh. 1It
contains protocol information for’ the VAX and Macintosh to communicate.®

End Write To VAX)

PIF Update; ([CEP Process!

#This reads a message from the CEP, determines it's type and subtype, and take the
necassary actions depending upon the type.»*

Resd From VAX3
For message type cate of :
(1) Message : do
increment queue by 1)
file message in queuss
Write The Status given queue:;
(2) Time : do Write The Status given times
(5) Interruwpt pending : do Write The Status given special status;
(6) Targst : do a new target records
(7) Game speed : do Write The Status given geme speed
(8) Stop pessword : chenge the password) :
(9) PIF updates : case of subtype :
(1) Aircraft available : find the unit, change it's nunber;
(2) Cargo trucks available : find the unit, change it's numbers
(3) Tanker trucks available : Find the unit, change it's numbers
14) Aircraft charscteristics : change the aircraft's record)
(uozs)
(5) Air weapon cheracteristics : change the air weapon's records

78

ad .

[uo291}
{6) Persorel weight : change the persommel logistics load records
{7) Aircraft name : change the aircraft’'s names
(83 Air weapon name : change the air wespon's names
(9) Sensor psckage name : change the sensor package's name;
(10) Emitter package name : change the emitter package's name;
(11) Supply category : change s supply category's record;
(10) Sunrise-sunset : do Write The Status given sunstatus)

End PIF Updates

Nrite The Status
#This procedure develops and draws the status window and the information it contains.»
Given queus, game speed, starting time and date, and special statuss
Read a resource file to get a dialog windows
For each static text, change the static text to the necsssary value)]
Draw the dialog boxs

End Nrite The Status)

Nrite The Players
#This procedure develops and draw the plaver window and the information it contains.»
Given classification, player function, scenario name;
Read a rasource file to get a dialog windows
For each static text, change tha static text to the necessary value)
Draw the dialog box;

End Nrite The Players S

CRRGet Procedures;

%These procedures get certain information for attributes snd directives. Each gets some
specific information, thus they are listed along with their MIP module number.%

Get an ID (UL011"
Get a Duration [Ull01l
Get » Lat and Long [U111]
Get 3 New Target Name ({U106]}
Get s New Target Number [U105]
Get a Real Mumber ([Ul14]
Get a Route {U115]}
Get Additioral Route Info ([U026])
Get a Rusway Name [U124] :
Get a Sensor List [Ull8]
Get a Supply Changes List [U122]
Get a Supply Load ([U116]

a

adia.

Gat a Targat Name (Ul06]

Get a Target Typas List (U123])

Get a Targets List [Ul13] -
Get a Time ([(U109]

Get a Unit Neme [(U1031]

Get a Units List [U112]

Cat a Mespon Load [V117)

Gat an Emitter List (U119}
Get an Integer [VU1121
£nd CRRGat)

IHHHHHHHHHHHHHHHHHHHHEH. Meru Driven Functions and Procedures MHHHBHHHEHHHHEHHHHHHHHEE

79

et Apple Mernu Functions and Procedures e
Do Abouts

#This procedure simply tells the user some information sbout MacMIP.x»

Read the informstion needed from resource files:
Put together a string of parameter text)

Get the dialog box and put it ups

When it has been read, get rid of its

End Do About:

0o Desk Accessory)
#*This gats the salected desk accessory and starts it up.»

Save a port for the desk accessory;
Get the desk accessory neme;
Start the desk accessorys

End Do Desk Accessorys

¢ File Menu Functions and Procedures e
Creatas; [Command(1l) of C000]
#This procedure determines what directive to build and does it.»*

Determine the-directive type (Action or Utility)s [C001]
For type selected put up a dialog window with list of DP meaningss
Given ligt do List Conti>dl}
Return the salected value = DP meanings
Dispose of that windows
Given DP Meaning do Display procedures [€002]
For each attribute highlighted do Attribute Display procedure; *Get a value

for the
attribute.

Do Retrieve Directive Attributes procedures
- End Create)

Send; [Command(101) of C000]

#Sends only action directives, not previously sent, to CEP. The file sent must be open in
window . %

Given DP meaning do Verify procedurs;
Check verify flag case of:
Not set : verify and set flags
Set : go onj
Do Plasyer Order Assigrments
Mail the Player Order/Massage;

End Send)

Do Verifys [Command(106) of C000!

Check verify flag case of :
Set : Tell player that directive is 0K
Not set : For DP meaning do Verify procedure;

End Verifys

80

it Group File Menu Functions and Procedures et
Group Create; [Command(51) of C0001
%This procedure creates a group of directives.»
Get a unique ID for the groups
List the action directivas which do not already belong to a groups [C103]
Do List Controls
Return a values
Place the selected directive in the groups

End Grouwp Create;

Joiny [Command(109) of C000]
#This procedure adds a directive to a group.»

Given an open directive put it into sn existing grouw; [C103]
End Joins

Leave; [Command(110) of C000]
%This procedure removes a directive from a group.*
Given an open grow and a list of it's directives: [C104]
Do List Control
Returned value is selected directives
Remove selected directive from group; #It will stand alone.

End Lesve)

Group Sends [Command(54) of C0001
#This procedure sends a group to the CEP by sending a directive at a time.»
Check group to ensure Directives with DP meanings 310 and 800 aren't in the group at
the sama time) [C009]
Yes :remove one of thems
No : then for esach DP meaning do Verify;
When all are verified do for each : Send; %One at a time.

End Group Send)

Growp Verifys [Commend(58) of C000)
®This procedure verifies a group of directives.»
Do Verify procedure for sech directive in groups [(C009]
Except if DP mesning = 800s »Varification not done on Air Mission Package.
Set verified flag) :

End Group Verify;

Group Time Increment; [Command(59) of €C000])
#This procedure crestes a block of time to add to a group.®

Check group directives for DIR Time Text ¥ 0 and DIR Time Text Z Null Entry;
{co10}
If so for that directivets) increment DIR Time and DIR Time Text;
Do Time Dial Control)
Return a block of time;

St

e remeem e e e T

—~

End Grouw Time Increment;
Wt Special Menu Functions and Procedures e

Transmit Messages {(Command(5) of C000]
#This procedure allows the player to creste a text message to send to another player.x

Select Playeris) to send message tos [C0101
Includes “all", "all 8lue", "all Red";
From is entered as Player's function and sides
Entar message as a taxt strings
Enter “//% To indicate the end of the message’
Irwoke Player Order Assigmment)
invoke Mail the Player Order/Message;
Do as a repeating loop to place into sach mailbox as requireds

End Transmit Message;

Receive a Maessage; [Command(14) of C000)

#This procedure is invoked only when their is a CEP message in the queue. It pulls out
the CEP message on a FIFO basis for thae player to read or print.»

Read message file for first message; [C006]
Draw that message to the main window)

End Receive a Message’

Querys [Command(13) of coool

#This procedure creates r-equost for the CEP to send a progress report to the player. It
is similar to creating a quick order.%

For QOP context = 90 invoke Quick Order Nisplay; ([CO017]
Do List Control to return the ype of repcrts

Given a report type do Quick Attribute Displays

Do Player Order Assigrhments

Do Mail the Plaver Order/Massage)’

.

End Querys

Graphics Adjusts
#This procedure makes adjustments to the player's graphics station.»
For QOP contaxt = 98 irwvoke Quick Order Displays (C017)
Do List Control returning the type of adjustments
Given an adjustment type invoke Quick Attribute Displays
Do playear Order Assigrments
Do Mail the Rlayer Ordar/Message’

End Graphics Adjust)
e Find Menu Functions and Procedures M

find Groups

#This procedure irvokes the operating aystem finder given the type of “group™.*
End Find Growpy

82

A PO R 1 X R AN

Find Directives

#This procedure invokes the operating system finder given the type of “type of
directive".®

End Find Directives

Find Utilitys

#This procedure invokes the operating system finder given the type of "type of utility
directive" .»

End Find Utility)

Find Message)
#This procedure irwokes the operating system finder given a type "filed messages”.»
End Find Message’

Find Reports
#This procedure invokes the operating system finder given a type "filed reports”.»
End Find Reports

IHOHHHBHABHHEHOOHHEE Event Driver. Functions and Procedures MHHHHEHBHEEHHEHHEIIEEHEEE

Mouse' Clicks
#This identifies where the mouse was clicked and invokes the necessary procedure.
For location case of : #*Somewherse in the main window.
Menu bar : Do Handlas Mernus
Content : Do Handle Click *In the main window to hendle the attributes.
Close box : Do Handle Close
System window : Do System Click XThis is a click in a desk accessory.

End Mouse Clicks

Keypress)

#This handles the event of any Keystroke including the use of commend keys.*
End Keypress}

Updates
#This invokes the necessary update procedurs depending upon the event.»

Case of :
Status window : Do Write The Status;
Player window : Do Write The Player;
Main window :
Get the new information to go into the contentss
Erass the current contentss
Draw the new contents in it's place)

End Update)

Handle Event)

83

#This determines what event cocurred and handles it.»

Case of
Mouse Click :
Key down H
Autokey H
Update event :
Activate avent :

Do Mouse Click)
Do Keyptresss

Do Keypress)

Do Updates

Do Activate;

End Handle Event)

Cursor Adjust)
#This changes cursors based upon the location of the cursor on the screen. These are
application specific chenges, not those made by the operating system. These may not be
neead for MacMIP but is included here just in case.»

Do change to cross, arrow, pluss

End Cursor Adjust:

Handle Merw)

#This procedure handles the event of any menu item being hit and invokes the necessary
action to tske plaqe.l

Case Marw of :

Apple Menu : Case of
About : Do Abouts
. Daesk Accessory : Do Desk Accessory)
File Meru Case of :
Create : Do Create’
Open : operating system feature)
Save : operating system features;
Save As... oparating system feature)
Close operating system feature;
Print : operating system features
Send Do Send)
Verify : Do Verifys
Quit : operating system feature;
Group Mernu Case of :
Creste ¢ Do Group Creates
Leave : Do Leave }
Join : Do Joins
Send : Do Group Sends
Verify : Do Group Verifys
Time Increment : Do Increment Group Time)
Special Menu Case of :

Do Transmit Message)
Do Receive Message)

Transmit Message :
Receive Message

Quary : Do Query)
Graphics : Do Graphics Adjust)
Find Meru : Case of
Group : Do Find Grouwps
Directive Do Tind Directives;
Utility : Do Find Utilitys
Massege : Do Find Massages
Report : Do Find Report)
Edit Merws : Case of
Undo : opersting system festure;
Cut : operating system feature)
Copy : operating system festure)
Paste operating system feature)
Clear operating system feature
Select All : operating system festure;
Clear : operating system feature;
84
~ IR . A X .
]
At A . P -

End Handle Menu}
MHHBHHHENHBOHENENEN Initislization Functions snd Procedures IHHEBHEHEHHHEHEHEHHEE

Initializations

AThis procedure initializes the verious Macintosh managers, varisbles; and procadures.
also initializes the PIF by reading in the appropriate database information.»

Initializes
SrafPort, Font, Wir fw, Merwu, Text, Dialog,.Events Managers.
Cursors)
Meruss
Windows 3
Variabless
Supply Field = "nmmnannnnn.mn™)
Supply Min = 0.0y
Supply Max = 999999999, 99999
Supply HWidth = 15y
Supply Precision = 53
Month (1 to 12) = Jan..Decs
Month Length (1 to 12) = 31..313
Load database information; (10001
Write to Vax;
“Open [.datalmiscel.dat"
“Read [.datalmiscel.dat"
Repd From VAX:
Store data into appropriate filess
Write To VAX;
“Close [.datalmiscel.deat";
*Open [.datalexecutive.dat"s {1001]
"Read [.datalexecutive.dat";
Read From VAX)S
Write To VAX:;
. “Close [.datalexecutive.dat"s
"Open [.dataldrctvs<function number>.dat"; (10031
"Read (.dataldrctva<function number>.dat"y
Read From Vaxs
HWrite To VAX:
“"Close [.dataldrctvs<function number>.dat";
"Open [.datalalldrctvs.dat"s (10031
“Read [.datalalldrctvs.dat's
Read From VAXS
Write To VAXS
“Close [.datalalldrctvs.dats;
“Open [.datalquick<function number>.dat";
"Read [.datalquick<function number<.dat"; (I003]
Read From VAX)
HWrite To VAX:
"“Close [.datalquick<function number>.dats
For MIP mocde = “on-line")
Write To Vax)
Call VAX 'SYS$CREMBX'; *Create the mailboxes.[I3021]
Read From VAX) *Get the mailbox names.
Load the PIFy [1003]
Write To VAX:
Given function number and type of game = "start";
"Open PF_Unit(file_typel"s
Read From VAX;
Read game class, starting day, starting month, starting year
Latitude/Longitude informations
Unit nemes,types, and resource informations
Target names, types, numberss
Supply side/category names, units, multipliers:
Aircraft informations
Air wespon information;

85

PTra L JeR e M e s L e eastEL W W S e

1t

P s

Sensor package informations

Emitter suite informetion;
Hrite Yo VaAX:

Close PF_unit(file_typals

End Initializations

*This procedure simply ersses the screen when the geme is finished, logs off the VAX, and
shuts down the Macintosh.

End Clesrwup)

Call Initialization;
Repeat until finished;
System Task; »For desk accessories.
Cursor Adjust;
If GotNextEvant(avcryEvont,thaEvent)s *If there is an event. ..
Then Handle Event(theEvent); *...then do it.
Call Cleanup; *hhen finished.

END MucMIP.

86

B PR

10.

LIST OF REFERENCES

Russell, E.C. Buildinlg Simulation Models with SIMSCRIPT 11.5, CACI,
Inc.-Federal, Los Angeles, California, 1983.

Contingency Planning Subtask, Joint Theater-Level Simulation, Executive
Overview, Jét Propulsion Laboratory, Pasadena, California, 1986.

Fredericksen, M.N., Aiding Computer Application Programmers and Users with the
Too,lfs of the Visual Interface, M.S. Thesis, Naval Pos graduate School, Monterey,
California, March 1986.

House,W.C., Interactive Computer Graphics Systems, Petrocelli Books, New York,
New York, 1982.

London, K.R., The People Side of Systems, McGraw-Hill, London, England, 1976

Hopgood, F.R.A., and others, Methodology of Window Management, Springer-
Vef?gg. New York, 1986. gy of Windo g pring

Rossmann Ala,ih, “The Macintosh User Interface,” Ouiside Macintosh, Addison-
Wesley Publishing Co., New York, 1983.

Schmucker, K.J., Object-Oriented Programming for the Macintosh, Héyden Books,
New York, 1986. i

Apple Computer, Inc., Inside Macintosh, Addison-Wesley Publishing Co., New
York, 1984.

Contingency Planning Subtask, Joint Theater-Level Simulation, Seftware
Engineering” Maintenance Manual, Volume V, Model Interface Program(MIP), Jet
Propulsion Laboratory, Pasadena, California, 1986.

87

Sy s

A S _dim AAMa-‘l-; -

INITIAL DISTRIBUTION LIST

([:)aefense TSe::htmcal Information Center
meron Station
Alexandria, Vitginia 22304-6145

lerarv Code 0142
Naval Postgraduate School
Monterey, California §1995-500 2

CDR JosePh S.Stewart 11, Code 55
ava Pos %a uate School
Monterey, California 93943 5000

Maj Thomas J Brown, Code 39
\aval Postgraduate School
Monterey, é‘ahforma 93943-5000

C3 Academic Group, Code 39
Prof Michael G. Soverexgn

vavai Postgraduate Schdoj
\Iiontere\ California 93943 5000

0JCS:I8

LflCog Réchard H. Duff
€ fentagon

Washington, D.C. 20301

' Ca d)t Stephen L. Lower
22 m Street
St. Josep Missouri 64505

Begde & mecces o
Monterey, California 93940
%’Bscga rafr?xgerGro Atlantic
ELTCLANY Giliery Haif
erglma Bcach ergmxa 23461

88

No. Copies

