
OlIC FILE COPY
G NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC! i [i, ELECTE~r

JUL 0 6 19810
D

THESIS
ROCOMPUTER PROGRAM DESIGN CONSIDERATIONS

FOR THE NOVICE USER

by

David C. Moore

March 1987

Thesis Advisor: Norman Lyons

Approved for public release; distribution is unlimited.

87 2028

unclassified (

SECuRITY CLASSIFICATION OF TX'S PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

unclassified
2a SECURITY CLASSIFICATION AUTHORITY I OISTRIBUTION'/AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATIONi DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NuVBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If aph(icable)

Naval Postgraduate School Naval Postgraduate School
6C ADDRESS (Ct'y, State. and ZIPCode) 7b ADORESS(City. Stare, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 94943-5000

8a NAME OF FUNDING iSPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8C ADDRESS (City. State. and ZIPCode) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK JNIT
ELEMENT NO ,NO NO ACCESSION NO

It T:TLE (ncldeSecurity Clawfcaton) MICROCOMPUTER PROGRAM DESIGN CONSIDERATIONS FOR THE

NOVICE USER

12 PERSONAL AuTHOR(S) Moore, David C.

3TY F~EO~b I13b TIME COVERED 114 DfiffQ I ORT Yesr. Month Day) 15 PAGE (OkNt
ilas e'r si he sls FROM O farcn 131

6 SLPPLEN6ENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverie of necesary and identily by block number)

F ELD GROUP SUB-GROUP novice user; computer interface design/

considerations; computer interface

'9 ABSTRACT (Continue on reverie of necessary and identify by block number)

The purpose of this thesis is to present the issues and considerations
related to the development and implementation of a user interface for
a microcomputer-based application program. The interface design goal
is to enable a novice user to fully utilize all application program
functions without prior training or reference to a user's manual.

The results of the empirical evaluation of the user interface are
presented together with an analysis in support of the effectiveness of
a proposed interface design methodology and interface design considera-
tions.

;0 0 SYR,3uTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

NMNCLASSIFIED/JNLMITED 0 SAME AS RPT 0QDTIC USERS unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include AreaCode) 22c OFFILE SYMBOLProf. Norman Lyons 646-2666 .Code 54Lb

DO FORM 1473.84 MAR 83 APR editioll may be used untI exhausted SECURITY CLASSIFICATION OF Tw.S PAGE
All oter edton ao obsolete unclassified

1

Approved for public release; distribution is unlimited

Microcomputer Program Design Considerations for the
Novice User

by

David C. Moore
Lieutenant Commander, United States Navy

B.S., Ohio State University, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

March 1987

Author% -2 =
Davi C. MooA (

Approved by% Mly-vL
Norman R. Lyons, Thens Advisor

Tung X. Bul, Second Reader

Willis R. Greer, Jr. , Chun rman,
Department of Administrative Sciences

Kneale T. Marshall,
Dean of Information and Policy Sciences

2

ABSTRACT

The purpose of this thesis is to present the issues and

considerations related to the development and implementa-

tion of a user interface for a microcomputer-based

application program. The interface design goal is to enable

a novice user to fully utilize all application program

functions vithout prior training or reference to a user's

manual.

The results of the empirical evaluation of the user

interface are presented together vith an analysis in support

of the effectiveness of a proposed interface design

methodology and interface design considerations. -

Accesioi For

NTIS CRA&I
DTIC TAB 0
Unannounced U
justicatoI

ByI

~Disit ib, itio':

D't .t~'ECTIL
4

3

TABLE OF CONTENTS

I. INTRODUCTION 9

II. USER INTERFACE ISSUES 12

A. USER INTERFACE EVOLUTION 12

B. THE PRESENT INTERFACE STATE 13

III. RESEARCH INTERFACE DESIGN CONSIDERATIONS . . . 17

A. THE APPLICATION PROGRAM 17

B. APPLICATION PROGRAM DESIGN THEORY 18

C. INTERFACE DESIGN PHILOSOPHY 19

D. THE USER COMMAND INTERFACE 22

E. INTERFACE DIALOG DESIGN 24

F. THE ESCAPE MECHANISM 31

G. ERGONOMIC CONSIDERATIONS 31

H. DISPLAY COLOR CONSIDERATIONS 33

I. DESIGN SUMMARY 35

IV. EVALUATION OF THE RESEARCH INTERFACE 38

A. EVALUATION METHODOLOGY 38

B. EVALUATION SESSION OBSERVATIONS 41

C. POST-SESSION QUESTIONNAIRE ANALYSIS . . . 43

D. EVALUATION SUMMARY 46

V. CONCLUSION: APPLICABILITY OF FINDINGS . . . 50

APPENDIX A INTERFACE EVALUATION FORMS 52

APPENDIX B APPLICATION PROGRAM SOURCE CODE . . 56

APPENDIX C APPLICATION PROGRAM DISPLAY SCREEN
DESIGN SOURCE CODE 120

4

igLN

LIST OF REFERENCES 128

INITIAL DISTRIBUTION LIST ± 30

5

LIST OF TABLES

1. DESIRABLE INTERFACE ATTRIBUTES 14

2. INTERFACE DESIGN RULES 15

3. RESEARCH INTERFACE REQUIREMENTS SPECIFICATIONS . . 22

4. INTERFACE ATTRIBUTES SUPPORTED BY THE
RESEARCH INTERFACE 36

5. POST EVALUATION SESSION QUESTIONNAIRE

RESPONSE DISTRIBUTION 44

6. TYPE A AND B USER CHARACTERISTICS 47

6

LIST OF FIGURES

1. Research Interface Main Menu Display 25

2. Sub-Menu Display 26

3. User Assistance Request Display 29

4. System Error Detection Display 30

5. Assist Window Display 34

6. Evaluation Session Questionnaire 39

7

ACKNOWLEDGEMENTS

This author voulc like to express his appreciation to

Professor Norman R. Lyons for the professional guidance and

educational Insights he provided.

Additionally, this author wiahes to thank his wife,

Betty, for the support provided during this educational

experience.

ww~w II II 8

I. INTRODUCTION

The relatively recent, widespread proliferation of

microcomputers into both the home and work place has

resulted in a shifting of computer operation and, in some

cases, programming tasks, from the traditional realm of

trained, professional operators and programmers directly to

the end user. Technological advances have reduced the

skills necessary to energize and physically communicate with

the hardware. However, the process of effectively

interfacing with the hardware via the constructs of software

of ever increasing complexity, often requires the new user

to obtain a detailed working knowledge of a particular

software system before the benefits of the system may be

realized.

This requirement seems contrary to the conjecture

expressed by Coombs and Alty [Ref. 1%p. 33 that the majority

of users do not wish to be extensively trained in computing

and employers certainly wish to minimize user training

costs.

The purpose of this thesis is to develop and evaluate

the effectiveness of interface techniques designed to elim-

inate any user, applicatlon-specific training prior to up-

plication program use. In order to provide an appreciation

for the nature of interface design issues, Chapter 2

9

11114,

presents a review and analysis of interface evolution and

the state of current thinking relating to interface design.

Chapter 3 details the rationale and anticipated benefits of

specific interface design decisions and techniques employed

in the development of the research interface. In Chapter 4,

the interface evaluation methodology and evaluation results

are presented, discussed and analyzed. Finally, Chapter 5

suggests that the concept of including an interface require-

ments specification into the system design and development

process is essential to the production of viable applica-

tions for novice users.

The scope of this research was intentionally limited to

one application program's interface in order to more fully

evaluate the effect of tha employed interface. By this

action, the empirical evaluation results and ensuing conclu-

sions would not be general in nature and thus avoid a

recapitulation of the generalized findings and recommend-

ations currently presented in available literature.

Additional limitations imposed upon the design of the

specific interface were based on the fact that the target

microcomputer system'. hardware consisted of 512 kilobytes

of main memory, two 360 kilobyte diskette drives, a monitor,

keyboard and printer. Admittedly, this particular hardware

configuration precludes evaluation of such technically

feasible interfacing approaches as the use of light pens,

pressure sensitive screens or voice command. However, the

10

. , . . ,. ,."- , -,. ' .- - , ,: ,, ,,,.,.._

target system's configuration seems consistent with tre

assumption that the majority of general purpose

microcomputer systems in use share the same general

configuration and/or limitations.

II

- .-- -. a ~ ,1

II. USER INTERFACE ISSUES

As a result of technological advances in the computer

field, a relatively new and immature field of study has

arisen to explore principles and methods for better adapting

computer systems to meet human needs. This fledgling field

has, as yet, no simple title nor well established repertoire

of concepts and techniques. The field is frequently

referred to as "interface design" and "dialog engineering"

[Ref. 2:p. 3].

A. USER INTERFACE EVOLUTION

Prior to the widespread use of time sharing systems, the

vast majority of computers were operated in batch mode. As

a result of batch processing, end users only indirectly

interacted with the computer via operations personnel.

Consequently, there was no reason for "user friendly" inter-

faces since the operators were trained professionals,

knowledgeable of the requisite interface procedures.

Although the introduction of time sharing systems,

enabling direct user interaction, generated an acknowledged

need for "user friendly" interfaces, the pursuit of user

interface design attributes was relegated to academia. This

relegation was due to the fact that time sharing systems

were achieved through the layering of complex and costly

12

"4* ''

software onto existing, batch oriented minicomputers and

mainframes, and hardware and software providers did not find

it economically feasible to reconstruct new, coordinated

systems for existing machines (Ref. 3:pp. 338-339.

The advent of the microprocessor has had a profound

impact on the computer industry. One of the most signifi-

cant impacts va the dissolution of the long adhered to

premise that computers were expensive and should be built

with the minimum number of circuits, thus assuring

efficiency (Ref. 4:pp. 110-123]. Consequently, it now

became both technologically and financially feasible to

consider the user's needs in the hardware and software

design process.

B. THE PRESENT INTERFACE STATE

With the realization that it was now technically

feasible to incorporate interface considerations into the

design of a microcomputer system, such diverse professions

as educationalists, psychologists and ergonomic specialists

began contributing to the area of interface design.

However, their findings and recommendations have not

produced significant advances in interface design since

theme non-computer oriented professionals are rarely invited

to participate in the design effort. On those occasions

when they have become involved in the system design process,

their contributions have been somewhat diminished due to a

13

1Q

lack of knowledge and appreciation of the machine's capabil-

ities to make things easier for the user (Ref. 3%p. 339].

Since the mid-1970. there have been many studies and

much written with respect to guidelines for the development

of effective user interfaces. Unfortunately there is no

well defined standard or authority and a fair amount of

inconsistency from source to source (Ref. 5:pp. 25-25].

Although there may be inconsistencies between any two

given studies, analysis of the various studies in aggregate

has allowed later researchers to develop more comprehensive

guidelines based upon previous, incomplete studies and the

resolution of individual Inconsistencies. Table I presents

a highly generalized summary of desirable, interface attri-

butes identified by Shneiderman (Ref. 6%pp. 216-244]. Gaines

and Shaw (Ref 5 :pp. 30-44] have taken the process one step

farther and proposed more specific, interface design rules.

These rules, together with the general interface attributes

which they support, are presented in Table 2.

TABLE 1. DESIRABLE INTERFACE ATTRIBUTES

DESIRABLE INTERFACE ATTRIBUTES

1. Easy to learn.

2. Easy to use.
3. Easy to remember.

4. Prompt response times.
5. Reliable.

6. Courteous.
7. Helpful.

14

TABLE 2. INTERFACE DESIGN RULES

INTERFACE DESIGN RULE SUPPORTED ATTRIBUTES

Use interface prototype or related system Easy to learn/remember
when discussing the interface with users.

Develop interface using user's model. Easy to learn/remember

User should dominate computer. Easy to use

System response/activity should be clear Easy to learn, helpful,
consequence of user's actions. reliable

System should adapt to user's expertise. Easy to use

Provide for uniformity and consistency. Easy to learn/remember

Ensure requisite information/memory aids Easy to use, helpful

are available to user throughout system.

User manuals should be based on actual Easy to learn, use and

user dialog, remember, helpful

Train through experience. Easy to learn/remember

Make immediate, clear responses to inputs. Courteous, prompt

Validate data on entry. Reliable, courteous

Provide a reset/abort command. Easy to use, reliable

Make corrections through re-entry. Reliable

Although Shneiderman's interface attributes and Gaines'

and Shaw's rules provide general direction for interface

design, there remains much leeway for system design and

programming personnel as to the actual implementation and

interpretation of these attributes and rules. Peterson's

and Silberschatz's observation seems to concisely sum up

15

the current state of user interface designs

Users desire certain obvious properties in a system. The
mystem should be convenient to use, easy to learn, easy to
use, reliable, safe, and fasnt. Of course, these specifi-
cations are not very useful in the system design, mince
there is no general agreement on how to achieve thoee
goals. (Ref. aSp. 441]I

16

III. RESEARCH INTERFACE DESIGN CONSIDERATIONS

Due to the myriad of possible, interactive computer

applications, the specific application program and user

group will often dictate the manner and degree of implemen-

tation of the generalized guidelines found in literature

concerned with interface design.

A. THE APPLICATION PROGRAM

Although this research project is concerned with the

user interface, it was deemed necessary to develop an appll-

cation program with which to interface and to provide direc-

tion to the interface development.

The actual methods employed by the application program

to satisfy the user's functional requirements are not ger-

mane to this research effort. Therefore only a brief

description of the program's overall function is provided to

establish a frame of reference.

The application program was developed specifically for

the accountant of the Army Emergency Relief organization

(AER) at Fort Ord, California. AER's function is to provide

no interest loans to military personnel (primarily army) who

satisfactorily demonstrate a valid need for financial

assistance. The accountant's primary function is to record

disbursement of the loan, post loan repayments to applicable

17

loan accounts and general ledger, and advise higher

authority of any financial deviations or problems with

respect to individual loan accounts. A secondary function

requires the AER accountant to provide statistics of varying

natures to higher authority upon request. Since a service

member may have multiple, concurrent loans, the nominal size

of AER's data base is on the order of 1900 to 2100 members

and 2900 to 3200 loans. The AER application program basic-

ally provides for maintenance of individual loan accounts,

general ledger and statistical information.

B. APPLICATION PROGRAM DESIGN THEORY

Much has been, and continues to be, written regarding

computer program design and development. While various

design and development methodologies are advocated in the

literature, all have the expressed goal of producing good,

working programs. Unfortunately, it seems as if the

majority of methodologies stress design and development of

the functional elements of a program with the user interface

being of secondary concern. In other words, once the func-

tional aspects of a program have been defined and designed,

the interface is designed to fit the functional design

structure.

The theory underlying the methodology used in the design

and development of this research project is essentially a

reversal of current design and development methodologies.

18

S Is

The theory proposes definition and design of the interface

prior to, or at least concurrent with, functional design.

This development approach is intended to place the interface

issue at the forefront. Thus, functional design is driven

not only by requirements specifications, but by interface

considerations an veil. While thin approach may increase

the difficulty and complexity of functional element design,

the actual, internal methods employed are usually of little

concern to the user. Assuming the system meets the user's

functional specifications, the interface becomes the primary

user issue. As noted by Eamon and Damodaran with respect to

users' perceptions of a computer systems

It is of little interest to him [the user] that the sys-

tem is a technical masterpiece, or that it serves another
user very vlll if it serves his task needs poorly, it
stands condemned as a poor system. [Ref. 7%p. 1163

Since the goal of this research is to develop a system

requiring no user training prior to use of the application

program, interface issues are of paramount concern. In the

following sections of this chapter, the issues pertaining to

the design and implementation of the research interface are

presented and discussed.

C. INTERFACE DESIGN PHILOSOPHY

Traditionally, the design of a "core" program to satisfy

the user's functional requirements would be relatively

straight forward. The goal is veil defined; design the

core program to perform the specified requirements. Since

19

the actual workings of this portion of the program are

invisible to the user, one need only consider the technical

aspects of the task; the user is of secondary concern.

However, the approach taken in the design of the

research program requires that "coreR related design

decisions be made with respect to both the requirements

specifications and interface considerations. Since a

project's requirement specifications serve as the benchmark

against which a program's functionality is assessed, the

same approach ws used with respect to interface dgsign.

Unlike the requirement specification, which may be

stated in such measurable metrics as response times and

throughput rates, the interface specification is much more

nebulous. The exact meanings of terms such as "easy to use*

and 'friendly* are highly individualistic and ambiguous. As

a result, it is left to the designer or programmer to

produce their interpretation of these ambiguous terms.

In order to develop an interface requirements

specification, the attributes of a novice computer user were

analyzed.

The term "novice user* is assumed to apply to an

individual who is not, nor desires to become, an expert in,

or familiar with, computer technology, but uses a computer

to assist in the performance of assigned tasks. A generally

accepted attribute of the novice user is the overall percep-

tion of the computer as a tool to assist in the performance

20

-.

of a task. If the user deems the tool inappropriate for the

task at hand or the effort to use the tool exceeds the

return, the tool will experience little to no use.

Based on the attributes of a novice user, several

assumptions were generated which formed the basis for the

formulation of user interface specifications. First, the

novice user's interests and aspirations lay outside the

computer field and only limited time and effort could be

expected to be devoted to mastering the application system.

Second, the user would view the resulting system as a means

to an end and not an end in itself, thus desiring to

minimize time and effort devoted to system operation and

output interpretation. Finally, the user would desire

immediate answers to questions about the system without

lengthy and time consuming reference to user and technical

manuals.

As a result of the analysis and assumptions, an

interface requirements specification was developed in the

form of a questionnaire, against which candidate interface

designs were evaluated prior to implementation. The

contents of this questionnaire are presented as Table 3.

Only after an interface design idea met the requirements

of the interface specification were the technical implemen-

tation issues addressed. Bas±cally, the design philosophy

was to adapt the program to the needs of the user versus

forcing the user to adapt to the needs of the program.

21

'101i

TABLE 3. RESEARCH INTERFACE REQUIREMENTS SPECIFICATION

i INTERFACE REQUIREMENTS SPECIFICATIONS IRESPONSEI

1. Does the interface contain references, concepts or words No
words unique to the computer field? I

- 2. Does the interface require user inputs/actions which No

have no identifiable counterpart or rationale in the

corresponding manual process? No

3. Does the interface contain all necessary information to Yes I
accomplish the desired operation? I

4. Does the interface require the minimum, necessary user YesI actions to complete the operation?

5. Is the interface consistent with previously developed Yes
interfaces? 1 I

6. Does the interface provide for immediate and positive Yes

error detection and correction/recovery? I

D. THE USER COMMAND INTERFACE

Since the target computer system's primary input device

was the keyboard, there appeared only three viable command

entry modest a menu system, a command language or a

combination of the two. The selection of a menu system for

the research interface reflects the observation of Reid

that:

Menus have been recommended for occasional and novice
users as they reduce the amount of information the user

needs to remember. (Ref. 9:p. 11l

As with many concepts, there are some disadvantages

associated with a menu driven system, which, if not handled

effectively, can negate the concept's overall usefulness.

22

The mere fact that the display screen of a computer system

encompasses a finite area limits the number of options which

may be displayed on a given screen.

If a system offers more options than can be displayed on

one screen, it may be tempting to reduce the space occupied

by each option description. However, if the option

descriptions become too cryptic, the primary advantage of a

menu system is lost as the user now must acquire and

remember the meaning of each option.

Another alternative would be a system of layered menus,

where the selection of an option from the primary or main

menu would produce another menu and so on until the menu

containing the desired operation was encountered. The main

problem associated with this approach is one of navigation.

As one progresses through successive menu layers, it becomes

difficult to determine one's location in the system relative

to a known point of reference, in this case the main menu

[Ref. 9:p. 111]. Loss of a frame of reference can

disorient and confuse the user, am humans are accustomed to

using the space and objects around them for organization and

establishment of frames of reference [Ref. 1O:pp. 1-3].

The research program has 47 different options. Since

all 47 could not be displayed on a single screen without

becoming too cryptic, a system was required that preserved

the advantages of a menu driven system and avoided the

potential disadvantages. The resulting main menu consists

23

I9

of the 10 general operations depicted in Figure 1, through

which all 47 options are accessible. Limiting the main

menu to 10 operations provided enough room for non-cryptic

operation identification. However, this action necessitated

a layering of subordinate menus. To avoid the navigation

problem, these subordinate menus are presented as windows or

panels on top of the main menu. The intent of this approach

is to create the illusion that the user is still in the main

menu section of the program, thus preserving the user's

frame of reference. Figure 2 shows an example of operation

three's subordinate menu. Since many of the available

operations use the same input/output displays, there are

only six display screens, including the main menu, in the

system. Depending upon which option is selected the user

will see one of five input/output screens. The only place

the user can go from an input/output screen is back to the

main menu. Thus there is no navigation problem for the user

to contend with; the user is either viewing the main menu or

an input/output screen.

E. INTERFACE DIALOG DESIGN

For the purposes of designing the research interface,

the term dialog was defined as two-way communication.

Stoner notes that two-way communication is a complex process

where a receiver provides feedback to the sender of a

message (Ref. l11p. 496-499]. In the case of the research,

24

OD- r-

0 ~ C0 N

U- - ' I.- E -

< 41 4 0G~

U) cc. ~~ 0 CL0

Z0 0 0 0 m
0 10- 0 -

Z - _ C 0 ' 41 -

w r 4 41 4 -4

w C 0. 41-
z &. - - 0 CL I.- C.

-0 u uE 014 0 C4 -o 0
v 41 41 4 U U I --

w - cc~ do 0 u

E X 0 0 ~ '00
4) 1. C. C .0 -=- c

- 04 3 4)

0~ 0 -c).~

CL 06 C -D -

01 0~ 0 a

- 0 0 0 0. 0 -
-~~ ~ - .- - 4

W - 0

W P- 0c -c

I to 0. .

0) 0 - 0

z - 4o1

a 0 0 0
to) 0n 0- 4

0- 001
LL 4 0.. 0.c)

0 cU W 0 4 cc

.- m - - C 0
a: 00 1-0 ~
CL C - r- 0 -V ~ 0 -

0 - 0 Wr >. LL- C 0j n
EAZ 0 A 0 Go - 41 0

0 ... U) 4. I -41- 1 a

cc 0 Z 4) 4) CL 0 0U 0 -
Lu t. < m co 0 U LA

4 0 w cc C 0 41

M o0 m~ Q3 "E

0 C) C) (0.

- .- - C) w 4

< 0 41 0 LU C
o C c 0 - 4) cc U

- C'.4 m'~ 4) -

C)

25

Go 00

01 a.C 0
LUI 4) 6 0 C.NI
LL. . 3 1. - E -

0/ 0 (A CL-
0 - C1 4 06

Coll .0 4) c -

0 0 61 0 (0 0

0U 6. h.0)

Z C) 0 - 6 .
LU CL 61 610

z CL -. -3 * .
LU U 0E 61)0 - 61

Z j 0 - - 61 a: c 00u
E 0 0 1 610 N -

6. u. 0 61 z

5 0 %
'A C." 0 C. 0 . 6
>. 0 a 00 0

0n 0 0

CL 0 L 0 0 0 .0 In
C 0 0 6 . c U

o~c I.-0 61 .

- 56. . Uo
4 -0

- .-

0C' Cl 4)

0)U) 0 -o E 61 c

0 Zl U) Z V) 0 0
-0 CJ

9 -0 C' .0 0 E Ecm0 0

CL E >C (4 5 . C.) C - 10
C 0 I 1 0 - 01. Cf. U) .- U.

cc CE 0. 0 LU1
0 I 0 LU -0 01 61

-J Zn 0L 0A. 61 0 6

S0 Z 61 10 V CL LL Z
LU 0 : < m I - - n z

4 l'~- C -r .- 0 C-
04 14C 0 0 4N U6 0

a 0 4) cc C C co
0 -j v - - - a0.

6-. co W0- L

Z 61 6 - v C 6.

< - - 04 0 0 0o 0 U 6o Q C 0 >. 0. C
-. 1 LU ILU ICII I S

0

26

application program, the user is considered the sender arid

the program the receiver providing feedback.

When humans receive feedback, there is more involved

than simply content. The message is evaluated with respect

to the source, read between the lines for hidden meanings,

and words interpreted with respect to our understanding of

the word. [Ref. 12 :pp. 238-246]

Since feedback can convey more then physical message

content, a detailed analysis and design of the feedback

mechanism, with emphasis on human perceptions and

attributes, was seen as a means to convey the image of a

"friendly" system to the user.

The primary perception the interface was designed to

convey was system servility. By so doing, it was envisioned

that the novice user would view the system as a capable and

willing servant and not a system requiring user submission.

The resulting system prompts for user actions were

simply displayed as requests versus commands. Instead of

displaying a message such as: Enter the desired option, the

message was displayed as: Please enter the desired operation

number. The innocuous inclusion of the word 'please*

changes the perception of the message from a command to a

request, and may even convey the impression of a personable,

polite computer.

The other type of system message analyzed was the error

message. To maintain the perception of system servility,

27

error messages of an informative nature were designed to be

almost apologetic as opposed to cryptic chastisements. An

example of an informational error message is the case where

the user requests display of information not held in the

system. The system responds with: *I'm sorry, I can't seem

to locate the desired account'.

Error or abnormal situation messages requiring user

action, are presented as a system plea for user assistance.

The intended user perception of these messages is that the

user is in complete control of a personified system. Figure

3 is depicts the abnormal situation message displayed when

the system cannot determine to which loan the payment is to

be applied. Figure 4 is the window displayed when a printer

fault is detected.

The final type of error response coded into the system

consists of a short, audio "beep" when illegal keyboard

entry is detected. Whenever a key is depressed, the system

immediately analyzes the input to determine compatibility

with the type of input field. If it is a valid entry, the

character is displayed, otherwise the "beep" sound is

produced. The user receives instantaneous feedback and does

not waste time and effort entering an entire data string

only to be informed after entry that it is an invalid input.

Although the audio signal alone does not identify the

exact error, the accompanying field windows are designed to

contain all requisite information to enable the user to

28

0o - W *IL

-0000

o 4 N CN 4)

* ze

4) E - -i -U
sE >% E2 V

- 1 0-'A0
v 4a 0 c 0) 00

'06 z
>.1-a) 0 - >

O4 LO0 0- 0 0
0 .C0-0 " 0 0

CL ZLr-1 0 * cr

0 c 0 0

CL 4c (- CD

01 0 4o) 0
0 04

Eo co Eo
w 0 >.

- - .2 c

co -W CY N

>-4 0 n E- 4)
a~ E 20 -4 4-

04 iL 4c CL 0 in C

0 E .I

C 0 CC) > 0 0

10 0 C4 06 o

w z - 0 0

4- 0 0 c

*c 0
LL0

*)CL - -) CI--O
4) 20 C

0 cc. 020
0.0

c C c 29

U. E

O ~ .0 4))

0 0- 0

2 0 f

0 -3 0 - CL
- 0 4) E ~ 0 0

2 I- C 0 o)U
LU X 0 4) 40 0

1. 0 CD CD kv 0 m -
0C 0. 0 - 4)

as 0. - 4- 4) M 00.33
co 0 U U 4) .- 0 0d4-

cm OA -4
c . _ 01 oU ca

= 0 .- 4- CL~ - 0
c I.- 0 .- C.-)
4- 0- 0 z C-O C go 0
a C C a u) E-

0 1 0 %- aaao
Ci) - 'A4 4-0 4 0

0 CL ~ 0 0 l w
C FA O La0' U)

-A C C4 WC-a -CI04
C- 0~ -0i3 -

C C -WC Go - a
CD C ~ do- 30 Is ~ .Q4 fA =

0 . 0 2) do 4- N 0 c- 0 4
U - - C40 r . .- .

CU u.i- 06 4 -C- 0 .0

CL- c . C- - -
c2 .04 4- U. 4~-

- 1.- a) U- N C0 1 .0 c
0 a. 'o C ai 0. a

*i V) 06 -E " C 2
Ur 0 z 0 in CL 00

C. c4 03 *r 0) c- 4
0~~~~ U 0 C-44 0 0) .

C 0 L) I. mC a~ 2 III..

0- -3. o-~-~ a.)

C 40
0 LU 2 - 4 --

4. - - - -C 0

0 I- 0 LU c. 0 cLo
-I w 0 11L > cc - t- .0

~~~~V 0 4 n' OU

LU 0 ~ 39

~ 0 L ~ C *30



determine the necessary input. The audio signal is designed

primarily as a courtesy to inform the user of accidentally

depressed keys while protecting the system from input type

mismatches.

F. THE ESCAPE MECHANISM

Assuming a novice user will probably probe the system

during the familiarization process, it was decided to

install a mechanism which would immediately halt whatever

process the user was doing and return to the main menu. As

recommended by Gaines and Shaw:

Provide a reset command that cleanly aborts the current
activity back to a convenient checkpoint. The user should
be able at any stage in a transaction to abort it cleanly
with a system command that takes him back to a well de-
fined checkpoint as if the transaction had never been in-

itiated. (Ref. 5%p. 423

The system command selected for the research program was the

Esc key. In order to preserve simplicity and limit the

amount of system related knowledge required of the user, the

Esc key is the only *special function' key the user must

remember. To aid the user's retention, many of the system

prompts contain reference to the Esc key.

G. ERGONOMIC CONSIDERATIONS

The primary issue in this area was to develop the

physical actions necessary for communicating with the system

which would not be ambiguous or meaningless to the novice

user while not frustrating or impeding the user as more

31



experience was gained. Analysis of this issue revealed two

primary areas warranting in-depth design consideration.

The first area considered was direction of the system.

The selection of a menu driven system with its enumerated

options seemed a viable method of direction for both the

novice and expert. Since the menu identifies the available

options, the novice user has all the requisite information

available to initiate the desired process. For the user who

has gained familiarity with the system, the process of op-

tion selection is fast, requiring only those keystrokes

necessary to select the option. There are no special keys,

complex keystroke sequences, or English-like commands to

confuse the novice or slow down the expert. To further ease

the selection process, the numeric keypad was placed in the

numeric entry mode by the program. While the horizontally

arranged, numeric keys across the top of the keyboard remain

functional, the numeric keypad allows all necessary opera-

tion selection and numeric data entry to be performed from

one keyboard location with a minimum of physical movement.

The decision to use numeric option selection codes was

influenced by the ability of humans to cognitively process

numbers faster (27-39 msec/number) than letters or icons

(40-93 msec/item) (Ref. 13:p. 43]. If the user is not an

accomplished typist, numeric entry should be easier and

quicker than having to search the standard *QWERTY" keyboard

for the desired letter.

32



The other area considered involved the implementation

of an on-line assistance facility. In order to provide max-

imum assistance to the novice user and not impede the

expert, help panels or windows describing the purpose or

required input field contents are displayed by default. By

so doing, the novice user requires no knowledge of a special

mechanism to invoke on-line assistance. Since there is no

invoking mechanism, there is no change of program mode from

the current process, to the assistance mode, then back to

the process. Thus the expert user may ignore the assistance

display and continue as if the display was not present. An

example of an assistance window is presented in Figure 5.

Since the target system's keyboard has a numeric keypad,

the system allows numeric entry from the numeric keypad for

purely ergonomic reasons of speed and physical ease of data

entry. The numeric keys acfoss the top of the keyboard may

also be used, however, the physical arrangement of the

numeric keypad reduces then time and movement necessary to

enter a desired numeric input.

H. DISPLAY COLOR CONSIDERATIONS

Colors in themselves were not seen as an information

transmittal medium. Color combinations were selected when

necessary to draw user attention. Light, complementary

colors were used overall to provide a soothing display. The

background is a very light blue, lines are in light yellow

33

.. ' .



40 4)

c c

-.1 0-

0

C. 0 Go Go
0 E-

a. . wM
E to an

~ ~o '- V)
uw 0

-.1
c

z a -

4o -0 0-
0

0-

m - ILI~
'0 Co Vi

- 0- OC 0

IL m~a 0 0 C

o 0 - 0-'-
Co 0- C 0 L.

;--W )%0 ix M
LL @ 0 % u U

=u C 0 - - C 0-

W - I 'A o -- 0

ix cz..i u0 w-C 0

o *>. IL c L

uw 0 0 410
0, a l -~ m

I&I *00000000000 (x

N 0
0. A- U

cr E E c' on
41 0 0- 0 *cJ

N I. N - 0 c

0 OL. 0-0. a F- m 2
-'Z - N C 0

'A a u oz-

oa C 6-r 0C
~ * h. 0 0

0 4c c 0~ 0>
200 0. - N'

0 0 C. -1C 0 -C 0an

34



and column headings are in white. The assistance windows

consist of a red background with white and/or black fore-

ground characters. The choice of red for assistance window

backgrounds is not meant to imply an emergency situation,

but merely to contrast with the overall blue background and

thus draw attention to the window.

I. DESIGN SUMMARY

The purpose of this chapter is not to provide specific

interface implementations, as it is realized that the

specific application will largely determine the interface

structure. Rather, the intent is to propose some basic

philosophies that may be useful when designing an interface.

A summary of the research interface constructs and Table 1

attributes supported is presented as Table 4.

As previously noted, the primary philosophy behind the

majority of the research, interface, design decisions was to

adapt the system to the user and not require the user to

adapt to arbitrarily defined constructs of the system. It

is realized that there are unavoidable constructs to which a

user must adapt, such as using the keyboard for communica-

tion. However, adherence to this primary philosophy by

system designers and programmers should reduce or eliminate

the number of arbitrary constructs introduced into the

system.

35



TABLE 4. INTERFACE ATTRIBUTES SUPPORTED BY

THE RESEARCH INTERFACE

RESEARCH INTERFACE CONSTRUCT SUPPORTED ATTRIBUTE

1. Menu command system. Easy to learn/use/
remember.

2. Sub-menu display overlays. Easy to use, helpful.

3. Entry type checking upon individual Prompt response,

character entry with audio error signal. reliable.

4. Default display of assistance/instruction Easy to use, helpful.

windows.

5. Content of assistance/instruction/error Courteous, helpful.
windows.

6. Display coloration. Helpful.

7. No multi/special function keys other than Easy to learn/use/
the ESC key. remember, reliable.

8. Consistent displays and I/O requirements. Easy to learn/use/
remember, helpful,

reliable.

9. Activation of numeric keypad for option Easy to use.

selection and data entry.

10. Use of ESC key to abort any process at any Easy to learn/use

operation at any time. remember, prompt

response, helpful,
courteous.

A supporting philosophy or concept suggests a

realization by design and programming personnel that the

user of the resulting system probably does not have an

interest in the computer field and views the system simply

as a means or tool to assist in the performance of a task or

function. The implication of this concept is that interface

36



constructs which are meaningful to development personnel,

due to their level of computer expertise, may be quite

meaningless or confusing to the end user. It is therefore

proposed that interface design decisions should be made

under the assumption that the user has no knowledge of the

computer field and with respect to user perceptions and

expectations.

37



IV. EVALUATION OF THE RESEARCH INTERFACE

In order to assess the validity of the assumptions and

theories underlying development of the research interface

and the results of their aggregation, it was deemed approp-

riate to evaluate the resulting interface on novice users.

The purpose of this chapter is to present the evaluation

methodology and results of the evaluation.

A. EVALUATION METHODOLOGY

The basic methodology required a novice user to attempt

ten predefined operations with the application system.

Although the application system provides for 47 different

operations, many are minor variations of a general opera-

tions. The ten operations selected for evaluation were

representative of ten general areas. The user was first

given a written description of the evaluation procedure and

a brief background scenario to establish the interaction

environment. The user's performance was then observed,

noting actions taken or not taken and problems encountered.

Upon completion of the ten operations, the user was given

the questionnaire reproduced as Figure 6 to record his

impressions and feelings about the evaluation session. The

background scenario and performance tasks used for the

evaluation process are presented as Appendix A.

38

AMMA- MA &AWAA



EXPERIMENT QUESTIONNAIRE

Please answer the following questions by circling the response which

best describes your opinion.

I. I found the color schemes displayed on the computer screen:
A. Distracting B. Had no real affect C. Helpful D. Vey, Helpful

2. I found the 'Beep* sound when I made a typing error:

A. Distracting B. Had no real affect C. Helpful D. Very Helpful

3. The overall appearance and layout of the computer screens was:

A. Distracting B. Had no real affect C. Helpful D. Very Helpful

4. The appearance of the assist windows or panels was:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

5. The information contained in the assist windows or panels:
A. Distracting B. Had no real affect C. Helpful D. Very Helpful

6. The ability to return to the main menu at any time by pressing

ESC is:
A. A bad concept B. Okay in some situations,not all C. No opinion

D. Reassuring E. Highly reassuring

7. In general, I felt:
A. The program was very difficult to work with.

B. The program neither helped or hindered my accomplishment of the
various operations.

C. The program helped in my accomplishment of all the operations.
D. The program greatly helped in my accomplishment of all the

operations.

8. Assuming you are an experienced AER accountant and were given a
computer and this program, do you feel you:

A. Would desire extensive training before using this program?

B. Would desire some training before using this program?
C. Would require no training to use this program?

9. I would summarize my feelings about this computer session as:
A. Frustrating B. Challenging C. No opinion

D. Satisfying E. Very Satisfying

10. The zollowing is optional, however, any comments or recommenda-

tions regarding your session with the program would be greatly
appreciated.

Figure 6. Evaluation Session Questionnaire

39

rIe, .



As previously noted, the development objective of

allowing a novice user to use the system without prior

training is based on the assumption that the user is

familiar with the processes and procedures required for

manual accomplishment of the various tasks. In order to

maintain the validity of this assumption, evaluation session

users were selected from personnel assigned to the installa-

tion activity. The intention of limiting the scope of pro-

spective evaluation session users was to increase the

probability that the participants would posses enough

knowledge of the target user's job functions to allow for a

meaningful evaluation of the system interface. The only

other user selection criteria was the requirement that

participants have no prior experience with a microcomputer

based system.

Due to the small size of the installation activity and

the restrictions placed on the selection of evaluation

session participants, a total of six participated in the

interface evaluation. While it may appear that six evalua-

tions are not statistically significant, the extremely high

data correlation of the individual results implies further

evaluations probably would not have generated significantly

different results.

40

IN.-., -



B. EVALUATION SESSION OBSERVATIONS

Aggregate analysis of the observations recorded during

the interaction sessions revealed two distinct behavior

patterns which resulted in the classification of the users

as type A and B.

Although all participants were informed that any

actions, short of physical violence, would not damage the

computer or the program and were encouraged to experiment,

this seemed to have had little impact on their initial

actions. Each participant appeared to approach the first

task with extreme trepidation. Having correctly determined

the option number required for the operation, users were

observed to make several false starts before physically

selecting the option. Following each aborted keystroke the

participant would return to an examination of the main menu.

Once the selection was finally made and the input/output

screen appeared on the display screen, each participant was

observed to display one of two reactions. Users later

categorized as type A would immediately begin intense

examination of the new display. Type B users would

invariably allow themselves an audio and/or physical

expression of self satisfaction before turning their

attention to the new display.

Having correctly invoked the input screen for the first

operation, both user types successfully completed the

required input actions and returned to the main menu upon

41



completion. However, type A users were observed to proceed

with the data entry process at a slower pace than type B

users. When the audio, error signal was produced, signi-

fying illegal data entry, type B users recovered faster than

type A users, and were quicker to correct their mistake and

proceed. Type A users responded to the error signal by

returning to an intense examination of the display.

All participants exhibited a positive learning curve as

inferred by steady increases in task performance speed as

the session progressed. Although the sessions were not

timed, type B users tended to spend progressively less time

evaluating and reacting to each new display screen. Type A

users continued methodical examination of each display, with

an observable increase in data entry and option selection

speeds.

Analysis of the observations seems to suggest defini-

tive characteristics of the two user types. The two type A

users appeared uncomfortable with the trial and error

approach of operation accomplishment. Much time was spent

analyzing the displays am if searching for information which

would reduce the risk of the next keystroke. Type A users

seemed highly task oriented, resenting anything perceived as

barring task accomplishment. If these users experienced any

self satisfaction of increased confidence in their abilities

to interact with the system, it was not observable.

42



Type B users seemed to display an entirely different

approach to the tasks. They were more prone to experimenta-

tion and displayed obvious satisfaction upon successful com-

pletion of seemingly trivial tasks. Type B users appeared

to develop a familiarity with system constructs and charac-

teristics more rapidly than type A users. While type A

users seemed to view each new operation as disjoint from

previous operations, type B users tended to recognize and

transfer the lessons learned from previous operations. Type

B user sessions tended to evolve into a friendly competition

between man and machine with the users frequently issuing

friendly, verbal challenges to the computer.

C. POST-SESSION QUESTIONNAIRE ANALYSIS

The tabulated responses to the post-session question-

naire (Figure 6) are presented in Table 4. As may be noted,

responses to the first six categories relating to interface

design constructs were awarded the highest ratings. This

positive feedback, coupled with the fact that all partici-

pants successfully completed all operations tends to suggest

that the interfaces associated with each operation were

sufficient to permit accomplishment. The responses to

question seven, dealing with overall ease of use, supports

the previous six responses in aggregate.

Responses to question eight, concerning prior training

desirability, were, initially, the most disturbing, as the

43



TABLE 5. POST EVALUATION SESSION QUESTIONNAIRE
RESPONSE DISTRIBUTION

Response Letters from Figure 6
Response L ow ------- High
C a t e g o r y ' " ' T - -*- -~ - -- - - -*- -

A B j C Df E

Display Coloral 0 1 0 1 0 6

Audio Error
Signal j 0 '01 6

Display Formatl 0 I 0 I 0 1 6

Assist Windows l 0 0 6 1

Window Content 1  0 0 1 0 6

ESCape f *

Construct 0 0 0 0 6

Ease of Use 0 0 06

Prior Trainingi -_ ___

Desirability j 0 42 1

Overall I
Impression 0 0IJ 1± 4

signifies no question provided

main objective of this research was the development of an

application program requiring no formal user training. The

validity of the four responses indicating a desire for

training prior to system use was questioned due to the fact

that all participants successfully completed all evaluatory

operations without prior training. To resolve this apparent

dichotomy, the participants were interviewed as to the

reasons for their responses.

44



The interviews disclosed two basic reasons for the

responses. First, there was an assumption by the partici-

pants that the program had more capabilities than those to

which they had been exposed. Thus, prior training would be

necessary to enable effective realization of those unknown

capabilities. The other reason had to do with the applica-

tion for which the program was designed. The application

program was designed for the organization's accountant. As

recommended by Gaines and Shaw [Ref. 5:p. 303, the system

was developed to emulate the user's model of the programed

functions. As a result many of the interfaces employ ac-

counting terminology and procedures. Though five of the

participants had a general knowledge of the account's

duties, none were well versed in the specifics of the

accounting field. As a result, one underlying reason for

the given response was an identified deficiency in the area

of accounting. This revelation diminished the usefulness of

the overall response for interface evaluation purposes, as

one of the assumptions upon which the interface design is

based is user knowledge of the functional aspects of the

application.

Of the responses to question nine, which requested a

subjective judgement of the evaluation session in general,

four participants, classified as type B users, considered it

very satisfying. Of the two type A users, one judged the

session as satisfying and the other as challenging. It was

45



noted that the individual evaluating the session a chal-

lenging, had a particularly difficult time understanding the

accounting terminology, requiring frequent explanations by

analogy throughout the session. The reasons given as to why

a rating of very satisfying was indicated by the type B

users, centered around self satisfaction at being able to

correctly perform the requested operations. Many remarked

upon termination of the evaluation session that once they

got started it was easy. For the type B users, the

perception of a computer as a complex, hands off machine, to

be used only by trained professionals appeared dissolved.

Considering these responses, it seems reasonable to

assume the aggregation of the various interface constructs

employed, produced an environment conducive for user, task

accomplishment and successfully established a master-

servant relationship between man and machine respectively.

D. EVALUATION SUMMARY

Due to individual differences, it is extremely diffi-

cult, if not impossible, to derive clear-cut classifications

which characterize all users, in all circumstances, at all

times. Consequently, the categories of type A and B users

should be viewed as opposite ends of a continuum. The char-

acteristics and attributes of these extremes are presented

in Table 6.

46



TABLE 6. TYPE A AND B USER CHARACTERISTICS

TYPE A USER CHARACTERISTICS TYPE B USER CHARACTERISTICS

Highly task oriented. Disregards Interested and exited by every-

items not germane to task accomp- thing. Experiments with various
lishment. items enroute to task accomplis-

ment.

Each action carefully thought out Actions more intuitive and im-
prior to execution. pulsive.

Uncomfortable with the new and Considers new and unfamiliar as
unfamiliar, a challenge to be mastered.

Takes error messages personally. Error messages viewed as part of
Great care taken to avoid repeat learning process.

of same error.

Views each new task as separate Similarities between new and pre-

and unrelated to previously com- viously completed tasks quickly
pleted tasks. identified and used.

The results of the evaluation process are viewed as

overall supportive of the assumptions and theories under-

lying the interface design. User perceptions regarding the

program seem consistent with design intent. However,

several revelations became apparent during the evaluation

process which preclude concluding that the application

program, in its present form, can effectively support novice

user interaction without some prior training.

In retrospect, it appears the primary, interface devel-

opment assumption of user familiarity with the requirements

of the job, is not the only operative assumption. The fact

that the design goal was the development of a system

47

9MWUUO



r Cquiring no user manual or prior training, inherently

aesumes a user willing to accept the Montessori approach of

experience and learning through experimentation and

discovery. Task oriented type A users and/or prospective

users with iueither the time nor inclination for experimenta-

tion will eosentially render the system useless.

A seemingly minor but serious interface design error

lays in the assumption that a user's knowledge of a standard

typewriter keyboard could be transferred to the computer's

keyboard. It became immediately obvious at the start of the

evaluation sessions that the interface contained no

provision to inform the user of the requirement to press the

return or enter key upon completion of data entry. Although

this omission may be easily rectified with additional screen

documentation, it serves to illustrate the observation by

Oaxnes and Shaw in that:

... it highlights a major pitfall into which we all occa-

sionally fall since the phenomenon of assuming that what
we personally know and have experienced is obvious is a
common one for all human behaviour. [Ref. 5:p. 30)

Thus it seems imperative that when designing systems for

little to no formal user training, extreme and methodical

care must be exercised when assessing the validity of

assumptions regarding user capabilities.

Although the formal evaluation sessions were completed,

visits to AER to perform minor maintenance on the production

version of the program provided some additional, unexpected

observations. The users classified as type B continued to

48



show great interest in the application program. They were

observed probing the various system capabilities and

literally, generating pretenses to interact with the

program. Requests were made of the accountant, who was to

be the primary user, for meaningful data to input. The

system was in constant use. This sudden activity was viewed

as significant, considering the computer had been present in

the organization for over a year as well as several

standard, general application software packages. Further

investigation revealed that none of the type A users have

used or shown any interest in the computer since the

evaluation sessions.

The results of the evaluation sessions coupled with the

post-evaluation period observations, seem to support the

overall success of the research project and the underlying

methodology and assumptions presented in Chapter 3.

49



V. CONCLUSION: APPLICABILITY OF FINDINGS

The overall success of the research interface is attrib-

uted, primarily, to the successful incorporation of theories

and ideas relevant to human behavior obtained from sources

external to the traditional realm of computer science. The

development and use of the interface requirements specifica-

tion then aided in the consistency of application of the

theories and ideas. Additionally, by placing the interface

requirements specifications on equal footing with the

requirements specifications, a system of potentially complex

interfaces was reduced to one which invites and encourages

the novice user.

It is realized each application program has its own,

unique interface requirements, and the applicability of this

particular interface requirements specification to other ap-

plication programs may be questionable. However, the con-

cept of an interface requirements specifications during the

design and development process seems a viable process to

produce a system that not only satisfies the user's func-

tional requirements, but meets the unstated, psychological

and ergonomic needs of its users.

Since computers have moved from the laboratory into the

mainstream of human existence, it not only seems logical but

50



necessary for design and development personnel to augment

their computer related knowledge with more in-depth know-

ledge of the disciplines concerned with the study of human

characteristics and attributes of the user.

51



APPENDIX A

INTERFACE EVALUATION FORMS

The purpose of this experiment is to evaluate a new
computer program. You will be asked to perform a series of

operations. Your ability to perform the various operations
will be observed and noted.

*... IMPORTANT ***

Please understand, your ability or inability to per-
form the requested operations IS NOT a reflection on
reflection on you, but an indication of the effec-
tiveness or ineffectiveness of the program.
Remember, it is the program which is being evaluated,
NOT you.

Please try and complete each operation without asking
for assistance. However, should you find it impossible to
proceed without an answer to your question, do not hesitate
to ask. Feel free to experiment or when in doubt, try some-
thing you think appropriate. Feel free to voice any com-
ments, positive or negative, during the session. This is
NOT a timed experiment. You may proceed at your pace. Take
all the time you need to comprehend what is presented on the
computer's screen. Finally, NOTHING you may do, short of
physical violence, will break, blow-up, or otherwise damage
either the computer or the program.

BACKGROUND

This program was devreloped for the Army Emergency
Relief (AER) organization's accountant. For the purpose of
this experiment, imagine you are that accountant.

The overall function of AER is to provide no-interest

loans to military personnel, primarily army, who have a
bonafide need for financial assistance. As the accountant,
you are not directly involved in the process of loan appli-
cation or approval. Your duties commence upon approval of
the loan.

52

* .w .E* *w * @ V ~



Once the loan is approved, you establish an Army
Emergency Relief Individaal Loan Ledger (DA Form 1108). The
DA Form 1108 contains information about the individual and
is used to record loan repayments and the outstanding loan
balance. In addition to keeping the DA Form 1108's up to
date, you are responsible for accurately keeping track of
all funds associated with your particular AER organization.
You keep track of these funds by means of the AER General
Ledger. The General Ledger is composed of various accounts,

each with its own account code.

Another of your functions as the accountant is to
.provide information, upon request, about individual loan

accounts, loan accounts in general and the General Ledger to
other AER personnel as required for the performance of their
duties.

Please let me know when you are ready to begin the
computer session. If you have any questions about anything
please ask.

45



COMPUTER PROGRAM OPERATIONS

1. SGT Harris has just given you an approved loan package

for you to establish a loan account. The package's
content are as follows:

Personal Information: Terry, A. Johnson

E-4, Active Duty

No previous AER loans.
145 S. Treelawn Ave

Rusty Spur, Idaho 75634
Duty Station: A Company, 7th Infantry,

Ft Ord, CA

Loan Information: Loan Amount: -340.00
Allotment Amount: 9 68.00

Reason for Loan: Initial Rent
and Deposit

Allotment to Start: March 1987
Allotment to Stop: July 1987

Seeing that all is in order, you sign check number

634152 and give it to SGT Harris for delivery to
Johnson.

Please establish the loan account.

2. SGT Jones is in the process of taking a loan applica-
tion and asks you to verify that William Q. Tell, SSN:

, has only had one previous AER loan.

What is your response?

3. The AER officer is on the intercom in a panic, as Col
Evans is on the outside line, wanting to know how many
personnel assigned to Ft Ord received loans last month.

What is your response?

4. Going through the mail, you come across a check for
$54.23 from the Chapter 13 Bankruptcy Court Trustee for
payment on the loan account of Ohso Broke.

Please apply the repayment.

54

.* 9



5. Alfred Martin, , has just come in as part Df

his discharge check-out process and wants to pay off
the remainder of his loan. He hands you $40.00, says
thanks and keep the change. If there is any money left
over after applying the repayment to the outstanding

loan balance then you must apply the excess money to
either General Ledger Account 2001 (Contributions) if
the excess money is $5.00 or less, or to Account 2004
(Over Payments).

Please process this transaction.

6. Another letter contains a check for $100.00 with a note

from an individual who was helped by AER several years
ago and now, out of financial difficulty, wants to con-
tribute this $100.00 so others may continue to receive

the services of AER.

Please post this contribution to the General Ledger.

7. Beverly Anderson just stopped in to inform you that she
just got married and would like her account to reflect
her married name of Pruitte.

Please make the change.

8. You have just been informed that Daniel Washington,

 was involved in a fatal automobile acci-
dent over the weekend. Under these circumstances, AER
regulations require you to declare all outstanding loan

balances of the deceased uncollectible.

Please update Washington's account.

9. Looking over the last computer print out of the General
Ledger, you notice that there is a mistake in the
totals. You have traced this mistake to account code
2006 for FEB 87. Instead of entering -23.67 you
entered 23.67.

Please correct this error.

10. How many loans were given out in DEC 86 and what was
their total amount?

55



APPENDIX B

APPLICATION PROGRAM SOURCE CODE

The following, undocumented, application program source

code is written in Borland International, Inc., Turbo
Pascal' ", version 3.0.

Since the application program was not the object of

research, but merely a necessary, temporary tool for the
researcher, no documentation was deemed necessary.

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases
of interest. While every effort has been made, within the

time available, to ensure that the programs are free of
computational and logic errors, they cannot be considered
validated. Any application of these programs without

additional verification is at the risk of the user.

a'

a

56

* -a. 7* I d la%



File Name: AER.PAS

($I GLOBAL. AERI
($I REGISTER.CPUI
($I CONVERT. PASI
(91 FILEOPS.PASI
(91 SCREENIO.PASI
($I LEDGER. PASI
i9I HARDCOPY. PASI
($I AERPROCS.PASI
(sr OVERLAYS.OVR)

begin ( Main Program
PortW[S03D83 $09; CSet video blink mode off I
ClrScr; Esc False;
KBSB := BSB or $20; CActivate Num-Lock I
LoadDisplayScreena-intoMemory;
UpDateLoans; if ESC then Exit;
ESC :=True;
View Change orDelete; C Load overlay procedure
ESC %=False;
repeat

Fill Field( 3,2, CSDate);
for I :=0 to 6 do FillField(3,I.3,StringInt(Loan-Totals(IJ,4));
Fill -Field(3, 10, StringInt(Index -Stats.Next -NomePtr, 4));
Fill Field(3, II, StringInt(LoanStats. Prev-Record, 4));
KBSB :=KBSB or $20; (Activate Num-Lock
repeat

PF..Key %=True;
ScreenInput(3, 13, 13);
if ESC then Cterminate programI

begin
KBSB %=KBSB and $DF; s et Num-Lock OFF I
Close-Files; Exit

end;
if Not(PFKey) then

beg in
Selection :=IntegerValue(Field.Contents(3, 13));
if Not(Solection in 11-.101) then Buzzer

end
else

begin
DisplayWindot3,Selection 9- 14);
I :%Key..Depreused;
Display-Screen %=Prepared..Screen;
if I <> 13 then Selection :=0;
ESC :zFalse

end
until Selection in 1..-10];

57



File Name: AER.PAS (cant)

if Selection =I then LoanEntry(I1
else if Selection =2 then Loan-Entry(2)
else if Selection =3 then

begin
repeat

ScreenjInput(3, 14,14);
I :=IntegerValue(Field -Contents(3, 14));
if Not ((I in (1- 3]) or (ESC)) then Buzzer

until (I in 1.-3]) or (ESC);
if Not ESC then Record_Payments(I)

end
else if Selection = 4 then Viev.Change orDelete
else it Selection = 5 then Loan..Entry(4)
else if selection = 6 then DisplmyGeneral -Stats
else if Selection = 7 then DisplayFinancials(U)
else if Selection =8 then Loan IEntry(3)
else if Selection =9 then DisplayFinancials(2)
else if (Selection =10) and (Printer OK = 0) then

begin
repeat

Screen.Input(3, 12,12);
I %= IntegerValue( Field Contents( 3, 12));
if Not ((I in f11-10]) or (ESC)) then buzzer

until (I in 11-103) or (ESC);
if Not ESC then Seek Records(I)

end;
Prepare Screen (3);
DisplayScreen t= PreparedScreen;
Correcting := False;
ESC :=False

until Selection = 13
end. (Main Program

58



File Hamet GLOBAL.AER

const.
Hi-Lite = $40; fInput field color =black on red
DisplayMesory = 9B800; OB$800 for monochrome monitors
Index AER = lIndex.AER';
Accounts-AER ='Accounts. AER';
Loans AER ='Loaris.AER';
GrdStats AER = 1Grd~tats.AER';
LEDGER FRM 'Ledger.FRl';
Valid-Month 'JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC';

type
Identification-Record = record

Hash-Case.Nr-Ptr %integer; ( 2 bytes)
Hash Name Ptr :integer; C 2 bytes)
Next-CaseMr-Ptr :integer; ( 2 bytes)
PreiviousCseMr-Ptr% integer; f 2 bytes)
Next -Name -Ptr% integer; ( 2 bytes)
Previous -Name - tr: integer; ( 2 bytes)
SSEN real; ( 6 bytes)
Name :string(25]; (26 bytes)
Grade-andStatus %byte; ( I byte )
Accounts_-Ptr :integer; ( 2 bytes)

end; CIdentification-Record 1(47 bytes)

AccountingRecord z record
keet -Status %bytel I I byte
Loan-Hr %byte; ( 1 byte I
RepayMethod :byte; C I byte )
Allot-Info real; ( 6 bytes)
Loan - nfo real; ( 6 bytes)
Balance-Info %real; ( 6 bytes)
Next Record % integer; ( 2 bytes)
Prey Record :integer; ( 2 bytes)

end; ( AccountingRocord )(25 bytes)

Total-Account =record
Rec-Loc :integer; C2 bytes)
Loan -Data :AccountingRecord; (25 bytes)

end; (Total-Account)

Entire-Account aarrayli..153 of TotalAccount;

QtyAmount a record
Oty :integer; C 2 bytes)
Ant %real; ( 6 bytes)

end; ( OtyAmount ( 8 bytes)

59

-1 A



File Name. GLOBAL.AER (cant)

AER Accounts record
EntryYear byte; fLast digit of applicable year) (01 bytes)
AXOOO :arrayfl. .63 of real; (Account Totals) (36 bytes)
A2000 :arrmy(l. .10] of Real; (Receipts) (60 bytes)
A3000 :array(9. .16] of Real; (Disbursements) (48 bytes)
A6000 :array(17. .21] of real; (Loan Balance Summary) (30 bytes)
A2QTY :arrayfl. .5] of integer; (Quantity Totals) (10 bytes)
A2QTY :array 10. .13] of integer; (Quantity Totals) (08 bytes)
A6QTY iarrayf 17. .19] of integer; (Quantity Totals) (06 bytes)

end; (AER Accounts ) (199 bytes)

General Stats =record
Year :byte; (001 byteI
Grade-Stats : array~l. .2,1. .9] of Qty_.Amount; (144 byte.)
Loan-Cats : arrayf1. .111 of QtyAkuount; (088 bytes)
Duty-Station : arrayfl. .2] of OtyAmount; (024 bytes)

end; ( General Stats 1 (256 bytes)

scrnline =arrayfl. .160] of byte;
Scrnarray =arrayf1. .25] of scrnline;
Screen-Data =record

ScreenIuage : Scrnarray;
Field-Posits %ScrnLine;
Window Info : ScrnLine

end; (record Screen-Data)

String3 =string[3];
String5 =string(5];
String9 =string[9];
Stringil =Btringill];
String25 =string(25];
String4O = string[40];
StringBO= stringiBO];

var
Index, Index-Stats :IdentificationRecord;
Loan, Loan Stats :AccountingRecord;

Index-File : file of IdentificationRecord;
Loan-File : file of AccountingRecord;
Stats-File file of GeneralStats;
Accounts-File :file of AER Accounts;

Selection, Curifon, CurDate, Code, I. 3 integer;
Screen : arrayfl. .6] of Screen..Data absolute $6000:0000;

Display Screen scrnarray absolute Dimplayleuory%90000;
Prepared-Screon :ScrnArrvy;
Roc Porn : arrayt!. .151 sf integer;
Stata-Codt i array..6] of byte;

60



File Name: GLOBAL.AER (cant)

Loan-Totals : arrayCO..10] of integer;
PFKey, PrintOn, Correcting, ESC : boolean;
KBSB :byte absolute $0000:90417;
Grade :String3;
Scan-Code : byte;
Status % char;
Date, CSDate : String9;
WindovwContents : arrayli..6,1..130] of StringSO absolute $5000:0000;

File Name: REGISTER.CPU

type
CPURegisters =record

AX, BX, CX, Dx,BP,SI,DI,DS,ES,Flags :integer
end;

var
Regs : CPURegisters;

Function KeyDepressed : byte;

begin
if ESC then Exit;
Regs.AX %= ;intr($16,Rega); KeyDepressed lo(Regs.AX);
if lo(Regs.AX) =27 then ESC := True else ESC := False;
if hi(Rege.AX) =78 then Key..Depressed :13

end; (Function Key..Depressed

61



Pile Name% CONVERT.PAS

Function IntegerValue(Str_Val :String4O) :integer;

var
TempInt-Val : integer;

begin
val (Str-Val, TempIntVal, Code);
if Code =0 then IntegerValue i=Teup Int-Val
else IntegerValue :=0

end; ( Function Inte-gerValue

Function SSHNStr(Real-SSN : real) :Stringl;

var
TempStr %Stringl;
Si : integer;

begin
Str(Real.SSN:9:0, TeupStr);
for Si 1= to 9 do

if Temp-Str[Sl]= then TempStr(SI %' 0';
insert( '-',Temp..Str,4); inaert( '-',TempStr,7);
SSK-Str %=TeupStr

end; ( Function SSN-Str3

Procedure SplitDateandloney(DateMoney :real;
var Date-Out String9;
var Money-Amt :real);

var
Day, Mon, Year, Int Date :integer;
DayStr, Year-Str : string(23;

begin
Int-Date trunc(DateMoney);
MoneyAut frac(DatejMoney) * 10000;
Year : mt Date div 512;Str(a0 * Year:2,YearStr);
Mon (Int Date -512 a Year) div 32;
Day zz Int-Date -Year * 512 M on * 32;
if Day z 0 then Day_.Str :

else Str(Day:2,DayStr);
Date-Out :z DayStr.' '.copy(ValidMonth, 4.Won-2, 3) -' '#Year..Str

end; (Procedure Split.Date-andMoney

62



File Name% CONVERT.PAS (cant)

Function MergeDate andMoney(Str-Date:String9; MoneyAmt:real) : real;

var
Mon, Day, Year %integer;

begin
while length(StrDate) < 9 do insert('0',StrDate,l);
Day 1=IntegerValue(copy(StrDate, 1,2));
Mon :~((pos(copy(StrDate,4,3),Valid-Month) * 2) div 4) # 32;
year :=(IntegerVailue(copy(StrDate,8,2)) - 80) v 512;
MergeDate andjloney := Year '* Mon + Day .* MoneyAmt/10000.0

end; ( Function Merge-Date-andjloney )

Procedure ExtractDate Data( In-Date:String9;
var MonNr, Int-Date:integer);

var
Mon :string[3];

begin
while length(InDate) <9 do insert(' ',InDate,l);
Mon %=copy(InDate, length(InDate) -5, length(InDate) -3);
MonHr := (pos(Mon,ValidMonth) - 2) div 4;
Int Date := round (MergeDate..andMoney (InDate, 0. 0))

end; ( Procedure Extract-Date Data )

Function EncodeGradeand-Statua(Grd %String3; Stat :char) byte;

var
TempCode :byte;

begin
TempCode :ord(Grd(3])-48;

if Grd(l] ='E' then TempCode := $20 or Temp..Code
else if Grd[1] 'W' then Temp-Code := $40 or TempCode
else TempCode :$80 or TempCode;
if Stat = 'R' then TempCode := $10 or TempCode;
EncodeGradeand-Status : = Temp_.Code

end; ( Function Encode Grade and Status

Procedure Decode Grade and Status(Code-VaI % byte; var Grd : String3;
var Stat : char);

begin
if Code Val and $20 =$20 then Grd :='-

else if Code Val and $80 = $80 then Grd %='0-' else Ord %=
if Code-Vol and $10 x$10 then Stat 'R'
else Stat :z 'A';
if (Code-Val and $OF) = 0 then Ord :'UNK'

else Ord G= rd # chr((Code Val and $OF) * 48)
end; (Procedure Decode Grade and Status

'p 63



File Name% CONVERT.PAS (cant)

Procedure Hash(Rav Value : String25; var Hash-Value integer;
var SSN Hash : boolean);

type
Ordering-Set z set of char;

var
Sub-Total, HI, H2, H43 -integer;
Soc Sec Nr %real;

begin
while pos(' ',Raw-Value) <> 0 do

delete(Ravwyaluepos(' ',RavValue), I);
while pos('-',RavwValue) <> 0 do

delete(Raw_Value, pos( '-',Ravalue), I);
Val (Raw Value, SocSecNr, Code);
if Code = 0 then

begin
Hash-Value := (round(frac(Soc Sec Nr/10000)'I0000) mod 5000)*1;
SSN Hash :=True; Exit

end
else

begin
Sub Total %= 0;
if length(Raw. Value) > 7 then H42 %=7
else H42 z2 length(RavValue);
H3 := 102;
for Hl := I to H2 do

beg in
Sub-Total:=SubTotal.H3u(Ord(upcase(Raw-Value(H]) ) -65);
H43 14 3 div 2

end;
Hash-Value %= abs(Sub Total); SSN Hash := False

end
end; ( Procedure Hash)

Function Real Value(Str.Val tString4O) %real;

var
TempReal-Val :real;

begin
if (Str-Val[4] - and (Str-Val(7) 1~ then

begin
delete(Str-Val,4, I); delete(Str Vml,6, I)

end;
val(Str-Val, TempRemlVal, Code);
Real-Value := Temp-Reel-Val

end; (Function Real-Value)

64



File Name: CONVERT.PAS (cont)

Function StringReal(RealjIn : real;StringSize :integer):Stringli;

var
TempResult : Stringil;

beg in
Str (Real-In: 11:2, TempResult);
if length(TempResult) > StringSize then

repeat
delete( TempResult, 1,1)

until length(TempResult) =StringSize;
String..Real %= TempResult

end; ( Function String_.Real)

Function StringInt(IntegerIn, StringSize : integer) String5;

var
TempResult : String5;

begin
Str( IntegerIn:5, Teup_.Reault);
if length(Temp..Result) > StringSize then

repeat
delete(TempResult, 1,1)

until length(TempResult) =StringSize;
StringInt. %= TespResult

end; ( Function StringInt3

Function Date Difference(Datel,Date2 : String9) :integer;

var
Date Codel, DateCode2, Ionl, Hon2, Year-Correct : integer;

begin
Extract-Date-Data(Datel, Noni, DateCodel);
Extract DateData(Date2, fon2, DateCode2);
Year-Correct %= abs( (Date Codel div 512) - (Date Code2 div 512))*128;
Date-Difference := (Date Codel - DateCode2 -Year-Correct) div 32

end; ( Function Date-Difference

65



File Name: CONVERT.PAS (cant)

Function New Status(Act % Char; Loan Rec % AccountingRecord) :byte;

var
ADiff, PDiff, Inc :integer; ADate, PDate %string(g];
TReall, T-Real2 real;

begin
if Act ='D' then Inc :=-1 else Inc := 1;
New Status %= Loan Rec. Acct Status;
with Loan Rec do

if Acct Status in 11, 3,5,6] then
Loan Totals(Acct Statua] := Loan Totals(Acct Status] + Inc

else
begin

SplitDate andMoney(AllotInfo, ADate, TReall);
SplitDateandMoney (Balance Info, PDate, TReal2);
AD±H : Date Difference(CSDate, ADate);
PDiff :Date Difference(CSDate,PDate);
if ADiff > 4 then ADiff := 4; if PDiff )- 4 then PDiff %= 4;
if (Acct Status = 4) and (PDiff > 0) then Nev-Status : SIFF
else if AcctStatus =4 then

Loan Totals(4] := Loan TotalaC4] * Inc
else if (Acct-Status0O) and (Adiff > 0) and (PDiff > 0) then

begin
New Status %= 2;
Loan TotalaC2] Loan TotalsC2] - Inc;
Loan TotalsC7] Loan Totals(73 * Inc

end
else if Acct Status =0 then

Loan Totals[01 tz Loan TotalstO] + Inc
else

begin
if (Pdiff <1) or (ADiff < 1) then

begin
New Status := 0;
Loan TotalsCO] : Loan TotalsCO] + Inc

end
else

begin
Loan Totals(2] Loan Totals[2] t Inc;
if PDiff > Adiff then

Loan Totals[6.Adiff] ::Loan TotalstS.Adiff]
+ Inc

else
Loan Totais(6-Pdiff] Loan TotalsC6*Pdiff]

Inc
end

end
end

end; (Function Now-Status

66



File Name: PILEOPS.PAS

Function StringsEqual(InputString,RecordString : String25) :boolean;

var
SI, StrLen : integer;
Stri, Str2 istring[25];

begin
StrI -= ";Str2
if length(InputString) > length(RecordString) then

StrLen %= length(Record-String)
else StrLen := length(InputString);
for SI %=I to StrLen do

begin
if Input ,String(Sl] <> chr(32) then

StrI := Stri + upcase(InputString[SI]);
if Record.String(S1] <> chr(32) then

Str2 := Str2 +upcase(Record-String(Sl])
end;

if Stri = Str2 then StringsEqual := True
else StringsEqual := False

end; ( Function StringsEqual

Procedure Get Index Record(HashObject:String25; Var Rec-Ptr:integer);

var
Hash-Val % integer;
Case is theKey, Record-Locmted, NoRecord % boolean;

begin
Hash(CHashObject, HashV.1, Case is thejKey);
seek(IndexFileHaahVal) ;resd(Index File, Index);
if Case isthe Key then

seek( Index File, Index.HIash ComeNr Ptr)
else if Index.Haah Name Ptr 0 then

begin
Rec-Ptr := 0; Exit

end
elso seek(Index File, Index. Hash Name Ptr);

No-Record := false; RecordLocated := False;
repeat

read( IndexFile, Index);
if Case is the-Key then

beg in
if SSN-Str(Indox.SSN) =Hash-Object then

Record-Located :- True
else if Indox.NxtCaaeNr-Ptr =0 then

NoRecord :=True
else seek(Index-File, Index. Next Case Nr Ptr)

end

67



File Name: FILEOPS.PAS (cont)

else
begin

if Strings _Equal(Hash..Object, Index. Name) then
Record-Located := True

else if Index. Next Name Ptr = 0 then No-Record :=True
else seek( Index File, Index. Next Name Ptr)

end
until (No-Record) or (Record-Located);
if Record-Located then Rec Ptr FilePon(Index File) -I

else Rec-Ptr := 0;
end; CProcedure Get Index Record

Procedure Write IndexRecord;

var
TempIndex : Identification-Record;
TempLoan : AccountingRecord;
Record-Posit, CaseHashVal, NaueHaah.Vai integer;
SSN-String :Stringll;
Dummy :boolean;

begin
SSN_-String %= SSN -Str(Index.SSN); TempIndex := Index;
GetlIndex-Record(SSNString, Record-Posit); (check if record exists)
if Record-Posit <> 0 then

begin
Index. Grade -and-Status := TeupIndex. Gradeand-Status;
seek(Index File, RecordPosit); vrite( Index File, Index);
seek(Loan File, Index.Accounts-Ptr);
read (LoanFile, TempLoen);
if TempLoan.Next Record <> 0 then

repeat
seek(LoanFile, TempLoan. Next Record);
read(LoanFile, TempLoan)

* until TempLoan.Next.Record z 0;
Loan.Prev Record :=Fii&Pos(Loan File) - 1;
TempLoan. Next -record :=Loan-Stata. Noxt-Record;
seek (Loan File, Loan. PrevRecord);
vrite( Loan File, TempLoan)

end
else (record does not exist)

begin
Index := TempIndex; Hauh(SSNString,CasaeHashVal, Dummy);

seek(IndexFile,CasHaahVal); read(IndwxFile, Temp_ Index),
Index. Previous Case -Nr -Ptr :- Cas Nash Val;
Index. Next -Case -Nr Ptr :a Temp Index. HashCaer-Ptr;
TempIndex. Hash Cae NrPtr :a Index -Stats. Accounta-Ptr;

Beek(Index-Filo.Come-Hash-Val); vritv(IndvxFile, TempIndex);
if Index.NextCaaeNr-Ptr <> 0 then

68



File Nams: FrLEOPS.PAS (cant)

begin
seek(IndexFile, Index. Next Case Mr Ptr);

resd( IndvxFilw, TempIndex);
TempIndex. PrvviousCasvNr-Ptr

Index Stats. AccountsPtr;
seeok( IndexFile,Index. Next Came Mr Ptr);
vrite( Indwx-File, Temp-rndex)

end;
Index. Accounts Ptr :xa Loan State. Next Record;
Kmsh( Index. Name, Name Hashal, Dummy);
seek(lndvxFile, NameNashVal); read( IndexFile, Temp-Index);
Index. Prewiaas Name -Ptr :a Name NaeshVal;
Index. Next-Nase-tr :x TepIndex. Hash-VmePtr;
TempIndex.NwasName Ptr :x Index-Stats. AccountPtr;
seek(IndvxFileName MasshVal); vritv(Index File, Temp Index);
if Index. Next NeaePtr <), 0 then

begin
seek( IndexFile. Indx. NextNamePltr);
reod4 IndexFile, TempIndex);
TempIndex. PrviouseMssPtr -.a Index Stats. Accounte Ptr;
seek( IndexFile,Index. Next Nae *Ptr J;

vritv IndexFile.TempIndvx)
end,

meek( IndexFile, Index Stats. Accounts Ptr);
reod( Index-File. Temp Index);
Index. lwAhCase *r Ptr - em Ine.is~s rP,

Index. Nash NoeePtr :- Temp Inde Ne"h NamePtr;
svekE IndexFile, Indx -State. Accownts Pltr);
write' Index Ftle. Index';
seek(Loen File. LoonStats. Next Reoord)
reed(Loan File, TwempLoon);
Loon.Prow Record :m - Inds, -State-AccountsPtr;
Index Stsa. Accounts Ptr '* Temp-Index. Accounts Pt,;
Index Stats. PrewiosCaeeNrPtr :* Index Stats. Accounts Ptr;
Index State. Next Nose tr -a IWex -State. Newt Nosme Ptr *I

end;
seek(LoeFie, Los-State. Nettfecov d);
rvod(LoosFile, TempLos'i;
aeekfLoos File, Loan-State. Nest -fecord
Loon.Next-Record -:' 0;
writoeLooe-File. Loon';
Loan -State. Next R ecor d 'Temp Loon. Nest R ecor d;
Loon Stats.Prov Record :'Loon Sf-ttPrvvw decord 1,
seetfLose-File,O); orite'Loen -Ftle. Loon Stats';
inekIndexFjle.0'; writv'lndwvFile, Index Stats
Flush'Indox Filej; FlusA'Loon File'

end; IProcedure Write Index Record

69



File Name: FILEOPS.PAS (cant)

Procedure Delete Loan(Loan Rtecord Ptr : Integer;
ver Next LoanRecord %Integer);

var
TeapLoan : AccountingRecord;

begin
aeek4LoanFile, LoanRecordPtr);
red LoanFile. Loan);
Loan. £cct-Status ts Nov Status( D'. Loan);
Next Loan Record :- Loan. Next Record;
if Loan. Next Record tx' 0 then

beg in
aweh(Losn Ti IcLoan. Next Record);
read(Loon File. Temp-Loan);
TempLoon. Prey Record :- Loon. Prev Record;
**e*(Loan File, Loan. Next -Record);
vrit&(Loen File, TempLosn)

end;
i f Loan. Pr ev Record c 0 then

beg in
aeea(Index Uile~abs(Loan.Plrev Record)l; read(Indox-FileIndex);
Inden.Accont-Ptr -.s Loan~lext -Record;
so"ealndex-File,asLosn.Prepv Record);; vritw(XndexFie.Index)

end
e Ie

beg in
aee" Loan F ilIe, Loan. Pr ev Record;
r ed Loan File, Teap-Loss);
TempLoan. Next-Record :a Loan. Next~fecord;
seet'Loon Tile. Loan. Prew -Record);
v ri t 9 Loobn -OrIlI. Te"m_ Loan)

end;
ilChar(Loon. 25.0);

,oon.acct Status OffV;
LOsS.UWNextecord :*LAn Stats. Vent -Record;
Len-State. PrOy Record ~sLoan Stats. Prey Record 1 ;

Loan -State. Nexut RSecod :Loan -RecorO-Ptr;
so" qLose FPile.Lose Record Ptr';
Or I teELose Tilo. Loss);
8eef'Losnike1,01; writeLosn File.Loon Stats);

Ord. Proceijre Delete Loon

70



File Name: FILEOPS.PAS (cant)

Procedure Delete Account(Index-EntrVPtr :integer);

var
TempIndex % Identification-~Record; TempLoan :AccountingRecord;
Next Ptr, RecordPtr, CameHashVal, Name Hash Va1 : integer;
SSN-String : String25; Dummy % boolean;

begin
Str( Indvx.SSN:9:O,SSNString); Hash(SSNString,CasejHash.Val, Dummy);
Hash (Index. Name, NameHash Val, Dummy);
Noxt Ptr := Indox.Accounts-Ptr;
repeat Delete Loan(NoxtPtr,NextPtr) until NextPtr =0;
TempIndex :- Index; TempIndox.Name :a 'EMPTY';
TempIndex. Accounts.Ptr :-z Indox-Stato. Accounts-Ptr;
Index Statz. Accounts Ptr :mu Index-EntryPtr;
Index Stats.Next Nae Ptr :z Index Stats.Next Name Ptr - 1;
seek( IndexFile, IndexEntryPtr); vrit&( Indwx-File, TempIndex);
seek (IndexFile, Index. Previous Case MrPtr);
red( IndexFile, TempIndvx);
if Index.PrviousCoseMr-Ptr zCase Hash Val then

Temp-Index. Hash-Case-Nr Ptr := Index. Next-Cas*eNr-Ptr
else TempIndex. NextCas*eNr-Ptr :z Index. Next.Cane-NrPtr;
seek (IndexFile, Index. Previous Case MrPtr);
vritv( Index-File, TempIndex);
if Index.NxtCaseNr-Ptr <) 0 then

begin

Seek( Index-File, Index. Next Case MrPtr);
read(Index-File, TempIndex);
TempIndex. Previous CeseNrPtr :a Index. PreviousCaseNrPtr;
seek( Index-File,Index. Next-Caae NrPtr);
writ&( Index-File, TempIndex)

end;
seek (IndexFile, Index. Previous NamePtr);
read ( ndexFile Temp. Index);
if Index.Previous Naaw Ptr z Name Hash Val then

Temp Index. Nash Name -ar :rndex. Next Name-Ptr
else Temp_1ndex.Mext-Nami t :z Index.Next-NaaePtr;
seek (IndexFile, Index. PreviousN-aePtr);
vrite( Index-File,TempIndex);
if Indem.Next Name Pltr <) 0 then

begin
aeek( IndexFile, Index. NextNaaePtr);
read( Xndex-File,TempIndex);
Temp_1ndex. Prvvious-NasePtr :z Index. ProviounsomPtr;

: vek( Index File, Index. Next Nose Ptr);
vrite( Index File, TempIndex)

end;
seek(IndexFilw.0); vrit*(IndexFile, Index-Stats);
Flush( Index File)

end; (procedure Delete Account

71



File Maw*: SCREENIO.PAS

Procedure Buzzer; (Produces audio error signal I
beg in

sound(S00); delmy(1OO); nosound
end; ( Procedure Buzzer )

Procedure DisplayWindow(Scrown-Hr iinteger; WindowMr :byte);

var
X,Y,Z, Offset, Window Ptr :integer;
Window-Linos byte;
DisplayString :Stringao;

beg in
Window Ptr := Window Nr*4 3;
with Scrown(Scrwn-rJ do

begin
Window Lines := 0;
Z :Window Info(WindovPtr # 21;
X :~Window Xnfo(Window PtrJ; Y %x Windov Info(Window Ptr 1);
while Window Lines < Window InfoCWindow Ptr v 21 do

beg in
DisplayString %-u Window-ContvntsfScrvenMr, ZI;
Offset :- (Y - 1)9160 # 29(X - 1);
inline(

*50/*5l/*S7/*56/'O6/*9C/ (PUSH AX, CX, DI SI, ES.Flags)4
*2E/9B8/DisplsyHvmory/ (CSNOY AX, (DisplayNesory 3)
050/ (PUSH AX)
$07/ (POP ES)
*83/*BE/Offset/ (NOV DI, (BPe-OfsetJf
*8D/*B6/DisplmyString/ (LEA SI, (IP#DisplayString]!
*3l/*C9/ (XOR CX,CX)
*36/*aA/*OC/ (SSNOY CL, (SI)
946/ (INC SI)

*FC/ (CLD)
*36/*A4/ (L1% SSNOVSI
*E2/*FC/ (LOOP LI)
*9D/*07/*5E/*5F/059/*58); (POP Flsgs, ES,SI, DI,CX. AX)

4 Z -s Z * 1; Y -a Y # 1; Window Line :a Window Lines * I
end

end
end; (Procedure DiaplayWindov

72



File Kane% SCREEKIO.PAS (cont)

Procedure Prepare Screen(ScreenIMumber : integer);

var
PI, P3 - integer;

begin
PreparedScrown :x Screen(Screen.Nuaber]. Screen ege;
P3 :2 1;
with Screen(Screen Number I do
repeat

for PI :- 0 to (97F and Field Posits(PJ#21) - I do
if not odd(PX) then
Prepared-Screen(Field-Posits(PJi],Field-Poits(PJJ PI1 :a OFF;
PJ :- PI # 3

until Fivld PositefP~I a 0
end; ( Procedure Prepar&_Screen

Procedure Display Input-Field (ScreenNua FldNua - integer;
var End-OfField iInteger);

var
DI, D2, Ypos, Field End - Integer;

beg in
Fid Mum %s Fld-Nua&3 - 2;
with ScreenCScreen Wual do

begin
D2 -s -3;
gotoXYc (Field.Poaita(Fld.NuaI.I) shr 1.

FieldPosits(Fid Numolli;
repeat

D2 :- D2 # 3; Ypogt-Flid-Poaitu(D2.Fld-Num.IJ;
End Of Field :- Field-Posits(02vFld Mum)

(07F and FieldPositm(D2#Fld Nus#2J) - 1;
for DI :* Field Positm(D2Fld Mum) to End Of Field do

if Odd(DI) then
begin

if Screen Image(YpoD1i in 132,45) then
Display Screen( Vp...Dl) -a Screen Iaaqe( Ypo@, DIJ

&lowe
begin

DimplsVScreen(YPQ*.DII to OFF;
DIsplsyScren(YPoa.DIJ : i-Lite

end
end

until Field PosItaID2*Fld Mum*2i 127
end

end; CProcedure Dimplay InputField

73

AAA2P"W I



File New*: SCREENIO.PAS (cant)

Procedure ScreenInput(DisplayNr:byte; StartField, EndField:integer);

ver
OrigX, OrigY, X_Dilp, Y_Disp, FieldNr, FieldEnd, DecPt : integer;
InType : byte;

Ron : string(4];

function InputError : boolean;

ver

InCher : byte;

begin
InputError %- True; InChar :s lo(Rego.AX);
if (InType in (65..90]) and (Inchar x 13) and (XDisp t FieldEnd.2)

then Exit;
if (XDisp a FieldEnd # 2) and (InChar <) 13) then Exit;
if (InType a 36) and (X_Diap a OrIgX) and (InChar a 13) then Exit;

if (InType a 36) and (Not(Inchar in (13,45,46,48..57])) then Exit
else if (InType in (78,1103) and (Not(lnChar in (13,48..571)) then

Exit
else if (InType m 99) then

begin
if (DiaplayScreen(YDimp,XDisp-2] a 54) and

(Not(InCher in (73,821)) then Exit
else if (Dieplay Screen(Y_Dlp,X Disp-21 c) 54) and

(InChar <b 13) then Exit
end

eloe if (InType a 85) and (Not(InChar in (13,48..57,65..901)) then
Exit

else if (InType a 89) and (Not(InCher In (13,56,571)) then Exit
else if (InType • 68) and

(Not(InChar in (44..57,65..71.74,76,77..80,82..86,861)) then Exit
else if (InType - 77) and

(Not(jnCher in (65..71,74,76,77..80,62.. ",891)) then Exit

else If (InType a 71) and (Not(lnCher in (69,79,87])) then Exit
else if (InType - 03) and (Not(InChar in (65,821 )) then Exit
else If (InType a 90) and (Not(JnChar in (69,79,62,871)u then Exit
else If (InType * 62) and (Not(InChar in (65,801)) then Exit
elae If not(Incher in (13,32..1261) then Exit;
if (InType in 68,77) and (Not(XnChar In (48..57))) and

(PoelM # chr(InChar),ValidMonth) - 0) then Exit

else Input-Error :a Falme;
end; ( internal function Input-Error 1

74



File Nano: SCREENIO.PAS (cant)

procedure RubOut;

begin
if X-Disp = OrigX then Buzzer
else with Screen(DinplayNr] do

begin
XDimp :a XDiap - 2;
if Screen Image(YDispX.DIsp] in (32,451 then

XDisp %= XDiap - 2;
if DispleyScrven(Y Dip,XDisp] 46 then Doc Pt :0;

if Screen Image(YDisp,XDisp] a 77 then
delate( Non, longth( Non), 1);

DimplmyScreen( Y.Dimp, XDimpI :z FF;
gotoXY((X-Diap'i) div 2,Y.Disp)

end
end; I internal procedure Rub-Out

procedure DisplayInput(InCher : integer);

beg in
if (X Dimp -' Field End *2) or ((X Dimp *OrIgX) and

(InChar 213)) than
beg in

Buzzer; Exit
end;

with Screer(iplay MNr do
beg in

if InTypo - 36 then
beg in

if ((InCher a45) and (X-Disp t), OrigX)) or
(tInChar a 46) and (Dec Pt, 0)) or
((X-Disp a Dec Pt *6) and (Decv t <) 0) then

beg in
Buzzer; Exit

end

if InChar *46 then Doc-Pt t- XDIap

if (XDiep Field End -6) end (Doc-Pt z 0) then
beg in

Dec Pt %' X_Diap *2;

DisplayScr@en(YDIsp, XDIapi :- InChar;
DisplayScrvvn(YDIspXDIsp,2 :s 46;
XDImp :- XDisp *4;

gotoXY(XDsp.1A div 2,Y..Disp); Exit
and

end

75



File Nano: SCREENIO.PAS (cont)

elae if InType =6a then
beg in

if not (InChar in (48. .571) then
beg in

if XDi up =OrigX then
beg in

DisplayScreen( YDisp, OrigX] := 920;
DiaplayScreen( YDisp, OrigX-2J 9z 20

end
else if X-Diap a OrigX * 2 then

begin
Dizp~ayScr@*n( Y.Disp, XDispi :

DiaplayScreen(Y Disp, OrigXI;
DisplayScreen(YDisp, OrigX] :z 930

end;
XDimp :- OrigX # 6

end
else it ((Diaplay.Scren(YDiapOrigX1 a 51) and

(Not(Inchar in (4a,491))) or
(DiaplayScrevn(Y.Dimp,OrigX1 In (52. .57]) then

beg in
Duzzer;Exit

end
end;

if Scrvvn_1aage(YDip,X_.4isp] 77 then
Ron :a %on o chr(InChar);

DisplayScreen(YDiap,XDIsp] : InChar; XDiap %a XDiap *2;
if Screenja~g*(YDimp,XDimp] In (32,451 then

XDimp ~XDisp * 2;
if XDisp Field-End # 2 then gotoXY((XDiap~i) div 2,YDisp)

end
end; (internal procedure Dimpisy~lnput

procedure Clear Ni-Lite;

var
Ci, C2, C3 :integer;

beg in
if (X-Diap *OrIgX) and

(Screen(DiaplayNr].Field.Pouits(3.FieidNr] 127) then
beg in

repeat
Field Mr :a Field Mr # I

until Screen(DiaplayNrJ. Field-Poaitm(3'Field-NrI < 128;
Ex it

end;

76

%ALA AM A16MAL&WUId o



File Name: SCREENIO.PAS (cant)

if Screen(DiaplayMrJ.Screen-mge(OrigY,OrigX] 36 then
with Scroon(DisplayNl do
begin

if Dec Pt a0 then
begin

DiaplayScreenCOrigY, XDisp] :=46;
Dec Pt :2XDiap

end;
Cl :z Dec Pt *4;
C2 %a Field -End;
for C3 :z OrigX to Field -End do

if Odd(C3) then Propared..Screen(OrigY,C3] ::*FF;
for C3 %- Cl dovnto OrigX do

if Odd(C3) then
begin

if DiaplayScreen[OrigY,C3J in (45,46,48. .57] then
PreparedScreen(OrigY, C2] : DisplayScreen(OrigY, C3]

oleo PrvpmredScreen1OrigY,C21 :z 48;
C2 :a C2 - 2

end
end

else
begin

for C2 := OrigX to Field-End do
If Odd(C2) then

Prepared-ScrownErigY,C23 i= DisplayScreenEOrigY, C2]
and

end; (internal procedure CloarjHiLito

begin (procedure ScreenjInput
if ESC then Exit;
Field Mr :a Start Field;
repeat

Proered Screen zz DimplayScreen;
if Field-Mr > End Field then Exit;
with Screen(Diaplay MNr do

if (Field-Posita(160J - 1) and (Window Info1Field Mr*4-3] c0)

and (Field-Mr cm 40) and (Mot(Correcting)) then
DiaplayVindo ( Diaplay~gr, FieldMr);

with Screen(DisplayNrl do
begin

XDimp in Field-Positu(ffid-Mr93-2];
OrIgX :' XDlap;
YDIsp :a Field-PositufField-Mr93-i I;
OrIgY to YDiap

end;
Dec Pt in 0; Non %a
DlsplayInputField(DluplayNr, FieldNr, FieldEnd);

77

......



File Name: SCREENIO.PAS (cant)

repeat
Regs. AX:=S0000; intr(916, Regs);
if (PFKey) and (hi(Rega.AX) in (59.-683) then

begin
Selection :=hi(Regs.AX) - 58;Exit

end
else PFKey :=False;
if (hi(Rega.AX) in (72,75,77,803) and (Correcting) then

begin
Scan-Code := hi(Rega.AX); Exit

end;
with Screen(DiaplayNr] do

InType t=Screen Image[Y_.Disp, XDispJ;
if hi(Regs.AX) z 78 then Rega.AX zz13;
if InType in 168,71,77,a2,83,85,90,99,1173 then

Regs.AX := ord(upcmue(chr~lo(Regs.AX))));
if lo(Regs.AX) = 27 then ESC := True
else if lo(Rega.AX) = 8 then Rub-Out
else if Input-.Error then Buzzer
else if lo(Regs.AX) <> 13 then DimplayInput(lo(Regs.AX))

until ((lo(Rega.AX) z 13) and (not (Input..ErrorM) or (ESC);
if ESC then Exit;
Clear HiLito;
DisplayScrewn : = PreparedScreen;
Field Hr :z Field Hr #1

until ScreenEDisplayr.Fild.Poaita[Field.Nr.3-23 a0;
end; ( Procedure ScreenInput )

AFunction Field-Contents(Screen Number, Field-Hr integer) :String80;

var
Rl. EndOfField, XDisp, YDisp iInteger;
InputString % StrlngSO;

begin
if ESC then Exit;
InputString %a"
with Screen(Screen-aumber3 do

beg in
X -Disp :Field -Posita(3*FioldNr - 21;
Y Disp :*Field Posits(3wFiwldMr - 13;
End -Of -Field : XDimp #(*7F and Field-Posits(3wFivldNrfl-1;
for Rl %m X-Diup to End-01Field do

if (Odd(Rl)) and (Diuplay..Screen1YDiwp,RIJ <c OFF) then
InputStringislnputStringchr(DipayScreen(Y_DiapRIJ)

end;
Field-Contents :* Input..String

and; (Function Field Contents I

7a



File Hemet SCREENIO.PAS (cont)

Procedure Fill-ield(Diplay_.Nr,FieldNr~byte; DisplayString:String4O);

var
F1,XCoord : integer;

beg in
if ESC then Exit;
with Screen(DimplayNr] do

begin
Fl % Field Nr; XCoord %=(Field Posita[3*FI-2) # 1) ahr 1;
gotoXY(X Coord, Field PositsU3.FI - 1I); write(DisplayString)

end
end; ( Procedure Fill-Field

File None: LEDGER.PAS

Procedure State-Record IO(Action :char; L~on : integer;
var Work Stats : General-State);

begin
if L~on z 0 then

beg in
aeek(Statz File. 12); read(Stats File. WorkStats); Exit

end;
Seek(StatsFil*.1Aon sod 121;
if Action in 'R'J then

beg in
read(Stata File. WorkStats);
if (lo(CurDete div 512) ,-Work-Stata.Yoar) and

(L~on :Curson) then
beg in

if L~on a I then
begin

avok(StatnFile, 12);
urite(Stats-File. Work Stats)

end;
FillChar (Work Stata, 257, 0);
Work StatatYear :a CurDate dlv 512;
S&*k(StatsFil&.LRon sod 12);
vrIteiStata FIle, WorkStats);

efid
end

ele
begin

SookgStateaFileL~on mod 12); vrit*(StatFlleWork-Ststs);
Fluah(Stet@-File

end
end; (Procedure Stats-Recordr 10

79



File Name: LEDGER.PAS (cont)

Procedure Record General StateaRec Non :integer);

var
Loan Aat :real;
CatNDX.RI integer;
LCat t stringf5];
Lgrd : tring(3);
Dusta string(341;
State Rec : GeneralStats;

begin
Stats Record IO( 'R',RecNon, StasRed);
Loan Aat :- Real Value(Fieid-Contntn(1, 20));
LGrd := Field ContontslI.2); DuSta :x Field Contentsl1,S);
for RI :- I to longth(DuStsa do DuSta(RIi :- upcace(DuStm(RIH ;
RI :- Integvr.Vluecopy(Lgrd. 3,1)),
with Stats Rec do

begin
if Field Contontatl,3) 'R' then

begin
Grade Statu(2.'9J.Qty : Grade StatsL2,9J.0ty *1;

Grade-Statst2,93.Ast :'Grade Stata(2,9Lhut *Loan Act
end

else if (Lgrd(l) a 'E') and (RI cD, 0) then
begin

Grade Stata~~ti1.Q)-ty :a Grade, State(I.RI].9ty -1;
Grade Sta(IRI1J.Aftt -~ Grade Statoll,RlU.Ast -Loan Aut

end
els if 'Lgrd(l) 2 'W' and tR1 in (1. .41) then

beg in
Grade Stac2.RIJ.Qty - Grade Ststs(2.RII.Qty -1;
Grade Stats! 2 RI 1. At. - Grade Stat! 2. RII. Ast - Loon Ast

end
else if Rl In (L..41 thena

beg in
Grade Stats! 2. RI 41. OtV -, Grade Stats! 2.11I-41.0tyt- 1;
Grade Stats! 2.*I 4). Aat--

Grade -St ea(2.*1 -4).Aut -Loan. Am!

if (Pos 0OD'.DuSta) c), 0' or (Pos'FOCA.,DuSta -, 0' then

*law if (poas*DL1'.DuSta) - 0) or tpoef' " 'DuSta' -' 0 her

elme UI :- 3;
tDutyStmtiofa(R1).Qty -'DutyStstioniRl) %hi I
DutVStatxoa(R11.Amt. DvStatioa(FII .At *Loan-Ant.

LCet :- Field Contonts41.1I41;
CatNDX :' Integer Va~uvlcopy4LCat. J.Z



File Nose: LEDGER.PAS (cont)

if CatMDX in (1.. 10] then

beg in
if (CatNDX in (7.. I1f or (LCat(51 = R') then

CatNDX := CatNDX - 1;
Loan Cato(CatNDX].Qty :~Loan -Cats(CatNDX].Qty - 1;
Loan Cats[CatNDX]. Amt .Loan Cats[CatNDX]. Amt *Loan Amt

end
end;

StatsaRecoro-IQI'W',Rec_Mon, StatsRec)
end; ( Procedure RecordGenerai-StatsI

Procedure LedgerRecord I0(Action : char; LMon -integer;
var Work-Account AER Accounts);

vor
Prey_ Month : AER Accounts;
140K. RI, LedgerMonth -integer;
Al, A6 : real;

beg in
NDX := LMon;
if LMon =0 then

beg in

ak(Accounts-File, 12);
read(AccountsFile, Vork Account);
Ex it

end;
Seek(Accounts-File,L~on mod 12);
if Action z R then

beg in
read( Accounts-File, WorkAccount);
if (lo(CurDsto div 512) > Work Account.EntryYear) and

(CurMon =Lifon) then
begi£r

if L~on = I then
beg in

seek(Accounts-File, 12);
writp( Accounts-File, WorkAccount)

end;
FillChr(Work -Account, 199,0);
Work-Account.EntryYear :=Curdate div 512;
ovek(Accounts File, LMon mod 12);
vrite(AccountsFile, Work Account)

end
end

81



File Name: LEDGER.PAS (cont)

&ee
with Work-Account do

repeat
AXOOO(21 z= ;AXOOO(31 := 0;A2000(71 -. 0;
for RI : I to 6 do A2000(7] :z A200017] A2000(RI];
for RI :~7 to 10 do AXOOO(2] : AXOOO(2] A2000CRI];
for RI :9 to 16 do AX00013] : AXO00(31 *A3000(RI1;

AXOOO(4] : AXOOO(lJ # AXOOO(2] - AXO0O(31;
AX00016] : A3000(lOJtA600OC171-A20OCr31-A6000(181-

A6000( 19] tA6000(20] *A600O(2I] 'AXOOO(51;
Seek(Accounte-File, MDX mod 12);
vrite( Accounts File, WorkAccount);
Flush(Accounts Pile);
if MDX mod 12 <> Curmon mod 12 then

begin
MDX :MDX * 1;
Al :AXOOO(4]; A6 := AXOOOC6];
seek(AccountsFile, MDX mod 12);
read (Accounts-File, WorkAccount);
AXOG01I] := Al; AXOOOC5] %= A6

end
else NOX := -1

* until MDX = -1
end; (Procedure LedgerRecord 10

Procedure Ledger(Cat,Ite*,LDate : integer; PAst :real);

ver
PostingAccount :AERAccounts;

beg in
LedgerRecord I0( 'R', Ldate, PostingAccount);
if (Cat = 6) and (Item = 15) then

beg i n
Cat - 3; Ites %= 10

end
else if (Cat a 6) and (Item = 17) then

beg irn
Cat :2 2; Ites := 3

end
wine if (Cat a 6) and (Item = 16) then Item :~17;
elth PostingAccount do

it Cat a 2 then
beg in

A2000(Itom] :- A2000[Item] * PAmt;
xf Item In (1. .S] then A2QTY(Itea] A29TY[Itemi 1

end

82



File Mame&- LEDGER. PAS 7ont

*is* It Cat - 3 then

AJOO(Ite :2 A)OOO11t-. - PAst.
if It** in (10-.13] then AJQTY1I~es AJUjTY( Itoo,

4 end
else (Cot - 6)

beg In
A6000(ltoal :- AW0O(Itom) - PAst;
if It&* in 117-.19) then AWGTY!Iteaj A6WTY11vvwj

and;
Ledger-Ru-cord 10 'V', L~ot., PostingAccomnt)

end; ( Procedure Ledger)

File Namet HARDCOPY.PAS

Function Printer-UK :byte;

var
PI1 byte;

begin
Prrered Screen :sDisplayScreen;

repeat
Rwgs.AX :~90200;,
RegamOX 0;
Intr (917, Regs);
if hi(Regs.AX) c)- 144 then

if Print-On then
beg in

DiaplayWindovw6, 11);
P1 :- KeyDepressed

end
until (hi(Regs.AX) z 144) or (ESC) or (Not(PrintOnH);
if hicRogs.AX) * 144 then

begi.n
Printer OK %a 0;
Print-On :- True

end
else if (ESC) or (Not(Print On)) then

* begin
Printer OK :- 1;
Print-On :=False

end;
Display Screen :~ProearedScreen

end; (Function Printer-OK)

83



Fi~v Nese MAWOOPYPAS ''unv

Fuact ion T&64Spaes.. Integer Atring25;

TI I nteer,
Twep Spae String25;

Tep spece:' ;

for TI :- I to Spec.. do TempSpece Temp Spec.
Tab :- Temp Space

end; function TabI

Procedure For%_1108,

Con at
LCst : rray(1.A.11 of string(251 - ('1401: W/R of Pay',

1402: Loss of Funds','1403: NMei/Deotal','1404: Funeral',
1405: Emergency Trovel','14O6: Iit Rent & Deposit',
'1406: Rent to Stop Evict.*'1407% Food', '1400: Utilities'.
'1409% Auto,1410: Other');

Fl, LCst MDX :integer;
AstL :reel,
Tb, DbI On, Dbl Off, PStat :char;
SetTeb,CirTabULOn,JLOff - trlng(3i;
PLO.PI5.LCatStr -. tring(S);
P12,PIt :String(61;
Loan Ast : tring(7i;
PayAat : tring( 103;
Line Linol :Stringl8aJ;
0TH : trlng(21J;
Grph,Dox,BoxX,Act,Rvt - string(253;
OITHI : tring(271;
RoksoRsksl : string(401;

begin
LCat.Str :a Field-Contents(1, 19);
LCatMNDX :z IntegerValu.(copy(LcatStr, 3,2));
if (LCt-Str(S3 a 'R') or (LCat-MDX in (7.. 101) then

LCat MDX := LCatMDX - 1;
AstL :s Real Ylue(Field-Contenta( 1,20)); Str(AmtL:7:2, LoanAmt);
PayAat in Flold.Contentsal.12)# x#

StringInt(i.DateDifference(Field-Contentn( 1, 14),
Field Contents(1, 13)), 2);

0th %a Field -Contentn(1, 15); Othi :a Field-Contents(1, 16);
Raks :x Field Contonts(1, 23); Rakel := Field Contonts(1,24);
PIO :- chr(18); P12 U- chr(27)*chr(5a); P15 :- chr(15);
SetTab :x chr(27)*chr(68); CIrTab %- chr(27)#chr(68)ochr(0);
Tb :a chr(9);

84



File NMe": HARDCOPY.PAS (cont)

UL On :x chr(27)*chr(45)#chr(2'; UL-OfI %= chr(27)#chr(45)#chr(O);
DbilOn :z chr(14); DbI Off :z chr(20);
Orph :a chr(27)-chr(76)#chr(11)*chr(O);
BoxX :a chr(O).chr(O).chr(O).chr(255).chr(19S).chr(165).chr(153)t

chr( 153) .chr( 165) .chr( 195) .chr(255);
Box z= chr(O) .chr(O).chr(O) .chr(255) .chr(129).chr( 129).chr( 129).

chr(129).chr(l29).chr(129).chr(255);
if Field Contonts(1,3) 2'A' then

begin
Act :- 'ACTIVE' *Grph * BoxX; Ret 2'RETIRED' *Grph *Box

end
else

beg in
Act :a 'ACTIVE' # Grph * Box; Rot :'RETIRED' *Grph *BoxX

end;
if 1ength(Oth) =0 then 0th --------
If longth(Othl) z 0 then Othl ----------------
Line -a '";

for F1 I~ to 88 do Lino := Line *- chr(196);
Linel :~line;
vrite(lst,P12,chr(27)-chr(8B).chr(6).chr(96)))
vrite(lst,ClrTab,SetTsb,chr(37),chr(44),chr(60),chr(77),

chr(95), chr(O));
vriteln(lat,P12,chr(218) # Line # chr(191));
vriteln(lat,chr(179),Pl0,Tab(14), 'ARMY EMERGENCY RELIEF INDIVIDUAL

LOAN LEDGER',P12,Tb,Tb,chr(179));
insert(chr(194),Linel,31) ;insert(chr(194),Linel, 38);
inert(chr(194),Linel,54);inuert(chr(194),Linel,71);
vrite(int, P12);
vriteln(lat,chr(195),Linel,chr(180));
vriteln(lat,chr(l79),P15,' NAME OF SERVICE HEMBER',Pl2,Tb,chr(179),

P15, 'GRADE',P12, Tb, chr(179), ULOn,P15, Tab(7), 'STATUS', Tab(S),
ULOff,P12, Tb, chr(179),Pl5, 'SOCIAL SECURITY NUMBER',P12, Tb,
chr(179),Pl5,' CASE NUMBER',P12,Tbchr(179));

with Index do
with Loan do

begin
vrite(lst,chr(179),P12,NAME,P12,Tb,chr(179),

Field Contentn(1,2),Tb,chr(179),,P15,Act,' ',Ret,
P12,Tb,chr(179), ' ',PIO,SSNStr(SSN),P12,Tb,chr(179),
PIO,DblOx,Copy(SSNStr(SSN),8,4), 'I');

4 if Lomn-Nr <10 then
vriteln(lut, LomnNr:1,DblOff, P12, Tb, chr(179))

else writeln(lat, LoanNr-2, DblOff,P12,Tb,chr(179))
end;

Linel i= Line;
innort(chr(197),Linel,31); insert(chr(197),Linel,38);
insert(chr(197),Linel,54); innert(chr(197),Linel,71);
writeln(Iut~chr(195),Linel,chr(180));

85



File NMe* HAROCOPY.PAS (cont)

vritvin( 1st, chrl 179), P15,

PAPPLICANT (It other then Service Neuber)',P12,Tb,chr(179),
P5, 'RELATION', P12, Tb, chr( 179), P15, Tsb(6), 'REPAYMENT', P12,
Tb, chr 179), P15, Tsb(6), 'DELINQUENT', P12, Tb, chr(179), P15.
Teb(6),'UNCOLLECTIBLE',P12,Tb,chr(179));

Linel :- copy(Lino,l,5O);
insert(chr(197),Linol,16); inmert(chr(197),Line1,33);
delete( linel, 50,2);
vrxteln( 1st, chr (179)', FieldContentu( 1, 61,Tb, chr( 179), P15,

Field Contentu(1,7),P12,Tb,chr(195),Linel,chr(180fl;
Linel :z copy(Line.1,36); inert(chr(193),Line1,31);
vriteln(lat,chr(195),Linel,chr(I8O),Pl5, 'MONTHLY ALLOTMENT:',P12, Tb,

chr(179),PI5, 'DATE ',ULOn,Tob(16),ULOff,P12,Tb, chr(179),
P15, 'AMOUNT ',P12,ULOn,Tmb(12),ULOff,Tb,chr(179)l;

write(lst,ClrTsb,SetTsb,chr(44),chr(6i0),chr(77),ehr(95),chr(OI);
writeln(lst,chr(179),P15,' MILITAnY ADDRESS OF SERVICE MEMBER',P12,

Tb,chr(179),PI5, 'AMOUJNT ',P12,PayAot-10,Tb,chr(179),P15,
'AMOUNT ',ULOn,Tab(14),ULOff,P12,Tb,chr(179),PI5, 'DA FORM
1106"', P12,Tb,chr(179));

vritein(lat,chr(179),FleldCntent(1,8),Tb,chr(179,P5, 'START '

P12, Field Contents(1, 13),Tb, chr(179),P15, 'LETTERS TO
BORROWER:',P2,Tb,chr(179),PI5, 'APPROVED ',P12,ULOn,Tab(IO),
ULOff,Tb, chr( 179));

Linel %z copy(Lint,1,37);
vritein(lat,chr(195),Linel,chr(180),,PI, 'STOP ',P12,

Field Contents(l, 14),Tb,chr(179),Pl5, DATE ',ULOn, Tab(16),
ULOff,P2,Tb,chr(179),P15, 'DA FORM 1105-3:',P12, Tb,
chr( 179));

vrite~ln(lst,chr(179),P15,' HOME ADDRESS OF SERVICE MEMBER',P12,Tb,
chr(179),P15, 'OTHER ',OTH,P12,Tb,chr(179),PI, 'DATE ',ULOn,
Tab(16),ULOff,P12,Tb,chr(179),PI5, 'POSTED ',PL2,ULGn,
Tsb( 11),ULOff, Tb, chr( 179));

vriteln(lat,chr(179),FieldContenta(1,9),Tb,chr(179),P5,OTHI,P2Tb,
chr(179),Pl5, 'DATE ',ULOn,,Tsb(16),ULOff,P12,Tb,chr(179),
ULOn, Tab(15), ULOff, Tb, chr( 179));

vritein(lst,chr(179),FieldContents(1, 1O),Tb,chr(179),Tb,chr(179), Tb,
chr (179 ), Tb, chr (179 1 1

Linel :z Line;
insert(chr(194),Linol,1l); insert(chr(194),Lin&l,24);
innort(chr( 193), Linel, 38); insert(chr( 194), Linel, 52);
insert(chr(193),Linvl,54); innert(chr(194),Linol,64);
innortichr( 193), Libel, 71); insort(chr( 194), Linel, 76);
writeln(lut~chr(195),Linel,chr(180));
vrite(lat,ClrTmb,SetTabochr(17),chr(30),chr(58),chr(70),chr(82),

chr(95), chr(O), chr( 13));
vritpin(lst,chr(179), ' ',P15, 'DATE',Pl2,Tb,chr(179),P15, 'CHECK OR

RECEIPT',P12,Tb,chr(179),Tab(11),P15, 'EXPLANATION', P12,Tb,
chr(179),' ',Pl5S,'AHOUNT OF LOAN',P12,Tb,chr(179),' 'P15,
'AMOUNT OF LOAN',P12,Tb,chr(179),' ',P15, 'BALANCE',P12,Tb,
chr(179));

86



File None: IARDCOPY.PAS (conth

wrateln(lst,chr'179),Tb,chr(179',P15,' MURNIRP12, Tb, chr'1791,
Tb,chr(1791,Tb,chr(179).P15,. REPAYMENTS',P12,Tb,chrd1791,
Tb, chr £79);

Line! :a Line;
insvrt(chr(197),Lxne1, 11); inert(chr(197),Linet.24);
1nsert (chr (197', Line!,52 ; insert (chr (197 * Line! *4)
tnsert(chr(194),Lin&1,72); insvrt(chr(197),Linvl, 7k;
insert chr (194), Lxnvl, 85?
vritein(1ut,chr(195),Linel,chr(ISO0H;
write(IstCirTmbS~tTsb,chr(17),chr(30),chr(5),chr47O ,chr(78),

chr (02) *chr (91 , chr (95 * chr (0i *chr (131)
vriteln(ist~chr(179),FieldContents(I.17),' ',chr'179;,PIO,

Field Contents( 1, 18,P12, lb.chr (179 ),Lcst( LCat MDXi, Tb,
chr(179),PIO.FleldContenta(1,20h0.,P2,Tb,chr(1791,Tb,
chr(179I,Tb,chr(179),P1O~copy(LoenAt,1,4):.,P2,Tb,
chr(179),PIO,copy(LoenAst,6.2)l2,P12,Tb,chr'179iI;

Linel ta Line;
Inmert(chr(197),Linel,l1); insert(chr(197),LInvl,24;
Insert(chr( 193), Line!,52); Inmwrt(chr( 19?;, Line!, i4
Inswrt(chr(197),LInel,72), Insert(chr(197),LIn&l,76);
insert (chr (197) *Line!, 05)
vriteln( 1st.chr( 195), Line!, chr(00))
insert(chr(196),Lin*l,52); de.lete(Linel,53,1)i
write( 1st. CirTab, SetTab, chr( 17), chr(30), chr(70), chr(78), chr(8)

chr (91 ),*chr (95), chr (0), chr (13));
it tUength(Waks) a 40) or leongth(Rusl) a 40) then Pit :2 P15
&In* Pit :a P12;
for Fl :z I to 19 do

beg in
if Fl in (1,21 then

beg in
vritein(lst, chr( 179), Tb,chr( 179), Tb,chr( 179), Pit, Raks,

P12, Tb, chr (179 ), Th.chr (179 ), Tb, chr( 179I, Tb,
chr( 179 ), Tb, chr (179))

Rinks :x Rakel
end

&Is*
vriteln(ist~chr(179),Tb,chr(179), Tb,chr(179),Tb,chr 179),

Tb,chr(179),Tb,chr(l79)',Tb,chr(179),Tb,chr(1791 ;

vritln(lt,chr(195),Linel,chr(196),chr(180))
and;

vriteln(lst,chr(179),Tb,chr(179),Tb,chr(179),Tb,chr(179), Tb,
chr(179),Tb,chr(179)',Tb,chr(179),Tb,chr(179u);

Linel %* Lino;
insert(chr(193),Linel,ll); insert(chr(193),Llnel,24);
insert(chr( 196), Linvl, 52);
insert(chr(193),LintlE4); inert(chr(193),Linel,72);
insert(chrI193),LInwI,76);, ins~rt(chr(193),Lin&I,a5);
writeln(lst,chr(192),Linel,chr(217));

87



File Name% HARDCOPY.PAS (Cont i

vriteln~lst,PIO.DblOn, DA FORM 1100',Tab(21i,
copy ( 331Str( Index. SSN ). a.Iii, DblOtt.P12)

for Fl is I to 4 do writeln(lat)
end; CProcedure Form-1108 )

Procedure Print IHeadr(Ileader Ident %Integer);

vet
Hdr % tring[GWJ;

begin
it Headier-Ident in (1. .61 than

if Header Ident a I then
Hdr is Chapter 13 Loans as of

else, if Header Ident a 2 then
Hdr to ' All Delinquent Loans an of

else if Header Ident - 3 than
Hdr is Uncollectible Loans Awaiting Approval as of

else if Header Ident. a 4 then
Hdr is ' Paid-Oft Loans as of

else if Neader Ident a 5 then
Hdr %a 'Transfer-In Loans Awaiting 1st, Repayment as of

else Hdr to ' Transfer-Out Loans Awaiting Approval as otf'
wrIte( st. chr( Ia),chr( 13));
it Header-Ident in (7.. 91 then

vritein(lstTab(21), (Heederjldent-S)%2,
.Month Old Delinquent Loans as of 'CSDate)

*ls* if Header Ident a 10 then
wrIteln( 1st, Tsb(17),

Delinquent Loans More than 3 Months Old as of *,CS~ute)
else writeln(lst,Tab(l6),HdrCSDate)s
vriteln(lst,chr(27),chr(").chr(O),chr(27),chr(68),chr 11),

'.ODG,chr(O) I;
writeln(lst,chr(9),chr(9),chr(9),chr(9),chr(9),

'LOAN ACCOUNT LAST');
writeLlrltchr(9), 'NANE',chr(9), 'SSN',chr(9),

'GRADE STATUS NR BALANCE PAYMENT');
vriteln( 1st)

end; ( Procedure Print.Headier

Procedure Print.Rport(Loanjndex. integer; Account Entirt.Account);

ver
Grade, mtring(3);
S, Tb char;
iDate& i atring(91;
Balance :real;
Box istring(151;



File Name: IARDCOPY.PAS Itcont)

begin
Box :* chr (27 *chr 76 *chr (li) *chr (0J chr 0 ochr (DI chr (0 *chr 255)'

chr(129)-chr(2.chr(129).chr(129).chr(129.ochrU1291.
chr(255);

yr ite( 1st, chr (16), chr (27), chr (6S,8,chr (0 ,chr (27), chr (68). chr (3) ,
chr(30,chr4J),chr48),chr(57,chr62),chr(71,,chr0I),

chr (13));
Tb zx chr(9);
with Ind&% do

with Account(Rec Pos(Loan Indexi].Loan Data do
beg in

wrxte(latBoxTb,Nam,TbSSNStr(SSNI);
Decode-Grade-and-Sttua(Orade-and-Statu, Ormde, );
if S a 'A' then

writet 1st, Tb, Grade,Tb,'Active')
via& vrite(latTb,GradeTb, 'Retired');
SplitDete~andNoney( DalanceInfo, B~at., Balance);
writeln(lat, Tb, LoanMr. Tb. anc:7:.2, Tb. BDate)

end
end; C Procedure PrintReport I

Procedure Print-GeneralLedger(Print.Record iAER-Accounts);

vrTb : char;

Pl. P2 a integer-,
Prt-Str :StringSO;
Lgr..Fmt : text;

begin
Tb :a chr(9); P2 :* 1;
vrite(lst,chr(18),chr(27), chr(6a), chr(O),chr(27), r(68),chr(5O),

chr(60),chr(O),chr(13));
writeln(lat,Tab(25),FieldContents(5,1O));
assign (LgrFut, LEDGERFRM); reset.( LgrFsPt);
tar P1 :a I to 46 do with Print-Record do

begin
If P1 in 11,3,5,17,19,29,31,33,35,37,451 than vriteln(lst)

begin
rvadin (LgrPut, PrtStr);
if P1 in (2,6,20,34] then vritejn~lst,PrtStr)
else, if P1 in (4,18,30,32,36,463 then

beg in
vriteln(lst, PrtStr, Tb, Tb, AXOOO(P2] :10:2);
P2 :2 P2 # I

end
vla& if P1 in (7.-11] then

89



File Memo NARDCOPY.PAS (cant,

writeln~lst, PrtStr, Tb, A2GTY(PI -6J:4. Tb.
A2000(P1-6Ji10:2)

*low if PI a 40 than
vr item (lst, PrtStr. Tb. £2G1Y(33 :4. Tb. A2000( 3]:10:2)

else if P1 in (12.. 16J then
writeln(lstPrtStr.Tb.Tb.A2000(P1-6I:.10:2)

else if PI in (22.. 25] then
writeln( 1st, PrtStr, Tb, A3QTY(PI -12) :4.Tb,

A3000(PI-123 :10%2)
&Ise if P1 a 38 then

vriteln( st. PrtStr, Tb. A3QTY(I103:4. Tb. A3000( 10) :10:2)
else if P1 in (21,26. .283 then

writeln(lst.PrtStr,Tb.Tb.A3000(P1-123:10:2)
viae if P1 in (41,42J then

writelntlst, PrtStr, Tb, A6GTY(PI -233 :4. Tb,
A6000(P1-223J1022)

vew if P1 In (43,44J then
vriteln( 1st.PrtStr. Tb. Tb.A6000(PI-23] :10:.2)

&lse write.Ln(lst, PrtStr. Tb, A6QTY(17J:4, Tb.
A6000C17Jt10:2)

end
end;

Clos*( LgrFwt);
for P1 :a 1 to 20 do writoin(lot)

end; (Procedure PrintGeneral Ledger

File Name: AERPROCS.PAS

Function Valid-Account-Code(AccountCode : String5) : boolean;

begin
if (IntegerValue(copy(AccountCode,1,4)) - 2000 in (1. .6,..I10) or

(Integer_.Valu(copyAccountCode,1,4)) - 3008 in ci. .a3) or
(Integer_.Value(copy(AccountCode,1,4)) - 6014 in (1..71) then

Valid Account Code := True
else

begin
Valid-AccountCode %= False;
Buzzer

end
end; ( Function Valid Account Code

90



File Name: AERPROCS.PAS (cont)

Procedure DisplayAccountIdent(DispNr : integer);

begin
with Indext do

beg in
Decode Grade-and Statua(Grade and Status, Grade, Status);
FillField(DispNr. ,Name);
Fill-Field(DispNr, 2,SSN..Str(SSN));
Fill..Fi&ld(DispNr, 3Grade);
if DispNr t~l 4 then

1% if Status a'A' then FillField(DispNr,4,'Active '

-' *low FillField(DispNr,4, 'Retired')
end

end; ( Procedure DisplayAccountlIdont)

Procedure DisplayLoans(DispMr, StartFiold, Dimp.Start integer;
Account %Entire-Account);

var
LDate, IDate, ADate %StringS;
DI : integer;
Loan-Amt. Balance, AllotAst : real;
Loan-Status : arrayCO. .6] of string(32J;

begin
D1 :a DispStart;
Loan-Statua(2] := 'Delinquent
Loan-StatusC3] :z 'Uncollectible (not yet approved)';
Loan-StatusC4] %= 'Paid-Off. Holding for 30 Days. ';

Loan-Status(53 :z 'Transfer-In. Awaiting 1st Pyat.';
Loan-Status(6] := 'Transfer-Out. Awaiting MANCOR. '

repeat
with AccountCRoc-Pos(DI]]. Loan Data do

begin
Loan StatusCOl := 'Current
Fill Field(DispNr, Start Field, String Int(LoanNr, 2));
split..Date..and_.Noney(LoanInfo, LDate, LoanAat);
Fill-Field(Dip.Nr, Start Field-1, String-Real(Loan-Aat, 7));
SplitDate andfoney(BalanceInfo, B~ate, Balance);
Filljield(Disp.Nr, Start Field'2, String-Real(Balance, 7));
if RepayMethod and 97F <> 0 then

Fill Field(DispNr,StartField.3,' CH-13')
else if Repay..Nethod = 0 then

Fill.Field(DispNr, StartField*2, 'Allot')
else Fill-Field(DispHr, StartField+3, P-Note');
SplitDate..mndMoney (Allot Info, ADate, AllotAnt);

91

flp MIIO



File Name% AERPROCS.PAS tcont)

If Acct Status zI then
Fill Field(DispMr StartField*4. 'Various')

FiII..Field(DispMr. StartFiold#4,
StringRvsi(AllotAut, 7u;

if oba(Loan-Amt - Balance) < 0.001 than
BDat& : 'None Yet ';

FillyField(Dlapr, StartFleId.S, R~te);
If (Acct Status a 0) and (abs(Loan Ast - Balance) <0.001)

and (trunc(Allot-Xnfo - 32.0) CurDate )- 0) then
Loan-Statusc01 :9' Repaysents to start ',

copy (ADete. 4. ')
*is* if Acct-Status aI then

Loan Statuall] is 'CN-13 at '*String_1nt4RvpayMethod.3)-
Pcents on the dollar';

Fill -Field(DispNr. StartField*6, LoanStatus(AcctStatus));
Start Field is Start-Field * 7; DI is DI # I

end;
until (DI a DiapStart , 5) or (RocPos(DII - 0)

end; (Procedure DisplayLoans )

Procedure Get.Acount(K&yVaVlue % String2S; var Nroi Loans %Integer;
var Account :Entire Account);

var
Record File Position :integer;

begin
Mr of Loans :* 0;
Get-Index-Record (KeyValue, Record -File-Position);
if Record-File-Position t> 0 then

begin
FillChar(Account, 405.0); FillCher(RecPos, 0,0?;
FillChar(StatsCode&,7,0);

seek (Lon-File, Index. Accounts Ptr);
repeat

read (Loan File. Loan);
Mr-of-Loans %a Mr ofLoans # 1;
Account(Loan. Loan MnI.Loan Data :-, Loan;
AccountlLoon. Loan Nr]. Rec Loc :* FiloPos(Loan File) 1
Stats Code(Loan. Acct-Status] is StatoCod(Lon. Acct Status)

Rec-PooCMrof-Looans is Loan. Loan Mr;
seek(Loan File, Loan. Next-R-Pcord)

until Loan. Next-Record 0
and

end; (Procedure Get-Account

92



File NMe: AERPRCS.PAS icoflt)

Procedure LosnEntryfEntryType integerl;

var
Cat : String5;
L1. L2, WHon. LCat. N1onDiff integer;
ADatv.LDat&.9Dat& - String9;
Account t Entire-Account;

beg i n
repeat

Prepare-Screen( I);
DisplayScreen :- ProearedScreen;
if EntryType a 3 then

begin
gotoXY(3,17);wrIte('Dstw of');
gotoXY(2,18);vrite(* Grant )

gotoXY(50. 17) ;writo( 'Grant )

Screenjnput( 1,1.4);,
Screen_1nput( 1.8,8);
ScreenInput(I.17,20); if ESC then Exit

end
else if EntryType in (1,23 than

begin
Screenlnput(l,1,4); if ESC than Exit;
Geot Account (Field Contents 4 , 4), Li,Account);
repeat

Screen Input(1,5,5);if ESC then Exit;
L2 :=IntegerValue(Field Contents(1,5))

until L2 In (O..141;
if LI c> 0 then

if L2 < Rec-PosILi] than
begin

L2 :=Rec-Pos(LlJ;
FIll Field(l, 5, StringInt(L2, 2))

end;
L2 := L2 # 1;

Scrvvn_1nput(l,6,20); if ESC then Exit;
if EntryType - 1 then

begin
FillField(l,21,'None Yet ;

FillField(l,22, FieldContents(l,20));
ScreenInput(1, 23, 24)

end
else ScreenInput( 1, 21,24)

end
else

begin
gotoXY(66,4); write('Old Loan Mr )

93



~xi Wan.:AERPBOCS. PAS , cant

Screen 1nput( . .L4'; it ESCZ then~ Exit;
Get AccotuntFiidCotentsil.4 .LI.Account;
repeat

Screen -Input (1.25. 25); i i ESC then Ex iIt
L2 :z IntegerValu*'Fxeld Contentail,5-

until LZ in [1.. 15);
it LI -~ 0 then

repeat
it AccountCL23.Rec Loc -1 0 then L2 'L2*

until (Account(L21.Rec-Loc x 0) or (L2 15);

Screen Inpuat(1I.1,13; Screen-Input(1.17. 17:;
Screen Input( 1.20.22)

if ESC then Exit;
gotoXY(5, 2) ;Textlackground(Red ;TextColor(Whitei.
writo('Ploase VERIFY inforsation. Prows ',

chr(17), '-a if correct or ESC to stop entry.');
TextBackground(Blue) ;TextColor (Black);
repeat

if ESC then Exit
until KeyDopressed a 13;
FillChar(Index,47,0);FiliChar(Loan,25,0);
with Index do

beg in
Mue :z Field-Contonts(l11);
Grade :z Field -Contonts(1,2);
Status ;z Field Contenta(1, 3);
Grade and Status := Encode Grade-andStatus(Grade, Status);
SSN :a Real-Valuo( Field-Contonts( 1, 4))

end;
with Loan do

begin
Loan-Info %a Real Value(Field-Contenta 1,20));
LDste := FieldContents(l, 17);
Extract Date-Data (LDate, W~on, Code);
if EntryType a i then Ledger(3, 10, Won,LosnInfo)
else if EntryTypo = 3 then Ledger(3,ll,W~on,LomnInfo);
if EntryType c> 3 then

begin
LonnMr := L2;
Loan-Info :=flrgeDatemandloney( LDate, Lomn Info);
Allot -Info k~telValue(FieldContents1, 12));
ADate := FieldContenta(1,13);
Balance-Info :Real..Value(Field-Contents.I, 22));
if EntryType I then B~ate := LDate
else BDate :=Field Contents(1,21);

934



File Nawwe AERPROCS.PAS (cont)

if EntryType =2 then
beg in

Extract-Date Data (BDate, WHon, Code);
Ledger(6. 16, WMon, Balance Info)

end;
if EntryType s2 then Acct Statue % 5
else Acct Status : 0;
Balance-Info :

MergeDate andMoney( BDate, BalanceInfo);
if Field Contents(1, 11) ='A' then RepayXethod :=0
else RepayMethod :=$80;
Allot Info MergeDate andMoney(ADate. Allot_ Info);
Acct Status New Status('A',Loan)

end
end; ( with Loan do)

if EntryType in (1,2,4] then Write Index Record;
if EntryType in (1,3] then Record General-Stats(W~on);
if (EntryType in (1,2]) and (Printer OK =0) then Form 1108;

Until lo(Rega.AX) =27
end; iProcedure Loan-Entry

Procedure RecordPaysents(Entry Mode integer);

var
R1, LoanNr, Field, P~on,, NrLoans integer;
Match-Found tboolean;
PDate : tring(g];
RcptNr :String(8];
Allot-Ant, Payment :real;
Account :Entire-Account;

procedure Post(Loan Hum :integer; NevBalance real);

begin
if ESC then Exit;
DisplayScreen :=PreparedScreon;
with Accountf oan Mum]. Loan Data do

begin
Aect Status :=w MvStatua('D', Account(Loan Mum] a on 'a' a
if New Balance 0.0 then

Acct Statue 4
else if Acct Status <> I then Acct _ Statua
Balance-Info :z Mrq&_Datv andMonyPDetv.NMwv Oseje o
Acct Status : New StatuseA,AccountLoon %us, -a,

end;
seek(Loon File, Account(Loan - ud. Ree Loc,
write(LoanFile. Account[LoanNumJ.Loar [lots
DisplayLomns(4. 12.1. Account'

end; Cinternal procedure Apply to-Loan



File Name: AERPROCS.PAS (cant)

procedure ApplyPayaent(Loanjlus : integer);

var
LDate, SDato % atringl9];
VI % integer;
Balance, MevwBalance, Ledger.Amt :real;
Answer tstring[2];
TranactionCouplete : boolean;

begin
if ESC then Exit;
if Loan Mum <> 0 then

beg in
PreparedScreen := DisplayScreen;
Fill_Field(4,4,Stringjnt(Lon.Num,2)); gotoXY(48,2);
vrite('Preas ',chr(17),'-' if Loan Mr ',Lo -nMus%2,' is the');
gotoXY(48, 3); write(' Correct Loan.');
gotoXY(48,5); vrite('If incorrect, press any other');
gotoXY(48,6); write(' key to select correct loan.');
if Key_.Depressed <>- 13 then Loan-Mum %= 0;
DioplayScreen := PreparedScreen;
if ESC then exit

end;
if Loan Mum s then

begin
repeat

Loan-Num := 0; Screenjlnput(4,10,l0); if ESC then Exit;
Answer := Field -Contents(4, 10);
Ansver[1] := upcase(Anaver(I]);
Fill Field(4, 10,' '); LoanMum :=IntegorVaiue(Anavor);
if Loan Muu t> 0 then

if AccountCLonHuml.Rec-Loc = 0 then Loan-Mum :0

until (Answer~l] in C'A'..'C'DI or (Loan-Mum <> 0);
if Answer = 'A' then Ledger(2,1,P~on, Payment)
else if Answer u 'B' then Ledger(2,2,PIon,Payment)
else if Answer = 'C' then Ledger(2,4,P~on,Payment);
if Anawer(13 in C'A'.. 'C'] then Exit

end;
repeat

Fill-Field(4, 4, StringInt(LoanMua, 2));
TrmnsectionCoaplote := True;
with Account[Loon Mum]. Loon-Data do

begin
SplitDato and -oney (BalanceInfo, Date, Balance);
Nov-Balance :z Balance - Payment;
if Nov-Balance <= 0.001 then Fill-Fivld(4,S,' 0.00')
else Fill Field(4,8,StringReal(Nev.Balance,7));
PreparodScroon a = DisplayScreen;

96



File Name: AERPROCS.PAS (cont)

if New-Balance >= -0.001 then
begin

if New..Balance < 0.001 then HewBalance :~0.0;
Post(Loan Hu, HevBalance);
Ledger (2, 3, P~on, Payment)

end
else

begin
gotoXY(48, 2);
if Balance < 0.001 then

begin
write('Loan Paid Off. Should I apply');
gotoXY(48, 3);
vrite('tho ',Payment%7%2,' repayment to:');
LedgerAmt := Payment; Payment := 0.0

end
elsBe

begin
Payment := Balance;
write( 'Applying ',Paysent:7%2,

to Loan. Should');
gotoXY(48, 3);
write('I apply remaining '

Abu(New..Balance) :7:2,' to:');
LedgerAmt := Aba ( HewBalance)

end-,
repeat

V1 := 0; Screen_.Input(4,11,11); if ESC then Exit;
Answer := Field-Contents(4, 11);
VI := IntegerValue(Answer);
if VI <> 0 then

if Account[V13.Rec Loc z 0 then VI := 0
until (Anawer~l] in ['A','B'D3 or (VI <> 0);
gotoXY(48, 2);
vrite('
gotoXY(48, 3);
write('
Fill-Field(4, II,'')
Prepared-Screen %= DisplayScreen;
Post (LoanNum, 0. 00);
if Payment <> 0.0 then Ledger(2,3,PMon,Payment);
if Anawer~l] z 'A' then Ledger(2,1,PMon,Ledger-Amt)
else if Anaveril 'B' then

Ledger(2, 4, P~on, Ledger-Amt)
else

begin
Traneaction..Couplete := False;
Loan-Mum := V1;

end

97



File Name: AERPROCS.PAS (cant)

end ( if New Balance < 0.001 1
end (with Account do)

until Transaction-Complete
end; ( internal procedure ApplyPayment)

begin ( Main Body RecordPayments I
PDate : ';Rcpt-lr

repeat
Prepare-Screen(4);
DisplayScreen := Prepared..Screen;
if EntryMode = 1 then

begin

end;
if Entry..Mode in (1,2] then Field := 2
else Field :=I;
if Field-Contents(4,5) = 'then ScreenInput(4,5,6);
if ESC then Exit;
PDate z= Field Contenta(4,5); RcptNr zz Field-Contentn(4,6);
Extract Date Data (PDate, P~on, RI);
Scr&&nInput(4,7,7); if ESC then Exit;
Payment := Reml-Value(FieldContentm(4, 7));
Screenjlnput(2,Field,Fieid); if ESC then Exit;
Get Account(Field Contenta(4, Field), NrLomns,Account);
if Mr Lowns <> 0 then

begin
DisplayAccountjIdent(4); DisplayLoans(4, 12,I, Account);
Match-Found %= False;
RI := 0;
repeat

RI :=RI + 1;
with Account[Rec Pos RI H. Loan Data do

begin
SplitDate end..Money (AllotInto, Date, AllotAut);
if abs(Allot-Aat -Payment) < 0.001 then

begin
Match Found := True; ApplyPayment(Loan Nr)

end;
if ESC then exit

end
until (Match-Found) or (RI NrLoans);
if Not (Match-Found) then ApplyPayment(0);
if ESC then Exit

end (if Nr-Lomns <> 0
else

begin
repeat

ScreonjInput(4,9,9); if ESC then Exit;

98



File Name: AERPROCS.PAS (cant)

RI :=IntegerValue(Field.Contents(4, 9))
until RI in 1I.-5];
Fill Field(4,9,' ')
Ledger (2,R, P~on, Payment)

end;
gotoXY(48, 2) ;vrite( 'Press:');
gotoXY(49.4);vrite(' P,chr(I7),'-J to post another payment');
gotoXY(51,6);vrite('ESC to return to main menu')

until KeyDepressed =27
end; ( Procedure RecordPayment.

Procedure DisplayFinancials(Mode :integer);

type
String4 z stringC41;
InputSet =set of 1.. 4;

var
DispAcct iAER-Accounts;
ValidInput : Input..Set;
VSDate, Test-Date % String9;
Acct-Code % string(4];
Dl, T~an,, WHon,, AcctCat, AcctItes, Capt :integer;

procedure Total-Financials;

var
TempFin % AER-Accounts;
End-Month,, TI, T2, T3 :integer;
A2 : arrayll. .10] of real;
A3 : arrayC9. .16] of real;
A6 : array[l7. .21] of real;
A29 : arrayll. .5] of integer;
A39 : array(10. .13] of integer;
A69 : array(17..19] of integer;
AX % array(1..61 of real;

beg in
if Curflon =I then

begin
T3 :=0; EndMonth :12;

end
else

begin
T3 :2 1; EndMonth :=CurMon

end;
LedgerRecord3O( R, T3, DispAcct);

99

r LLL



File Name: AERPROCS.PAS (cant)

for TI := 2 to End-Month do with DispAcct do
begin

for T2 121 to 10 do A2(T23 %= A2000IT23;
for T2 :9 to 16 do A31T21 :z A3000(T21;
for T2 17 to 21 do A6CT23 z: A6000CT21;
for T2 :I to 5 do A2Q(T23 := A29TY(T23;
for T2 :210 to 13 do A30IT23 A30TYCT2];
for T2 :17 to 19 do A69CT2J : A6QTYET2];
for T2 1 to 6 do AXCT21 := AX0OO(T21;
Ledger_.RecordO( 'R', TI, DiapAcct);
for T2 :=I to 10 do A2000[T2] : A2000(T21 A2[T23;
for T2 9 to 16 do A3000CT21 A3000ET21 A3CT23;
for T2 :17 to 21 do A6000(T2] : A6000(T23 A6(T21;
for T2 :z1 to 5 do A2QTYET2] := A2QTYIT21 + A20(T23;
for T2 :z 10 to 13 do A3QTY[T21 := A3QTYCT21 - A3Q[T2J;
for T2 :=17 to 19 do A6QTYCT2] :a A6QTY[T23 # A60CT21;
for T2 :=I to 6 do AXOOOCT23 :a AXOOOIT21 * AXET23

end (with DispAcct )
end; ( internal Procedure Total-Financials i

procedure Write-Accounts;

begin
with Disp-Acct do

begin
gotoXY(30,4) ;vrite(AXOOOE1J 110:2);
for I %= 1 to 10 do

if I in C1..53 then
begin

gotoXY(24,4.I); vrite(A29TYCI]:4);
gotoXY(30,4.I); vrite(A2000(I3:10%2)

end
else

begin
gotoXY(30, 4.1) ;rite(A2000C 11:10:2)

end;
gotoXY(30, 15) ;vrite(AXOOOC2J :10:2);
gotoXY(30, 17) ;vrite(AXOOOC5] :10:2);
gotoXY(24, 18) ;write(A3QTYC 103:4);
gotoXY(30, 18) ;vrit.(A3000C 10310l:2);
gotoXY(24, 19) ;vrite(A6QTYC17I :4);
gotoXY(30, 19) ;vrite(A6000C 17] :10:2);
gotoXY(24, 20) ;vrite(A2QTYC3J :4);
gotoXY(30, 20) ;vrite(A2000(31 :10:2);
gotoXY(24,21);vrite(A6QTYC1SI:4);
gotoXY(30, 21) ;vrite(A6000C183:10:2);
gotoXY(24, 22) ;vrite(A6QTY(19] :4);
gotoXY(30, 22) ;write(A6000C 193 :10:2);
gotoXY(30, 23) ;vrit.(A6000( 203:10:2);

100



File Name: AERPROCS.PAS (cont)

gotoXY(30, 24) ;vrite(A6000[21h:10:2);
gotoXY(30, 25) ;vrite(AX000C6] :10:2);
for I :=9 to 16 do

if I in (10..13] then
begin

gotoXY(64,1-5); write(A39TY(I]:4);
gotoXY(70,I-5); vrite(A30001I]:10:2)

end
elsme

beg in
gotoXY(70, I-5);vrite(A3000(I]:10:2)

end;
gotoXY(70, 12) ;vrite(AXOOO(33 :10:2);
gotoXY(70, 13) ;vrite(AXOOOC4] :10:2);
gotoXY (77, 24)

end (with Nain-Accounts)
end; (internal procedure WriteAccounts)

begin
WSDate := CSDate; Copt :z 0; V~on :x Curffon;
if Node z 2 then ValidInput :a (1,2] else ValidInput :z (1.. 41;
repeat

if ((Copt <> 7) and (Node z 1)) or (Node 2) then
begin

PrepareScreen(5); DimplayScreen ::Proered-Screen;
Fill Field(5, 10, 'GE)IRAL LEDGER FOR MIONTH OF

#copy (WSDate, 4,6);
LedgerRecord I0( 'R', W~on, Disp..Acct);
Write-Accounts;
repeat

ScrwenInput(5,4-Nfode,4-Modv); if ESC then Exit;
Copt. :u IntegerValue(FieldContentu( 5, 4-Node));
if Not(Copt in ValidInput) then Buzzer

until Copt in ValidInput;
end;

if (Copt a Mode) or (Copt u 7) then
begin

Copt :- Mode;
Screen Input(5,,1,1); if ESC then Exit;
Test Date :- ' - - Field..Contents(5,1);
Extract -Date -Deta(TeatDate, T~on, Dl);
Code %n Date-Difference(CSDate, TestDate);
if (Not(Code in (0. .11])) or (DI > CurDate) then

begin
DisplayWindov(6, 8);
if IKeyDepressed = 27 then Exit
else DisplayScreen := PreparedScreen

end

101



File Nane% AERPROCS.PAS (cant)

else
begin

WSDate := Test-Date;
Wflor %= Than;
Ledger-RecardI0( 'R', W~on, DispAcct)

end
end;

if ((Mode = 2) and (Copt = 1)) or ((Mode z 1) and (Capt 3 )) then
begin

repeat
Screen -Input(5,6-Mode,6-Made); if ESC then Exit;
Acct Code := Field Contents(5, 6-Mode)

until Valid Account Code(Acct Code);
Acct Cat := nteger_.Valu(Acct-Cod&C1i);
Acct Item :2IntegerValue(capy(AcctCode, 2,2));
if Mode z 2 then

begin
Screen_1nput(5,B,8); if ESC then Exit;
Ledger (Acct-Cat, Acct..Item, Wion,

Real..Vlue(FieldContents(5,B ))1;
Ledger Record 0( 'R', Wion, DispAcct)

end
else

begin
if Acct Cat = 6 then

begin
if Acct Item = 16 then Acct Item := 17
else if Acct Iteu z 15 then

begin
Acct Cat := 3; Acct Item 10

end
else if Acct Ites = 17 then

begin
Acct Cat := 2; AcctItem ::3

end
end;

if ((Acct Cat a 2) and (Acct Itea in 1l.-53)) or
((Acct Cat = 3) and (Acct Item in (10.. 12])) or
((Acct Cat a 6) and (Acct Item in (17. .19])) then
with Disp..Acct do

begin
Scroenjlnput(5,6,6);if Euc then Exit;
if Acct Cat =2 then

A2QTYCAcct Item] :z
Integer Value(Field Contenta(5, 6))

else if Acct-Cat a 3 then
A39TYCAcctItem] is

Integer-Value(Field-Cantents(5, 6))

102



File Name: AERPROCS.PAS (cant)

else
A60TY[Acct Item]

IntegerValue(Field-Contenta(5, 6))
end;

ScreenInput(5,7,7); if ESC then Exit;
with DispAcct do

if AcctCat =2 then
A2000CAcct Itea]

Real Value(Field Contents(5, 7))
else if AcctCat =3 then

A3000EAcctItem] %
Real Value(Field Contents(5, 7))

else
A6000EAcctItem]

Real Value(Fieid Contents(5, 7));
LedgerRecord.IO( 'W', W~an, DispAcct);
LedgerRecord_lOC 'R',W~on,Disp.Acct)

end
end Cif Mode = 2)

else if (Mode =1) and (Copt = 2) then
beg in

Display..Windov(5, 3); gotoXY(45, 1);
if Curflon <> 1 then

vrite('Ol JAN ',(80 + CurDate div 512)%2,' To ',CSDate)
else

vrite(Oi1 JAN ',(79 + CurDate div 512):2,' To 31 DEC '

(79 + CurDate div 512):2);
Total-Financials; Write-Accounts;
repeat

ScreenInput(599); if ESC then Exit;
Copt := Integer-Value(Field.Cantents(5, 9));
if Hot(Copt in E1,21) then Buzzer;
if (Capt = 2) and (Printer0OK =0) then

Print General-Ledger (DispAcct)
until Copt = 1;
Copt := 7

end
else if (Mode = 1) and (Copt = 4) and (Printer0OK =0) then

Print GeneralLedger( DispAcct)
until ESC

end; ( Procedure Display..Financials)

103



ommomwffw~

File Name: AERPROCS.PAS (cant)

Procedure DisplayGeneral-Stats;

var
WSDate, Test-Date : String9;
DI, Copt, T~an, WHon :integer;
DispStats : GeneralStats;

procedure Write-Grade;

var
WI, W2, Tot-Hr %integer;
Tat Aut :real;

begin
Tot Mr 0; TotAnt,: 0.0;
gotoxY(8, 5);
for Wl := I to 2 do

for W2 %=I to 9 do vith DispStats.Grade-Stats[Wi,W23 do
begin

gotoXY(8,vhereY) ;vrite(Qty:4);
gotoXY( 13, whereY) ;vriteln(Ant:10:2);
Tot Mr :=Tot-Mr -Oty;
Tot-Ant :=Tot Ant, Ant

end;
gotoXY(8,23); vrit*(TotjHr%4))gotoXY(13,23); vrite(Tot-Ant:10:2)

end; (internal procedure Write-Grade

procedure WriteLoanCats;

var
WI, TotMr : integer;
Tot Ant :real;

begin
Tot Mr := 0; TotAnt : 0.0;
gotoXY(45, 5);
for WI := 1 to 11 do

with DiapStata do
begin

gotoXY (45, whereY);
vrite(Loan-Cats[WI].Qtyi4); gotoXY(50, whereY);
vriteln(Loan Cata WI]. Ant:I0:2);
Tot-Mr :=Tot-Mr +LoanCats[Wl].Qty;
Tot Amt :=Tot-Ant + Loan Cats(WlJ.Ast;
if WI 5 then

begin
gotoXY(45, whereY);
vrite((Loan-Cats[6b.Qty *Loan.Cats[7].Qty)%4);

104



File Name: AERPROCS.PAS (cont)

gotoXY(50, whereY);
vriteln((Loan-Cats[6].Amt *Loan Cats(71.Amt)t10.2)

end
end;

gotoXY(45,17); vrite(Tot-Mr:4);gotoXY(50,17); write(Tot-Amt:I0:2)
end; ( internal procedure Write-Loan-Cats

procedure WriteDutyStations;

var
WI, Tot Hr : integer;
Tot Ant real;

begin
Tot Hr 0; TotAnt := 0.0; gotoXY(45,21);
for WI : I to 3 do with DispStats.DutyStation(Wl do

begin
gotoXY(45, whereY);
write(Oty:4); gotoXY(50,vhereY); vriteln(Amt:l0:2);
TotHr :~TotNr + Qty;
Tot Aut Tot Ant + Ant

end;
gotoXY(45,24); vrite(Tot-Mr:4); gotoXY(50,24); write(Tot-Amt:I0:2)

end; (internal procedure WriteDutyStationi

procedure ApplyChange(ChgCat : integer; ChgIdent :String3);

var
Alt A2, Quantity : integer;
Amount : real;

begin
Screen Input(6,6,6); if ESC then Exit;
Quantity := Integer-Value(Field-Contents(6,6));
Screen Input(6,7,7); if ESC then Exit;
Amount := RealValue(Field-Contents(6,7));
if ChgCat = 3 then

begin
Al 2;
A2 :IntegerValue(copy(Chgjldent, 3,1));
if Chg-Ident~l] = E' then Al := I
else if Chg...dent(13] '0' then A2 :A2 + 4
else if ChgjIdent(l] ='R' then A2 :=9;
DispStats.Grade-StatsAI, A2L.Qty :=Quantity;
DispStats.Grade-Stats(AI, A2]. Ant :=Amount

end

105



File Name: AERPROCS.PAS (cant)

else if Chg_.Cat =4 then
begin

Al :=IntegerValue(copy(ChgIdent, 1,2));
if (ChgIdentC3] ' R') or (Al in M7.10]) then Al Al 1 ;
Disp_Stats. Loan Catsf Al]. Qty :Quantity;
DispStats. Loan-Cats( Al].Amt :=Amount

end
elsBe

begin
Al :=Integer Value(ChgIdent(I]);
DispStats. DutyStation(AlJ. Oty :=Quantity;

Disp_Stats.DutyStation(AI].Amt 2=Amount

end;
Stats Record IO( 'W', Wion, DispStats)

end; { internal procedure Apply..Change

procedure Total Stats;

var
T1, T2, End-M~on : integer;
Temp :General Stats;

begin
if CurMon = I then

begin
Stats Record IG( 'R' ,G,DispStats); EndMon t= 12

end
* else

begin
Stats Record IO( 'R',I, DispStats); EndMon :=Curflon

end;
for TI := 2 to EndMon do

begin
Stats Record IO( 'R', TI, Teap);
for T2 := 1 to 9 do with DispStats.Grade-Stats~l,T2] do

begin
Qty 2=Oty +Temp.Grade-Statscl,T2].Qty;
Ant Ant + Temp.Grade-Stats~l,T2J.Aut

end;
for T2 := 1 to 9 do with DiapStats.Grade-Stats(2,T23 do

begin
Gty Qty + Temp.Grade-Stata(2,T2].Qty;
Ant 2=Ant - Temp.Grade-StmtsC2,T2].Amt

end;
for T2 %= I to 11 do with DispStats.Loan-CatsIT23 do

begin
Qty :Qty + Temp.Loan-Cats(T2].Qty;
Ant :Ant t Temp. Loan Cata[T2.Amt

end;

106



File Name: AERPROCS.PAS (cont)

for T2 := I to 3 do with DispStats.DutySttion[T2J do
begin

Qty :Q ty + Temp.DutyStation(T2].Qty;
Ant :=Aut * Temp.DutyStationET2].Amt

end
end

end; ( internal Procedure Total Stats

procedure PrintStats;

var
PI1 integer;

begin
If Printer OK = 0 then

begin
PreparedScreen :=DisplayScreen;
DisplayWindov(6, 10);
Regs.AX := 0500;intr($05,Regs);

edfor P1 I= to 40 do writeln(lst)

end; (internal procedure Print Stats

begin
WSDate := CSDate; WHon := Curflon; Copt := 0;
PrepareScreen(6);
repeat

if Copt <> 7 then
begin

PrepareScreen(6); DisplayScreen := Prepared_Screen;
gotoXY(45,1);clrEol; vrite('NONTH OF ',copy(WSDate,4,9));
PreparedScreen :=DisplayScreen;
Stats RecordIO( 'R', W~on, DispStats);

* WriteGrade; WriteLoanCats; WriteDutyStations;
repeat

ScreenjInput(6,1,1); if ESC then Exit;
Copt := IntegerValue(Field -Contents(6, 1));
if Not(Copt in (1. .6]) then Buzzer

until Copt in 11-.63
end;

if Copt in (1,71 then
begin

Copt := 1;
ScreenInput(5,1,1); if ESC then Exit;

*Test-Date := ' * FieldContents(5,1);
* Extract-Date Data (TestDate, T~on, DI);

Code := Date Difference(CSDateTestDate);

107



File Name: AERPROCS.PAS (cant)

if (Not(Code in (0.-113)) or (DI > CurDate) then
begin

DisplayWindaw (6,8);
if KeyDepressed =27 then Exit
else Display-Screen :=PreparedScreen

end
el1se

begin
WSDate :=Test-Date; Wifon := Than

end
end

else if Capt = 2 then
begin

gatoXY(45, 1);
if Curflon > I then

vrite('01 JAN ',((Curdate div 512) + 80):2,' to ',CSDate)
else

vrite('01 JAN D ((Curdate div 512) * 79):2,' to '

'31 DEC ',((Curdate div 512) + 79):2);
Total-Stats ;
Write-Grade; Write_Loan_Cats; WriteDutyStations;
repeat

ScreenInput(6,9,9); if ESC then Exit;
Capt := IntegerValue(FieldCantents(6, 9));
if Mot(Copt in (1,23) then Buzzer;
if Copt =2 then Print-Stats

until Capt = 1;
Capt := 7

end
else if Capt = 3 then

begin
ScreenjInput(6, 3, 3);
ApplyChange(3, FieldContents(6, 3)) ;It ESC then Exit;
Wr ite-Grade

end
else if Capt = 4 then

begin
Screonjlnput(6, 2,2);
Apply.Change(4,FieldCantents(6,2)); if Eac then Exit;
Write Loan Cats

end
else if Capt = 5 then

begin
Screenjlnput(6,4, 4);
ApplyChange(5,ieldCntents(6,4)); if ESC then Exit;
Write.DutyStations

end
else if Capt =6 then PrintStats

until Capt a8
end; (Procedure DisplayGeneralStats

108



File Name: AERPROCS.PAS (cont)

Procedure Seek-Records(Mode-Control : integer);

var
Si, S2, Line, CurrentPtr, NrLoans, TotalTgta, Diff integer;
PDiff, ADiff : integer;
Stat -Acct : byte;
ADate, BDate : utring(9];
Ant : real;
Account :Entire-Account;

begin
if Loan -Totais(Mode -Control] 0 then exit;
Current Ptr :- 1; TotalTgta :0; Line :z 1;
if Mode -Control in 17..10] then Stat Acct %z 2
else Stat Acct %a Mode-Control;
repeat

Seek( IndexFile, Current Ptr); remd( IndexFiie, Index);
if Index.Nase< ' EMPTY' than

begin
GetAccount (SSN Str (Index. SSN), NrLoans, Account);
if Stato Codo(Stat Acct] <> 0 then

for 51 %- I to Nr Loans do
with AccountCRec PosCSl. Loan Data do

begin
if Mode-Control in 17.. 101 then

begin
Split-Dateand_Noney ( Dlance. Into,

BDat&, Ant);
Split-Date-andNoney (Allot~lnto,

Adate, Ant);
PDiff := Date Difference(CSDat*, BDate);
ADift :z Date-Differnce(CSDate, ADate);
if PDiff > ADiff then Diff :x ADiff
else Dift := PDitt;
if Dift > 4 then Ditf :* 4

end
else Ditt := 0;
it ((Stat Acct a Acct Status) and (Dift = 0)) or

((Acct Status a 2) and (Ditt in 11- 41)) then
begin

Tot*IlTgtm :z TotalTgts + 1;
it Line z I then

begin
Print Header (Node Control);
Line :a 6

end;
PrintReport (SI, Account);
Line := Line + 1;

109



File Name: AERPROCS.PAS (cant)

if Line =60 then

begin
for S2 := 1 to 7 do

writeln(lat);
Line

end
end

end (with AccountISI] do)
end; (if Index.Name <> 'EMPTY')

Current Ptr %=Current Ptr * I
until (TotalTgtazLoan TotauCMode Control]) or (Current-Ptr=5001);
if Line > I then

while Line < 67 do
begin

vriteln(lat);
Line := Line * I

end
end) I Procedure Seek-Records

File Name: OVERLAYS. OYR

Overlay procedure CloneFiles;

begin
close( IndexFile);
cione(LoanFile);
close(Stats-File);
close(CAccounts File)

end; ( procedure Close-Files

Overlay Procedure Load..DiaplayScreens-into Memory;

var
FormFile :file of Screen-Data;
Windows text;
LI, L2, L3 - integer;
Screen - dent : stringc2];
File-Nme string(l4];

begin
if ESC then Exit;
Assign(ForaFile,'FORMS. DTAI); reset(FormFile); LI 0;
while not EOF(FornFile) do

begin
seek(FormFilo,UL);
Li : Li # 1; read(FormFile,ScreenCLl])

end;

110



File Name: OVERLAYS.OVR (cant)

close(Form~ile);
for L2 :=I to LI do

begin
it ScreenEL2].Field-Ponita(1l0O) I then

beg in
Str(L2, Screen..Idwnt);
File-Name :a 'WINDOW* # Screen Idont * '.DTA';
assign(Windowu. Fil&_Name); reset(Windovs); L3 1~ ;
while not eof(Vindovs) do

begin
readln(Windows, Window ContentsCL2, L3]);
L3 :a L3 # I

end;
close( Windows)

end;
end

end; (Procedure LoadDisplayScreens intoNemory I

Overlay Procedure UpDat&_Loanas;

var
UI, U2, U3, NrAccounts-Reed, NrRecs :integer;
TempReal :real;
TempStatus : byte;
Diskette In Drive :boolean;

begin
Assign(IndexFile, IndexAer);
Prepared-Screen := DisplayScreen;
repeat

M$-) reset(Index File) M+1);
Diskette In Drive t= (IOResult 0);
if Not(Diskette In Drive) then

begin
ClrScr; gotoXY(17, 10);
vrite('I cannot seem to find the OB: Drive Diskette.');
gotoXY(10, 12);
vrite('Plemse verify that the 'B: Drives diskette is in '

'the B Drive.')
gotoXY( 15,15);
write( 'Press any key when the problem has been corrected. ');
repeat
until KeyPressed

end
until Diskette In Drive;
Display-Screen := PreparedScreen;
Assign(Loan..ile, Loans-AER); reset (Loan..yile);
Assign(Stats_File,GrdStataAER); reset(Stats Pile);
Assign (Accounts-File, AccountsAER); reset(AccountaFile);



File Name: OVERLAYS.OVR (cant)

read( IndexFile, Index Stats);
read(LoanFiie, LoanStats);
Nr -Recs :2Loan Stats. Prey Record;
Print-On :~True; Correcting := False;
PrepareScreen (3); DisplayScreen := PreparedScreen;
repeat

ScreenInput(3,2,2); if ESC then Exit;
CSDate := Field-Contents(3,2)

until length(CSDate) = 9;
Extract-Date-Data (CSDate, Curflon, CurDate);
Regs.AX := 2BOO; Regs.CX %= 1900 * IntegerValue(copy(CSDate,8,2));
Regs. DX :Curflon*1O0 integer-Value(copy(CSDate, 1,2));
intr($21,Regs);
I := PrinterOK;
ESC := False;
Textbackground( White) ;textcolor (Red.Blink);
gotoXY(3,2) ;write( 'Working 1');
Textbackground(blue); Textcolor(white);
FiliChar(LoanTotals, 22,0);
BootUp %= True;
UI := 0; Nr Accounts Read := 0;
repeat

Ul := U1 1;
seek(LoanFile, UI); read(LoanFile, Loan);
with Loan do

if Acet Status <C> SFF then
begin

Nr Accounts-Read ;= Nr Accounts-Read *1;

TempStatus := NewStatus( 'A', Loan);
if (Acct Status = 4) and (TempStatus $ FF) then

begin
if (Prey Record < 0) and (Next-Record 0) then

begin
seek(Index.File, abs(Prev-Record));
read(IndexFile, Index);
Delete Account (abs (Prey Record))

end
else Delete.Loan(U1, U3)

end
else if Acct Status <> TempStatus then

begin
Acct-Status := TempStatue;
seek (Loan.File,MU);
write (Loan-File, Loan)

end
end (if Acct Status <> $FF)

until (Ul = 5000) or (Nr-Accounts-Read 2NrRecs);

BootUp := False;
gotoXY(3,2); vrite('

end; CProcedure UpDmte-Loans

112



File Name: OVERLAYS.OVR (cont)

Overlay Procedure Viev_ChangeorDelete;

conat
Header : array[l..8] of String[20] = (' View an Account',

- Record Chapter 13',
'Record Uncollectible',

'Record Transfer-Out',

'Delete Paid Off Loan',
'Delete Transfer-Out',
'Delete Uncollectible',
'Correct Loan/Account');

Descr : array[6..7] of string(14] =

('Uncollectible.','Transfer-Out.');

var
Account : Entire Account;

Index-Hold : Identification-Record;
FileKey : string(25];

Fld, SI, S2, S3, S4, NDX, Action,
NrLoans, LoanNr, Percent, WHon : integer;
Strln : string(3];

UncDate : String9;
InReal : real;
Key_Hit : byte;

begin

if ESC then Exit;

KeyHit := 1;
repeat

PrepareScreen(2); Display-Screen : PreparedScreen;
if KeyHit <> 13 then

begin
repeat

ScreenInput(2,8,8); if ESC then Exit;
Fld := IntegerValue(FieldContents(2,8));
if Not (Fld in (1,2]) then Buzzer

until Fld in (1,2];

FillField(2,8," ' );
repeat

ScreenInput(2,9,9); if ESC then Exit;
Action := IntegerValue(FieldContents(2,9));

if Not (Action in [1..8]) then Buzzer
until Action in (1..83;
FillField(2,9,' ')

end;

gotoXY(60,2); vrite(Header(Action]);
ScreenInput(2,3-Fld,3-Fld); if ESC then Exit;
FileKey := FieldContento(2,3-Fld);
GetAccount(FileKey, NrLoana, Account);

113

M -A



File Name; OVERLAYS.OVR (cant)

if NrLoana <31 0 then
begin

DimplayAccount-Ident(2); DisplayLoana(2, 10,1, Account);
if Not(Action in (1,83) then

begin
repeat

LoanNr :=0;
Screen~lnput(2,6,6); if ESC then Exit;
Strln %- Field Contenta(2,6);
if Strln <> 'ALL' then

begin
LoanNr is Integer Value(Strln);
if Not(Loan~r in (l.. 15]) then

begin
Buzzer; LoanNr :a 0

end
else if AccountCLoan~rI.Rec-Loc 0 then

beg in
Buzzer; Loan~r := 0

end
end

until (Strln a 'ALL') or (Loan~r <> 0);
if NrLoana z .L then Strln is 'ALL';
if Strln a 'ALL' then

begin
SI is 1; LoanNr is 0

end
el me

beg in
SI is 0;
repeat

SI is SI # I
until Roc-PomCSI] a LoanNr

end;
FillFioid(2,6, ' )

end; (if Action <> I )
if Action *2 then (record ch-I3

begin
repeat

ScreenInput(2,5,5); if ESC then Exit;
Percent is IntegerValue(Field-Contnts(2, 5))

until Percent in C.. 1003;
Fill Field(2,5,' 0)
repeat

with AccountCRec PosESi]3. Loan Data do
begin

S4 :a NovwStatum('D',
Account(Rec-Pos(SI 3. LoanData);

Acct-Statum is 1;

114



File Mane: OVERLAYS.OVR (cant)

S4 :z Now Status('A'o
Account(Rec Pou(SI]].LoanData);

RepayHethod := Percent
and;

Disp.ayLoana (2, 10, 1, Account);
SI :- SI # I

until (Rec-Poo(Sl] z 0) or (Roc-Pon(SI-1l] Loan~r);
end ( If Action z 2 )

&Is* if Action - 3 then Irecord uncollectible)
repeat

S4 :z New Status( 'D',AccountCRec Poa(Sl]3.LoanData);
AccountCRec-Poa(SI]J. Loan Data. Acct-Status :a 3;
DimplayLoans(2, 10. 1,Account);,
S4 %a New Statual 'A', AccountCRec PoaCSI 3. LoanData);
SI :2 Si - I

until (Rec-Pos(SII 0) or (Rec-PonCSl-IJ z Loan~r)
vlsa if Action a 4 then Irecord transfer-out)

repeat
S4 %- New Statual 'D', Account(Rec PoaESI]3. LoanData);
Account CRec PouCSI 3. LoanData. Aect Status :z 6;
DisplayLoans(2, 10, 1, Account);
S4 :a Nov Stmtus( 'A', AccountERec PosCSI33. LoanData);
SI :z SI ; 1

until (Rec-PosCSI] a 0) or (Rec-Pos(Sl-I3 Loan~r)
else if Action in (5.. 73 than

begin
if Action a 5 then MDX :- 4
else if Action x 6 then MDX i- 3
eloe MDX :z 6;
gotoXYl 1,21);
if (Strlna'ALL') and (NrLoans <I, Stats-Code(NDX]) then

Vrite('Sorry, I can only delete accounts when '

'ALL loans are declared ',Descr(Actioni)
else

if (Account(Rec-PoCSI 3]. Loan Data. Acct-Status<>NDX) then
writel 'Sorry, Loan ',RecPos(SI] :2,

has not yet beon declared ',Descr(Action),
I cannot delete it.')

else
begin

if Action in (6,73 then
begin

gotoXY( 1,22);
if Strln a 'ALL' then

write('Date Account Approved '

DescrCActionl)
else

write('Dat* Loan ',RecPosCSl]:2,
'Approved ',DoscrCAction]);

115



File Name: OVERLAYS.OVR (cant)

ScreenInput(4,52,52); if ESC then Exit;
UncDate %z Field Conttnts(4, 52);
Extract_-DateData(UncDate, Wion, Code);
S2 := SI;
repeat

with AccountCRec PosES2] ]. Loan Data do
Split.,Date and-Honey (BalanceInfo,

Date, InReal);
Ledger(6, 25-Action, Wuon, InReai);
S2 := S2 - 1

until (Rec-PosCS21 = 0) or
(Rec-PosES2-1] Loan~r);

end;
if Strln -'ALL' then

Delete Account(FilePos( Index-File) - 1)
else DeleteLoan( AccountCLoan~r]. Rec Loc, Code);
Get Account(File Key, NrLoans, Account);
PrepareScroen (2);
Display-Screen := PreparedScreen;
gotoXY(60, 2); vrite(Header(Action]);
if MrLoans <> 0 then

begin
DisplayAccount Ident (2);
DisplayLoans(2, 10, 1, Account)

end;
gotoXY(5, 21);
if Strln = 'ALL' then

vrite( 'Account ',Fil&_Key,
'has been removed from my memory.')

else
vrite('Loan Kr ',LoanKr%2,

'has been removed from my memory. ')
end

end
else if Action = 8 then

begin
KBSB :z KBSB and *DF;
gotoXY(6,22);, vrite(chr(24)); gotoXY(1,23);
vrito('Uno ',chr(27),' ',chr(26),

,keys to select item to correct.');
gotoXY(6, 24); vrite(chr(25)); Correcting := True;

* ProparedScreen := Display..Screen;
repeat

S2 %= KeyDepressed;
until (hi(Rogo.AX) in (72,75,77,80]) or (ESC);
if ESC then Exit;
SI zz 1;
repeat

Scan-Code : 0;

116



File Name: OVERLAYS.OVR (cant)

ScreenInput(2,SI,SI); if ESC then Exit;
if ((Scan-Code = 72) and (whereY =2)) or

((Scan-Code z 75) and (whereX <8)) or
((Scan-Code =77) and (whereX in 138,51])) or
((Scan-Code z80) and (SI > NrLoans*7 *3)) then

begin
Buzzer;
DisplayScreen := PreparedScreen

end
else if ScanCode in (72,75,77,801 then

begin
DisplayScreen := PreparedScreen;
if (ScanCode = 72) and (SI > 15) then

SI : SI - 7
else if Scan-Code =72 then SI I=
else if (Scan-Code =80) and (SI > 10) then

SI : S1 7
else if Scan-Code = 80 then SI 11
else if Scan-Code = 75 then SI : SI - I
else S1I: Si + I

end;
until Not(Scan Code in (72,75,77,80]);
if S1 5 then

begin
Index-Hold := Index;
Index Hoid.Name :=Field Contentz(2, 1);
Index Hold.SSN

Real-Value(Fieid-Contents(2, 2));
StrIn %= Field Contents(2,3);
UncDate :=Field Contenta(2,4);
with Index-Hold do

Grade and Status
Encode Grade and Status(Strln, UncDate(I]);

Delete -Account(FilePoo(Index File) - 1);
Index %= Index-Hold;
for S2 := I to NrLoans do

begin
Loan 2= Account(Rec-PosES211. LoanData;
WritelIndex-Record;
S3 :=New Status('A',Loan)

end
end

else with Account(RecPos((SI-2) div 7]].Loan Data do
begin

52 :(51-2) mod 7;
S4 :Acct Status;
S3 New Stmtus('D',

Account(Rec-Post(SI-2) div 73].Loan Data);

117



--MN T 1 wv 1WWW .'. JV

File Name: OVERLAYS.OVR (cont)

if S2 =2 then
SplitDate and ?foney(LoanInfo, UncDate, InReal)

else if S2 = 3 then
Split,.Dateandjloney (BalanceInfo,UIncDate,

InReal)
else if S2 = 4 then

begin
Strln zz Field Contents(2, Si);
if Strln~i] = 'A' then

begin
RepayMethod := 0;
S4 := 0

end
else if StrInfl] ='P' then

begin
RepayMethod 9= 80;
S4 t= 0

end
end

else if S2 z 5 then
Split-Date-and-Money (AllotInfo, UncDate,

InReal)
else if S2 = 6 then

begin
Split_.Date..and..Noney (Balance-Info, Unc~ate,

InReal);
UncDate := Field Contenta(2, Si);
Balance-Info :

MergeDate.and..Noney (UncDate, InReal)
end;

if S2 in 12,3,51 then
begin

InReal :=Real Value(Field-Contenta(2,Si));
if S2 22 then

Loan-Info %=
MergeDateandMoney (UncDate, Inreal)

else if S2 z 3 then
begin

if InRoal x 0.0 then S4 := 4
*ls& if (Inroai ), 0.0) and

(S4 = 4) then
S4 :x 0;

Balance Info

end ergeDate~ndNfoney (UncDate, Inreal)

Allot-Info %a
NergeDmte~andoney(UncDate, Inreal)

end;

lie



File Name: OVERLAYS.OVR (cant)

Acct Status :~S4;
Acct Status New Status('A',

Account(Rec-PosU(Sl-2) div 7]]. LoanData);
seek (LoanFile,

Account(Rec-Pos( (SI-2) div 71].RecLoc);
vrite( LoanFile,

Account(Rec..Pou((Sl-2) div 7]].LoanData);
flush(Loan File)

end;
Get Account (SSNStr (Index. SSN), NrLoans, Account);
DisplayAccount_1dent (2);
Display..Loans(2, 10,1, Account);
gotoXY(1,22); CirEol; gotoXY(i.23);
CirEol; gotoXY(I,24);
ClrEol; Correcting tzFalse;
KBSB := KBSB or 920

end; (if Action =8 1
SI := 0;
if Action in 12.-4] then

repeat
SI %= SI 1;
seek (Loan-File, Account (Rec-Po (SIl]. Rec-Loc);
write( Loan -File, Account(Rec PosCSII]. Loan-Data)

until Rec Pos(SI'I] 0
end ( if NrLoana <> 0

else
begin

gotoXY(I4, 21);
vrite('Sorry, I do not appear to havie the '

,requested account.')
end;

gotoXY(5, 23);
vrite('Pres ',chr(17),'--J to continue the same operation '

Header(Actionj,').');
gotoKY(S, 25);
vrite('Press any other key to select another operation '

'(ESC to Exit).');
KeyHit %=Key~eressed;

until KeyHit =27
end; CProcedure Viev-Change-or-Delete

119



APPENDIX C

APPLICATION PROGRAM DISPLAY
SCREEN DESIGN SOURCE CODE

The following, undocumented, application program source
code is written in Borland International, Inc., Turbo
PascalM, version 3.0.

The reader is cautioned that computer programs developed
in this research may not have been exercised for all cases
of interest. While every effort has been made, within the
time available, to ensure that the programs are free of
computational and logic errors, they cannot be considered
validated. Any application of these programs without
additional verification is at the risk of the user.

120

,,r ~~~~~~ A,,, L. AM dti.IL A %l, .la~ ( £



File Name: FORKDRAW.PAS

type
scrnline arrayli. .160] of byte;
Scrnarray =arrayfl. .25] of scrnline;
Screen-Data =record

Screen-Image :Scrnarray;
Field-Posits : ScmnLine;
Window-Info % ScmnLine

end; (record ScreenData)
StringSa = string(80];
CPURegisters =record

AX, BX,CX,DX,BP,SID1,DS,ES,Flags :integer
end;

var
Regs : CPURegisters;
Screen : Screen-Data;
Windov Data : arrayfl. .25,1. .25] of String8O;
TempString : String8O;
TempWindow Info : scrnline;
scrn : scrnarray absolute SB800:S0000; ($BOOO for monochrome)
Formfile :file of Screen-Data;
Windows :Text;
1, 11, 12, J, K, L : integer;
Diff, DisplayMemory, LinesofWindos, scrnr, Nrot Screens

integer; EntryPt,Width,Xpos,Ypos, Last byte;
Opt : char;
Delete, Change, New Screen, Screen-Mode :boolean;
scrnr-str : string(2];

Procedure Screen Drow(Node : boolean);

var
Fore, Back : byte;
Attribute-Only : boolean;

begin
Fore := $OF; Back :=$00; PortW(903D83 ::$09;
Attribute-Only := False;
repeat

I := whereX; J I WhereY; Regs.AX %=$0000; intr(916,regs);
with regs do

if lo(AX) in 116,17,32. .255] then
beg in

if not Attribute -Only then scrn(J,2*I-l] : lo(AX);
scrn(J,2*I] -= Back or Fore;
I :=I #1;
Last tzlo(AX)

end

121



File Name: FORNDRAW.PAS (cont)

else if lo(AX) 1 then
begin

if AttributeOnly then AttributeOnly False
else Attribute-Only :=True

end
else if lo(AX) =2 then

begin
for 3 1= to 25 do

for I 1= to 80 do
scrn(3,I*2] : (Scrn(J,I*21 and $OF) or Back;

J3. 1; 1I 1;
gotoxY(I, 3)

end
else if (lo(AX) =19) and (Change) and (Mode) then

begin
Screen.Field-Posits(11] : 2*whereX - 1;
Screen. Field Posits 11J1 := whereY;
Il Il + 2

end
else if (lo(AX) = 19) and (Change) and (not (Mode)) then

begin
Screen.Windovwlnfo(ll :=hereX;
Screen. Window InfoCIl+1J := hereY

end
else if (lo(AX) = 5) and (Change) and (Mode) then

begin
with Screen do

FieldPosita(ll: 2*whereX - FieldPosits(11-2];
11:11I + 1

end
else if (lo(AX) = 5) and (Change) and (not (Mode)) then

begin
with Screen do

Window Info(Il*2] := - Window Info(I1~l] + 1;
width w= hereX

end
else if (lo(AX) = 4) and (Change) and (not (mode)) then

with Screen do
begin

Window Infoll) %= 0;
Windov InfoCIl~liJ: 0;
Windov Info[I1*23 : 0;
Window InfotIl1 :z 0;
Delete %= True;
Exit

end

122



File Name% FORIIDRAV.PAS (cont)

else if Q(oAX) x3) and (Change) and (Hod&) then
begin

with Screen do
Field Positsf Il)

980 or (2#vhor&X - Field Posita(11 2]);

end
else if (hi(AX) =72) and (3 <> 1) then 3 J - I
else if (hi(AX) a 80) and (3 <> 25) then 3 J= 3 1
else if (WiAX) =75) and (I <> 1) then I :2I - I
elme if (WiAX) =77) and (I <> 80) then I :~I I
else if WiAX) 71 then

begin
I 1

end
else if WiAX) =79 then 1 80
else if WiAX) =73 then 3 I2
else if WiAX) =81 then 3J: 25
Ilue if (WiAX) =28) then I :a 1

else if WiAX) =14 then
begin

scrn(i29I-1] :z920;

end
else if WiAX) =94 then

begin
if Not AttributeOnly then scrnCJ,2*I-1] : Last;
scrn(J,2*Il :z Back or Fare;

end
else if WiAX) 2 59 then flack %a 900
els& if WiAX) a 60 then Back in 910
else if hi(AX) a 61 then Back :a 920
else if WiAX) a 62 then Back := 930
else if WiAX) a 63 then lack := 940
else if WiAX) u 64 then Back :a 950
else if WiAX) - 65 then Back :z 060
else if WiAX) 2 66 then flack :a 970
else if WiAX) z 104 then Fore := 900
else if WiAX) z 105 then Fore :z 901
else if WiAX) a 106 then Fore :a 002

elise if WiAX) a 107 then Fore :- 03
els& if WiAX) 2 108 then Fore :z 904
els* if hiAX) - 109 then Fore := 905
else if WiAX) a 110 then Fore tz 906
else if WiAX) - 111 then Fore in 907
else if WiAX) z 112 then Fore %s Fore and 907

123



File Name: FORKDRAW.PAS (cant)

else if hi(AX) = 113 then Fore Fore or $08
vine if WiAX) z 67 then Back :=Back and $70
else if WiAX) = 68 then Back 2=Back or $80
else if WiAX) = 96 then

begin
3 :. 3 . 1;
gotoxy(I-1, 3);
if Not AttributeGniy then scrnCJ,2*I-1] 5 Last;
scrn(J,2*I] -= Back or Fore

end;
gotoXY(I, 3)

until lo(Regs.AX) = 27
end; ( Internal Procedure ScreenDraw

procedure Displayyindov(IXcoord, Ycoord-.byte;DisplayString :StringSO);

var
X,Y, Offset : integer;

begin
X :z Xcoord; Y %z Ycoord;
Offset %a (Y - 1)9160 # 2*(X - 1);

inlinel
*50/*51/*57/*56/*06/*9C/ (PUSH AX,CX, DI,SIDES, Flags)

$B8/900/*B8/ (NOV AX, B800
*50/ (PUSH AX)
*07/ (POP ES)
*8B/OBE/Offset/ (NOV DI, (BP*0ffset])
*SD/*B6/DisplayString/ (LEA SI, CBP.DisplayString])
931 /C9/ (XOR CX,CX)
*36/ (SS-.)
*8A/90C/ (NOV CL, (SI])
946/ (INC SI)
SFC/ (CLD)
*36/*A4/ (LI: SSiMOVSB)
*K2/*FC/ (LOOP LI)
*9D/*07/*5E/*5F/*59/*58) (POP Flags, ES, SI,DI, CX, AX)

end; IInternal Procedure Display_.Windov

begin M ain Program )
assign(FormFile, DFORNS. DTA'); New..Screen :=False;
(01-) reset(ForuFile) ($I+);
if 10result <> 0 then

begin
rovrite(FormFile); FillChar(Screen. Field.Posits, 160,0);
FillChar(Scroen. Window Info, 160,0) ;scrnr t-1

end

124



File Name: FORMDRAW.PAS (cant)

else
begin

cir cr;
Nr of Screens := FileSize(FormFile);
vritelnU'Number of Screens in F0RNS.DTA: ',Nr_of_Screens);
write('Screen, Window or Quit (S, W or 9) ');readln(opt);
if opt in ('q','Q'] then

begin
close(Fornfile) ;e~it

end;
if opt in C'S','s'] then Screen-Mode := True
else Screen-Mode := False;
write('Screen # to bring up ');readln(scrnr);
if (scrnr > Nr-ofScreens) and (Screen-Made) then

begin
writeln('Nev Screen. Screen number is

Nr of Screens + 1);
scrnr zz Nr of Screens * l;New_Screen I:True

end
else

if (scrnr > Nr of Screens) and (not (Screen-Mode)) then
exit;

if Not Nev-Screen then
begin

ierite( 'Change control settings? ');read( opt);
if (opt a 'y') or (opt = 'Y') then Change :=True
else Change :z False;
clrscr;
seek(FornFile, scrnr-1);
read(FormFile, Screen);
if (Change) and (Screenjiode) then

FillChar(Screen. Field Posits, 160,0)
end

else FillChar(Screen, 4000,0);
end;

Scrn := Screen. Screen_.Iuage;
if Screen-Mode then

begin
11 - 1; gotoXY( 1,1); Screen-Draw (Screeniode);
Scre~n.ScreenIuage %z Scrn

end
else

begin
for I:= 1 to 25 do

for J %a 1 to 20 do
Window -Deta[I,3]:z 'Empty';

Str (scrnr, scrnrastr);

125



File Name: FORHDRAW.PAS (cant)

TempString :='Window' * scrnr-str P- '.DTA';

assign( indows, TempString);
($I-) reset(Windows) {$I*1;
if I~result <> 0 then

beg in
rewrite( Windows) ;FillChar(Screen. Window jnfo, 160,0)

end
else while not eof(Windowa) do

begin
if Screen.Windowl- nfo(3*4-1] c> 0 then

for I%= 1 to Screen.Window Info[J*4-1] do
readin(Windovs, Window DataEJ, I]);

J := J * I
end;

repeat
Delete := False;
scrn :z Screen. ScreenIuage;
gotoXY(1,25); write('Window Number ? (0 to exit) ;

read(CII) ;
if 11 <> 0 then

begin
12 :z Il; Il :x 11*4 - 3; gotoXY(20,12);
TempWindow Info :z Screen. Window Info;
if Screen.WindowlInfo(ll <> 0 then

for I := I to Screen, Window InfoCl.l2] do
with Screen do

Displmy.Window(WindowlInfoC 1,
Windo...InfoCII.1 3*I-1,
Window..Data(12, I];

Screen-Draw (Screen Node);
if Not(Deletel then

beg in
Window Deta112,11 i= "'; K :z 1;
I -. Screen.Windowl1nfo(I2*4-2];
repeat

Window..DataCI2,KJ :
J :z (Screen.VindowlnfoC24-33 shl 1) 1 ;
L :z J;
repeat

Window DataC 12, K] := Window DetaC 12, K] +
chr(scrn(I,J])+
char(scrn[I, 341]);

until (scrn(I,J-2] in (186,187,188]) and
(3-2 > U

I :- I # 1;
K :z K *1

until scrnEI-1,J-2] 188;

126



File Name% FORMORAW.PAS (cant)

Screen.Windovwlnfo(4*I2-lJ K -I
end

end-,

for I im I to 40 do with screen do
if Window Into[4*I-i] <> 0 then

beg in
Window InfoC4#Il := Entry..Pt;
EntryPt := Windovjlnto(4*1-13 Windowjrnto(4*I]

end
until 11 - 0

end;
clrscr;
write('Save to File ? (Y/N) )

read(Opt);
if (Not (ScreenNode)) and (upcase(Opt) a 'Y') then

begin
rewrite(Vindowa);
for I %= I to 25 do

if Screen.Window-lnioC4&I-13 c> 0 then
for J :z 1 to Screen.Vindow Info[4*I-13 do

writeln(Windowm, Window DataCI, JJ);
close(Windowa);
Screen.Field-Positn(160] :a I

end-,
if upcaae(Opt) = 'Y' than

begin
if New-Screen then

Seek(ForaFile, FileSize(FormFile))
else

seek(ForaFile, mcrnr-i);
write( form! ile, Screen)

end;
close(FormFile);
clrscr

end. ( Main Progra

127



LIST OF REFERENCES

1. Coombs, M. J. and Alty, J. L. (Edo), Comoutino Skills
and the User Interface, Academic Press, Inc., 1981.

2. Sime, M. E. and Coombs, M. J. (Edo), Designing for
Human-Computer Communication, Academic Press, Inc.,
1983.

3. James, E. B., *The User Interface- How We May Compute',
In Coombs, M. J. and Alty, J. L. (Edo), Computinq
Skills and the User Interface, Academic Press, Inc.,

1981.

4. Sutherland, I. E. and Mead, C. A., 'Microelectronics
and Computer Science', In Scientific American (eds)
Microelectronics W. H. Freeman, 1977.

5. Gaines, B. R. and Shaw, M. L. G., "Dialog Engineering',
In Sime, M. E. and Coombs, M. J. (Ed.), Designing for
Human-Computer Communication, Academic Press, Inc.,
1983.

6. Shneiderman, B., Softvare Psycholoov Winthrop

Publishers, Inc., 1980.

7. Eason, K. D. and Damodaran, L., 'The Needs of the
Commercial User', In Coombs, M. J. and Alty, J. L.
(Eds), Computing Skills and the User Interface,
Academic Press, Inc., 1981.

8. Peterson, J. L. and Silberschatz, A., Operatina System
Concepts 2d ed., Addison-Wesley Publishing Company,

Inc., 1985.

9. Reid, P., 'Work Station Design, Activities and Display
Techniques', In Monk, A. (ed), Fundamentals of Human-
Computer Interaction Academic Press, Inc., 1984.

10. Bolt, R. A., The Human Interface Where People and
Computers Meet Lifetime Learning Publications, 1984.

11. Stoner, J. A. F., Manaoement 2d ed., Prentice-Hall,
Inc., 1982.

12. Sayles, L. R. and Strauss, G., Human Behavior in

Organizatlons, Prentice-Hall, Inc., 1966.

128



13. Card, S. K., Moran, T. P. and Neve.l, A., The
Puycholoav of Human-Computer Interaction Lawrence

Erlbaum Associates, Inc., 1983.

129



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School

Monterey, California 93943-5002

3. Dr. Tung X. Bui, Code 54Bd
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. T. R. Sivasankaran, Code 54SJ
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Computer Technology Programs, Code 37
Naval Postgraduate School
Monterey, California 93943-5000

6. LCDR D. C. Moore 4
3206 Westbourne Dr.
Antioch, California 94123

130




