

Sec. 10

GILA RIVER BASIN PHOENIX, ARIZONA AND VICINITY (INCLUDING NEW RIVER)

NEW RIVER DAM EMBANKMENT CRITERIA AND PERFORMANCE REPORT (FEBRUARY 1987)

ERRATA

1. Page 31, paragraph 10.05 replace the last two sentences with "The reanalysis indicates that the as-constructed embankment requires a 1.6-foot thick gravel drain to control seepage. A 2-foot thick gravel drain was constructed; there-fore the as-constructed gravel drain is capable of handling the as-constructed seepage quantities."

2. Page 36, paragraph 14.04 replace the first sentence with "The number of passes required to compact the core material with a tamping roller and the transition and pervious shell materials with a vibratory roller to each material design density was reduced from 8 to 4 passes based on the results of the verification and demonstration fills."

3. Page 36, paragraph 14.04, line 5 change "90" to "95" and "1557" to "698".

4. Page 36 add the following paragraph:

14.06 The requirements for the downstream slope protection are independent of the requirements for the upstream slope protection because they are being placed for different purposes. The downstream slope protection is placed to prevent erosion of that slope due to the runoff from rainfall while the upstream slope protection is placed to prevent erosion of the upstream slope due to waves. Incorporating erosion and landscape requirements into one layer of stone that satisfies both requirements is recommended; therefore, reducing the quantity of stone and the cost of the project.

REPORT DOCUMENTATIO	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVT ACCESSION NO.	
. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
NEW RIVER DAM EMBANKMENT CRITERI	A AND	
PERFORMANCE REPORT		Final Report
GILA RIVER BASIN: PHOENIX ARIZO	NA AND	6. PERFORMING ORG. REPORT NUMBER
VICINITY (Including NEW RIVER)	<u> </u>	8. CONTRACT OR GRANT NUMBER(.)
Geology Section		Contract No.
Geotechnical Branch		DACW 09-83-C-0050
PERFORMING ORGANIZATION NAME AND ADDRE U.S. Army Corps of Engineers P.O. Box 2711 Los Angeles, CA 90053-2325	:55	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
······································		February 1987
		13. NUMBER OF PAGES
		160
4. MONITORING AGENCY NAME & ADDRESS(If diffe		15. SECURITY CLASS. (of this report)
Office, Chief of Engineers, U.S. Washington, D.C. 20314-1000	Army	Unclassified
washington, D.C. 20314-1000		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
5. DISTRIBUTION STATEMENT (of this Report) Approved for public release	ed in Black 20, 11 different fro	n Report)
Approved for public release	from performing or	ganization
Approved for public release DISTRIBUTION STATEMENT (of the obstract enter Available in limited quantities is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olds if necessary Foundation	from performing or and identify by block number) Excavation	ganization Quality Assurance
Approved for public release DISTRIBUTION STATEMENT (of the obstract enter Available in limited quantities f SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elds if necessary Foundation I Construction Procedures I Foundation Treatment	from performing or and identify by block number)	ganization Quality Assurance s Instrumentation

2

1-

+

11

- 1

,

1

--1

.

#20

*

-

ł

for design and construction of similar projects. Includes 45 plates.

· ~

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover,

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E,"AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

<u>Block 7.</u> Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634. "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/aponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14, Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15s the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

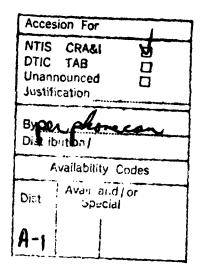
Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

<u>Block 17.</u> Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive \$200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference of . . . To be published in . . .

<u>Block 19</u>, Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

<u>Block 20:</u> Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly- releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.


+US GOVERNMENT PRINTING OFFICE 1982-564-036/0132

GILA RIVER BASIN PHOENIX, ARIZONA AND VICINITY (INCLUDING NEW RIVER)

NEW RIVER DAM Embankment criteria and performance report

Approved for Public Release. Distribution Unlimited. Per Ms. Connie Castillo, Army Corps of Engineers, Los Angeles District, Library

> U.S.ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT FEBRUARY 1987

. . . .

.

Z

NEW RIVER DAM EMBANKMENT CRITERIA AND PERFORMANCE REPORT

į

(

A B

k

Page

CONTENTS

	PERTINENT DATA	viii
I.	PURPOSE AND SCOPE	1
II.	REFERENCES	2
111.	GENERAL	3
	Authority	3
	Project Purpose	3
	Project Location	3
	Project Description	3
	Project History and Authorization	4
	Construction and Design Staff	5
	construction and besign startessessessessessessessessessesses	5
IV.	TOPOGRAPHY AND GEOLOGY	6
	Regional Topography	ő
	Regional Geology	6
	Geologic History	ő
	Site Topography	7
	Site Geology	7
	Granitic Rock	8
	Volcanic Rocks	8
	Alluvium	8
	Faulting and Seismicity	ğ
	Ground Water and Subsidence	10
	Subsidence	10
v.	FOUNDATIONS	12
	Investigations	12
	Dam Foundation	12
	West Abutment	12
	East Abutment	12
	Outlet Works	12
	Dike No. 1 Foundation	13
	Dike No. 2 Foundation	13
	Foundation Treatment	13
	Dam Foundation	13
	Streambed Materials	13
	West Abutment	14
	Bast Abutment	15
	Dike No. 1	15
	South Abutment	16
	Dike No. 2	16

iii

CONTENTS (Continued)

i

VI.	EMBANKMENTS	17
	Features	17
	Main Embankment	17
	Dike No. 1	17
	Dike No. 2	17
	Materials	17
		17
VII.	EMBANKMENT QUALITY CONTROL, QUALITY ASSURANCE, AND TESTING	19
	General	19
	Contractor Quality Control	19
	Corps of Engineers Inspection and Testing	20
	General	20
	Field Density Tests	20
	Moisture Content Tests	20
	Gradation Tests	20
		20
	Moisture Density Tests	20
	Relative Density Tests	
	Record Sampling and Testing	21
VIII.	CONSTRUCTION PROCEDURES	22
	Core Materials	22
	Transition Materials	22
	Pervious Shell Materials	23
	Gravel Drain	23
	Type I Stone	23
	Type III Stone	23
	Spillway	23
		24
	Outlet	24
	Esthetic Treatment	24
		25
IX.	MATERIAL PROPERTIES	26
	General	26
	Core Material	26
	Field Control Results	26
	Moisture Compaction Trends	26
	Gradation	26
	Record Test Results	26
	Permeability	26
	Shear Strength	27
	Consolidation	27
	Transition Materials	27
	Field Control Results	27
	Moisture-Compaction Trends	27
	Gradation	27
	Record Test Results	28
	Permeability	28
	Shear Strength	28
	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a, U

____**__** 

•

# CONTENTS (Continued)

Page

	Pervious Shell Materials. Field Control Results. Moisture-Compaction Trend. Gradation. Record Test Results. Permeability. Shear Strength. Gravel Drain Material. Field Control Results. Density. Gradation. Record Test Results. Permeability. Shear Strength. Rock Quality Tests. Infilling Material. Classification.	28 28 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30
x.	EMBANKMENT ANALYSIS Slope Stability Settlement	31 31 31 31
	Seepag	21
XI.	DIVERSION AND CONTROL OF WATER	33
XII.	INSTRUMENTATION	34
XIII.	CONSTRUCTION NOTES	35 35
XIV.	RECOMMENDATIONS AND CONSIDERATIONS	36
xv.	SUMMARY	37

# TABLES

V

1.	Foundation Exploration Density Test Results
2.	Foundation Exploration Permeability Test Results
3.	Core Trench Density Test Results
4.	Foundation Density Test Results
5.	Gravel Drain Material

- Embankment and Foundation Summary of GDM and As-Constructed 6. Design Values .
- Contract Modifications
   Field Changes

9. Estimated and Actual Quantities and Unit Prices

#### FIGURES

- 1. Stratum B Gradation GDM
- 2. Stratum C Gradation GDM
- 3. Gradation of Core Trench Materials
- 4. Gradation of Embankment Foundation Materials
- 5. Embankment Through Seepage, Design
- 6. Embankment Through Seepage, As-Constructed
- 7. Dike No. 1 Through Seepage, Design

## PLATES

- 1. General Plan, Vicinity map and Project Location Map
- 2. General Site Geology and Diamond Drill Hole Plan of Exploration
- 3. Dam Embankment Foundation Soil Exploration Plan
- 4. Dam Embankment Geologic Logs of Diamond Drill Holes
- 5. Dam Embankment Soil Logs TH 80-35, TH 80-36, and TH 80-38
- 6. Dam Embankment Soil Logs TT 80-30, TT 80-195, TT 80-197 through TT 80-202
- 7. Dam Embankment Soil Logs TH 79-32 through TH 79-34, TH 71-17, TT 79-32, TT 71-17
- 8. Dam Embankment, Right and Left Abutment Geologic Logs of Diamond Drill Holes
- 9. Outlet Works Plan and Profile of Test Trench Exploration
- 10. Outlet Works Logs of Test Trenches 82-1 through 82-6
- 11. Outlet Works Logs of Test Trenches 9 through 14
- 12. Outlet Works Logs of Test Trenches 81 through 87A
- 13. Outlet Works Logs of Test Trenches 42, 44, 45, 88 through 92
- 14. Outlet Works Geologic Logs of Diamond Drill Holes
- 15. Dike No. 1 Geology and Plan of Exploration
- 16. Dike No. 1 Soils Logs
- 17. Dike No. 2 Profile and Geologic Logs of Diamond Drill Hole
- 18. Dam Embankment Plan and Profile and Core Trench and Foundation Excavation
- 19. Borrow Areas
- 20. Foundation Grouting Profile Station 33+27 to Station 29+64
- 21. Foundation Grouting Profile Station 21+6 to Station 12+55
- 22. Foundation Grouting Profile Station 12+55 to Station 10+00
- 23. Dike No. 1 Embankment Plan and Profile and Exploration Trench and Foundation Excavation Station 84+75 to Station 52+00
- 24. Dike No. 1 Embankment Plan and Profile and Exploration Trench and Foundation Excavation Station 52+00 to Station 22+00
- 25. Dike No. 1 Embankment Plan and Profile and Exploration Trench and Foundation Excavation Station 22+00 to Station 10+00
- 26. Dike No. 2 Embankment Plan and Profile and Typical Sections and Foundation Excavation
- 27. Dam Embankment Cross Sections and Details
- 28. Dam Embankment Cross Sections and Details
- 29. Dam Embankment Cross Sections
- 30. Dam Embankment Cross Sections
- 31. Dam Embankment Typical Sections

## PLATES (Continued)

- 32. Dike No. 1 Cross Sections
- 33. Core Material Field Control Data
- 34. Monthly Core Material Quality Assurance Testing
- 35. Plan and Profile of Field Control Test Locations (Pervious Shell, Transition, Core)
- 36. Core Material Record Test Results
- 37. Transition Material Field Control Data
- 38. Monthly Transition Material Quality Assurance Testing
- 39. Transition Material Record Test Results
- 40. Pervious Shell Material Field Control Data
- 41. Monthly Pervious Shell Material Quality Assurance Testing
- 42. Pervious Shell Record Test Results
- 43. Gravel Drain Record Test Results44. Diversion and Control of Water
- 45. Instrumentation

## LIST OF PHOTOS

#### PHOTOS ATTACHMENTS

- 1. Results of laboratory tests on infilling material (Ertec)
- 2. Results of laboratory tests on infilling material (SPD lab.)

### APPENDIXES

- 1. Large Scale In-Situ Density Tests
- II. Adjustment of Laboratory Density For Oversize

# NEW RIVER DAM PERTINENT DATA

Contact number: DACW09-83-C-0050 Awarded on: 31 August 1983 Completed on: 8 February 1985 Contractor: M.M. Sundt Construction Company. Inc

Feature Description	Unit	Data
Drainage Area Type of dam	sq. mi 	164 compacted earthfill
Main embankment:		
Crest elevation	ft, NGVD	1486.7
Maximum height above streambed	ft	104
Crest length	ft	2320
Freeboard	ft	5.6
Dike No. 1:		
Crest elevation	ft, NGVD	1486.3
Crest length	ft	7464
Freeboard	ft	5.2
Maximum height	ft	36
Dike No. 2:		
Crest elevation	ft, NGVD	1484.0
Crest length	ft	256
Freeboard	ft	2.9
Maximum height	ft	9
Spillway (Detached):		
Crest elevation	ft, NGVD	1456.2
Crest width	ft	75
Max. water surface elevation	ft, NGVD	1481.1
Max. spillway outflow	CFS	29,850
Outlet conduit (Ungated):		
Interior dimension	ft	9.5 H x 6.25 W
Length	ft	433
Inlet elevation	ft, NGVD	1389.25
Outlet elevation	ft, NGVD	1386.31
Max. outlet outflow	CFS	3150
Energy dissipator:		
Length	ft	60.98
Width	ft	31.0
Floor elevation	ft, NGVD	1372.0
Wall height	ft	22.0

viii

# NEW RIVER DAM PERTINENT DATA (Continued)

Feature Description	Unit	Data
Outlet channel:		
Base width	ft	16.0
Sideslope		2.5 H to 1V
Levee height	ft	1.0 - 8.0
Length	ft	730.32
Reservoir area:		
Spillway crest	acres	1780
Max. water surface	acres	<b>290</b> 0
Capacity (gross):		
Spillway crest	acre ft	43,520
Max. water surface	acre ft	102,520
Storage allocation below spillway crest:		
Flood Control (net)	acre-ft	38,600
Sedimentation	acre ft	4920
Standard project flood:		
Total volume	acre ft	49,300
Peak inflow	CFS	45,000
Drawdown time (to empty)	days	10.1
Probable maximum flood:		
Total volume	acre ft	105,000
Peak inflow	CFS	144,000
Peak outflow	CFS	33,000
Drawdown time (to spillway crest)	days	3.3

íx

.

4

.

# NEW RIVER DAM EMBANKMENT CRITERIA AND PERFORMANCE REPORT

1

۹.

#### I. PURPOSE AND SCOPE

1.01 The purpose of this report is to provide in one volume the significant information on the design, specification requirements, and construction of the embankment and appurtenances. The report can be used to provide information about the design and construction of the embankment for engineers unfamiliar with the project, for re-evaluation of the embankment in the future, if required, for periodic inspection reports, and background data for design and construction of similar projects.

1.02 The report summarizes embankment features, design data, construction control data, and record test results. Construction equipment, construction procedures, significant construction modifications and changes, and notes are presented. Also, the embankments are re-evaluated using the design parameters developed from laboratory test results of record samples obtained during construction.

## II. REFERENCES

٦

ł.

2.01 "Gila River Basin, Phoenix, Arizona and vicinity (including New River), New River Dam (including New River to Skunk Creek), Design Memorandum No. 3, General Design Memorandum Phase II, Project Design Part 3," dated November 1982.

2.02 Contract drawings "Gila river Basin, Phoenix, Arizona and vicinity (including New River), New River Dam, Maricopa County, Arizona," dated June 1983.

2.03 Specifications No. DACW09-83-B-0016, Gila River Basin, Phoenix, Arizona and vicinity (including New River), "New River Dam, Maricopa County, Arizona," dated August 1983, including amendments 1 through 4.

2.04 "Gila River Basin, Phoenix, Arizona and vicinity, (including New River), New River Dam, Foundation Report", dated October 1985.

#### III. GENERAL

#### AUTHORITY

Ł

the second

3.01 New River Dam was authorized by the Flood Control Act of 1965, Public Law 89-298, 89th Congress. Authority for preparation of Embankment Criteria and Performance Report for New River Dam is contained in ER 1110-2-1901, dated 31 December 1981.

#### PROJECT PURPOSE

3.02 New River Dam is a part of the Phoenix, Arizona and vicinity (including New River), Flood Control Project. The dam functions as a detention basin to provide flood control along New River. The detention basin reduces the standard project flood peak from an inflow of 45,000 CFS to an outflow of 2665 CFS.

#### PROJECT LOCATION

3.03 New River Dam is located on New River in Maricopa County, Arizona, approximately 22 miles northwest of downtown Phoenix and 6 miles west of Interstate Highway I-17, see plate 1. The dam is located on New River approximately 4.5 miles south of Carefree Highway and spans a narrow valley between East and West Wing Mountains.

PROJECT DESCRIPTION

3.04 The project consists of the following features:

a. A zoned earthfill dam approximately 104 feet high (maximum) above streambed and approximately 2320 feet long at the crest. The crest elevation is 1486.7 feet (without settlement allowances) above National Geodetic Vertical Datum (NGVD). (Photos 1, 2, and 3).

b. A zoned earthfill dike (dike no. 1) approximately 36 feet high (maximum) and approximately 7475 feet long at the crest, about 1.7 miles northwest of the right abutment of the dam. The crest elevation is 1486.0 feet above NGVD (without settlement allowances). (Photos 4 and 5).

c. Another earthfill dike (dike no. 2) approximately 9 feet high and approximately 256 feet long at the crest, about 1/2 mile northeast of the left abutment of the dam. The crest elevation is 1484.0 feet above NGVD (without settlement allowances). (Photo 6).

d. An ungated outlet, 6.25 feet wide by 9.5 feet high, near the base of the left abutment. (Photos 7, 8, 9, and 10).

e. A detached unlined spillway, 75 feet wide at the base, about 700 feet northwest of the right abutment of the dam. (Photo 11). A general plan of the project is shown on plate 1.

#### PROJECT HISTORY AND AUTHORIZATION

3.05 The Phoenix, Arizona and Vicinity (including New River) Flood Control Project was authorized by the Flood Control Act of 1965 (Public Law No. 89-298, 89th Congress) to help alleviate the flood hazard that exists in the Phoenix metropolitan area. Post-authorization studies were initiated in the spring of 1969 and during Phase I studies, a combination structuralnonstructural plan was determined to be the best solution to the flood problem in the area. The approved plan, which differs from the authorized plan, involves the construction of four earthfill dams (Dreamy Draw Dam, completed in 1973; Cave Buttes Dam, completed in 1980; Adobe Dam, completed in 1982; and New River Dam, completed in 1985) and the Arizona Canal Diversion Channel presently under construction.

3.06 Two alternative damsites were geotechnically investigated and evaluated for the New River project. The first site considered was explored between March 1970 and January 1972 and is discussed in the Phase I GDM, dated March 1976. This site, originally designated the interim report site was renamed the Phase I site in the Phase II GDM. The second and eventual construction site, originally designated alternative site no. 1, but subsequently referred to as the Phase II site, was located about 1500 feet downstream from the Phase I site. This site was explored in detail for the Phase I GDM between November 1979 and May 1981. Pre-construction explorations done to augment the design studies were made in June 1982. This additional work, although not included in the GDM, was included in the contract plans. Geotechnical considerations had no significant influence on site selection. The rationale for selecting the Phase II site was made on the basis of economics. All explorations pertinent to the foundation and excavation studies, including those made in 1984 during construction, are presented in this report.

3.07 The New River Dam construction contract was advertised under bid reference No. DACW09-83-B-0016. Bids were opened on 2 August 1983 and M. M. Sundt Construction Company of Tucson, Arizona was awarded Contract No. DACW09-83-C-0050 on 31 August 1983 with a total bid of \$10,250,000.00. The remaining bids ranged from \$10,340,000.00 to \$18,497,400.00. The Government estimate was \$12,331,105.00. Construction began in October 1983 and the dam was officially dedicated on 8 February 1985, approximately 6 months in advance of the required completion date. The final contract cost was \$11,749,344.60; the increase due primarily to additional processing required to obtain adequate and acceptable type I stone protection and to obtain suitable landscape stone, additional quantities for stage 1 excavation, west abutment excavation, foundation preparation, outlet works excavation and gutter, and the addition of three observation wells.

Subcontractors used by M. M. Sundt to perform work relative to the construction of the embankment were as follows:

a. W. G. Jaques Co., Des Moines, Iowa--drilling and grouting subcontractor.

b. Western Technology, Inc., Phoenix, Arizona--material testing.

c. Brooks Hersey, Tempe, Arizona--project surveyors.

d. United Metro Division, Phoenix, Arizona--concrete subcontractor.

CONSTRUCTION AND DESIGN STAFF

(

ſ

3.08 Key Corps of Engineers personnel involved in the design and construction of New River Dam are listed below:

Stan Lutz Yan Bahaudin Albert Honda Abbas Roodsari Ted Ingersoll Vernon Minor Robert Thurman William Halczak Edward Chew Lynn Almer Helen Wells Mike Evasovic Harlan Anderson

a.	Engineering Division
	Project Manager
	Civil Design
	Technical Specialist
	Soils Design
	Soils Design
	Geology
	Geology
	Materials and Investigations
	Hydraulics
	Environmental Planning
	Cultural Resources
	Landscape Architecture
	Survey

. . . .

b. Construction Division Resident Engineer Neil Erwin Project Engineer Cpt. Bob Dunne Office Engineer Michael Ternak Office Technician Satsuki Carrington Assistant Project Engineer/ Joe Salinez Field Superintendent Laboratory Chief Rick Flott

The project office staff, in addition to the above mentioned Construction-Operations Division personnel, consisted of two inspectors and a field laboratory staff of seven civilian and military personnel.

## IV. TOPOGRAPHY AND GEOLOGY

# **REGIONAL TOPOGRAPHY**

4.01 The New River Dam is located in that portion of Arizona referred to as the Gila Lowland Section of the Sonoran Desert Subprovince, Southern Basin and **Bange Physiographic Province.** The Province is characterized by broad, gently sloping connected valleys or plains bounded by moderately high, rugged mountain ranges rising abruptly to maximum heights of several thousand feet above the fairly flat valley floors. The project is at the southern edge of a topographic and structural basin and is bounded to the southeast and southwest by the low-lying East and West Wing Mountains, respectively, and to the east of the project extends up to the New River and Hieroglyphic Mountains. The dam embankment spans a relatively narrow valley between the East and West Wing Mountains at the northern edge of Deer Valley, a small undissected tributary valley within the larger alluvial plain of the Salt River Valley.

#### **REGIONAL GEOLOGY**

4.02 The rock types found in the mountainous areas that border the project consist of (1) an igneous and metamorphic basement complex composed predominantly of Precambrian granite and related crystalline rocks with lesser amounts of schist and gneiss, (2) Cretaceous to Tertiary intrusive igneous rocks, consisting mainly of granite and monzonite, and (3) Tertiary volcanic rocks in the form of basalt and andesite with local accumulations of tuff, flow breccia and agglomerate. The basement complex is extensively exposed along the eastern and southeastern margins of the project. Elsewhere, particulary along the southwestern margin of the project, Tertiary age lava flows rest unconformably upon the basement complex. Exposures of intrusive igneous rocks are limited, occurring mainly in the mountains to the east.

4.03 Older sediments that constitute the valley fill are Quaternary in age and are composed mainly of poorly-to well-consolidated gravel, sand, silt and clay, representing several environments of deposition. The constituent materials were eroded from the adjacent mountain masses by stream and sheet runoff. Calcium carbonate cementation is common and considerable caliche is present near the mountain fronts. Recent (Quaternary) alluvium, consisting mainly of unconsolidated sand and gravel, fills the channels of the main stream courses and the tributaries associated with flood plain washes. The total thickness of the alluvial materials varies from zero along the mountain fronts to depths exceeding 1200 feet under the valley interior.

#### GEOLOGIC HISTORY

4.04 The Cenozoic history of southwestern Arizona was ushered in during the Laramide orogeny, which began in the late Cretaceous, some 90 million years ago, and continued for about 40 million years, into the early Tertiary. This portion of the State was severely affected by this tectonic episode which was characterized by regional uplift, eruption of rhyolitic to andesitic volcanic rocks, and by intrusion of several large bodies or plutons of igneous rock of a granitic composition. Following the cessation of the Laramide orogeny, southwestern Arizona was an area of general magnatic quiescence. During this time, a broad erosional surface dipping northeastward was developed and deposition of sediments in localized interior drainage basins occurred. 4.05 Another period of widespread tectonism began approximately 30 million years ago during the late Oligocene and lasted about 10 million years, into the middle Miocene. This episode, referred to as the "mid-Tertiary orogeny" was accompanied by extrusion of great quantities of rhyolitic to andesitic tuffs, breccias and flows, and deposition of thick sequences of clastic sediments in newly formed interior drainage basins. Rocks deposited during and preceding this event were subject to low angle normal faulting, steep tilting and local folding. Many of the older extrusive rocks in the Salt River Valley area were products of this orogeny. With the waning of the mid-Teritary orogeny, a profound unconformable surface was developed. Topographic lows became sites for fanglomerate and lacustrine deposition. Tuff beds and extrusive flows intercalated in these sedimentary deposits indicate continued though minor volcanic activity.

4.06 During the late Miocene, approximately 15 million years ago, subsidence, high angle normal block-faulting and erosion occurred in southwestern Arizona, which disrupted all earlier landforms. This resulted in the development of a typical basin and range structure of mountain-forming horsts separated by valleys underlain by grabens or half-grabens. Deposition of sediments began in the basins as the basins were formed. In the Salt River Valley area, these sediments were deposited under oxidizing conditions in fluviatile and lacustrine environments and consisted of clastics and evaporite sequences. Included in the sedimentary sequence are occasional interbeds of extrusive volcanic rocks of basaltic composition. Approximately 10 million years ago, faulting began to wane and sedimentation in previously separate interior basins began to coalesce.

#### SITE TOPOGRAPHY

4.07 The New River, an ephemeral stream, flows generally south from its headwaters in the New River Mountains across a broad gently sloping valley to the dam, a distance of approximately 24 miles. The stream gradient in the vicinity of the project is about 10 feet per mile. At the dam, the valley narrows considerably, to a width of about 2000 feet. The dam embankment spans the New River between the West Wing Mountains, which form the right abutment, and Keefer Hill, a westward projection of the East Wing Mountains, which form the left abutment. The mountains are characteristically steep and rugged although they attain only moderate heights. Elevations in the project area range from 1390 feet in the streambed up to 2000 feet at the crests of the surrounding mountains. South of the dam, the New River flows through Deer Creek, then flows about 8 miles further downstream before merging with the Agua Fria River.

#### SITE GEOLOGY

(

4.08 The geological formations present within the project area consist generally of (1) Precambrian granitic rocks, (2) Tertiary volcanic rocks, and (3) Quaternary alluvial deposits. This section presents a general discussion of the site geology. The rock names used in this report are based primarily on petrographic analyses. However, color and textural characteristics were occasionally considered in the classification process to more clearly distinguish between chemically similar rock types. Rock unit names and/or designations used in the original contract plans were changed to conform to the lithologic classifications used in this report.

4.09 Granitic Rock. The Precambrian age granitic rocks, composed primarily of granite, diorite, and related crystalline rocks, are extensively exposed in the East Wing Mountains, including Keefer Hill, and underlie the outlet works and a portion of the dama foundation on the east side of the valley. These rocks are collectively referred to as the Precambrian basement complex in this report. Granite and diorite are the dominant rock types present and appear to be of plutonic origin. The granite is characterized by its medium- to coarsegrained texture, small percentage of mafic minerals and light gray to reddishbrown color. The diorite, found in close association with the granite, is characterized by its medium- to coarse-grained texture, mottled appearance due to a high percentage of mafic minerals, and medium to whitish-gray color. Scattered occurrences of a fine- to medium-grained, mottled, medium to dark gray quartz diorite may represent a possible postmagmatic alteration of material near the margins of the diorite pluton. The granite and diorite have been intruded in numerous locations by dikes of a medium gray to black, aphanitic granitic rock which also frequently appears as inclusions within the surrounding rock mass.

4.10 Volcanic Rocks. Teritary-age volcanic rocks, composed of andesite, several varieties of tuff, flow breccia and agglomerate are extensively exposed in the West Wing Mountains. The dominant rock type, a light to medium gray aphanitic andesite, is present on the right abutment of the dam and in the spillway excavation and also underlies a portion of the dam foundation on the west side of the valley. A reddish-brown to pinkish-gray porphyritic andesite outcrops in the northwestern part of the West Wing Mountains and underlies the south abutment of dike no. 1. Associated with the aphanitic andesite is a reddish-brown volcanic cinder flow breccia, which is present as a fairly continuous layer below the andesite on the southeast flank of the mountains near the downstream end of the spillway excavation. The breccia also locally caps the andesite and infills joints in the bedrock on the northeast flank of the mountains immediately upstream of the right abutment and near the upstream end of the spillway excavation. The tuff sequence, composed of a series of pyroclastic rocks reflecting different modes of origin which have undergone varying degrees of consolidation, is exposed in the spillway excavation below the flow breccia unit and forms a prominent ridge with columnar-type jointing along the southeastern flank of the West Wing Mountains. Rock unit lithologies range from well-stratified welded ash-fall tuffs to non-stratified slightly welded ash-flows tuffs. A tuffaceous agglomerate, exposed along the northeast flank of the mountains upstream of the right abutment, was found to locally cap the andesite bedrock underlying the dam foundation of the west side of the valley.

4.11 <u>Alluvium</u>. The Quaternary-age alluvium can generally be designated as either older poorly- to well-consolidated valley fill, alluvial fan and flood plain deposits; or younger consolidated stream channel and tributary wash deposits. The older Quaternary alluvium also includes the usually thin spotty veneer of residual soil and slope wash found on the slopes of the East and West Wing Mountains; colluvium, consisting of desert varnished andesite blocks and rubble, which caps the hills in the vicinity of the right abutment and the spillway excavation; and rounded granite boulders which mantle the slopes and creats of the hills north of the left abutment and cover the lower slopes downstream of the left abutment. The valley floor is covered principally by

finer-grained flood plain deposits consisting mostly of silts and sands which attain a maximum thickness of approximately 9 feet. The underlying coarsergrained valley fill deposits, consisting mainly of sands, gravels, and clayey gravels with numerous layers and lenses of older stream channel cobbles and boulders present to a depth of about 25 feet, extend down to bedrock, which is at known maximum depths ranging from 136 to 144 feet beneath the dam foundation near the center of the valley. Erratic, near-surface zones of caliche cementation are common on the east side of the valley above the shallow granitic bedrock pediment. The alluvium covering the slopes of the mountains is generally less than 2 feet thick.

#### FAULTING AND SEISMICITY

4.12 The greatest concentration of faults, particularly Quaternary faults, in the State of Arizona occur in a poorly-defined band stretching diagonally from northwest to southeast across the state, generally coinciding with areas of historical seismicity. Most faults generally exhibit steep dips and normal separation. Quaternary faults are rare in southwestern Arizona and none have been identified in the vicinity of the New River Dam project.

4.13 The closest fault system to the project is the 45-mile-long Verde fault system, located approximately 45 miles to the northeast at its southerly extent. This system consists of several splays and segments, the longest and most continuous of which is the 17-mile-long central segment. A maximum credible earthquake of Richter magnitude 7.0 could be produced by movement over the total length of the Verde fault system, resulting in a maximum bedrock acceleration of approximately 0.08 g at the dam. However, the largest earthquake ever recorded to date near the Verde system was the 1976 Chino Valley event with a Richter mangnitude of 5.1 and an epicenter location about 65 miles north of the project. This would have produced acceleration of less than 0.01 g at the dam. This fault system has shown evidence of Quaternary movement, but no historic or Holocene surface ruptures have been recorded.

4.14 The Basin and Range province in southwestern Arizona has been considered to be tectonically inactive due in part to the low levels of historical seismicity and the extensive pedimentation of mountain blocks. Evidence of average regional recurrence intervals between surface-rupturing earthquakes over the last 15,000 years range from 3500 years to possibly 15,000 years or more, indicating a lesser degree of seismic hazard potential for this portion of the state. New River Dam is located in Zone 1 of the Seismic Zone Map of the Contiguous States, an area of low seismicity. Only five earthquakes with maximum epicentral intensities between V and VI on the Modified Mercalli intensity scale have been reported within a 50-mile radius of the project since 1871. Research published by the United States Geological Survey indicates that the project has a 90-percent probability of experiencing bedrock accelerations no greater than 0.04 g in 50 years. A bedrock acceleration of 0.08 g produced by a magnitude 7.0 earthquake on the Verde fault system would require simultaneous movement on all segments and is not likely to occur during the design life of the project.

#### GROUND WATER AND SUBSIDENCE

4.15 Ground water information for the New River Dam project was obtained from three sources (1) water well records obtained from the State of Arizona Department of Water Resources, (2) subsurface investigations conducted prior to and during construction, and (3) observation wells installed after construction of the dam embankment had been completed.

4.16 In the basin area upstream of the dam, ground water withdrawal has been minimal and the water table gradient is flatter than the corresponding topographic slope, based on water level data provided by the following 3 wells. In 1985, ground water was measured at a depth of 100 feet (elevation 1320 feet) in well (A-5-1) 25bca, approximately 1 mile upstream, and at a depth of 121 feet (elevation, 1342 feet) in observation well no. 3, about 2-1/4 miles upstream. In 1984, ground water was measured at a depth of 212 feet (elevation, 1362 feet) in well (A-5-1) 10aab, approximately 4-1/2 miles upstream of the dam and about 1-1/2 miles north of dike no. 1.

4.17 At the dam, the ground water table appears to rise significantly to a known maximum elevation of 1357 feet, based on information from observation wells 1 and 2. In 1985, ground water was measured at a depth of 36 feet (elevation, 1351 feet) in observation well 1,350 feet downstream of dam at station 24+50, and a depth of 43 feet (elevation, 1357 feet) in observation well 2,305 feet upstream of dam station 24+50. However, since both wells are fully perforated below a depth of 25 feet, these water levels may be influenced to some extent by any localized zones of perched or semiperched ground water. In fact, underflow from nearby ephemeral borrow ponds which "cascaded" briefly into well 2, indicates the presence of at least one separate zone of saturated alluvium. Measurements of water levels and hole depths in observation wells 1 and 2 in September 1985 indicate that these wells may be plugged and that the "static" water levels may not reflect true ground water conditions. Beneath the dam, preconstruction subsurface borings encountered ground water between elevations of approximately 1300 and 1340 feet. These variations may be due to seasonal fluctuations, perched conditions or a possible ground water mound condition beneath the active stream channel. In any event, the overall higher ground water table at the dam is probably caused by shallow bedrock constrictions in the relatively narrow confines of the valley.

4.18 South of the project, in Deer Valley, the watertable declines rapidly to depths exceeding 300 feet due to intense ground water development for agricultural as well as residential and industrial purposes. In 1984, ground water was measured at a depth of 351 feet (approximate elevation, 1029 feet) in well (A-4-1) ibaa, approximately one mile south of the dam.

#### Subsidence

4.19 Surface subsidence and associated earth fissure development have occurred in the Phoenix metropolitan area as a result of major ground water declines. Long-term survey data are not available to determine if subsidence has occurred at the project. However, subsidence has probably been negligible due to the relatively shallow depth to bedrock and the lack of any extensive ground water development and should not pose any future problems for the dam embankment and appurtenances. The closest occurrences of measured subsidence has been in Deer Valley along portions of Beardsley Road west of Interstate Highway I-17. The maximum amount of subsidence detected between 1967 and 1981 has been 0.45 foot at 83rd Avenue, approximately 4-1/2 miles south of the dam. Subsidence would be expected in this area where the alluvial materials are much thicker and where ground water declines of up to 300 feet have occurred in the past 30 to 40 years.

4.20 Earth fissures have not been observed in the project area or in Deer Valley. The closest occurrences are about 15 miles to the southwest in the vicinity of Luke Air Force Base, where 1 to 3 feet of subsidence has been detected or estimated.

#### V. FOUNDATIONS

#### INVESTIGATIONS

5.01 Foundation investigations of the right and left abutment, outlet works, and streambed consisted of geologic mapping and reconaissance, shallow seismic refraction surveys, diamond core drilling, bucket-type power auger drilling, trenching with a dozer and backhoe, and in-situ density and permeability testing. Detailed discussions of the foundation investigations are presented in the reference listed in paragraph 2.01.

### Dam Foundation

5.02 The investigation of the streambed portion of the dam foundation consisted of drilling 8 core holes to depths from 49 to 161 feet, 7 borings with a bucket-type power auger to depths from 10 to 97 feet and excavating 30 trenches with a backhoe or dozer to depths from 10 to 33 feet. The location of the core holes are shown on plate 2 and the location of the soils borings and trenches are shown on plate 3. The core hole logs and the soil logs of the borings and trenches are summarized on plates 4 through 7.

5.03 Twenty-five in-situ density tests were performed in the near surface embankment foundation materials. Five of the in-situ density tests were performed using the sand displacement method at depths ranging between 1 and 5 feet while 20 of the in-situ density tests were performed using the large scale water displacement method at depths ranging between 5 and 18 feet. The results of the density tests in the foundation are shown in table 1.

5.04 Permeability tests were conducted in test holes to obtain large scale field data to determine a representative coefficient of permeability of the foundation material. The results of the permeability cests in the foundation are shown in table 2.

## West Abutment

5.05 Investigations of the west abutment consisted of drilling 2 diamond core holes to depth of 74 to 80 feet. The locations of the core holes are shown on plate 4 and the logs of the core holes are shown on plate 8.

#### East Abutment

5.06 Investigation of the east abutment consisted of drilling 2 diamond core holes to depths of 48 to 77 feet and excavating 2 trenches to depths of 4 to 5 feet with a dozer. The locations of the core holes are shown on plate 4 and logs of the core holes are shown on plate 8.

#### Outlet Works

5.07 Investigations of the outlet works consisted of drilling 4 diamond core holes to depths of 24 to 35 feet and excavating 23 trenches with a backhoe or doser to depths of 3.5 to 12 feet and conducting one seismic refraction survey. The locations of the core holes, test trenches, and seismic refraction survey are shown on plate 9 and the logs of the core holes and test trenches are shown on plates 10 through 14.

## Dike No. 1 Foundation

5.08 The investigation of the foundation of dike no. 1 consisted of drilling 5 borings with a bucket-type power auger to depths of 9.5 to 25 feet and excavating 7 trenches with a backhoe or dozer to depths of 1 to 9.5 feet and conducting eight seismic refraction surveys. The location of the borings, trenches and seismic refraction surveys are shown on plate 15. The soil logs of the borings and trenches are summarized on plate 16.

Dike No. 2 Foundation

5.09 The investigation of the foundation of dike no. 2, consisted of drilling 3 diamond core holes and conducting 3 seismic refraction surveys. These investigations were initially performed to investigate an alternative spillway site. The location and logs of the diamond core holes are shown on plate 17.

#### FOUNDATION TREATMENT

#### General

5.10 Discussion of the foundation treatment is divided into 3 segments. The dam foundation from station 13+00 to 31+90, the west abutment from station 31+90 to 33+27, and the east abutment from station 10+00 to 13+00 see plate 18. The construction sequence, geology, excavation, grouting, and clearing of the left and right abutments and the portions of the dam foundation founded in rock (station 13+00 to 21+06 and station 29+64 to 31+90) are discussed in more detail in the foundation report referenced in paragraph 2.04.

Dam Foundation

5.11 <u>Streambed Materials</u>. Foundation materials encountered in construction during foundation and core trench excavation are the same as anticipated during design.

5.12 The foundation materials consist of layered homogeneous alluvial soils extending to a depth of maximum 136 feet. Interpretation of the data contained on the soil logs and visual examination of the sides of the dozer trenches excavated in the dam foundation indicate that there are three distinct soil layers in the dam foundation above bedrock.

5.13 The top soil layer, designated stratum A, varies in thickness from 2 to 9 feet. It consists mostly of silty sand.

5.14. The middle soil layer, designated stratum B, varies in thickness from 6 to 10 feet. It consists mostly of sandy gravels. The gradational range of stratum B is shown in figure 1.

5.15 The bottom soil layer, designated stratum C, extends from stratum B down to bedrock. It consists mostly of cemented sandy gravels. The gradational range and plasticity chart of stratum C is shown in figure 2. 5.16 The foundation treatment consisted of excavating the near surface silty sands, caliche, and sandy gravels down to bedrock or elevation 1380 NGVD from station 13+00 to 31+90. A core trench was excavated beneath the core and transition zones. The core trench was excavated down to bedrock between stations 13+00 and 21+06 and stations 29+64 to 31+90 and to elevation 1365 NGVD between stations 21+23 and 29+00. The actual depth of foundation and core trench excavation is shown in red on plate 18.

5.17 Initially only the central portion of the foundation and the core trench down to bedrock or elevation 1365 NGVD were excavated as shown on plate 18. The excavation was accomplished with two push dozers and scrapers (photos 12, 13, 14, and 15). A tracked backhoe and end dumps were used to excavate the stage I core trench from station 29+10 to 31+72 to preclude degradation of the highly fracturer andesite bedrock and the core trench from station 13+00 to 16+90 to preclude degradation of the highly fractured and weathered granitic bedrock (photos 16 and 17).

5.18 After inspecting the core trench bottom, benches, and sidewall for unsuitable materials and to ensure that the embankment materials and the foundation materials satisfied filter criteria, Corps personnel approved sections of the core trench for fill placement. When the approved section was in alluvium the surface was scarified to a depth of 6 inches and compacted with 8 passes of a 50-ton articulating rubber tired roller (photo 18). Density tests using large-scale water displacement method were performed in the core trench bottom and on the benches to determine the in-place dry density. The results of the density tests are shown in table 3 and the gradation of the materials in figure 3.

5.19 After a section of core trench was approved and accepted, suitable materials from the foundation excavation satisfying core requirements were placed in the core zone of the core trench. Suitable materials from either borrow area No. 3 or the foundation excavation were processed for placement in the transition zones. The locations of the borrow areas are shown on plate 19.

5.20 After a section of the foundation was excavated, Corps personnel inspected that section of the foundation for unsuitable materials and to ensure that embankment materials and the foundation materials satisfied filter criteria. Upon approval that section of the foundation was ready for fill placement. When the approved section was not in bedrock it was scarified to a depth of 6 inches and compacted with 8 passes of a 50-ton articulating rubber tired roller. Density tests using a large-scale water displacement method were performed in the foundation and to determine the in-place dry density. The results of the density tests are shown in table 4 and the gradation of the materials in figure 4.

5.21 <u>West Abutment</u>. The west abutment of the dam is located on the east slope of the West Wing Mountains. The abutment consists of volcanics composed mainly of andesite.

5.22 Typically the west abutment was prepared in three phases. The first phase consisted of excavating the materials within the core-transition contact zone to depths of 3 feet using a dozer with rippers (photo 19). The second

phase, the surface prepartation, was the most sensitive phase. It consisted of cleaning the core-transition contact zone to a suitable foundation (photos 20 and 21). The third phase consisted of stripping one foot of the surface materials within the pervious shell contact zones.

5.23 <u>Bast Abutment</u>. The east abutment of the dam is founded on the west slope of Keefer Hill. The abutment consists of granitic rock.

5.24 The east abutment was, also, prepared in three phases. The first phase consisted of stripping the surface materials to a maximum depth of 1 to 4 feet using a dozer with rippers. The second phase consisted of excavating materials within the core-transition contact zone to a waximum of 14 feet using tracked backhoe (photos 22, 23, and 24). The third phase, the surface preparation, was the most sensitive phase. It consisted of cleaning the core-transition contact zone to a suitable foundation (photos 25 and 26).

5.25 Treatment of the abutments and rock exposed in the core trench, after cleaning, consisted of subsurface grouting and final surface preparation. Subsurface grouting, consisting of a single line grout with a 10-foot primary hole spacing curtain along the core contact centerline, was placed by subcontractor W.G. Jaques Company of Des Moines, Iowa from January to March 1984. The grouting plan and profile are shown on plates 20 through 22.

5.26 Final surface preparation of the abutment foundaton and rock exposed in the core trench, beneath the transition zones, consisted of removing loose materials by hand and minimal air blasting. Surface preparation, beneath the core zone, consisted of intensive air blasting and placement of dental concrete (photo 27).

5.27 The rock surfaces to receive core materials was treated with dental concrete which was placed in larger depressions and low areas to provide a uniform surface for embankment material placement and compaction, and also to protect area of highly fractured bedrock. The dental concrete consisted of low slump, 3/4-inch aggregate, 1000 pounds per square inch concrete. Cleaned surfaces were wetted with water, prior to placement of dental concrete. The dental concrete was usually placed with a crane hoisted bucket. After the concrete had set, the edges were trimmed to avoid porous feathered edges. To consolidate and ensure bonding with the foundation, the concrete was carefully vibrated in place.

Dike No. 1

5.28 The dike no. 1 foundation materials consist of non-homogeneous alluvial soils and andesite bedrock. There are two distinct layers in the upper 25 feet. The top layer is sandy clay that varies between 0.5 and 2 feet in thickness. The bottom layer, which extends down to at least 25 feet below original ground surface, is a caliche cemented sandy gravel.

5.29 The foundation excavation consisted of removing the sandy clay down to the caliche and ripping 2 feet of caliche cemented sand from beneath the upstream transition and pervious shell. The sandy clays were excavated with an elevating scraper while the caliche was ripped and then excavated with two push dozers and scrapers. The depth of the foundation excavation is shown on plates 23 through 25. 5.30 After completion of the foundation excavation, an exploration trench was excavated beneath the core zone to a depth of approximately 5 feet as shown in red on plates 23 through 25. The exploration trench was ripped and then excavated with two push dozers and scrapers (photos 28, 29, 30, and 31). Typical materials encountered consisted of caliche cemented sandy gravel and andesite bedrock (photos 32 and 33).

5.31 After inspecting the foundation exploration trench bottom and side-walls to ensure compatability of the embankment material with the foundation materials, Corps personnel approved sections of the dike foundation for fill placement. When the section approved was not in bedrock it was scarified, wetted, and proof-rolled before embankment materials were placed.

5.32 South Abutment. The south abutment of dike no. 1 is founded on the north slope of the West Wing Mountains. The abutment consists of volcanics composed of andesite rock.

5.33 In general the excavation of the south abutment was accomplished in two phases. The first phase consisted of excavating the surface materials to depths of 4 feet using a dozer with rippers. The second phase consisted of cleaning the core contact zone to a suitable foundation. The construction sequence, geology, and excavation are discussed in more detail in the foundation report referenced in paragraph 2.04.

5.34 Dental concrete was placed within the core contact zone between stations 78+65 and 84+15.

Dike No. 2.

5.35 The dike no. 2 foundation materials consist of a 0- to 6-foot layer of alluvial soils composed of silty sandy gravel overlying hard, highly fractured, soft weathered granitic bedrock.

5.36 The foundation treatment consisted of excavating the upper 1-foot of material. The silty sandy gravels and soft weathered bedrock were excavated with a dozer. The extent of the foundation excavation is shown on plate 26 (photo 34).

5.37 After inspection and approval of the foundation by Corps personnel, the area was scarified to a depth of 6 inches, wetted, and proof rolled with 8 passes of a 50-ton articulating rubber tired roller (photo 18).

#### VI. EMBANKMENTS

#### FEATURES

#### Main Embankment

6.01 The embankment is a compacted, zoned earthfill structure composed of pervious shell zones, transition zones, a central core, and a horizontal toe drain from station 19+00 to 31+00. The upstream slope is 1.0V on 2.5H and is protected by a 12 to 24-inch thick layer of type I stone. The downstream slope is 1.0V on 2.0H and is covered by a 12-inch thick layer of type III stone. The embankment plan, profile, and cross sections are presented on plates 18 and 27 through 31.

6.02 The embankment was constructed in three stages. Stage 1 consisted of foundation and core trench excavation from station 26+50 to 31+90, west abutment excavation from station 31+90 to 33+27, foundation preparation and treatment within the core-transition contact zone of the west abutment and rock exposed in the core trench from station 29+64 to 31+90, and constructing the embankment to elevation 1380 from station 26+90 to 31+90. Stage 2 consisted of east abutment excavation from station 10+00 to 13+00, foundation, and core trench excavation from station 13+00 to 26+50, treatment within the core-transition contact zone of the east abutment and rock exposed in the core trench from station 13+00 to 21+00, and constructing the embankment to elevation 1380 at station 28+90 to crest elevation at station 23+30 and to crest elevation from station 10+00 to 23+30. Stage 3 consisted of constructing the embankment to crest elevation from station 23+30 to 33+27 and treatment within the core-transition contact zone of the west abutment.

## Dike No. 1

6.03 Dike no. 1 is a compacted, zoned earthfill structure composed of pervious shell zones, transition zones, and a central core. The upstream slope is 1.0V on 2.5H and is protected by a 12 to 24-inch thick layer of type I stone. The downstream slope is 1.0V on 2.0H and is covered by a 12-inch thick layer of type III stone. The embankment plan, profile, and cross sections are presented on plates 23 through 25 and 32.

#### Dike No. 2

6.04 Dike no. 2 is a compacted earthfill structure composed of pervious shell material. The upstream slope is 1.0V on 6.0H while the downstream slope is 1.0V on 2.0H and is covered by 12 inches of type III stone. The embankment plan, profile, and cross sections are presented on plate 26.

#### MATERIALS

6.05 Core materials meeting specification requirements were obtained by blending the near surface materials of borrow area 1 to a depth of approximately 4 feet, borrow area 2 to a depth of approximately 6 feet, borrow area 3 to a depth of approximately 3 feet, and from material obtained from foundation excavation. The location of the borrow areas is shown on plate 19 and the gradation of the as-placed core materials is shown on plate 33. 6.06 Transition materials meeting specification requirements were obtained by grading pervious shell materials obtained from beneath the core materials of borrow area 3. The location of borrow area 3 is shown on plate 19 and the gradation of the as-placed transition materials is shown on plate 37.

6.07 Pervious shell materials meeting specification requirements were obtained from beneath the core materials of borrow area 3. The location of borrow are 3 is shown on plate 19 and the gradation of the as-placed pervious shell material is shown on plate 40.

6.08 Gravel drain materials were obtained by crushing and grading pervious shell materials (photo 24). Gradations of the as-placed gravel drain materials are shown on plate 43.

6.09 Type I stone was obtained from the oversize materials developed during grading of the pervious shell materials to produce transition, gravel drain, and type III stone.

6.10 Type III stone was obtained by crushing and grading pervious shell materials (photo 35).

6.11 Topsoil fill was selected from the near surface soil during the foundation stripping of dike no. 1.

6.12 Landscape stone was obtained from spillway excavation.

6.13 Desert gravel was obtained from offsite sources.

ì

VII. EMBANKMENT QUALITY CONTROL, QUALITY ASSURANCE, AND RECORD TESTING GENERAL

7.01 Contrator quality control and Government quality assurance testing of the embankment fill was performed to ensure quality work and to check conformance of the placed materials with contract specifications. These activities involved the combined efforts of the Contractor's Quality Control personnel, and the Corps of Engineers inspectors and laboratory personnel. The results of these activities assured that materials were placed within specified gradations and moisture contents, and that design densities were being obtained by the specified procedural compaction methods. Corps of Engineers personnel periodically obtained both disturbed and undisturbed record samples to establish the consolidation, permeability and shear strength parameters of the as-built embankment materials in order to verify adopted design parameters.

CONTRACTOR QUALITY CONTROL (CQC)

7.02 Contract provisions required the contractor to ensure embankment quality. Accordingly, a Quality Control program was established by the contractor. The following items, pertaining to the embankment, were performed by the contractor:

a. Reviewed contract requirements, checked worksite for readiness and checked that lines and grades had been established.

b. Checked for compliance with contract specifications and that required testing procedures were being followed.

(1) Continuously monitored embankment fill operation.

(2) Established necessary moisture-density relationships for contractor information and use.

(3) Performed field density tests (ASTM D 1556) to determine degree of compaction per ASTM D 698 for backfills or ASTM D 1557 for roadfills where end-product was specified.

(4) Performed gradation testing on embankment materials per ASTM D 422.

(5) Performed quality tests on stone protection materials per: ASTM C 88, C 127, C 136, C 131, and C 535.

(6) Supervised the installation of specified instrumentation.

(7) Prepared daily quality control reports which listed activities, described quality control surveillance activities and instruction, summarized material quantities and listed all test results.

## CORPS OF ENGINEERS QUALITY ASSURANCE (QA)

#### GENERAL

7.03 Several inspectors provided continuous monitoring of embankment fill operations. In addition, Corps of Engineers on site Soils Laboratory personnel performed QA tests which consisted of field density, placement moisture contents, gradations, moisture-density relationships, and vibratory maximumminimum density tests. The Geotechnical Branch provided an embankment engineer and a project geologist responsible for technical supervision of construction.

## Field Density Tests

7.04 In-place density tests on core and transition material were performed in accordance with ASTM Standard D 1556, "Density of Soil in Place by the Sandcone Method". In place density tests on pervious shell, gravel drain, and main embankment foundation materials were performed using a large-scale water displacement method. See Appendix I.

#### Moisture Content Tests

7.05 A laboratory moisture determination was made in accordance with ASTM D 2216 for each field density test. Visual assessment and microwave oven results were used for rapid determination of moisture content and checked with standard oven drying test results.

#### Gradation Tests

7.06 Gradation tests were performed in accordance with ASTM D 422 on material collected from each density test. In additon, numerous gradation tests were performed on representative samples of the gravel drain, and slope protection materials to verify compliance with specifications.

# Moisture Density Tests

7.07 Moisture-density relationships for the core materials were determined by ASTM D 698. Moisture-density relationships for the pervious shell and transition materials were determined using a compaction test method comparable to ASTM D 698 in that the compactive effort applied is 12,300 foot pounds per cubic foot and the equipment has been devised to maintain the ratios between the mold diameter, rammer diameter, and maximum particle size. A family of compaction curves for the pervious shell, transition, and core materials were developed prior to the start of fill placement.

7.08 During construction a one-point compaction test was performed on the sample obtained with each in-place density test. The percent maximum dry density was then interpolated from the family of compaction curves for the material. For approximately every five in-place density tests on a material type, a five-point compaction test was performed to augment the family of curves for that material.

### Relative Density Tests

7.09 A small number of relative density tests were performed on the pervious shell, transition, and gravel drain material in accordance with ASTM Standard D 2049, "Relative Density of Cohesionless Soil". These tests were performed near the beginning of the placement to ensure that the specified procedural placement of these materials was yielding acceptable densities.

# Record Sampling and Testing

7.10 Record samples (photo 36) of the as-built embankment were periodically obtained by Corps of Engineer personnel. These samples, both disturbed and undisturbed, were obtained at strategic locations predetermined by design personnel. The samples were shipped to the SPD Laboratory for record testing in order to determine the material properties of the as-built embankment. The testing program included classification, compaction, triaxial shear, permeability, and consolidation. Two field density determinations were made above and below each core record sample location.

#### VIII. CONSTRUCTION PROCEDURES

#### CORE MATERIALS

8.01 Moisture was introduced into the core materials prior to excavation by prewetting the borrow area with a sprinkler system (photo 37). Core materials were excavated and hauled with two push dozers and scrapers or a front end loader and end dump trucks. (Photos 38 and 39.) The surface of the preceeding lift was scarified with the rippers attached to a motor grader to a depth of 6 inches prior to placement of the next lift. The materials were spread on grade in 12-inch lifts with a motor grader or a dozer. When the core materials had dried back, a 10,000-gallon water pull truck was used to add water either prior to the compaction of the lift or prior to placement of the next lift. Compaction was accomplished with 8 passes of a towed, double drum tamping roller. The drums were 5-foot in diameter and 5-foot wide and were ballasted to 20,000 pounds (photo 40).

8.02 Because the contractor did not use the same towed, double drum tamping roller to construct the embankments as he had used in the demonstration and verification fills, the contractor was required to compact the core materials with 8 passes of a towed, double drum tamping roller as specified.

8.03 Core materials were placed wet of optimum at the rock-core contacts (photo 41). The purpose of placing the wetter core materials was to insure bonding between the rock and the core materials and to maximize the filling of voids and cracks in the rock with core materials. Loose material was removed from the treated rock surface 5 to 8 feet ahead of core placement by air hoses (photo 42). The cleaned and treated rock surface was throughly wetted prior to the placement of core materials. The initial lifts were placed in 6 to 12-inch thickness with a front end loader (photos 43 and 44). Compaction was accomplished by 8-wheel passes of the front and loader with a loaded bucket. Rubber tired wheel rolling was used to prevent damage to the treated abutment surface by the tamping roller. The compacted surface was scarified by back dragging the bucket teeth prior to placing a new lift. The core materials were placed against each abutment at a slope of approximately IV on 4H (photo 45). Establishment of these ramps allowed the tamping roller to compact closer to the abutment since the rock surface was protected from the tamping roller by a layer of core material. Compaction with a tamping roller was initiated when a sufficient thickness of material covered the abutment.

#### TRANSITION MATERIALS

8.04 Transition materials were either excavated with a front end loader, processed through a screening plant, and loaded directly into bottom dump trucks or excavated with a front end loader, loaded directly into bottom dump trucks (photo 46), and processed on grade by a motor grader with a blade modified to remove the oversize material (photo 47). The compacted surface of the preceding lift was scarified to a depth of 6 inches prior to placement of the next lift with the rippers on a motor grader. The materials were spread in 12-inch lifts by a motor grader or a dozer. Each lift was compacted by four passes of an steel drum vibratory roller which weighed 30,640 pounds and produced 69,160 pounds of dynamic force and drum width of 84 inches wide or four passes of an steel drum vibratory roller which weighed 37,700 pounds and produced 83,500 pounds of dynamic force and drum width of 100 inches (photo 46). 8.05 No special procedures were used in placing and compacting transition materials at the rock contacts. Nested cobbles at the rock contacts were removed prior to compaction of the lift.

#### PERVIOUS SHELL MATERIALS

8.06 Pervious shell materials were excavated and hauled with two push dozers and scrapers or with a front end loader and dump trucks. The compacted surface of the preceding lift was scarified to a depth of 6 inches prior to placement of the next lift with the rippers on a motor grader (photo 46). The materials were spread in 24-inch lifts by a motor grader or dozer (photo 48). Each lift was compacted by four passes of a steel drum vibratory roller.

8.07 No special procedures were used in placing and compacting pervious shell materials at the rock contacts. Nested cobbles at the rock contacts were removed prior to compaction of the lift.

#### GRAVEL DRAIN

8.08 Gravel drain material for the downstream horizontal toe drain was obtained by crushing and grading pervious shell materials (photo 35). The materials produced were stockpiled prior to placement. The gravel drain materials were placed with end dump trucks, spread with a rubber tired dozer and compacted by 8 controlled passes of the rubber tired dozer in order to minimize particle crushing.

#### TYPE I STONE

8.09 Type I stone was obtained using a screening plant to process the oversize, from the pervious shell material, developed during the production of transition, gravel drain and type III stone. Type I stone was placed on grade with a tracked backhoe (photos 55 and 56) and 150-ton crane with a BG blade.

#### TYPE III STONE

8.10 Type III stone was obtained by crushing and grading pervious shell material (photo 35). The type III stone was stockpiled prior to placement. The type III stone was placed on grade with a tracked backhoe and a 150-ton grane with a BG blade.

#### SP ILLWAY

8.11 Excavation of the spillway is discussed in detail in the foundation report referenced in paragraph 2.04. The spillway excavation, in general, consisted of drilling explosive charge holes, blasting, and excavating. Excavation and hauling of the loosened rock was accomplished with push dozers and scrapers or with front end loader and end dump trucks. The excavated materials were stockpiled upstream of the right abutment and placed in the downstream pervious shell. The spillway walls were trimmed with a slope board attached to a dozer. The slope trimming was conducted to remove overhangs, loose material, and dress up the slopes.

#### OUTLET

8.12 Excavation and cleaning of the outlet is discussed in detail in reference cited in paragraph 2.04. The following is a brief description of the construction procedures of the outlet. The outlet trench was ripped with a dozer (photo 49) and excavated with push dozers and scrapers while the energy dissapator was excavated by drilling explosive charge holes, blasting, and excavating. Excavation of the loosened rock was accomplished with a tracked backhoe. The methods and procedures used to clean the outlet trench were similar to those used for the abutment.

8.13 A concrete plug or 1V on 1H concrete fillet was constructed within the core zone on both sides of the outlet conduit from the surface of rock to the top of the conduit to preclude seepage paths along the outlet trench and to minimize differential settlements (photos 50, 51, 52, and 53). The concrete plug was not constructed as designed due to the greater depth of excavation in the adjacent core trench. A low slump, 3/4-inch aggregate mix was placed with a concrete bucket and crane. The low slump allowed the concrete to be placed on the 1V on 1H slope without forms. The outlet conduit and rock contact zones were prewetted before the concrete was placed and the concrete was vibrated with emphasis where the concrete contacted the outlet conduit and rock.

8.14 The outlet conduit and concrete plug (fillet) were treated as abutments within the core zone. Loose material was removed from the surface of the concrete by air hoses. The cleaned surface of the concrete was thoroughly wetted prior to the placement of core materials. The initial lifts were placed with a front end loader and were placed wet of optimum in 6 to 12 inches thick lifts. Compaction was accomplished by 8 wheel passes of the front end loader with a loaded bucket. Wheel rolling was used to prevent damage to the surface of the concrete. The compacted surface was scarified by back dragging the bucket teeth prior to placing a new lift. Compaction with a tamping roller was initiated when a sufficient thickness of material covered the concrete plug or conduit.

8.15 Backfill and fill adjacent to the conduit placed outside of the core zone consisted of transition materials. The materials within 2 feet of the conduit were placed in 4-inch lifts and compacted with hand held power tampers and hand operated vibrating rollers to at least 95 percent maximum density as determined by ASTM D 698. Before each lift was placed the preceeding lift was scarified by a small lawn tractor equipped with a rake. Also before each lift was compacted the lift was processed to remove the plus 3-inch material which was in contact with the conduit. Nested gravels in point contact along the conduit were also removed.

#### FOUNDATION DEPRESSION

8.16 A 12 to 14-foot depression was excavated by a tracked backhoe in the soft weathered diorite and intrusive rock during excavation of the core tranch. The depression was located between station 14+85 and 15+25 and between 5 and 35 feet upstream of the centerline of the dam.

8.17 Material for backfill of the depression consisted of core materials. Loose material was removed from the sides and bottom of the depression by air hoses, brooms, shovels, and buckets. The cleaned surfaces of the depression were throughly wetted prior to the placement of core materials. The core materials were wet of optimum, placed in 4-inch lifts, and compacted with hand held power tampers to at least 95 percent maximum density as determined by ASTM D 698. Each lift was scarified before the next lift was placed (photo 54).

#### ESTHETIC TREATMENT

8.18 Topsoil fill, desert varnished landscape stone, and desert gravel were placed over the type III stone on the downstream slopes of the dam and dike no. 1. The purpose of the esthetic treatment was to visually integrate the embankment into the surrounding terrain. The 150-ton crane with a BG blade and a tracked backhoe were used to place the topsoil, landscape stone, and desert gravel (photos 55 and 56).

### IX. MATERIAL PROPERTIES

#### GENERAL

9.01 As required by BR 1110-2-1925, "Field Control Data for Earth and Rockfill Dams," field control results were summarized by the Resident Engineer staff and periodically transmitted to Engineering Division during active construction periods. These reports, along with the Report of Soil Tests on the New River Dam record samples, yielded the following results:

#### CORE MATERIALS

#### Field Control Results

9.02 Final statistical summaries of field control test results on the core material are presented graphically on plate 33. The monthly field control and placement data obtained as part of the QA program, are shown on plate 34. A plan and profile of the field control test locations are shown on plate 35.

a. <u>Moisture-Compaction Trends</u>. Project specifications required the placement moisture content of the core material to be within 3 percent below to 3 percent above the optimum moisture content, and that the material be compacted by 8 passes of a roller. Design required the material be compacted to not less than 95 percent of maximum dry density as determined by ASTM D 698. The field control test results indicate that core fill was generally placed slightly dry of optimum with a mean of 0.2 below optimum moisture content. The plot of placement moisture content for the core material indicates slightly drier placement during the late spring and summer months. An upward trend in placement moisture is observed during the autumn months through the end of the project. This is attributed to the cooler temperatures. Results of field density tests indicate that the core materials were compacted to an average of 101.1 percent of maximum dry density (ASTM D-698) with an average dry density at 122.2 pcf.

b. <u>Gradation</u>. Specifications required the core material to have a minimum of 20 percent by weight passing the No. 200 sieve. Results of field control tests indicate that none of the tests had less than 22 percent passing the No. 200 sieve, while 10 percent of the tests had more than 52 percent passing the No. 200 sieve. The fines content anticipated during design had a median of 35 percent by weight passing the No. 200 sieve, while the field control results had an median of 39 percent by weight passing the No. 200 sieve.

#### Record Test Results

9.04 Test results performed by the SPD Laboratory on record samples of the core material are summarized on plate 36.

a. <u>Permeability</u>. Permeability tests were performed in both the horizontal and vertical directions on samples from three undisturbed core material record samples. The results are shown on plate 36. The horizontal permeabilities ranged from 0.011 to 0.058 feet per day (fpd) and the vertical

}

permeabilities ranged from 0.012 to 0.06 fpd. Both the maximum horizontal and vertical permeabilities were lower than the design permeabilities of 1.5 and 0.3 fpd, respectively.

b. Shear Strength. Core material shear strengths were determined for undisturbed record samples using triaxial compression tests in accordance with the procedures described in EM 1110-2-1906, "Laboratory Soil Testing," 30 November 1970. The total strength was not determined under the unconsolidated undrained condition (Q-type) because the tests performed for the General Design Memorandum, which is referenced in paragraph 2.01, indicated that the design strength determined from unconsolidated-undrained condition (Q-type) was higher than the design strength determined from the consolidated-undrained condition (R-type). This occurs because samples tested in the unconsolidatedundrained condition are not back pressure saturated and therefore developed lower pore-pressures than similar samples tested in the consolidated-undrained condition which are back pressure saturated. Both the total and effective strengths were determined under consolidated-undrained conditions with porepressures measured and recorded. The as-built strengths were higher than the selected design strengths. The as-built "R" strength had an angle of internal friction of 16 degrees and a cohesion of 980 younds per square foot (psf). This strength was higher than the design angle of internal friction of 12 degrees and a cohesion of 600 psf. The as-built effective "S" strength had an angle of internal friction of 34 degrees. This strength was higher than the design angle of internal friction of 32 degrees. The selection of the strength parameters is based on the guidelines outlined in Section 9 of EM 1110-2-1902, Stability of Earth and Rockfill Dams, 1 April 1970.

c. <u>Consolidation</u>. Consolidation tests were performed on undisturbed record samples obtained from the core zone of the embankment. The results of these tests are shown graphically on plate 36, in terms of void ratio (e) versus pressure (log P) curves. The record samples had consolidation curves similar to those used in design. The initial void ratio of the undisturbed record samples varied from 0.38 to 0.45.

#### TRANSITION MATERIALS

Field Control Results

9.05 Final statistical summaries of field control test results on the transition material are presented graphically on plate 37. The monthly field control and placement data obtained as part of the QA program, are shown on plate 38. A plan and profile of the field control test locations are shown on plate 35.

a. <u>Moisture-Compaction Trends</u>. Specifications had no requirement on the placement moisture content of the transition material. Design required the material be compacted to not less than 80 percent relative density and the average compaction be at least 85 percent relative density as determined by ASTM D 2049. Studies performed during placement of the verification and demonstration fill indicated that in order to achieve 85 percent relative density the materials had to be compacted to 98 percent of the maximum density as determined by a compaction test equivalent to ASTM D 698.

The mean placement moisture content was 3.4 percent. The materials were significantly drier during the dry, hot summer months. Field density tests show the transition material is compacted to an average of 99.4 percent of maximum dry density with an average dry density of 136.5 pcf. Appendix II discusses the method used to correct for oversize.

b. <u>Gradation</u>. Specifications required the transition material be processed pervious shell material.

Record Test Results

9.06 Test results performed by the SPD Laboratory on remolded record samples of the transition material are shown on plate 39. At least 75 percent of the field dry densities were denser than 132 pcf; therefore, the record samples were remolded to 132 pcf for permeability and shear tests.

a. <u>Permeability</u>. Results of the record permeability tests on the transition material ranged from 0.56 to 1.2 fpd with an average value of 1 fpd. This is lower than the 20 fpd assumed in design.

b. <u>Shear Strength</u>. Transition material shear strengths were determined for remolded record samples using triaxial compression tests. Strengths were determined under consolidated undrained conditions with pore pressures measured and recorded (R-type). The as-built strengths were higher than the assumed design strengths. The as-built "R" strength had an angle of internal friction of 27 degrees and a cohesion of 1000 psf. The selected design "R" strength had an angle of internal friction of 23 degrees and a cohesion of 930 psf. The asbuilt effective "S" strength had an angle of internal friction of 40 degrees. This was slightly higher than the design angle of internal friction of 39 degrees. The selection of the strength parameters is based on the guidelines outlined in section 9 of EM 1110-2-1902, Stability of Earth and Rockfill Dams, 1 April 1970.

PERVIOUS SHELL MATERIALS

Field Control Results

9.07 Final statistical summaries of field control test results on the pervious shell material are presented graphically on plate 40. The monthly field control and placement data obtained as part of the QA program, are shown on plate 41. A plan and profile of field test locations are shown on plate 35.

a. <u>Moisture-Compaction Trend</u>. Specifications had no requirement on the placement moisture content of the pervious shell material. Design required the material be compacted to not less than 80 percent relative density and the average compaction be at least 85 percent relative density as determined by ASTM D 2049. Studies performed during the verification and demonstration fill, indicated that in order to achieve 85 percent relative density the materials had to be compacted to 98 percent of the maximum density as determined by a compaction test equivalent to ASTM D 698.

The mean placement moisture content was 2.8 percent. The materials were significantly drier during the dry, hot summer months. Field density tests show the pervious shell material was compacted to an average of 103.1 percent of maximum dry density with an average dry density of 144.6 pcf. Appendix II discusses the method used to correct for oversize.

b. <u>Gradation</u>. Specifications required the pervious shell material to have no more than 10 percent by weight passing the No. 200 sieve. Field control test results indicate that less than 12 percent of the tests had more than 10 percent passing No. 200 sieve. The average fines content for the pervious shell zones was 6 percent.

Record Test Results

9.08 Test results performed by the SPD Laboratory on remolded record samples of the pervious shell material are shown on plate 42. When corrected for oversize, see Appendix II, the matrix of at least 75 percent of the field dry densities were denser than 132 pcf; therefore the record samples were remolded to 132 pcf for permeability and shear tests.

a. <u>Permeability</u>. Results of record permeability test on the pervious shell materials ranged from 7 to 46 fpd with an average value of 35 fpd. This is higher than the 20 fpd selected in design.

b. <u>Shear Strength</u>. Pervious shell shear strengths were determined for remolded record samples using triaxial compression tests. Strengths were determined under consolidated undrained conditions with pore-pressures measured and recorded (R-type). The as-built strengths are higher than the selected design strengths. The as-built "R" strength has an angle of internal friction of 27 degrees and a cohesion of 1000 psf. The selected design "R" strength has an angle of internal friction of 23 degrees and a cohension of 930 psf. The as-built effective "S" strength has an angle of internal friction of 40 degrees. This is slightly higher than the design angle of internal friction of 39 degrees. The selection of the strength parameters is based on the guidelines outlined in Section 9 of EM 1110-2-1902, Stability of Earth and Rockfill Dams, 1 April 1970.

GRAVEL DRAIN MATERIAL

Field Control Results

9.09 a. <u>Density</u>. Specifications required the gravel drain material be compacted to not less than 85 percent of relative density as determined by ASTM D 2049. Field dry density tests show the gravel drain material is compacted to an average of 102 percent of relative density with an average dry density of 109 pcf.

b. <u>Gradation</u>. A final statistical analysis of field control gradation test results on gravel grain material is summarized on plate 43.

#### Record Test Results

9.10 Test results on remolded record test samples of the gravel drain material are shown on plate 43. The samples were remolded to 109 pcf.

a. <u>Permeability</u>. Results of the record permeability tests on the gravel drain material ranged from 1000 to 1800 fpd with an average value of 1500 fpd. This is lower than the 7000 fpd selected in design.

b. Shear Strength. Gravel drain material shear strengths were determined for remolded record samples using triaxial compression tests. Strengths were determined under consolidated drain conditions (S-type). The as-built "S" strength has an angle of internal friction of 40 degrees. This is higher than the selected design angle of internal friction of 35 degrees. The selection of the strength parameters is based on the guidelines outlined in Section 9 EM 1110-2-1902, Stability of Earth and Rockfill Dams, 1 April 1970.

c. <u>Rock Quality Tests</u>. The results of L.A. Rattler, specific gravity, and sulfate soundness tests are summarized in table 5. The test results indicate that the materials meet specification requirements.

#### INFILLING MATERIAL

9.11 An inspection of the core trench surface, following the completion of stage I excavation, revealed the presence of a pervasive green clay infilling material along predominantly high angle joint planes in the andesite bedrock. The infilling material was restricted to the core trench between station 29+64 at the edge of bedrock excavation and approximately station 31+70 near the base of the right abutment slope. Prior to foundation preparation, samples of the green clay infilling material were obtained and sent to the SPD and ERTEC laboratories for testing. Due to the small size of the samples, only dispersion and classification tests were performed. The results are enclosed as attachments 1 and 2.

#### Classification

9.12 The abutment infill material classifies as a plastic clay (CH).

#### Dispersion

9.13 Dispersion tests indicate the infill materials is nondispersive.

#### X. EMBANKMENT ANALYSIS

#### SLOPE STABILITY

10.01 The results of tests performed on record samples indicate that the permeability of the as-constructed pervious shell material is higher than the selected design permeability and that the shear strength of the as-constructed embankment materials are higher than the design shear strengths. Therefore, the upstream shell will drain faster during drawdown and the slope stability safety factors of the as-constructed embankment slopes will exceed the original design safety factors. The stability of the embankment slopes was not reanalyzed. The design values are summarized in table 6.

#### SETTLEMENT

10.02 The results of the consolidation tests on record samples from the core materials of the as-constructed embankment indicate no significant variation in the e versus log p curves when compared to the design consolidation tests. The expected settlements, therefore, should not exceed the estimated settlements calculated during design.

#### SEEPAGE

10.03 The results of tests performed on record samples indicate that the permeabilities of the core, transition, and gravel drain materials of the as-constructed embankment are lower than the design permeabilities for these materials and that the permeability of the pervious shell material of the as-constructed embankment is higher than the design permeability for the pervious shell material.

10.04 The through seepage analysis of the as-constructed dam embankment will differ from the analysis performed during design. The flow net developed to determine the through seepage quantities for the dam embankment during design was based on the following assumptions (1) the core was cracked and filled with transition material and (2) the permeabilities of the pervious shell and transition materials were equal. As shown in figure 5, the through seepage quantities were estimated to be on the order of 245 cubic feet per day per foot of embankment length with the pool at spillway crest. The flow net developed to determine the through seepage quantities for the as-constructed dam embankment, see figure 6, was based on the assumption that the core was cracked and filled with transistion material. From the figure, the through seepage quantities were estimated to be on the order of 50 cubic feet per day per foot of embankment length with the pool at spillway crest.

10.05 The analysis of the as-constructed gravel drain will differ from the analysis performed during design because the as-constructed permeability of the gravel drain material is lower than the design permeability. The reanalysis indicates that the as-constructed gravel drain would be capable of handling the as-constructed through seepage quantities. The as-constructed embankment through seepage is only 1/5 of the design value requiring a thinner gravel drain blanket than required by design.

10.06 The through seepage analysis of the as-constructed dike no. 1 embankment will not differ from the analysis performed during design. The flow net developed to determine the through seepage quantities for the dike no. 1 embankment during design, see figure 7, was based on an intact core. The lower permeability of the as-constructed core material would reduce the through seepage quantities.

i

:

#### XI. DIVERSION AND CONTROL OF WATER

t

11.01 The diversion and control of water consisted of the construction of two temporary diversion levees to pass the 25-year flood flow of 28,000 cfs. The first diversion levee (stage I diversion levee) was constructed to protect the west (right) abutment and the stage I foundation and core trench excavation and embankment, see plate 44. After grouting the rock exposed by the stage I core trench excavation and grouting the west abutment to elevation 1406, the stage I embankment was constructed to elevation 1380 and capped with a 1-foot layer of erosion resistant material and a 2-foot layer of type I stone. The materials from the stage I diversion levee were used to construct the second temporary diversion levee (stage II diversion levee) which protected the east abutment, outlet works, and the stage II foundation and core trench excavation and embankment between the stage II diversion levee and the west abutment. Mater'als from the stage II diversion levee were placed in the appropriate zones of the embankment during the closure.

11.02 Closure of the breach commenced on October 1984. The embankment was constructed to elevation 1456 by November 27, 1984, and to elevation 1485 by December 31, 1984. The embankment was topped out in January 1985.

### XII. INSTRUMENTATION

12.01 Instrumentation consisted of installing 50 settlement monuments and 3 observation wells. Twenty-two monuments were installed at the upstream edge of the crest of the dam embankment and twenty-one monuments were installed at the upstream edge of the crest of dike no. 1 to monitor crest settlements. Seven monuments were installed on the upstream slope of the dam embankment to monitor slope movements. See plate 45 for the location of the settlement monuments. The three observation wells were installed to monitor the ground water levels. See plate 1 for the location of the observation wells.

#### XIII. CONSTRUCTION NOTES

#### MODIFICATIONS AND CHANGES

13.01 Modifications and changes were made to the plans and specifications during contruction to utilize available construction materials and due to conditions not anticipated during design. The geotechnical related contract modifications and field changes are listed in tables 7 and 8. The final contract bid items with estimated and actual quantities are in table 9.

13.02 The actual quantities for the geotechnical related bid items 7b, 9, and 10b were significantly higher than the estimated amounts. Items 7b and 10b were higher because more foundation preparation was done during construction than was anticipated during design. Item 9 was higher because the top of rock was lower than was anticipated during design, see plate 18.

13.03 The actual quantities for the geotechnical related bid items 4, 6a, 6b, 22, 39f, and 39g were significantly lower than the estimated amount. Items 6a, 6b, and 22 were not used at all. Item 4 was lower because the amount of material suitable for topsoil was thinner than anticipated during design. Items 39f and 39g are discussed in detail in the foundation report referenced in paragraph 2.04

#### XIV. RECOMMENDATIONS AND CONSIDERATIONS

14.01 The following items noted during various construction phases may be helpful for the design, specification preparation, and construction of other projects.

14.02 A well defined verification fill should be required by specifications and included in the project plans to demonstrate, verify, and evaluate the contractors embankment construction procedures consisting of placement, spreading, compacting, and scarifying. This would aid the contractor and inspection personnel in embankment construction control.

14.03 The processing requirements necessary to produce a selected gradation of stone from alluvial borrow materials and to estimate the quantity of the selected stone available should be based on actual data such as mass gradations performed on representative samples of the material rather than on visual estimates of the percentages of cobbles and boulders and on an estimate of the maximum particle size while logging the test trenches and test holes during field exploration. The size of the representative samples, should be significantly large and based on the relative abundance of oversize and the maximum particle size. The mass gradations should be used to adjust the visual estimates of the percentages of cobbles and boulders for the logs of test trenches and test holes for which mass gradations are not performed.

14.04 The number of passes required to compact the core, transition, and pervicus shell materials to each materials design density was reduced from 8 to 4 passes based on the results of the verification and demonstration fills. In future Design Memorandums and Plans and Specifications the number of passes required to compact similar materials to 90 percent ASTM D 1557 should be reduced from 8 passess to 6 passes.

14.05 The material for pervious shell was identified in the specifications as clean, free draining gravelly sand and sandy gravel, with not more than 10 percent of the material, by weight, shall pass the No. 200 sieve. Because terms such as clean and free draining are interpreted differently by different occupations, the identification and suitability of materials should be based on gradation and Atterberg limits tests only.

### XV. SUMMARY

15.01 The embankment was constructed in accordance with plans and specifications with few field modifications. Based upon record test results the as-built embankments meet or exceed design requirements. The well constructed project is the direct result of the good design and excellent cooperation between design and construction personnel during construction.

# TABLES

Table 1. DAM FOUNDATION-FIELD DENSITIES, RELATIVE DENSITIES, DESIGN DATA

			D 2049 ^d		ASTM D 698-70 ^e			
Test hole or trench ^a	Depth (ft) ^b	Field (pcf)	Max. (pcf)	Min. (pcf)	Max. (pcf)	RD (2)	Compaction (2)	Foundation zones
<b>TT 80-197</b>	0	98.5	(*)	(*)	(*)			Stratum A
TT 80-198	0	98.9	(*)	(*)		(*)		Stratum A
TT 80-199	0	105	(*)	(*)		(*)		Stratum A
<b>TT 80-201</b>	0	99.1	(*)	(*)		•		Stratum A
<b>TT 80-202</b>	0	105.8	(*)	(*)		(*)		Stratum A
TH 80-34	10	146.5	147.4	124.6	(*)	97	(*)	Stratum B
TH 80-35	80	139.7	139	124.3	(*)	104	(*)	Stratum B
<b>TT 80-197</b>	80	f85.1	140.7	119.3	(*)	264	(*)	Stratum B
TT 80-198	œ	143.6	146.9	131	146.2	81	16	Stratum B
TT 80-199	6	140.2	143.2	130.6	(*)	78	(*)	Stratum B
TT 80-199	15	135.2	144.4	126	139.8	53	97	Stratum B
<b>TT 8</b> 0 200	7	125.2	139.8	112.7	134.4	52	93	Stratum B
<b>TT 8</b> 0 201	Q	135.1	140.1	121.6	138.6	76	97	Stratum B
<b>TT 80-</b> 201	13	143.1	146.6	134	144.6	74	66	Stratum B

ı

1

Table 1. (Continued)

			:					
Test hole	Depth	Field	D 2049 ^d Max.	Min.	ASTM D 698-70 ^e Max.		Compaction	Foundation
	(11)	( pcr )	( pcr )	( pcr)	( pcr )	(४)	(7)	zones
<b>TT 80-202</b>	6	141.9	140.9	128.3	137.6	107	103	Stratum B
ТН 79-32	13	149.9	148.6	115.9	(#)	103	(*)	Stratum C
TH 79-33	6	137.5	133.9	110.2	(*)	112	(*)	Stratum C
ТН 79-34	18	141.1	138	125.2	(*)	121	(*)	Stratum C
<b>TH 80-35</b>	18	(*)	142.3	128.7	(*)	(*)	(*)	Stratum C
TT 80-197	12	148.3	147	123.5	(*)	105	(*)	Stratum C
<b>TT 80-198</b>	15	139.4	144.8	125.1	(*)	75	(*)	Stratum C
TT 80-199	18	(*)	150.4	129.5	146.3	(*)	(*)	Stratum C
<b>TT 80-200</b>	13	f ₁₂₃ ,5	142.2	114.3	(*)	38	(*)	Stratum C
<b>TT 80-2</b> 01	18	138.2	138.3	115.8	141	98	98	Stratum C
<b>TT 80–202</b>	15	142.1	136.9	120.1	139.9	126	102	Stratum C

ABTrisk (") indicates not tested or determined. NOTe:

See plate 3 for location of test holes and test trenches. s.

Depth indicates distance from ground surface to the top of the sample. ġ.

. ф

Field densities were performed on minus 12-inch material. ASTM D 2049 tests performed on minus 3-inch material and the densities corrected for percent

ASTM D 698-70 tests performed on -3/4-inch material, and the densities corrected for percent oversize. **.** 

Error in large-scale density. oversize. •

Test hole	Depth (ft)	Field permeability (fpd)	Field Dry Density (pcf)	Materials Source
79-34	10	22.7	146.5	Stratum B
80-35	8	19.4	139.7	Stratum B
79-32	13	18.5	149.9	Stratum C
79-33	9	8.5	137.5	Stratum C
79-34	18	6.2	141.0	Stratum C
80-35	18	8.0		Stratum C

Table 2. DAM FOUNDATION - FIELD PERMEABILITY, DESIGN DATA

*From large-scale density tests. - No value obtained.

Station	Offset (ft)	Elevation (ft)	Field Dry Density (pcf)	ASTM D 698-70 Max. (pcf)	Compaction (%)
28 + 15	35US	1371.2	147.4	125.7	115
29 + 68	30DS	1371.8	153.7	124.9	123
23 + 05	IDS	1364.8	130.2	118.6	104
26 + 00	IDS	1365.0	128.2	113.8	112
23 + 40	30DS	1370.0	133.8	125.7	101
23 + 40	30 <b>US</b>	1370.0	143.1	125.7	111
23 + 45	IUS	1365.0	138.7	130.3	105
26 + 25	1US	1366.0	119.8	118.8	100

# Table 3. CORE TRENCH FIELD DENSITIES AND COMPACTION TESTS RESULTS CONSTRUCTION DATA

a. US denotes upstream of centerline and DS denotes downstream of centerline.
b. Elevation indicates top of sample.

c. ASTM D 698-70 tests performed on 2-inch material and densities corrected for percent oversize.

Station	Offset	Elevation (ft)	Field Dry Density (pcf)	ASTM D 698-70 Max (pcf)	Compaction (%)
27 + 05	185US	1380.1	146.5	136	
24 + 25	185US	1380	132.6	128.1	100
22 + 05	110US	1380	141.6	131.5	108
20 + 50	150US	1380	150.8	136.6	109
27 + 25	135DS	1380	136.1	133.7	102
18 + 80	21 OUS	1380	146.9	137.5	102
17 + 50	230DS	1380.1	153.8	141.0	109
22 + 70	185DS	1381.4	156.7	140.	112
31 + 70	66US	1381.8	127.8	131.4	91
31 + 65	12005	1381.8	140.5	134.4	100
31 + 06	114DS	1380.3	130.8	133.9	91
30 + 75	130DS	1379.8	141.4	136.2	99

### Table 4. DAM FOUNDATION-FIELD DENSITIES AND COMPACTION TEST RESULTS, CONSTRUCTION DATA

a. US denotes upstream of centerline and DS denotes downstream of centerline.

ł

{

b. Elevation indicates top of sample.
c. ASTM D 698-70 tests performed on 2-inch material and the densities corrected for percent oversize.

. b.

1

.

Alba

_

# Table 5. EMBANKMENT GRAVEL DRAIN MATERIAL

L. A. Rattler loss Z	Specific Gravity	Sulphate Soundness Z	
18.2	2.65	5.3	

Table 6. EMBANKMENT AND FOUNDATION, SUMMARY OF GDM AND AS-CONSTRUCTED DESIGN VALUES

	ĺ	Unit Weight	eight		S		40010	Shear Strength R	1			ð	Permeability	<b>ility</b>
Zone	) MGS	N N N	A B B W C D W	Sat (pcf) GDM Const	(Deg GDM	Ø (Degree) GDM Const	C De C	Ø (Degree) 3DM Const	U B B C C C S C S S S S S S S S S S S S S	C (psf) GDM Const	G G G G G G G G G G G G G G G G G G G	Ø (Degree) GDM Const	(F	(fpd) I Const
Core	<b>a</b> 128	(136)	^a 135	(139)	32	(34)	12	(16)	600	(086)	22	1	0.3	(0.06)
Shell	¹³⁶	(149)	^D 146	(154)	39	(40)	23	(21)	930	(3000)	20		20	(35)
Transition	0130	(141)	144	(149)	39	(40)	23	(27)	930	(3000)	20		20	(1.0)
Drain	c124	(112)	c134	(131)	35	(40)		•					°7000	(1200)
Found Stratum B	134		151		40		29		1000	}			20	
Found Stratum C	144	1	150		36	ļ	14	1	2000	1			80	
Found Dike #1	136	ļ	142		36		14		2000	}			80	
Found Dike #2	150	ł			45	[							7	

,

1

1

Ŀ

Mod. No.	Item	Description of Change	Cost
P00005	Stage I Excavation of Unsuitable Foundation	Excavation of core trench from elevation 1365 as shown on the contract drawings to elevation 1355, from station 29+64 to 31+90. (unsuitable foundation)	\$ 68,227.00
P0000 <b>9</b>	Grouted Stone Upstream In- take Structure	Place and grout stone upstream of Intake Structure, station 20+99.27 to 21+30.	\$ 24,779.00
P00010	Stone Protection	Contractor was required to significantly alter borrow procesing methods and procedures in order to obtain adequate and acceptable type I stone.	\$480,000.00
P00013	Observation Wells	Install three observations wells at the New River dam site.	\$ 53,877.00

J

1

ĺ

# Table 7. GEOTECHNICAL RELATED CONTRACT MODIFICATIONS

.

### Table 8. FIELD CHANGES

Item	Date	Description	Cost
Core*		Increase lift thickness from 8" to 12" and reduced number of passes from 8 to 4 based on demonstration and verification fill construction results.	No Cost
Transition		Reduce number of passes from 8 to 4 based on demonstration and verification fill construction results.	No Cost
Pervious Shell		Reduce number of passes from 8 to 4 based on demonstration and verification fill construction results	No Cost

-

*Because the contractor did not use the same towed, double drum tamping roller to construct the embankments as he used in the demonstration and verification fill, the contractor was required to compact the core materials with 8 passes of a towed, double drum tamping roller as specified.

Item No.	Description	Estimated Quantity	Unit	Unit Price	Actual Quantity
1.	MOBILIZATION AND PREPARA- TION WORK	1	Job	L.S	1
2.	DIVERSION AND CONTROL OF WATER	1	Job	L.S	1
3.	CLEARING AND GRUBBING	1	Job	L.S	1
4.	STRIPPING, DIKES 1 & 2	85,000	Cu. Yd	\$ 1.25	68,540
5.	EXCAVATION, DIKE NO. 1 (EXPLORATION TRENCH)	33,000	Cu. Yd.	\$ 1.75	41,443
6.	SCALING (a) FIRST 1000 Cu. Yd. (b) OVER 1000 Cu. Yd.	1,000 500	Cu. Yd. Cu. Yd.	\$17.00 \$16.00	0 0
• •	EXCAVATION DAM EAST ABUTMENT DAM WEST ABUTMENT	11,700 2,000	Cu. Yd. Cu. Yd.	\$ 7.00 <b>\$16.00</b>	8,313 8,653
8.	EXCAVATION, FOUNDATION (DAM)	325,000	Cu. Yd.	\$ 1.25	288,106
9.	EXCAVATION, CORE-TRENCH (DAM	1) 60,000	Cu. Yd.	\$ 1.60	77,360
10.	FOUNDATION PREPARATION (a) FIRST 1,500 Man Hr. (b) OVER 1,500 Man Hr.	1,500 1,500	Man Hr. Man Hr.	\$30.00 \$28.00	1,500 5,813
11.	EXCAVATION, OUTLET WORKS	29,000	Cu. Yd.	\$ 7.00	41,652
12.	EXCAVATION, SPILLWAY	96,000	Cu. Yd.	\$ 5.00	101,181
13.	EXCAVATION, ACCESS ROAD	5,500	Cu. Yd.	\$ 4.00	6,052
14.	EXCAVATION, TOE	25,000	Cu. Yd.	\$ 1.25	10,000
15.	FILL, OUTLET WORKS	15,000	Cu. Yd.	\$ 2.50	17,094
16.	FILL, ACCESS ROAD	71,000	Cu. Yd.	\$ 1.50	73,676
17.	FILL, CORE	524,000	Cu. Yd.	\$ 1.50	539,214
18.	FILL, TRANSITION	410,000	Cu. Yd.	\$ 1.75	422,265
19.	FILL, PERVIOUS SHELL	1,640,000	Cu. Yd.	\$ 1.50	1,627,807

-

(

-

# Table 9. ESTIMATED AND ACTUAL QUANTITIES AND UNIT PRICES

SHEET 1 OF 4

ltem No.	Description	Estimated Quantity	Unit	Unit Price	Actual Quantity
20.	FILL, TOE	21,000	Cu. Yd.	\$ 1.25	15,884
21.	FILL, MISCELLANEOUS	245,000	Cu. Yd.	\$.40	154,684
22.	ADDITIONAL ROLLING	500	Hours	\$ 90.00	0
23.	GRAVEL DRAIN	9,000	Cu. Yd.	\$ 7.00	9,000
24.	STONE, TYPE I	35,000	Ton	\$ 5.00	35,000
25.	STONE, TYPE II	40,000	Ton	\$ 5.00	40,000
26.	STONE, TYPE III	50,000	Ton	\$ 6.00	50,000
27.	GROUTING, STONEWORK	1,600	Cu. Yd.	\$ 50.00	1,600
28.	CONCRETE, CONDUIT	1,400	Cu. Yd.	\$200.00	1,400
29.	CONCRETE, OUTLET CHANNEL	SILL 13	Cu. Yd.	\$100.00	13
30.	CONCRETE, SPILLWAY SILL	36	Cu. Yd.	\$125.00	36
31.	INTAKE STRUCTURE	1	Job	L.S.	1
32.	ENERGY DISSIPATOR	1	Job	L.S.	1
33.	CONCRETE PLUG (LEAN MIX) (a) FIRST 300 Cu. Yd. (b) OVER 300 Cu. Yd.	300 100	Cu. Yd. Cu. Yd.	\$ 50.00 \$ 45.00	300 100
34.	CONCRETE, DENTAL (a) FIRST 1000 Cu. Ft. (b) OVER 1000 Cu. Ft.	1,000 750	Cu. Yd. Cu. Yd.	\$ 90.00 \$ 85.00	1,000 750
35.	GROUT, SLURRY (a) FIRST 500 Cu. Ft. (b) OVER 500 Cu. Ft.	500 500	Cu. Ft. Cu. Ft.	\$ 22.00 \$ 20.00	500 500
		OPTION No.	1		
36.	PORTLAND CEMENT	8,400	Cwt.	\$ 7.00	8,400
37.	STEEL REINFORCEMENT	240	Ton	\$700.00	240
38.	WATERSTOP	400	Lin. Ft.	\$ 9.00	400

TABLE 9. (Continued)

•

ł

ŕ

SHEET 2 OF 4

ı.

# TABLE 9. (Continued)

Į

ĺ

lten No.	Description	Estimated Quantity	Unit	Unit Price	Actual Quantity
		quantity			quantity
39.	FOUNDATION DRILLING AND				
	GROUTING				
	(a) MOBILIZATION AND DEMOBILIZATION	1	Job	L.S.	1
	(b) DRILLING EXPLORATORY	1	500	L.J.	L
	GROUT HOLES	350	Lin. Ft.	\$ 25.00	350
	(c) DRILLING GROUT HOLES	9,100	Lin. Ft.		9,100
	(d) PIPE FOR GROUT HOLES	500	Lin. Ft.	\$ 5.00	500
	(e) DRILL SET-UPS				
	(1) GROUT HOLES	370	Each	\$ 25.00	370
	(2) EXPLORATORY GROUT				_
	HOLES	4	Each	\$ 50.00	5
	(f) PRESSURE TESTING	175	Hour	\$ 60.00	47.5
	(g) GROUT PUMP CONNECTIONS (h) PLACING GROUT	375 2,500	Each Sack	\$ 50.00	225
	(h) PLACING GROUI	2,500	SACK	\$ 20.00	2,097.5
40.	PIPE GATE, OUTLET WORKS	1	Each	\$1,500.00	6
41.	DRIVE GATE	1	Each	\$1,000.00	1
42.	DOUBLE DRIVE GATE	2	Each	\$1,500.00	5
43.	REINFORCED CONCRETE CULVERT, IKE NO. 1	1	Job	L.S.	1
44.	CORRUGATED METAL PIPE, 24 INC	H 60	Lin. Ft.	\$ 35.00	60
45.	CORRUGATED METAL PIPE, 36 INC	н <del>6</del> 0	Lin. Ft.	\$ 55.00	60
46.	CORRUGATED METAL PIPE, 48 INC	H 660	Lin. Ft.	\$ 65.00	660
47.	METAL END SECTIONS FOR 36" CM	IP 2	Each	\$ 300.00	2
48.	METAJ. END SECTIONS FOR 24" CM	IP 2	Each	\$ 200.00	2
49.	AGGREGATE BASE, ROAD	2,400	Cu. Yd.	\$ 9.00	2,353
50.	ASPHALT CONCRETE PAVEMENT	2,800	Ton	\$ 35.00	1,039
51.	5' CHAIN LINK FENCE	16,000	Lin. Ft.	\$ 8.00	16,512
52.	GUTTER	4,800	Lin. Ft.	\$ 15.00	7,992
53.	GUARDRAIL	450	Lin. Ft.	\$ 15.00	410
54.	LOG BARRIER	38	Lin. Ft.	\$ 25.00	40

د..

__**...** 

. B.

SHEET 3 OF 4

Item No.	Description	Estimated Quantity	Unit	Unit Price	Actual Quantity
55.	PROJECT SIGN	1	Job	L.S.	1
56.	HYDROLOGIC FACILITIES	1	Job	L.S.	1
57.	STAFF GAGES AND MONUMENT	1	Job	L.S.	1
58.	GAGING STATION BRIDGE	1	Job	L.S.	1
59.	TOPSOILING	23,000	Cu. Yd.	\$ 300.00	22,369
60.	LANDSCAPE STONE	11,300	Cu. Yd.	\$ 6.00	16,283
61.	DESERT GRAVEL	4,100	Cu. Yd.	\$ 15.00	4,367
62.	DESERT VARNISH FINISH	4,500	Gal	\$ 20.00	4,500
63.	CONCRETE STAIN	330	Gal	\$ 25.00	300
64.	SEEDING	50	Acre	\$2,500.00	50
65.	PLANTING	1	Job	L.S.	1

TABLE 9. (Continued)

SHEET 4 OF 4

# FIGURES

, ,

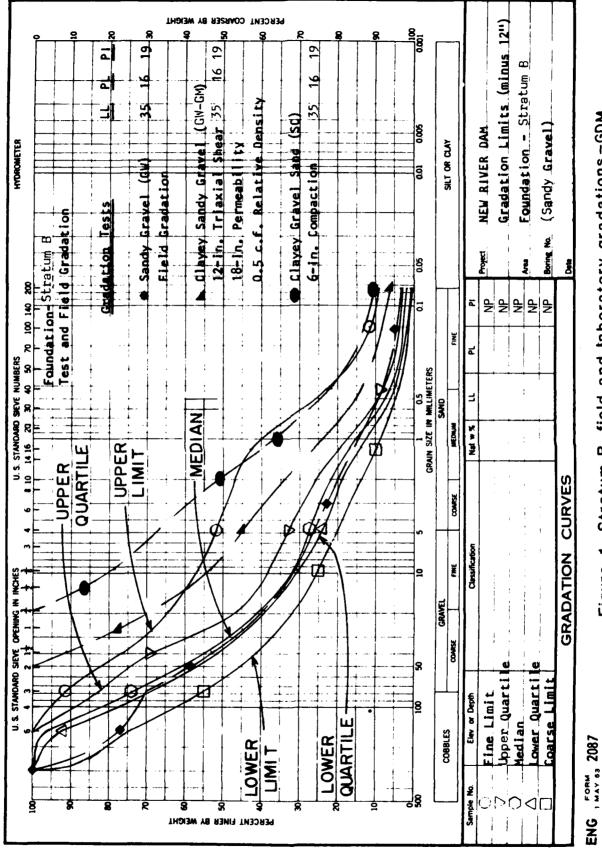



Figure 1. Stratum B, field and faboratory gradations-GDM

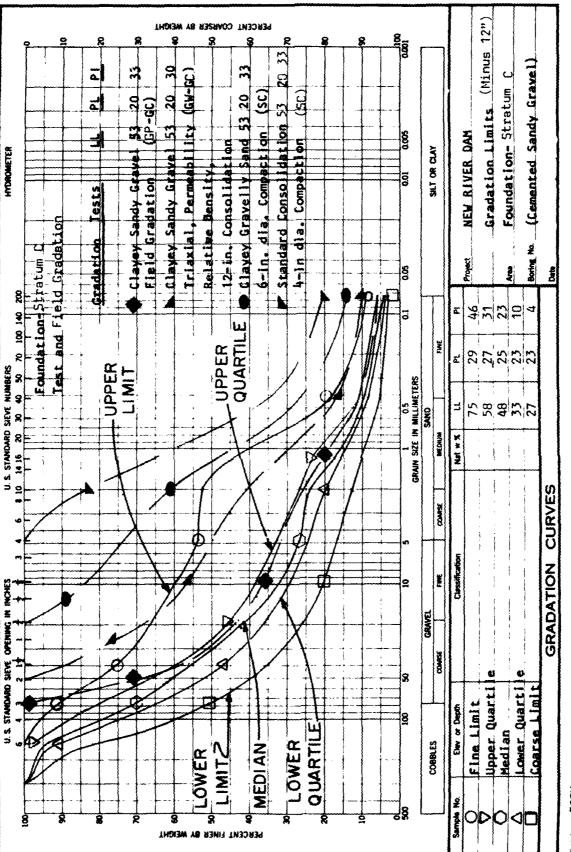
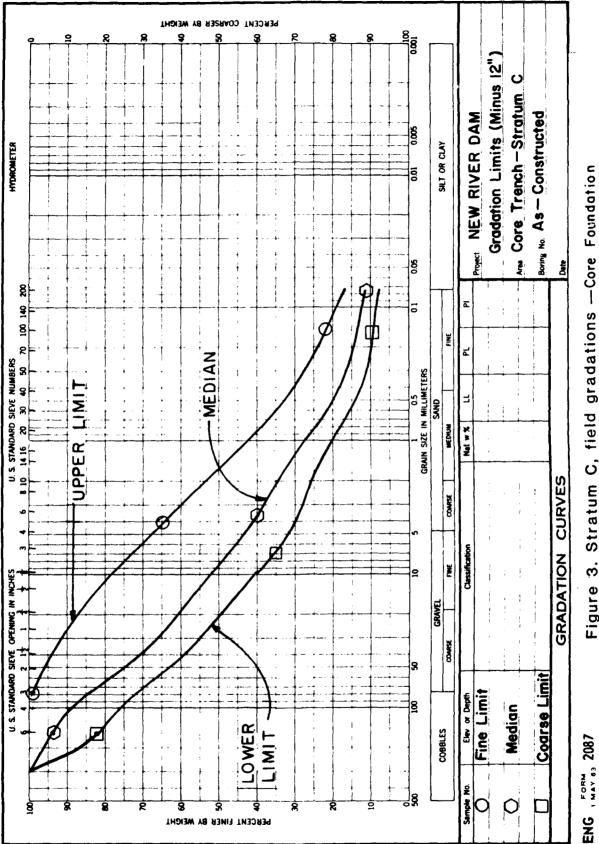
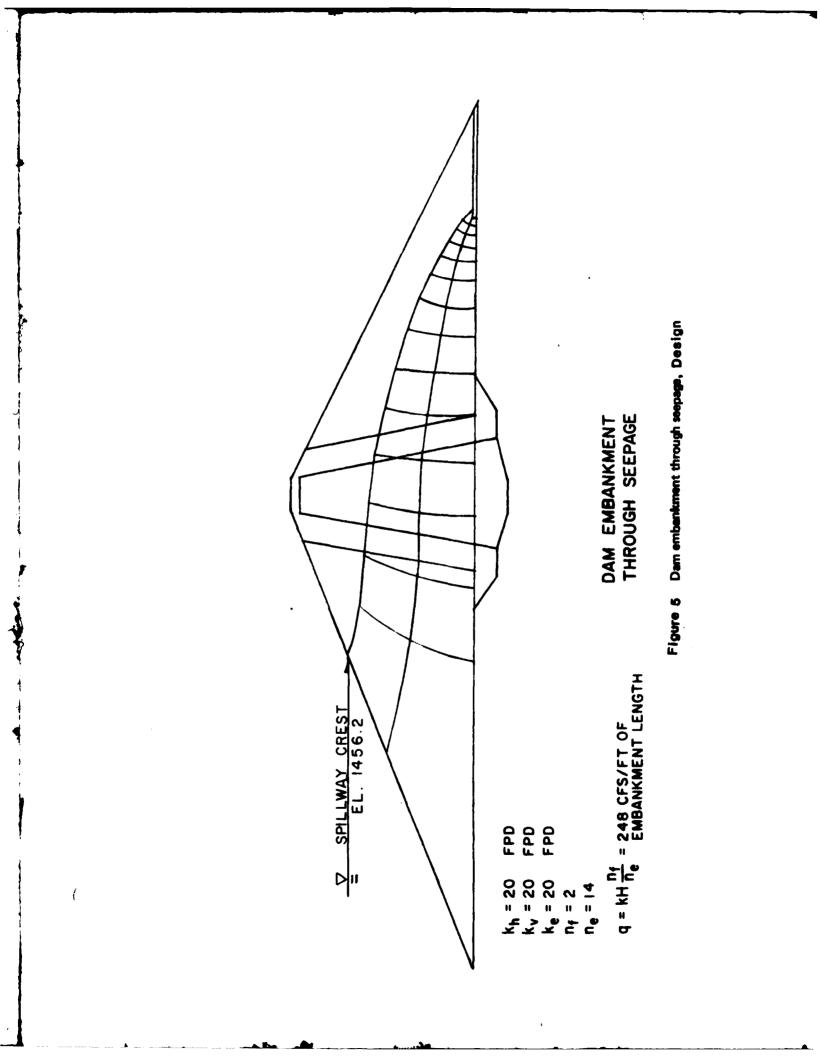
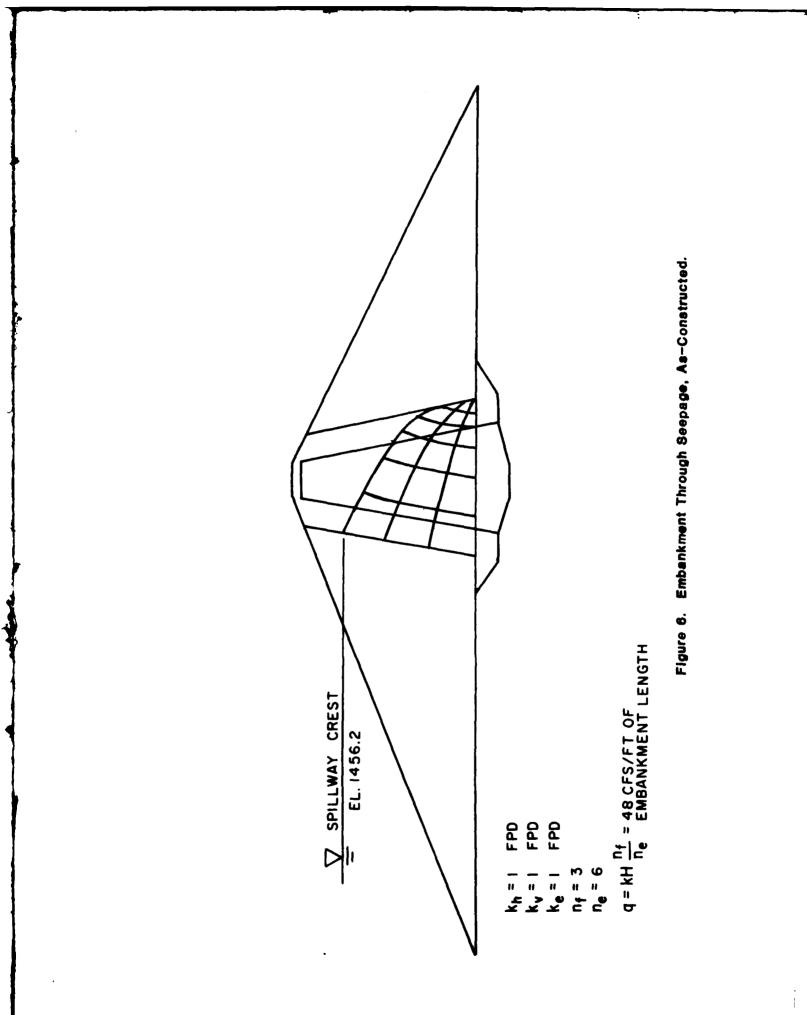
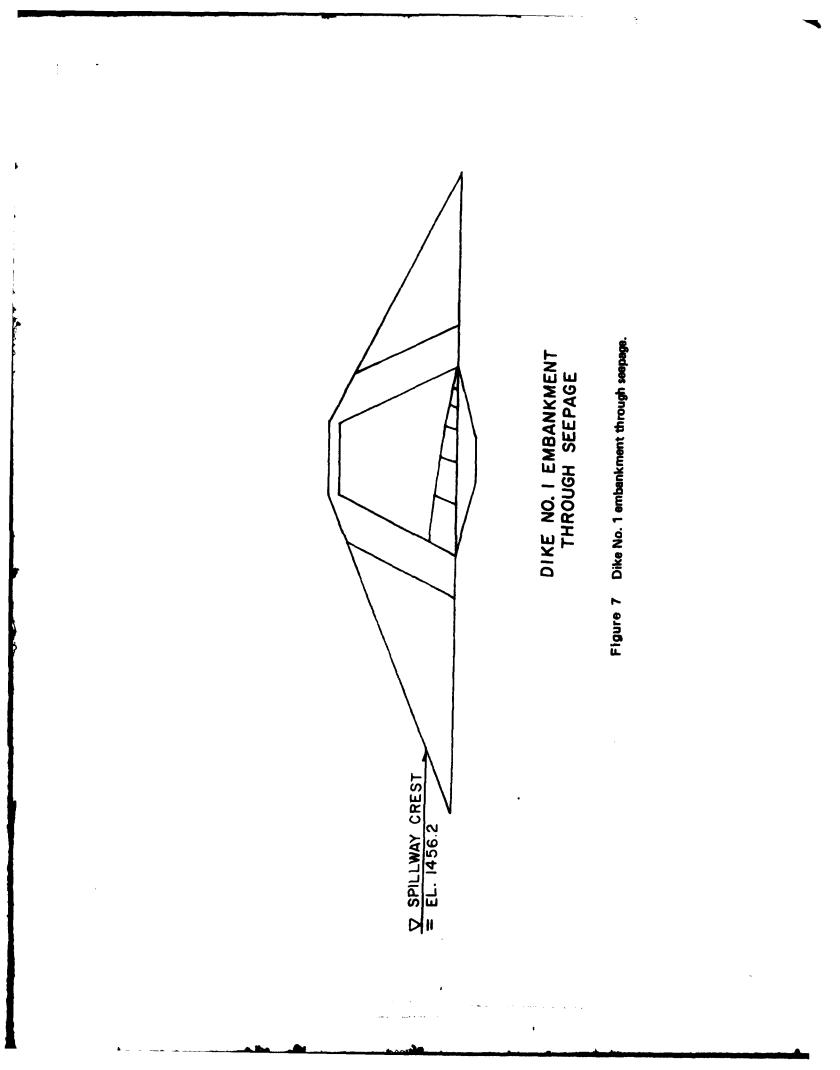


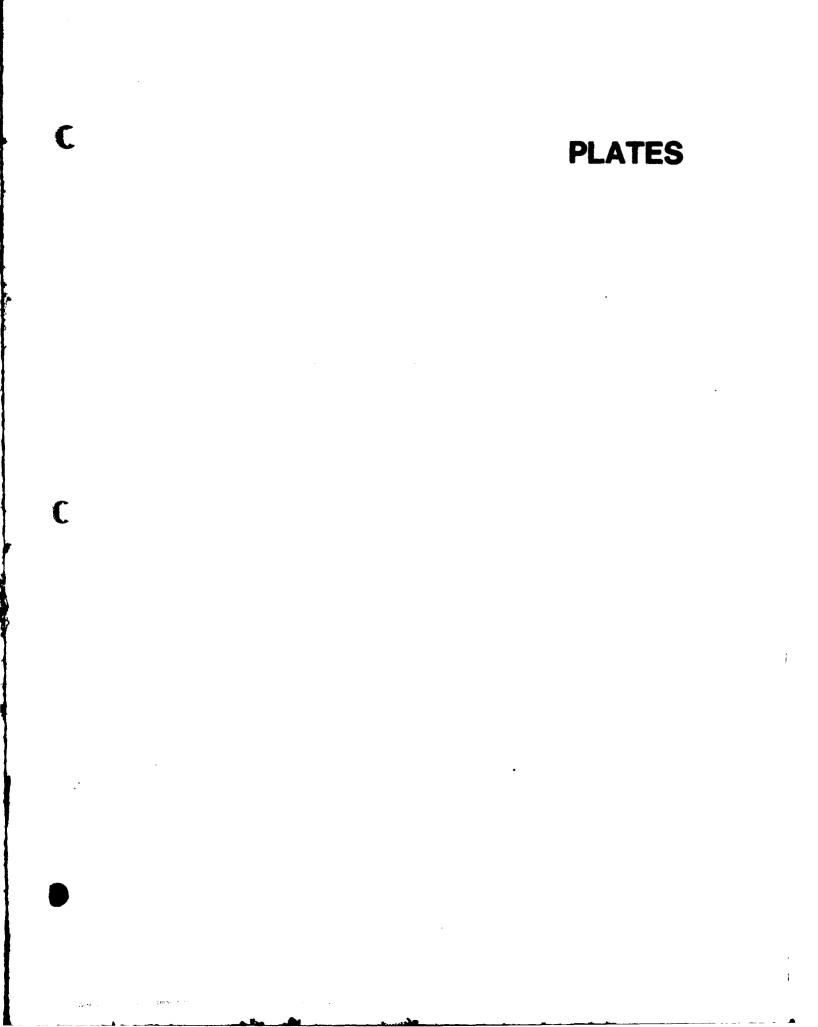

Figure 2. Stratum C, field and laboratory gradations -- GDM

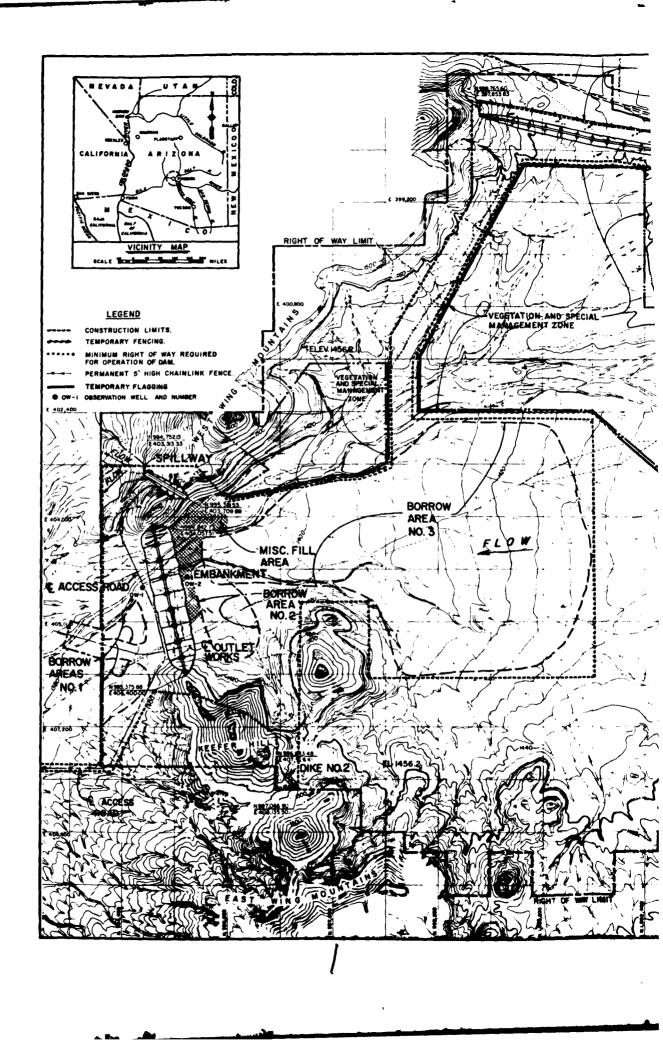
ENG , MAY 43 2087

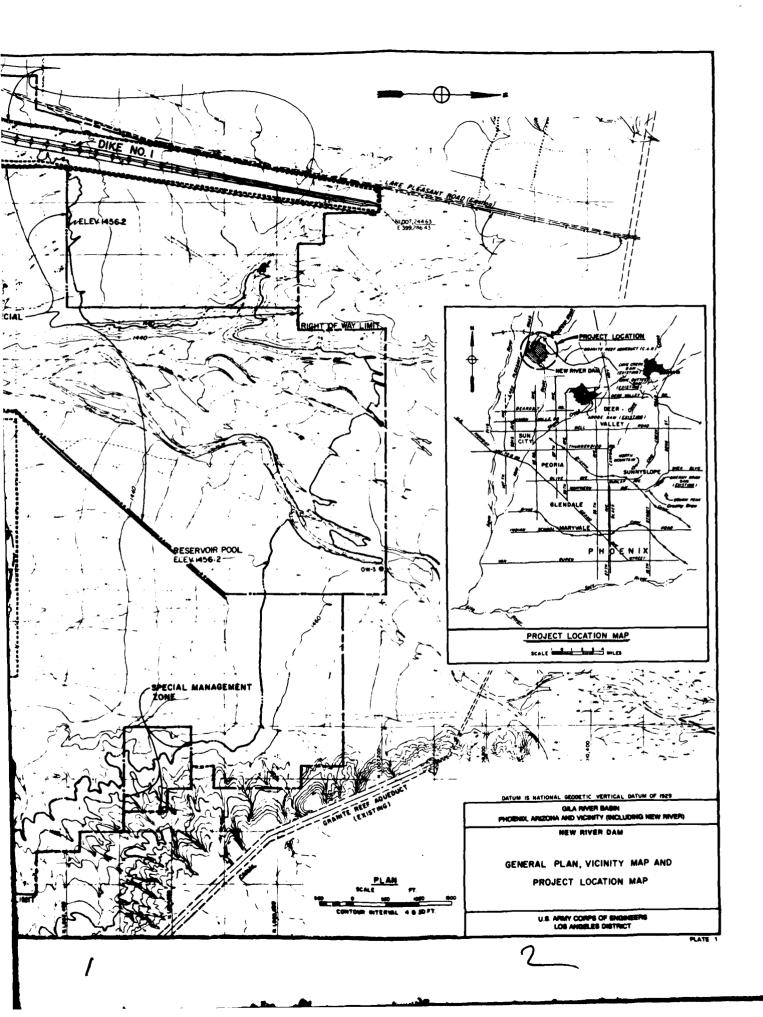





Figure 3. Stratum C, field gradations -- Core Foundation

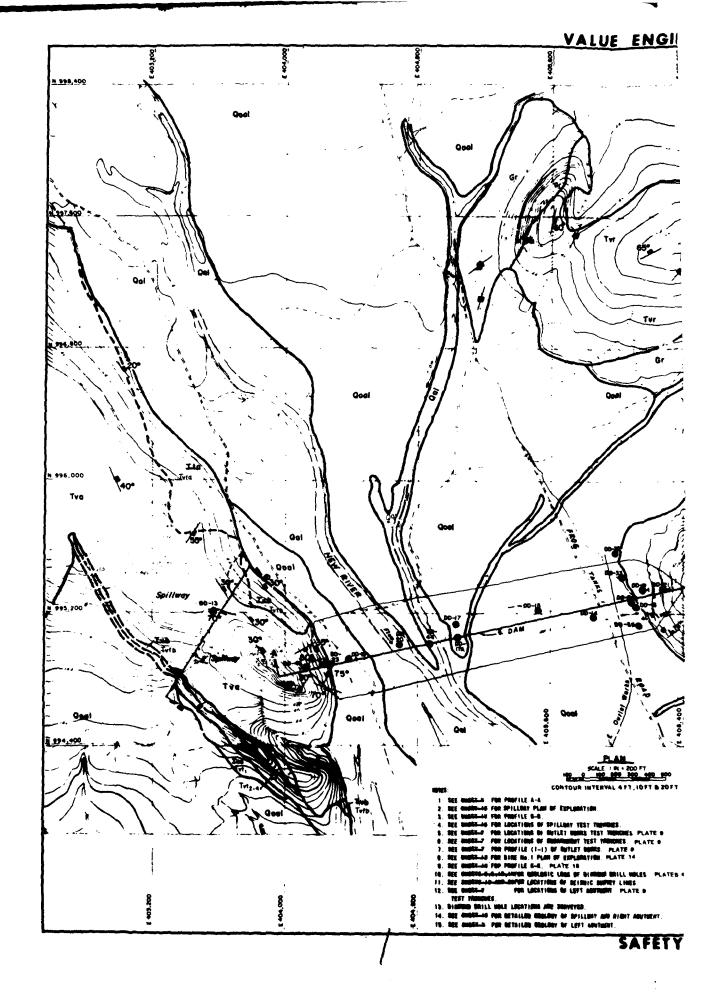

DEBCENT CONSEER BY WEIGHT 800 ç 8 2 8 3 P Gradation Limits (Minus 12") 8 RIVER DAM Anne Foundation Stratum Borne No. As- Constructed **60**0 **MUROMETER** SILT OR CLAY 50 Project NEW 8 Oute -1 8 È . t ā. 9 5 I 8 - MEDIAN SINE i 2 ۳, U. S. STANDARD SIEVE NUMBERS ន GRAIN SIZE IN MILLIMETERS 9 0.5 ۲ 8 + MEDAUM Nat w S 8 ţ 14 16 UPPER LIM 2 GRADATION CURVES COMPSE 6 JH. 2 INCHES ž GRAVEL OPENING COMPSE U. S. STANDARD SIEVE 3 ŧ Coorse Limit Fine Limit Elev or Depth 8 Median () COBBLES -OWER LIMIT ş ှိနှိ Sample Ŕ 8 8 ģ ğ ĝ 8 ĝ DEBCENT LINES BA MEICHL


Figure 4. Stratum B, field gradations-Shell Foundation.

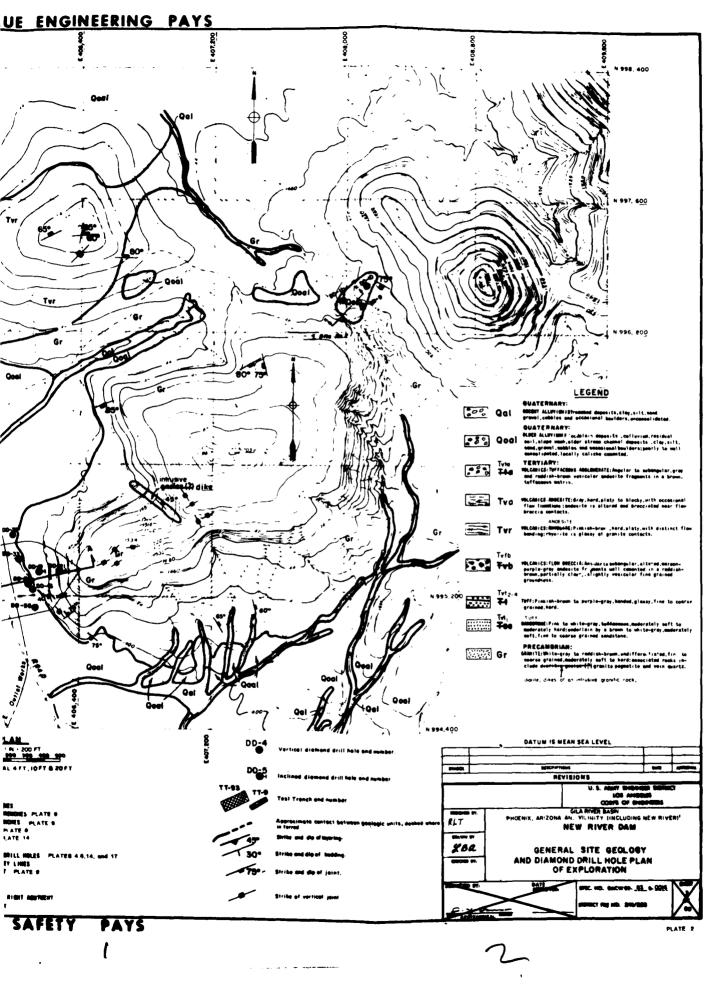

ENG , MAY 83 2087



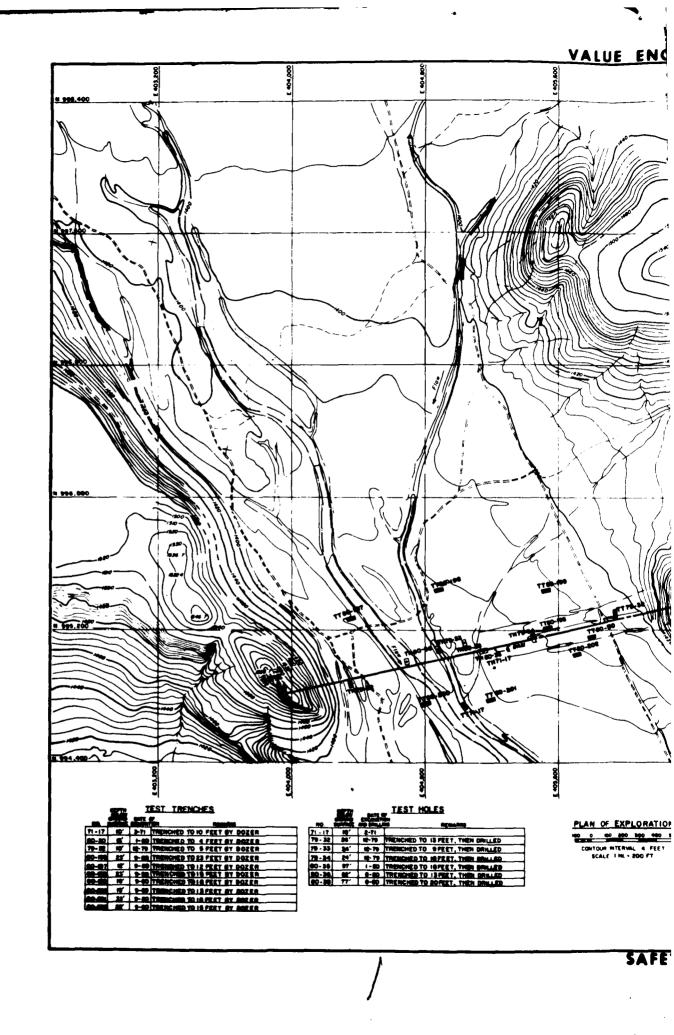


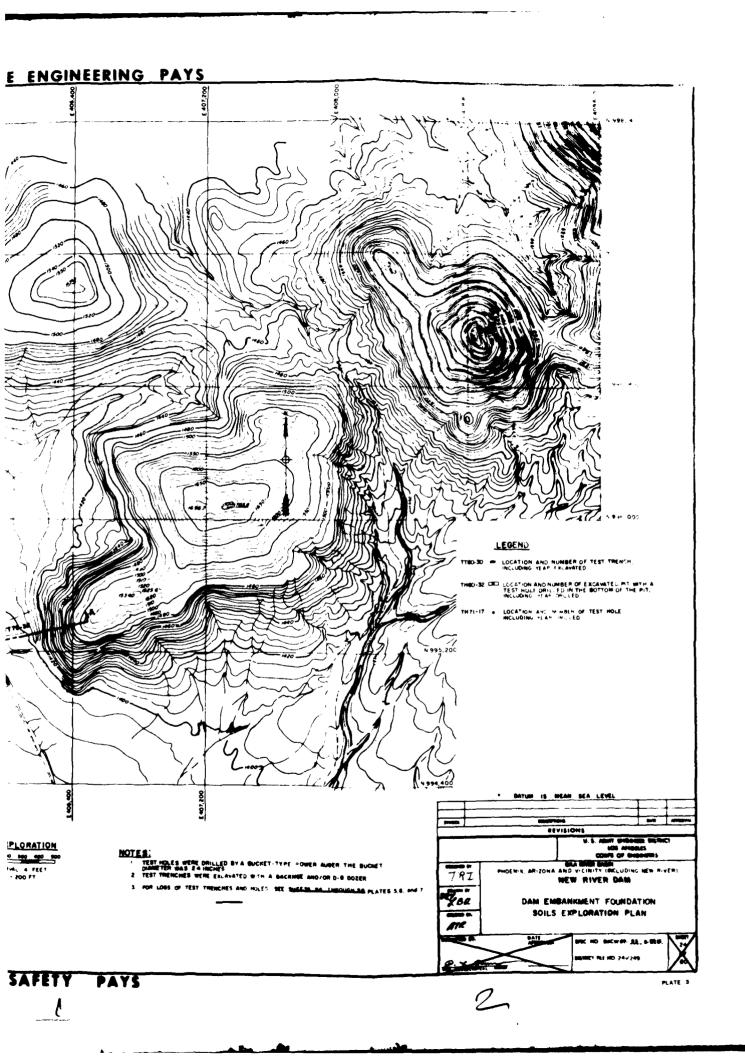


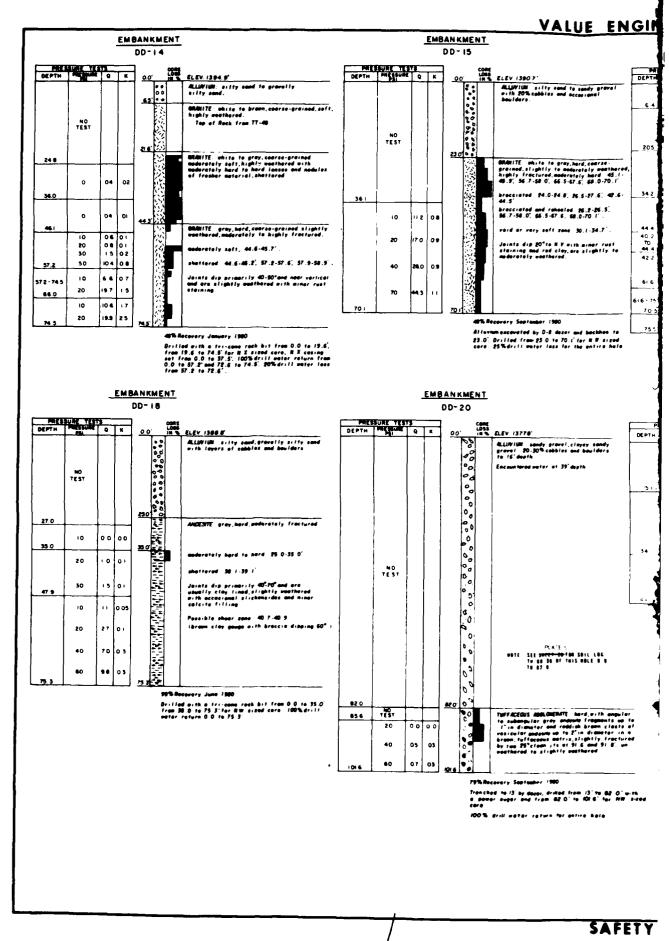




٦.

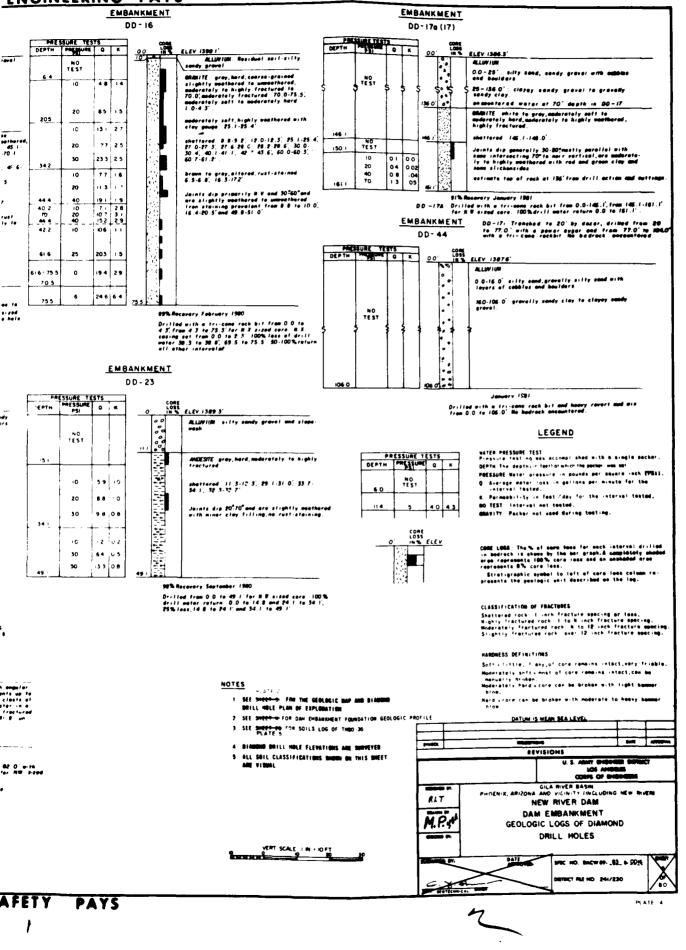



Ì




_____




i



.



## ENGINEERING PAYS



TH80-35

		20	5	9	9 4		SILTY SAMC, light brown, dry, loose
SM	┝╌┥	-	•		÷ -	+=	5
ļ	1	20	. 2	96	39	,F=	1
L			÷	÷		E	
	I I			i –			SANDY GRAVEL, brown, dry, dense, 10-20% cobbles, 10-20% boulgers to
			•	+			18*
	F :			26		_	-
	ł			23	) <i>c</i>		
			:			=	-
							:
	<b>†</b> →		+	+		Ŧ	GRAVEL/SLAVEY GRAVEL readion
œ			_	17	. 5	-	brown, morst, dense, 15% complex to
GC		29	,	30			SANDY GRAVEL/CLAYEY SANDY GRAVEL
_	<b>└</b> →	_	•		+		
		73	49	156	12	=	-
	┝─╍		• •	+		+	SANDY GRAVEL/SILTY SANDY GRAVEL
GN		77	39	48	10		SHOUT BRATELYSTETT SHOUT BRATEL
				T		F	CLAYEY SMOY GRAVEL
ωc		76	50	: 53	13	F	
GP.		61	30	46	ю		SANDY GRAVEL/CLAVEY SANDY GRAVEL
				+			
		62	47	37	12	=	
				-			
GC		70	47	45	17	<u> </u>	
GP.		71	42	27	,		SANDY GRAVEL/CLAVEY SANDY GRAVEL
<u>هر</u>				+	+	-	CLAYEY SANTY GRAVEL. dark brown,
GC		58	30	46	15		cohearre.
_		_	<b></b>	÷	<u>+</u> -		
		5	39	41	п		SANDY GRAVEL/CLAY SANDY GRAVEL, redd brawn, camontod, 5-10% cobbles to 10
~	• •	•		•		=	
GC		72	50	51	-8		CLAYEY SANNY GRAVEL, dark brown, comented, 5-10% cobbies
				•	•	<b>†</b>	SANDY GRAVEL/CLAYEY SANDY GRAVEL, derk breen
GC		46	24	37			derk breen
GM		44	17	52	20		SILTY SANDY GRAVEL, dark brown, 5-10% cobbles
					•	_	
GMI GMA				43	12		SANDY GRAVEL/SILTY SANDY GRAVEL, red brann faw cabbles to 8"
-	+	• • • •		t	÷	+	SILTY GRAVELLY SAND, reddish brown
<b>SH</b>				66	19		State Complete and the second brand
-		- 1		1	•	Ħ	CORE BANNEL, FLIGHT AUGER, BUCKET AU
	N	IS (	:			듬	and 640 USED- due to a nest of hould
+		-+			•—	曰	CLAVEY GRAVELLY SAND. reddiet brown.
. 1		-	-12	62	- 16		5-8% cobbles to 7"
ഷി			l	50			SANDY GRAVEL/SILTY SANDY GRAVEL
· •		-+			÷		SANDY GRAVEL/CLAVEY SANDY GRAVEL
ec	4	13	21	42	12	E	reddish brown, camented
		+		F	1	Ħ	
GP		13	22	-	: 12	E	
sc				-		三	
-+	-+-	+	_				
<b></b>	1			49			ILTY SANDY ARAVEL, reditish brown,
-1						Þ	
-	T	T		80	38	Ħ	GRAVFLLY SILTY SAND, dark braun, out 5-6% cabbles
-†	-+-	1	-			Þ	SILTY SAUDY BRAVEL, dark braun
_1				-	14	E	
_							
		7	юi	50	28	-	
	Ger Ger Ger Ger Ger Ger Ger Ger Ger Ger	Gew Ge	SM         20           Gew         20           Gew         20           Gew         20           Gew         20           Gew         20           Gew         77           GC         76           Gew         61           Gew         62           GC         70           GC         58           GC         72           Gew         62           GC         72           Gew         46           Gew         48           Gew         48           Gew         43           Gew         43	SM     20     2       Gew     77     49       Gew     77     39       GC     76     50       Gew     61     30       GC     70     47       GC     70     47       GC     58     30       GP     (5     39       GC     72     50       Gew     46     24       Gew     46     24       Gew     1     50       Gew     34     12       Gew     34     12       Gew     43     21       Gew     43     22       Gew     43     24       Gew     43     24       Gew     43     24	State     20     2     94       Gew     20     2     94       Gew     25     9     30       Gew     77     39     46       Gew     77     39     46       Gew     77     39     46       Gew     61     30     44       Gew     62     47     37       GC     70     47     45       Gew     62     47     37       GC     70     47     45       Gew     62     47     37       GC     58     30     46       GC     59     30     46       Gew     62     47     37       Ged     17     42     27       GC     59     30     46       Gew     46     24     37       Gew     46     24     37       Gew     46     24     37       Gew     46     24     37       Gew     43     12     62       Gew     34     12     62       Gew     34     12     62       Gew     32     34     12       Gew     32     43	State         20         2         98         34           20         2         98         34           Gew         25         2           Gew         73         49         56         12           Gew         77         39         48         10           GC         29         9         30         5           Gew         77         49         56         12           Gew         77         39         48         10           GC         76         50         53         13           Gew         61         30         46         10           GC         70         47         45         17           Gec         70         47         45         17           Gec         70         47         45         17           Gec         53         30         46         15           Ge         15         39         41         11           Gec         17         52         20         9           Gew         46         24         37         11           Gew         46         17	SM     20     2     98     39       20     2     98     39       Gw     25     2       Gw     25     2       Gw     73     49     56       Gw     73     49     56       Gw     77     39     48     10       Gw     77     39     48     10       Gw     77     39     48     10       Gw     62     47     37     12       Gw     62     43     17     12       Gw     62     50     51     48       Gw     46     24     37     11       Gw     44     17     52     20       Gw     43     12     53     13       SM     66     79     50     8       SM     50     8     12       Gw     43     12     2

н	80	•	36

REMARKS &0.90' death, change in augur geord implice dvilling through atternating soff ded hard soit layers

11

i. - 1

EL 1304 ± LOG MC LL P: 4 200 N DESCRIPT ON GW NP 30 5 Provider Cobites and Builders to 12

6.0

13.0 GP GC 150

19.0' sw 220

38-0 w 19-0

130

66 0 670

700

150

GP

sc

с.н GM 250

5W 9M 200

. SM 450 GP 47.0

SW SM

Gen Gen 560

SW SM 590' 600

SC SP SM 630

SM

. ŭ 160

514 000

						H80-36							Ţ	H BO - 38
жc	<u>.</u> .	P.	.4	20	0 N	DESCRIPTION	EL 13895	L 06	MC _L	Pi		200		
	i	!	30			SANDY GRAVEL/SILTY SANDY GRAVEL brown grey, dry, dense, 20-30% sub-				NP	95	25		SILTY SAND
	İ		1.50	3		rounded cobbles and boulders to 14"		SM		, NP	. 94	+ - 34	=	
	•	•—	<b>-</b>	•	=	SANDY GRAVEL, reddish hrows, noist,	<u>60</u> '	┝┤	+			1		SANDY GRAV
			+			dense, 20-255, subrounded cobbins to 10"		*				l		70% subrou
		NP	. "	-				GP	NS					
			+			SANDY GRAVEL/CLAYEY SANDY GRAVEL	140							
		37	•••		=	reddish brown, noist, dense, 20.25% subrounded cabbles to 10"		SP					=	SAND /CLAI
	44	18	84	26		GRAVELLY CLAYEY SAND, grey, subrounded grovel		5C	33		99	6		
		NP	73	16	Ξ	SILTY GRAVELLY SAND	20.0'	$\left  - \right $		•	• -		-=	SILTY SAND
-	36		47	9	=	SANDY GRAVEL/SILTY SANDY GRAVEL	230	GM		56	52	۲ <b>3</b>		Tounded co
_					=	GRAVELLY SAND/SILTY GRAVELLY SAND	260	3₩ 100	48	S1	39	9		SANDY CRAV
		*P	57	- 0			***		42	10	 60	17		SILTY GRAV
								SM.	 53				=	fer boulde
	NS				=-		320		· -+		63 	• • •		SANDY GRAV
					_		350	6 <b>%</b> 6C	6	30	51	8		5% ccbbles
								GC	60	31	54	21	==	CLAYEY SAN
		NP	60	. 10	=	GRAVELLY SAND/SILTY GRAVELLY SAND, brown, perched water	38 O	GP		26	40			SAND GRAVE
		NP	61	ю	Ξ	ee!	410	GM				Ì	_=	SILTY SAND
	•		-		=	SANDY GRAVEL, brown, suger speed eiter		GM	62 	- 30 	5) 		_	
		₩P.	19	3	Ξ	notes between fast and slow as it drilt. ine through elternating soft and hard soit layers.	470		65	29	44	ŧ		
		NP	59	6	=	GRAVELLY SAND/SILTY GRAVELLY SAND		nr.	NS					CLAYEY SAM
			72		=		<u>500</u>	$\left  \right $			·			SILTY SAND
			-		-	SANDY GRAVEL/SILTY SANDY GRAVEL		GM	68			·6		
		₩₽ 	5ı	'			560		58	-	37			
	1	NΡ	69	6	_	GRAVELLY SAND/SILTY GRAVELLY SAND	57 C 58 C 59 C	SC S₩ GC	69	34	40 38	7 .		CLAYFY SAND SANDY GRAVE brown, mo
	30	83	<u>07 (</u>	50	=	CLAVEY SAND, white GRAVELLY SAND/SILTY GRAVELLY SAND	295	sc	•• . 63	. 35 . 33	39 67	19.‡ 23.‡		CLAYEY SANG
	40	*	57	•0	=		6c :							CLAYEY GRAN
		<b>ب</b> ه	63	15	' 	SILTY GRAVELLY SANC	<u>65</u> C	GM	53	2, 	4:			
		NP .	52	11	=	SANDY GRAVEL/SILTY SANDY GRAVEL	680	90 50	51	56	34	2		SANDY GROAT
		NP	79	22	=		120	GP GM	58	25	 35	، ء :		SANETY GRAY
		NP	5	6	=	SANCH GRAVEL SILTY SANCH GRAVEL	21.0			• •		_		SILTY SAND
-	+	 149	50		E-		140	.G₩	59	27 • •	37	·6	-	
•		-•			臣	GRAVELLY SILTY SAND	270	۹ن GC	40	•8	29		1	SANDY GRAV
		-	59	=4	-				• •				_	- 1

						т	H 80 - 38
£1 <u>(389</u> 1	- 106	MC _1.	PI	4	-200	) N	DESCRIPTION
		r ÷	NP	95	25	H	SILTY SAMP, light brown dry loose
	SM	- ·					
			NP	94	34	$\square$	
<u>6 Q</u>	┝┥	+				╞╤	SANCH GRAVEL, light brown, dry dense,
						E	20% subrounded cabbles to 8"
	GP	NS				E	
						$\square$	
40				•	-	Þ	
						F	SAND /CLAYEY SAND' reddish brown. morst, medium dense
	SP SC	33		99	6		
200							
	GM		36	52	13	:=	SILTY SANDY GRAVEL, reddish hrown, noist, dense, cemented, 20% suh-
23 C				1			rounded cohbles and boulders to 15" SANDY GRAVEL/CLAYEY SANDY GRAVEL
260	3₩ 10	48	51	39	9	<u>;                                    </u>	SARAT GRAVEL/GLATTY SARAT GRAVEL
194		42	10	60	17	<u>↓ </u>	SILTY GRAVELLY SAIP
	<b>SM</b>	**					
		53	22	63	+7	=	few boulders to 24"
<u>32</u> 0'	G#				•	=	SANDY GRAVEL/CLAYEY SANDY GRAVEL
35 C	SC	6	30	3:	8	$\equiv$	St cobles to 4"
	SC	60	31	54	- <u>-</u> 21		CLAYEY SANDY GRAVEL
38 C				•			
	GP GM	69	26	40	12		SANDY GRAVEL/SILTY SANDY GRAVEL
• 2			•				SILTY SAMEY GRAVEL
		62	30	51	(9	<u> </u>	
		65	29	45	6		
<u>•:</u> c							CLAYEY SANDY GRAVEL, dark brown moist
<u>Ко.</u> .	55	NS				==	dense, subrounded gravel and sand
		68	35	39		<u> </u>	SILTY SANDY GRAVEL, 5% cobbies to 8"
	GM					=	
		58	27	37	15		
\$6 . 57 c	x	66	35	40	17		GLAVEY SANDY GRAVEL
58	śč	69	34 35		15	E	SANDY GRAVEL/SILTY SANDY GRAVEL roddish brown, noist, dense
	se	63	33	67	23		brown, moist, dense CLAYEY SANDY GRAVEL, derk brown, moist dense
۰.				<b>.</b>		₽Щ	CLAYEY GRAVELLY SAND, dark brown, moist, subrounded gravel and sand SILTY SANDY GRAVEL
4.5	34	53	2 -	41	• 5	==	SILTY SANDY GRAVEL
	GP	· · · ,	26	 34		<u>г</u> Е	SANDY GRAVEL/CLAYEY SANDY GRAVEL
69 Ĵ	×			· ~.	•	F-	
s 100.	GP GM	58	25	35	12	=	SANNY GRAVEL/SILTY SANDY GRAVEL, water needeu at 71' ta prevent caving
		• •	•	•	• • •	E	SILTY SANDY GRAVEL
•••		59	27	37	16	三	
	هر	- 40	18	 29	• •	E	SANDY GRAVEL/CLAYEY SANDY GRAVEL
	ч.С	-		1	•		<b></b>

		UNIFIED	SOIL C	LASSIFICATION SYSTEM
	MAJOR BIVISIONS		GROUP SYMBOLS	TYPICAL NAMES
234	, 1111 T	11	GW	Wall-graded grovels, gravel-cand mintures, bittle or no fings.
		01	61	Passly-graded gravels, gravel-send asistures, little or no tines.
		111	GM	Silty georale, georal-soud-silt mintures.
	23263	312	6C	Clayoy grovale, groval-sand-clay mistarus
	. 111	11	sw	Well-graded sands, gravely sands, little or no fisses.
	3111	0 2	SP	Pearly-graded sands, gravelly sands, little or no fines.
8 1	a	111	SM	Silty conds, cand-silt mintures.
L	11161	3.24	sc	Clayer sands, sand-clay minteres.
, ; 1		1.	ML	loorganic cits and vary fine sends, such floor, sitty or clayay fine sands, or clayay sitts, with slight plasticity.
	CLATS	] <u>?</u>	CL	loorganic clays of low to madium plasticity, gravelly clays, sandy clays, softy clays, laan clays.
	3	3	OL	Organic silts and organic silty clays of law plasticity.
8 1 1	r H	], ĝ	мн	learganic sitra, micacases or distanacases fine sandy or ality soils, elearne sitra
- 11	<b>.</b>	1	CH	inorganic clays of high plasticity, for clays.
		* ~	OH	Organic clays of modium to high plasticity, arganic allts.
	Highly organic with			Past and other highly arganic sails

1. Boundary Clumification: Sails presenting charact I-GC, well-graded gravel-sand ministers with clay binder. ups are during istics of two ge nated by ------

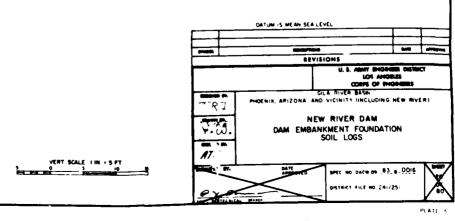
GW-GC, will grades providence numbers with city binder.

 All bitrow inside on this chart are U. Standard.
 The some "all" and "city" are used respectively to distinguish materials subdiving lower plasticity from these with higher plasticity.
 The some "all" and "city" are used respectively to distinguish materials subdiving lower plasticity from these with higher plasticity.
 The some state of the logid and the solution of the plasticity index plasticity and the plasticity class the factor.
 A for a complete description of the Unified Soil Classification spatiate of Million Standard 6198 dated 28 March 1970

#### LEGEND

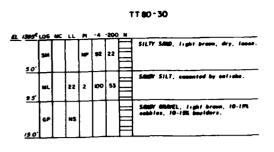
TT 80-30

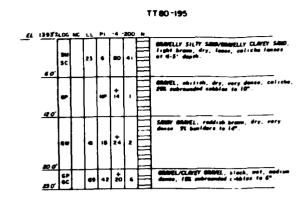
TH 80-35


.....

- M.C. PIELD MOISTURE CONTENT IN PERCENT OF BRY WEIGHT.
- -----
- .... PLASTICITY INDEX (LIQUID LIMIT MINUS PLASTIC LIMIT).
  - HEHPLASTIC
- PERCENT OF MATORIAL ST WEIGHT PASSING 100. 4 SITVE ...
- PRECENT OF MATERIAL BY WEIGHT PARINE ND. 200 SHIVE - 200
- NUMBER OF BLOWS OF A 100 FOUND BROPHAMME FALLING Do Incomes Equivities to Delive A standished Spood Mote Poot. Busined Braatter of Stoom 15 incomes. Neiser Braatter (5 1-3 8 incomes. Proceeding is Called Transard Printerstanding TSC н
- METH TO WATER w
- Ext ] MATERIALS TO BE EXCAVATED FROM THE FOUNDATION
- C BLENDED MATERIAL SUITABLE FOR CORE
- PS BLENDED MATERIAL SUITABLE FOR PERVIOUS SHELL
- N S NO SAMPLE
- * VISUAL CLASSIF LATION.
- + MINUS IZ-INCH GRADATION SAMPLE ++ MINUS 6-INCH GRADATION SAMPLE

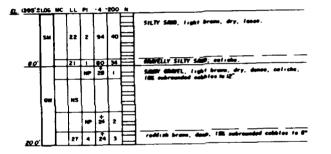
NOTES


- 1 SEE <u>PLATE 3</u> FOR LOCATION OF TEST HOLES AND TRENCHES 2 PERCENTAGE OF COBOLES, BOULDERS AND MAXIMUM SIZES WHERE INDICATED WERE VISUALLY ESTIMATED


- 3 ALL GRADATIONS EXCEPT THOSE INDICATED WERE PERFORMED ON MINUS 3-INCH SAMPLES
- 4 DATESDF DRILLING JANUARY 1971-APRIL 1971, DECEMBER 1979 FEBRUARY 1980, AND AUGUST 1980-SEPTEMBER 1980




9


### VALUE ENGINEERING P







TT 80-199



 EL
 ISBN PLOS MC
 LL
 PI
 -6
 -200 H

 0
 0
 SILTY SAND, light brann, dry, lease

 100
 00
 SILTY SAND, light brann, dry, lease

 100
 00
 SILTY SAND, light brann, dry, lease

 100
 00
 SILTY SAND, gray, dry, lease

 100
 00
 00

 150
 00
 00

 150
 00
 00

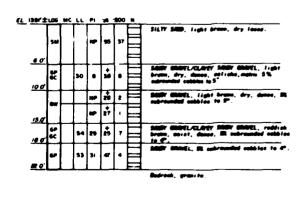
 150
 00
 00

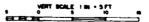
 150
 00
 00

 150
 00
 00

 150
 00
 00

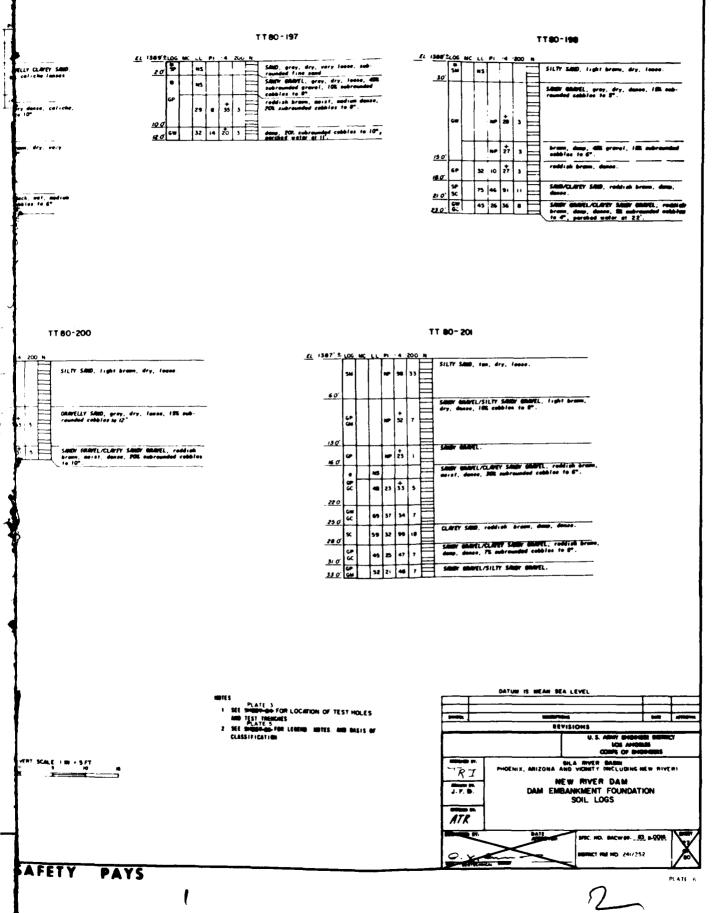
 150
 00
 00


 150
 00
 00

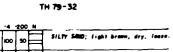

 150
 00
 00

TT 80-200

TT 80-202


4

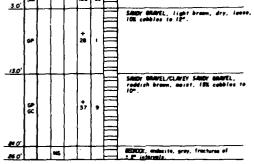




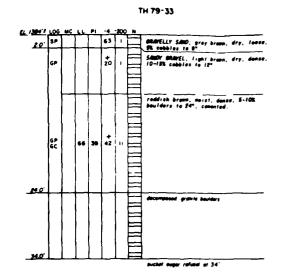

SAFETY PAYS

## E ENGINEERING PAYS

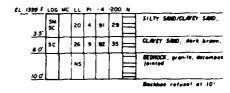



VALUE ENGINEERI

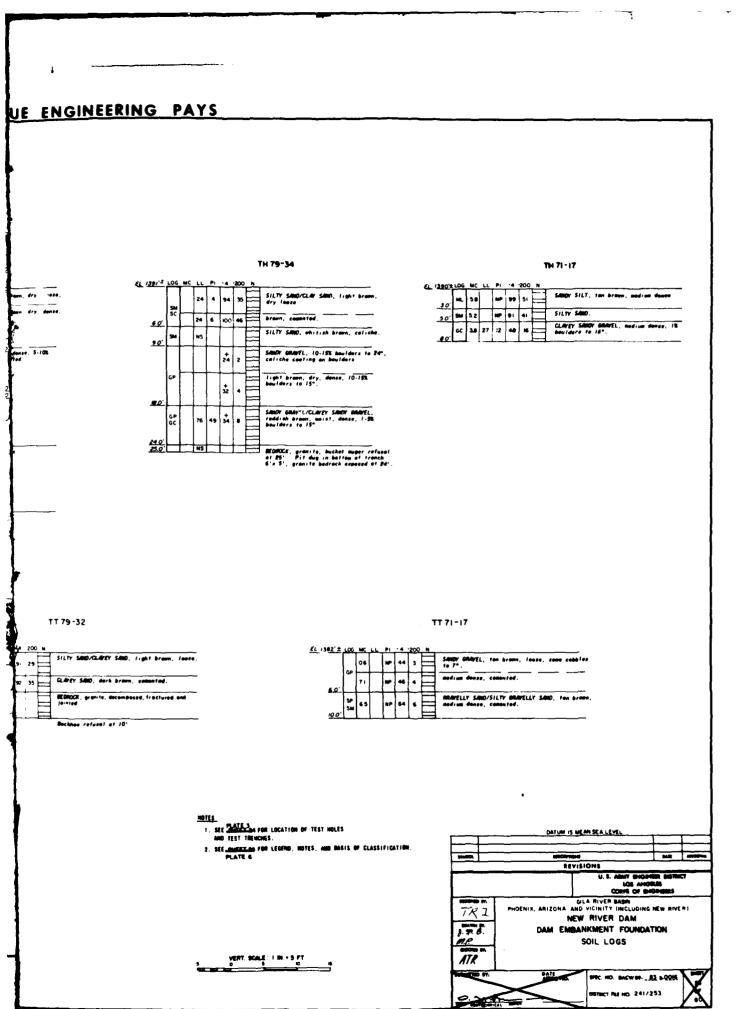



1"

EL 1380 - LOG MC


514



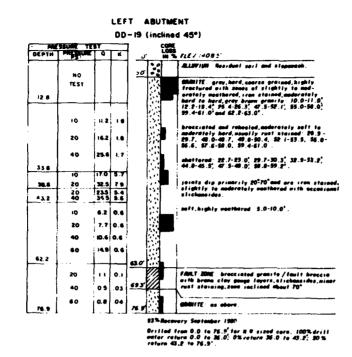

-- --



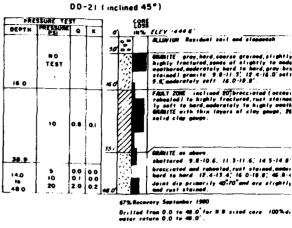
TT 79-32



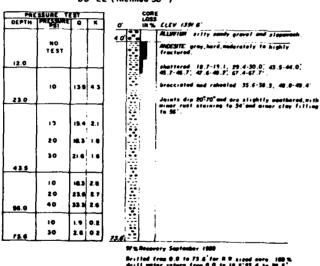
SAFETY PA

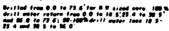



SAFETY PAYS

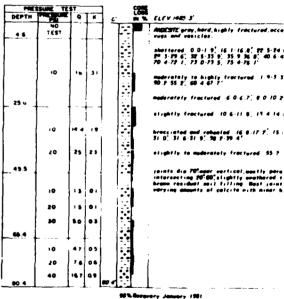

PLATE 7

2


## VALUE ENGINEERING PA




LEFT ABUTMENT




RIGHT ABUTMENT DD-22 (inclined 30*)





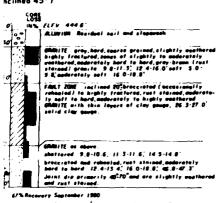
RIGHT ABUTMENT DD-45( inclined 45*)



New York Jac

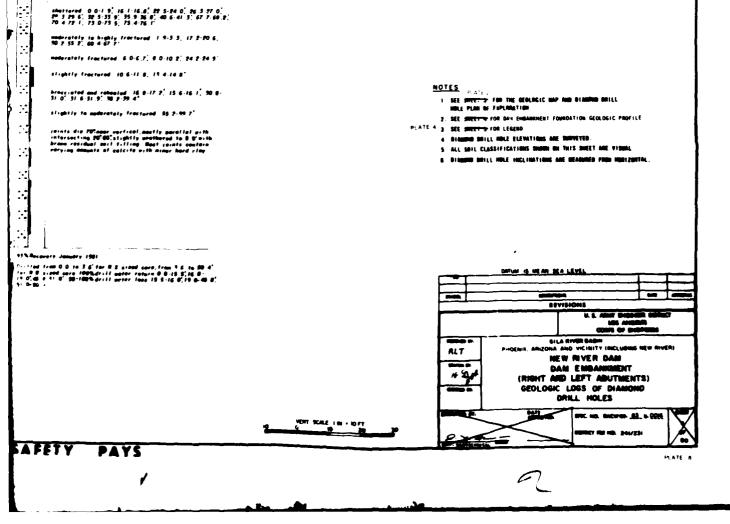
Reciliad from 0.0 to 3.6 tor 0.2 scand core from 1 for 0.0 scand core 100% dect to ator rature 0.0 (j 19.05.00.0 St.00.30 (00% dect) weter foos 13.5 (6 51.0 00.0 sc

SAFETY PAYS


## JE ENGINEERING PAYS

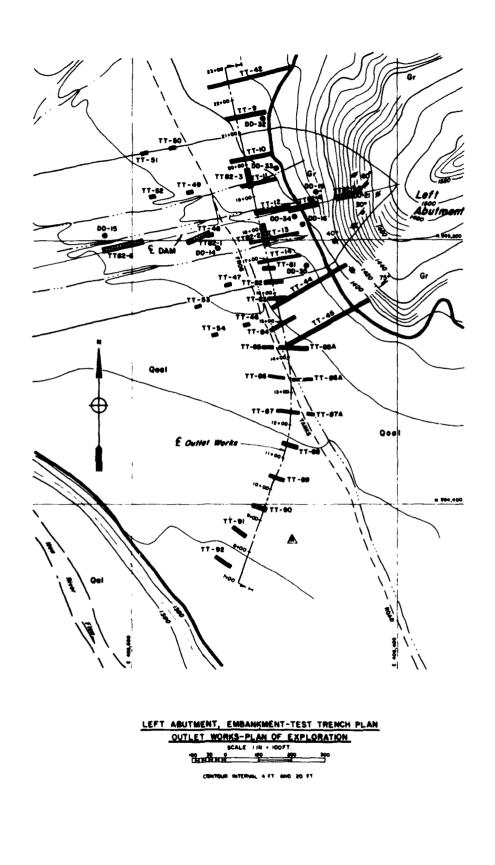
BUTMENT nclined 45")

ABUTMENT

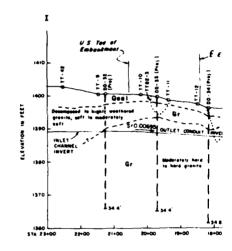

1--

COME LONG MUS LEFY HAR 3




Drilled from 0.0 to 48.8 for 8.8 sized core . 100%drill outer roturn 0.0 to 48.0 .

ARESTE gray, hard, highly fractured, accasional rugs and resicles.




7

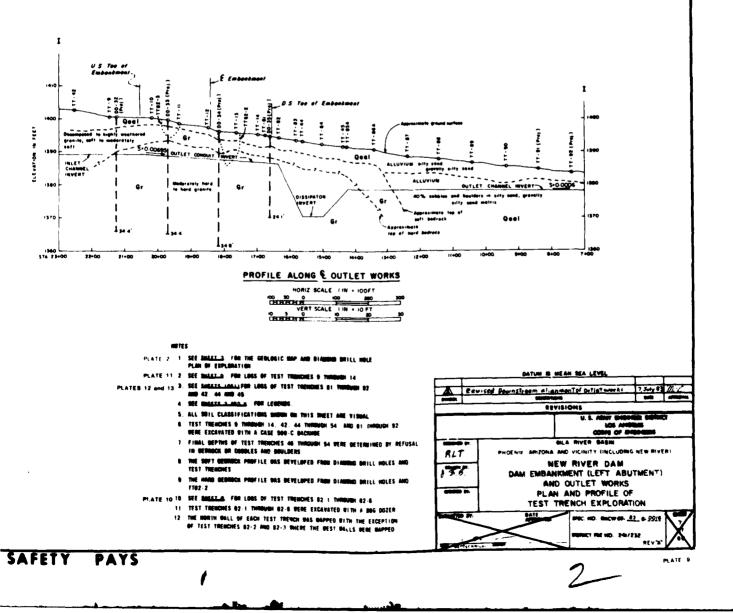
VALUE ENGINEERING PAYS



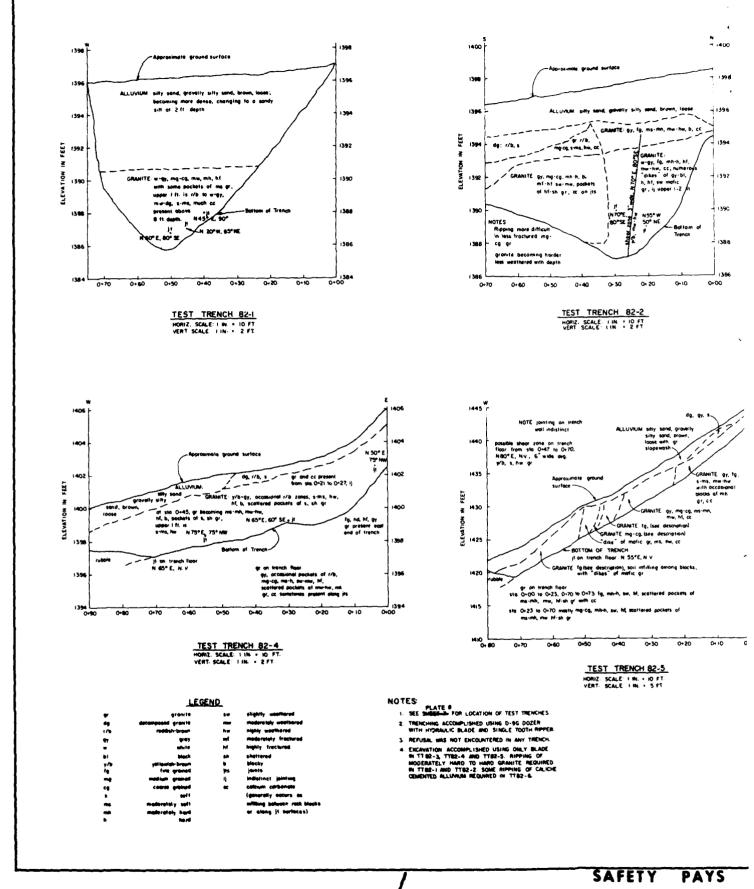
TEST TRENCH HO	BEPTH TO BEDADCI	TOTAL DEPTH	B GERERE COR
-		*	19: 100
47		6.5	12" LONG 2" UIDE
	8.5	r	18" LONG 2" UTDE
44	5.8	e'	22' LONG 2' 910E
56	7.0	۲	22" LONG 2" UIDE
\$1	-	0.5	26" LONG 2" UIDE
52		18.0	25' L005 2' 910E
53		r	25' LANG 2' 919E
*		ť	25' LANG 2' UIDE



NOTES PLATE 2 1 SEE SHEET 3 1 PLATE 1 2 SEE SHEET 3 1 PLATE 11 2 SEE SHEET 3 1 PLATES 12 and 13 3 SEE SHEET 3 1 PLATES 12 and 13 3 SEE SHEET 3 1 PLATES 12 and 13 3 SEE SHEET 3 1 A BALL 2011 CLASS 5 ALL 2011 CLASS 6 TEST THEMORES 7 FIRAL DEFINE 1 10 SEE SHEETS 1 10 SEE SHEETS 1 10 SEE SHEETS 1 11 TEST THEMORES 11 TEST THEMORES

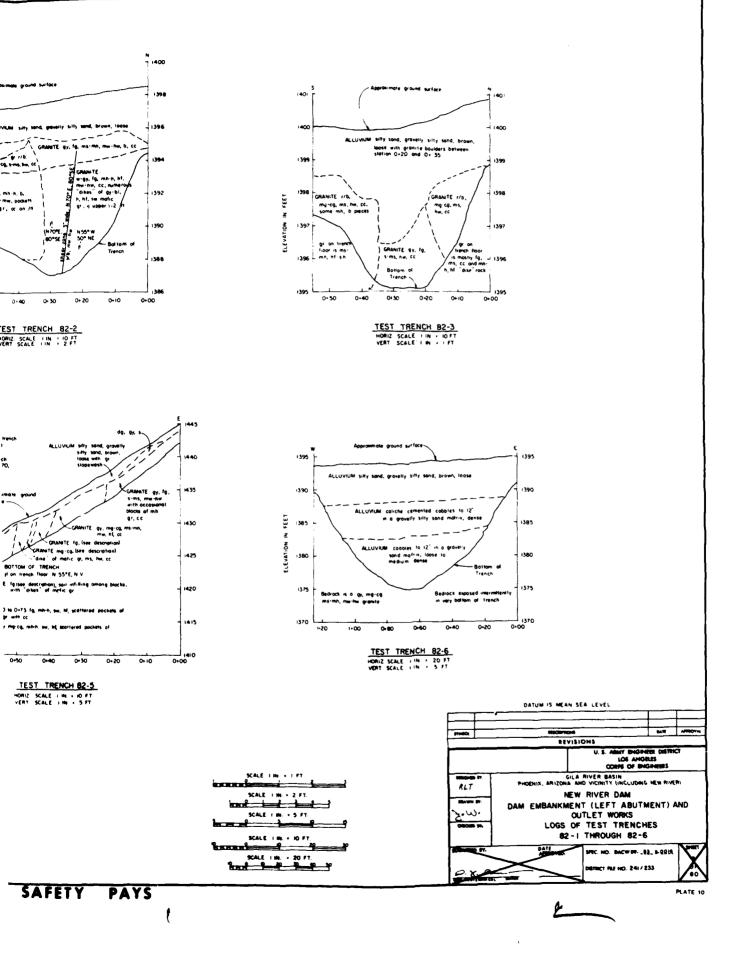

12 THE MORTH BALL OF TEST TRENCH

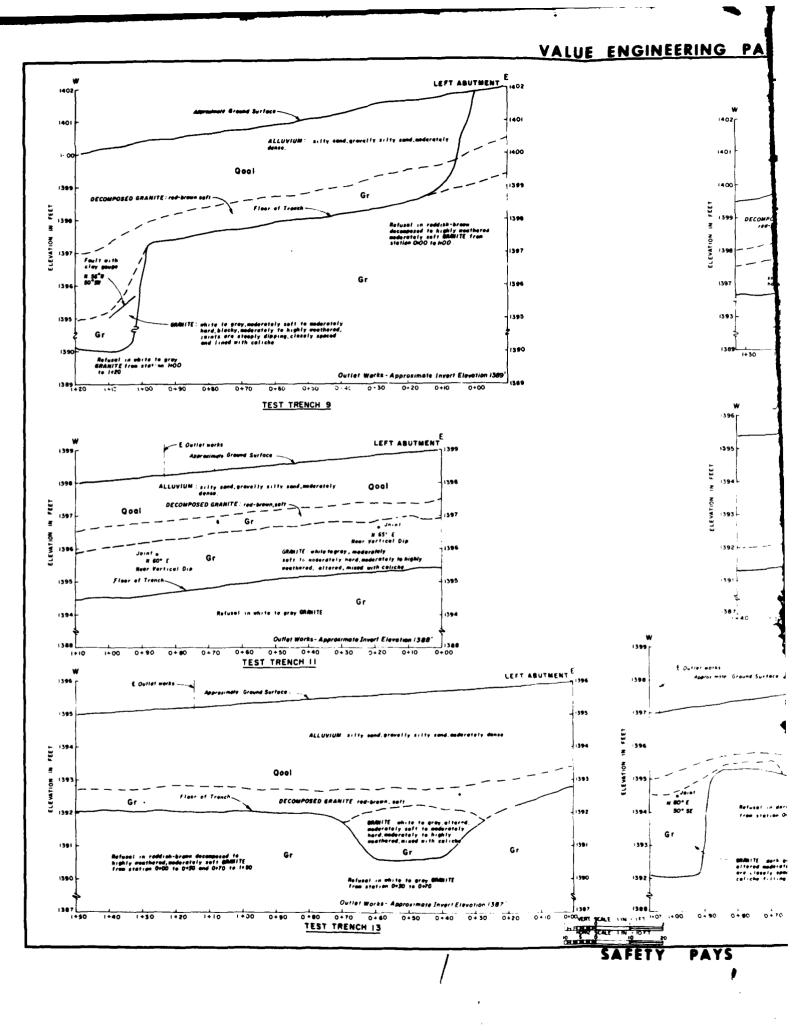
SAFETY PAYS


## ENGINEERING PAYS

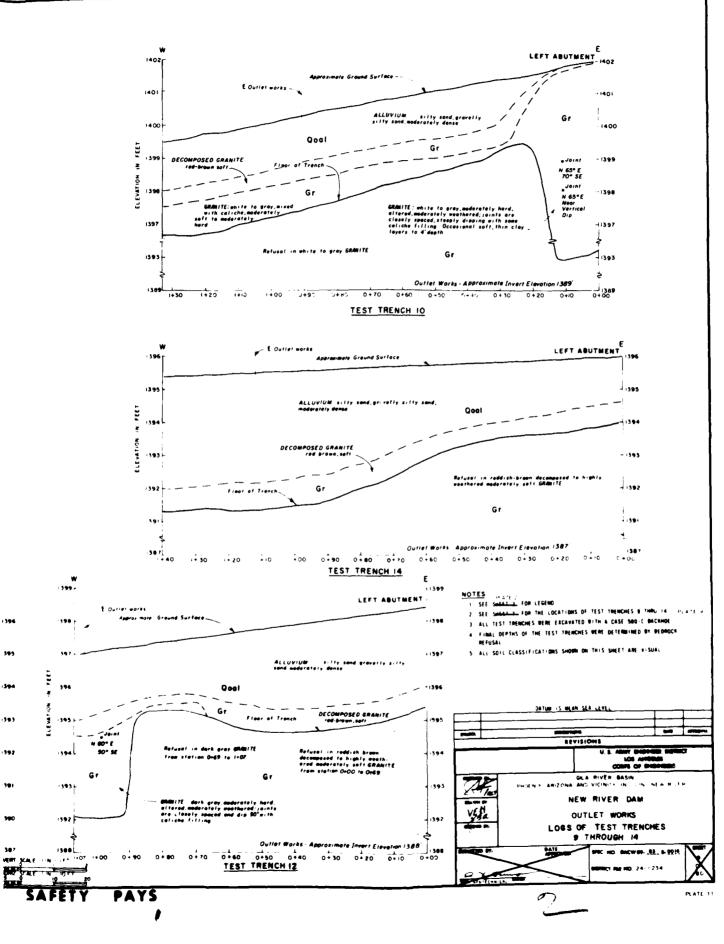
LOGS OF EMBANKMENT TEST TRENCHES

TEST Thench NO	BEPTH TO Debrock	TOTAL BEPTH	B 141EH 5 14HS	BEARING	MINANCS
46	—	۲.	'E LINE	87º E	0.0-0.0" SILTY SAMD, OBAVELLY SILTY MODE S.0-0.0" CALICAN COMBITED COURSES AND DOULDERS. 1.5 TO 2" IN BIAMETER. METMAL IN COORLES AND DOULDERS.
47	•	8 S'	12" 1.006 2" 010E	N 75° E	0.0-0.0" SILTY SAND, GRAVELLY SILTY SAND, 0.0-0.5" NED-DNDNN, HIGHLY VERTHERED GRANITE, Refusal in granite at 0.5".
	6.5	r'	18" LONG 2" UIDE	N 74º E	0.0-0.5" SILTY SAND, GRAVELLY SILTY SAND, 0.0-7.0": NED-GROUN DECONFORED GRANNTE. Repusal in granite at 7.0".
49	5.5	r	22" L005 2" 910E	N 86° E	0.0-5.5" SAMBY SILT TO SILTY SAMD, FEU GRAVELS 5.5-6.0". RED-DROMI HIGHLY DEATHERED GRAMM TE.
50	3.0	ť	22' LONG 2' UIDE	8 72° E	0.0-7.0" SANDY SILT TO SILTY SAND UITH SAME MANYELS; REPUBAL IN NED-DOOM DOCOUPORED GAMAITE AT 7.0".
\$1	—	8.5	26' LONG 2' UIDE	8 64° E	0.0-7.0" SILTY SAND TO SANDY SILT UITH SANE GRAVELS: 7.0-0.0" VELL COMENTED CODOLES OF TO 9" IN DIAMETER, NEPOSAL IN CODOLES AT 0.0".
52	-	18.0'	25' LONG 2' 010E	N 78º E	0.0-0.0" SAMEY SILT TO SILTY SAME POMILY CONSOLIDATED. 0.4-10.0" SAMEY SILT, POMILY COMPACTED. DEFUSAL IN CALIGNE COMMITED COMPLEX AT 10".
ม	—	*	25' LONG 2' 918E	N 75º E	0.0-7.0" SAMEY SILT TO SILTY BAND. 7.0-0.0" CALICHE-COMENTED BANDY SILT. MEPUBAL IN CALICHE COMMNTED COMPLES AT 0"
54		۲	25' L806 2' UIQE	N 87º E	0.0-5.0' SANDY SILT TO SILTY SAND UITH SAND GRAVELS. 5.0-0.0'. PORALY CRAWNTED COMPLES TO 1' Diameter Dith Winda Caliche. Refusal in coddles at 9'.

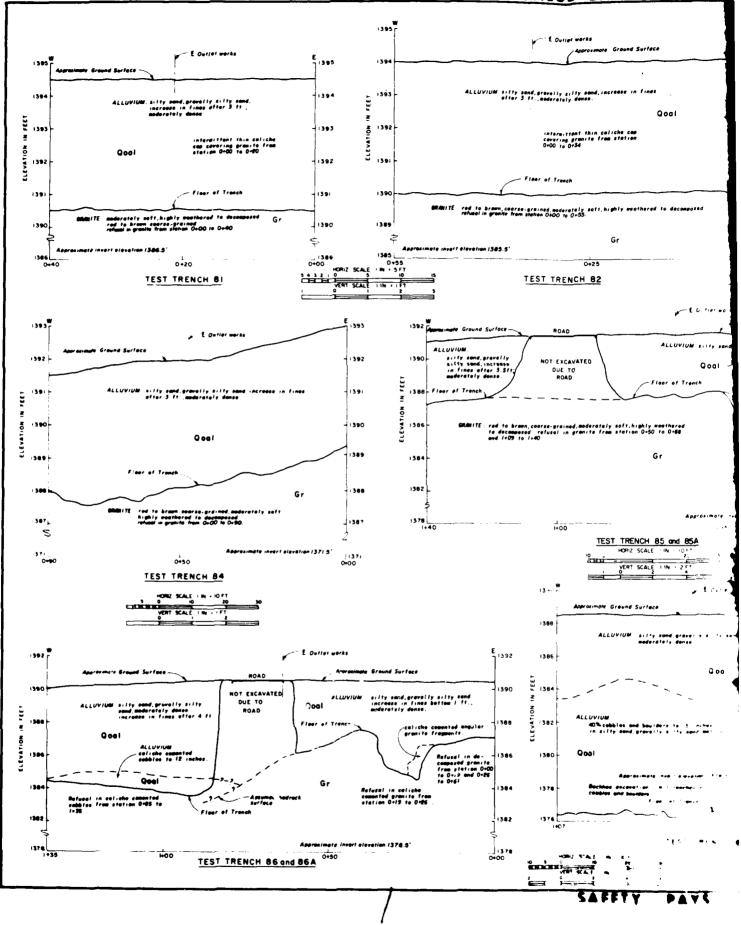




## VALUE ENGINEERING

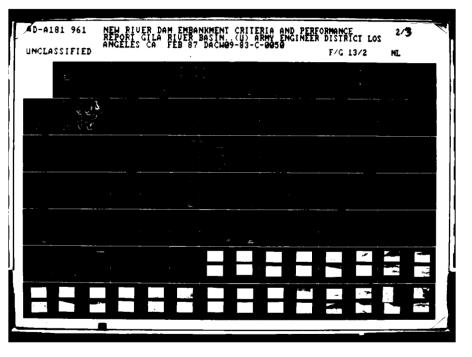


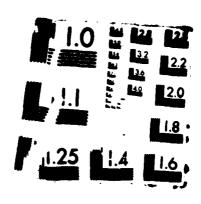

t

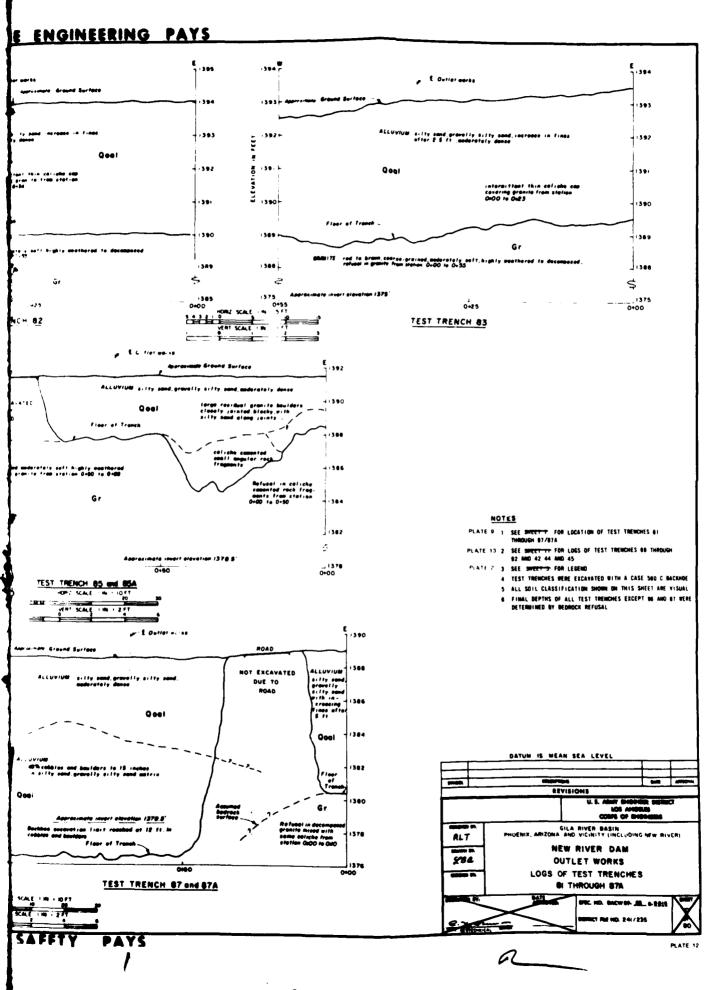
# UE ENGINEERING PAYS







## LUE ENGINEERING PAYS

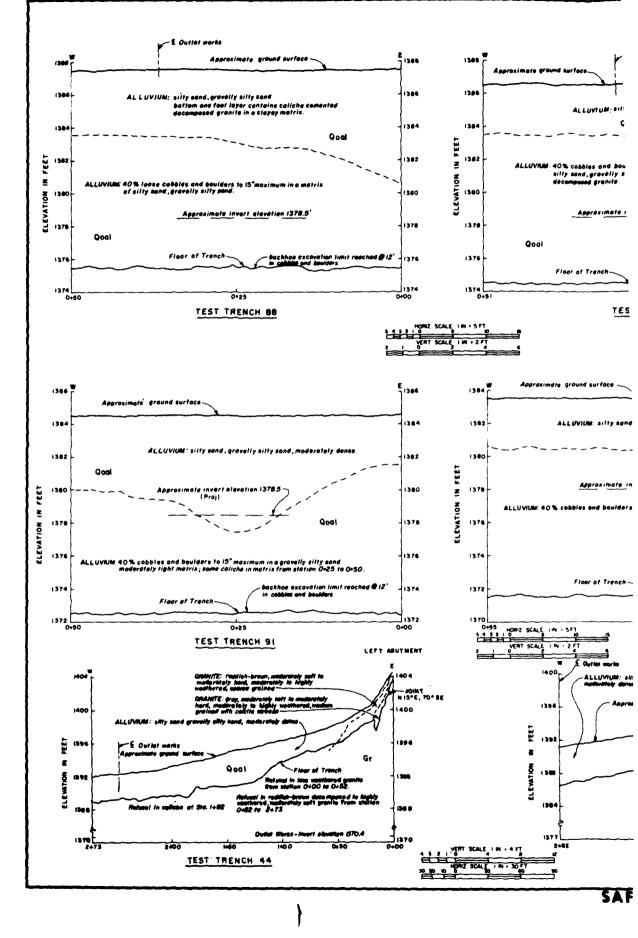


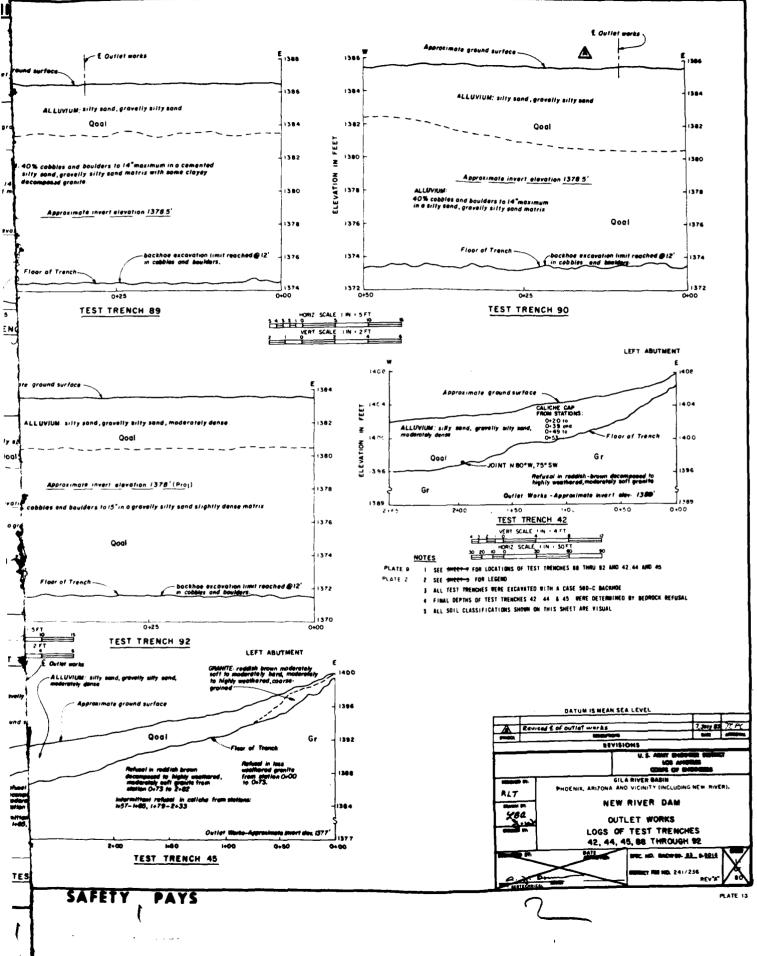



.....

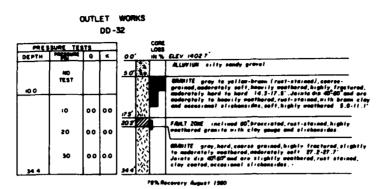




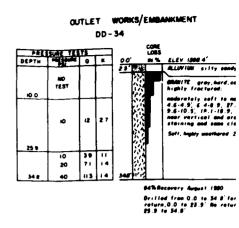




_____**___**___

#### VALUE E







## VALUE ENGINEERING PAYS



_____



Orilled from 0.0 to 34 d'for N V sized core. 100% drill water for the antire hole.



OUTLET WORKS

00-35

00'

30 4

0 4

.

DEPTH PERSONE C

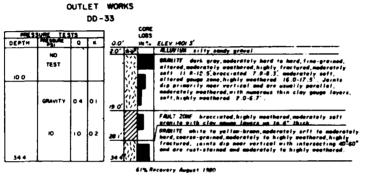
12 0

24

NO TEST

10 179 55

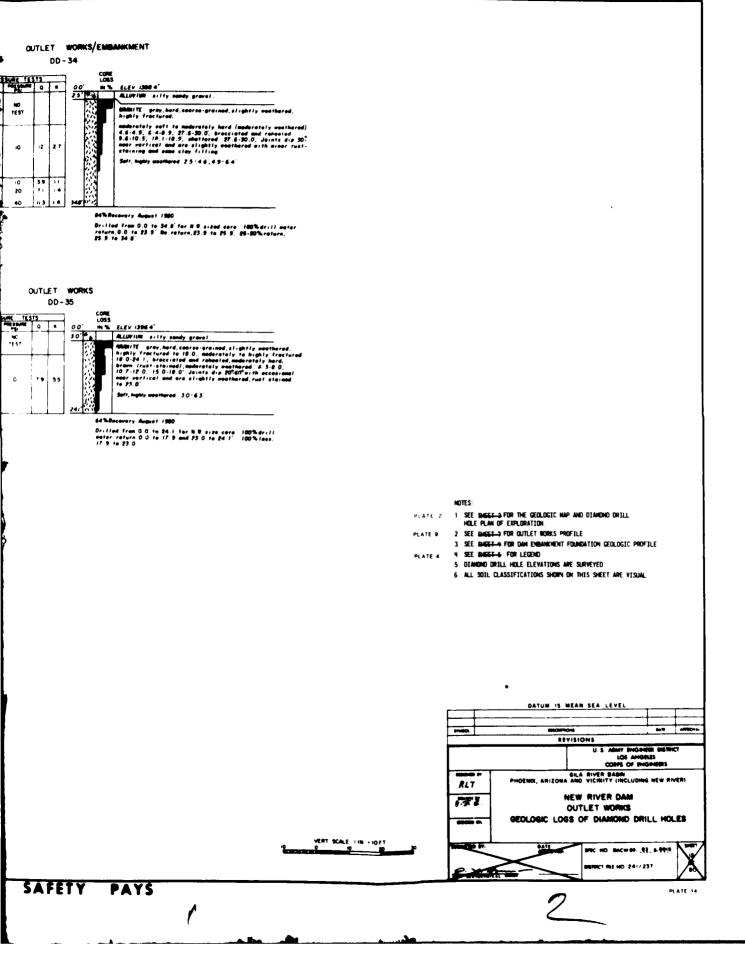
COME LOSS


ELEV 1396 4'

64%Receivery August 1980 Drilled from 0.0 to 24 i fa mater return 0.0 to 17.9 an 17.9 to 23.0

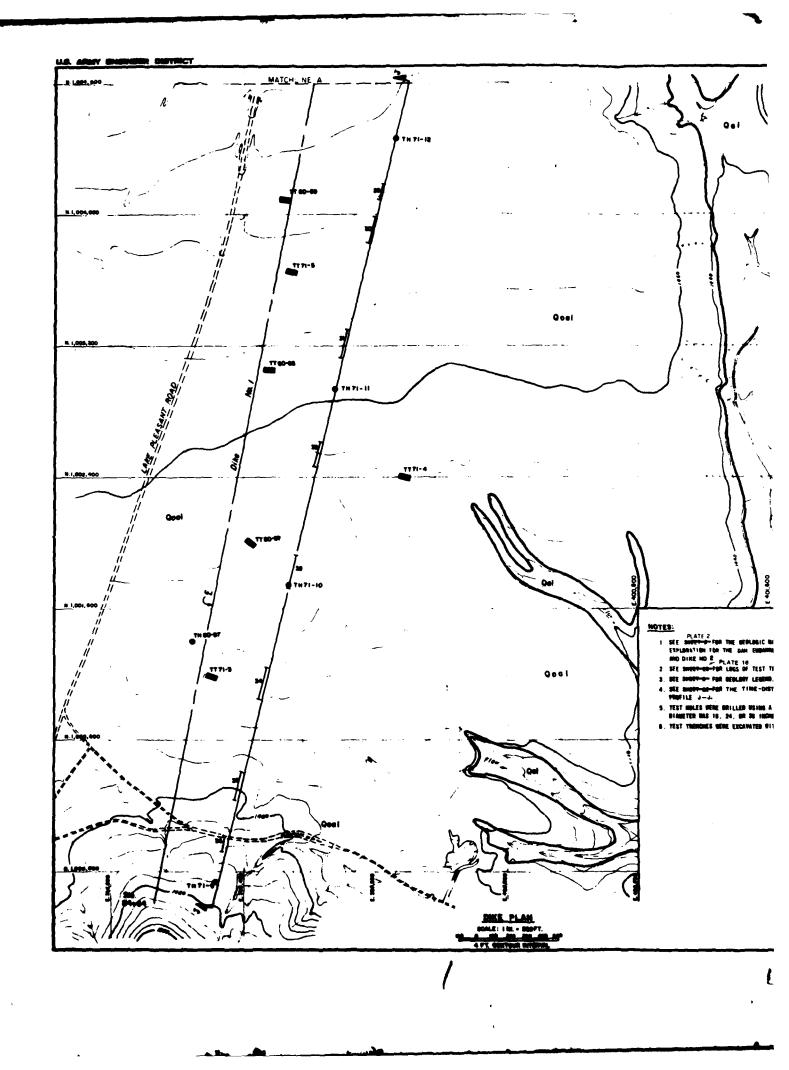
ALLUVIUM silty sandy

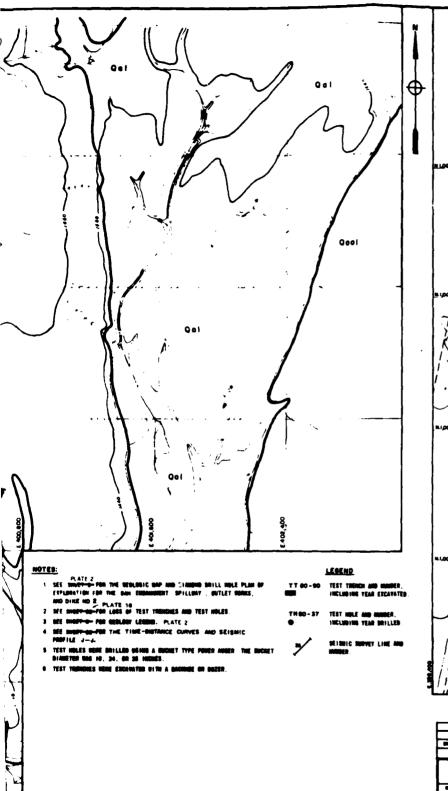
RMMITE gray, hard, ca highly fractured to 1 18 0-24 1, bractured to brawn (rust stained), 10.7-12 0, 15 0-18 0 near vertical and are to 23.0

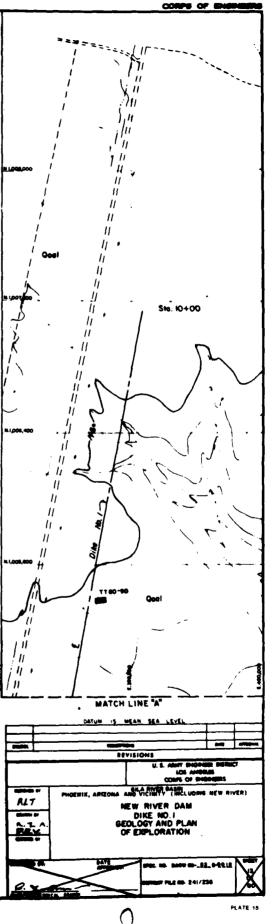

Soft, highly another of 3



Orillad from 0.0 to 34 4 for N.W.sigod care. 100%.drill water return for antire hole:


SAFETY PAYS


## LUE ENGINEERING PAYS

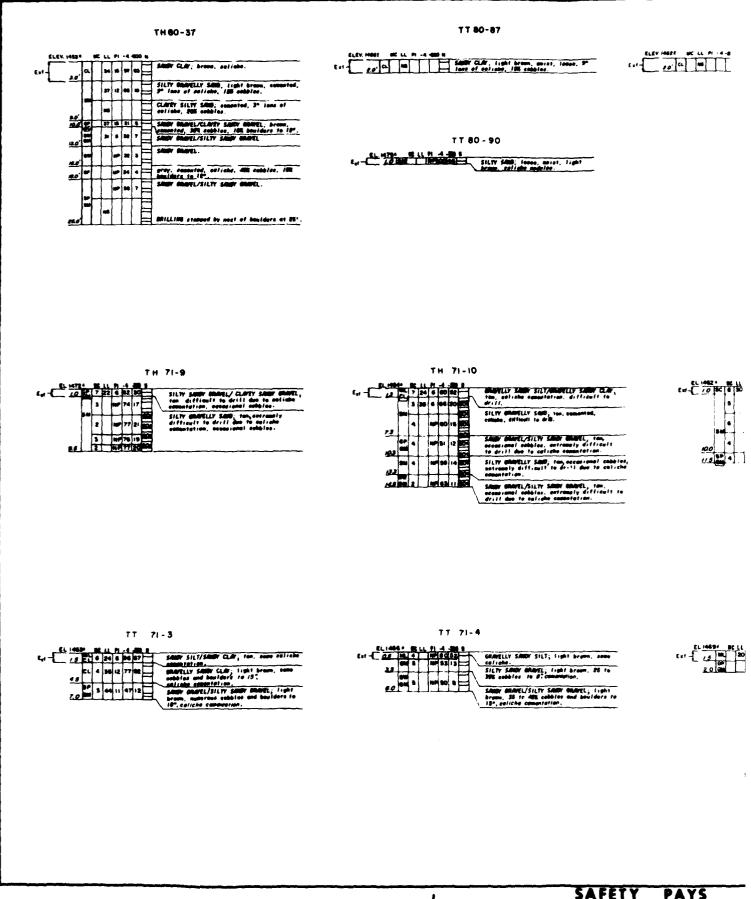



----

7







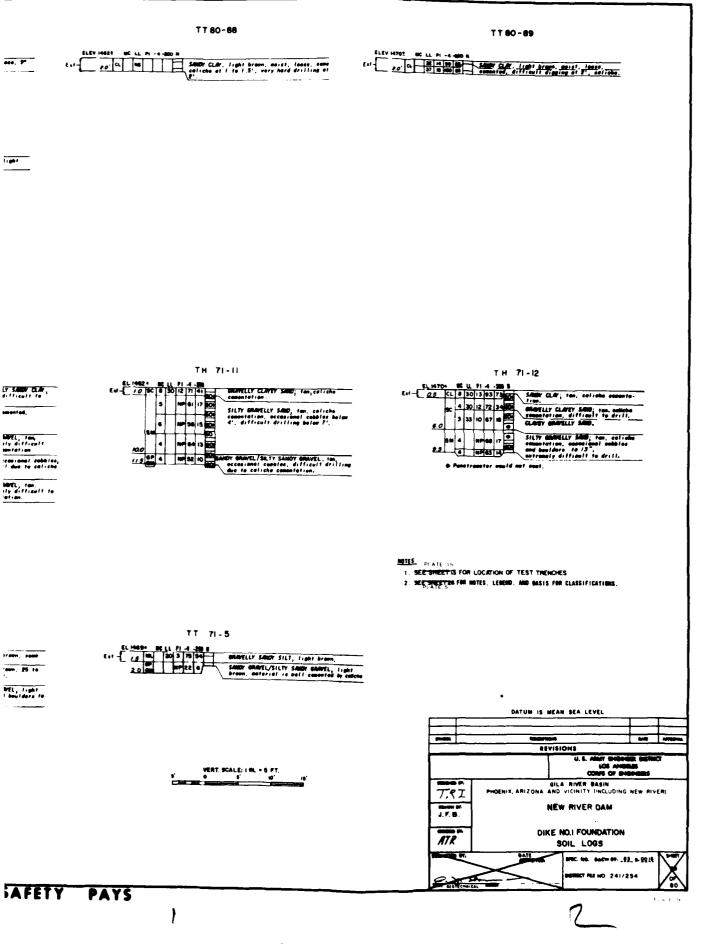

3

l

____

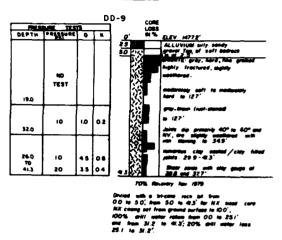
### VALUE ENGINEERING P




_

مديني م

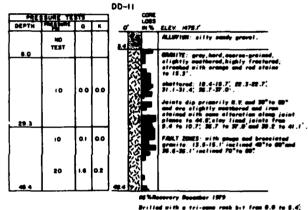
_____


#### E ENGINEERING PAYS

.

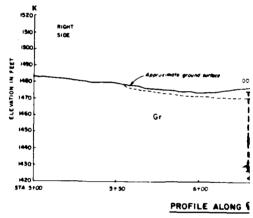


#### VALUE ENGINEERING PA


DIKE NO. 2



DD-10 CORE 
DIKE NO. 2


DIKE NO. 2

VERT. SCALE: I IN. + IOFT.



Brilled with a tri-same reak bit from 0.0 to 5.4; from 5.4 to 40.4 for 8.8 signed sore.(00% but water rature from 0.0 to 40.4

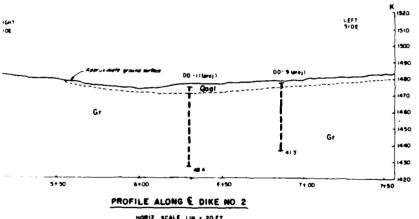
VERT. SCALE: I IN. . IO FT.





4

1

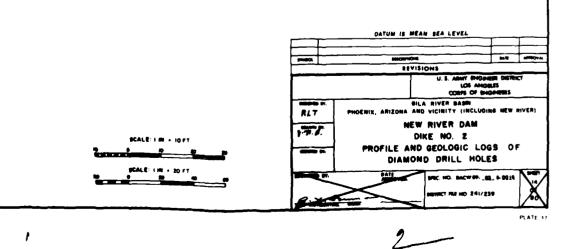

SAFETY PAYS

#### JE ENGINEERING PAYS

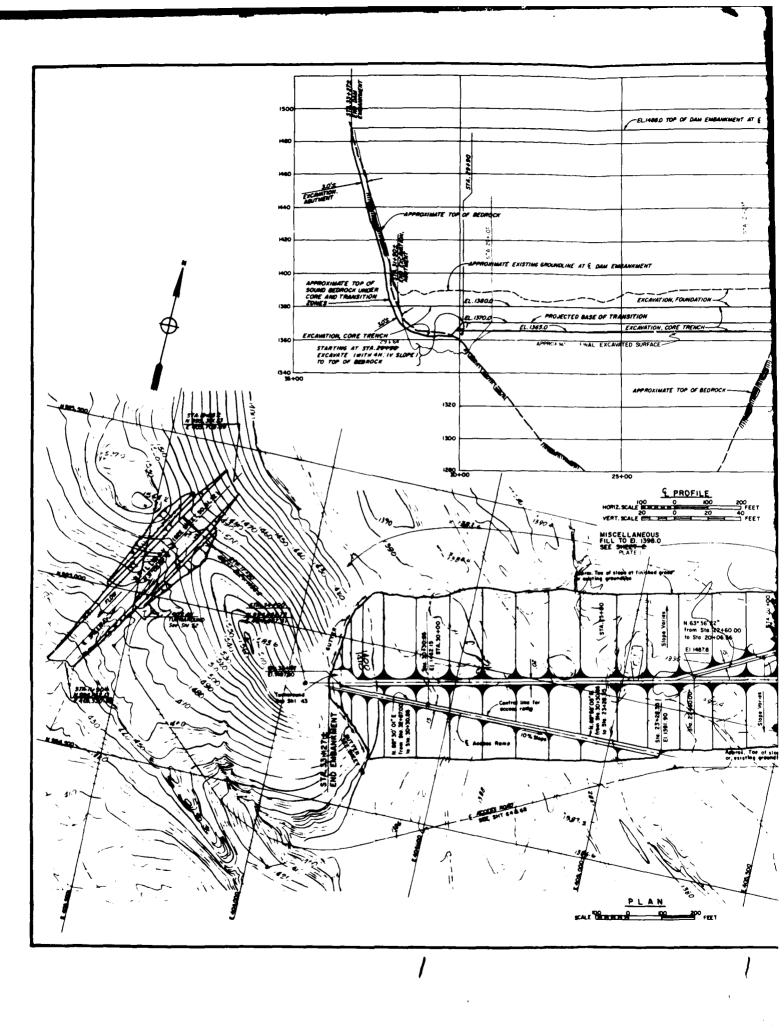




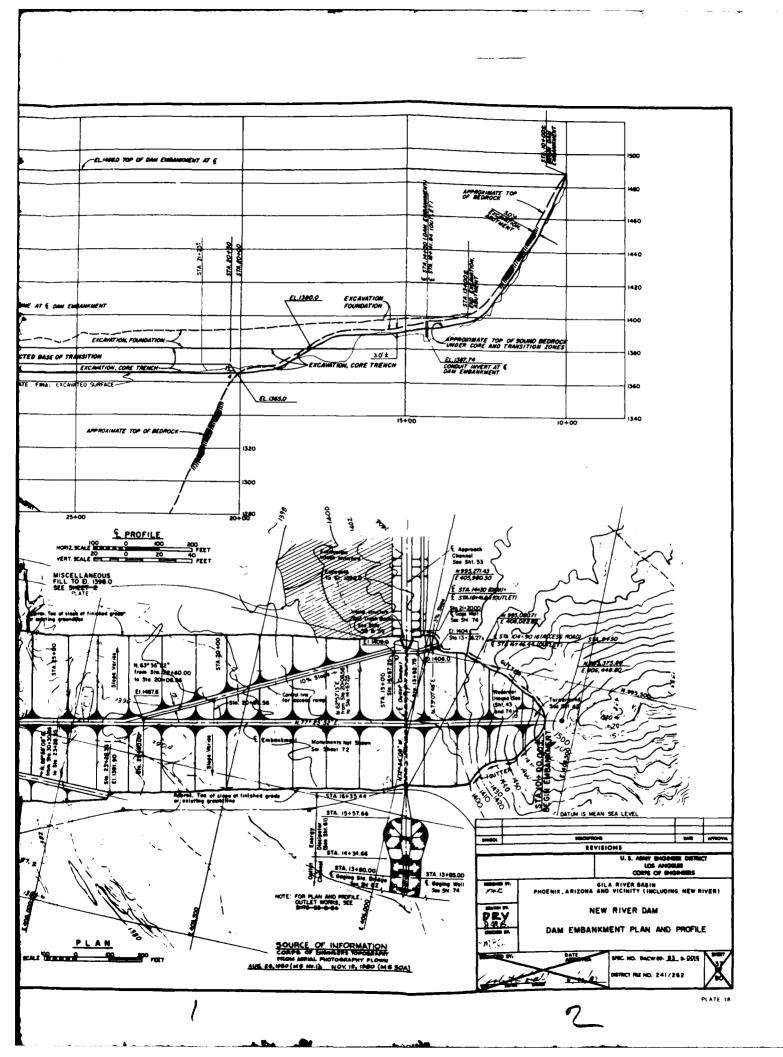
VERT SCALE IN + IO FT

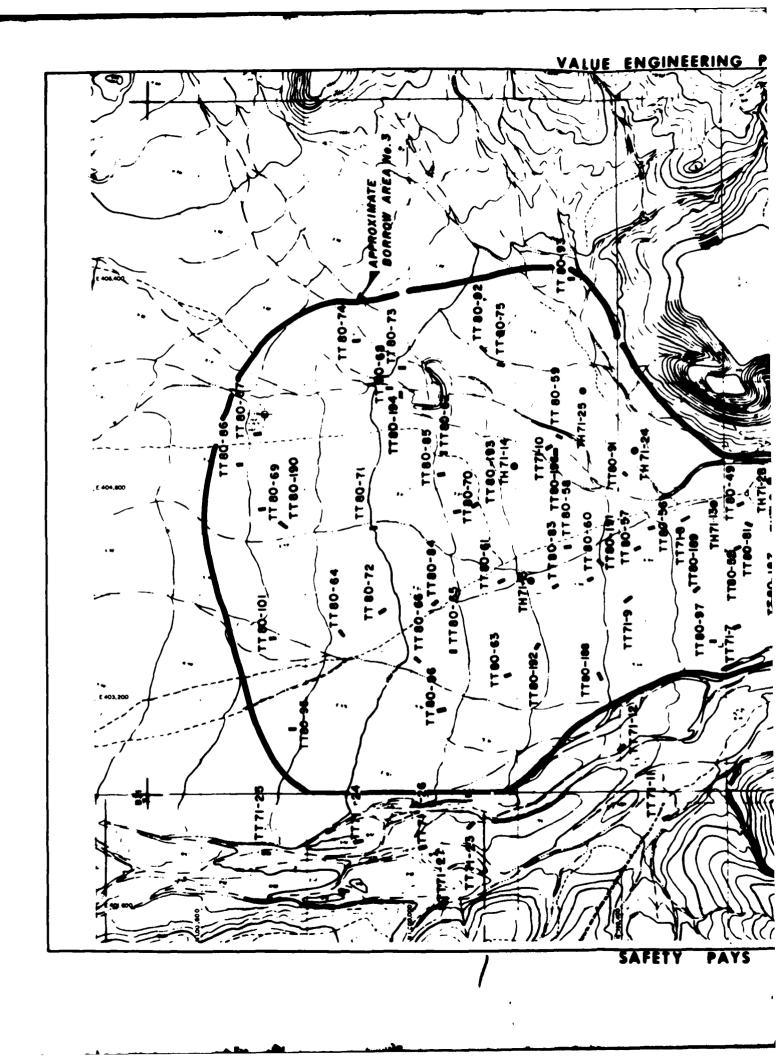


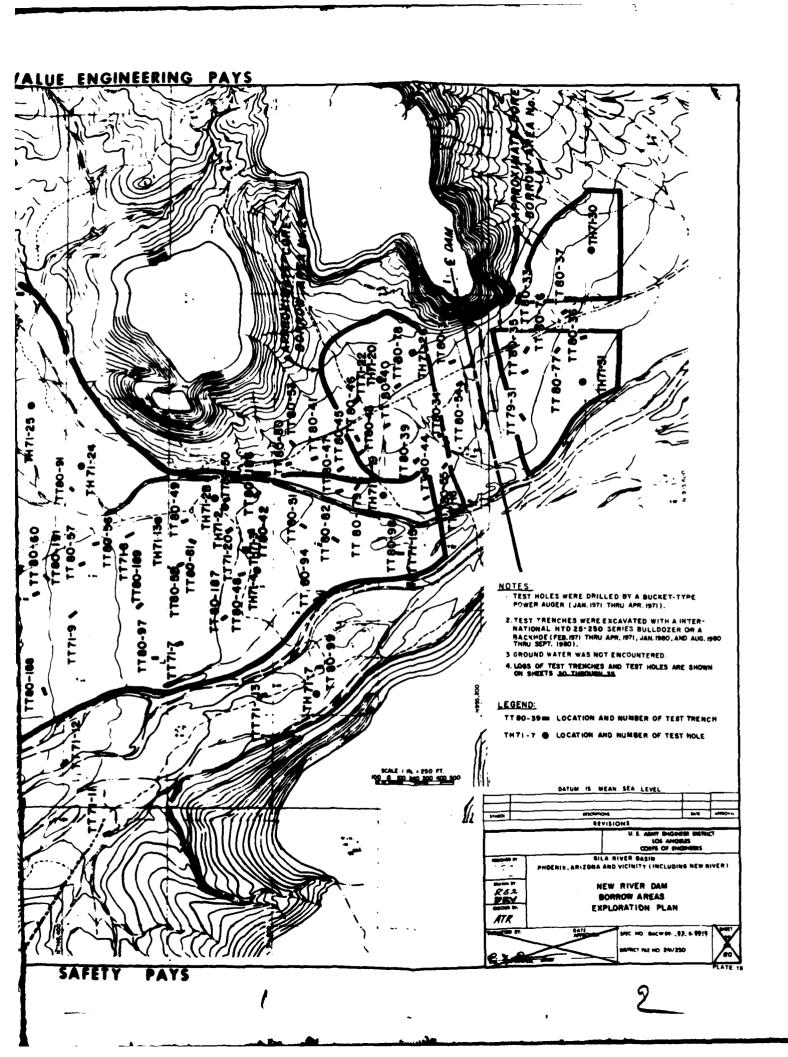

HORIZ, SCALE: IN + 20 FT VERT SCALE: IN + 20 FT


#### NOTES

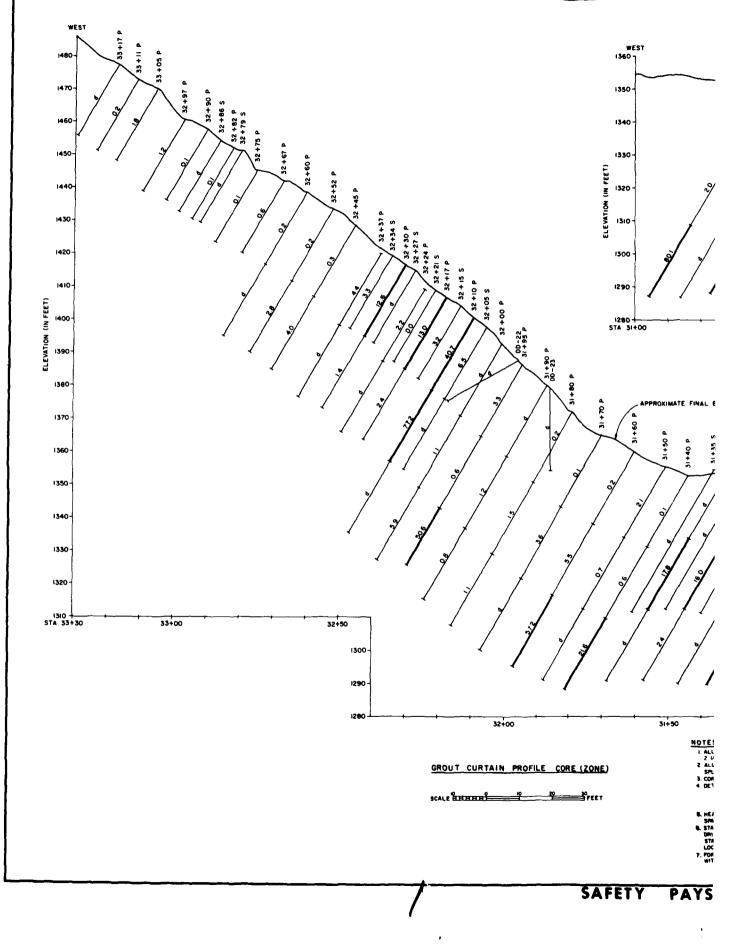
- PLATE 2 1 SEE SHEET-S- FOR THE GEOLOGIC MAP AND DIAMOND DRILL HOLE PLAN OF EXPLORATION
- PLATE 2 2 SEE SHEET-S- FOR LOCATION OF DIKE NO 2 PROFILE PLATE 4 3 SEE SHEET-S- FOR LEGENO
- - 4 SEE SHEETS 3-AND 4-FOR ADDITIONAL LEGENDS
    - 5 DIANOND ORILL HOLE ELEVATIONS ARE SURVEYED
      - 6. ALL SOIL CLASSIFICATIONS SHOWN ON THIS SHEET ARE VISUAL

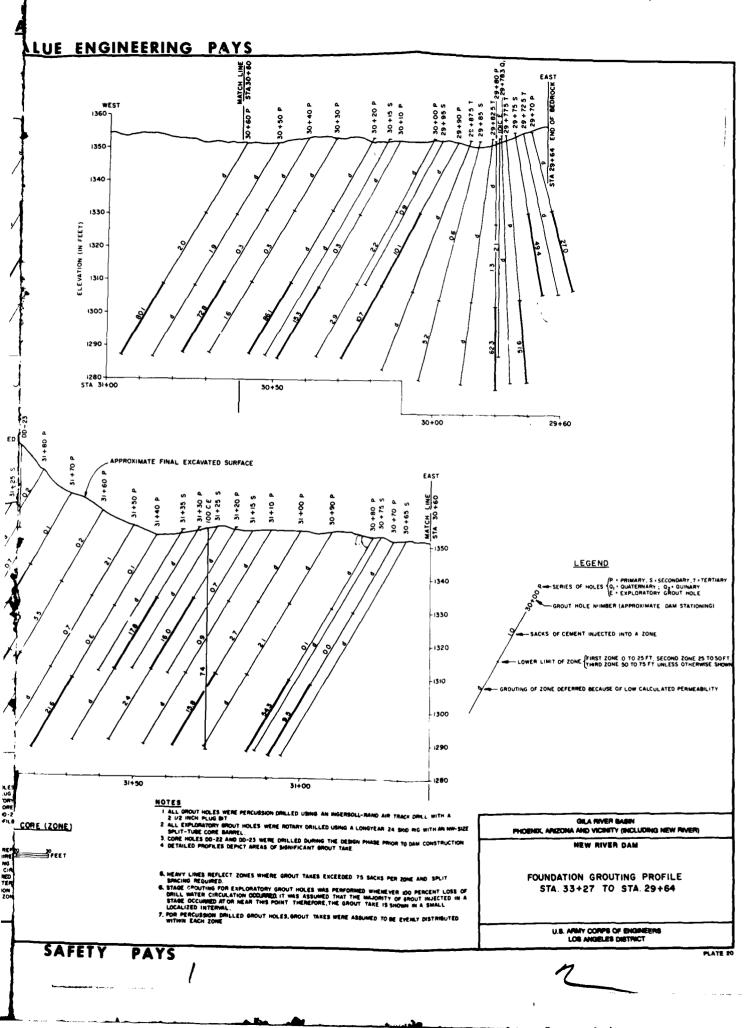

•

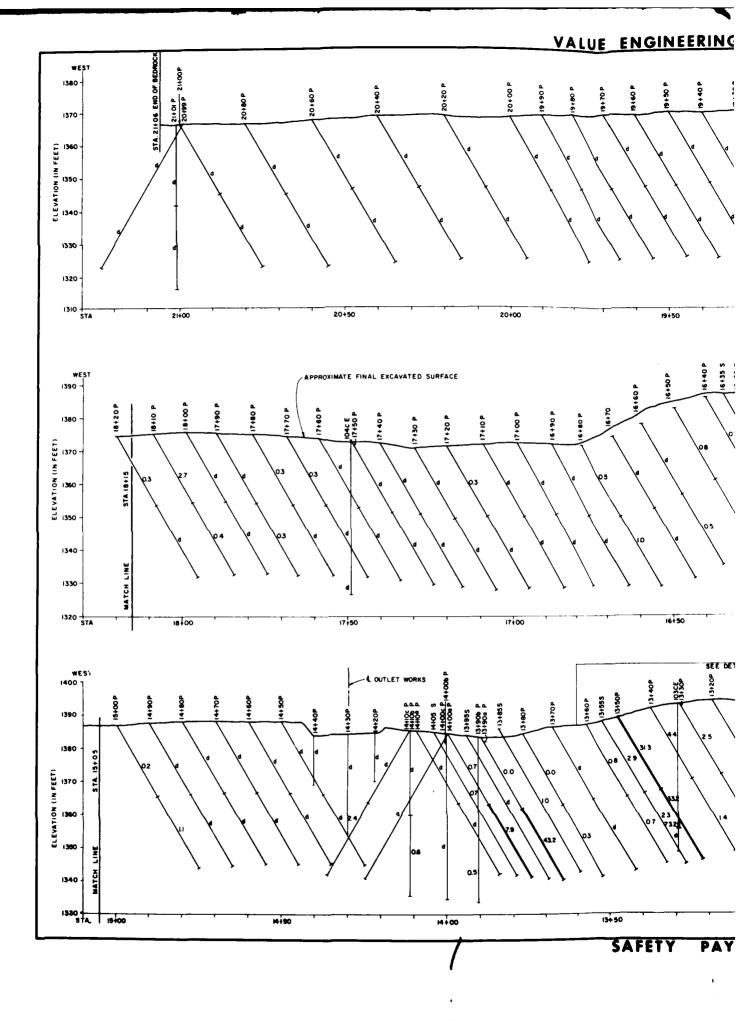




SAFETY PAYS

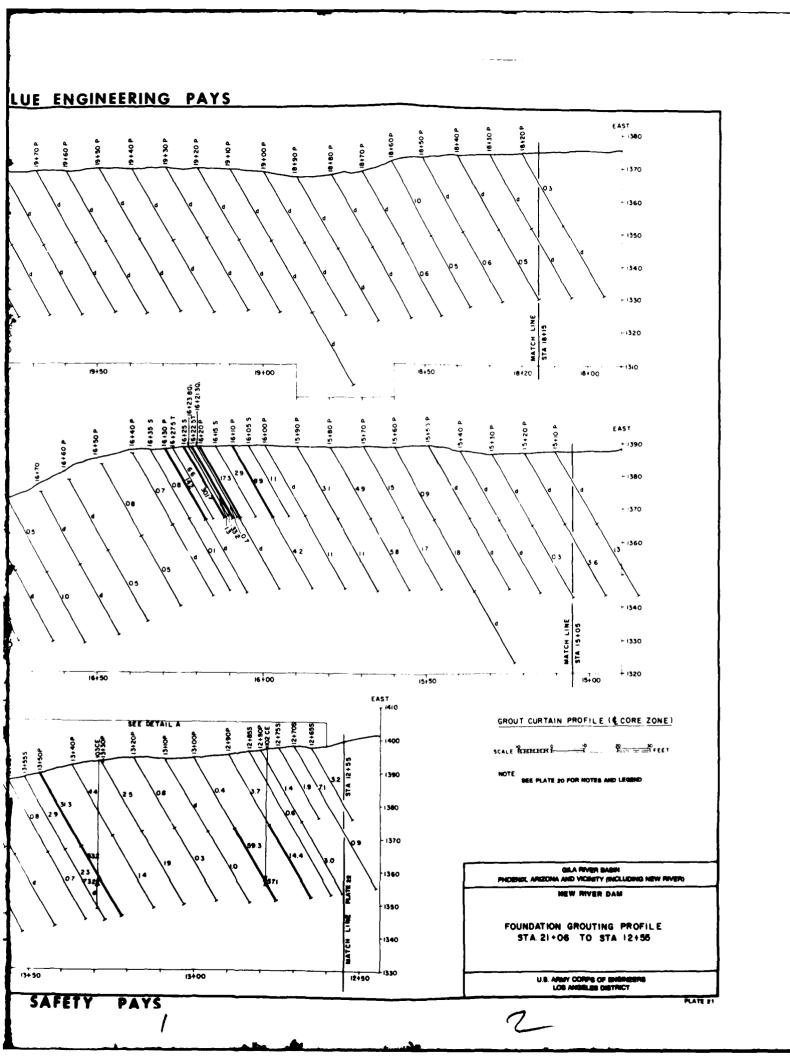


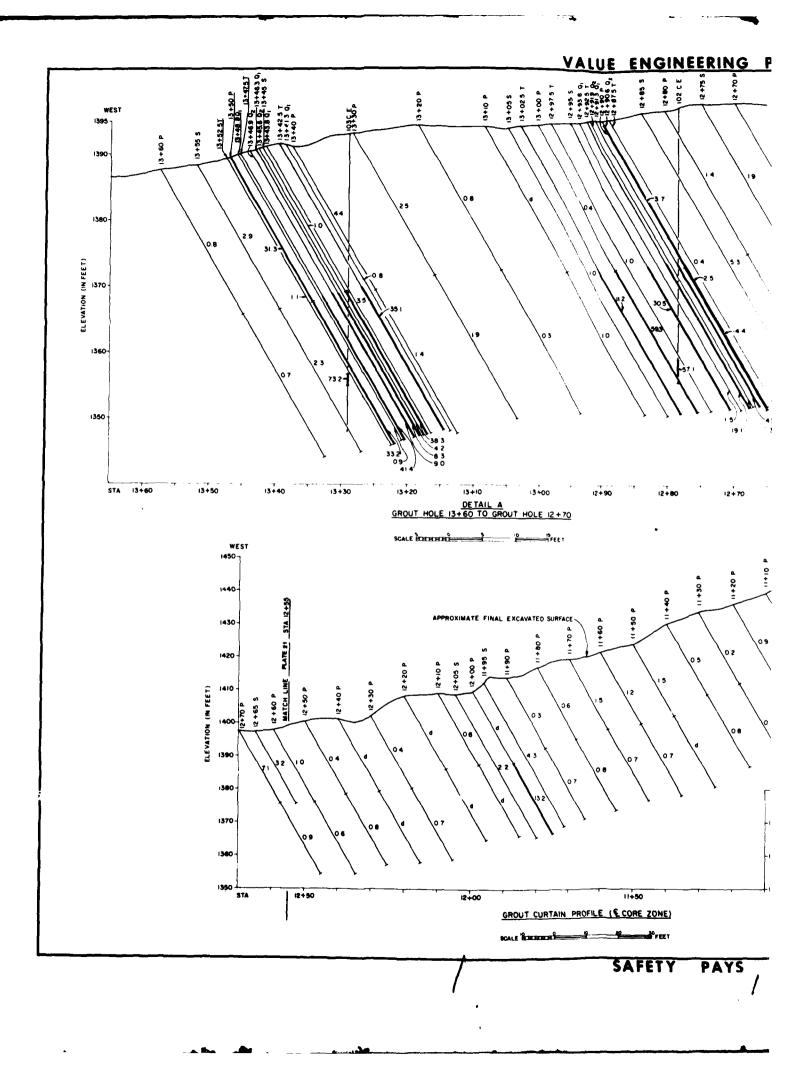

ىد. . .



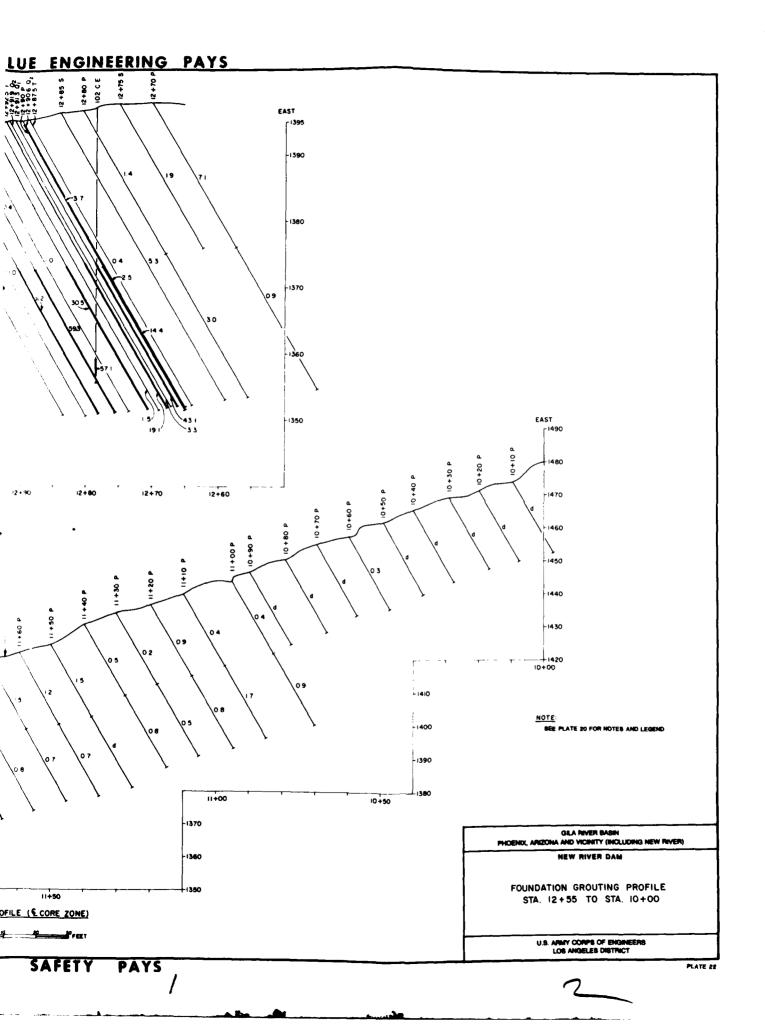




## VALUE ENGINEERING

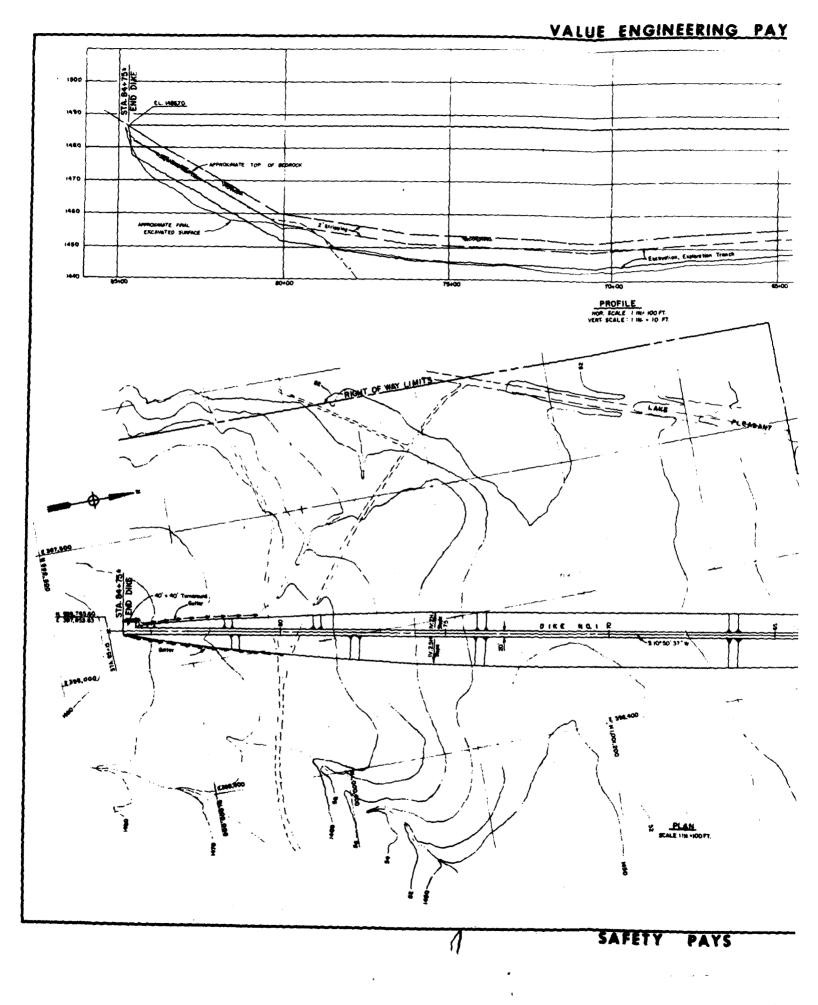






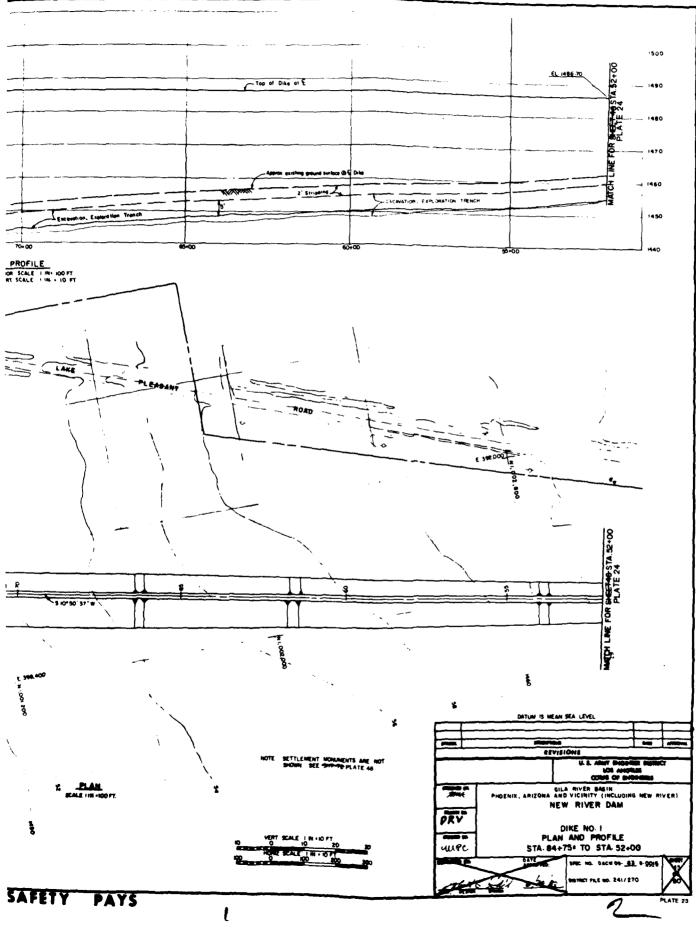


....**.**]

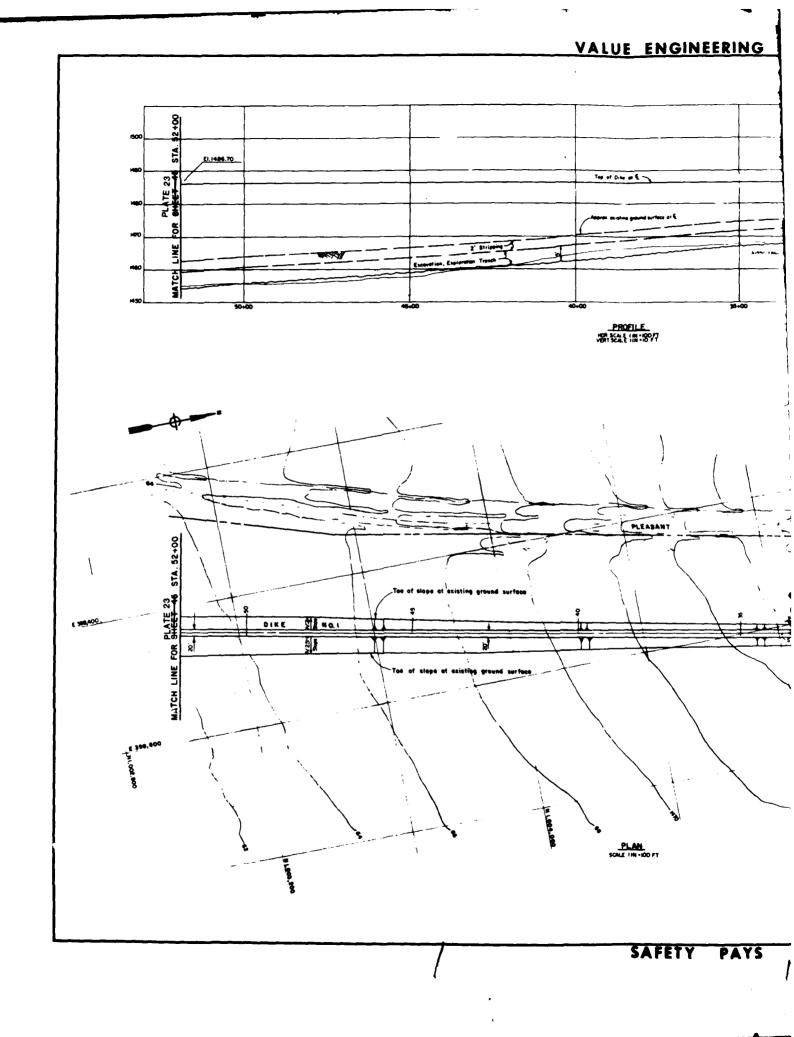





.

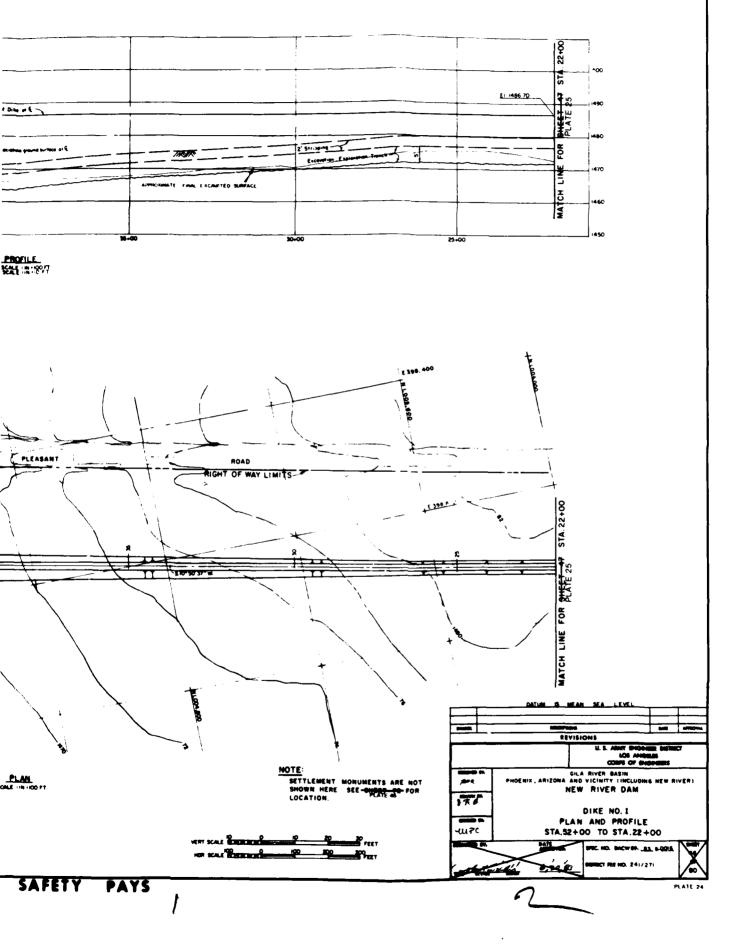
1



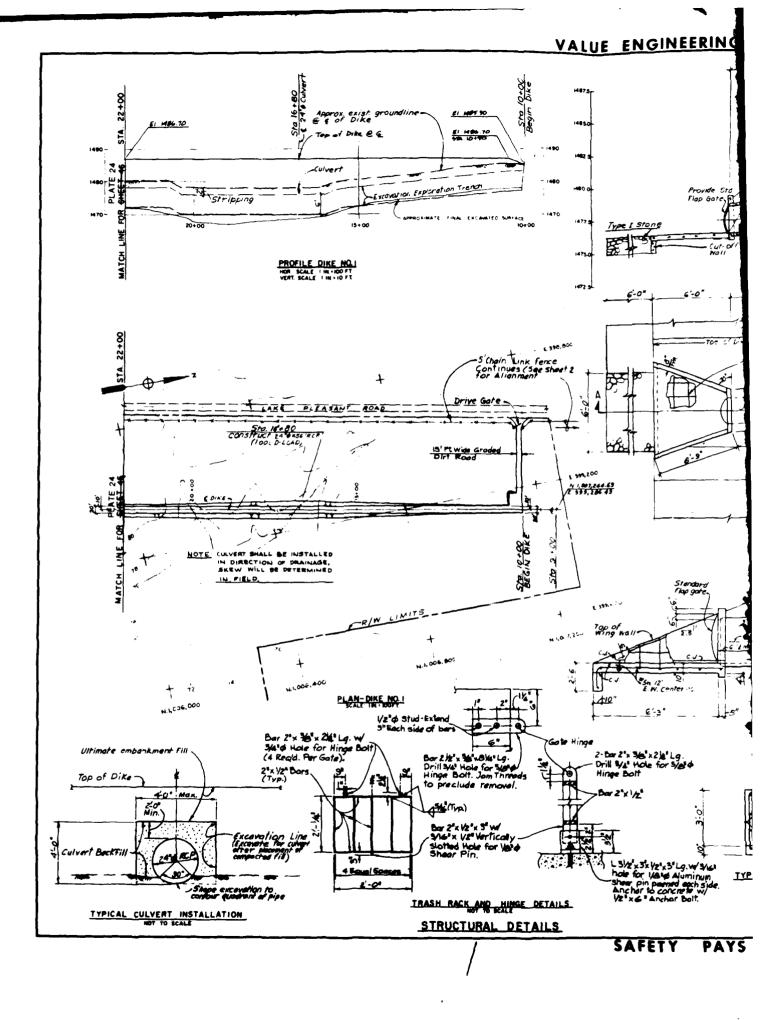


---;



****


## E ENGINEERING PAYS






#### UE ENGINEERING PAYS

····· A ····· -



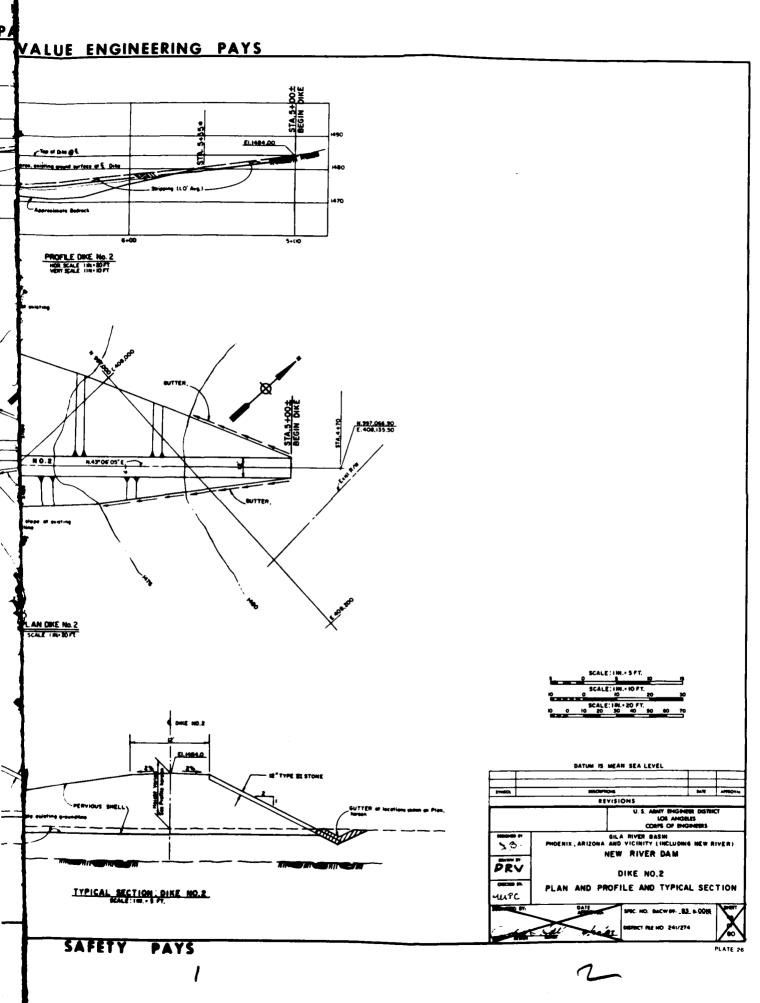
.



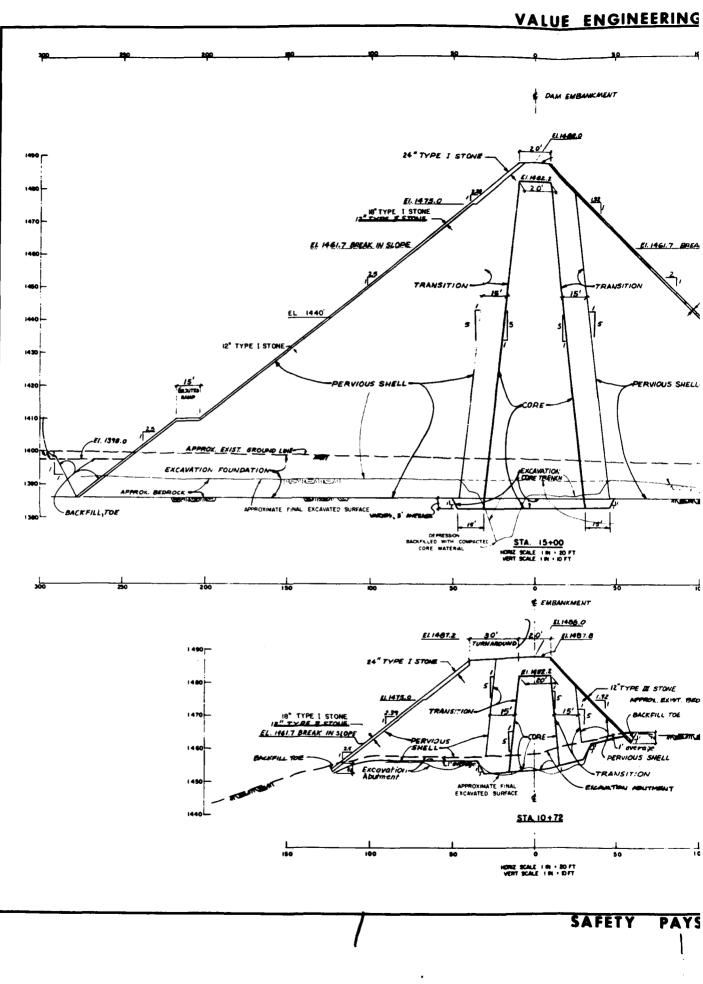
**....** 

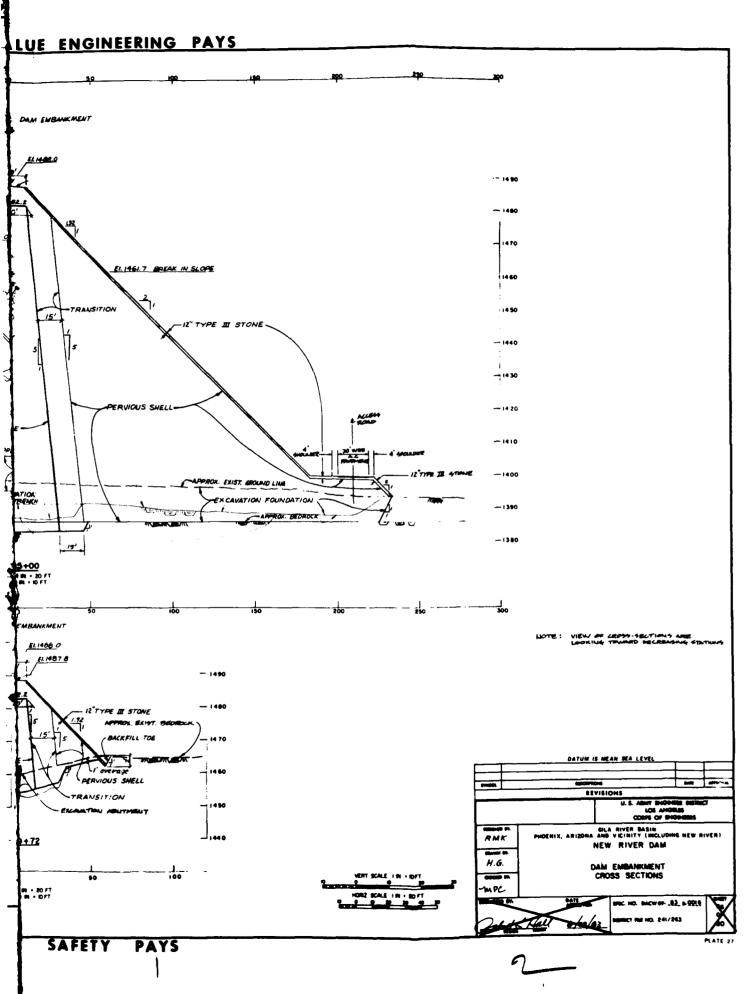
,

#### VALUE ENGINEERING PAYS 56:0" 20'-0' TOP OF DE 467.5 485.0 -Install Trosh Reck (See Detail) 1482.5 Inx El. 1477.60 Provide Sta Flap Gate -4.1476.4 4 1000 D. 6040, 1477. FION Type I Stone 477.5 Cut. off Wall E I S Cut- off Wall C PROFILE STA. 16+80 HOREZ SCALE I IN + 5 FT. VERT SCALE I IN + 2.5 FT. PROFILE 1475 1475 0 1472.5 6-0" 472 5 6'-0" 56'-0" 20-0" Top of Dike Toe of Dike TOP OF DIKE -Invert Rebur Pottern (typ) Sta. 16 + 80 ŵ Instell Trast Reck (Sec Detail) **A 4** Â 6-0' 24" # R.C.R DIK 6-9 L. 393 200 14. 1, 007,244.63 E- 333,286.43 PLAN-CULVERT Standar Flap gat E Trash rack and Hinge (see Details Herean) E. 399. 20 Top of Wing Wall Top of Wing wall 260 C & 24 & R.C.P. 4 24 & R.C.P. This portion of stem shall be poured monolithic with invert. (Typ.) "Embedaren G'Embedman FLOW FLOW EV4 7 4.0 2-6 Sa 12. 21 E.W. Center 25 ·c. J. র্ব 1 c.J.L. 410" 10-SCALE 11N. - 5 FT 6-3" 8 5'-0" SCALE JIN + 10 FT SCALE ' NOTE: te Hinge 1 IN 100 FT See Downstream struct. for reinforcing details SECTION A -A 100 2-bar 2'x 3/8"x 2 /4" Lg. Drill 3/4" Hole for 5/8 ¢ Hinge Bolt DATUM IS MEAN SEA LEVEL Ye S Bars E.F. (TYR) * 2"x 1/2" SYMBOL REVISIONS 50 12 U. S. AMMY INCIDENT CHET LOS ANGULES CORPS OF INGRADIES (Bend min. 6' into Headwall) GILA RIVER BASIN PHOENIX, ARIZONA AND VICINITY (INCLUDING NEW RIVER) -W.ZEIGLE 9 *S@12" E.W. NEW RIVER DAM L 3/2'x 3'x 1/2'x 3' Lg. w/ 3/6' hole for 1/8 4 Auminum Sher pin paned ach side. Ancher to concret w/ 1/2' x 6 " Ancher Bolt. (Centered) -DIKE NO. I ..... PLAN AND PROFILE TYPICAL HEADWALL STA. 22+00 TO STA. 10+00 AND DRAINAGE DETAILS upc DATE SPEC. HO. BACW 01- 83. 8-000 T RE NO. 241/272 6700 U SAFETY PAYS PLATE 25

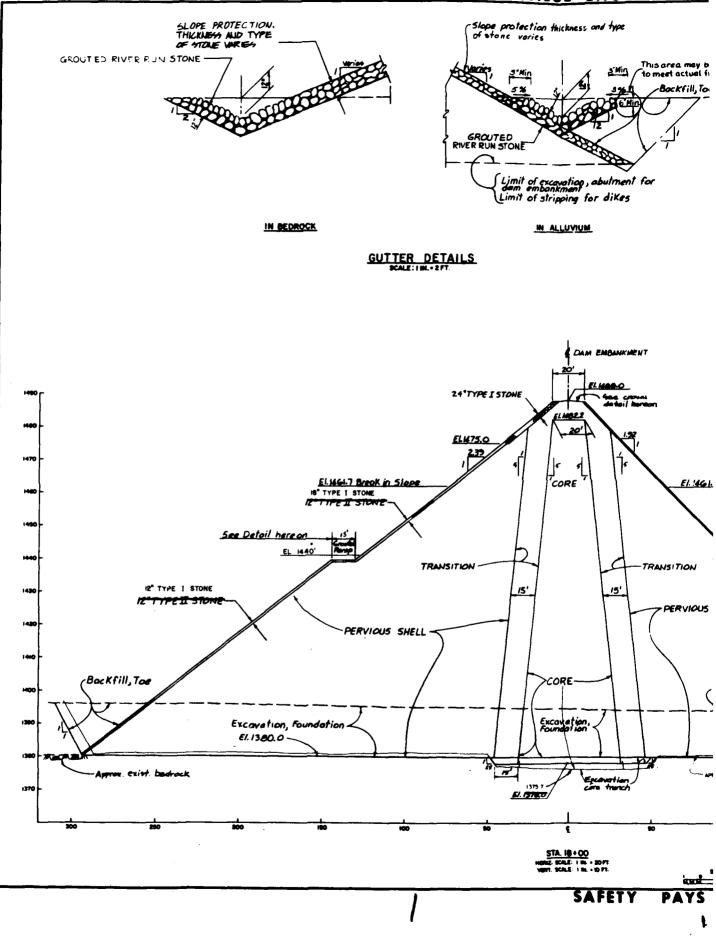

# VALUE ENGINEERING

•



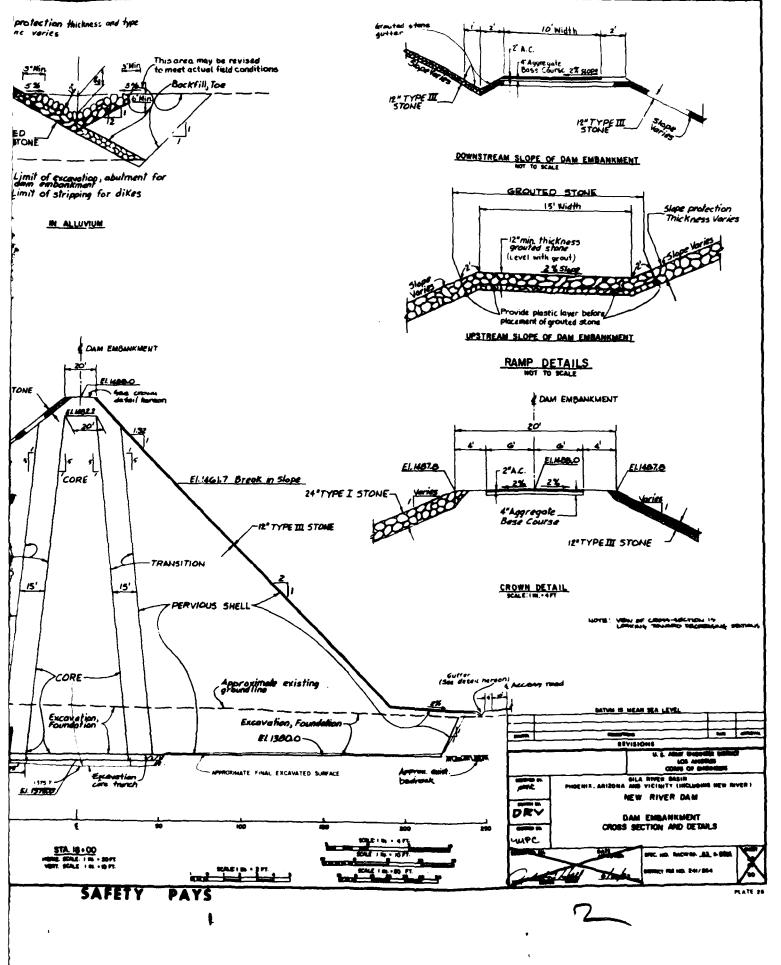


a Ba

1 A 🛔




_

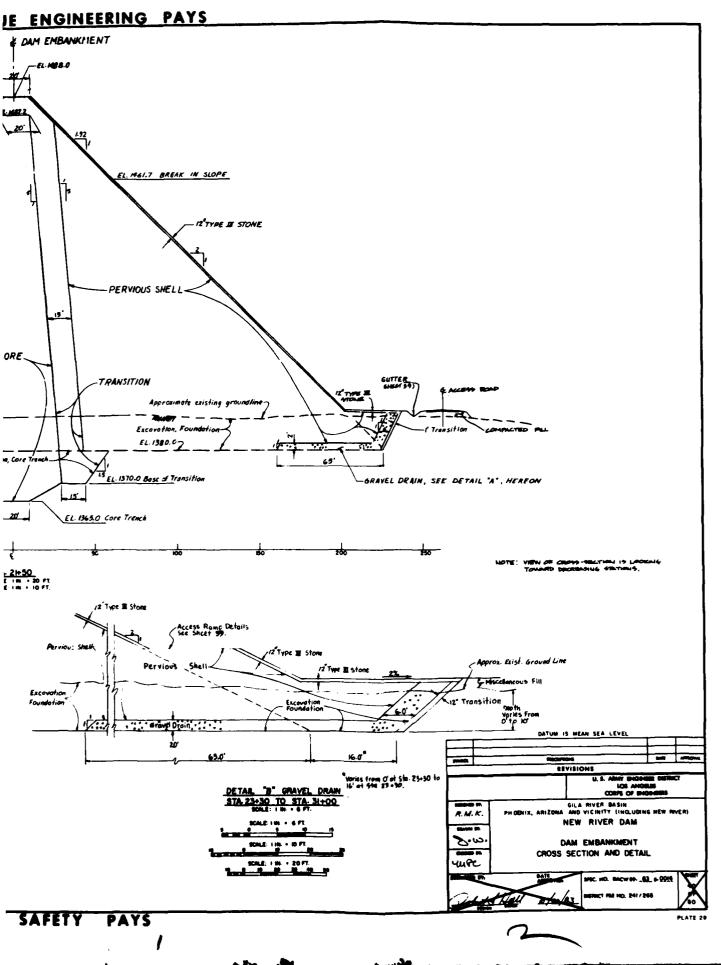


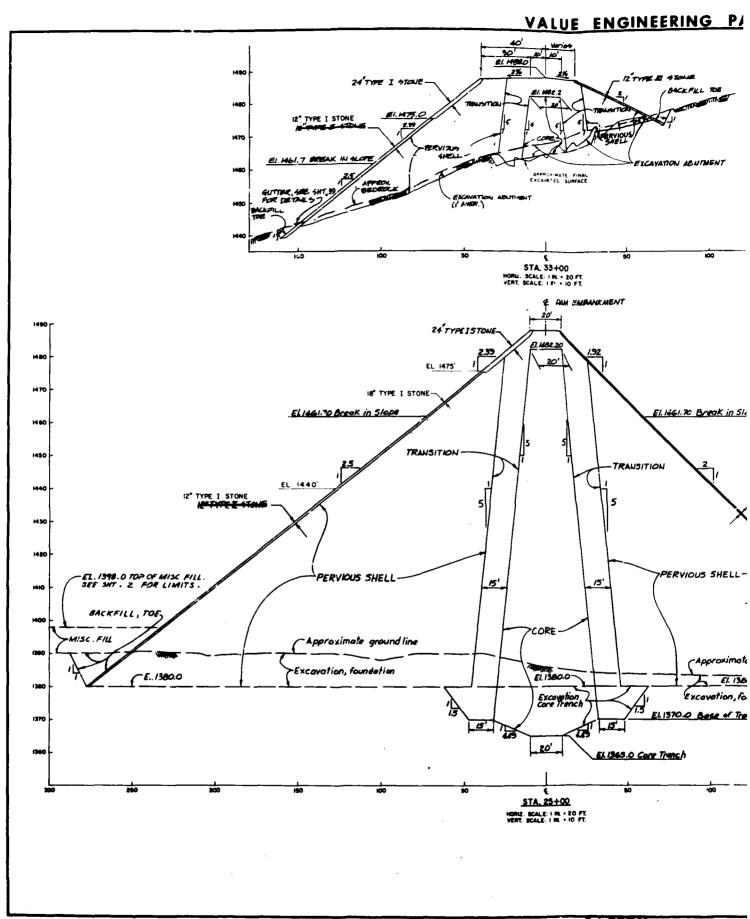



## VALUE ENGINEERING



....**)** 

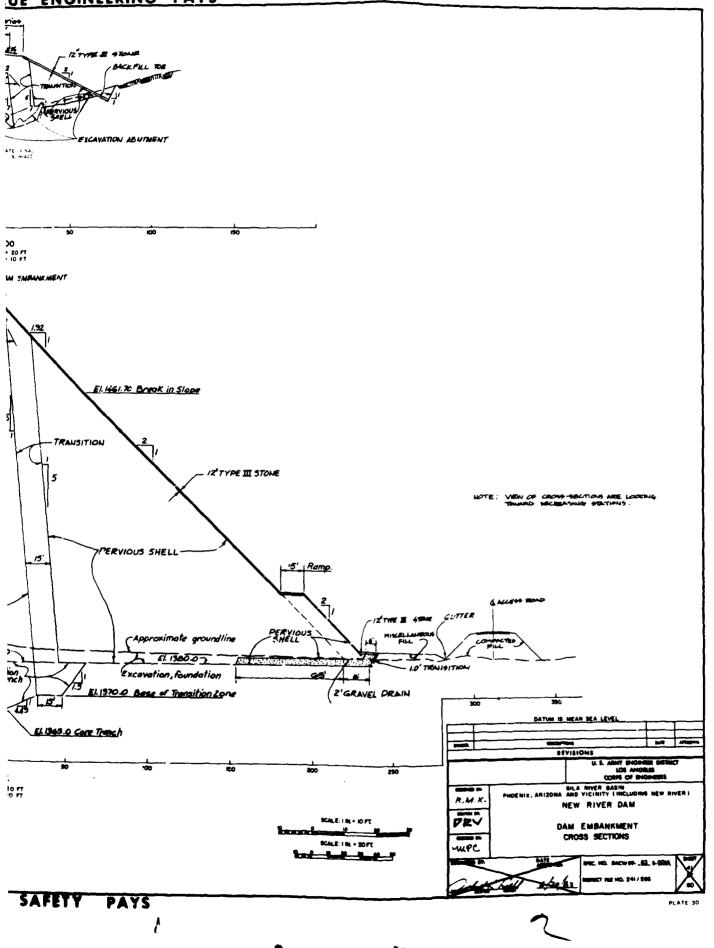

## VALUE ENGINEERING PAYS




سد.



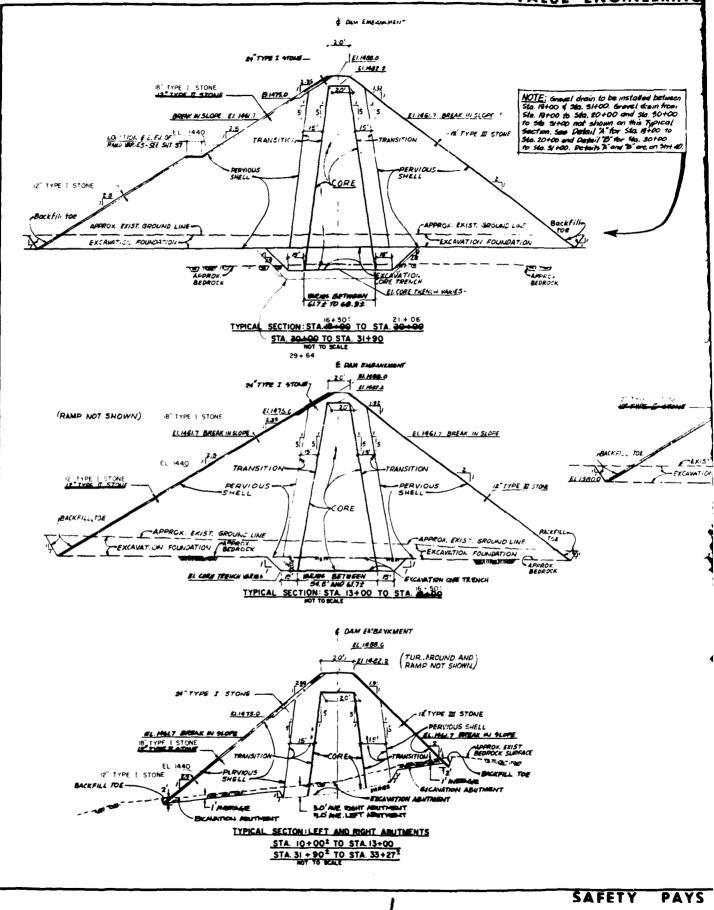
•





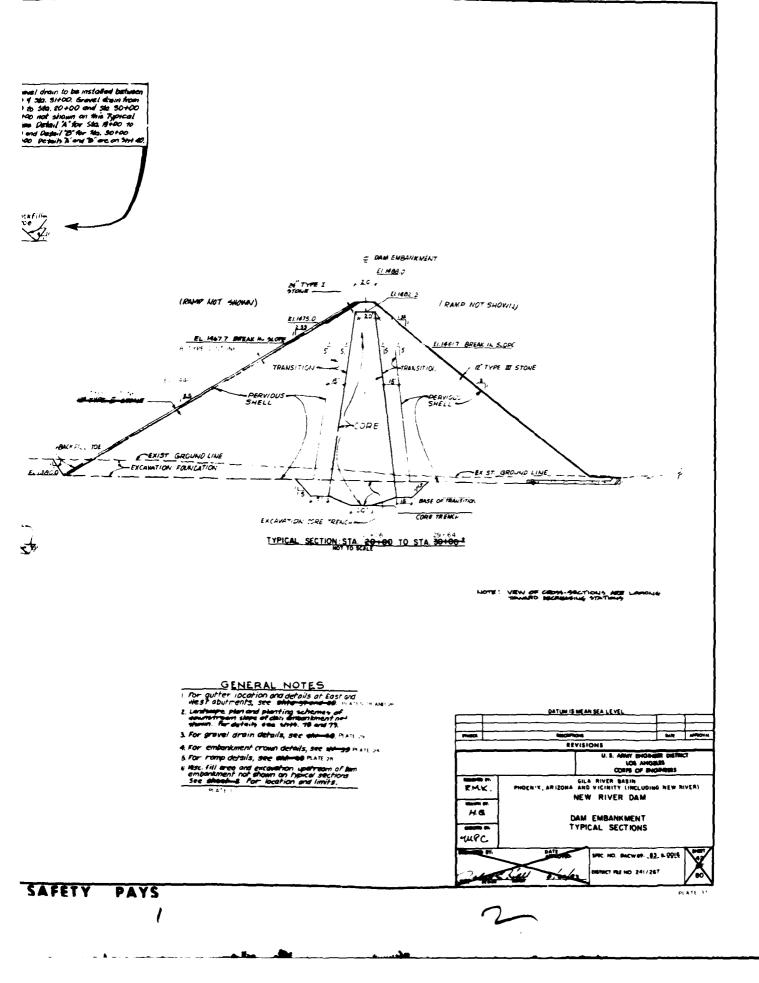

SAFETY PAYS

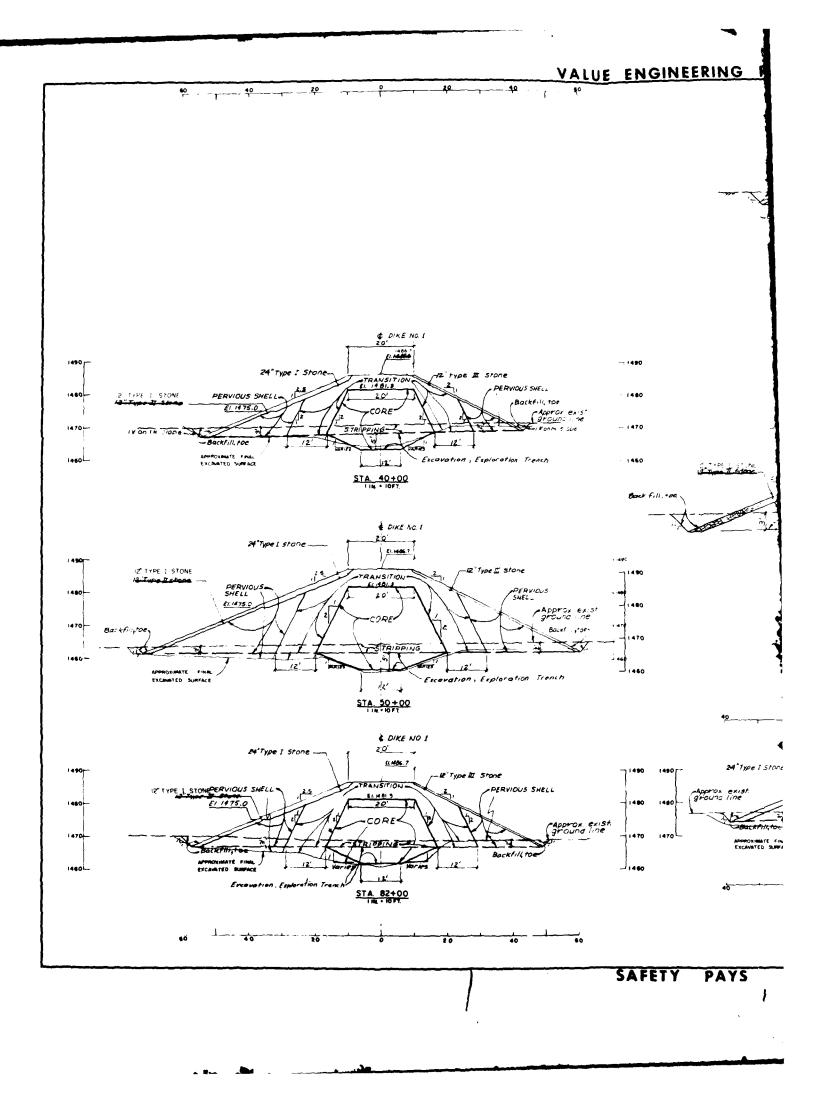
ł

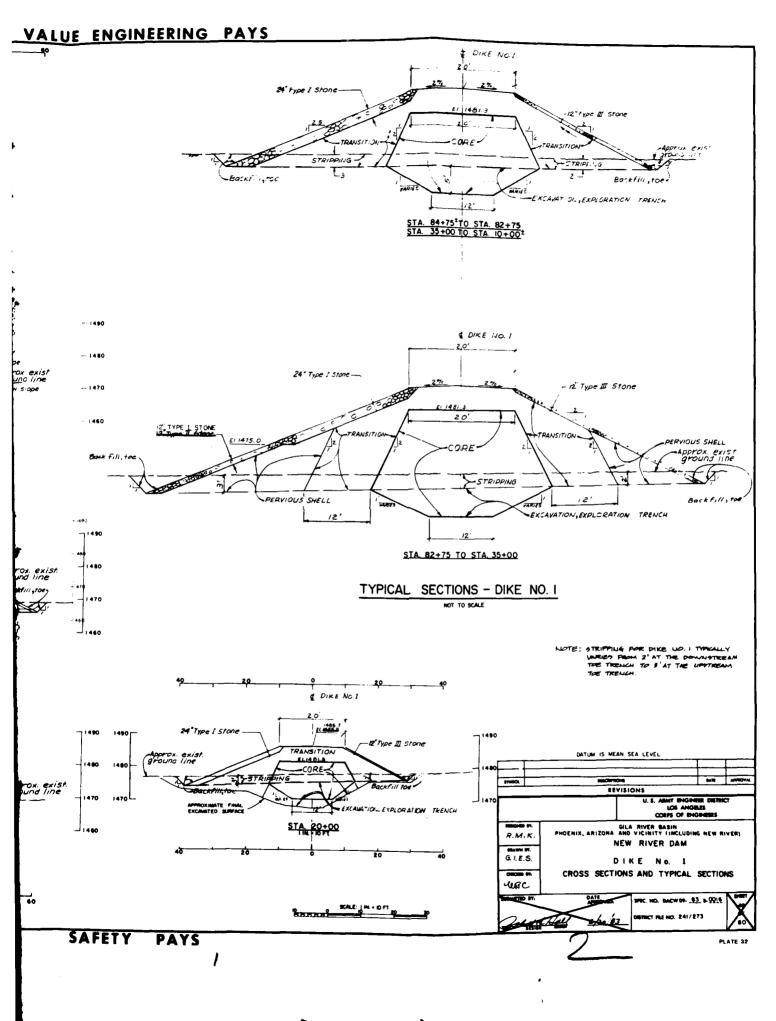

## UE ENGINEERING PAYS



----

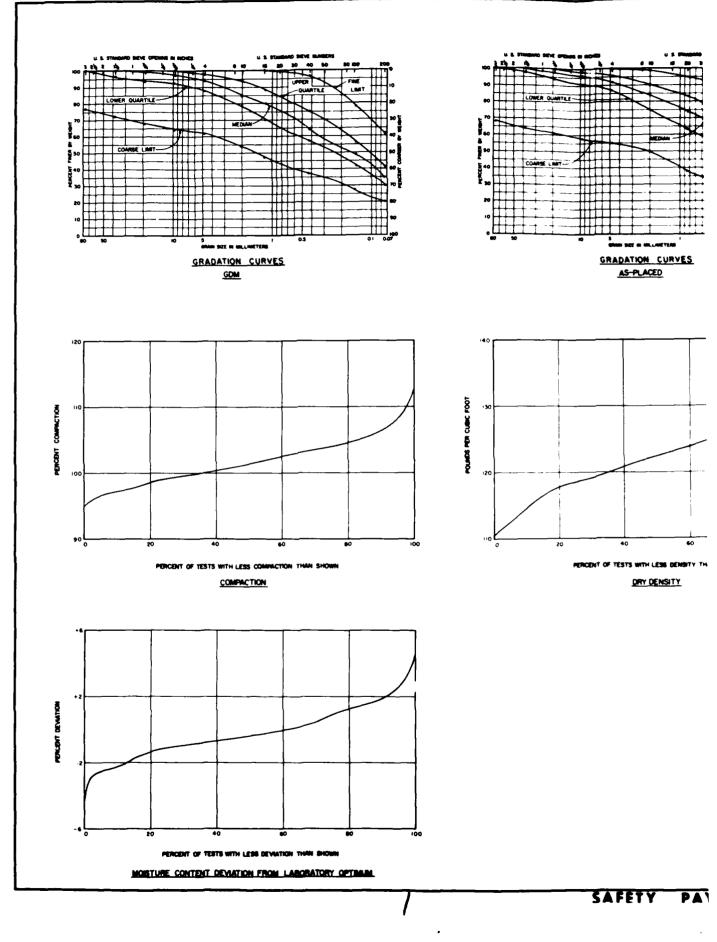

-


#### VALUE ENGINEERING



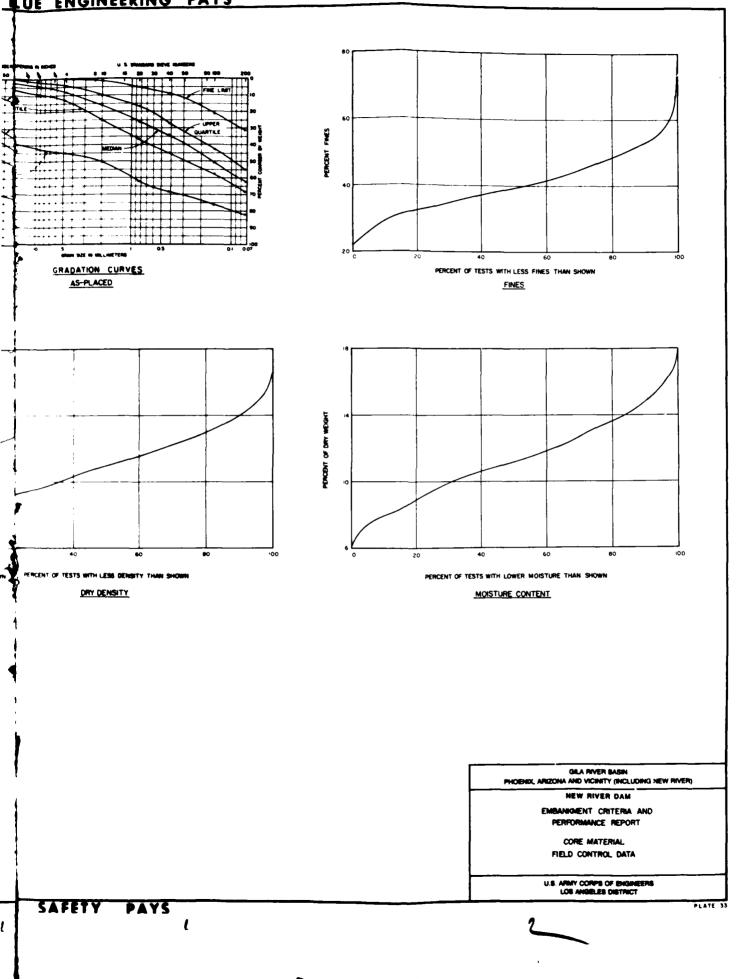

. .

#### IE ENGINEERING PAYS









-----

# VALUE ENGINEERIN

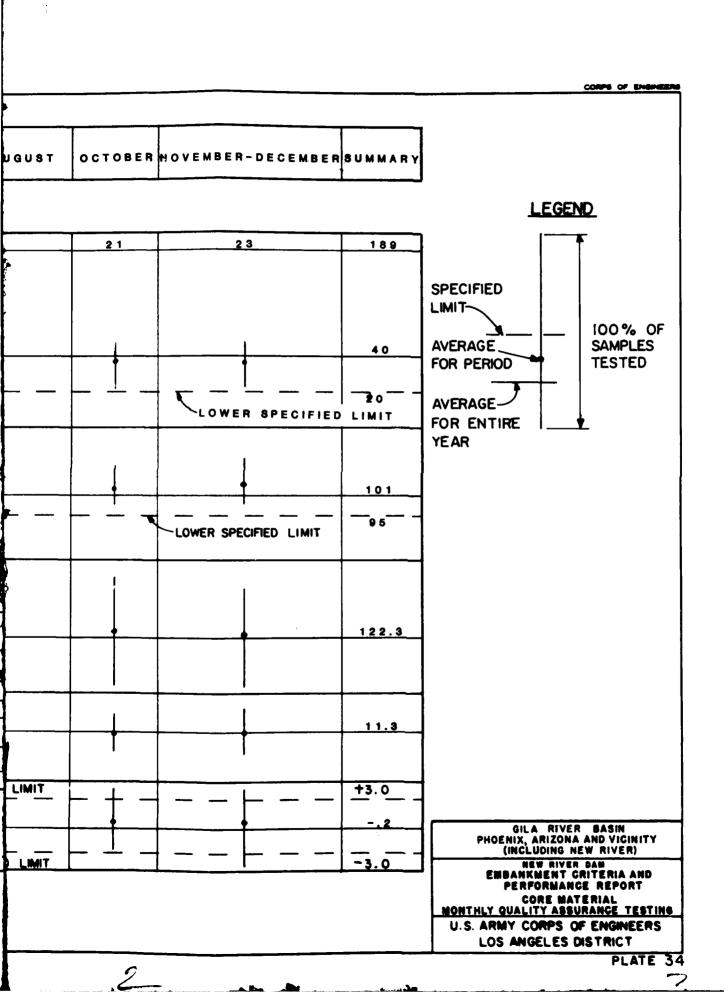


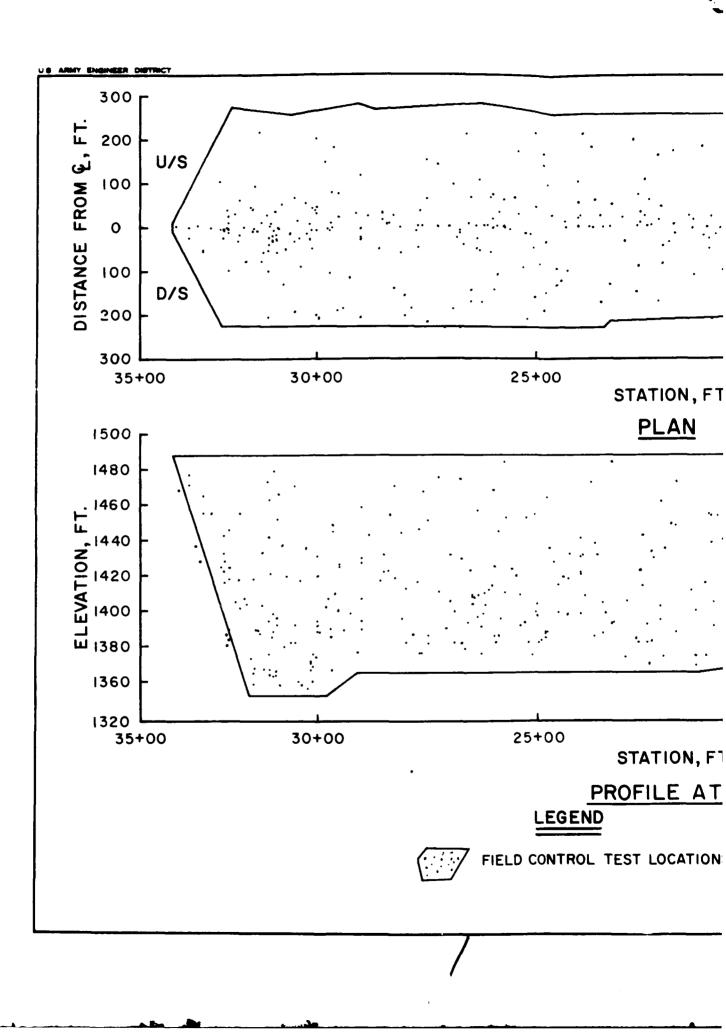
_____

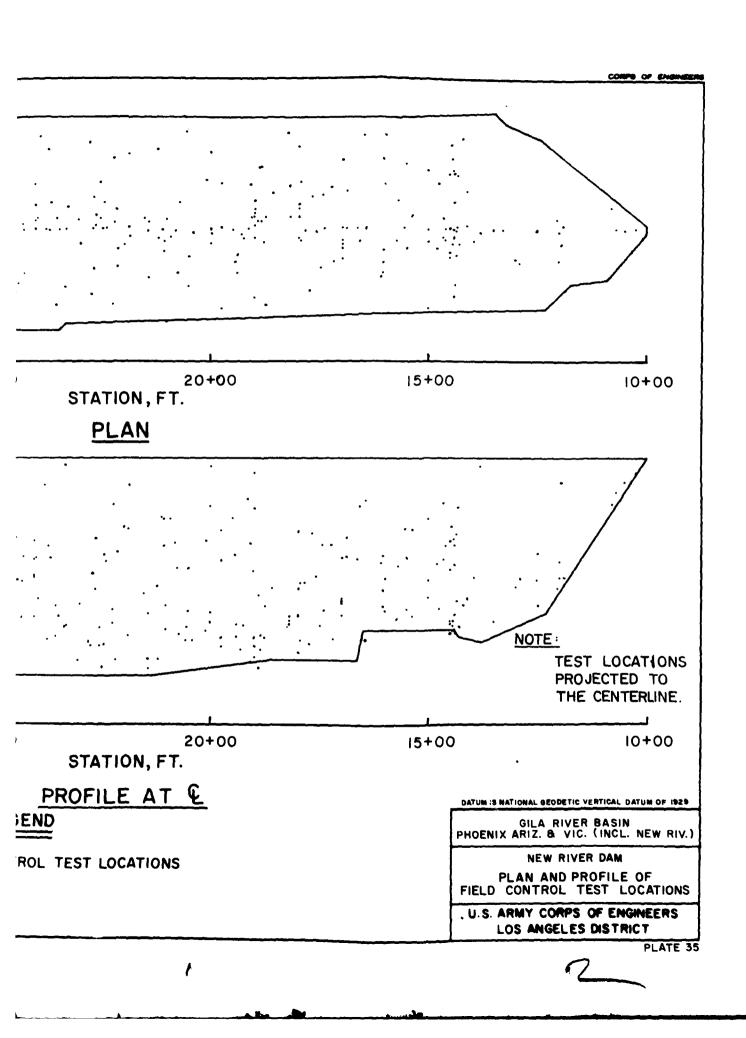
# LUE ENGINEERING PAYS

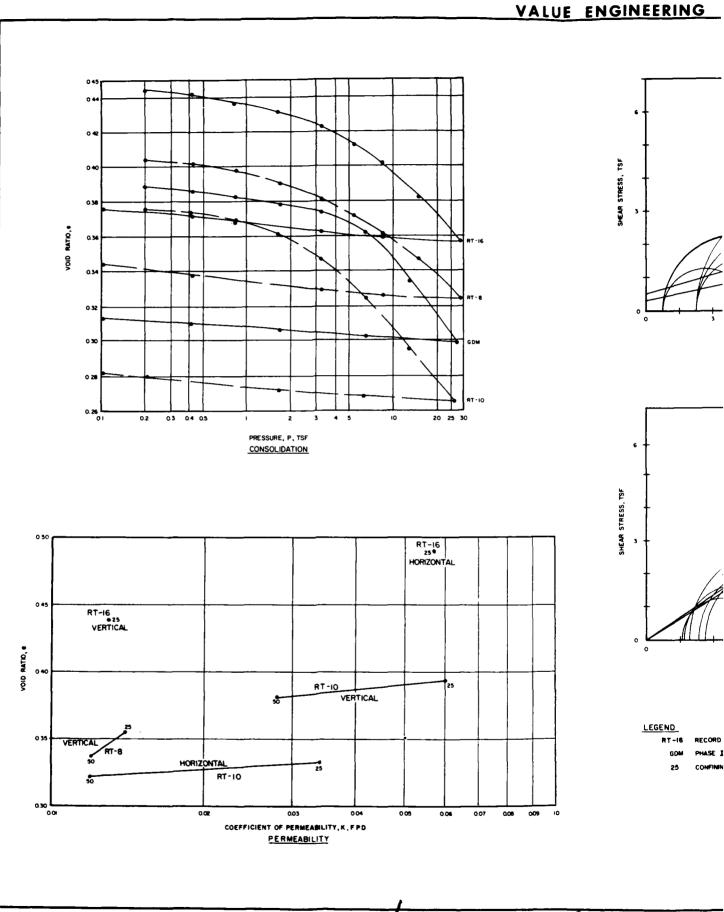


U.S ARMY ENGINEER DISTRICT


١


L


-


YEAR 1984	MONTH	JANUARY-FEBRUARY	MARCH	APRIL
CONST				
TESTS		46	31	13
FINES CONTENT PASSING CONTENT PASSING CON CON CON CON CON CON CON CON CON CON	80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 -			
PERCENT COMPACTIO ASTM D 698	0N 115- 110- 105- 100- 95- 90-			
FIELD DENSITY Dry Unit Weight (PCF)	136- 130- 125- 120- 116-	    		
PLACEMENT MOISTU (Percent)	16 - RE 10 - 5 -	<u> </u>	-	+
DEVIATION FROM Optimum moisture	+ 4 -			

RCH APRIL MAY JUNE JULY-AUGUST OCTOBER NOVEMBER-DECEN CONSTRUCTION CONTROL DATA 1 13 20 14 21 21 23 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 B E R S U M M
1 <u>13</u> 20 <u>14</u> 21 <u>21</u> 23	1 8
	18
LOWER SPEC	IFIED LIMI
	10
	1.2
	1
UPPER SPECIFIED LIMIT	+3
LOWER SPECIFIED LIMIT	3

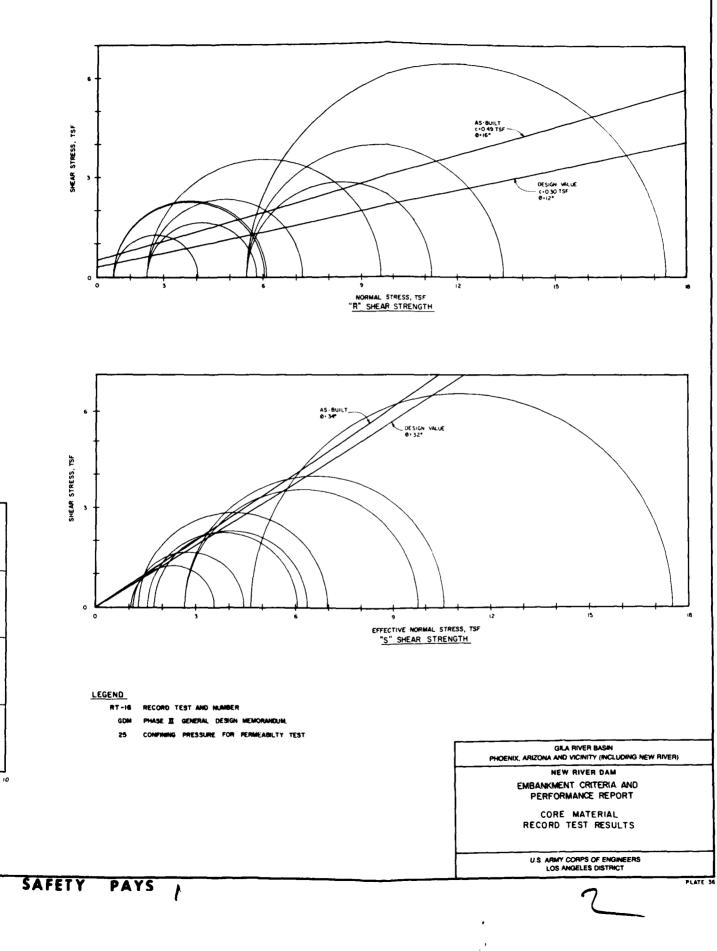




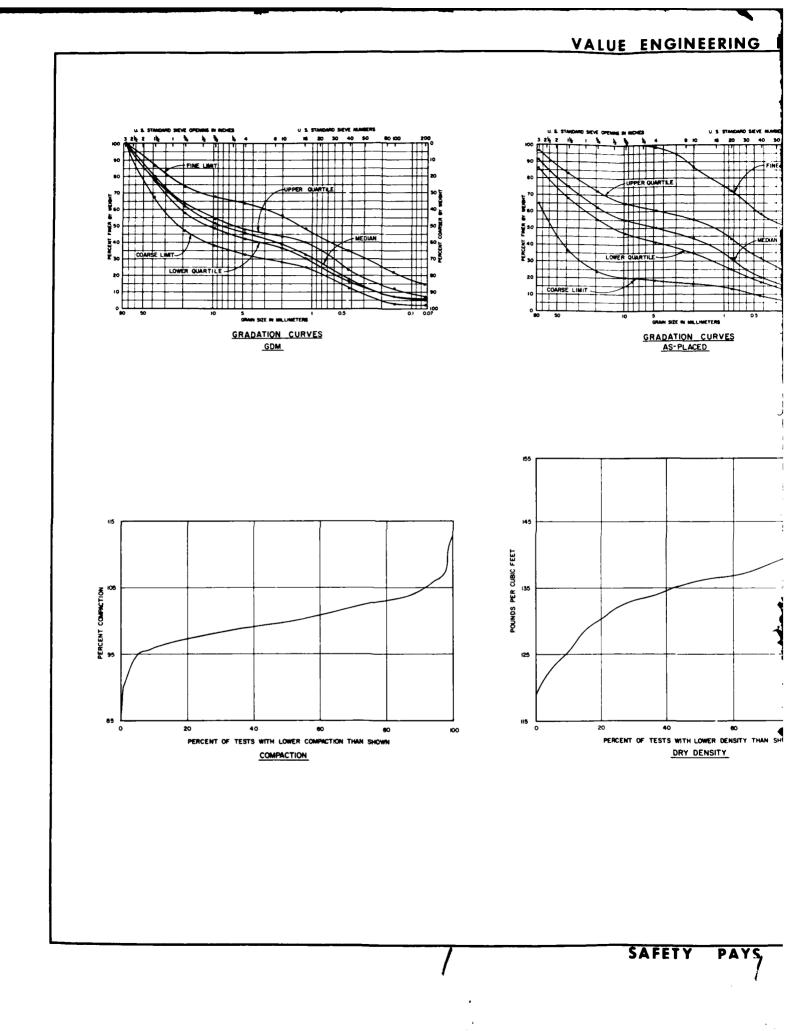




, **'** 


.

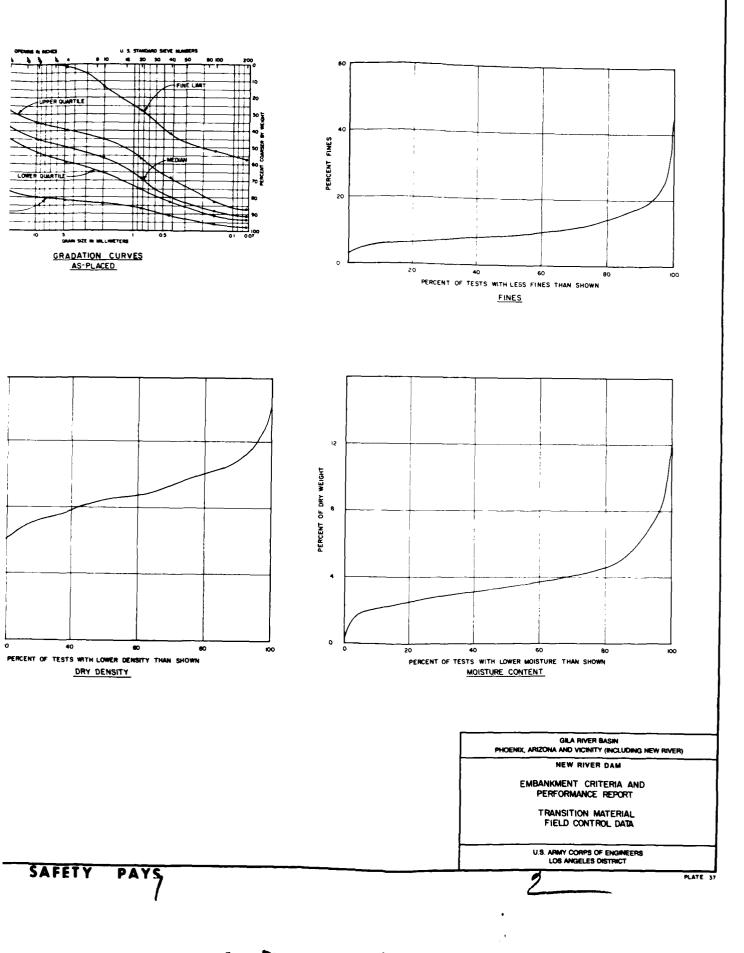
SAFETY PAYS


. .

# ALUE ENGINEERING PAYS

109




۰,



. ......

----

#### LUE ENGINEERING PAYS



____

US ARMY ENGINEER DIFYRICT

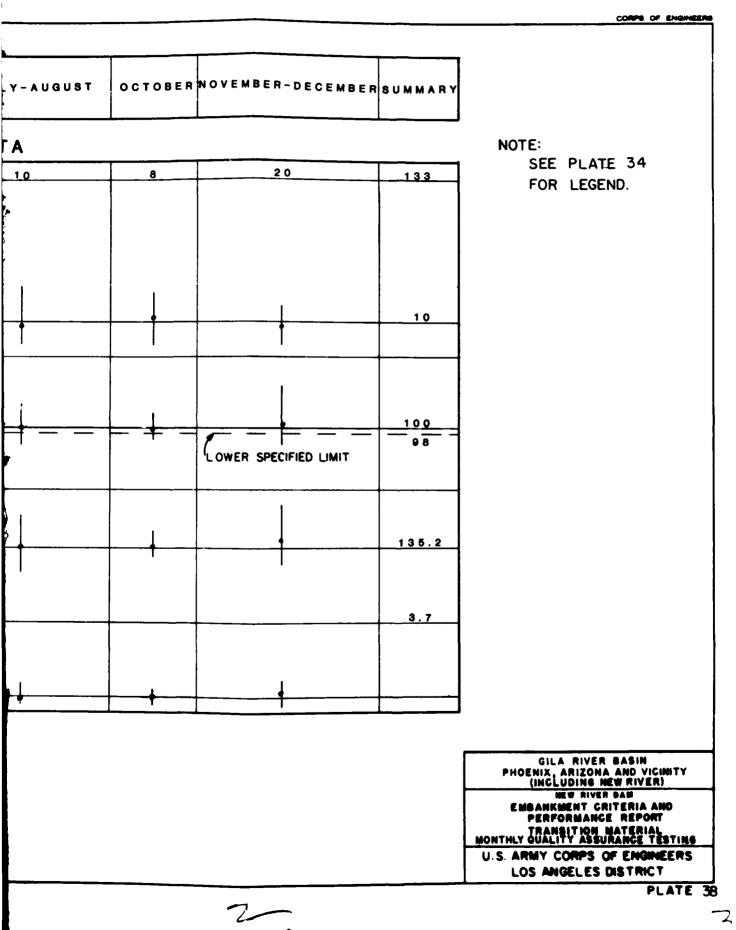
YEAR					
1984	MONTH	JANUARY – FEBRUARY	MARCH	APRIL	M

# CONSTRUCTI

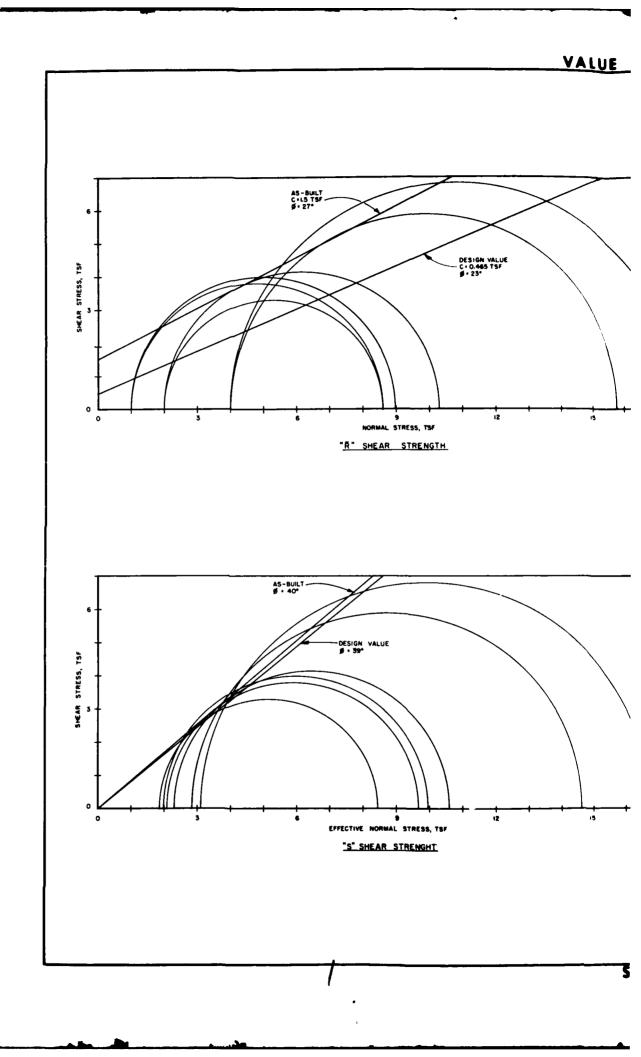
TE\$TS		3 2	24	16	_
	40 -				
	30 - 20 -				
РЕ R С Е И Т N 0. 200 В 4 W	10				
	115-	-			
PERCENT COMPACTION	105-				l
ASTM D 698	100- 95- 90- 85-		+ -		
FIELD DENSITY	150- 145- 140-				
DRY UNIT WEIGHT (PCF)	135 130- 125- 120-	•			
	115-			<b>_</b>	
PLACEMENT MOISTURE	16- 10-	I			
(PERCENT)	5		<b>_</b>	┟───┝───	

	JUNE	JULY-AUGUST	OCTOBER	NOVEMBER-DECEMBE	RSUMMARY	
N C	CONTRO	L DATA			<b>-</b>	
	7	10	8	2 0	133	SEE PLA FOR LEG
	1				10	
	•	•				
		I				
			<u>⊨</u> <u>+</u> -		100	
		·		OWER SPECIFIED LIMIT	98	
	L	]			135.2	
			<u> </u>	<u>+</u>		
					3.7	
			<u>↓</u>			
	<u> </u>	۳	<u>т</u>			

GILA RIVEI PHOENIX, ARIZON (INCLUDING NEW RIVE EMBANKMENT C PERFORMAN TRANSITION MONTHLY QUALITY ASS U.S. ARMY CORPS LOS ANGELES


2-

_____


;

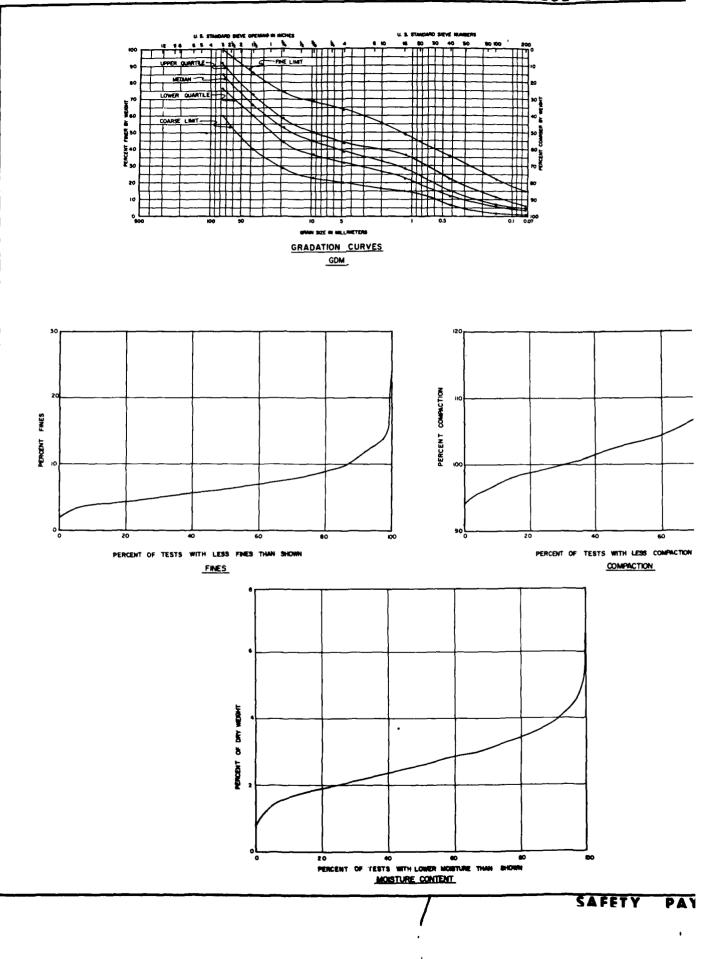
•

_____



i





l

k

ŧ







### ALUE ENGINEERING PAYS



U.S ARMY ENGINEER DIFFRICT

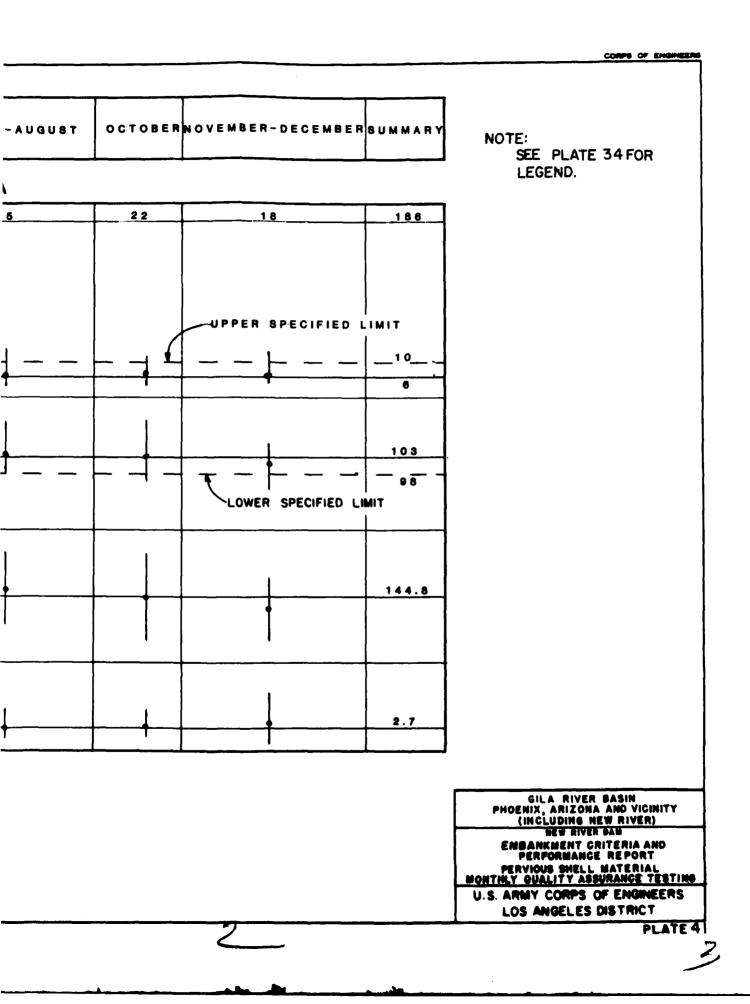
ć

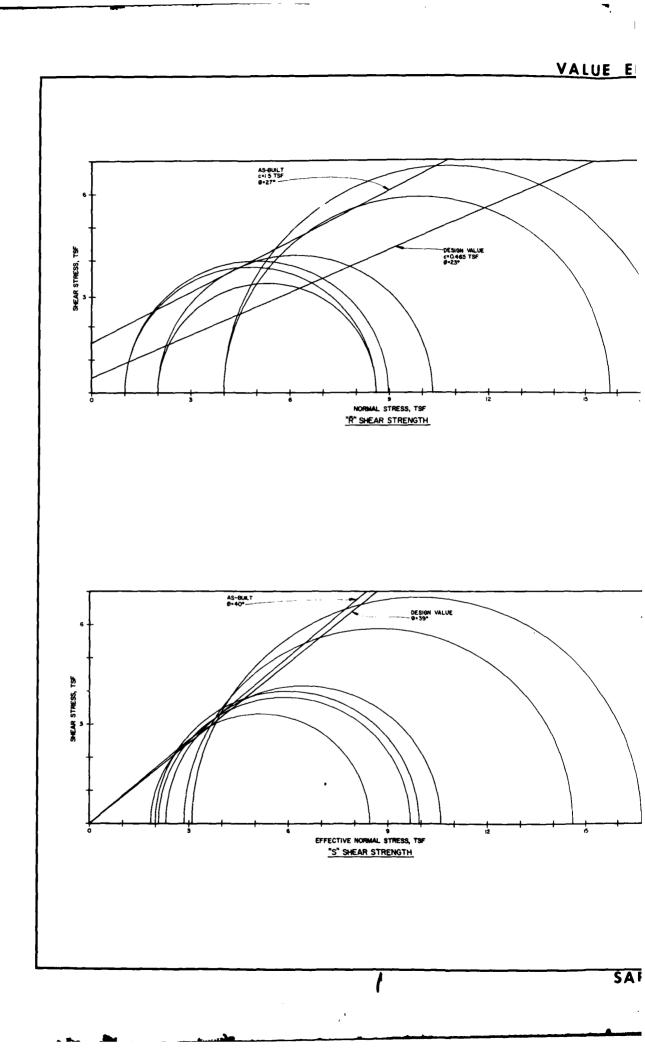
YEAR					
84 MONTH		JANUARY-FEBRUARY	MARCH	APRIL	
			С	ONSTRU	JCT
TESTS	······································	9	5	3 1	
FINES UNTENT DVISSEL LNUDSUUS FINES T CONTENT SVISSEL LNUDSUUS SVISSEL LNUDSUUS SVISSEL LNUDSUUS SVISSEL LNUDSUUS SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSEL SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVISSE SVI	30 - 20 - 10 -				
PERCENT COMPACTIO ASTM D 698	115- 110- 105- 100- 95- 90-		_ + _		
IELD DENSITY Pry Unit Weight (PCF)	155- 150- 145- 140- 135-				
PLACEMENT MOISTUR PERCENT)	9- E 5-	•		<b>↓</b>	
	1-			'	

1

, ·

MAY	JUNE	JULY-AUGUST	OCTOBER	NOVEMBER-DECEMBER	8 U M M A R Y
(					1


NOTZ: SEE P LEGEN

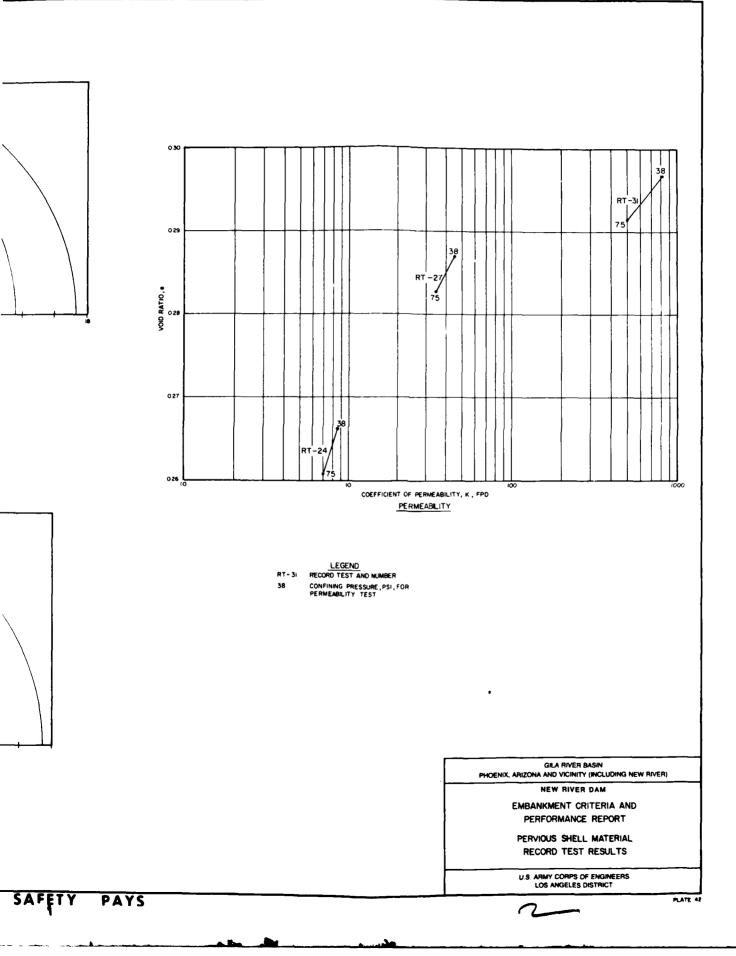

## JCTION CONTROL DATA

54	32	15	22	18	
1					
				UPPER SPECIFIED	
		1		,	
- + -			┝╴╶┧╺┶		_   1 0
	Ī		1		6
			<b></b>		
1		•	1		
	+		<b> </b>		103
- + -	┥		┝ <b></b> ┥	┥┳──┡───	
•	1				98
				LOWER SPECIFIED	LIMIT
<u>-</u>	ļ				
1					
	1				
	+				144.8
	•			l •	
		•			
				,	
	1			·	
		•			1
					2.7
I	<b>▼</b>	T			

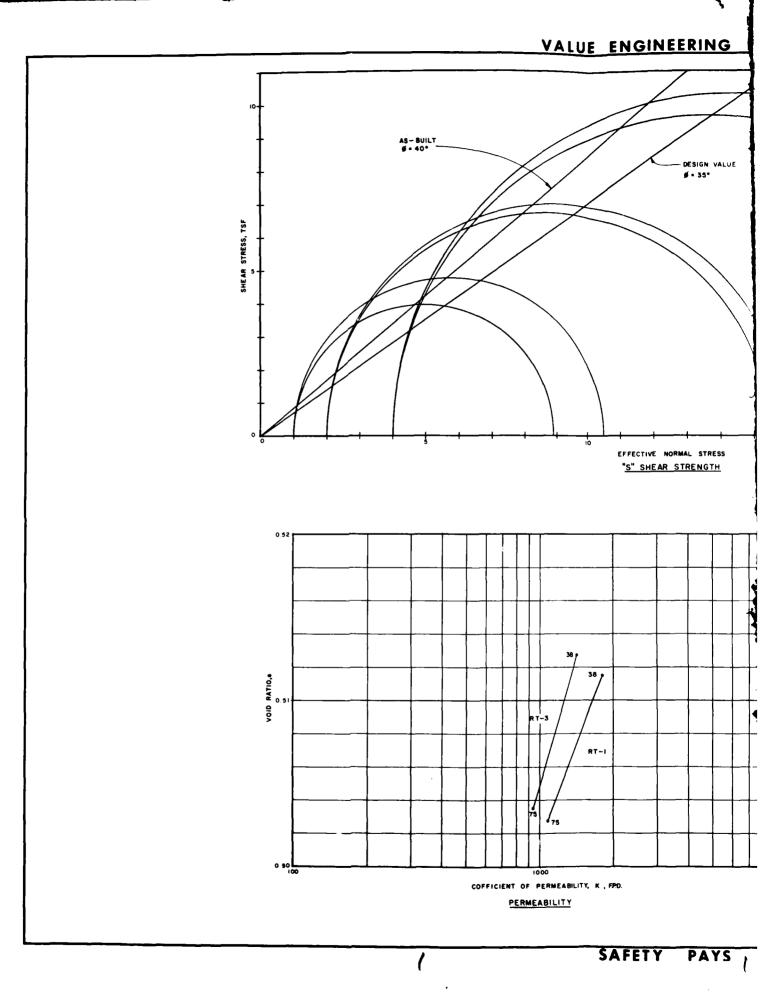
GILA PHOENIX, AI (INGLUI ENBANKM PERFOR PERVIOUS MONTHLY GUALI U.S. ARMY CO LOS ANG

, 🖊





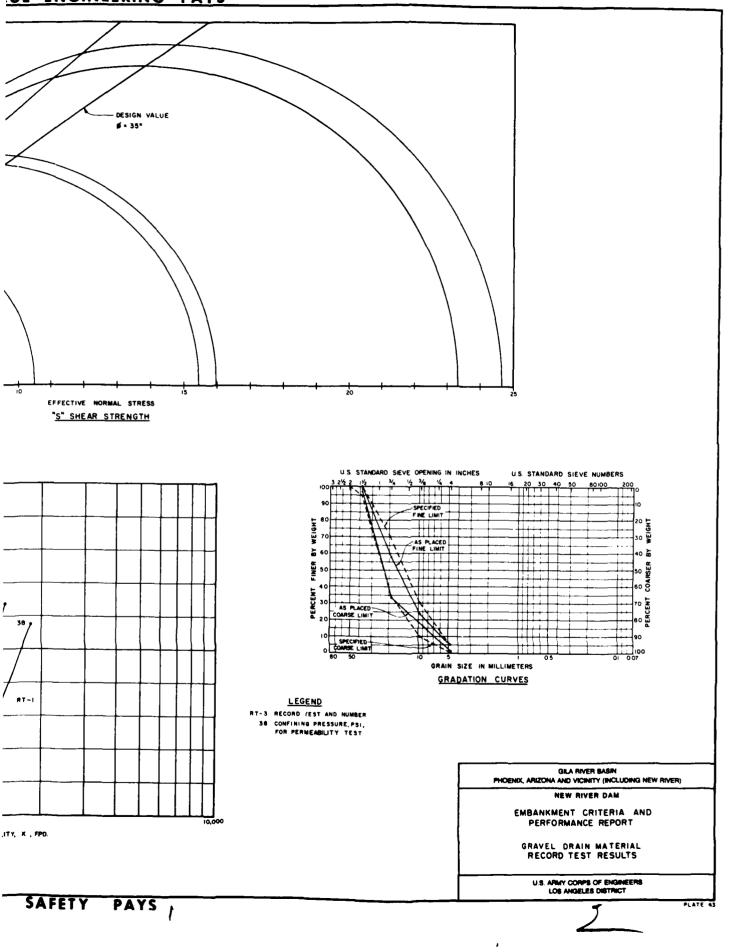

-

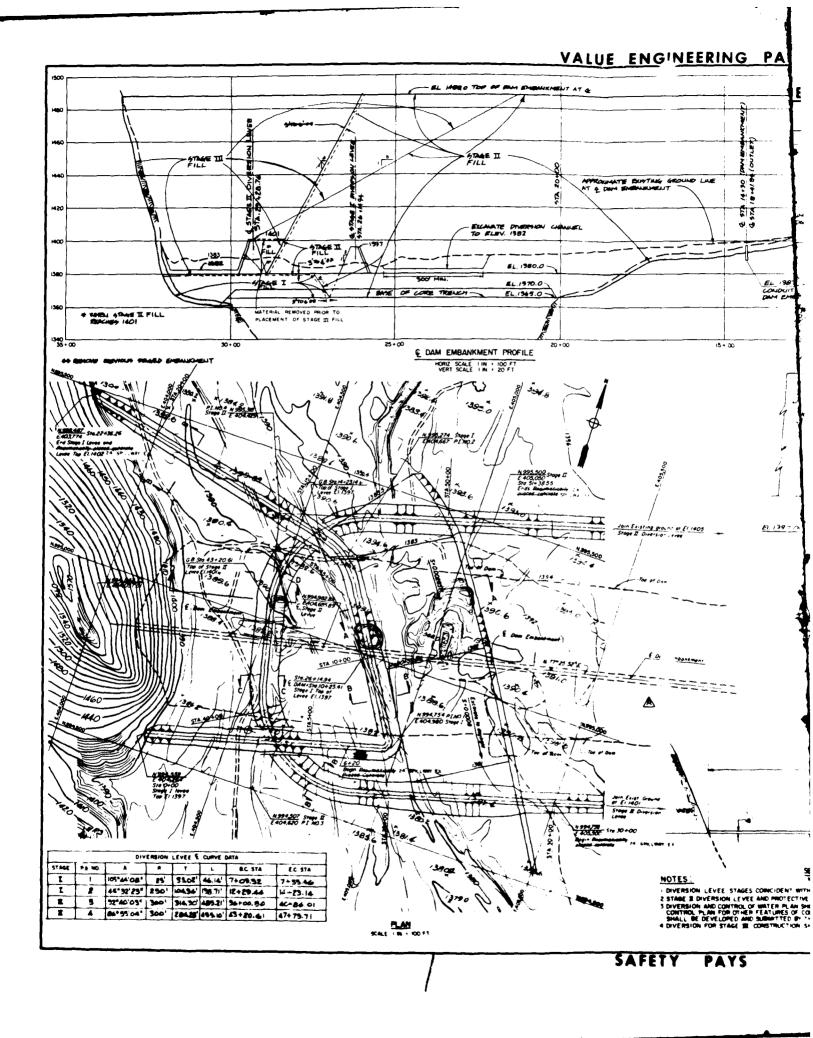

ł

;

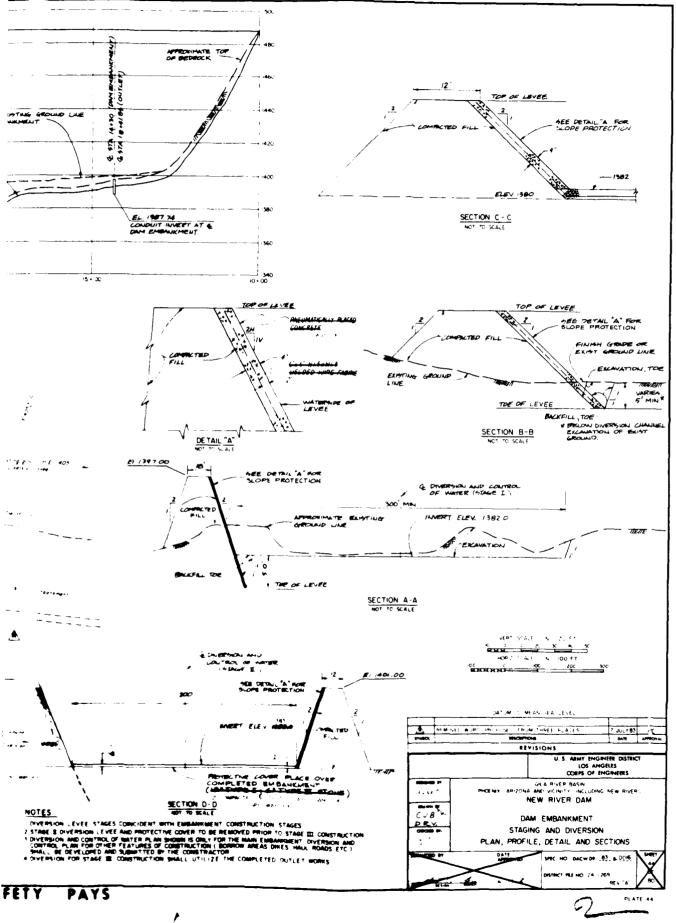
# JE ENGINEERING PAYS

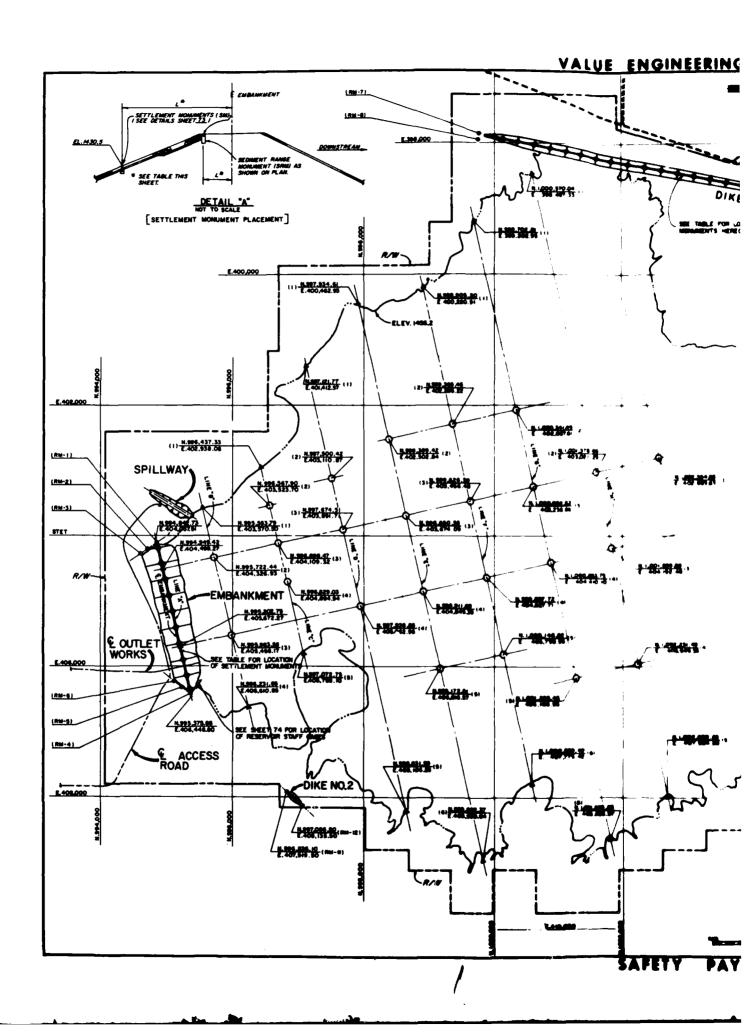


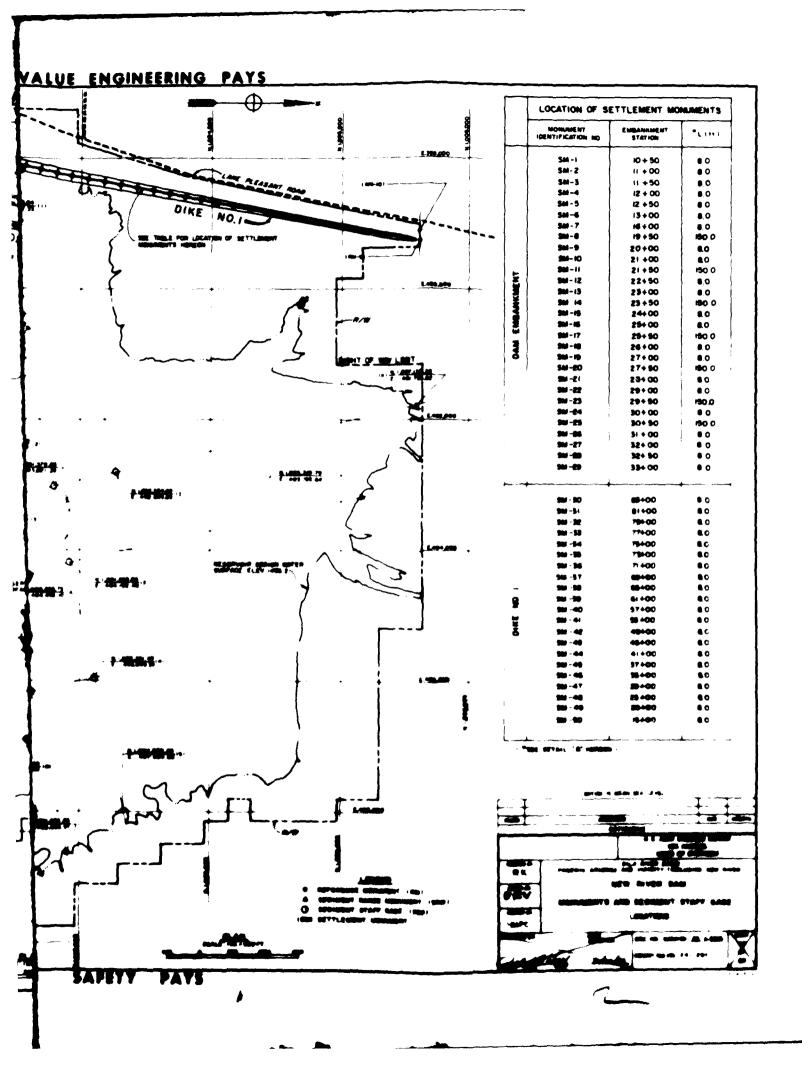

۰,




- - - -


### UE ENGINEERING PAYS


.






#### NGINEERING PAYS





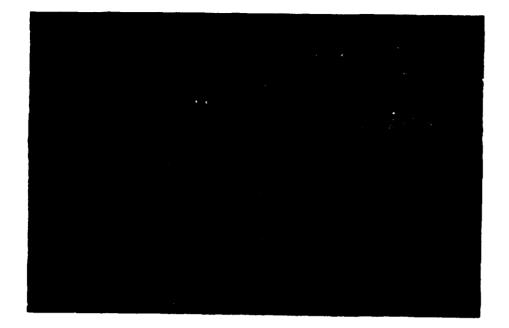


# PHOTOGRAPHS

#### PHOTOS

- 1. Upstream face of dam embankment as viewed from the spillway. March 1985.
- 2. View of dam embankment crest, upstream face, and spillway from the east abutment. March 1985.
- 3. Landscaped downstream face of dam embankment as viewed from spillway access road. March 1985.
- 4. Crest and upstream face of dike no. 1 embankment as viewed from south abutment. Note grouted stone gutter along embankment toe. March 1985.
- 5. View of landscaped downstream face of dike no. 1 embankment looking toward south abutment. March 1985.
- 6. Downstream face of dike no. 2 embankment. March 1985.
- 7. Looking downstream at main access road, energy dissipator, gaging station bridge, and outlet channel from crest of dam. April 1985.
- Looking upstream at energy dissipator and downstream face of dam embankment from gaging station bridge. March 1985.
- 9. Approach channel to intake structure as viewed from crest of dam. Note ditch to intercept slope runoff at right. April 1985.
- 10. Intake structure and trash rack. Note grouted stone section at approach channel. April 1985.
- 11. View of completed spillway excavation looking upstream. March 1985.
- Core trench excavation using push cat and scraper. Note dozer using rippers and blade to excavate base of right abutment. December 1983.
- 13. Foundation excavation using two push cats and scraper. April 1984.
- Foundation excavation using push cats, scrapers, and dozer. Note lighter colored areas of claiche or bedrock in upstream portion of dam foundation. January 1984.
- Core trench excavation using push cats and scrapers. Note front end loader pushing overburden away from the bedrock near station 16+50 for scraper removal. March 1984.
- Excevating andesite bedrock in stage I core trench using excevator, vicinity station 31+10. December 1983.
- 17. Excavator widening stage I core trench. January 1984.
- 18. 50-ton roller used to proof roll the foundation. April 1984.
- 19. West abutment "stripping using a small dozer. November 1983.
- 20. Surface preparation of west abutment using both air blasting and hand labor. December 1983.
- 21. View of completed stage I core trench excavation and west abutment. Note backhoe trench in foreground. February 1984.
- 22. East abutment excavation using excavator. January 1984.
- 23. Initial foundation preparation of east abutment surface using low pressure air blasting. Note excevator on left. January 1984.
- 24. Small backhoe assisting excavator during east abutment excavation. Note rock dust generated from air blasting of excavated abutment surface. January 1984.
- Foundation preparation in core trench using backhoes and shovels; vicinity station 17+00. March 1984.
- View of stage II diversion leves protecting completed stage II excavation to station 26+50. Note stage I ambankment protective cover in foreground. March 1964.
- Placing dental concrete on west abutment slope using concrete bucket. October 1984.

- 28. Dike no. 1 exploration trench excavation using two push cats and scraper. Note dozer being used to rip caliche. February 1984.
- 29. View of dike no. 1 exploration trench excavation looking north from south abutment. January 1984.
- 30. Dike no. 1 exploration trench ecavation using front end loader to cleanup the trench. Note the caliche which is visible throughout the cross section of the trench. January 1984.
- 31. Dike no. 1 exploration trench excavation attempting to rip caliche between station 31+00 and 30+00. February 1984.
- 32. Dike no. 1 exploration trench, station 81+25. Note coherent andesite blocks on both sides of photo with calichified andesite breccia toward center. January 1984.
- 33. View of dike no. 1 completed exploration trench excavation looking south from station 13+00. Note widespread caliche. February 1984.
- 34. Dike no. 2 foundation after stripping. February 1984.
- 35. Vibrating crusher used to crush and screen pervious shell materials to produce gravel drain and type III stone. February 1984.
- 36. Taking core record sample dike no. 1 station 70+10 elevation 1461.0, and 7 feet upstream of centerline. February 1984.
- 37. Prewetting core material in borrow area III. December 1983.
- 38. Front end loader loading end dump trucks with core material. April 1984.
- 39. End dump truck placing core material on dike No. 1. March 1984.
- 40. Placing core material in core trench. Note: the tamping roller being pulled by the dozer, the motorgrader scarifying the surface, the push cats and scrapers excavating the embankment foundation and placing the suitable materials in the core zone, and the water truck adding water to the core materials. June 1984.
- 41. Typical example of rock-core contact on east abutment (approximate elevation 1447). Pneumatic wheel rolling core material prevented damage to highly fractured granitic bedrock surface by the tamping roller. July 1984
- 42. Beginning west abutment surface preparation. Laborers permitted to walk only short reaches without safety lines. Note backhoe removing protective cover down to elevation 1380 near base of slope. September 1984.
- 43. Front end loader with loaded bucket wheel rolling core material at rockcore contact. February 1984.
- 44. Front end loader compacting core material against bedrock slope in core trench, vicinity station 16+50. Note dozer using blade to spread core material over foundation surface. April 1984.
- 45. Five-foot high ramp of core material against right abutment slope. October 1984.


ľ

- 46. Bottam dump truck placing transition material, vibratory roller compacting transition naterial and motor grader scarifying pervious shell material during ambankment construction. Novamber 1984.
- 47. Processing transition material on grade with motor grader during construction of dike no. 1. March 1984.
- 40. Spreading previous shell material over the gravel drain during embankment construction. April 1984.
- Doser ripping high spot at station 19+70 in outlet conduit trench excevation. January 1984.
- 50. Outline of concrete plug (fillet) area on east side of outlet conduit. Note most of conduit projects above adjacent foundation surface due to greater depth of core trench excavation. April 1984.

- 51. Concrete plug (fillet) placement on east side of conduit using concrete bucket. Note laborer on top box vibrating concrete near contact with conduit wall. April 1984.
- 52. Concrete plug (fillet) on west side of outlet conduit. Note upper portion of plug is slightly steeper than 1:1 to eleminate "feather" edges against the top of the conduit. April 1984.
- 53. Completed concrete plug (fillet) on east side of conduit. Concrete spills outside plug limits were subsequently removed. April 1984.
- 54. Backfilling foundation depression upstream at dam centerline between stations 14+85 and 15+25. February 1984.
- 55. Stage III dam embankment construction at approximately 1420. Completed stage II embankment with upstream stone protection at left. October 1984.
- 56. Dressing upstream slope at dike no. 1 with tracked excavator. June 1984.

1

>



•

۲

Photo 1. Upstream face of dam embankment as viewed from the spillway. March 1985

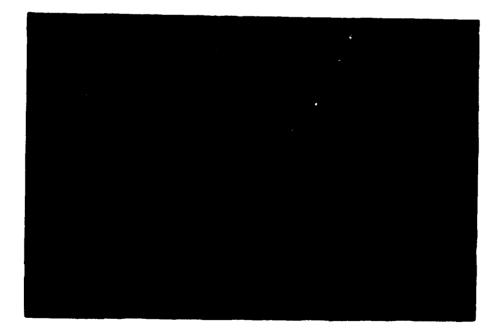



Photo 2. View of dam embankment crest, upstream face, and spillway from the east abutment. March 1985

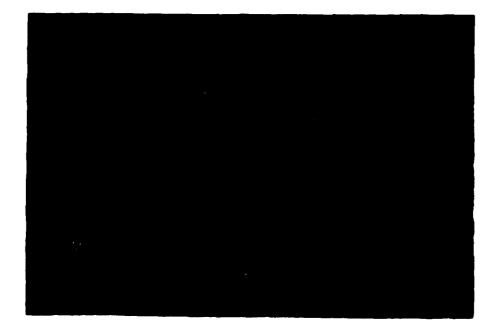
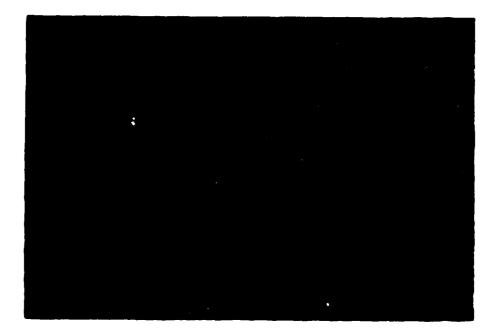
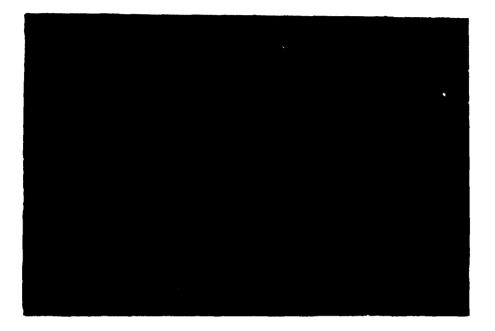




Photo 3. Landscaped downstream face of dam embankment as viewed from spillway access road. March 1985




.

•

Photo 4. Crest and upstream face of dike no. 1 embankment as viewed from south abutment. Note grouted stone gutter along embankment toe. March 1985

.



ĺ

•

.

.

۹

Photo 5. View of landscaped downstream face of dike no. 1 embankment looking toward south abutment. March 1985

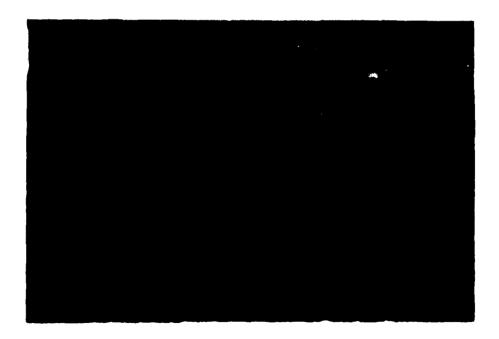



Photo 6. Downstream face of dike no. 2 embankment. March 1985

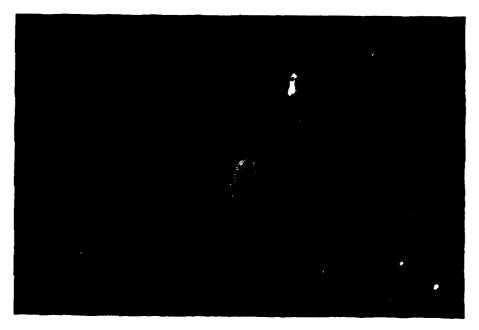




Photo 7. Looking downstream at main access road, energy dissipator, gaging station bridge, and outlet channel from crest of dam. April 1985



4

Photo 8. Looking upstream at energy dissipator and downstream face of dam embankment from gaging station bridge. March 1985



Photo 9. Approach channel to intake structure as viewed from crest of dam. Note ditch to intercept slope runoff at right. April 1985

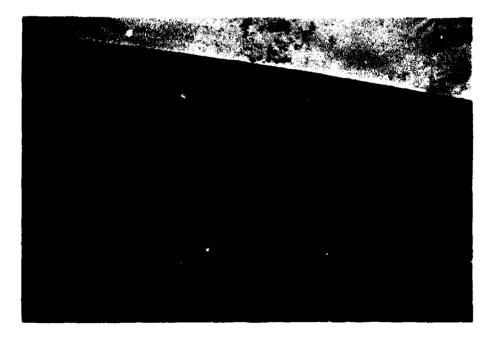



Photo 10. Intake structure and trash rack. Note grouted stone section of approach channel. April 1985

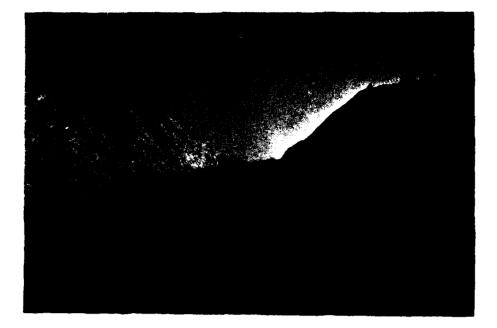



Photo 11. View of completed spillway excavation looking upstream. March 1985

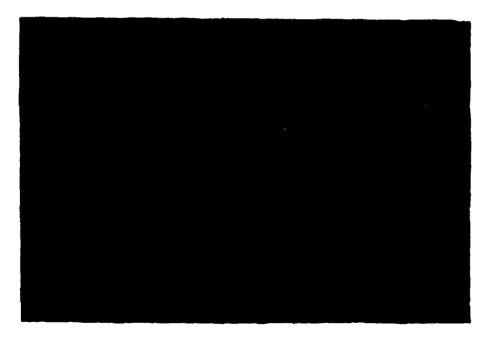



Photo 12. Core trench excavation using push cat and scaper. Note dozer using rippers and blade to excavate base of right abutment. December 1983



Photo 13. Foundation excavation using two push cats and scraper. April 1984



Photo 14. Foundation excavation using push cats. scrapers, and dozer. Note lighter colored areas of caliche, or bedrock to upstream portion of famfoundation. Fanuary 1986



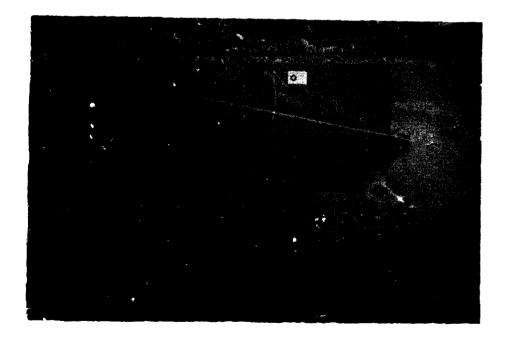

Photo 15. Core trench excavation using push cats and scrapers. Note front end loader pushing overburden away from bedrock slope near station 16+50 for scraper removal. March 1984



Photo 16. Excavating andesite bedrock in stage I core trench using excavator, vicinity station 31+10. December 1983



Photo 17. Excavator widening stage I core trench. January 1984



set of roller used to proof roll the foundation. April 1984

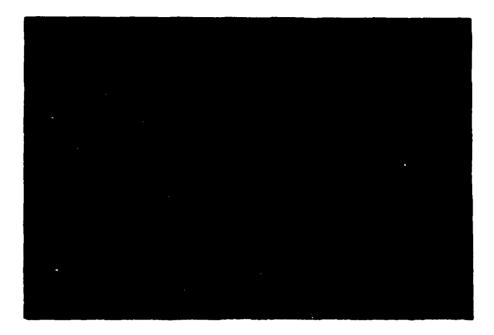



Photo 19. West abutment excavation using a small dozer. November 1983



Photo 20. Surface preparation of west abutment using both air blasting and hand labor. December 1983

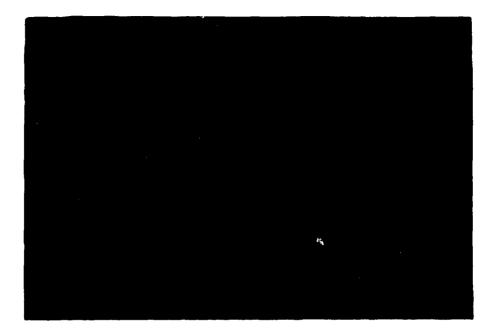
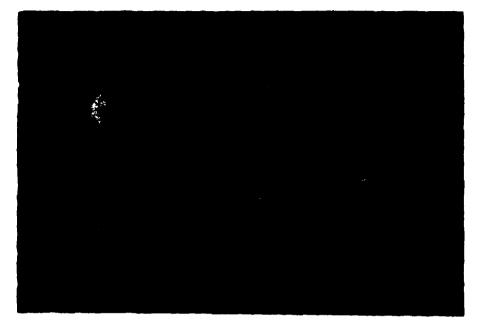




Photo 21. View of completed stage I core trench and west abutment. Note backhoe trench in foreground. February 1984



Photo 22. East abutment excavation using excavator. January 1984



1

Photo 23. Initial foundation preparation of east abutment surface using low pressure air blasting. Note excevator on left. January 1984

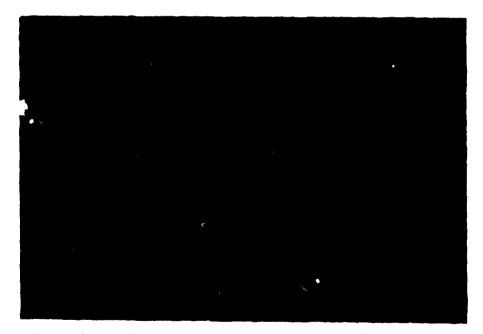



Photo 24. Small backhoe assisting excavator during east abutment excavation. Note rock dust generated from air blasting of excavated abutment surface. January 1984

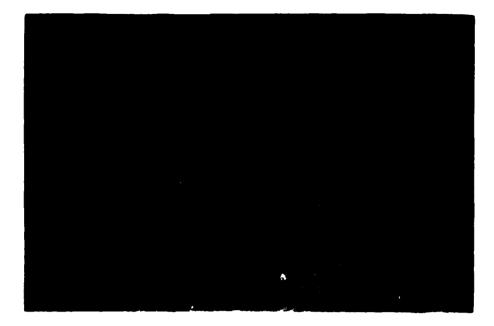



Photo 25. Foundation preparation in core trench using backhoes and shovels, vicinity station 17+00. March 1984



Photo 26. View of stage II diverseion levee protecting completed stage II excavation to station 26+50. Note Stage I embankment protective cover in foreground. March 1984



Photo 27. Placing dental concrete on west abutment slope using concrete bucket. October 1984

P

}

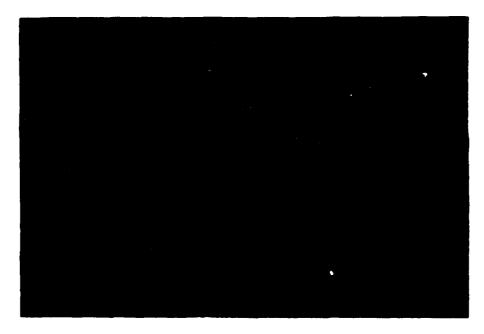



Photo 28. Dike no.1 exploration trench excavation using two push cats and scraper. Note dozer being used to rip caliche. February 1984



Photo 29. View of dike no.1 exploration trench excavation looking north from south abutment. January 1984

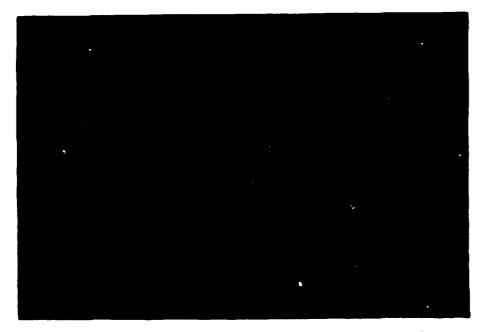



Photo 30. Dike no.l exploration trench excavation using front end loader to clean up the trench. Note the caliche which is visible throughout the cross section of the trench. January 1984

.

. .

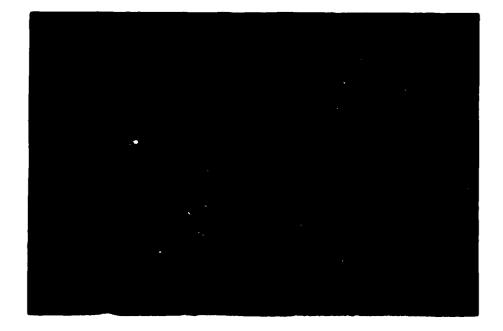



Photo 31. Dike no.1 exploration trench excavation attempting to rip caliche between station 31+00 and 30+00. February 1984

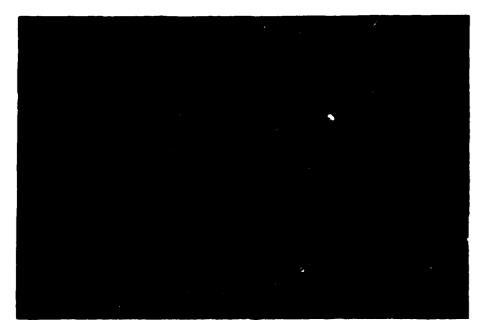



Photo 32. Dike no.l exploration trench, station 81+25. Note coherent andesite blocks on both sides of photo with calichified andesite breccia toward center. January 1984

, **'** 

۰,

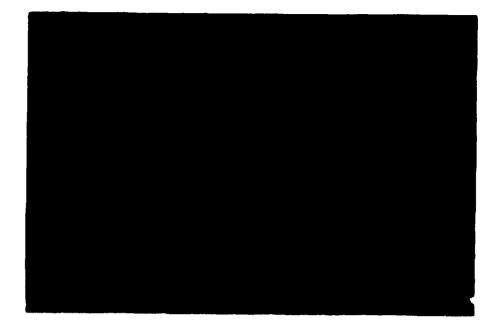




Photo 33. View of dike no.1 completed exploration trench excavation, looking south from station 13+00. Note widespread caliche. February 1984



4

j

∢

۰,

Photo 34. Dike no.2 foundation after stripping. February 1984

مد

. •

(



Photo 35. Vibrating crusher used to crush and screen pervious shell material to produce gravel drain and type III stone. February 1984



Photo 36. Taking core record sample dike No.1 station 70+10, elevation 1461.0, and 7 feet upstream of centerline. February 1984

1

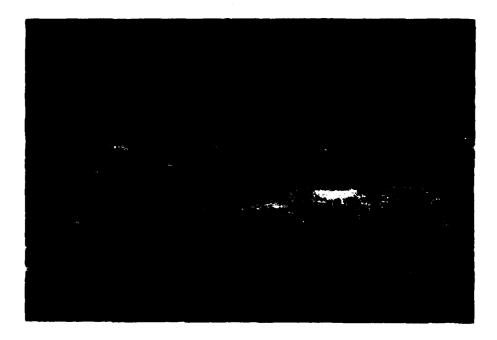



Photo 37. Prewetting core material in borrow area 3. December 1983



Photo 38. Front end loader loading end dump trucks with core material. April 1984

í



Photo 39. End dump truck placing core material on dike no.l. March 1984

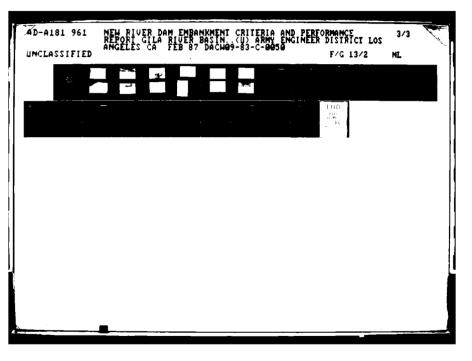


Photo 40. Placing core material in core trench. Note the tamping roller being pulled by the dozer, the motorgrader scarifying the surface, the push cats, and scrapers excavating the embankment foundation and placing the suitable materials in the core zone, and the water truck adding water to the core materials. June 1984



Photo 41. Typical example of rockcore contact on east abutment approximate elevation 14474. Preumatic wheel rolling core material prevented damage to highly fractured granitic bedrock surface by tamping roller. July 1984




Photo 42. Beginning west abutment surface preparation. Laborers permitted to work only short reaches without safety lines. Note backhoe removing stage I protective cover down to elevation 1380 near base of slope. September 1984

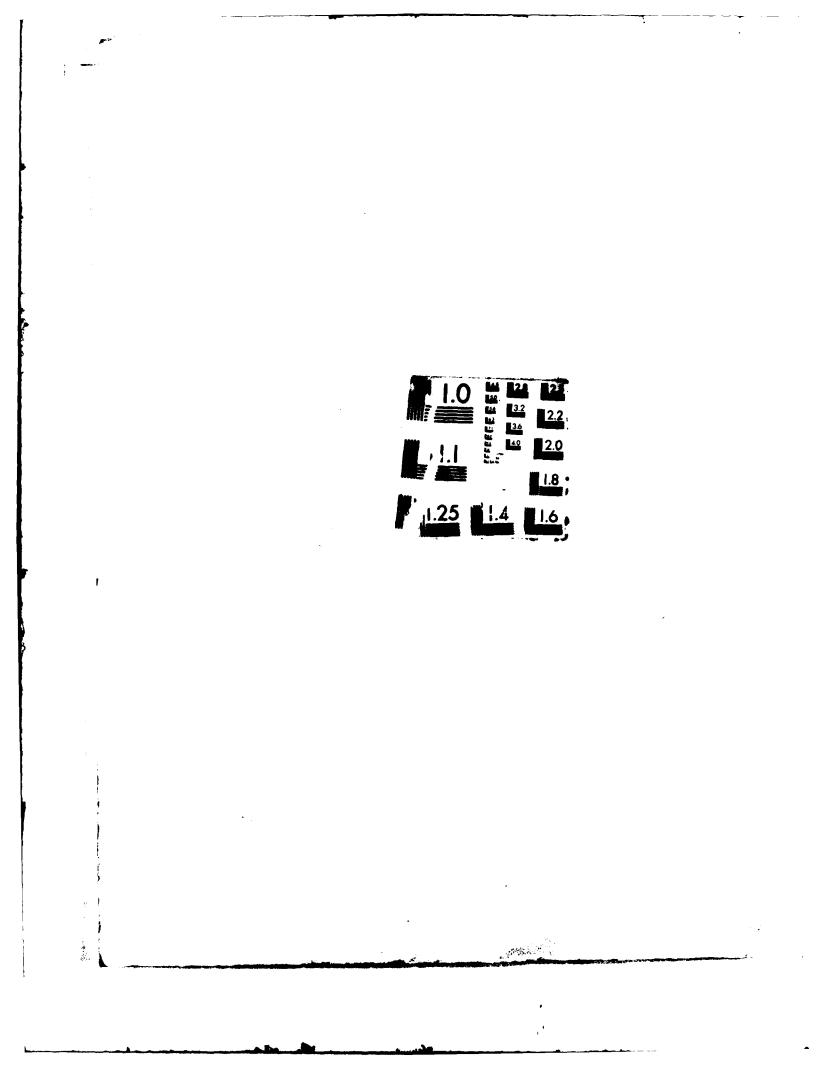



Photo 43. Front end loader with loaded bucket wheel rolling core material at rock-core contact. February 1984



Photo 44. Front end loader compacting or matter of the bedrock slope in core trench, in the second state of the Note dozer using bladz to apread to an foundation surface. April 94







;

Photo 45. Five foot high ramp of core material against right abutment slope. October 1984



Photo 46. Bottom dump truck placing transition material, vibratory roller compacting transition material, and motor grader scarifying pervious shell material during embankment construction. November 1984

ſ



I

C

Photo 47. Processing transition material on grade with motor grader during construction of dike no.1. March 1984



Photo 48. Spreading pervious shell material over the gravel drain during embankment construction. April 1984

, ۱



Photo 49. Dozer ripping high spot at station 19+70 in outlet conduit trench. January 1984

ł

1

C




Photo 50. Outline of concrete plug (fillet) area marked on the east side of outlet. Note most of conduit projects above adjacent foundation surface due to greater depth of core trench excavation. April 1984

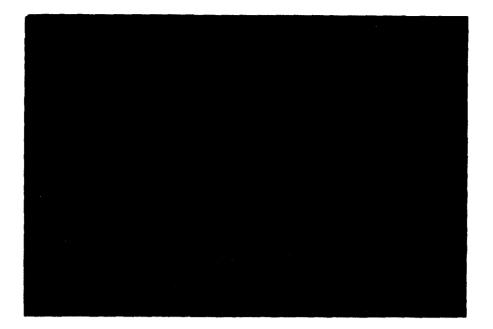
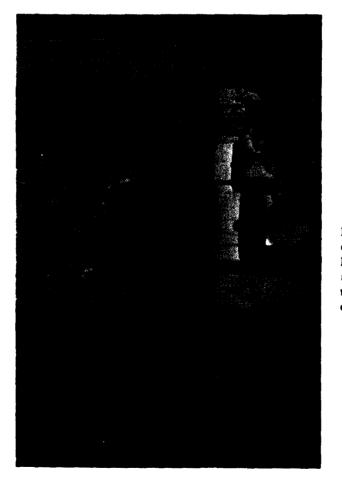
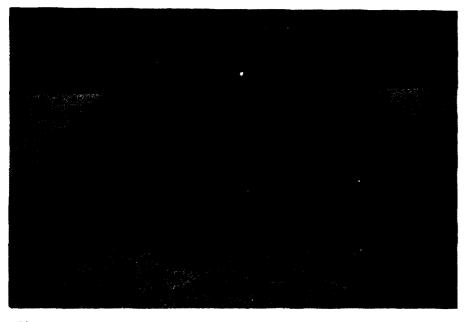




Photo 51. Concrete plug (fillet) placement on east side of conduit using concrete bucket. Note laborer on top of box vibrating concrete near contact with conduit wall. April 1984




1

Ľ

ĺ

Photo 52. Concrete plug (fillet) on west side of outlet conduit. Note upper portion of plug is slightly steeper than 1:1 to eliminate "Feather" edges against the top of the conduit April 1984

Ŧ



1

ŀ

ں ا

C

Photo 53. Completed concrete (fillet) plug on east side of conduit. Concrete spills outside plug limits were subsequently removed. April 1984



Photo 54. Backfilling foundation depression upstream of dam centerline between stations 14+85 and 15+25. February 1984

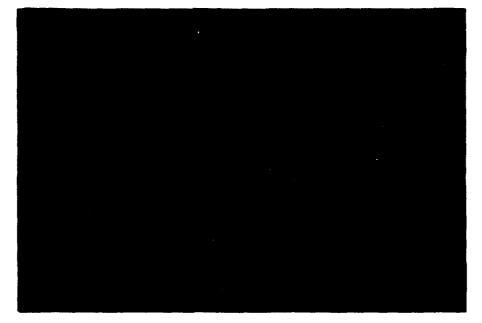



Photo 55. Stage III dam embankment construction at approximately elevation 1420. Completed stage II embankment with upstream stone protection at left. October 1984



Photo 56. Dressing upstream slope of dike no.1 with tracked excavator. June 1984

(

<

5

.

# **ATTACHMENTS**

٠,

# ATTACHMENT 1

L



3116 West Thomas Road, Suite 601 • P.O. Box 14570 • Phoenix, Arizona 85063 Telephone: (602) 269-7501 • Telex: 656338

January 23, 1984

```
U. S. Army Corps of Engineers
New River Dam
P. O. Box 2019
Sun City, Arizona 85372
```

Attention: Captain Dunn

```
Subject: Soil Sampling and Laboratory Testing
New River Dam, Arizona
Earth Technology Project No. 84-164-01
```

Gentlemen:

At your request we have sampled and tested four soil samples obtained from the fracture filling material in andesite bedrock fractures at the base of the core excavation at New River Dam. Samples were obtained December 30, 1983 by our staff geologist, Ron Whitler, under the direct supervision of Corps geologist Bob Thurman. Samples were obtained from fractures ranging from about 1/4 inch to 2 1/2 inches wide. At your request, the following tests were performed on each sample:

- o Atterberg limits
- o Grain size distribution
- o S.C.S. double hydrometer dispersion test
- o Salinity, soluble sulfates, and soluble chloride content

Results of the Atterberg limits, dispersion, salinity, sulfate and chloride content tests are presented in the attached tabulation. Test results were telephoned to the dam site project offices on January 1, 1984. Results of the gradation tests are presented on the attached grain size plot, Figure 1. As requested by the Corps, tests were performed on minus #40 size material to screen out rock fragment contamination picked up during sampling.

Soil descriptions and sample locations are presented below:

New River Dam Project No. 84-164-01

#### Sample No. 1:

CLAY (CH), light greenish gray 5GY 7/1 (Munsell), high plasticity, hard, waxy, noncalcareous, no appreciable coarse sediments except from contamination, trace of hematitic and manganese stains. From bottom of core turn, Station 29+90, 12-20 feet upstream of centerline.

#### Sample No. 2:

CLAY (CH), mostly light greenish gray 5GY 7/1, but some light gray 5Y 7/1 coloration with 20% of material 7.5 YR 6/8 reddish yellow hematitic coloration, high plasticity, very stiff to hard, noncalcareous, hematite and manganese stains, slightly more porous and less plastic where hematitic colored. From Station 30+20, bottom of core turn, 22 feet downstream of centerline.

## Sample No. 3:

CLAY (CH), light greenish gray 5GY 7/1 and reddish yellow 7.5 YR 6/8 with manganese stains, high plasticity, hard, waxy, noncalcareous, slightly more porous than Sample No. 1. From Station 30+70, bottom of core turn, 10-25 feet upstream from centerline.

### Sample No. 4:

CLAY (CH), mostly light greenish gray 5 GY 7/1 with 15% reddish yellow 7.5 YR 6/8 and a trace light gray 5Y 7/1, high plasticity, very stiff, noncalcareous, not as stiff as Sample No. 1. From Station 30+90, 12-29 feet downstream of centerline, bottom of core turn.

Please call us if we can be of any further assistance at the New River Dam site.

Sincerely,

Steven A. Haire, P.E. Project Engineer

SH: jm cc: R. Roodsari Page 2

New River Dam Project No. 84-164-01

# LABORATORY TEST RESULTS

# ANDESITE FRACTURE FILLING AT NEW RIVER DAM

Sample No. Location		US <u>Soil</u>		Li	rberg mits _ <u>PI_</u>			Chlorides	S.C.S. Double Hydrometer Dispersion (2)		
1	Sta. 29+90 R 12 to 20'	Clay	(CH)	96	64	0.75	127	74	13.7		
2	Sta. 30+20 L 22'	Clay	(CH)	102	65	0.90	136	82	16.2		
3	Sta. 30+70 R 10 to 25'	Clay	(CH)	110	74	1.50	165	94	20.5		
4	Sta. 30+90 L 12 to 29'	Clay	(CH)	115	73	0.65	148	84	18.2		

Page 3

# ATTACHMENT 2

ſ



# DEPARTMENT OF THE ARMY

SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS LABORATORY P O BOX 37, SAUSALITO, CALIFORNIA \$4956

7 MAR 1984

SPDED-DL

SUBJECT: New River Dam Arizona

Commander US Army Engineer District, Los Angeles ATTN SPLED-GD, A. Roodsari Post Ofice Box 2711 Los Angeles, CA 90053

1. References:

a. DA Form 2544, CIV 84-53 dated 7 February 1984, requesting testng of soil samples.

b. Samples relative to reference a received on 13 February 1984. Identification of samples is on inclosed plate.

2. Pinhole Erosion Test and Atterberg Limits tests were performed on the above samples in accordance with Engineer Manuarl, EM 1110-2-1906, "Laboratory Soil Testing", 30 November 1970.

3. Soluble salt tests will follow when completed.

4. Total cost of testing is \$510.00. Billing will be made by the Sacramento District, Finance and Accounting Branch.

FOR THE COMMNADER:

l Incl (trip) as

Meli w Col

MELVIN W. COHEN Director, SPD Laboratory

														]												 	: :
						1.1				SOI	TH	PAC	IF	СЛ	IV	SIO	N										   
		. :										LAB	OR	TOR	Y	:											
									: ::::	P	I NHC	LE	ERG	STO	NT	EST								•			
							<u>i i i</u>		; <del></del>		- eres														• •		
		: <b>:</b>					<b> </b>	• · · ·		• · · •																	
		اخت			30	1. 11			<u> </u>	T	<u></u>			:.	::												
			U B	•••	1		-				1		•••	:- <b>-</b> -		:: :									···-·		
<b></b>			/se		25				'	┝╌┢╍		<u></u>						<u> </u>		-+							F
			. Te	••••			<b> </b>	<b>.</b>				: 			• •							<u></u>					
:†: ••••••		:: 	0		20				1 ···	┝╋╴																	
			÷.					D.				ļ		••••			-										
			8		1.5								1	D.					NC	2-							
			Spec	•	1					U													 		<u></u>		
		•	S							Ī	1	[	1														1:
			thru	-	-10	1		V	Б	$\square$	Τ		! .						1			и.					Ī
					1.		1		D.	H	• • • •							1	1					[	1		Ī
			FLOW	  . ;	÷-5	7	1	$\succ$	F	f†	:::	1		<b> </b>			-	1	1					<u> </u>	1	1	Ī
• • • • •		•		••-		17		<u> -</u>	D				<u>↓</u>		<u> </u>		+		ND				 		1		
<u> </u>					-0	F	+	-	-			<u> </u>	1.	<u> </u>					1		1	-	1		<u> </u>	<u>†</u>	÷
	••••			••••		9		1	· · · · ·	1		٩	· '	<b>.</b>	1	]::	- +:	<b>1</b>	14	1	- <b>4</b> 0		<b> </b>			• •	. <b> </b> .
		:			<u> </u>	1		<b> </b>	<u>Ini</u>	<u>1a</u>	<u>1 H</u>	dr	<u>iu1</u>	<u> c  </u>	lea	4-1	<b>H</b> .	<u>1ns</u>	4						<b>.</b>	<b> </b>	+
					<b>.</b>	44	ļ						ļ:	<u> </u>			<u> </u>	<b>.</b>				ļ	<u> </u>				
					<u> </u>		- <u> </u>	<b>T</b>		1		181	÷				1			-	1						4
							11				+	dis	4	1		<b>1 1 1 1</b>									n u :		4
1					:		N	2	G N	11-	non	d15	per:		2 2	105	ion	re	815				 				1
- 1		D	lvi.	Π	Ho1		De	nth			1. 1.	ĺ							j,	Dı	<b>y</b> i	w	C.		sp.		
		No	•		No		f	•	L	1	PI			las						pens pens	Ē			C1	155	{	
		86	641	1	30+	50	Soi	ith	11	1	75			C1	i ay	(CH	)		T	83	7	35	8	ND			Ţ
1	.: .			††				era 	'		75			1	1	1				1		1			1		ij
<del>-4</del> :				H.						$\dagger$	-4			+	+	1		+					1:1:		;	1	+
			mpo			+	No	rth	1.0	tt	71	╟──			ay.	(CH		+		78	0	ha	15	ND	. <u></u>	· [ · · ·	4
			640	П	30+0	111	T i	het	10	╀╂		H	+-		×y I		1	+-	+++			₩°́			1		+
	• • • · ·	86	<u>642</u>	┝╢╡	<u>30+1</u>	-			-	++		H-:			+		-	· [	┽╼╿							· ···	
	<u></u>		 	₽		+	╢┈			++	11-			<b> </b>		-		╋				╢					+
••••	•		<u> </u>	[]-	4	-	∦		<b>I</b>	44	-		+					-	+		<u></u>				<u> </u>	<b>.</b>   :	
			<u> </u>	$\mu$	!	-			1	$\downarrow 1$	1	Ц		<u> </u>		-	1		4		<u> </u>	1		Ļ	·	-	4
) 	. <b></b> .	 										<u>.</u>	•			. : .						<u>;</u> ;;;					4
. : • • • • • •				<u> .</u>																							:
•	•••									1	1							P	roj	det			R	YER	DA	<b>K</b> : .	ij
			• :						1	1	1														i		Ī
				<b> </b>	 			+-	•	1		•	1.				1		1								1
	•		1.1.1. 	1	••••••			<b>;</b> ]		•			. <b> </b>				ŀ	· t	)ate				lerc		984		+
			1																								

( Bee 20x20 to Inch

# **APPENDIXES**

. . ....

, ^ب

· (

(

C

## APPENDIX I LARGE SCALE IN-SITU DENSITY TEST CONTENTS

ł

A CONTRACTOR

1

I.	EQUIPMENT	A1-1
II.	PROCEDURES	A1-2

Page

-----

aa saa

, 1

#### PROCEDURES

2.01 Select a location where the materials are representative and disturbance is minimal. Level an area for the ring to a depth sufficient to remove all disturbed materials and high spots which may cause the ring to shift. Place the ring on the leveled area and fill low areas under the ring to stabilize the ring and prevent the plastic sheet from getting under the ring.

2.02 Initial volume measurements of the ring and irregular ground surface is obtained. Place a 4 mill plastic sheet in the ring and smooth to conform with the ground surface. Discharge water into the ring until the water surface reaches a fixed level. Smooth and fit the plastic sheet around the edges as the ring fills. Record the initial volume of the water.

2.03 Pump the water out and remove the plastic sheet. Care must be taken during water removal to prevent water from altering the material moisture content. Excavate the area inside the ring and place the material in a barrel. Excavate the hole carefully to prevent sharp edges and overhangs that the plastic sheet could not conform to. Weigh excavated materials and record the weight. Approximately 1000 to 1100 pounds of material must be excavated for the density sample.

2.04 Upon completion of the excavation place the plastic sheet into the hole and ring. Weigh and record the +6-inch material before placing into the hole on the plastic sheet. Discharge water into the hole. As the water fills the hole smooth the plastic sheet to conform to the shape of the hole. Bring the water to the same level as the initial filling and record the volume of the water in the hole from the meter.

2.05 The volume of the excevated hole is the difference between the final and initial volume measurements.

2.06 The in-situ density is the weight of the excavated materials divided by the volume of the hole.

# EQUIPMENT

1.01 The large scale in-situ density test equipment consists of a 4-foot inside diameter ring and truck mounted water tank, water meter, hoist and a large platform scale in weight the excavated material.

ŗ

ŀ



#### PROCEDURES

2.01 Select a location where the materials are representative and disturbance is minimal. Level an area for the ring to a depth sufficient to remove all disturbed materials and high spots which may cause the ring to shift. Place the ring on the leveled area and fill low areas under the ring to stabilize the ring and prevent the plastic sheet from getting under the ring.

2.02 Initial volume measurements of the ring and irregular ground surface is obtained. Place a 4 mill plastic sheet in the ring and smooth to conform with the ground surface. Discharge water into the ring until the water surface reaches a fixed level. Smooth and fit the plastic sheet around the edges as the ring fills. Record the initial volume of the water.

2.03 Pump the water out and remove the plastic sheet. Care must be taken during water removal to prevent water from altering the material moisture content. Excavate the area inside the ring and place the material in a barrel. Excavate the hole carefully to prevent sharp edges and overhangs that the plastic sheet could not conform to. Weigh excavated materials and record the weight. Approximately 1000 to 1100 pounds of material must be excavated for the density sample.

2.04 Upon completion of the excavation place the plastic sheet into the hole and ring. Weigh and record the +6-inch material before placing into the hole on the plastic sheet. Discharge water into the hole. As the water fills the hole smooth the plastic sheet to conform to the shape of the hole. Bring the water to the same level as the initial filling and record the volume of the water in the hole from the meter.

2.05 The volume of the excevated hole is the difference between the final and initial volume measurements.

2.06 The in-situ density is the weight of the excavated materials divided by the volume of the hole.

A1-2

# APPENDIX II

٠,

(

(

### APPENDIX II ADJUSTMENT OF LABORATORY DENSITY FOR OVERSIZE

Due to the maximum particle size limitations for the laboratory tests, oversize materials were removed from the field gradation of the transition and previous shell materials. The maximum size materials allowed in the 12-inch diameter compaction mold is minus 3-inch material. The oversize mateial can be replaced mathematically to adjust the laboratory density to the in-situ density with the laboratory density assumed as the soil matrix. Adjustments for the oversize material can be made by using the following equations.

$$T = \frac{1}{\frac{P}{62.4 \text{ G}}}$$

T = Adjusted dry density

- P = Decimal percent of oversize added
- G = Bulk specific gravity of oversize
- m = dry density of minus fraction used in density tests

$$C = \frac{100 - D}{100} - T$$

C = corrected dry density T = adjusted dry density D = antilog (aP+b) a = 0.017 b = -0.43 P = Percent Oversize

The adjusted densities will be corrected for the disturbances (D) effect caused by adding the oversize material.



### Reference

Frost, R. J., "Some Testing Experiences and Characteristics of Boulder-Gravel Fill Earth Dams," <u>Evaluation of Relative Density and Its Role in Geotechnical</u> <u>Projects Involving Cohesionless Soils, ASTM STP 523, American Society for</u> Testing and Materials, 1973, pp 207-233.

4