
-AliS 958 THE DESIGN AND SPECIFICATION OF PDL TWE PROTOTVPE 1/2
DATAFLOM LANGUAGE(U) ARMY MILITARV PERSONNEL CENTER
ALEXANDRIA VA D J WOLFE MAY 87

UNCLA SSIFIED F/G 12/5N L

IEIIIIIIIIIIII
E/IIEIII/IIII
EIIIIEEEEIIIIE
EIIIIIIEIIIIIE
EIIIIIIIEIIIIE
EIIEIIIIIIEEEE

liiin L2.2 __

ItllL2 llL

MICROCOPY RESOLUTION~ TEST CHART

. - . w ~ ~ ~ ~ u ~ ~ - - 1w, -1 1 ,4 * w * -14 H 1-,0- * * IF

im Iu coe.T.eDe.in an

. DII F FIE COE .Y.., ,.o
The esig andSpecification

of PDL:
0The Prototype Dataflow Language

U)
0) ILT Douglas . Wolfe
-_' HQDA, MILPERCEN (DAPC-OPA-E)

200 Stovall Street
C0 Alexandria, VA 22332

Final Report

April 27, 1987 LECTE I
I JUN 2 51987

Approved for public release; distribution unlimited

A Thesis
Presented to

The Faculty and the Graduate School
of the

University of Southwestern Louisiana
In Partial Fulfillment

of the Requirements for the Degree
Master of Science

8(14= 87 6 0 4
....

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 0 8 19500 S. TYPE OF REPORT & PERIOD COVERED

The Design and Specification of PDL: Final Report
The Prototype Dataflow Language Approved: April 27, 198Z,

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(&)

ILT Douglas J. Wolfe

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Douglas J. Wolfe, HQDA, MILPERCEN (DAPC-OPA-E)o
200 Stovall Street, Alexandria, Virginia 22332

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

HQDA, MILPERCEN, ATTN: DAPC-OPA-E, 27 APR 87

200 Stovall Street, Alexandria, Virginia 22332 13. NUMBER OF PAGES
138

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

15.. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

Prepared in cooperation with Drs. Steve Landry, William Edwards,

Margaret Montenyohl, and Joseph Urban

19. KEY WORDS (Continue on reverse side if necessary mid Identify by block number)

Computer Science, Programming Languages, Formal Specification, Dataflow,
Data-driven Computation

20. ABST-RACT rCortfr--e amp ae sitE. f naceseary ald Identify by block number)

7Several converging technologies have reached the point where they can be
integrated and used to develop an advanced programming environment for writing
parallel programs. These technologies include advanced graphics workstations,
models of computation which can be used for parallel computation, and parallel
architectures. Several manufacturers are providing commercially available
parallel processing computers with potential for satisfying the performance
requirements of many of today's computing problems. Unfortunately, these

DD P 1473 EDITION OF I NOv 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAiE (Wheu Date Entered)

%~ %

SECURITY CLASSIFICATION OF THIS PAGE(Whmn Data Rnueord)

-)computers usually do not have adequate, user-friendly programming environments,
and the programming primitives supported by each machine are different. Thus,
there is a need for a more general, user-friendly programming tool.

The dataflow model of computation has been receiving increasing'attention
to discover the model's potential use in parallel programming. Seyeral
textual languages have been developed for experimentation wii.-P-rallel
programming. Graphical base language representations ha~i been proposed,
but not developed because of the absence of graphics technology needed to
implement graphical languages. The potential to support a programming
langua .. -perm~ts the simultaneous existence of graphical and textual
representations for programs has become practical with recent advances in
interactive graphics technology and graphics workstations.
-4.This thesis is concerned with the design and formal specification of a

dataflow programming language which supports the simultaneous existence of
graphical and textual representations for programs. The features of the
language are synthesized from existing dataflow languages. The specification
combines three formal specification techniques to formally specify the
textual syntax, graphical representation, and semantics of the language. The
specification serves as a rigorous, unambiguous description of the language.

IJ SECURITY CLASSIFICATION OF THIS PAGE(W4en Data Entered)

% *-% C ,.- .

Biographical Sketch

Douglas J. Wolfe was born in North Catasauqua, Pennsylvania on October 4, 1963. He

attended the University of Pittsburgh in Pittsburgh, Pennsylvania and received the B.S. degree in

Computer Science in April 1985. Mr. Wolfe was commissioned as a Second Lieutenant in the U.S.

Army in April 1985.

Mr. Wolfe entered the masters program at the University of Southwestern Louisiana, Center

for Advanced Computer Studies, during the Fall of 1985 with a U.S. Army Technical Enrichment

Program scholarship. He is a member of the ACM and IEEE Computer Society.

Mr. Wolfe is currently a First Lieutenant in the U.S. Army.

* J .

The Design and Specification of PDL:
The Prototype Dataflow Language

A Thesis

Presented to

The Faculty and the Graduate School

of the

University of Southwestern Louisiana

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Douglas J. Wolfe

May, 1987

,lo

The Design and Specification
of PDL:

The Prototype Dataflow Language

Douglas J. Wolfe

APPROVED:

Steve P. Landry, Chairman Margeret Montenyohl
Assistant Professor of Assistant Professor of
Computer Science Computer Science

William R. Edwards Joseph E. Urban
Associate Professor of Associate Professor of
Computer Science Computer Science

Joan Cain
Dean, Graduate School

Acknowledgements

My warmest thanks to Dr. Steve Landry for providing the motivating ideas for this thesis, and his

enduring patience and continuing guidance throughout the work. His encouragement, profession-

alism, and friendship have made this work possible.

My thanks to Dr. Margaret Montenyohl for her constructive suggestions, continuous patience with

all my questions, and guidance during the formulation of the formal specification.

My thanks to Dr. William R. Edwards and Dr. Joseph E. Urban for their constructive suggestions

concerning this thesis and for serving on my committee.

My thanks to the U.S. Army for the opportunity to pursue this work.

My thanks and love to my mother and father, Mr. and Mrs. Donald R. Wolfe, for their constant

love and support throughout the years.

My thanks to Mr. and Mrs. Curtis Hebert, for making me feel like part of their family and for all

the fine home cooked meals. My thanks to Mrs. Marie Broussard for always being able to make

me laugh.

My greatest love and appreciation to my fiancee, Miss Valarie Hebert, for all the love and support

she has given me during this work. This thesis is dedicated to her.

My thanks to the many graduate students who have contributed through conversation, construc-

tive criticism, and suggestions.

Accesion For

NTIS C! A&l
DiIC TAB-L':.'a':':or~._ UJ ./

J.. -ti' : i., .

D,,y IbCi ,

' . v l t='l / ur:¢
tDi.t-............

i C"
A. i o

To Valarie...

who taught me the true meaning of love.

TAk3LE OF CONTENTS

CHAPTER 1 Introduction .. 2
1.1 Introduction ..
1.2 Motivations..
1.3 Overview ... 3
1.4 Review of Related Research... 6
1.5 Statement of the Problem... 7
1.6 Synopsis of Thesis.. 8

CHAPTER 2 Datafiow Languages... 9
2.1 Introduction... 9
2.2 Language Issues ..
2.3 Graphical Languages .. 12

2.3.1 Dennis' Language.. 12
2.3.2 Kosinski's Language... 13

2.4 Textual Languages... 14
2.4.1 Val and Id.. 14
2.4.2 Lucid .. 19
2.4.3 Other Dataflow Languages ... 23

CHAPTER 3 Specification Techniques ... 25
3.1 Mallgren's Algebraic Technique .. 26
3.2 Hoare's Axiomatic Technique... 28
3.3 BNF Grammar ... 30

CHAPTER 4 PDL: the Prototype Dataflow Language ... 32
4.1 Design Goals ... 32
4.2 Features Taken From Val .. 33

4.2.1 Data Types .. 35
4.2.2 Values .. 35
4.2.3 Expressions and Operators ... 36
4.2.4 Language Constructs.. 38

4.2.4.1 If-Then-Else Construct... 39
4.2.4.2 Begin Construct... 39
4.2.4.3 Case Construct ... 41
4.2.4.4 For-Iter Construct... -3
4.2.4.5 Forall Construct .. 43

4.2.5 User-defined Functions 15

ii

4.3 Features Taken From Lucid ... 45

4.3.1 Infinite Sequences ... 46
4.3.2 Operators are Filters .. 46
4.3.3 Special Filters .. 46
4.3.4 Is Current Declaration ... 49
4.3.5 User-defined Functions ... 50

4.4 Features Taken from Id .. 50
4 .5 M o tiv a tio n s ... 5 1

CHAPTER 5 Specification of PDL .. 51

5 .1 In trod u ctio n .. 5 ,1
5.2 Specification M odel ... 5-4

5.3 Graphical Specification .. 56
5.4 Textual Specification59

5.5 Semantic Specification .. 59
5.5.1 Notation for Axioms.. 59
5.5.2 Notation for Rules of Inference ... 63

5 .6 A n E x a m p le ... 6 3

CHAPTER 6 Summary, Conclusions, and Suggestions for Future W ork 66
6.1 Summary and Conclusions ... 66
6.2 Suggestions for Future W ork .. 68

R E F E R E N C E S .. 70

APPENDIX A PROGRAM EXAM PLES ... 76

APPENDIX B TEXTUAL SPECIFICATION OF PDL .. 78

APPENDIX C GRAPHICAL SPECIFICATION OF PDL 85

APPENDIX D SEM ANTIC SPECIFICATION OF PDL .. 92

APPENDIX E DATA STRUCTURES OF PDL .. 110

*%! n~ ' -.

LIST OF FIGURES

Figure 1.1 - exam ple of a dataflow program ... 5
Figure 2.1 - considerations for the single assignment convention .. .11
Figure 2.2- example of Val's notation for iteration .. I I
Figure 2.3 - quicksort w ritten in V al ... 16
F igure 2.4 - quicksort w ritten in Id .. 17
Figure 2.5- exam ple of V al's forall loop ... 19
Figure 2.6 - example of a Lucid program which performs quicksort 21
Figure 2.7- exam ple of the use of Luicds filters .. 22
Figure 3.1 - the forms of Hoare's rules of inference ... 29
Figure S.2- Hoare's axiom and rules of inference ... 30
Figure 4.1 - graphical representation of the forall construct .. 34
Figure 4.2- lower-level diagram of the forall construct .. 34
Figure 4.3 - graphical representation of primitive functions .. 37
Figure 4.4 - graphical representation of constants 38
Figure 4.5- graphical representation of the If construct ... 40
Figure 4.6- lower-level diagram of the If construct ... 40

Figure 4.7- graphical representation of the Begin construct .. 41
Figure 4.8- exam ple of the case construct ... 41

Figure 4.9 - graphical representation of the Case construct ... 42
, Figure 4.10- graphical representation of the for-iter construct .. 44

Figure 4.11 - graphical representation of a user-defined function 45

Figure 4.12a - icon used for the first and rest filters .. 48
Figure 4.12b - icon used for the concatenate, whenever, as.soon_as, and upon filters 49
Figure 4.19- example of the i8 current declaration ... 49

Figure 4.14 - graphical representation of the is current declaration 50

Figure 4.15- graphical representation of the Apply Operator .. 51

Figure 5.1 - data structure for defining language constructs ... 55
Figure 5.2- data type Tree-Structured N ode .. .57

Figure 5.8- example of a tuple list for add operations .. 60
Figure 5.4 - example of an axiom for add operations ... 62

Figure 5.5- rule of inference for the forall construct ... 63
Figure 5.6- example of a data structure for the add operation .. 6

Figure 5.7- example of a data structure for the forall construct .. 65

_1

CHAPTER 1

Introduction

1.1. Introduction

Many of today's computing applications have performance requirements that cannot be fully

satisfied by von Neumann architectures which are based on the control flow m,)del of computa-

tion. Two examples of these applications are the weather problem [DENN84] and logic program-

ming [BIC84]. Algorithms used in these applications have a high degree of parallelism which can-

not be efficiently executed on the von Neumann computer. Thus, alternative models, such as the

data-driven model of computation, have been of increasing interest to researchers. The dataflow

model of computation addresses the performance requirements of computing applications, such as

the weather problem, by exploiting the parallelism within algorithms used for solving problems

within the application area. Languages and architectures which make use of the dataflow model

of computation are thus desirable for use on these applications.

1.2. Motivations

Several converging technologies have reached the point where they can be integrated and

used to develop an advanced programming environment for writing parallel programs. These

technologies include advanced graphics workstations, models of computation which can be used

for parallel computation, and parallel architectures. A programming tool to experiment with a

dataflow language which supports the simultaneous existence of textual and graphical representa-

tions for programs could be beneficial to programmers writing parallel programs. In this thesis, a

dataflow language which supports the simultaneous existence of textual and graphical representa-

tions for programs is proposed.

Several manufacturers are providing commercially available parallel processing computers

with potential for satisfying the performance requirements of many of today's computing prob-

lems. Unfortunately, these computers usually do not have adequate, user-friendly programming

environments. In addition, as Ahuja, Carriero, and Gelernter [AHUJ861 state, "as parallel

machines emerge commercially, there has been little effort spent on making high-level, machine-

independent tools available on them. Young debutante machines are sometimes gotten-up in

their own full-blown parallel languages; more often they come dressed in only a handful of

idiosyncratic system calls that support the local variant of message-passing or memory-sharing".

The programming environments and the primitives they support are different for each parallel

machine. Programs which run on one machine may need to be totally recoded to be executed on

another machine. Thus, there is a need for a more general, user-friendly programming tool. A

programming tool should also be portable so that it could be used by more than one parallel com-

puter.

Several alternative models of computation, including the control flow and dataflow models,

have been explored to discover each model's potential use in parallel programming. A brief dis-

cussion of the dataflow model and its advantages will be given later. Several high-level, textual

languages and graphical base language notations have been developed for experimentation with

parallel programming. Because many dataflow languages use a graphical base language, a map-

ping between the textual languages and graphical base languages is possible. [RAED85] has given

several reasons for the use of graphical representations of programs. These reasons include the

potential for faster transfer rate of knowledge using graphics and the random access of informa-

tion from graphical representations. A dataflow language which supports the simultaneous

existence of graphical and textual representations for programs should be beneficial to program-

mers because, at each step of program development, a programmer could choose to write using

the type of representation that is most convenient for writing that part of the program.

3

Widespread use of graphical languages has been constrained by the absence of graphics tech-

nology needed to implement graphical languages. The potential to use graphical representations

for programs has become practical with recent advances in interactive graphics technology.

Several graphics workstations, which support useful primitives that can be utilized within a

graphical programming language, have been developed and made commercially available.

In this thesis we propose that a dataflow language which utilizes both graphical and textual

representations for programs be made available for use in parallel programming. The features of

a prototype language are synthesized from existing textual languages. The graphical representa-

tions of the language are incorporated from existing graphical base languages, as well as other

graphical representations (e.g., Nassi-Shneiderman diagrams (NASS73I).

1.3. Overview

Most existing programming languages and architectures are based on the traditional (fetch-

execute-store) control flow model of computation. In the control flow model, operations are exe-

cuted in an explicit order determined by a control mechanism used by a programmer. Programs

written in control flow languages are represented by a sequence of operations i consisting of an

operator and its necessary operands. The programmer is totally responsible for explicitly specify-

ing the order of the operations in a program. Data is passed between operations by the use of

variables which denote memory locations in a shared memory. When an assignment is made in a

program, the data in the memory is changed as is the global state of execution. The control flow

model is implicitly sequential in nature. Parallelism can be introduced only after studying the

operations in a program and discovering which can be performed in parallel. Explicit control

structures (i.e., FORK - JOIN) must be used to specify which operations are to be performed in

parallel. Thus, the control flow model of computation can introduce parallelism in programs, but

the control information and program structures needed can become excessive. Backus 1BACK78'

In this thesis, an operation refers to a program instruction which consists of one operator and one or more
operands. The operations include any arithmetic, boolean, and data-dependent operations.

• "',! . . q "-3 "% " ,. . ' ,

4

describes many problems that plague control flow languages. These include the language's "gross

size, complexity, inflexibility, and lack of useful mathematical properties" [BACK78].

The dataflow model of computation relieves the programmer's burdensome task of specify-

ing parallelism in programs by utilizing an alternative representation for computation. The

dataflow model does not utilize a shared memory or a locus of control mechanism, and is not his-

tory sensitive. In the dataflow model, operations are executed in an order determined by the data

dependencies of a program, not by an explicit control mechanism. A programmer does not expli-

citly specify the ordering of operations in a program, only the data dependencies of the opera-

tions. Dataflow programs are conveniently described in terms of a directed graph. The nodes of

the graph represent operations or actors that produce result tokens by performing transformations

or tests on input tokens. The arcs, which connect the nodes of the graph, are used to carry data

values in the form of tokens. These tokens flow along the arcs in a specified direction from one

node to successor nodes. Thus, the arcs define the data dependencies between the operations.

The basic dataflow model states that a node is enabled when all input arcs hold data values and

the output arcs are empty. 2 An enabled node is executed or fired by removing a token from each

input arc, performing the specified transformation on the input tokens, and producing one or more

result tokens. An example of a dataflow program, which was taken from [LAND81] is shown in

Figure 1.1. The program computes the factorial of N. The model also does not maintain a global

execution state. Instead a local state is maintained which consists of the executing operation and

its successors.

The dataflow model is implicitly concurrent in nature. Instructions which require a data

value must wait for the instruction that produces the value to fire. The sequencing constraints

and the execution order of the operations are determined by the data dependencies.

2 Different forms or this basic model have been proposed and are discussed in ILAND81I.

05

fact.

subtract

Figure 1. 1 -example of a dataflow program graph

6

1.4. Review of Related Research

The fundamental concepts upon which the dataflow model of computation are based upon

are described in [KARP69, DENN74, ARVI78, SHRI80, TREL82, and SHAR85]. Several research

efforts [KARP69, RODR69, ADAM68, DENN74, KOS173, ARVI78, and DAVI78] have resulted in

alternative models of computation which share the same basic principles. Landry [LAND81]

presents an overview of these and other models. Several novel architectures [GURD85, DENN80O

and applicative languages [ACKE79, HANK81, and ARVI78] have been developed in association

with the different models. An overview of the architectures appears in [TREL82 and SRIN86].

The language proposed in this thesis is based on Val, Id, and Lucid which are summarized in Sec-

tion 2.2.

Formal specification of dataflow languages has received limitied attention by researchers.

McGraw [MCGR821 discusses two formal specifications of Val. The first specification, presented

by Gehani and Wetherall, who gave a complete denotational specification of Val. The second

specification, presented by Ackerman, who gave an axiomatic specification of a "Val-like toy

language". Brock [BROC78] gives an operational specification of a subset of Val. Brock's

specification utilizes a translation algorithm to map program constructs into a corresponding

graph and a semantic function to map the graph into formal semantics.

Raeder [RAED85] presents an excellent overview of the research in visual programming and

gives several reasons for the emergence of visual programming 3. Visual programming is concerned

with the creation, manipulation, and/or execution of programs in a graphical form. Graphical pro-

gramming uses an arrangement (picture) of graphical icons to represent a program. The picture is

then translated into machine instructions using a strict mapping mechanism.

Brooks [BROO87] presents several reasons why "nothing even convincing, much less excit-

ing, has emerged" from visual programming efforts. These reasons include that graphical

3 One of three major area of visual programming as defined by [GRAF851 is the development of graphics-based.
very high-level programming languages.

7

representations used to describe conventional software, such as the flowchart, are a very poor

abstraction of the software; and that software is very difficult to graphically visualize. Brooks was

mainly concerned with conventional software, not dataflow programs which can be naturally

represented using either a graphical or textual representation. Textual dataflow programs are

translated into graphical representations. Thus, graphical representations are not a poor, but a

natural abstraction of their textual equivalents. Graphical representations of dataflow programs

are also not hard to visualize; in fact, the graphical representations show the parallelism within

dataflow programs.

Few high-level graphical languages have been developed. Pagan [PAGA87] presents a pro-

gramming environment for an FP-like language which has a graphical syntax. The language,

which is a modified subset of Backus' FP, uses a graphical syntax similar to Nassi-Shneiderman

diagrams. A program is depicted by nested boxes. Matwin and Pietrzykowski [MATW85] present

a functional language, PROGRAPH, with semantics which are based on the dataflow model. Pro-

grams are expressed in the form of pictographs. Graphical representations are presented for con-

ditionals, loops, user-defined functions, parallel computation operators, and an apply operator.

1.5. Statement of the Problem

This thesis contains a description of a dataflow language, PDL4 , that supports the simul-

taneous existence of graphical and textual representations for programs, and the formal

specification of the syntax, graphical representation, and semantics of the language. Several exist-

ing textual dataflow languages have been studied and features of these languages were selected to

synthesize the nucleus for the new language. A description technique, which utilizes three

specification techniques, was developed to specify the graphical representation, textual syntax,

and semantics of the language. A new graphical data type and a complete axiomatic specification

are presented.

4 PDL denotes the Prototype Dataflow Language.

8

1.8. Synopsis of Thesis

In Chapter 2, an overview of the textual dataflow programming languages in use today is

presented. The features and programming constructs of each language are explained. Several

graphical base languages associated with existing dataflow models are also presented.

In Chapter 3, an overview of the specification techniques used to specify PDL is provided.

The techniques include the axiomatic and algebraic specification techniques and BNF Grammar.

In Chapter 4, an informal discussion of the prototype dataflow programming language, PDL,

developed in the thesis work is presented. Specific language features, which were synthesized

from the languages described in Chapter 2, are discussed in terms of both their textual and graph-

ical representations.

In Chapter 5, the formal specification of the prototype language is given. A specification for

the textual syntax, graphical representation, and semantics of each language construct is given

using the techniques introduced in Chapter 3.

In Chapter 6, conclusions and suggestions for future research are given.

- - yo>.v:& -

CHAPTER 2

Dataflow Languages

2.1. Introduction

A dataflow program is represented by a directed graph composed of nodes connected by

arcs. The nodes of the dataflow graph represent individual operations (instructions) which

receive, perform transformations upon, and transmit data tokens. The tokens flow along the arcs

from the producer of the token to the consumer. Hence, the arcs define the data dependencies in

the dataflow program. Since a dataflow system performs its operations asynchronously, with each

node firing when all of its input tokens are available, several operations can be performed con-

currently. Hence, dataflow languages can represent parallelism in a natural manner.

Most dataflow languages developed to date [ACKE79, ARVI78, and HANK81] use a textual

representation for programs. Several researchers have proposed alternative dataflow models which

have as their basis a graphical notation for programs. In Section 2.2, several relevant properties

of dataflow languages are discussed. In Section 2.3, several graphical notations for programs pro-

posed by Dennis [DENN74], Rumbaugh [RUMB77], and Kosinski [KOSI73 are discussed. In Sec-

tion 2.4, three predominant languages, Val, Id, and Lucid, currently being used for dataflow pro-

gramming research, are described. Other textual languages, some of which were patterned after

Val, Id, and Lucid are also discussed.

2.2. Language Issues

Several relevant properties of dataflow languages are discussed in [ACKE82, SHAR85, and

HAN85]. Most dataflow languages exhibit some, but not necessarily all of these properties. Six

relevant properties of dataflow programming languages are identified by Ackerman [ACKE82] and

10

Sharp [SHAR85]. These include freedom from side effects, locality of effect, equivalence of instruc-

tion scheduling constraints with data dependencies, a "single-assignment" convention, an unusual

notation for iteration, and a lack of history sensitivity in procedures.

Side effects arise in programs through the use of global variables and by reference parameter

transmission. Global variables and by reference parameter transmission are not present in a

dataflow programs. Further, dataflow languages utilize a value-oriented programming philosophy

rather than a variable-oriented philosophy. All identifiers of a program, including data structures,

denote values rather than memory locations. [GAUD86] discusses several solutions for the treat-

ment of structured values.

Locality of effect implies that instructions do not have far reaching data dependencies. The

effect that the instructions have is restricted to the block of code in which the instructions appear.

Identifiers used .n a program are active only within their defining block and have no effect beyond

that block.

In a sequential language, instruction scheduling is determined by the order in which instruc-

tions are listed. However, in a dataflow programming language, the order of execution is deter-

mined by the data dependencies of the program. Therefore, the instruction scheduling constraints

are equivalent to the data dependencies of the instructions. Instruction scheduling constraints

and data dependencies must be equivalent so that the instruction firing rule holds. Freedom from

side effects and locality of effect assure that the scheduling constraints and data dependencies of a

program are equivalent.

The single assignment convention states that "a variable may appear on the left side of an

assignment statement once within the area of the program in which it is active" fACKE82I. The

assignment binds the identifier on the left side to the value on the right. An example of the single

assignment convention and the violation of this convention are show in Figure 2.1. Each identifier

in the block of code, except J, is assigned once and used only after it has been assigned. Identifier

J violates the single assignment convention because J appears on the right side of the assignment

11

S:=X + Y;
D:=3*S;
E:=S/2 + F(S);
J:=J+l;

Figure 2.1 - considerations for the single assignment convention

statement before it is bound to a value (J may not appear on both sides on an assignment state-

ment).

Dataflow languages use a different notation for iteration than that used in conventional con-

trol flow languages. The need for a new notation is caused by the fact that side effects and pro-

gram state information are absent from dataflow languages. Loops have four distinct parts: ini-

tialization, a test for loop completion, the redefinition of loop variables, and the production of

result values. Special operators are used to redefine the values of the loop variables between each

iteration of a loop. Redefinition of the loop variables occurs only at the loop boundaries. In Val,

redefinitions are allowed to occur only after the word iter. An example of Val's notation for itera-

tion is shown in Figure 2.2. The values of K and J on the left and right sides of the assignment

refer to different identifiers. The identifiers on the left side refer to the values of the identifiers on

the next iteration of a loop. The identifiers on the right side refer to the values on the current

iteration of the loop. Therefore, the single assignment convention is still enforced during each

for J,K:= NI; do
if J = 0 then K
else iter J:=J-1;

iter K:=K*J;
end

end

Figure 2.2- example of Val's notation for iteration

I 1CIN

12

cycle of the loop. If the values of loop variables depend upon the values of those variables in pre-

vious cycles, a sequential iterative loop must be used. If the values are not dependent on each

other, some form of a parallel loop, such as Val's FORALL loop [ACKE79], can be used.

The lack of history sensitivity means that the value of the output of each procedure is

dependent only on its current input values6. The procedure cannot remember past input values.

The lack of history sensitivity means that the languages are functional in nature. Each node of a

dataflow program represents a true mathematical function in that the output produced is only

dependent upon the input it receives. In Lucid, arbitrarily long streams and special operations

are used to achieve history sensitivity. For example, Lucid's first operation remembers the first

element in an input stream and produces a stream of tokens, each of which has the value of the

first input token.

The dataflow languages Val and Id exhibit all of the properties discussed. Lucid, which was

not developed for dataflow programming, can be used for dataflow programming because the

language exhibits many of the above cited properties.

2.3. Graphical Languages

A dataflow program maybe represented by a directed program graph. The nodes of the

graph represent either arithmetic, logical, or run-time, decision-making operations. The arcs

represent the flow of data in the form of tokens from the producer to the consumer of the token.

Individual operations may be combined to form complex functions and finally program graphs.

Three graphical, base languages [DENN74, RUMB77, and KOS173] have been studied and are

now briefly discussed.

2.3.1. Dennis' Language

Dennis PDENN74] presents a graphical base language into which Val programs can be

translated. The language has two types of nodes, links and actors. Links are used to produce

s Streams and operations to manipulate streams may be introduced to achieve history sensitivity.

gI

MM A=1' , QJ~k

13

multiple copies of a data token. Two types of links are used, one for data values and one for con-

trol values. Eight actors are used, an operation actor (for all functions), a decider actor which

produces control values, a true gate, a false gate, a merge actor, and three boolean actors (and,

or, and not) which act upon control values. The merge, true-gate, and false-gate nodes are used

for run-time data-dependent decisions to affect the flow of data tokens. These nodes are used to

implement the graphical base language equivalents of high level program constructs. A node can

execute only when all input arcs have tokens present and the output arcs are empty. Dennis'

language allows for cyclic graphs, so a token-tagging scheme is introduced to distinguish tokens of

different cycles of a procedure. An explicit application node, the apply node, is used to perform a

run-time binding of an argument list to a named procedure. Rumbaugh's language [RUMB77 is

similar to Dennis' except that only two data-dependent decision nodes are used, the merge and

switch.

2.3.2. Kosinski's Language

Kosinski [KOSI73, KOS73b] presents a dataflow programming language designed for use in

operating systems programming. Programs in the language are composed of function definitions

which are based on a set of programming primitives. Programs are determinate in nature unless

indeterminacy is explicitly introduced. The language uses two types of nodes, computational and

administrative. The computational nodes include constants, predicates, and the typical arith-

metic, boolean, and string operations. Administrative nodes include forks, switches, function

applicators, and several loop nodes. The inbound and outbound switch nodes are used to imple-

ment the base language equivalent of the if and for constructs of high-level dataflow languages.

Loop nodes are used to implement the different types of loops present in high level languages. The

loop node also introduces a memory structure in programs. Forks are used to replicate data

tokens of any type. Function applicators are similar to Dennis' apply node. Kosinski allows any

sub-graph to be named and used as a function (the sub-graph is replaced by a single node in the

graph). Operations can execute with partial inputs, and can take more than one input token from

•~ , J . r- - -, - ." . -, -, : . . . -, . -.

14

the same arc. The arcs carry not only data values, but PRESENCE and DONE signals. These

signals are used for operation synchronization. Kosinski's inbound and outbound switches are

incorporated into the design of PDL to implement the base language equivalent of PDL's program

constructs.

The success of graphical languages has been impeded by the lack of adequate, user-friendly

graphical programming tools. Therefore, dataflow researchers have given limited attention to

graphical languages and have concentrated on developing several high level textual programming

languages to support research efforts.

2.4. Textual Languages

In this section, some high level textual programming languages are presented. Val

[ACKE79] and Id [ARVI781, are applicative languages that have been developed by Jack Dennis'

group at MIT and the Arvind group at the University of California at Irvine, respectively. Since

Val and Id are similar, they will be discussed together. The biggest difference in the languages is

the type of dataflow model the languages use. Lucid [WADG85], was not developed for, but is

currently being used for, dataflow programming. Several example programs and a discussion of

each of the language's features are given in the following sub-sections. These three languages

were used as a foundation for developing PDL which is introduced in Chapter 4.

2.4.1. Val and Id

Val [ACKE79,MCGR82] and Id ARVI78,ARVI80] were designed for highly concurrent

numerical applications. Since the languages are applicative, they exhibit many of the properties

discussed in Section 2.2. The languages are free from side effects, have locality of effect, use a sin-

gle assignment convention, and utilize completely functional, block-structured features.

Since the languages are functional in nature, all functions or operations compute specific

output values depending upon the input given to the module or operation. The functionality of

the languages guarantees that side effects do not occur. Although the languages are similar in

15

their features, they are based on entirely different models. Val is based on a static model and its

features exhibit static behavior. In a static model, only one occurrence of an node (instruction) is

enabled for firing at one time. Concurrent invocations of an instruction are not permitted.

Instructions are loaded into memory before computation begins. The static model also allows

only one token can reside on an arc at one time. Id is based on a dynamic model and most of its

features exhibit dynamic behavior. In a dynamic model, several instances of a node can be exe-

cuting concurrently and more than one token may reside on an arc at one time. The instances of

a node can be dynamically generated at run-time. Id tags data elements to isolate data elements

for each instance of a node and assigns an activity name with each instance of a node. The

instance and its set of input data tokens must have the same names for the instance to fire. Id

uses several special operators and the Unfolding Interpreter [ARVI82] to manipulate the tags and

activity names.

Val was designed to meet two design goals: implicit concurrency and ease of program con-

struction. Most concurrency in Val is implicit, but the language also supports one explicit form of

concurrency, the FORALL loop. An Id programmer relies on the Unfolding Interpreter to dis-

cover the concurrency in programs and generate several independent activities which can execute

concurrently.

A VAL program is composed of a number of function modules. An example of a Val pro-

gram module which performs quicksort is shown in Figure 2.3. The code has not been syntacti-

cally verified. The example is presented only to show some of Val's program constructs. Each

function module consists of a header, optional type definitions, and a result expression. Function

modules are called by using the name of the module with a list of actual parameters. Function

definitions may not be passed as parameters to a function module.

A program in Id is a list of expressions. An example of an Id program which performs

quicksort is shown in Figure 2.4. This example is taken from rCRI,8:3. Type definitions are not

utilized by Id; rather the identifier type is inferred from the context in which the identifier is

16

Procedure quicksort receives an array of elements and the size of the array, and produces a sorted
array. The procedure uses two other procedures; one (qsortl) to produce two other sorted arrays
(Above and Below) and one (qsort2) to merge the elements of the two sorted arrays and a pivot
element (A[n/2]) into one sorted array.

1 procedure quicksort(a:array [int] ,n:integer; returns array[integer])
2 below:array [integer],j :integer,above:array [integer]: =qsortl(a,n/2,n);
3 qsort2(belowj,above,a[n/2],n)
4 end

Procedure qsortl is used to divide an array (a) into two arrays (above and below) and either re-
turn these arrays (if the size of the array is one), or return the array produced by recursively cal-
ling quicksort on these arrays (line 8). The two arrays are formed by testing each element of the
input array to see if the element is less than or equal to the pivot element a[m] (line 10). If the
element is less than or equal to the pivot element, the element is appended to array below and the
index of this array (j) is incremented (line 11). Otherwise, the element is appended to array
above and its index (k) is incremented (line 13). This process occurs for each element in the input
array (a) (lines 6-16). In line 6 of the program, the arrays (above and below) are initialized (both
are empty arrays) and the indices of the arrays are set to zero.

5 procedure qsortl(a:array[integer],m,n:integer; returns array[integer), integer, array[integer])
6 for i:integer:=1; below,above:array [integer]:empty[integer]; j,k:integer:=0,0 do
7 ifi > nthen
8 if j > 1 then quicksort(below,j) else below, j, if j > 1 then quicksort(above,k) else above;
9 elseif i < > m then

10 if a[i] <= a[m] then
11 iter below:-below[j+l:a[i]]; j:=j+l
12 else
13 iter above:=above[k+l:a[i]]; k:=k+l
14 endif
15 endif
16 endfor
17 end

Procedure qsort2 merges two arrays (below and above) and the pivot element (mid) by appending
the pivot element and each element of array above onto array below to form the sorted array.

19 procedure qsort2(below:array[integer], j:integer, above:array[integer],mid:integer,n:integer;
20 returns array[integer])
21 for i:integer:=j+2; sorted:array[integer]:=below [j + 1: mid] do
22 if i > n then sorted
23 else
24 iter sorted:-- sorted [i:above [i--]]
25 endif
26 endfor
27 end

Figure 2.3- quicksort written in Val

17

Procedure quicksort receives an array of elements and the size of the array, and produces a sorted
array. The procedure uses two other procedures; one (qsortl) to produce two other sorted arrays

(Above and Below) and one (qsort2) to merge the elements of the two sorted arrays and a pivot
element (A[m]) into one sorted array.

1 procedure quicksort(A,n)
2 (m - n/2;
3 below, j, Above *- qsortl(A, m, n);
4 return qsort2(Below, j, Above, A[m], n);
5)

Procedure qsortl is used to divide an array (A) into two arrays (Above and Below) and either re-
turn these arrays (if the size of the array is one), or returning the array produced by recursively
calling quicksort on these arrays (lines 16-18). The two arrays are formed by testing each element
of the input array to see if the element is less than or equal to the pivot element Alm] (line 11).
If the element is less than or equal to the pivot element, the element is appended to array Below
and the index of this array (j) is incremented (line 12). Otherwise, the element is appended to ar-
ray Above and its index (k) is incremented (line 13). This process occurs for each element in the
input array (A) (lines 9-15). In lines 7 and 8 of the program, the arrays (Above and Below) are in-
itialized (both are empty arrays) and the indexs of the arrays are set to zero.

6 procedure qsortl(A, m, n)
7 (initial Below -- A; j.-0;
8 initial Above -- A; k--0
9 for i from I to n do

10 (ifi yA m then
11 (ifA[i] < Alm] then
12 new Below--append(Below, j+1, A[i]); j4--j+ 1;
13 else new Above--append(Above, k+1, A[i]); k--k+1;
14
15)
16 return (if j > 1 then quicksort(Below,j) else Below),
17 j,
18 (if k > I then quicksort(Above,k) else Above)
19)

Procedure qsort2 merges two arrays (Below and Above) and the pivot element mid by appending
the pivot element and each element of array Above onto array Below to form the sorted array
(sorted).

20 procedure qsort2(Below, j, Above, mid, n)
21 (initial sorted--append(Below, j+1, mid);
22 for i from j+2 to n do
23 new sorted-append(sorted, i, Above[i-j-1]);
24 return sorted
25

Figure 2.4 - quicksort written in ld

18

used. Procedures may be passed as parameters to other procedures. Val's function modules and

Id's procedures behave like true mathematical functions: they compute a specific output value for

a given input value. Thus, the languages are not history sensitive, although history sensitivity is

introduced in Id through the use of streams and feedback loops.

Val and Id utilize expressions and values as the basic units of computation. All language

constructs are expressions which can return several values. The basic expressions include con-

stants, value names, and the basic mathematical and logical operations applied to other expres-

sions. Both languages support the same basic scalar data types and operations, and use a value-

oriented programming philosophy.

Val's scalar types include boolean, integer, real, and character. Three types of structures

are used: the array, the record, and the oneof. Type oneof allow discriminated union data types

and is discussed in Section 4.2.1. Val allows the definition and use of constructed types. Val uses

an extensive error handling system which associates error values with each data type, and exten-

sive type checking rules to check for correctly typed arguments to each operation and function.

The error handling system simplifies the treatment of errors in programs by allowing errors to

propagate. Thus, computation is allowed to continue after an error arises.

Values associated with identifiers in Id are typed, not the identifiers themselves. Identifiers

can assume values of any type. There are ten types of Id values which include integer, real,

boolean, string, structure, procedure definition, manager definition, manager object, programmer-

defined data types, and error data types. A structure value is either an empty structure or a set

of <selector:value> ordered pairs. Resource manager definitions and objects allow Id to be used

for operating systems programming.

The compound constructs supported by Val include the begin construct, the if construct. the

tagease construct, the for-iter construct, and the forall construct. Figure 2.1 shows the use of the

begin, if, and for-iter constructs. An example of the forall construct is shown in Figure 2.5. The

example produces four results, one integer and three arrays. The forali construct is explained in

1,117 -1 % %,~.

19

Chapter 4.

Id supports similar program expressions. Four basic expressions which include blocks, condi-

tionals, loops, and procedure applications are utilized by Id. Block expressions are similar to Val's

begin construct. Conditional expressions are similar to the if construct of Val. If the result of one

iteration of a loop expression does not depend upon previous iterations, the loop expression can be

unraveled into concurrent executions. The unraveled loop is similar to the forall construct of Val.

Both Val and Id use a different notation for loops than is used in conventional languages. An

explicit operator is used to update the values of identifiers between iterations of a loop. Id's pro-

cedure applications have been incorporated into the design of PDL and are explained in Chapter

4.

2.4.2. Lucid

Lucid [ASHC76, ASHC77, and WADG85] is a functional programming language in which

dataflow programs can be written. The use of Lucid for dataflow programming is justified by two

features of the language. One, the language has no side effects; and two, the sequence of opera-

tions is determined by the data dependencies within a program. The order of statements in a pro-

gram is irrelevant.

Lucid is also a formal system in which dataflow programs can be written and proofs of the

programs can be deduced. Using the formal system, proofs of Lucid programs are derived directly

forall J in [IN]
X:real:-squareroot(real(J));
eval plus J*J
construct J,X,X+1.0

end

Figure 2.5- example of Val's forall loop

J

20

from the program text using logical reasoning. Lucid has a number of special-purpose functions

which are used within a program. These special-purpose functions, called filters, require extra

axioms and rules in order to prove Lucid programs.

A program written in Lucid can be thought of (operationally) as infinitely reading a stream

of input values, performing computation upon these values, and producing another stream of

result values. Lucid programs are composed of functions, where clauses, and a number of condi-

tional expressions. The conditional expressions utilized by Lucid include the if expression, the

case expression, and the cond expression. The where clause is the block structuring mechanism of

the language. The if expression is similar to the conditional constructs of Val and Id. The ise

and cond expressions provide an alternative way of writing nested if expressions. An example of a

Lucid program which performs quicksort is shown in Figure 2.6. The example is taken from

[WADGS5.

Identifiers in Lucid programs denote arbitrarily long sequences of data entities called his-

tories. Lucid program statements are considered to be true mathematical assertions about the

histories of these identifiers. The end of a sequence is denoted by a special eod marker.

Lucid is "typeless" in the sense that no syntactical type checking is performed and there are

no type declarations. The language does support data types though, including integer, real,

boolean, word, character strings, and finite lists. The language uses the special object error to

denote a stream of error values. Each data type has operations, called filters, associated with it.

These filters or operations behave the same as operations in most dataflow programming

languages, except that filters perform pointwise computation on streams of data values. Pointwise

filters compute one output token set for each input token set.

Lucid has a number of special filters used to build streams and extract elements from

streams to produce new streams. These filters can be pointwise or non-pointwise in their opera-

tion. Non-pointwise filters can have some internal memory associated with them and can main-

tain their identities between each token set. Non-pointwise filters need not produce an output

iq

21

*** ***********

Procedure quicksort accepts a stream of data values and produces either a stream with one ele-

ment or a stream which is formed by merging the results of recursively applying quicksort on two
parts of the input stream. The first part contains values of the input stream which were less than
the first value in the stream. The second part contains value which were greater than or equal to
the first element in the input stream. The expression in line 4 checks to see if the current input
value is less than the first input value. If so, the value is placed into stream bO (line 5). Other-
wise, it is placed into stream bi (line 6). Quicksort is then recursively called on these two streams
(line 2). Finally, procedure follow (lines 7-10) is used to merge the elements of the two sorted
streams to produce a final result stream (line 2). Procedure follow merges the two streams by
producing all of the elements of the first input stream followed by all of the
elements of the second input stream.

1 quicksort(a) = if iseod(first a) then a
2 else follow(quicksort(bO),quicksort(bI)) fi
3 where
4 p = firsta < a;
5 bO = a whenever p;
6 bl = a whenever not p;
7 follow(x,y) = if xdone then y upon xdone else x fi;
8 where
9 xdone = iseod x fby xdone or iseod x;
10 end
11 end

Figure 2.6- example of a Lucid program which performs quicksort

token set for each input token set. Thus, the filters introduce history sensitivity in programs.

The special filters supported by the language include first, next, fby, whenever, asa, and upon.

These filters are explained in Section 4.3.3. An example of the use of the special filters is

presented in Figure 2.7. The e-ample program performs niergesort on a stream of data values.

Lucid also utilizes the special is current declaration which allows programmers to write programs

with nested iteration.

When a user defines a function in the language, the user is actually defining a new filter

which behaves the same as the special filters of the language. The function continuously accepts

streams of input values, performs computation upon the input values, and produces streams of

22

Procedure msort accepts a stream of data values and performs mergesort by dividing the input
stream into two parts, performing msort on each of those parts, and merging the results into one
result stream. If there is only one value in the input stream (the second value in the stream is the
special object eod), then that value is returned as the result of the procedure (line 1). Otherwise,
the input stream is divided into two parts by using a boolean value (p) to place alternative values
in the input stream into two new streams, bO and bl (lines 5-6). Mergesort is then performed on
each of the streams and the results are merged. The value of p alternates by using an Jly filter to
produce a false value followed by a stream of alternating true and false values (line 4). In lines 5
and 6, two whenever filters are used to place the values into the new streams. If p is true, then
the current input value is placed into stream bO; otherwise, it is placed into bl. Procedure merge
(lines 7-15) is used to merge the values of the two streams into one result stream. The function
uses a boolean value (takexx) which is true whenever the value of stream xx is less than the
current value of stream yy or the current value of stream yy is eod. Otherwise, the value of
takexx is false (lines 11-12). Procedure merge produces the current value of xx if takexx is true;
otherwise, the value of yy is produced (line 7). Stream xx is produced by using an upon filter with
x and takexx as inputs. The value of xx is initially the first value in stream x. Then, if takexx is
true, a new value of stream x is produced; otherwise, the last value produced by the upon filter is
produced again (line 9). The same is done with stream yy, except the value of not takexx is used
to control the output of the upon filter (line 10). Procedure just is used to place an eod object at
the end of its input stream (lines 13-14).

1 msort(a) - if iseod(first next(a)) then a
2 else merge(msort(bO), msort(bI)) fi
3 where
4 p = false fMy not p;
5 bO = a whenever p;
6 bi = a whenever not p;
7 merge(x,y) = if takexx then xx else yy fi
8 where
9 xx - just(x) upon takexx;

10 yy - just(y) upon not takexx;
11 takexx = if iseod(yy) then true elseif
12 iseod(xx) then false else xx < yy fi;
13 just(a) = ja where ja = a fby if iseod ja then eod
14 else next a fi; end;

15 end;
16 end;

Figure 2. 7- example of the use of Lucid's filters

result values. Lucid programs are also filters which continuously accept input values and produce

output results.

- '4

23

2.4.3. Other Dataflow Languages

Several other dataflow languages have been proposed including SISAL and DFL. SISAL

(Streams and Iteration in a Single-Assignment Language) [MCGR83] is a functional dataflow

language which was developed in a cooperative effort by the Lawrence Livermore National

Laboratory, Colorado State University, DEC, and the University of Manchester. The language's

main application is numerical computations. The language was designed after Val and has many

of the same features as Val. SISAL supports streams and several operations which manipulate

streams. The language uses only one error value in every data type in contrast to Val's extensive

error values.

[FAUS86] presents a real-time dataflow language which is being developed as an extension of

Lucid. Lucid is extended by associating a stream of time windows with each stream of data

values. Time windows are needed and used because a real-time language is concerned with both

data and time dependencies. The time window defines exactly when a data value can be pro-

duced by an operation.

[PATN84I discusses a high level language, DFL (Data Flow Language) whose syntax closely

resembles Pascal. DFL borrows much of its languages features from Val. The language is a

block-structured, single-assignment language which uses strong type checking. DFL has no provi-

sions for records, only supports two dimensional arrays, and does not support user-defined or

stream data types.

Val, Id, and Lucid were studied to discover specific useful features of each language. These

features were incorporated to form the foundation of PDL. Val and Id have many similar

language features, including data types and language constructs. Since the features are similar,

they can be extracted from only one of the languages. Val was chosen. The language features

extracted from Val include its data types and the treatment of those data types, all of the

language's program constructs, and most of the operations of each data type. PDL also uses \'al's

static model. The features of Val were augmented by features taken from 1d and Lucid. ihe

24

only feature incorporated exclusively from Id is the apply operator. The features incorporated

from Lucid include the use of streams and operations to manipulate the streams. These opera-

tions include all of Lucid's special filters.

-V-.. , ' V

CHAPTER 3

Specification Techniques

Formal specification techniques have been widely used to specify "non-graphical" general

purpose programming languages. Specification techniques can be separated into two categories,

syntactic and semantic. Syntactic techniques define the syntax of a language, but specify nothing

about the semantics of the language. On the other hand, semantic specifications define the formal

semantics of a language, but are not concerned with the syntax of the language. One of the most

widely known and used syntactic specification techniques is the BNF Grammar. Many semantic

specification techniques have been developed and are discussed in [PAGA81]. The specification of

PDL is based on the algebraic technique developed by Mallgren [MALL821 and the axiomatic

technique developed by Hoare [HOAR69I.

Formal specifications serve three purposes for the language designer and user. First, the

specification provides a rigorous unambiguous description of the language at some level of

abstraction. Second, the specification serves as a foundation for reasoning about programs written

in that language. Last, the specification serves as a reference document for users.

The specification technique adopted in this thesis combines three specification techniques to

formally describe the graphical representation, textual syntax, and semantics of the language.

The three techniques are Maligren's algebraic specification technique used to describe the graphi-

cal representation of the language, a BNF grammar used to describe the textual syntax of the

language, and an axiomatic specification technique used to describe the semantics of each

language feature. In this chapter, a brief overview of the three specification techniques is

presented.

26

3.1. Mallgren's Algebraic Technique

Limited work has been done in the area of the specification of computer graphics program-

ming languages. [MALL821 notes that there are problems with applying existing specification

techniques to graphical languages. These problems include:

(1) Graphics applications utilize several special constructs which are not found in general pur-
pose languages. Many of these special constructs are inadequately analyzed in the literature
to provide a sound basis for their specification; and

(2) Graphics applications involve user interaction. The formal specification of user interaction
is difficult using existing techniques.

Mallgren's specification technique utilizes graphical data types, an algebraic specification

technique, and a base language to define a graphical programming language. An axiomatic

specification technique is used to describe the base language statements, an algebraic data type

specification technique is used to describe the graphical data types, and a new technique based on

the algebraic specification technique is used to describe user interaction.

Graphical languages have been traditionally specified in an ad-hoc manner by building

structures out of general-purpose data types (i.e., integer and character). Formal, structured tech-

niques have not been developed or used to describe the diverse concepts of graphical languages.

These concepts include pictures, points, graphical transformations, and user interaction. Mallgren

uses the algebraic specification technique for abstract data types, developed by Guttag [GUTT78 .

to incorporate these concepts into a graphical programming language. An abstract data type is a

collection of values and operations which manipulate the values. A specification of an abstract

data type is composed of two parts: a syntactic specification and a set of axioms. The syntactic

specification provides the syntactic and type information of each operation associated with the

data type, including the operation's name, domain, and range. The set of axioms defines the

meaning of the operations by stating relationships between operations. The axioms are expressed

X~~ ~ ~

27

using algebraic equations.

Graphical data types encapsulate the concepts of a graphical programming language in a

manner that allows existing specification techniques to formally specify the data types and the

graphical programming language. Mallgren states that graphical data types make it easy to write

formal specifications of graphical languages and provide tools for the verification of programs

written in these languages. Implementation details of each data type are abstracted away by

allowing a programmer to use the data types only with a pre-defined set of operations. Examples

of an abstract graphical data type are given in Appendix C.

User interaction is extremely important to interactive computer graphics. Mallgren specifies

user interaction by extending the algebraic specification technique to handle shared data types.

These data types are used to specify the interaction between the computing machine and the pro-

d grammer in terms of concurrent processes.

Mallgren's technique uses several steps to specify each data type used by the graphical

language. The steps are:

1. Show the operations associated with each data type in terms of algebraic equations.

2. Define the semantic portion of the specification by listing the axioms of each data type.

3. Divide the operations into three categories: generator, inquiry, and basic generators.

a. Generator: Operations which produce objects of the type being defined. These opera-
tions are added for convenience.

'V

b. Inquiry: Operations which produce objects of other types.

c. Basic Generator: Operations which are necessary to generate any object of the data
type being defined.

4. Give meaning to each of the inquiry operations by:

W,1

28

a. Writing axioms for reducing each generator to an expression involving only basic gen-
erators; and

b. Provide axioms that give the result of applying each inquiry operation to each of the
basic generators.

5. Define synonyms for some of the operations providing an infix notation for b~nary opera-
tions which are frequently used.

Mallgren has defined several data types which are used as a nucleus of a simple program-

ming language. Many of these data types will be used to help define the graphical dataflow pro-

gramming language developed in this thesis. These data types include region, point, name, user

interaction, and continuous picture. Each of these data types are presented in Appendix C.

3.2. Hoare's Axiomatic Technique

The axiomatic specification technique (Hoare Calculus) was developed by C. A. R. Hoare to

prove the partial correctness of programs [HOAR69]. The technique is based on the specification

- of axioms and rules of inference used to prove programs correct. The axioms are used to prove

simple program statements, while the rules of inference are used to prove the structured state-

ments of programs. By using rules of inference, properties of the structured statements are

deduced from the properties of its constituents.

Apt [APT81J presents an excellent overview of relevant issues concerning the axiomatic

specification technique including the specification of procedures with parameters, recursion, and

variable declaration. Apt also discusses the soundness, completeness, incompleteness of axiomatic

specifications, and gives a comprehensive reference list of other work concerning axiomatic

specifications. Hoare [HOAR73] presents a complete axiomatization of the programming language

Pascal, including the first proof rule for the assignment of array elements. The programming

language Euclid [LOND78] was designed with the idea of axiomatization in mind. In designing

Euclid, it has been seen that axiomatizing a language during its development is easier than writ-

ing axioms for the language after it has been developed. We chose to write the specification dur-

ing the design phase and found that this exercise had a positive influence on PDL's e .ign.

29

The axiomatic technique associates assertions about the values of variables at the beginning

and end of the execution of a program or program statement. Pre-conditions are the assertions

about the variables at the beginning of execution while post-conditions are the assert;- .s at the

end of execution. The assertions are expressed in a strict first-order predicate logic notation.

Assertions of the form P{S}Q are used to state the relationship between the pre-condition (P),

post-condition (Q), and the program or program statement (S).

The axioms and rules of inference are used to describe the semantics of a programming

language up to termination (the axioms and rules do not ensure that the program will terminate).

The assertion P{S}Q states that "if P is true before the initiation of program S, then Q will be

true on its completion" [HOAR69). Rules of inference permit the deduction of new assertions

from one or more assertions previously proven correct. The rules of inference have the two forms

shown in Figure 3.1. The first rule stat .s that if Hi, ..., H. are true assertions, then H is a true

assertion. The second rule states that if H,+1 can be proven correct from assertions HP ... ,

then H is a true assertion.

Hoare initially developed one axiom for assignment and three rules of inference for a con-

ventional imperative language. The notation used for the axiom and rules is shown in Figure 3.2.

The axiom of assignment states that if P(x) is true after the assignment, then P(f) must have

been true before the assignment. X is an identifier and f is an expression of the programming

language which may contain x. P~f/x] is denoted by substituting f for all free occurrences of r.

Hi, "' Hn l11, "' H. I- H.,+

II H

Figure 3.1 - the forms of Hoare's rules of inference

M MISIM I,, ow ki~o

30

The axiom is actually a schema which defines an infinite number of axioms which share a common

form. The rules of consequence are straightforward and need no explanation. The rule of compo-

sition states that if the result of the first program statement is the same as the pre-condition of

the second statement, then the composition of the two will produce the result of the second state-

ment. The rule of iteration states that if an assertion is true on the initiation of a loop, and it is

true after any number of iterations of the loop; and that on the final iteration of the loop, the

boolean test (B) will be false.

Assignment Axiom: Po{x:--f}P

If I-P{S}Q and I-Q D R then I-P{S}R
Rules of Consequence:

If I-P{S}Q and I--R D P then I-R{S}Q

Rule of Composition: If I-P {SI}Q and I-Q {S}R then I-P {S 1 5 2 1R

Rule of Iteration: If I-PAB{S}P then I-P{while B do S}-BAP

Figure 3.2- Hoare's Axiom and Rules of Inference

3.3. BNF Grammar

The BNF (Backus-Naur Form) grammar was originally developed to syntactically describe

ALGOL and has been widely used in language definition. The grammar consists of several pro-

ductions or BNF grammar rules which specify allowable sequences of character strings in the

language being described. The grammar defines a programming language's legal syntax but

describes nothing about the semantics of the language.

The grammar rules have the form:

<syntactic category> :: < definition >

31

where the syntactic category is the name of the language construct or feature defined by the

grammar rule. The '::=' means that the syntactic category is defined by the expression on the

right side. The expression can be as simple as a list of objects, (e.g., a list of letters) or can con-

sist of other syntactic categories. Recursive definitions are also allowed. Once a syntactic

category has been defined. it can be used in other syntactic categories to build more complex

language constructs. A complete BNF grammar of a programming language is defined by a

hierarchy of grammar rules (syntactic categories). The top-level syntactic category of the hierar-

chy is the program.

Each of the specification techniques discussed in this chapter were combined into a multi-

dimensional specification technique introduced in Chapter 5. The specification will describe the

semantics (behavior), syntax, and graphical representation of each language construct of PDL.

' ' 1w 1 1 1 1 '

CHAPTER 4

PDL: the Prototype Dataflow Language

In this chapter, an overview of PDL, with its language features, and an explanation of the

design goals and motivations of the language, is presented. In Section 4.1, the design goals of PDL

are presented. In the design of PDL, Val is used as a core language extended with other useful

features such as Id's apply operator and Lucid's filters and streams. In Section 4.2, the features of

Val incorporated into PDL's design are presented. Much of the textual syntax of PDL follows

Val. A detailed description of PDL's syntax is given in A.ppendix B. In Section 4.3, the features

of Lucid incorporated into PDL's design, including the concepts of streams and filters, are

presented. In Section 4.4, the apply operator, a feature incorporated from Id is presented.

As each syntactic language construct is presented, the abstraction iconse used to represent

the construct and the lower-level dataflow diagram of the construct are presented. Specific graphi-

cal icons were taken from the graphical base languages introduced in Section 2.2 to represent the

base language representations of the constructs. In Section 4.5, the motivations for the features

of PDL are presented. Icon design was not one of the objectives of this work. Sample icons are

proposed and presented to give the reader an appreciation of the potential of the prototype

language. Programmers may define and use their own abstraction icons.

4.1. Design Goals

Three design goals have been followed in the development of PDL. The main design goal

for PDL is that the language support the simultaneous existence of graphical and textual

a In this chapter, an icon refers to a node in the program graph. The icon (node) represents an operation in the
program graph. Thus, an icon is allowed to perform some action.

33

representations for each language construct. Most dataflow languages express programs in a tex-

tual notation which are translated into a graphical base language (a directed program graph). A

user-friendly programming environment would support the coexistence of graphical and textual

representations. For this reason, both representations are incorporated into the design of PDL.

The second design goal is for PDL to be extensible. Because the language was designed to

be a prototype language, it is anticipated that the language will evolve. As the language is used,

programming constructs may be added or deleted to improve the usefulness of the language. New

features can be added to the language by defining the textual and graphical representations of the

construct along with its semantics.

The final design goal for the language is to make abstraction a major part of the language.

Each function of the language is thought of as an abstraction of its sub-parts. Each sub-graph

(function) is represented as a single node in a graph (program). A programmer needs to view the

lower-level diagram only when the diagram is created or manipulated. The programmer needs to

know only what a function does, not how it performs its operations. Abstraction of all language

constructs eases the programmer's task of program construction by allowing an abstraction icon

to represent a complex function graph, and allows for easy use of the language since the program-

mer need not be concerned about the complex details of a program graph. Abstraction also allows

for easy program readability since the complexity of a program graph can be reduced through the

use of abstraction icons. Abstraction icons are utilized by PDL to represent each language con-

struct, where appropriate, and user-defined operation. An example of the abstraction icon used to

represent the forall construct is shown in Figure 4.1. The lower-level dataflow diagram of the con-

struct is shown in Figure 4.2. Each fat arc in the diagram represents a collection of arcs from one

node to another. The functions of each node in the diagram will be explained in Section 4.2.4.

4.2. Features Taken From Val

The language features of Val which were incorporated into PDL's design include its data

types and the treatment of those data types; all of the language's program constructs, including

AL N

34

lower... upper

F

R torall
A body

L
L

Figure 4.1 - graphical representation of the forall construct

DISTRIBUTE

rorall rorall
body body

result
accumulator

Figure 4.2 - lower level diagram of the forall construct

the begin, if, for-iter, and forali; and most of the operations of each data type. These operations

are used in a different manner explained in Section 4.4.2. Finally, most of the textual syntax of

PDL is taken from the Val language reference manual [ACKE79.

- . , - '

35

4.2.1. Data Types

The primitive types supported in PDL are integer, real, boolean, and character. The com-

pound data types supported include: array, record, union, and function. The union data type of

PDL is Val's oneof data type. PDL also supports programmer-defined data types which are con-

structed using the primitive and compound types. Array types have no bounds associated with

them. The type of the array is the type of the constituent elements which must all have the same

type. Strings are represented as an array of characters. Union types allow discriminated union

data types. A union type is composed of several tags and the types associated with each of the

tags. When a value of type union is created, a programmer supplies the tagname and a consti-

tuent value whose type is the type associated with the tagname. Identifiers of type union will be

bound to one of the constituent values and will have that value's type. The case construct is

used to access the constituent values of a union type. An example of this type will be given when

the case construct is discussed. Values of type function are procedure definitions which are util-

ized with the apply operator which is described in Section 4.4. Associated with each type is a

value domain, which consists of the proper elements of the type, one error element, and several

operations to manipulate values of the type.

4.2.2. Values

PDL is value-oriented; all identifiers (value names), including compound objects, are as

treated values. The language also uses the single assignment convention, but in an different

manner. Identifiers denote not just a single value, but an arbitrarily long sequence of values. The

use of sequences is fully explained in Section 4.4.1.

Identifiers can be bound to values of any type. The type of the identifier is specified when

the identifier is first used in the program or in the type definitions section of the program. When

a value is bound to the identifier, the type of the value must be equivalent to the identifier's type.

If the two types are not equivalent, no automatic type conversion will occur and an error value of

the appropriate type is bound to the identifier. Once a binding is made, that binding remains in

36

force for the entire scope of the identifier. The scope of an identifier is the body of the function

or program construct in which a reference to the value name denotes its value.

Like Val, PDL incorporates extensive type-checking. All operations accept a specific type of

input. If a token arrives that does not have the correct type, an error value of the appropriate

type is produced. For example, if the add operation receives a data value whose type is not

integer or real, then an error value of the appropriate type is produced. Also, all formal and

actual parameters are checked for type equivalence. If the types of the parameters are not

equivalent, an error value is produced by the function.

Graphically, the arcs of a program graph represent identifiers. The scope of an identifier is

the node from which the arc emanates and all nodes to which it enters. Each arc is labeled with

the type of the token that the arc carries. Unique labels for each type are given in Table 4.1.

When a programmer defines a new data type, a unique label is associated with arcs which carry

tokens of that type.

4.2.3. Expressions and Operators

All instructions, language constructs, and function definitions in PDL are expressions. The

primitive expressions are the arithmetic and boolean expressions which consist of one or more

Data type Label

integer IN
real RE

character CH
boolean BL
array AR
record RC
union UN

function FN

Table 4.1 - arc labels for data types

- .&

37

operations acting upon several operands. These expressions are expressed in prefix notation.7 The

operations actually perform pointwise computation upon streams of operand values. The use of

pointwise operations is explained in Section 4.3.1. Operations may fire or execute only when each

of its input arcs carry a token and its output arcs are empty. The primitive operations can be

utilized in user-defined functions and program constructs. The primitive operations of each data

type are presented in Appendix E.

Each primitive operation is represented graphically by one of the function icons shown in

Figure 4.3. The icon is labeled with the name of the operation or a symbol denoting the opera-

tion. Each icon has either one, two, or three input arcs and an output arc. If the output of an

operation, represented by a function icon, is needed by more than one instruction, the output

token is transmitted through a fork which produces the appropriate number of replicated tokens.

Operands are either constants or identifiers which are bound to some value. A PDL constant

can be: true, false, nil, integer numbers, real numbers, character constants, character string con-

stants, and error[type-spece which specifies an error value of some type.

primitive primitive primitive
function box function box function box

Figure 4.3 - graphical representation of primitive functions

.4Val uses an infix notation for its operations. A prefix notation was used for PDL to exploit the easy correlation
between a displayed graph and its corresponding textual representation. It is straightforward to translate the prefix nota-
tion into a infix notation.

38

Operands are represented graphically by the arcs of the data flow program graph. Each arc

is labeled with the token type and optionally with the name of the identifier the arc denotes.

Constants are represented by the icon shown in Figure 4.4. The value of the constant is the label

of the icon. The icon has one input arc which is used as a trigger. When a token of any type is

present on the input arc, the icon will produce the constant. A trigger was used to ease the reali-

zation of program graphs.

constant

Figure 4.4 - graphical representation of constants

4.2.4. Language Constructs

The program constructs of PDL include the begin, if-then-else, case (Val uses the tagcase

construct), for-iter, and forall constructs. Each of the constructs are expressions, called multi-

expressions, which produce a tuple of result values. The syntax of each language construct is

given in Appendix B.

Each construct is represented by an abstraction icon, where appropriate. Many of these

icons are incorporated from the symbols of Nassi-Shneiderman diagrams [NASS73I. The icons are

an abstract representation of the lower-level dataflow diagrams of the constructs (if a diagram is

supported). The lower-level diagrams are represented using data-dependent and user-defined

function icons incorporated from the graphical base languages discussed in Section 2.3. The pro-

gram constructs, the abstraction icon used to represent the construct, and icons used to define the

a.

39

lower level diagrams of each construct are now discussed.

4.2.4.1. If-Then-Else Construct

The if-then-ele construct permits the selection of two alternative expressions which return

result values depending upon a boolean test expression. This construct is similar to those used in

conventional languages except that all input values used within the two alternative expressions

must be present for the construct to fire. Each alternative expression receives every input value.

The construct produces an error value if the test expression or an alternative expression returns

an error value.

The abstraction icon used to represent the if-then-else construct is shown in Figure 4.5.

Five icons are used to represent the lower-level dataflow diagram of the construct; one icon for

the test expression, one for each of the two alternative expressions, and two data-dependent

nodes. The two data-dependent nodes, merge and switch, are used to pass input values to the

selected alternative and the correct result values out of the construct. Both icons are controlled

by the same control token produced by the boolean test icon. Both of these icons were incor-

porated from Kosinski's graphical base language mentioned in Section 2.3.2. The lower level

diagram is shown in Figure 4.6.

4.2.4.2. Begin Construct

The begin construct is used to compute several sub-expressions. The result from the sub-

expressions are used to compute a final result which is returned using the return expression. The

return expression is Val's result expression. The construct introduces new identifiers and bind

*values to the identifiers using the sub-expressions. These identifiers can be used in the return

expression.

The begin construct is graphically represented by the abstraction icon shown in Figure 4.7.

The icon is identical to Nassi-Shneiderman's Begin-End symbol. The lower-level dataflow

diagram of the construct is defined by the sub-graph composed of the construct's constituent

!7

40

test

then else

Figure 4.5- graphical representation of the If construct

U
----- switch

then else

merge

Figure 4.6- lower level dataflow diagram of the If construct

expressions (icons). Any icons can be used within the sub-graph.

41

begin

body

end

Figure 4.7- graphical representation of the Begin construct

4.2.4.3. Case Construct

The case construct accesses values bound to identifiers of type union. An example of the

construct is shown in Figure 4.8. The result of a case construct is the value of the expression or

arm whose tag name matches the value of the test expression of the construct. If no match occurs,

then the result is the construct's default expression. The default expression of PDL is Val's other-

wise expression. The expression following the wo:d case (i.e., the test expression) must be of type

union and the tag names in the expressions (arms) of the construct must be the tags of that union

Let X be of type: union[A:int; B:array[int]; C:real]

If X has tag A and constituent value 3,

case P:=X
tag A: P + 4
tag B: P[6]
tag C: P + 2.35

end

the value produced by the construct will be 7. The union type has three tags, one of type integer,
one of type array, and one of type real.

Figure 4.8 - example of the case construct

42

type. If the tag names of the construct comprise every tag in the union type, then the default

expression is not needed. The identifier which appears after the word case is introduced into

each expression of the construct excluding the default arm. The type of the identifier is the type

indicated by the tag of a certain expression. When an expression is executed (i.e., the tag of the

test expression matches the tagname of the executing expression), the value name is bound to the

value from the test expression.

No abstraction icon is utilized for the case construct. The case construct is graphically

represented by the lower-level dataflow diagram shown in Figure 4.9. The route tokens icon

passes any input values and control to the correct expression depending upon the value of the

input tag. Once the input values have passed to the correct expression, that expression executes

and passes its result values to the funnel tokens icon. The funnel tokens icon collects the input

5.°

pexp

~select
route

rsl
tokens rsl

tokens

S expn

~U

, ' Figure 4.9 - graphical repreentation of the Case construct

% %

43

tokens from the group of arcs specified by the token on the first input arc. The icon places the

tokens on its output arcs in the order that the tokens were collected. The route tokens and funnel

token8 are abstraction icons.

4.2.4.4. For-Iter Construct

* The for-iter construct is used for iteration where the result of one iteration of the loop is

dependent upon the results of previous iterations. By using the iter expression wi'hin the con-

struct, value names are rebound to new values just prior to the next iteration of the loop. The

construct consists of four parts: the initialization of variables, a test for loop termination, the

redefinition of the loop identifiers, and the production of result values

The for-iter construct is graphically represented by the abstraction i,-<,n- -h,,n in Fitire

4.10. A lower-level diagram is not supported. One icon. the Ico, -,,ntrI i.-,n i- ,st t,) apt

the initial values of the loop identifierstest for loop terminart. I.. r,.tt .,-

There is one input arc for each initial value and one output arc ,. : ,T. n It; e frt , in for -,arh

value produced by the loop. On successive iterations, the control .-it f,-.. k- th ,- T ,rmtatn i te#st

for a true result. If the result is true, the icon outputs the final value. of the 1,wp %ariables Oth-

erwise, the variables are re-iterated (passed to the loop body icon). The econd icon, A hich is an

abstract representation of the body of the loop, is used to update the loop identifiers after each

iteration of the loop. Any number of input and output arcs are allowed to enter and leave the

body of the loop.

4.2.4.5. Forall Construct

The forall construct is used to explicitly specify concurrency in PDL. Using the forall con-

struct, all cycles of a loop are performed simultaneously. The construct generates a set of values,

and either produces the set as an array or produces the result of performing some operation on

the set. The forall construct consists of three parts: the range specification which defines the

V.

2j
A , ;

44

tsicnloop

do body

Figure 4.10- graphical representation of the for-iter construct

parallelism within the construct, the body which contains the expressions to be evaluated, and the

result accumulator which collects the results of the expressions and produces an array or a single

result. The range specifies the number of separate and independent instantiations of the body of

the Iorall. Each instantiation of the body proceeds asynchronously. Two types of result accumu-

lators are used: the construct accumulator and the eval accumulator. The construct accumulator

produces a one dimensional array where each element in the array is one of the values produced

by an instantiation of the forall body. The eval accumulator produces a single result which is

computed by performing an associative and commutative operation (i.e., addition or multiplica-

tion) upon the result values of the instantiations. Only one result accumulator can be used in a

forall loop.

The forall construct is graphically represented by the abstraction icon shown in Figure 4.1.

The icons used to represent the lower level diagram of the construct are shown in Figure 4.2. The

forall body is instantiated once for each element in the range of the construct. The input arcs of

the distribute icon carry the lower and upper bounds of the range and any input values used

within the forali body (represented by the fat arc). The distribute icon passes one element of the

range to each instance of the body of the construct. One of two accumulator icons may be used;

the construct accumulator or the eval accumulator. The op_name label of the eval icon is the

operation performed on the results.

45

4.2.5. User-defined Functions

PDL incorporates Val's function definitions and calling. Functions are allowed to have as

many parameters as needed. The types of all parameters and the returned values must be

specified in the function header. Formal and actual parameters must have equivalent types or an

error is produced by the function. All parameters are values and cannot be rebound in the func-

tion body. The function body contains several expressions which can produce multiple results

including simple expressions, language constructs, and other function calls.

User-defined functions are graphically represented by the abstraction icon shown in Figure

4.11. The icon is an abstract representation of the lower-level diagram or sub-graph of the com-

ponent expressions of the function. The number of input, output arcs is equivalent to the number

of input, output parameters defined in a function header. The label of the icon is the name of the

function it represents. Programmers can define unique icons to denote user-defined functions.

4.3. Features Taken From Lucid

4This section presents the language features of Lucid incorporated into PDL. These features

include the use of sequences instead of single values for all identifiers and Lucid's special filters.

Since the identifiers denote sequences of data tokens (values), the operations of the language per-

user-defined
runction box

Figure 4.11 - graphical representation of a user-defined function

46

form pointwise computation on streams. These operations are called filters.

4.3.1. Infinite Sequences

The identifiers of PDL denote an arbitrarily long sequence (or stream) of values, not just a

single value. Each sequence has an associated data type; all elements of the sequence are of that

type. Associated with each sequence are the special BOS and EOS control tokens. The BOS and

EOS tokens denote the beginning and end of a sequence, respectively. A Stream can contain a

single value by having the single value enclosed by BOS and EOS tokens. Sequences are graphi-

cally represented by the input and output arcs of a program graph.

4.3.2. Operators are Filters

All operations in the language accept sequences of data and produce a sequence of result

values. The operations act as pointwie filters, continuously producing a set of output values for

each set of input values. The semantics of most operations direct an operation to scan for the

BOS token. When the BOS token is present on each of the input arcs, a BOS token is placed on

each of the output arcs. As each set of input values is absorbed, the operation performs its com-

putation upon the values, producing a set of output values which are placed on the output arcs.

Each input arc must carry a token and the output arcs must be empty before a filter can fire.

After the filter has fired, the input arcs are empty and the output arcs will carry result tokens.

When an EOS token is present on each of the input arcs, an EOS token is placed on the output

arcs. The operation is now considered to be finished firing. The firing of the merge is different.

When a BOS, EOS token is present on the control arc, the node places the BOS, EOS on the out-

put arc. All filters operate in parallel and asynchronously.

4.3.3. Special Filters

PDL incorporates Lucid's special filters to isolate certain values of a sequence or to create

new sequences. Two sub-classes of special filters are used. One sub-class extracts certain ele-

ments from a stream and produces new streams from other streams. This sub-class accepts input

47

stream(s) of any, but equivalent type. Included in this sub-class are the first, rest, and concaten-

ate filters8 . The second sub-class prc Iices a resultant data stream depending upon the values of a

corresponding control stream. This sub-class accepts two input streams; one of which consists of

data tokens of any type, and the other of which consists of boolean control tokens. Included in

this sub-class are the whenever, advance-upon, and assoonas filters. All special filters can per-

form either pointwise or non-pointwise computation. Non-pointwise filters are an extension of

pointwise filters because these filters can have some internal memory associated with them. Non-

pointwise filters can maintain their identity between each token of the input stream and/or need

not produce an output token set for each input token set. Thus, the special filters are history sen-

sitive functions. A brief explanation of each filter follows. The syntax of the filters is given in

Appendix B.

first: This filter produces a stream of tokens, each having the value of the first token in

the input stream.

rest: The output of this filter depends upon the current step in the execution of a pro-

gram. At each step of the execution, the output token produced is the next token

to arrive on the input arc (i.e., the next token in the stream). The filter discards

the first value of the input stream. The stream produced is the input stream less

the first token.

concatenate: This filter produces a resultant stream which is formed by concatenating the

second input stream to the first input stream.

a Some of the names or the filters incorporated from Lucid have been changed to clarify their usage.

nil

48

whenever: For each input token set, if the value of the boolean control token is true, then

the data token is placed on the output arc. Otherwise, the filter discards the data

token. The filter produces a stream of all values of the data stream for which the

corresponding control stream values were true.

as soon as: This filter repeatedly inputs token sets until the control token value is true. If

the control token value is never true, the filter produces nothing. The filter pro-

duces a stream of values, each token in the stream having the value equivalent to

the corresponding data value for the first true control value.

advance-upon: This filter accepts and places the first data value on its output arc. Then, as suc-

cessive token sets are input, if the value of the control stream is true, a new data

value is input and placed on the output arc. Otherwise, the old data value is

repeated and placed on the output arc again. Thus, the data stream is stretched

by repeating some of its values.

The graphical icon used to represent the first and rest filters is shown in Figure 4.12a. The

icon has one input arc and one output arc. The graphical icon used to represent the other filters

is shown in Figure 4.12b. This icon has two input arcs and a single output arc.

filter
name

Figure 4-.12a - icon used for the first and rest filters

N

49

filter
name

Figure 4.12b - icon used for the concatenate, whenever, assoonas, and advanceupon filters

4.3.4. Is Current Declaration

The use of Lucid's special filters and streams necessitates the use of Lucid's ii current

declaration. The declaration allows programmers to write programs with nested iteration. When

a programmer uses nested iteration in PDL, the values of outer loop identifiers must remain con-

stant while the values of inner loop identifiers take on each value in the stream. The declaration

is used to freeze a certain value of an outer loop identifier which can then be utilized in the inner

loop. Figure 4.13 presents an example of the use of the is current declaration. The effect of the

example is to set up an outer loop in which x and n are only updated between executions of the

inner loop (lines 3-4). The values of X and N are the frozen values of the tokens from streams X

and n. For example, if stream z contains the elements 1, 2, and 3, and stream n contains the ele-

1 t - asa(p,=(index,N))
2 where
3 X is current x;
4 N is current n;
5 p = concatenate(l,*(p,X));
6 end

Figure 4. 13 - example of the is current declaration

V,5

50

ments 4, 5, and 6; then as identifier p is updated (line 5), X and N remain constant. On the first

iteration of the inner loop, X and N have I and 4 as their values, respectively. If the is current

declaration was not used, the values of z and n would be updated (i.e., be bound to each value in

the stream) for each iteration of the inner loop, not the outer loop, which is desired. The graphi-

cal icon used to represent the is current declaration is shown in Figure 4.14.

4.3.5. User-deflned Functions

When a programmer defines a function in PDL the programmer is really defining a new

filter which behaves like the special filters of the language. The function continuously accepts

input, performs an operation upon the input, and produces a new stream of result values. Func-

tions are allowed to be either pointwise or non-pointwise in their operation. Functions are defined

using the basic expressions and program constructs described in Section 4.2 along with the special

filters.

4.4. Features Taken from Id

As stated in Section 4.2, Val and Id are similar in content and have many of the same

language features. For this reason, only one language feature was taken exclusively from Id, the

apply operator. The operator allows run-time bindings of procedure definitions to its parameters

to be performed. The reason for the apply operator's inclusion in PDL is that the operator allows

is curnt

Figure 4.14 - graphical representation of the is current declaration

Oil

51

run-time identification of procedures to be applied on argument lists. Thus, several run-time

bindings of a procedure definition are possible.

The graphical representation of the Apply operator is shown in Figure 4.15. The apply icon

utilizes two input arcs, one of which is a fat arc, and one output arc, which is also a fat arc. The

first input arc carries a function definition while the second (fat) arc carries the input parameters.

The output arc carries the result values which are computed by "applying" the function definition

to the input tuple. One function definition can be applied to several sets of input parameters by

using one apply function box for each set of input values.

4.5. Motivations

PDL was designed for experimentation with writing parallel code in the form of dataflow

programs. The language serves as a prototype language from which future designers can formu-

late new languages by adding new features or deleting existing ones. Since the language supports

Procedure
Definition

IU
APPLY

Figure 4.15- graphical representation of the Apply Operator

52
both graphical and textual representations for programs, it is expected that the language will have

only positive effects for programmers.

Several design goals were followed in the formulation of the language. These were discussed

in Section 4.1. The features incorporated from Val form a core language which could be extended

with new language features. Using Val as the core language has helped PDL achieve two of its

design goals: abstraction and extensibility. Many of Val's language features which were incor-

porated into PDL's design facilitate the use of abstraction. The functionality in Val allows PDL

to use abstraction icons, to represent each language feature. Programmers need not be concerned

about the execution details of a function or language construct after they have been defined, only

what the function or language construct does. The use of Val as a core language also helped PDL

to achieve the design goal of extensibility. Several extensions have been made to the features

incorporated from Val. These include Lucid's filters and streams, and Id's apply operator.

Lucid's filters and streams were incorporated into the design of PDL for two reasons. First,

the use of streams and the special filters allows PDL to exhibit h.tory sensitivity. Because PDL

exhibits history sensitivity, the language can be used for real time programming, if desired. The

second reason for the use of Lucid's filters and streams is that their use potentially increases the

amount of parallel computation in a PDL program. All filters can act in parallel and asynchro-

nously. Filters which require input from another filter do not have to wait for the filter to process

the whole stream before it can begin executing. A programmer does not have to be concerned

about the rate at which two filters process and produce data items. Also, all tokens in a stream

may be processed simultaneously if there are no data dependencies between the tokens.

Id's apply operator was incorporated into the design of PDL to allow the run-time

identification and binding of a procedure to its parameters. Several run-time bindings of a pro-

cedure are possible. Also, run-time decisions can be made to determine which procedure to apply

to an argument list.

53

Some experimentation must be performed on the language before an assessment of its full

potential for application can be made. Since the language serves as a prototype language for

future development, the language is expected to evolve until an optimal language is found. A for-

mal specification of PDL has been developed to aid future users and designers in their utilization

of the language. The next chapter presents the specification technique which was used to for-

mally describe PDL.

B-

CHAPTER 5

Specification of PDL

5.1. Introduction

In this chapter, the formal specification of PDL is described. The specification incorporates

the three specification techniques introduced in Chapter 3 to describe the graphical representa-

tion, textual syntax, and semantics of the language constructs. These three descriptions are com-

bined in a data structure as described in Section 5.2. Mallgren's algebraic specification technique

is used to formally describe the graphical icons used in the language. In Section 5.3, the graphical

data type used to describe the function nodes of PDL is described. In Section 5.4, the BNF gram-

mar used to describe the textual syntax of PDL is discussed. In Section 5.5, the specification of

the semantics of each language construct is discussed.

5.2. Specification Model

Three specification techniques are utilized to define the semantics, graphical representation,

and textual syntax of each of PDL's syntactic constructs. A data structure, the form of which is

shown in Figure 5.1, is used to describe the complete specification of each of PDL's syntactic con-

structs. A brief discussion of each component of the data structure follows.

The names component defines which language constructs (language defined operations or

program constructs) are described by the data structure. A data structure may define more than

one of PDL's constructs. The name of each construct defined by the data structure must be given

in the names component of the data structure. A language construct name cannot appear in more

than one data structure.

a1 -

55

data structure <name>{
names: construct names;
semantics: semantic description of construct
graphics: reference to graphical description
textual: reference to BNF description of construct}

Figure 5.1 - data structure for defining an operation

The semantic8 component defines the behavior of the language construct in terms of an

axiomatic description. The semantics component defines the number of input values used and

output values produced by the constructs described. The component also defines the transforma-

tions performed on the input values to produce the output values.

The graphics component makes a reference to a procedural description which defines how to

draw the icons representing the language construct. A graphical data type (tree structured node)

and its operations are used to create and manipulate program graphs.

The textual component gives a reference to the grammar rule in the BNF grammar which

defines the syntax of the language constructs defined by the data structure. The BNF grammar

gives the textual symbol that is used for an operation.9

Each component of the specification will now be described in detail. A complete

specification of the graphical representation, syntax, and semantics of the language is presented in

Appendix B, C, and D, respectively. An example of a complete specification of a primitive opera-

tion and compound program construct will be given at the end of this chapter.

9 For primitive operations, an icon can be labeled with either the name or the operation it denotes, or the symbol
uised for that operation.

%V

56

5.3. Graphical Specification

The graphical specification utilizes the algebraic specification of graphical data types to

describe the components of the graphical dataflow programming language. A new graphical data

type, Tree-Structured Node (tnode), is defined to describe the nodes and arcs of a dataflow pro-

gram graph.

Tnodes are ordered tree structured program graphs which contain functional nodes (primi-

tive or user-defined) and arcs. Tnodes are constructed with the help of data types point, string

and name incorporated from Mallgren's work[MALL82I. Data type point corresponds to a point

on the screen. Data type name is a collection of constant names. Data type string is a sequence

of characters.

Simple tnodes contain the primitive function nodes of the language and arcs connecting the

nodes. All nodes and arcs have a name or label that is supplied by the programmer. Tnodes also

have programmer supplied names. More complex tnodes are constructed by allowing tnodes to

contain other tnodes (user-defined sub-graphs), called progeny, as well as primitive nodes and arcs.

An inserted progeny is viewed as a single node in the tnode. The extend operation is used *o view

the progeny's corresponding sub-graph. Each primitive function node in a tnode has a unique

name, but two distinct tnodes may contain primitive function nodes with the same name.

The data type Tnode and its operations are shown in Figure 5.2. Each operation, and the

mapping of its domain to its range, is defined below. The operations are split into the basic gen-

erators, generators, and inquiry operations (as described in Section 3.1). The basic generators

include the nullnode, moveto, putnode, arc to, and text operations. The operations preceded by

a e are the basic generators. The operation preceded by a * is a hidden operation which the user

cannot use when creating program graphs.

,, v. .. ., .N , .,,

57

Tree-Structured Node (tnode,tp)

* nullnode name = tnode
* moveto tnode X point =* tnode
* put-node tnode X dsname X name = tnode
* arcto tnode X name.int X name.int X name tnode
* text tnode X string = tnode

curpos tnode = point
replacenode trnode X name X name = tnode
remove-node tnode X name = tnode
remove-arc tnode X name tnode
expand tnode X name tnode

* display tnode = picture

Figure 5.2- data type Tree-Structured Node

function nullnode(n:name): tnode

Empty user-defined function nodes are created by the nullnode operation.

function moveto(N:tnode, p:point): tnode

The current position becomes point p.

function put.node(N:tnode, d:dsname, n:name): tnode

Putnode inserts a node with name n at the current position in dataflow graph N.
Parameter d makes a reference to the specific data structure that the icon being
inserted denotes. The data structure utilizes another reference to a procedural
description which defines how the icon is drawn. The dsname of all language
operations is the name of the data structure which defines the operation. The
ds name of all program constructs is the name of the data structure which defines
the construct. The d,_name of a user-defined function is the name of the function.

p%

58

function are-to(N:tnode,n :name.x,n2:name.y,n:name):tnode

Are to draws an arc from the xth output connector of node n1 to the yth input
connector of node n2. The new arc is given name n. The current position is not
changed.

function text(N:tnode, s:string): tnode

Text inserts the pictorial representation of string s starting at the current position.
The current position does not change.

function replace node(N:tnode,nl :name,n2:name,d:ds-name):tnode

Replace-node replaces node ni with node n2. The data structure used to describe
node n2 is specified by d.

function removenode(N:tnode, n:name): tnode

Removenode removes all nodes named n from tnode N. If there are no nodes
_ !named n, the value of N is returned unchanged.

function removearc(N:tnode, n:name): tnode

Removearc removes all arcs named n from tnode N. If there are no arcs named
n, the value of N is returned unchanged.

function expand(n:name): tnode

Expand takes a single abstraction icon (node) n and expands the node into its
corresponding sub-graph. If node n is not a abstraction icon, no expansion will
occur.

-h

59

function curpo4(N:tnode): point

Curpo8 returns the current position of N.

This new data type is combined with several of the types presented by Mallgren [MALL82]

to form the complete graphical specification of PDL. The types incorporated from Mallgren's

work include point, name, string, region, user interaction, and continuous picture. An explanation

of the uses of these data types can be found in [MALL82 and MAL82b] and is not given here.

5.4. Textual Specification

Since most of the syntax of the language is extracted from Val, the BNF grammar presented

in [ACKE79] is adapted for PDL. One modification of Val's syntax was converting the notation

used for all operations from infix to prefix. Some additional syntactic categories were added to

the BNF grammar to describe the language features incorporated from Lucid and Id. The main

syntactic category used in the grammar is the multi-expression (multi-exp). Since program con-

structs are translated into a graphical base language representation which utilize run-time decision

nodes (i.e., merge and switch), grammar rules for these nodes are not needed and are not given.

5.5. Semantic Specification

The specification of the semantics of the language utilizes a form of axiomatic specificat on

to describe each language feature supported by the language. Axioms are used to describe the

primitive operations, special filters, and run-time, data-dependent operations of PDL. Rules of

inference are used to describe PDL's program constructs. The notation used for the axioms and

rules of inference will now be described.

5.5.1. Notation for Axioms

Many of PDL's operations act on several data types. Since the semantic description i,

always identical for all data types the operation acts upon. one semantic description is used to

60

specify each operation. The semantic description states which data types are acceptable as inputs

to the operation, the name of the operation (for a certain data type), and the axiomatic descrip-

tion of the operation. The semantic description is of the form:

FOR_TUPLE <tuple of variables>
BOUNDJO_TUPLES <tuple list>
IN <axiomatic description>

where the tuple list consists of several tuples of the form (data type, ... ,data type,operation

name). The operation name is the name that a programmer can use to label a node in the

dataflow program graph. The data types define the type of the tokens that the operation acts

upon.

The description states that the variables in the tuple of variables are bound to the data type

and operation values in one tuple of the tuple list. The tuple of variables are then utilized in the

axiomatic description which specifies the semantics of the operation. An example of a tuple list is

given in Figure 5.3. The variables VT and OPNAME are bound to the values in one of the tuples

in the tuple list. The tuple list has two tuples, one for data type integer and one for type real.

Each tuple of bound variables is used in the axiomatic description of the operation to form a

specific axiomatic description for the data type of the tuple. The axiomatic description utilizes

the same form as that used for Hoare's axiom which was introduced in Chapter 3.

FOREACHTUPLE (int,int add), (realrealadd)
BOUND_TO_TUPLE (VT,OPNAME)
IN (axiomatic description)

Figure 5.3- example of a tuple list for add operations

61

A dataflow operation can be performed when each arc (or a combination of arcs) has a token

with a valid type and when no arc carries a token with the error value. Some operations have

other conditions which must be true for the operation to fire. If all conditions have been satisfied,

the operation executes by performing some transformation upon the input tokens and producing

output tokens. When an operation (node) has finished firing, the input arcs are empty and a

token with a valid type is carried on the output arc(s).

The axioms which are used to describe operations have the form:

< PREC > {OPNAME(inputs) } < POSC >.

where <PREC> are the pre-conditions which must be satisfied and <POSC> are the post-

conditions which will be true after an operation has executed. The pre-conditions of the

axiomatic description test for the conditions that must be satisfied for the operation to fire. Pre-

conditions also test for a valid arc configuration. Arc configurations consist of the types of the

tokens that must be present on an arc before and after the operation has fired. Each input arc is

denoted by I# where '#' is the input arc number. Arc configurations have the form:

< I,:tAype, ... ,:type;O Atype, ... ,O :type >

where the types of the input and output arcs are listed in order (i.e., input arc one is listed first,

input arc two is listed second, and input arc n is listed nth). The input arc types are separated

from the output arc types by a semicolon. Each arc type in the arc type lists are separated by a

comma. For example, <Ii:VT,I,:VT;E>, where VT denotes an integer, states that input arcs one

and two must carry a token of type integer and the output arc is empty.

The execution description gives the name of the operation and the inputs used by the opera-

tion. The OPNAME is the name of the operation as specified by the language definition.

-. I-.-

62

The post-condition describes the arc configuration and any other conditions that are true

after the operation has fired. The arc configuration uses the same notation as the arc

configuration in the pre-condition. The post-condition arc configuration also defines what values

will be present on the output arcs after an operation has fired. These values may be expressed in

terms of the values that were on the input arcs.

An example of a axiom for the addition operation is shown in Figure 5.4. The axiom states

that if each arc carries a token of type VT and the output arc is empty, then the output of the

operation will be the addition of the two input values.

Two global axioms are used to describe the behavior of operations when an error value or an

invalid input appears on an arc. The first axiom states that if an error value is present on any

input arc of an operation, the operation produces an error value of the appropriate type. The

second axiom states that if a value of an input arc is invalid, then the operation will produce an

error value of the appropriate type.

FORTUPLE (VT,OPNAME)
BOUND_TO_TUPLES (int,intadd), (real,real.add)
IN

<I 1 :VT,I2:VT;E> {OPNAME(11 ,12)} <E,E;lI + 12:VT>

Figure 5.j - example of an axiom for add operations

1- ?-

63

5.5.2. Notation for Rules of Inference

Rules of inference are used to specify the language constructs of PDL. Each rule of infer-

ence has the form:

FOR_EACH (list of variables)
BOUNDTOONEOF (list of types)
IN

Hi, Hn

H

where the Hit ... ,H are previously proven axioms and H is the axiom which is being proven

correct. Axioms H gives the syntactical statement, pre-conditions, and post-conditions of the pro-

gram construct. Each axiom, H 1 ... H., uses the same notation discussed in Section 5.5.1. The

pre and post conditions of axiom H give the valid arc configurations of the construct along with

any other conditions which are true before or after the construct fires. An example of a rule of

inference for the forall construct is shown in Figure 5.5.

FOR-EACH(VT1,VT 2'VT.)

BOUNDTOONEOF(int,real ,bool,char,array,record,union,function)
IN

<i:int,l O:VTn;E I {S }<E...,E,;O,:VT2 > A (L<i<U),

F E {plus,mult,and,or,min,maxj
<I,:VT,...,I:VTn;E>{foraI i In [L,Uj do Sleval:F} < ,...,E;F(OlF(O2,...,F(OE1 . tOLT- 1)...)):VT2>

Figure 5.5- rule of inference for the forall construct

5.0. An Example

An example of a complete specification of an operation and a language construct will be

presented in this section. The data structure which is used to specify the add operations of PDL

is shown in Figure 5.6. The name of the operations which the structure is used to specify include

the int.add and real-add operations. The serCantir. coniponent of the structure gives the axiom

-=" u M -Eg",

64

which is used to specify the operations. The graphics component gives a reference to the

drawaddnode procedure which draws the correct icon. Finally, the textual component gives the

correct textual syntax used for the operation.

The data structure used to specify the forall construct of PDL is shown in Figure 5.7. The

semantics component of the structure gives the rule of inference used to specify the construct.

The graphics component gives a reference to a executable procedure which draws the abstraction

icon used to represent the construct. Finally, the textual component gives a reference to the

grammar rule in the BNF grammar which describes the forall construct.

Appendix B gives the complete specification of the semantics, syntax, and graphical

representation of PDL.

data structure addnode

names: intadd, real_add;
semantics:
FOR TUPLE (VT,OPNAME)
BOUNDTO_TUPLES (int,intadd), (real,real-add)
IN

<11 :VT,12:'VT;E> {OPNANIE(Il,I2.)}< E,E;lI + 2:VT >

graphics: draw_addnode;

textual: +(Il ,12);
}

Figure 5.6- example of data structure for add operation

Mmf& '36W

65

forall_.eval-node

names. foralleval
semantics:
FOR..YACH(VT , 2 VT)
BOUND_TO _ONE...OF(int,real,bool,char,array ,record ,union ,function)
lI

<i:int,I,:VT, . J.,I:VT,;E 1> {S1}<E1 ,...,E,O 1:VT 2> A (Li <U),
F E {PlU3,mult~and,or,min,max)

<I1 :VT1,...,I,:VT,;E>{for&1I i In jLU! do S, eval:F}<E1 .. ,E,;F(Oi,F(O2,...,F(OuauOijLi) ...)):VT 2>

graphics: draw_foraillnode;
textual: forall_expr

Figure 5.7 7- example of a data structure for foraU construct

CHAPTER 6

Summary, Conclusions, and Suggestions for Future Work

8.1. Summary and Conclusions

In this thesis, the formal specification of the prototype dataflow programming language,

PDL, that supports both graphical and textual representations of programs has been presented.

PDL serves as a core language which is expected to evolve. Future designers can add new or

delete existing features to obtain an optimal language. The specification technique developed

allows designers to add new features by defining the semantics, textual representation, and graphi-

cal representation for the added features. The language supports an applicative programming

style (incorporated from Val and Id) which is augmented by Lucid's streams and filters.

Several conclusions are made concerning PDL and its formal specification. First, we are

convinced that PDL meets its design goals. PDL supports the simultaneous existence of graphical

and textual representations for all language constructs. The use of both representations is

expected to have a positive effect on the programming process; the only disadvantage will be the

time required to learn how to merge the representations into a useful programming tool. At each

stage of program development, a programmer could write a program using the type of representa-

tion that is most convenient for writing that part of the program. The use of graphics in pro-

gramming can only have positive effects, not just for dataflow programming, but for programming

in general.

The design of PDL places no barriers on extensibility. Since PDL adopts a graphical base

language, new language constructs can be incorporated into the language by assuring the con-

structs can be translated into graphical base language equivalents. A new data structure which

1RW

67

defines the textual syntax, graphical representation, and semantics of the new construct would

need to be introduced. Since PDL serves as a prototype, the language is expected to evolve. The

extensibility of PDL can be found in many of its language features. Several examples of how the

language can be extended include the relaxation of the strong typing used in PDL and allowing

the eval and construct expressions to appear in a forall loop together.

As another result of using a graphical base language, the idea of abstraction can be adopted

naturally in PDL's design. Each language construct can be represented by a single icon where

appropriate. Once the lower level base language program graph has been defined, the program-

mer can utilize an abstraction icon to represent the graph. A programmer may also utilize

programmer-defined abstraction icons.

The second conclusion concerns the formal specification of PDL. Since the technique incor-

porates three formal techniques to define the language, the technique is also formal and can be

used for formal reasoning. The main goal of developing the specification was to provide language

implementors with an unambiguous and precise description of the language so that the language

could be implemented on a graphical workstation. Since Hoare's axiomatic specification technique

was used to define the semantics of the language, the specification can also be used for formal rea-

soning about programs written in the language.

The use of an axiomatic specification technique to d.scribe the semantics of PDL is interest-

ing because axiomatic definitions describe th state of program variables before and after the exe-

cution of a program statement. PDL describes the state of arcs before and after the execution of

program expressions. The states of the arcs are expressed as the pre and post conditions of

axioms.

Because of the rigorous manner in which the semantics of PDL were specified, the final

semantics of PDL evolved in a positive manner through numerous interactions with committee

members. As the semantics were defined, we were forced to discover the unambiguou, and prcise

semantics of all language constructs.

d %

68

8.2. Suggestions for Future Work

PDL was designed for experimentation with writing parallel code in the form of datatlow

programs. The proof of the work performed in the thesis work will only come with the implemen-

tation of PDL on a graphical workstation environment and the development of translation

mechanisms to translate PDL programs into code that can run on parallel host machines. Once

PDL has been implemented, an evaluation of the language should be performed. Thus, three

areas of future work are noted.

The first area of future work is the implementation of the language and the development of

a graphical workstation environment. Work has begun at the University of Southwestern Louisi-

ana to develop such a programming environment. To date, no implementation of the language or

a graphical work station environment has been finished. This implementation would include

developing a mapping mechanism between the graphical and textual representations of the

language.

After the development of a programming environment and the implementation of the

language on the environment, an evaluation of the language by programmers should be per-

formed. The evaluation would include the identification of which features should and should not

be in the language, and the development of several test programs on the programming environ-

ment. Although some programs have been developed (on paper) using the language, a complete

evaluation of PDL is not possible until a graphical programming environment is implemented.

Another area of future work is the development of a translation mechanism which would

translate PDL programs into code which could be run on parallel host machines. This translation

may not be easy and would depend upon the primitives supported by each individual parallel host

machine.

A final area of future work is the development of a translation mechanism which would

translate PDL programs into code to be executed on the Dataflou Simrlator (DFSS] which i'

currently on the Multics system at the University of Southwestern Louisiana. This translation

69

would be easy because PDL has many of the same constructs supported by the base language of

DFSS.

i7

JJ

I I1

REFERENCES

[ACKE791 Ackerman, W. B., and Dennis, J. B., Val -- A Value-oriented Algorithm
Language, Preliminary Reference Manual, Laboratory of Computer Science,
MIT, Cambridge, MA, February 8, 1979.

[ACKE821 Ackerman, W. B. "Data Flow Languages," Computer, Vol. 15, No. 2, February
1982, pp. 15-25.

[ADAM68] Adams, D., A Computation Model with Data Flow Sequencing, Technical Report
CS-117, Computer Science Dept., Stanford University, Palo Alto, CA, 1968.

[AHUJ86] Ahuja, S., Carriero, N., and Gelernter, D., "Linda and Friends," Computer,
Vol. 19, No. 8, August 1986, pp. 26-34.

[APT81] Apt, K. R., "Ten Years of Hoare's Logic: A Survey - Part I," ACM Transac-
tions on Programming Languages and Systems, Vol. 3, No. 4, October 1981, pp.
431-483.

ARVI78] Arvind, Gostelow, K. P. and Plouffe, W., An Asynchronous Programming
Language and Computing Machine, Department of Information and Computer
Science Technical Report #114a, University of California, Irvine, Irvine, CA,
December 8, 1978.

ARVI80] Arvind, Kathail, V. and Pingali, K., A Dataflow Architecture with Tagged To-
kens: Preliminary Report, Technical Report #171, Laboratory for Computer
Science, MIT, Cambridge, Mass., September 1980.

1 1 ! 11 1 ig 1 1111 !11 1 14 11 1

71

[ARVI82] Arvind, and Gostelow, K. P., "The U-Interpreter," Computer, Vol. 15, No. 2,
February 1982, pp. 42-49.

(ASHC76] Ashcroft, E. A. and Wadge, W. W., "Lucid - A Formal System for Writing and

Proving Programs," SIAM Journal of Computing, Vol. 5, No. 3, September
1976, pp. 336-354.

ASHC771 Ashcroft, E. A. and Wadge, W. W., "Lucid, a Nonprocedural Language with
Iteration," CACM, Vol. 20, No. 7, July 1977, pp. 519-526.

BACK78] Backus, J., "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs," CACM, Vol. 21, No. 8, August
1978, pp. 613-640.

% -BIC841 Bic, L., "Execution of Logic Programs on a Dataflow Architecture," Proceed-
inga of 11th International Symposium on Computer Architecture, Ann Arbor,
MI, June 1984.

BROC78! Brock, J. D., "Operational Semantics of a Data Flow Language," Laboratory
for Computer Science TM-120, MIT, December 1978.

BROO87; Brooks, F. P., "No Silver Bullet: Essence and Accidents of Software Engineer-
ing," Computer, Vol. 20, No. 4, April 1987, pp. 10-19.

CARL85 , Carlson, W. W. and Hwang, K., "Algorithmic Performance of Dataflow Mu.-
tiprocessors," Computer, Vol. 18, No. 12, December 1985, pp. 30-40.

DAV1781 Davis, A. L., Data Driven Nets: a Maximally Concurrent, Proceudral, Parallel
Process Repre.qentation for Distributed Control System., Technical Report
UUCS-78-108, Computer Science Department, University of Utah. July 1978.

V.%

72

[DENN74] Dennis, J. B., "First Version of a Dataflow Procedure Language," Lecture Notes
in Computer Science, 19, (G. Goos and J. Hartmanis, Eds.), Springer-Verlag,
New York, 1974, pp. 362-376; also Computation Structures Group Memo 93-1,
Project MAC, MIT, Cambridge, Mass., August 1974.

DENN80] Dennis, J. B., "Data Flow Supercomputers," Computer, Vol. 13, No. 11, No-
vember 1980, pp. 48-56.

[DENN84] Dennis, J. B., et. al., "Modeling the Weather with a Data Flow Computer,"
IEEE Transactions on Computers, Vol. C-33, No. 7, July 1984, pp. 592-603.

[FAUS861 Faustini, A. A. and Lewis E. B., "Toward a Real-Time Dataflow Language,"
IEEE Software, Vol. 3, No. 1, January 1986, pp. 29-35.

'GAUD86] Gaudiot, J., "Structure Handling in Data-Flow Systems," IEEE Transactions
on Computers, Vol. C-35, No. 6, June 1986, pp. 489-500.

IGRAF851 Grafton, R. B., and Ichikawa, T., "Visual Programming - Guest Editors' Intro-
duction," Computer, Vol. 18, No. 8, August 1985, pp. 6-9.

GURD85] Gurd, J. R., K'rkham, C. C., and Watson I., "The Manchester Prototype
Dataflow Computer," CACM, Vol. 28, No. 1, January 1985, pp. 34-52.

GUTT78 i Guttag, J. V., and Horning, J. J., "The Algebraic Specification of Abstract
Data Types," Acta Informatica 10 (1978), pp. 27-52.

ItAN5 Ilan, S. Y., .4 Language for the Specification and Representation of Programs in
a Data Flow Model of Computation, University Microfilms International. Ann
.rbo)r. Ml. 19 5.

If \,k-1 Ifikin [I .ail (01La,er. If xv. "Tihe Dataflow Programming Language CA-
P il[, %n lifrial Inrro, ution." SIGPL..l.V .Votices. ,'ol. 16, No. 7. July

A-° -"
1

. . ° . ". " .' l " °- """ " % • °
"

73

[HOAR69] Hoare, C. A. R., "An Axiomatic Basis for Computer Programming," CACM,
Vol. 12, No. 10, October 1969, pp.576-580.

[HOAR73] Hoare, C. A. R., "An Axiomatic Definition of the Programming Language Pas-
cal," Acta Informatica 2, (1973) pp.335-355.

[KARP69] Karp, R. M., and Miller, R. E., "Parallel Program Schemata," Journal Comput-
er Systems Sciences, Vol. 3, No. 2, May 1969, pp.147-195.

[KOSI73] Kosinski, P. R., A Dataflow Programming Language, IBM T. J. Watson
Research Center, Report RC 4264 (#19076), March 1973.

KOS73b] Kosinski, P. R., "A Dataflow Language for Operating Systems Programming",
ACM SIGPLAN Notices, Vol. 8, September 1973, pp. 89-94.

LAND78] Landry, S. P. and Shriver, B. D., A User's Guide to the Data Flow Simulator,
Computer Science Department, University of Southwestern Louisiana, Lafay-
ette, LA, 1978.

[LAND81] Landry, S. P., System Oriented Extensions to Dataflow, PhD Dissertation, Com-
puter Science Department, University of Southwestern Louisiana, Lafayette,
LA, November 1978.

LOND78] London, R. L., et. al., "Proff Rules for the Programming Language Euclid,"
Acta Informatica 10, (1978) pp. 1-26.

LMALL82] Mallgren, W. R., Formal Specification of Interactive Graphics Programming
Languages, The MIT Press, Cambridge/London, 1982.

MvLAL82bj Mallgren, W. R., "Formal Specification of Graphic Data Types," 4C . Tran-
sactions on Programming Languages and System.s, Vol. -4, No. -1, October 1982,
pp. 687-710.

lipr

7-1

MA-kTW85I Matwin, S. and Pietrzykowski, T., "PROGRAPH: A Preliminary Report,"
Computer Languages, Vol. 10, No. 2, (1985), pp. 91-126.

MCGR821 McGraw, J. R., "The VAL Language: Description and Analysis," ACM Tran-
saction8 on Programming Languages and Systems, Vol. 4, No. 1, January 1982,
pp. 44-82.

MCGR83] McGraw, J. R., Skedzielewski, S., Allan, S., Grit, D., Oldehoeft, R., Glauret, J.,
Dobes, I., and Hohensee, P., SISAL: Streams and Iteration in a Single Assign-
ment Language, Language Reference Manual, Version 1.1, M-146, Lawrence
Livermore National Laboratory, Livermore, CA, July 1983.

[NASS73] Nassi, I. and Shneiderman, B., "Flowchart Techniques for Structured Program-

ming," SIGPLAN Notices, Vol. 8, No. 8, August 1973, pp. 12-26.

[PAGA81] Pagan, F. G., Formal Specification of Programming Languages. A Panoramic
Primer, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

iPAGA87] Pagan, F. G., "A Graphical FP Language," ACM SIGPLAN Notices, Vol. 22,
No. 3, March 1987, pp. 21-39.

PATN84] Patnaik, L. M., Bhattacharya, P., and Ganesh, R., "DFL: A Data Flow
Language," Computer Languages, Vol. 9, No. 2, February 1984, pp. 97-106.

'RAED851 Raeder, G., "A Survey of Current Graphical Programming Techniques," Com-
puter, Vol. 18, No. 8, August 1985, pp. 11-24.

, 'RODR69 Rodriguez, J. D., A Graph Model for Parallel Computations, Technical Report
TR-64, Project LAC, MIT, Cambridge, MA, 1969.

R[IUMB77' Rumbaugh, J., "A Data Flow Multiprocessor," IEEE Transactions on Cornput-
era, Vol. C-26, No. 2, February 1977, pp. 138-1.16.

75

[SHAR85] Sharp, J. A., Data Flow Computing, Ellis Horwood Limited, New York, 1985.

fSHRI80] Shriver, B. D., Landry, S. P., and Srini, V. P., "Dataflow," Encyclopedia of
Computer Science and Engineering, (A. Ralston and E. Reilly, editors), Van
Nostrand Reinhold Company, pp.471-474.

[SRIN86] Srini, V. P., "An Architectural Comparison of Dataflow Systems," Computer,
Vol. 19, No. 3, March 1986, pp. 68-88.

[TREL82 Treleaven, P. C., Brownbridge, D. R., and Hopkins, R. P., "Data-Driven and
Demand-Driven Computer Architecture," ACM Computing Surveys, Vol. 14,
No. 1, March 1982, pp. 93-143.

IWADG85] Wadge, W. W. and Ashcroft, E. A., Lucid, the Dataflow Programming
Language, Academic Press, New York/London, 1985.

APPENDIX A

PROGRAM EXAMPLES

This program is used to perform mergesort, on a stream of integer values. Since streams are

used, an array is not needed to hold the elements to be sorted. The main function of the program

is m.5ort. Function msort calls function merge to merge the elements of two streams. The

number of elements to be sorted is arbitrary.

function msort(a:int; returns int)
if =(first(next(a)),eod) then a
else
begin

b:bool fby(false,not(b));
tl:int whenever(a,b);
t2:int whenever(a,not(b));
return(merge(rnsort(t) ,msort(t2)));

end;
end

function merge(x,y:int; returns int)
if takexx then return(xx) else return(yy) end;
where
xx:int upon(x,takexx);
yy:int upon(y,not(takexx));
takexx:bool if =(yy,eod) then true

else
if =(xx,eod) then false

else
if < (x,y) then true

else false;
end;

end

77

This function is used to perform matrix multiplication on matrices of arbitrary size. (NOTE: the

number of rows in the matrix must be equal to the number of elements in each row.) The func-

tion uses three forall loops to perform the multiplication. An array of arrays is used to implement

the matrices.

function matrixmult(A,B:array [array [intli , n:int; returns array [array [int 1)

forall i in [1,n]
construct(forall j in [1,n]

construct(forall k in [1,n]
eval plus *(A[iljk],B[k][j]);

end;)
end;)

end;
end

This function is used to compute the factorial of n.

function fact(n:int; returns int)
begin

b:booll := if +(y,1) then true
else false

x:int :- fby(1,*(x,y));
y:int :=fby(n,-(y,l));

return(fby(upon(x,boolI),eod))
end;

end

APPENDIX B

TEXTUAL SPECIFICATION OF PDL

In the following BNF grammar, {text} means that zero or more occurrences of the enclosed

text are allowed. [text] means that zero or one occurrences of the enclosed text is allowed.

Type Specifications

type-spec basic-type-spec
compound-type-spec
type-name

basic-type-spec boolean
I character

integer
null

I real
I function

compound-type-spec array [type-spec]

I reeord[field-spec { ;field-spec

I union[tag-spec { ;tag-spec }

field-spec field-name (field-name} :type-spec

tag-spec tag-name ,tag-name :type-spec

field-name name

tag-name - name

type-name name

79

Type definitions

type-def-part (type-def;} Itype-def;}) type-def

type-def type type-name =type-spec

type-name name

Cons tants

constant := nil
I false

true
I integer-number
I real-number
I character-string

error [type-spec]
I empty [type-spec]

Expressions

expression simple-expression
I relational-op(expression,simple-expression)

simple-expression term
I adding-op(simple-expression,term)

term factor
multiplying-op(term,factor)

factor primary
un ary-op(primary)

ago* **a

80

primary constant
value-name

I invocation
I array-ref

array-generator
record-ref

I record-generator
union-test

I union-generator
I error-test
I prefix-operation
I (multi-exp)

unary-op +I- I !
relational-op < I<=I>I

adding-op + +l 1 I cat

multiplying-op I 0 mod I&&

value-name name

invocation = function-name(multi-exp)

function-name := name

array-ref := primary(multi-exp)

array-generator I: [multi-exp: I multi-exp I(;[multi-exp:]multi-exp}

primary [[multi-exp:] multi-exp {;[multi-exp:]multi-exp}

record-ref primary.field

record-generator record [field-def I(;field-def}

I replace primary [field:multi-exp I ;field: multi-exp}

field-def - field-name:multi-exp

field field-name (. field-name}

field-name name

union-test is tag-name(multi-exp)

union-generator = make type-spec [tag-name:multi-exp]

tag-name name

error-test is-error(multi-exp)

prefix-operation = char(multi-exp)
int(multi-exp)

I int..c(multi-exp)
floor(multi-exp)

I trunc(multi-exp)
I flost(multi-exp)
I abs(multi-exp)
I exp(multi-exp)
I max(multi-exp)
I min(multi-exp)
I array(multi-exp)
I array-ow(multi-exp)
I array..high(multi-exp)
I arraysize(multi-exp)
I arraycat(multi-exp)

set-bounds(multi-exp)
I flrst(multi-exp)
I rest(multi-exp)
I advance..upon(multi-exp)
I asa(multi-exp)
I whenever(multi-exp)
I concatenate(multi-exp)
I fby(multi-exp)

is_current(multi-exp)
I return(multi-exp)

82

basic- multi-exp expression
basic-multi-exp, basic- mul ti-exp

I invocation
(multi-exp)

invocation = function-name(multi-exp)

multi-exp = basic-multi-exp
conditional-exp
begin-exp
case-exp

I iteration-exp
I forall-exp
I apply-exp

Pro gram Structures

conditional-exp if multi-exp then multi-exp

I elseifmulti-expthenmulti-exp}

else multi-exp
end

begin-exp begin decidef-part
return multi-exp

end

decidef-part :: decidef;}

I {decidef; }decidef
decidef - deci

I def

I deci { decl } multi-exp

deci value-name { value-name }:type-spec
def :- value-name {value-name} multi-exp

r ,

83

case-exp case test-expression{tag-list:multi-exp}
ejJefault:multi-expI

test-expression value-name : multi-exp

tag-list tag tag-name (tag-name}

tag-name name

iteration-exp for decidef-part do
if multi-exp then

iter-end
else iter-end

end

iter-end if expression then iter-end

4 elseifexpressiontheniter-end}

else iter-end
end

case test-expression

{tag-list:iter-end}
[ndefault:iter-end]

I begin
decider-part
return iter-end

end

I multi-exp

I iter {def;}
Iiter {def;} def

forall-exp forall value-name in [multi-exp]
dec de f-p art
construct expression I eval forall-op multi-exp

end

forall-op plus I times Imin I max Ior Iand

apply-exp apply(function-def,apply-op)

function-def = function-module

apply-op < primary { primary) >

Function Afodules

function-module function function-name(I deci; }decl[]
returns type-spec { type-spec}

type-def-part
tnulti-exp

end

APPENDIX C

GRAPHICAL SPECIFICATION OF PDL

Tree-Structured Node (tnode,tn)

* nullnode name = tnode
* moveto tnode X point = tnode
* put-node tnode X type X name tnode
* arcto tnode X name.int X name.int X name tnode
* text tnode X string tnode

curpos tnode = point
replacenode tnode X name X name tnod,
removenode tnode X name tnod,.
removearc tnode X name - tno,.
expand tnode X name tnod,

* display tnode picur,

axioms

curpos

tnl curpos(nullnode) = origin
Mn2 curpos(moveto(P~x)) x

replace-node

In3n rplaceinode(ni t,,ei n i
tn.% replace noie(orerd' \ i ii r,
tn5 re'Ilac, _ f ,tle(ltm,,.,l h it-,.

_1 n6 r,.'I~tena *rl,r , JI'

*i re' nmove __ ii t.

" In 7 r u . \ ', . -_ 0- i, ,

tnI'' '., - 1

tl!

Y[~ ~~~~~~~~~~I iidiil r,,..<.,,:,_.
In 9 -: t

O-Aigl 958 THE DESIGN AND SPECIFICATION OF PDL- THE PROTOTYPE 2/2 ~
DATAFLOW LANGUAGE(U) ARMY MILITARY PERSONNEL CENTER
ALEXANDRIA VA D J NOLFE MAY 87

UNCLASSIFIED F/G 12/5 NENhhAhhhhhhi
E7EEEEahlh95hEonhEEEnhh111EE

IEEE...smmo

11 .5 I- -.

MICROCOPY RESOLUTION TEST CHART

86

remove-arc

M12L remove...arc(nullnode,n) = nuilnode
MuIS remove arc(moveto(P ,x),n) = remove..arc(P ,n)
M1l4 remove...arc(put...node(P,t,n) ,n) = remove....arc(P,n)
M1l5 remove-ar(ar....o(P,n1 .i,n 2.j,n 3),n) = if (n = nl3) then P

else remove...arc(P,n)
tul 6 remove...Arc(text(P,s),n) = remove..rc(P,n)

expand

M22L expand(P,nullnode) = nulinode
Wus expand(moveto(P,x),n) = expand(P,n)

Mn24 expand(put...node(P,t,nj),n) = if (n = n1 A (t = udf)then
draw-subgraph(n)

else expand(P,n)
M2L5 expand(arc..tO(P,n1 .i,n2.j ,n3),n) = expand(P,n)
M2L6 expand(text(P,s),n) = expand(P,n)

display

Mn27 display(nullnode) = p.nullnode
Mn28 display(moveto(P,x)) = display(P)

tn29display(put..node(P,t,n)) = p.sum(display(P),p.node(curpos(P),t))
InSO display(arc-to(P,n1 .i,n 2.j,n 3)) =

p.sum(display(P) ,p ac~ os1 .i) ,pos(n2 .j)))
M31i display(text(P,s)) = p .sum(display(P)'p .text(curpos(P),s))

87

Continuous Picture (picture,p)

*0 nullpict picture
*0 inspatch picture X region picture

* domain picture region
* sum picture X picture picture
* addpatch picture X region picture
* restriction picture X region picture

axiome

P1 domain(nullpict) -nuliregion

P2 domain(inspatch(P,R)) =R U domain(P)
PS sum(P,nullpict) = P
P4 sum(P1 ,inspatch(P2,R)) =sum(adddpatch(Pj ,R),restriction(P 2,-R))
p5 addpatch(nullpict,R) = inspatch(nullpict,R)
p6 addpatch(inspatcb(P,RI),R 2) =

inspatch(inspatch(addpatch(P,R 2-R),R-R 2),RI nlR2)
p7 restriction(nullpict,R) = nuilpict
p8 restriction(inspatch(P,R),R 2) = inspatch(restriction(P,R 2),R1 l nR2)
P9 inspatch(P,nullregion) = P
P10 inspatch(inspatcb(P,RI),R 2) = inspatch(P,R, u R-2)

User Interaction (ip)

program operations

prompt string
getkey char
getposn point
getpick name
post tnode X name
unpost name

user actions

getprompt string
keystroke char
position point
pick point boolean

auxiliary functions

* postpict state tnode
* pickname state X point name
* image state picture

88
axiorm

getkey
ipi wait($init) = true
ipe wait(getkey$return(S)) = true
ips wait~keystroke$return(S,c)) =false

4p4 value($init) = undefined
ip5 value(keystroke$return(S,c)) =c

getposn
ip6 wait($init) = true
ip 7 wait(getposn$return(S)) = true
iP8 wait(position$return(S,p)) = false
ipg value($init) = undefined
iplo value(position$return(S,p)) = p

getpick
ipil wait($init) = true
iPlf wait(getpick$return(S)) true
ipis wait(pick$return(S,p)) = -p.visible(image(S),rg.pickregion(p))
4p14 value($init) = undefined
ip15 value(pick$return(S ,p)) =pickname(S ,p)

getprompt
ipl6 wait($init) = true
ip1 7 wait(prompt$return(S,s)) = false
ip 18 wait(getprompt$return(S)) =true

ipl 9 value($init) = ikulistring
ip2O value(prompt$return(S,s)) =s

pick
ip2l value(S ,p) = -p.visible(image(S),rg.pickregion(p))

ip22 postpict($init) = tp.nullpict

ip23 pickname(S,p) = if s~empty(tp.picknaines(postpict(S),rg.pickregion(p))
then n.nul
else s.firstqtp.picknames(postpict(S),rg-pickregion(p)))

ip24 image(S) = tp.display(postpict(S))

89
Region (region,rg)

null region region
universe region
lineseg point X point region
box point X point region
complement region region
intersect region X region region
union region X region region
difference region X region region
empty region boolean
contains region X region boolean
contains ptregion X point boolean
equal region X region boolean

* pickregion point region

axioms

object mapping

rgl nullregion {}
rg2 universe {t q Iq is in the universe)
rgS Iineseg(a4 ,q2) '-(Xly) I X1 5X<X2,Y1 5Y:Y 2 ,

(Y2-Y,)*(XZ-XI)XY xXY 2-X2XY1}
rg4 box(ql,q) -- I(X,Y) X 1S<Xx2,Y15Y:5Y2}
rg5 complement(R) :-- (R')
rg6 intersect(R1 ,R2) :-R 1' nlR 2#
rg7 union(R1 ,R2) owRl' U R2'
rg8 difference(R1 ,R2) gsRl' -

rgg empty(R) = (R' = { 1
rglO contains(R 1 R2) = R2' C l
rgll containspt(R,q) = qE R'
rgl 2 equal(R1 ,R2) (RI' =R 21
rglS pickregion(q) {q)

90

Point (point,pt)

0 point real X real point
polarpt real X real point
origin point
absissa point real
ordinate point real
radius point real
angle point real
sum point X point point
difference point X point point

axioms

ptl polarpt(X1 7 X2) = point(x*COS(X2),X1 XSin(X2))
pt origin = point(0,0)
pts abscissa(point(x1 X2)) X
Pt4 ordinate(point(x,,X2)) X
pt5 radius(point(x,,X2)) = (X4 + X2
pt 6 angle(p) = if radius(p) = 0 then 0

elseif ordinate(p) >0
then arccos(abscissa(p) *radius(p))
else 360 - arccos(abscissa(p) -radius(p))

pt 7 sum(point(x1 ,X2),point(X3,X4)) = point(x1 +X3 ,X2±X4)
pt8 difference(point(X1 ,X2),pointqx3,X4)) =point(x -X3,X2 -X4)

Name(name,n)

name, name

namem name
equals name X name boolean

* lessthan. name X name boolean

String (string,st)

* nullstr string
* inschar string X char string

concat string X string string

axioms
st1 concat(s,nullstr) S
Wt concat(s1 ,inschar(s2,a)) =inschar(concat(sl,s2),a)

theorems
8ll T concat(nullstr,s) s

APPENDIX D

SEMANTIC SPECIFICATION OF PDL

With each of the axioms given below, it is assumed that the inputs are not the error value

and that they are valid. Two global axioms are given to specify the behavior of all operations

when an error value or an invalid input is present on one of the operation's input arcs. The two

axioms (error and valid) are given first.

All operations act on streams of data values. The manipulation of the BOS and EOS tokens

is not shown in the specifications. It is assumed that the programming environment would mani-

pulate these control tokens. The specification of the special filters utilizes a different notation

than the other operations to refer to each element in the stream. I.i refers to the ith element in

stream I. Finally, the actions that operations perform are machine and implementation depen-

dent (i.e., the addition of integers and real numbers is different on different computers).

error: The error axiom states that if any of an operation's input arcs carry a token with the
error value, the operation will produce an error value with an appropriate type (the
type the operation ordinarily produces).

<11 :VT,...,I,:VT;E...,Em> A I, = error(VTi),(l<i<n){OPNAME(I ,...,I,)}<E,...,E;error[VTI:VT,...,errorlVTl:VT>

valid: The valid axiom states that if any of an operation's input arcs carry an invalid token
(i.e., the type of the token is not the type expected by the operation), the operation
will produce an error value with an appropriate type (the type the operation ordinarily
produces).

<I1 :VT,...,In:VT;E...,Em> A invalid(1I),(1< i< n){OPNAME(1I....,1n)} <E,...,E;errorlVTl:VT,...,errorlVTj:VT>

A 1111

93

add: This operation accepts and consumes 2 input tokens of type integer or real and pro-
duces a single output taken of type integer or real which is the sum of the input to-
kens. The subtract, multiply, and divide operations are similar to the add operation
in their specification (except that a different operation is performed on the input
values).

FORTUPLE (VT,OPNAMIE)
BOUNDTO...TUPLES (int,int,_.add), (real,realadd)

subtract:

FOR_-TUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int..subtract), (real,reals.ubtract)
IN

< 1l:VT,12:VT;E > {OPNAME(1 ,12)) < E,E;I1 -12:VT >

multiply.

FOR_-TUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int~multiply), (real,real..multiply)
IN

divide:

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int..divide), (real, realdivide)
IN

<I11:VT,1 2:VT;E> {OPNAME(1 ,12) }<E,E;lI+1 2:VT>

94

exponentiation:
This operation acceptu and consumes 2 input tokens of type integer or real and pro-
duces a single output token of type integer or real which is the result of raising the
first token to the power of the second token.

FOR_TUPLE (VT,OPNAME)
BOUND_TOTUPLES (int,intexp), (real,real_exp)
IN

< Il :VT,I2:VT ;E > { OPNAME(I1 ,I2)} < E,E;II :VT >

modulus:
This operation accepts and consumes 2 input tokens of type integer and produces a
single output token of type integer which is the remainder of an integer division of the
inputs. The first input is the dividend of the division and the second is the divisor.

FORTUPLE (VT,OPNAME)
BOUND_TO_TUPLES (int,intmodulus)
IN

<1 1:VT,12:VT;E> {OPNAME(11,I2)} <E,E;I mod 12:VT>

negation:
This operation accepts and consumes one input token of type integer or real and pro-
duces a single output token of type integer or real which is the result of the unary ne-
gation of the input token.

FORTUPLE (VT,OPNAME)
BOUND_TOTUPLES (int,int-negation), (real,real_negation)
IN

<1:VT;E> {OPNAME(1)} <E;0 - 1:VT>

absolute-value:
This operation accepts and consumes one input token of type integer or real and pro-
duces a single output token of type integer or real which is the absolute value of the
input token.

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int-absolute), (real, realabsolute)
IN

<It:VT;E> {OPNAME(I)} <Elj lj:VT>

95

maximum:
This operation accepts and consumes two input tokens of type integer or real and pro-
duces a single output token of type integer or real which is the largest of the two in-
put tokens. The minimum is similar to the maximum operation except that it pro-
duces the smallest of the two inputs.

FORTUPLE (VT,OPNAME)
BOUND-TOJUPLES (int,int-max), (real,rea-max)
IN

(Ii > Ij, 1 <i,j 2) A < Il:VT,I2:VT;E > {OPNAME(11 ,12)} < E,E;Ii:VT >

minimum:

FORTUPLE (VT,OPNAME)
BOUND_TO-TUPLES (int,int-min), (real,real-min)
IN

(Ii < Ij,i <i,j <2) A <1 :VT,12:VT;E> {OPNAME(11 ,12)} <E,E;i:VT>

equal: This operation accepts and consumes two input tokens and produces a single output
token. The input tokens are either of type integer, real, character, or boolean. Both
input tokens must be of the same type. The output token is of type boolean. The
value of the output token is True if the input tokens are equal, False otherwise. The
specification of the iotequal, less-than, greater-than, greaterthanorequal, and
lessthanor..equal h. e similar to the equal operation except that different comparisons
are made.

FORI.UPLE (VT,OPNAME)
BOUNDTOTUPLES (intint_equal), (real,realequal),

(bool,boolequal), (char,charequal)
IN

(11 = I2)o=*P A < 1 :VT,I2 :VT;E > {OPNAME(11 ,12)} < E,E;P:Bool >

not-equal:

FORTUPLE (VTOPNAME)
BOUND_TO_TLPLES (intint-notequal), (real,real-not-equal),

(bool.bool_not-equal), (char,charnot-equal)
IN

(I1 7 I2)P=*P A <-I :VT,To:VT;E> {OPNA"lE(I,IQ)} <E,E;P:Bool>

-p A-*'&-

96

graevterhan:

FORTUPLE (vTr,OPNAME)
BOUNDTrOTUPLES (int,int..greater than), (real, real...greater than),

(bool ,greater..than), (char,char-greater than)
IN

I~ > 12 4:*P A < ll:VT,12:VT;E > {OPNAME(1,12)1 < E,E;P:Bool >

less-than:

FOR_-TUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,intjless than), (real, real less than),

(bool,bool less-than), (char,char less_than)
IN

P,~ < 12)=P A <Ii:VT,12 :VT;E>{OPNM(1 1,12)}<E,E;P:Bool>

greater than-or-equal:

FOR_-TUPLE (VT,OPNAMlE)
BOUNDTO_TUPLES (int,int..greater -equal), (real, real...greater equal),

(bool ,bool...greater equal), (c har,char-greater equal)
IN

(11 ! I2),o=*P A < 1i:VT,12:VT;E >(OPNAME(I1 ,12)}< E,E;P:Bool >

less-than..or..equal:

FOR_-TUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int-jess-equal), (realreal-less-equ al),

(bool,bool-not-equal), (charchar not-equal)
IN

(1, : <I2 s=*P A < ll:VT,12 :VT;E > {OPNAME0 1,10 1} < E,E;P:BooI >

mist

97

and: This operation accepts and consumes two input tokens of type boolean and produces a
single output token of type boolean. The value of the output token is the logical AND
of the two input tokens. The specification of tlie or operation is similar to the and
operation except that the logical OR of the two inputs is the result.

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (bool,bool-and)
IN

(I, A I2)4=*P A < I1 :VT,12:VT;E > {OPNAME(II,I2)} < E,E;P:Bool>

or:

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (bool,bool-or)
IN

(I11 I2) = *P A <Ii:VT,12 :VT;E>{OPNAME(11 ,12)}<E,E;P:Bool>

not: This operation accepts and consumes a single input token of type boolean and pro-
duces a single output token of type boolean. The value of the output token is the log-
ical negation of the input token.

FORTUPLE (VT,OPNANE)

BOUNDTOTUPLES (boolbool not)
IN

<1 1:VT;E> {OPNAME(I)} <E;- I,:VT>

arraycreate:
This operation accepts and consumes a single input token which is the type
specification for the array to be created and produces an empty array of the indicated
type.

FORTUPLE (VT1 ,VT2,OPNAME)
BOUNDTO_TUPLES (type-spec,int,arraycreate)
IN

<I1:VT1 E> (OPNAMkE(1)} < E;empty[VT1] :VT 2 -VT 1 >

0.

98

array_ aele ct:
This operation accepts and consumes two input tokens. The first input token is of
type array and the second is of type integer. Input token two serves as the index of
input token one. The operation selects the element of the array at the index and pro-
duces that value.

FORTUPLE (VT1 ,VT2,OPNAME)

BOUNDTOTUPLES (int,any,array-select)
IN

< I1:VTI-VT2,I2:VTt ;E > {OPNAM(I,,I2)} < E,E;II (I2):VT2 >

array_replace:
This operation accepts and consumes three input tokens. The first input token is of
type array, the second is of type integer, and the third has the same type as the ele-
ments of the array. Input token two serves as the index of input token one. Input to-
ken two is the value which is to replace the value at the index of the array. The
operation produces an array with identical elements to input token one except that the
element at the index is replaced by the token on input arc three. The notation M[x/vJ
reads "M with x for v."

FORTUPLE (VTpVT2,OPNAME)

BOUNDTO-TUPLES (int,any_..type,array-.replace)
IN

<11:VT I-.VT2,I2:VT 1,13:VT 2;E> {OPNAME(II,12 ,13)} <E,E,E;j113/11 (12)1:VT 1-. VT 2>

array_aize:
This operation accepts and consumes one input token which is of type array and pro-
duces a single output token of type integer which is the size of the array.

FORTUPLE (VT1 ,VT2 ,OPNAME)

BOUNDTOTUPLES (int,any,array_size)
IN

<1 1:VTj-.VT2;E> {OPNAME(I)} <E;O:VT1 >

99

array_low:
This operation accepts and consumes one input token which is of type array and pro-
duces a single output token of type integer which is the lower bound of the array.
FOR_TUPLE (VT ,VT2,OPNAME)

BOUNDTOTUPLES (int,any,arrayjlow)
IN

<1 1 :VT 1-VT 2;E> {OPNAME(I)} <E;OI:VT1 >

arrayhigh:
This operation accepts and consumes one input token which is of type array and pro-
duces a single output token of type integer which is the upper bound of the array.

FOR TUPLE (VTVVT 2 ,OPNAME)
BOUND_TOTUPLES (int,any,array_high)
IN

<I1 :VT 1-VT 2;E> {OPNAME(I,) } <E;O :VT 1 >

array set_bound.:
This operation accepts and consumes three input tokens. The first input token is of
type array, the second and third are type integer. The operation produces an array
which identical to the first input token except that the high index has the value of in-
put token two and the low index has the value of input token three.

FOR_TUPLE (VT1,VT 2,OPNAME)

BOUNDTOTUPLES (int,any,array_setbounds)
IN

<1 I:VT1 -VT 2 ,12:VT,1 3:VT I;E> (OPNAME(11 ,12,13) } <E,E,E;O:VT 1-VT 2 > A

lower(0 1)=1 2 A upper(0 1)=1 3

array_concatenate:
This operation accepts and consumes two input tokens of type array and produces a
single output token of type array. The array produces has a size equivalent to the
sum of the sizes of the input arrays, a low index equal to input token one's index, and
a high index equal to input token two's high index. Input token two is concatenated
with input token one to form the new array.

FORTUPLE (VTPVT 2 ,OPNAME)
BOUND_TO_TUPLES (int,any,arrayconcatenat e)
IN

<1 1 :VT 1-VT 2,12 :VT-VT2;E> {OPNA,\IE(1 ,l)} <E,E;0 1 l VTT-VT 2 >

100

record....reate:
This operation accepts and consumes one input token which is the type specification
for the record to be created and produces an record of the indicated type.

FOR_-TUPLE (VTiVT2' OPNAME)
BOUNDTOTUPLES (type...spec,any,record.create)
IN

<11 :VT,;E> {OPNAME(11)} <E;Record[VT] :FNI-VT2 X . X FN,-VT2 >

record(_select:
This operation accepts and consumes two input tokens. The first input token is of
type record and the second is a field of the record. The operation produces the value
of the named field.

FORTUPLE (VTIVT2 , OPNAME)
BOUND...TOTIJPLES (field,any,record..select)
IN

FNI=12 A < I1:FN1-VT 2 X .. X FN,-VT2,!2: VT1;E>{OPNAM(1 1, 2)} <E,E;11.12: VT 2>

record replace:
This operation accepts and consumes three input tokens. The first input token is of
type record, the second is a field of the record, and the third is a value which is to re-
place the current value of the named field. The operation produces a record similar to
the record on input arc one except that the value of the named field is replaced by the
token on input arc three.

FORJTUPLE (VTV VT 2 ,OPNAME)
BOUND..T0_TUPLES (field,any ,record~..eplace)
IN

FNj= 12,(1 < i<n) A < 11 :FNI-VT2 X .. X FN,-VT2,I2:VT1 ,IS:VT 2;E>
{OPNAME(I,1 2,1a)}<E,E,E;1 1112:I3I:FN 1-.VT2 X .. X FN,-.VT 2 > A (I<i < n)

union-c reate:
This operation accepts and consumes one input token which is the type specification
for the union to be created and produces a union of the indicated type.

FOR-rUPLE (VT1 ,VT,,OPNAMIE)
BOUNDTOTUPLES (ty pe...spec, any, union-..create)

IN <11:VT 1 :E> {OPNAME(I)}<E;O
1:T-VT2 > A (1 i<n)

101

tunionjtag~teat:
This operation accepts and consumes two input tokens and produces a single output
token of type boolean. The result of this operation is true if the union on input arc
one was created with a tag of input arc two. Otherwise, A value of False is produced.

FOR-TUPLE (VT1 ,VT 2 ,VT,,OPNAME)
BOUNDTOTUPLES (tag,any,boolean ,union..tag...test)
IN

(tagname(I1 ,I,)4-*P) A <11:T1-.VT2j12:VT1;E> {OPNAME(I,,12) < E,E;P:VT 3>

reaLto~jnt:
This operation accepts and consumes a single input taken of type real and produces a
single output taken of type integer. The input taken is converted to an integer using
machine dependent conversion rules.

FORTUPLE (VT1,VT 22OPNAME)
BOUTND_TO-TUPLES (real,int,real..to.int)
IN

<11:VT 1;E> {OPNAME(1)}<E;0 1 :VT 2 >

char_to..snt:
This operation accepts and consumes a single input token of type character and pro-
duces a single output token of type integer. The input token is converted to an in-
teger using machine dependent conversion rules.

FORTUPLE (VT1 ,VT 2)OPNAME)
BOUND...TO_TUPLES (char,int,char to_int)
IN

<11:VT 1 ;E> {OPNAM1E(1j)} <E;O1 :VT 2 >

float: This operation accepts and consumes a single input token of type integer and produces
a single output token of type real. The input token is converted to a real number us-
ing machine dependent conversion rules.

FOR-..TUPLE (VT 1 ,VT,OPNANIE)
BOUNDTO...TUPLES (in t, real, float)
IN

<I1 :VT 1;E> {OPNAME(11)} <E;01 VT 2.>

102

int_to.c.har:
This operation accepts and consumes a single input token of type integer and produces
a single output token of type character. The input token is converted to a character
using machine dependent conversion rules.

FORTUPLE (VTpVT2,OPNAME)
BOUNDTOTUPLES (int,char,intto_char)
IN

<1 1 :VT;E> {OPNAME(I)} K<E;O:VT2 >

floor: This operation accepts and consumes a single input token of type real and produces a
single output token of type integer. The input token is converted to an integer using
machine dependent conversion rules.

FORTUPLE (VTIVT2,OPNAME)

BOUNDTO TUPLES (real,int,floor)
IN

<1 1 :VT;E> {OPNAME(I)} <E;O:VT2 >

trunc: This operation accepts and consumes a single input token of type real and produces a
single output token of type integer. The input token is converted to an integer using
machine dependent conversion rules.

FORTUPLE (VT1 ,VT 2,OPNAME)

BOUNDTO_TUPLES (real,int,trunc)
IN

<1 1 :VT;E> {OPNAME(I)} <E;O:VT2 >

first: This operation accepts and consumes a stream of input tokens and produces a single
stream of output tokens each of which have the value of the first token in the input
stream. The notation I#.i refers to the ith element of the stream on input arc #. For

example, 1l.1 refers to the first element of input stream number one.

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (any,first)
IN

<1 1 .i:VT;E> {OPNAME(I)}<E;1 1.I:VT>

103

rest: This operation accepts and consumes a stream of input tokens and produces a single
stream of output tokens. At each step of the execution, the output token produced is
the next token to arrive on the input arc (i.e., the next token in the input stream).
The stream produced by the filter is the input stream less the first token.

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (any,rest)IN

<1 1.i:VT;E> {OPNAME(I)} <E;Ij.i+ :VT>

whenever:
This operation accepts and consumes two streams of input tokens and produces a sin-
gle stream of output tokens. For each token set, if the value of the token on the
second input arc is True, then the token on the first input arc (data token) is placed
on the output arc. Otherwise, the filter discards the data token. The filter produces a
stream of all values of the data stream whose corresponding control stream value was
true. Two axioms are used to define the semantics of this operation.

FORTUPLE (VTPVT2,OPNAME)

BOUNDTO_TUPLES (any,boolean,whenever)
IN

<1 1 :VTI,True:VT 2 ;E> {OPNAME(11.i,1 2.i)} <EE; 1 .iVTI >,

<11:VT,False:VT 2;E> {OPNAME(I1 .i,I 2.i)} <E,E;E>

1 .13 1S 1'

104

advanee upon:
This operation accepts and consumes two streams of input tokens and produces a sin-
gle stream of output tokens. This filter places the first token in input stream one on
the output arc. Then for each successive token set, if the value of the token on the
second input arc is True, then the token on the first input arc (data token) is placed
on the output arc. If the value is False, the value that was last placed on the output
arc is placed on the output arc again and the token on input arc one is left on the arc.
The filter produces a stream of values of the data stream, some of which are repeated.
Three axioms are used to define the semantics of the operation.

FORJTUPLE (VT1 ,VT 2,OPNAME)
BOUND_TOTUPLES (any,booleanadvanceupon)
IN

< Ij.1:VTj,I2.1:VT2;E > { OPNAMvE(I1. 1,I2.1) < E,E;11.I:VTI >,

<11:VTI,True:VT 2;E> {OPNAME(II.ij.i)} <E,E;11.i:VT 1 >,

< 11:VT,False:VT 2;E> {OPNAME(11.i,02 .i)} <I1 .i,E;0 1 .i-I >

concatenate:
This operation accepts and consumes two streams of input tokens and produces a sin-
gle stream of output tokens. The resultant stream is formed by concatenating the
second input stream to the first input stream.

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (any,concatenate)
IN

<11 :VT,I 2:VT;E> {OPNAME(I ,I2)} <E,E;O:VT>

iscurrent:
The is_current accepts and consumes a single stream of input tokens and produces a
single stream of output tokens. The declaration is used to freeze certain the value of
an identifier. The declaration allows programmers to write programs with nested
iteration.

FORTUPLE (VT,OPNAME)
BOUND_TOTUPLES (any,is current)
IN

< 11.i:VT;E> {OPNA.ME(l.i)} < E;I.i:VT>

105

merge: This operation has three input arcs and a single output arc. Input arc one serves as
the control input for the operation. Input arc one carries tokens of type boolean and
input arcs two and three carry tokens of any type. The operations consumes the input
tokens on the control arc and the input data arc pointed to by the control token. A
copy of the data token on the specified input data arc is is placed on the output arc.
Two axioms are used to define his operation.

FORTUPLE (VT1 ,VT 2,OPNAME)
BOUND_TOTUPLES (bool,any, merge)
IN

<True:VTt,I2:VT 2,E;E> {OPNAIvIE(11 ,I2,I 3)} <E,E,E;12:VT 2 >,

<False:VTt,E,Is:VT 3;E> (OPNAMvE(1 1 ,12,13)} <E,E,E;13:VT 2 >

outbound. witch:
This operation has two input arcs and two output arcs. Input arc one serves as the
control input for the op,.ration and input arc two serves as the data input. Input arc
one carries tokens of type boolean and input arc two carries tokens of any type. The
operations consumes the input tokens and the value of the control token is used to
select the output arc on which a copy of the data token will be placed. If the value of
the control token is True, then the data token is placed on output arc one. Otherwise,
the data token is placed on output arc two. Two axioms are used to define this opera-
tion.

FORTUPLE (VTt,VT 2,OPNAME)

BOUNDTOTUPLES (bool,any,outbound switch)
IN

<True:VT I, 12:VT 2;E,E> {OPNA.ME(I ,12) } <E,E;12:VT 2,E>,

<False:VTt,12:VT 2;E,E> {OPNAME(11 ,12)} <E,E;E,12:VT 2 >

identity:
This operation accepts and consumes one input token of any type and produces an
output token of any type which has the value of the input token. Thus, a copy of the
input token is placed on the output arc.

FORTUPLE (VT,OPNAME)
BOUNDTO_TUPLES (anyidentity)
IN

.i1:VT;E> {OPNAME(I)}<E;I :VT'>

N

106

routetokens:
This operation accepts and consumes two input tokens. The token on input arc one is
the control token and is of type integer. The token on input arc two is of any type.
The operation places the data token on the output arc specified by the control token.

FORTUPLE (VT1 ,VT 2, OPNAME)
BOUND_TOTUPLES (any,int,routetokens)
IN

(1<12 <n) A <I:VTI,12:VT2;El • ,E,>{OPNAME(I1,IJ2)}<E,E;E t , " E2_jjE+, ' En>

funneLtokens:
This operation accepts and consumes N input tokens. The token on input arc one is
the control token and is of type integer. The tokens on input arc two to N are of any
type. The operation places the data token on the output arc specified by the control
token. The operation consumes the control token and the data token from the input
arc specified by the control token. The data token is placed on the output arc.

FORTUPLE (VT1 ,VT2 ,OPNAME)
BOUNDTOTUPLES (any,int,funnel tokens)
If'"

<I:VT2 ,...E 1 1, IT:VT1 ,E 1+1,...;E>{OPNAME(I, ... ln)}<El • .. E;I :VT 1 >

apply. This operation accepts and consumes two input tokens and produces N output tokens.
The token on input arc one is a procedure definition which is to be applied to the argu-
ment list on input arc two. The operation is used to make a run-time binding of the
procedure definition to the argument list. The operation produces N output tokens
which are the results of applying the procedure definition to the argument list.

FORTUPLE (VT1,VT 2 ,OPNAME)
BOUNDTOTUPLES (function,any,apply)
IN

<I1 :VT1 ,I2 :VT2...In :VT 2;E1 ...,Em>{OPNAME(I i,...,In)}<E,E;O m:VT2,...,Om:VT 2 >

107

input: This operation is used to receive input from the programming environment. It accepts
input from a programmer's terminal and produces a token which has the value that
was input.

FORTUPLE (VT,OPNAME)
BOUNDfTO_TUPLES (any,input)
IN

<;E> {OPNAME} <;O:VT >

output:
This operation is used to output values to the programming environment. The opera-
tion accepts and consumes a single token of any type. It then outputs the token to
the programming environment.

FORTUPLE (VT,OPNAME)
BOUND_TOTUPLES (any,output)
IN

<VT; > {OPNAME(I1) }<E; >

constant:
This operation accepts and consumes two input tokens and produces a single output
token. Input token one is used to trigger the firing of the node. Input arc two carries
the value of the constant to be produced by the node. The output token has the same
type and value as the data constant token.

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (any,constant)
IN

legal_constant(12) A <I,:VT,12 :VT;E> {OPNAME(I,12)} <E,12:VT;12:VT>

fork: This operation accepts and consumes a single input token and produces n copies of the
input token on N output arcs. Tokens of any type are accepted and any number of
output arcs can be specified.

FORTUPLE (VT,OPNAME)
BOUNDTO_TUPLES (any,fork)
IN

<I1 :VT;E...E, > {OPNAME(I)) <E;I1 :VT,....I, VT>

108

if-then-else:
The if-then-else construct accepts one control input and n data inputs. The data in-
puts are sent to either the then or the else expression depending upon the value of the
control input. If the control input is true, then the data inputs are sent to the then
expression. Otherwise, the data inputs are sent to the else expression. Once an ex-
pression receives the data inputs, the expression executes and produces m output
values which are the values produced by the construct.

FOREACH(VT)
BOUNDTOONE&OF(int,real,bool ,char,array,record,union ,function)
IN

< 1 :bool, ,2VT_.,I,:VT;E 1, • Em> A 10 = true {S1}<Ej,'' ,E,;0:VT,...,On;VT>,

<11:bool, • • ,1lVT.,I:VT;Ej, " ",Er> A 10 = false {S2}<E 1,.• ,E,;0:VT,._Om:VT>,
<Ij:bool,12:VT,...,l;E , ' , Em>{if l then S1 else S2 }<El, ' " ,E,;O,:VT, • " " ,Om:VT>

begin: The begin construct accepts n input values and produces m output values. The con-
struct uses several sub-expressions (S) which receive input values from the input
values received by the construct and/or the values produced by other sub-expressions.
The values produced by each sub-expression can be used by the other sub-expressions
or can be values produced by the construct.

FOR EACH(VT)
BOUND_TOONEOF(int,real,bool,char,array,record,union ,function)
IN

<Ai:VT,...,Ap:VT;Ei,...,Em> AAp E {{Ii.In} U {Ok}},1<l<n an ki
(Sj}<EI,-",Ep;Oi:VT> A 1<<n

<I :VT,...,I:VT;E,...,Em>{begin SI;S 2;...;Sk end}<E,...,E,;O:VT,...Om> A 0 j
0 j ,1 l<n

case: The case construct accepts n input data values and one value of type union. The
union-typed value determines which sub-expression of the construct will be executed
(i.e., the expression whose tag matches the tag of the union-typed value). The selected
expression receives all input values and the constituent value of the union, executes
and produces m output values. These values are the output values produced by the
construct.

FOREACH(VT)

BOUND_TOONEOF(i nt,real,bool ,char,array record ,union,function)
IN

<11:VT,...In:VT;E,...,Em> {Sk+t} <E,.-.En;O:VT,...,Om:VT>,

Is Ti x A <x TI:VT,I:VT,...In:VT;Ei,...,Em> <E,..En;O :VT..,Om:VT>
<ll:VT,ln:VT;E,...,Em>{case p:=x:union of T :S; I..;Tk:Sn;default:Sk+lend}<EI,...En;O :VT,..mVT>

109

foral-eval:
The forall-eval construct accepts n input data values and the lower and upper bounds
of the range of the construct. The construct creates upper-lower+1 unique instantia-
tions of the body of the construct (Si) which are executed concurrently. Each instan-
tiation produces a single value. The construct produces a single value which is the
result of applying an operation (op-name) on all the values produced by the unique in-
stantiations of the body.

FOREACH(VT)
BOUNDTOONEOF(int,real,bool ,c har,array,record,union function)
IN

<i:int,l:VT,...,la:VT;E 1>{SJ}<E,...,E,;O:VT> A (L<i<U),

F E fplus,mult.andor,min,max)
<Inj:VT,...,1n:VT;E>{for&ll i In jL,Uj do S, eval:F}<E,...,En;F(O,F(O2,...,F(OUL,Oo..,+)...))>

forall-construct:
The forallconstruct construct acts in the same manner as the foralleval construct ex-
cept that an array is created. The elements of the array are the values produced by
the unique instantiations of the body.

FOREACH(VT)
BOUNDTOONEOF(int,real,bool,char,array,record,union,function)
IN

<i:int,l1 :VT,...,I,:VT;E,> {S 1 }<Et,...,Ea;Ot:VT> A (L<i<U),
<:In j:VT,.,In,:VT;E>{rora&I i In (L,UI do S, construct}<E 1 ...,En;O:int-VT>

for iter:
The foriter construct accepts n input values which are the initial values of the loop
variables of the construct. On each iteration of the loop, an if-then-else construct is
used to test for loop termination. If the loop is to terminate, an expression (S, is
evaluated. The results of the expression are the results produced by the construct. If
the loop does not terminate, another expression (S2) is evaluated. In this expression,
some updating of the variables of the loop is performed (i.e., the next iteration of the
loop is performed).

FOREACH(VT)
BOUNDTOONEOF(int,real, bool,char,array,record ,union,function)
IN

<Inj:VT ...,Ink:VTk;EI,..Ej> A (l<k,j<n){nItlalIze}<E, Ek;O,:VT,. .Oj:VTj,>

-B A <ln1 :VT, • Inn:VTnEl, • Em> {S1}<Jnj:VTj, • • - Inn:VTn;E. • • • Era-

B A <lnt:VT, . •n,:VT,;El, • • • Em> A (1<m<n){So<E 1,'• ,E"OVTI, '.)m:VTm>
.ln:VT 1 , .Inn:VT;Ei,...,Em>{for initialize do It B then S, else S, end}<E , -•E,0 1:VTI, ••(),'T

APPENDIX E

DATA STRUCTURES OF PDL

This appendix gives the data structures used to completely describe all operations and pro-

gram constructs of PDL. The names component gives the names of the language constructs

described by the data structure. The semantics component gives the semantical description of the

language construct. The graphics component gives a reference to an executable procedure that

draws the icons representing the language construct. The textual component gives a reference into

the BNF grammar to the grammar rule which describes the language construct. (The actual syn-

tax used within a program may also be given in the textual component).

addnode{
names: int add, realadd;
semantics:
FORTUPLE (VT,OPNAME)
BOUNDTO-TUPLES (int,int-add), (real,real-add)
IN

< Il:VT,12:VT;E > {OPNAME(I,.I)} < E.EI, + 12:VT >

graphics: drawaddnode;
textual: +(1 1.12); (simple-expression)
}

.4

subtract-node

names: int -subtract, real-subtract;
semantics:

FOR.,.TUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int subtract), (real, re al subtrac t)
IN

< ll:VT,12 :VT;E > {OPNAME(1 1,12) < E,E;11 -10:VT >

graphics: draw-subtract_node;
textual: -(11,1 2); (simple-expression)

multiply-..node

names: int-multiply, real~multiply;
semantics:

FORTUPLE (VT,OPNAMfE)
BOUNDTOTUPLES (int,int-multiply), (real,real multiply)
IN

<11:VT,12:VT;-E> {OPNAME(1 1 ,12) <E,E;11 X< 1:VT>

graphics: drawmultiply node;
textual: *(11,1 2); (term)

divide-node

names: int-divide, real divide;
semantics:

FOR-TUPLE (VT,OPNAMIE)
BOUNDTOTUPLES (intint-divide), (real,real divide)

* IN

graphics: draw_dividenode;
textual: /I,2;(term)

I

112

exponentiation-node

names: int -exp, real-exp;
semantics:

FORTUPLE (VT,OPNAME)
BOUNDT O..TUPLES (int,int..exp), (real ,reaLexp)
IN

graphics: draw...exp_node;
textual: exp(11 , 12); (prefix-operation)

modulus-node

names: mnt-mod;
semantics:

FORTUPLE (VT,OPNAME)
BOUND_.TOTUPLES (int,int-modulus)
IN

<11 :VT,12 :VT;E> {OPNAME(1 1,12) }<E,E;lI mod 12 :VT>

graphics: draw -mod -node;
textual: mod(11 ,12); (term)

I

negation-..node

names: mnt-negation, real~negation;
semantics:

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int.-.negation), (real,real~negation)
IN

<I1 :VT;E> {OPNAM\E(11)} <E;O - 1:VT>

graphics: draw...negation_node;
textual: 4(I1); (factor)

}lt _ Z

113

absolute..yaluejiode

names: int -absolute, real-absolute;
semantics:

FORTUPLE (VT,OPNAME)
BOUNDTOJ-UPLES (int,int..absolute), (real, real-absolute)
IN

<11l:VT;E > {OPNAME(11)} < E; Ij 1 :VT >

graphics: draw-..absI..oe
textual: abs(I,); (prefix-operation)

I

maximum-node
I
names: int_ max, real-max;
semantics:

FORTUPLE (VT,OPNAME)
BOUND-TOTfUPLES (int,int..max), (real real-max)
IN

(Ij >! Ij, 1<i,j 52) A <I 1:VT,12:VT;E> {OPNAMIE(1 1,12)}KE,E;li:VT>

graphics: draw-max-node;
textual: max(11 ,,k); (prefix-operation)

I

minimum~jiode

names: int mi, realmin;
semantics:

FOR-TUPLE (VT,OPNAMlE)
BOUNDTOTUPLES (int,int..min), (real real_mmn)
IN

(Ii :5 Ij, I<ij<2) A <I1 :VT,I2 :VT;E>{OPNAMIE(lm,I 2)}<E,EJli:VT>

* graphics: draw-mm _node;
textual: min(11 J 2); (pre fix-op eration)

IV

114

equal-node

names: int -equal, real-equal, bool-equal, char-..equal;
semantics:

FOR_-TUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int..equal), (real, realequal),

(bool,bolequal), (char,charequal)
IN

(11 = I2)=P A <I l:VT,12:VT;E > {OPNAME(11,12)) < E,E;P:Bool >

graphics: draw...equalnjode;
textual: =(I,,12); (expression)

not..equal..node

names: int-not..equal, real..not...equal, bool-not-equal, charnot...equal;
semantics:

FORTUPLE (VT,OPNAMlE)
BOUNDTOTUPLES (int,int not..equal), (real real-not..equal),

(bool,bool-not_,equal), (char, char..not-equal)
IN

(I1 34 I2)=P A < 11 :VT,12 :VT;E > {OPNAME(1 1 ,12)) < E,E;P:Bool >

graphics. draw...not...equal_node;
textual: !=(I,,12); (expression)

greater than-node

names: int...greater than, real..greater-than, bool-greater_than, char-greater-than;
semantics:

FOR....UPLE (VT,OPNANIE)
BOUND-..TO-.TUPLES (int,int..greater.j.han), (real ,real...greater..than),

(bool,greater..than), (char,char..greater than)
IN

(il > 12)==P A <11l:VT,12 :VT;E > {OPNAME(1 1 ,12)} < E,E;P:Bool >

graphics: draw~greater.than_node;
textual: >(I,Il); (expression)

115

less-than-node

names: intj- ess...than, real_less-than, bool~jess-than, char less than;
semantics:

FORJI'UPLE (VT,OPNAME)
BOUND-TOTUPLES (int,int-1es-jha), (real, realess..than),

(bool,bool less-.than), (char,char less _than)
IN

(11 < 2)4--P A <I1 :VT,12:VT;E> {OPNAME(11,12)} <E,E;P:Bool>

graphics: drawjess _than~jiode;
textual: <(11,1l2); (expression)

I

greater-than.equal-node

names: int...greater..equal...than, real...greaterequal-jhan,
bool...greater...equal-than, c har..greater..equ althan;

semantics:
FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (int,int-reater -equal), (real, realgreater-equal),

(bool,bool..greater-.equal), (char,char..greater..equal)
IN

(II >: I2)-=P A < 11:VT,12 :VT;E > {OPNAME(11 ,12)1 < E,E;P:Bool >

graphics: draw...greater...than...equalnode;
textual: >=(I,12); (expression)

less-than..equ al_node

names: mnt_less...equal-than, real-less..equalthan,
booljess..equal_than, charjless.equalthan;

semantics:
FOR_-TUPLE (VT,OPNAME)
BOUNDTO...TUPLES (int,int-ess..equal), (real ,realjess..equal),

(bool ,bool__not,_.equal), (c har,char.not..equal)
IN

(11 !51 2)4--P A <11:VT,I',:VT;E> {OPNAMfE(1 1,12)} <E,E;P:Bool>

graphics: draw_less_than...equal-node;
textual: <=1 1 112); (expression)

116

and-node

names: bool-and
semantics:

FORffUPLE (VT,OPNAME)
BOUNDTO-TUPLES (bool,bool-and)
IN

(11 A 12)--P A <11l:VT,12:VT;E > {OPNAME(11 ,,12)} < E,E;P:Bool >

graphics: draw_and-node;
textual: &&(Ij,12); (term)

I

or_node

names: bad _or
semantics:

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (bool,bool-or)
IN

(I, I I2)4I-=*P A < ll:VT,12 :VT;E >{OPNAMvE(I 1,12)}< E,E;P:Bool >

graphics: draw-or-node;
textual: 1(1,,12); (simple-expression)

not-node

names. bool-not
semantics:

FORTUPLE (VT,OPNAMIE)
BOUNDTOTUPLES (bool,bool-not)
IN

<Ij:VT;E>{OPNAM1E(I1)}<E;- ll:VT>

graphics. draw_not_node;
textual: !(I,); (factor)

117

array_..create..node

names: arrayc reate
semantics:

FORTUPLE (VT1 ,VT 2 tOPNAME)

BOUNDJTOTUPLES (type...spec ,int,array..create)

<11 :VT1 ;E> {OPNANM(1)}<E;empty[VT 1 J:VT2 -VTI >

graphics: draw...arraycreate..node;
textual: empty [type-spec]; (constant or array- gene rator)

array...elect..node

names: array...select
semantics:

FORTUPLE (VT1 ,VT 2 ,OPNAMIE)
BOUNDTQ..TUPLES (int, any, arrayselec t)
IN

graphics: draw..array__..elect..node;
textual: (array-ref)

array..replac e..node

names: array..yeplace
semantics:

FORTUPLE (VT1 VT 2YOPNAME)

BOUNDTOJTUPLES (int,any...ype ,array..replace)
IN

graphics: draw...array...replace_node;
textual: (array- generator)

}L

118

arraysizejiode

names: arrays.ize
semantics:

FORJ-UPLE (VT1 ,VT2 ,OPNAME)
BOUNDTO TUPLES (int,any,array-size)
IN

<11:VT 1-VT 2 ;E> {OPNAME(I1)} <E;01 :VT1 >

graphics: draw...Array_..size..jode;
textual: array..size(11) (prefix-operation)

arrayjowjxode

names: arrayjow
semantics:

FORTUPLE (VT1 ,VT2 ,OPNAME)
BOUNDTOTUPLES (int,any,array low)
IN

<I, :VT 1-*VT 2 ;E> {OPNAME(I1)} <E;01 :VT1 >

graphics: drawarrayjow_node;
textual: arrayjow(1); (prefix-operation)

I

array..highnjode

names: arrayjuhgh
semantics:

FOR-TUPLE (VT1 ,VT2 IOPNAME)
BOUNDTO-TUPLES (int,any,arraybigh)
IN

<11:VT1 -VT 2 ;E> {OPNAMfE(11)} <E;01 VT1 .>

graphics: draw...array_..high...node;
textual: array..high(11); (prefix-operation)

array-setjounds-node

names: arrayset..bounds
semantics:

FORTUPLE (VT1 ,VT 2 ,OPNAME)
BOUNDTOTUPLES (int,any ,array-set bounds)
IN

<I, :VT1 -VT12 ,I2:VT1 ,13:VT1 ;E> {OPNAME(11 ,I2,13))}<E,E,E;0 1 :VT1 -VT 2 > A
lower(01)=1 2 A upper(Oi)=13

graphics: draw-..array..set...bounds_node;
textual: setbounds(1 ,2,); (prefix-operation)

array...concatenatenode

names: array..concatenate
semantics:

FORffUPLE (VT1 ,VT2,OPNAME)
BOUNDffOfTUPLES (int, any,array..conc ate nate)
IN

<I11:VTI-VT 2 ,12 :VT 1-VT 2 ;E> {OPNAM4E(1 ,12)} <E,E;01 :VT 1-*VT 2 >

graphics: draw...array concatenate-node;
textual: array..cat(11~ ,2); (prefix-operation)

record create-node

names: record-create
semantics:

FORTUPLE (VT1 ,VT 2 ,OPNAME)
BOUNDTOTUPLES (type .spec any,recordcrae
IN

<Ii:VTI;E> {OPNAME(1 1)} <E;Record[VT] :FN1 -. VT2. X ... X FN,-VT0->

graphics: draw record- create_node;
textual: (record-generator);

}111 1111 1

120

record-select-node
I
names: record-.select
semantics:

FORTUPLE (VT1 ,VT2 J OPNAME)
BOUNDTOTUPLES (field,any,record select)
IN

FN,=12 A < I1:FNI-VT2 X ... X FN,-VT2,IVT 1:E> {OPNAME(1 ,12)} <E,E;1.12:VT 2>

graphics: draw_record.-select _node;
textual: (record-ref);

record~replacenode

names: record-select
semantics:

FOR...TUPLE (VT1 ,VT 2 IOPNAME)
BOUND_TO_TUPLES (field,any,record-replace)
IN

FN,= 124(1 < i<n) A
<11:FN1 -VT 2 X ... X F~ T,2VII:T;>ONM(,,21)<,,;,1:3:N-T X .. X FN,-.VT,>

A (i~i<n)

graphics: draw_record_replace..node;
textual. (record-generator);
I

union-create-node

names: unioncreate
semantics:

FOR...TTPLE (VT1 ,VT 2?OPNAME)

BOUND...TO_TUPLES (type...spec ,any,union..create)
IN

<11:VT 1 ;E> {OPNAME(1 1)} <E;01 :Ti-VT2 > A (1<i<n)

graphics: draw..union..create-node;
textual: (union-generator);

------------------2
121

union tag..testjiode

names: union tag..test
semantics:

FOR...TUPLE (VT1,VT 2 P, 3 ,OP NAM)
BOUNDTO...TUPLES (tag,any,boolean ,uniontagtest)
IN

(tagname(1,18)-_P) A <11:T1-VT 2,12:VT 1;E> {OPNAME(I I, 12) < E,E;P:VT 3>

graphics: draw_union_ag..test..node;
textual: (union-test);

real-to-imt-node

names: realtojnt
semantics:

FOR-TUPLE (VT1 ,VT2 ,OPNAME)
BOUTND..TOTUPLES (real .int,real~to-int)
IN

<I1 :VT1 ;E> {OPNAME(I1)} <E;01 :VT2 >

graphics: draw-real-to..int..node;
textual: int(11); (prefix-operation)

char~to_mnt-node

names: char to-int
semantics:

FORTUPLE (VT1,VT 2'OPNAMIE)
BOIJNDff..TUPLES (char,int,charto-int)
IN

<1,:VTj;E> {OPNANM(1)}<E;0 1 :VT2 >

graphics: draw_char_to_int_node;
textual: int..c1 1 ; (pre fi x-ope ration)

AI

122

float _node

names: float
semantics:

FORTUPLE (VT1 ,VT2, OPNAME)
BOUND-TO..TUPLES (int,real,float)

<11 :VT1 ;E> {OPNAME(I))<E;0 1 :VT2 >

graphics: draw_float,_node;
textual: float(11); (prefix-operation)

int-to-charnode

names: int_to_char
semantics:

FOR-JUPLE (VT1 ,VT 2) OPNAME)
BOUNDTOTUPLES (int,charit-to-char)
IN

<I1 :VT1 ;E> {OPNAME(1)}<E;0 1 :VT 2 >

graphics: draw_mnt_to_char..n-ode;
textual: char(11); (prefix-operation)

I

floor_node
f
names: floor
semantics:

FORTUPLE (VT1 ,VT,,OPNAMIE)
BOUNDTO_TUPLES (real,int,floor)
IN

<11:VT 1 ;E> {OPNAME(11)} <E;01 :VT2 >

graphics: draw_floor-node;
textual: floor(II); (prefix-operation)

123
trunc._node
I
names: trunc
semantics:

FOR,_TUPLE (VT1,VT 2,OPNAME)
BOUNDTOJO-UPLES (real,int,trunc)
IN

<11:VT1;E> (OPNAME(1 1)1<E;01 :VT2 >

graphics: draw-trunc_node;
textual: trunc(11); (prefix-operation)

first-node

names: first
semantics:

FORTUPLE (VT,OPNAME)
BOUNDTOffUPLES (any,first)
IN

graphics: draw_first-node;
textual: first(11 ; (prefix-operation)

rest__node

I
names: rest
semantics:

FORTUPLE (VT,OPNAME)
BOUND_TOJTUPLES (any,rest)
IN

<11 .i:VT;E> {OPNAM1E(11)} <E;11 .i-I1:VT>

graphics: draw..rest,_.node;
textual: rest(11); (pre fix-op eration)

......

124

whenever-node

names: whenever
semantics:

FOR...TUPLE (VT1 ,VT 2,OPNAME)
BOUND3TOTUPLES (any, boolean,whenever)
IN

graphics: draw_wheneverjinode;
textual: wheneve(1,,12); (prefix-operation)

advance..upon-node

names: advance-upon
semantics:

FORTUPLE (VT1 ,VT 2 ,OPNAME)
BOUNDTOffUPLES (any,boolean,advance__upon)
IN

<Ii.:VTI,I 2 .1:VT 2;E> {OPNAN4E(11 .i,I 2.i)} <E,E;Ii.1:VTi>,

<11:VTI,True:VT 2 ;E> {OPNAME(11 .i,12 .i)} <E,E;11 .i:VT, >,

<11 :VT 1 ,False:VT,2 E> {OPNAME(IiI",12 .3)}<Ii,E;Oi-I >

graphics: draw -advance..upon -node;
textual: advance-..upon(II ,2) (prefix-operation)

2)

125

conc atenate-node

names: concatenate
semantics:

FOR_TUPLE (VT,OPNAMIE)
BOUNDTO_.TUTPLES (any ,concatenate)
IN

<11:VT,12 :VT;E> {OPNAME(Ij1 ,)} <E,E;01 :VT>

graphics: draw_concatenate_node;
textual: concatenate([1 ,IQ) (pre fix-ope ration)

2)

iscurrent_node

names: is_current
semantics:

FOR_-TUPLE (VT,OPNAMIE)
BOUNDfOTJPLES (anyis current)
IN

<11.i:VT;E> {OPNAME(11 .i)} <E;11.i:VT>

graphics: draw is..current node;
textual: is current(11); (prefix-operation)

I

names: merge
semantics:

FORTTJPLE (VT1 ,VT2,OPNAMIE)
BOUNDTOTUPLES (bool,any,merge)
IN

<True:VT,,12:VT 2 ,E;E> {OPNAME(1 1 ,Io,13)} <E,E,E;I2:VT,>,

<False:VT1 ,E,13:V'T3 ;E> {OPNAM4E(II ,12,13)} <E,E,E:13 :VT2 >

graphics: draw~merge node;
textual: NONE

126

outbound-switch node
I
names: outbound-switch
semantics:

FOR-TUPLE (VT1 1VT 2 ,OPNAME)
BOUNDTOTUPLES (bool,any,outbound-switch)
IN

<True:VTI1 I:VT2;E,E> {OPNAME(1,12)} <E,E;12:VT2,E>,

<False:VT1 ,12:VT 2;E,E> {OPNAME(1 1 ,12)} <E,E;E,12 :VT 2 >

graphics: draw_outbound-_switch_node;
textual: NONE

identity__node

names: identity
semantics:

FORTUPLE (VT,OPNAME)
BOUNDTOTUPLES (any,identity)

<I1 :VT;E> {OPNAME(1 1 1<E;11 .VT>

graphics: draw..jdentity~jiode;
textual: NONE

route-tokens~node

names: route-tokens
semantics:

FORTUPLE (VT, .VT 2'OPNAMIE)

BOUTNDT OTUPLES (any, in t,routetjokens)
IN

(1<12 !<n) A <1j:VT1 ,12:VT 2 ;E1 , .. Eu>(0PNAME(I1 I 2)1<E,E;Ej, ,Ej',Ij En

graphics: draw_route-tokens..node;
textual: NONE

127

funneL..tokens _node

names: funnel-tokens
semantics:

FORTUPLE (VT1 1VT 2 OPNAME)
BOUNDTOJTUPLES (any,int,funneL tokens)

<1:T,.,1, 11 :VT 1 ,E1 1 ,1... E>{OPNAME(1 , 1j~)<E.. E,;I :VT I>

graphics: drawjunnel-tokensjinode;
textual: NONE

apply...ode

names: apply
semantics:

FORTUPLE (VT1 ,VT 2'OPNAME)

BOUNDTO_.TUPLES (func tion,any, apply)
[N

<I1 :VT1,,L2VT . ..1:VT2 ;E1 ,. Em> {OPNANM(1 1 . ,I,)}<E,E;01 :VT2 I. .O0,VT 2 >

graphics: draw-applynode;
textual: apply(I,I 2I1) (apply-exp)

input..node

names. input
semantics:

FORTUPLE (VT,OPNAME)
BOUTNDTOJIIJPLES (any,input)
IN

<;E> {OPNAME}< ;01 :VT>

graphics: draw...input..node;
textual: NONE

128

output..node

names: output
semantics:

FORTUPLE (VT,OPNAME)
BOUTND..TO_TUPLES (any ,output)
IN

< VT; > {OPNAME(I)}< E; >

graphics: draw....utput-..node;
textual: NONE
I

constantjxode

names: constant
semantics:

FORTUPLE (VT,OPNAME)
BOUNDTO..TUPLES (any,constant)
IN

legal-constant(12) A <I l:VT,12 :VT;E > {OPNA~lE(11 ,12)1 < E,12 :VT;I2 :VT >

graphics: draw-constant _node;
textual: NONE

fork_node

names: fork
semantics:

FOR-TUPLE (VT,OPNAME)
BOUNDTOJTUPLES (any,fork)

IN <I1:VT;El ... E,> OPNAME(1 1)} <E;11 :VT,...,I 1:VT>

graphics: draw_fork
textual: NONE

129

if-then_elIse-node

names: if -then-else
semantics:

FOR...EACH(VT)
BOUND_TO(int,real,bool,char,array,record,union,function)
IN

<11:bool, ... ,1g.VT.I:VT;Elj - ,Eln> A 10 = true {Sj} <Ej, - -En;O,:VT,-.OniVT>,

<11:baol,' ,L-- VT,...,In:VT;E1 , - ,E,> A 10 = false {S2}<E,, .. ,E,;O1 :VT..,OmVT>,

<11 :booI,1k:VT,.,;E, .,Em>{lf 10 then S, else S2 }<E1 . -,En;O 1 :VT, -,OffVT>

graphics: draw-if~node;
textual: (conditional expr)
I

begin-node

I
names: begin
semantics:

FOR....ACH(VT)
BOUND_TO(int, real,bool,char, array, record,union ,func tion)
IN

<A1 :VT..,AP:VT;Eir...,E,> AAp E ((11-.1 u {Ok.j},1<n an ki

{Si}<E1 .. ,EP;O:VT>A 1<<n

<11.VT,.In.VT;,,...,Em>{beglfl S,;S2.. ;Sk end}<E"..,E,;O :VT,..,m> A OOi ,1<I<n

graphics: draw...begin...node;
textual: (begin...expr)

case-node

names: case
semantics:

FOREXACH(VT)
BOUTND_TO(int, real,bool ,char, array, record, union,func tion)
IN

< 1 :VT ... 1:VT;E1 ,.. Em>{(Sk+} < EIED;Ol:VT,.Om:VT>,

Is T1 x A <x I T1:VT,1 1:VTIn:VT;E1 ,. Em> <EjE,;O1 :VT,.Om:VT>

<l1 :VT,1n:VT;E1 ,. Em>{(ease p:=x:union oftT:S; ... ;Tk:Sfl;detault:Sk+lend}KE,....El;Ol:VT,.Om:VT>

graphics: draw_case_node;
textual: (case...expr)

}i

130

forall._evalnode

names: forall-eval
semantics:

FOREFACH(VT)
BOUND_TO(int,real,bool,char,array ,record,union,function)
IN

<i:int,I 1:VT..,I,:VT;E1 > {SJ <E1 .. ,E,;O1 :VT> A (L<i<U),

F E jplus,mult,and,or,min,rnaxj
<Inl:VT..,In 3 :VT;E>{forai I n [L,Ul do SjevaI:F}<E1 ,. .E;(,F0,.,(uuuL+)

graphics: draw-forall_evaLnade;
textual: (foralljexpr)

forall_construct-node

names: forall-construct
semantics:

FOR.YAOH(VT)
BOUNDTO(int,real,bool ,char,array,record,union ,function)
IN

<i:int,I1 :VT,.J,:VT;E1 >{S1 }<E1 ,.. ,Ef;O1 :VT> A (L~i<U),
<1nj:VT,.In,:VT;E>{forallI iIn jL,UJ do S, construct) <E 1,...,E,;O:int-.VT>

graphics: drawjorallconstruct _node;
textual: (forall-expr)
I

forjter-node

names: for-iter
semantics:

FORY.FAGH(VT)
BOUNDTfO(int,real,bool,char,array,record,union,fuinction)
IN

<1nl:VT1 ,. Ink:VTk;EI..,Ej> A (1<kj:!n){1nltIal~ze}<Ej, .Ek;O,:VTI, ,Oj:VTj>

-B A <1n1 :VT,, - ,Inn:VT,;E1 , -- Em>({SI<ln,:VTI, - , nn:VTn;El, -- Em

B A <Inl:VT, - l,:VT,;El, -- Emn> A (1 m<n)S 2}<E1 , - - ,En;O,:VT,.. ,Om:VTm>
<dnj;VT1 , - Inn:VTD;E, . .Em>{(for initialize do WfB then S, else S2 end}<Ej, ,En;Oi:VTt, mVM

graphics: draw-for_iter-node;
textual: (iteration expr)

ABSTRACT

Several converging technologies have reached the point where they can be integrated and

used to develop an advanced programming environment for writing parallel programs. These

technologies include advanced graphics workstations, models of computation which can be used

for parallel computation, and parallel architectures. Several manufacturers are providing com-

mercially available parallel processing computers with potential for satisfying the performance

requirements of many of today's computing problems. Unfortunately, these computers usually do

not have adequate, user-friendly programming environments, and the programming primitives

supported by each machine are different. Thus, there is a need for a more general, user-friendly

programming tool.

The dataflow model of computation has been receiving increasing attention to discover the

model's potential use in parallel programming. Several textual languages have been developed for

experimentation with parallel programming. Graphical base language representations have been

proposed, but not developed because of the absence of graphics technology needed to implement

graphical languages. The potential to support a programming language which permits the simul-

taneous existence of graphical and textual representations for programs has become practical with

recent advances in interactive graphics technology and graphics workstations.

This thesis is concerned with the design and formal specification of a dataflow programming

language which supports the simultaneous existence of graphical and textual representations for

programs. The features of the language are synthesized from existing dataflow languages. The

specification combines three formal specification techniques to formally specify the textual syntax,

graphical representation, and semantics of the language. The specification serves as a rigorous,

unambiguous description of the language.

VNM

