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Abstract

This paper defines a new model for the Kinetic Depth Effect for multi-dot stimuli.
The calculation is performed in a cooperative-competitive network, described as a
relaxation labeling process (RLP). The process involves a local iterative computation to
best meet the constraints indicated by image cues to depth. Given a constraint that
prefers inter-dot distances in 3D to remain constant (local rigidity), the model becomes a
local parallel computation of the Ullman incremental rigidity scheme. Several
simulations of the model are described, includin some where additional cues are
combined with the changing dot position cue. . / ..° ,
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KDE Model 3

1. Introduction

The human visual system extracts information concerning the 3-dimensional
structure of objects using a large variety of cues. These cues derive from a number of
the factors which affect the stream of retinal images on our two eyes , including the
geometry of viewing from two positions (binocular stereopsis), the geometry of projection
(e.g. shape from perspective drawings, texture gradients, and if the viewer or object

moves, motion parallax and the kinetic depth effect or KDE), the minutiae of visual
optics (cues from accommodation, focus, and chromatic dispersion), and the
characteristics of the light-carrying medium (distant objects appear hazy and bluish).
These cues may act either alone or in concert to result in the 3-dimensional percept. For
example, the cue to depth from relative motion of objects (the KDE) can be very
effective even in the absence of other cues to depth 2 , but additional cues may be usedtogether to control the particular percept chosen among several ambiguous possibilities3 .

In the case of the kinetic depth effect, there has been a great deal of work
concerning the determinants of the effect. Using displays consisting of a number of
luminous points in a rigid three-dimensional configuration rotating about a fixed axis
(Fig. 1), the strength of the perceived depth impression is controlled to varying degrees
by the number of points, the speed of rotation, the presence and degree of polar
projection, occlusion of farther points by nearer point-containing "objects", etc.4 .

Insert Figure 1 about here

There have been several recent attempts to model the computation of depth values
from relative motion . If a given set of points has been viewed in motion over time, and
cne assumes that these points were in a rigid 3D configuration (the "rigidity
assumption"), it is possible that the geometry is sufficient to specify the unknown depth
values. This approach to the problem has led to several "n views of m points" results
These results take as their input the 2D image cooreinates of the points for a sequence

of frames. General assumptions are made about the positions of the points relative to
one another and (perhaps) the axis of motion, allowing the depth values to be derived.
The geometry of parallel projection is such that these values can only be known up to an

4: additive constant (i.e. the distance can only be known in relative terms), and up to a
possible reflection about the image plane (the reversal of depth and motion direction
often seen in these multi-dot displays; such reversals are also visible in static displays
such as the Necker cube, Fig. 11-a).

A second approach is to use more measurements at each object point. For
example, in addition to me,Liring object position in the image plane, one might also
compute the derivatives of these measurements (i.e. the velocity vector in the image
plane). This results in an optical flow map across the image. There are several models
which utilize this flow in addition to the positions7 .

L od,.p
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A recent model by Ullman 8 uses a very elegant scheme to compute depth values.

Since it is closely related to the model discussed in this paper, we will describe it in some

detail. Its input consists of a sequence of point positions and correspondences between
the points in successive frames. A generalization of the rigidity assumption is used.

Rather than assuming that the object is totally rigid, it assumes that the perceived
depth values are such that the amount of perceived nonrigidity is minimized. This allows
the scheme to deal robustly with deviations from rigidity, and also makes for a very
simple computational scheme.

Briefly, this computation operates as follows. At any given point in time t (with
its corresponding image frame), the input to the computation consists of the known z/

and yi' image positions for each point i. The depth values zit are unknown. At each
time t, an estimated depth ii' is computed for each point. (Note that a coordinate
system is used throughout where the x and y axes are the horizontal and vertical,

respectively, and lie in the image plane. The z axis is the depth axis; positive values lie
toward the observer.)

The relevant data used by the computation are the estimated interpoint distances

dii between all pairs of points i and j,

d" =) 2 + (y'-Y )2 + (i%') 2  (1)

The computation starts with an assumed shape estimate for frame 0 where all ii 0.
In other words, given no initial cues to depth, the object is assumed to be flat in the
image plane. Then, given the estimated object shape for time t as codified in the set
{di } of interpoint distances, and the subsequent frame for time t +1 (i.e. the measured

image values for Xit+ l and Y!, +I), a set of estimated depth values {i!+1 are chosen

which minimize the amount of nonrigidity in the estimated shape between these two
frames. The nonrigidity metric computes a weighted total of the amount of stretch that
each 3-dimensional interpoint distance undergoes:

amount of nonrigidity = > ( I - J ) . (2)

The numerator is the square of the change in interpoint distance. The denominator
ensures that a given percent change in interpoint distance is weighted more heavily if

the two points are close (with respect to the previous frame's estimated shape).
Minimization is carried out using an algorithm of Davidon9 .

A physical analogue of this model described by Ullman is shown in Fig. 2. The

minimization can be carried out as energy minimization in a physical system. After a

particular image frame, the internal representation of the object consists of the known it

and yig values, and the estimated ;it values. At the end of the frame, a construction of

rods and springs is made. The rods are positioned at the new known image plane
positions. The springs are attached to the rods at the estimated depths, and are at their

resting lengths. When the next stimulus frame arrives, the rods are moved in the image

plane to their new positions. and the springs ride up and down the rods in order to

achieve a minimal energy configuration ("Minimal stretch"). The spring constants are

set so as to mimic Eq. 2. The new vertical positions attained by the springs constitute

the estimated depth values z/.
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Insert Figure 2 about here

In this paper, a model is described for the computation of depth from changing
relative position cues in multi-dot displays. The model is described as a relaxation
labeling process (or RLP10), which is a local cooperative-competitive network model.
The structure of the model treats the separate dots as objects and the possible depth
values for each dot as a set of labels which might be applied to that object. The model
involves a process which uses constraints derived from the image data and labelings from
previous frames to converge iteratively on a choice of label (i.e. estimated depth value)
for each object (i.e. dot).

The paper proceeds as follows. First we describe the model in detail. Next, several
simulations of the model are discussed. The model is then contrasted with the Ullman

8model just described . This leads to a discussion of extensions of the model, inparticular to the problem of combining different types of cues to depth.

2. A Parallel KDE Model

We now describe a model of the KDE for multi-dot displays, cast as a relaxation
labeling process. We first describe relaxation labeling in general. Then, the RLP model
for kinetic depth is outlined. Some immediate assumptions and consequences of this
model are discussed.

2.1. Relaxation labeling processes

Relaxation labeling processes are a form iterative local computation used to solve a
"labeling problem". In such a problem, a finite set of objects is given, and for each
object, one of a finite set of labels is to be chosen for that object. The process maintains
a state vector which codifies the estimated likelihoods of the possible labels at each
object. A set of constraints on the state vector results in a support vector, which
evaluates the current evidence for each label at each object. The state and support
vectors are then combined with the current state using an "update rule", resulting in a
new state". This process is iterated as many times as desired, hopefully converging to a
high state value for a single label at each object, effectively choosing a mutually
consistent labeling of the set of objects.

More formally, in RLP time takes on discrete values, t = 0,1 ...... corresponding
to the iterations of the relaxation process. There are n objects, 1 ........... n , and
the possible labels range over the finite set Z. A particular label for object i is
designated zi . At time t . the state of the process is summarized in the state vector fI.
The constraints on labels result in a support vector s , representing the current degree
of support for each label at each object. Finally, an update rule results in a new state
f1+1 = F(f' ,s' ). This process is iterated, resulting in a sequence of states fOfl,f2_.

i



KDE Model

At time t, the state of the process ft is a vector of probability distributions
(f ,ff , . . . , fi..., f,), one for each object, satisfying:

At: Z - R

fit (zi) > 0 for all zi E Z (3)

E = 1.
z, EZ

At any given time t, the state of a relaxation labeling process represents the current
estimates of the relative likelihoods of the possible labels at each object.

The support ca!culation also results in a vector s = (s0,sg,....,.. . ,s t )
satisfying: sit: Z - R. In most relaxation labeling process models, the support for a
given label zi at object i is a linear sum of the support of all labels at all objects for this
particular label:

n

si'(zi) = E c (zi ,zj) fftz4. (4)
j=1 zEZ

cil(zi ,zj) is the "compatibility coefficient". The value of c! .(zi ,z,) indicates the extent
to which the label zj at object j is compatible with the label zi at object i. This value
is weighted by ff(z,), so that a label at an object which has a low state value will
contribute little to the support calculation. A large value of s4(zi) indicates that label zi
is compatible with the other object labelings.

The state of the process f and support s' are combined using an update rule, F,
which mixes the current confidences f' with the new evidence s' . There is a wide class
of models for combining sources of evidence in circumstances such as this". For now,
we describe the update rule for relaxation labeling processes originally discussed by
Rosenfeld et all o :

F: (ft *) -- f t +1

-+i1z f,'(z, ) (1 s/(z, )) (5)

E f(zi') ( + st(zi'))z,'E Z

This formula, although admittedly ad hoc, still has the basic features desired of an
update rule. In particular, the larger the support value (relative to the support values
for the other labels at an object), the larger the increase in confidence. The _;cnominator
is a normalization which ensures that the resulting values of fi t still form a probability
distribution function. The form of the function requires constraints to be formed so that
st(zi ) > -1; otherwise f,'+'(zi) would become negative, contradicting our assumption.

2.2. An RLP model for the KDE

The application of RLP to the kinetic depth problem for multi-point displays is
relatively straightforward. The set of objects are the points in the display. The label
set is a fixed set of potential depth values for each pont. The labeling problem is to
choose the appropriate label, or depth value, for each object, or image point. The
support function evaluates the support of the image data and current depth estimates

-11 10



KDE Model 7

for each possible depth value at each object. The constraints used to generate the
support vector are based upon whatever image cues one wishes to include in the model,
such as consistency with the previous interpoint distance as in Ullman . The only
departures from standard RL P as described above are the addition of gain controls in
the support calculation, and the allowance for constraints which change with the
appearance of each new stimulus frame.

The KDE stimulus is assumed to be a multi-dot display consisting of a sequence of
discrete frames, which appear at times to,t 1, . . . , tn . For a given time step t, we will
occasionally need to refer to the time, say tk, at which the current stimulus frame
appeared, Tt - max {tk I tk _ t }. Each input frame consists of n points, called~k =0,1,2,....

objects in relaxation labeling terr.inology. For any given object i, 1< i <n, the input
data at time t are the image plane coordinates of that point, x,! and y,!. The output of
the process consists in the estimated depth values ii , which are chosen from a finite set
of potential depth values, Z, the label set.

Given these definitions, the RLP model for the kinetic depth effect is given by the

following algorithm:

4

-.- .. a..
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1) Initialize. Set fi (zi ) _ I where I Z I is the number of elements in

the set Z (the number of distinct depth labels), and set = = 0 for all objects
i, 1 < i < n, and labels zi E Z.
2) Wait for second frame. Set f'(zi) = fiO(zi) and iit i °0 for all objects
i, 1 < i < n, labels zi E Z, and times I < t < t 1.
3) Iterate. For t - t 1 ,t 1 +1,t 1 +2, - • , perform Steps 4 through 6.

4) Compute s t . For all objects i and labels zi, set

)= a 1 (z) E (ha ~ 2  ci it.) fE'(z4] J,, (6)j~l { zEZ

where

ci'-(z, ,z,) = G(Ai(z ,zi j), aa), (7)

" z 3( . ) = v(x,'-x )" + (Y -) + (z, - ) - dfi, (8)

1.= x/ -xI)2  + (p'-v )2  + ( ,_t)2 (9)

G (a ,) = e(10)

it G( ' (11)

lt. /(x , x 1) " + (y ,* yJ )* , (1 2 )

g/(zi ) = G (Azi(zi ), ouz ), (13)

Az(z) zi - .ii ,  (14)

and a, or, ot, and ad are constants.
5) Compute f4+'. For all objects i and labels zi, set

fAt+l(Zi) = f/(zi) (1 + st(zi ))
, f(Z') (1 + s(z,')) (15)

z' '6Z

6) Compute it t+'. For all objects i, set
i = zi E Z such thatfit + 1(ii t +) = maxfi"'(zi). (16)

z, EZ

Algorithm Steps 1 and 2 are basically initialization. Step 3 controls the iterations.
Step 4 and 5 are the basic RLP steps of support calculation and update rule. Finally.
Step 6 estimates the depth values from the new state vector computed in Step 5.

The process attempts to compute an estimated depth value for each object. It
begins with no knowledge of the various depth values, as represented by a uniform
distribution over the zi values at each object, as computed in Step 1. Given no
knowledge of the possible depth, the process defaults to considering the object as flat,
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with all i ° equal to zero.

During the entirety of input stimulus frame 0 there is no previous input stimulus or
estimated shape with which to compare the current input, and so f/ remains flat, and
the process is in a state of ignorance as to depth values. All it are 0 throughout this
period (by default). This is the purpose of Step 2. When a new stimulus frame appears,
the relaxation process can begin.

For each time step that a stimulus frame remains displayed, an iteration of the
relaxation process takes place (Step 3). The state of the process ft, is already available
as the result of time step t -1 (from either Step 2 or Step 5).

The support values s' are computed in Step 4 using Eq. 6. This step is the heart
of the process. As in other RLP models, support for a given label at a given object is
computed as a sum of constraints from other labels at other objects, by weighting a
compatibility coefficient c(z i ,z/) by the state value fj(z). In a generalization of RLP,
we add gain controls to the calculation: h and gi/(zi). Finally, the supports are scaled
by the term a, which acts as a rate parameter for the relaxation process.

The compatibility coefficients are computed using Adi (zi,z/), which provides a
measure of the change in interpoint distance between objects i and j that this pair of z
values would entail, as compared to the estimated interpoint distance value from the end

.€ of the final relaxation iteration of the previous stimulus frame. This previous estimate is
actually computed just after that time step (in Step 6), and hence the comparison with

dij', the estimated interpoint distance available at the beginning of the current stimulus
frame. G (x ,) is the value of the 0-mean o-standard deviation Gaussian density
function evaluated at the point x. Thus, cit(zi,z 1 ) has a value which is greatest if
Adid,(zi ,zj) is zero. Recalling that the compatibility ci/(zi ,zi) expresses the support
that the depth value . at object j has for the depth value zi at object i, we see
support is highest if the values of z i and j determine a 3-D Euclidean interpoint
distance between objects i and j that is equal to their estimated interpoint distance at
the end of the preceding stimulus frame. As in Ullman 8, the process rewards small
incremental nonrigidity as measured by interpoint distances. o: is a parameter which
controls the tolerance for small amounts of nonrigidity.

In a generalization of the usual neighborhood structure of relaxation labeling
problems, we include a gain control hil, which allows us to couple more tightly certain
object pairs. li. is the interpoint distance in the image plane between objects i and j
at time t. Examining Eq. 11, we see that constraints are most effective between points
that are close in the image. The degree of this unequal gain is controlled by the
parameter a,.

The constraints are also gated by the term gi(z, ). This term allows the inclusion of
bias for particular z i values, and in this case it allows for a preference for smaller
changes in zi values from frame to frame. Azi t (zi ) is the amount of change in depth
value that label z i would imply for object i relative to its final estimated value from the
previous frame. Support is thus amplified if the z, value does not differ too strongly
from its estimated value in the previous frame, as controlled by the parameter y.o .
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In Step 5, the update rule F is applied, resulting in F(f' .s ) = ft-. the state at
the beginning of the next time step. The estimated depth values for that time step.

z are computed from the state vector in Step 6. The depth value is chosen for each

object which has the largest confidence value. This cycle of support calculation, update.
and depth estimation continues for each time step during which the second frame is
available. The state values, depth estimation, and support calculation are illustrated in
Fig. 3.

Insert Figure 3 about here

2.3. Comments on the model

The depth is estimated from the state vector in the algorithm by choosing the label
with the highest confidence value. In the rare case of ties, preference is given to z
values nearer to the horopter (defined to be a depth of zero). This is the rule which
implies the depth values of zero corresponding to flat confidence distributions used in
Steps 1 and 2. The maximum rule for the computation of i is not the only way one
might estimate depth from the distribution. For example, the values of the distribution
at several points near a peak could be used to interpolate an estimate of the peak. In

4 order to interpret the depth estimates, they must be compared to the depth values used
to generate the stimulus (prior to projection), zit . Given the underdetermination of the
structure from motion problem, especially under parallel perspective, the values of zi
only reflect how the input for a given simulation was derived, and comparisons of zil and
zit must necessarily take that underdetermination into account.

Notice that we are assuming. as does Ullman , that the correspondence problem for
these multi-dot frame sequences has already been solved, since the model is given tho
sequence of image plane coordinates of an identified object, rather than having to
determine which object in a previous frame corresponds to any particular object in the
current frame. One might assume a previous correspondence process such as that of
Ullman 2 , but this still remains a very large assumption, and the robustness of the model
under errors of the given correspondences is an important and still untested issue.

The relaxation process can compute the depth values for frame i from the time of
its appearance at time tk until the appearance of the next frame at time t,_ I . If one
assumes that relaxation iterations take a fixed amount of time, this may have
consequences. If the relaxation process takes several iterations to converge to a correct
solution, the model may then predict the outcome of speeding up the motion of a KDE
stimulus as simulated by allowing fewer relaxation iterations per input stimulus frame.

The compatibility coefficentws c'(z, z-j) allow inclusion in the model of specific
cues derived from the image. The version of the model described by the above algorithm
uses a support calculation verY rSImilar to the incremental rigidity error metric used by
Ullman 8

. On the other hand, there is no reason not to use the compatibilities to utilize
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other cues to depth, simply by adding them in as additional constraints. In later
sections, the addition of other cues to the compatibilities will be discussed.

The algorithm used for most of the simulations in this paper is actually slightly
different than that described above. As described so far, the state vectors are always
carried forward from one time step to the next. This process takes place regardless of
whether a new time step involves a new display frame of the stimulus or not. In
principle, this would allow the depth values from the previous frame to influence those
of the next frame by the carried-over state vector values, in addition to influencing them
via the constraint calculation. For the moment, we will in fact reset the state at the
beginning of all input stimulus frames to a flat distribution. In effect, Step 4 of the
algorithm is replaced by the following.

4-a) Reset ft. If t = Tj then

S for all objectsi 1i < i < n and labels zi E Z.Set _ I z I . .

4-b) Compute a . For all objects i and labels z,,, set

s/(z,) a gi g(zi) E jr [ cit (Zi , zi) f,'z,) i (6)

Thus, when stimulus frame j appears at time step tj, we have the state as computed by

the last iteration jt, This is used to compute the 4i values as usual. Then the state
values are reset to flat distributions before computing the support values s t . We will
discuss this resetting of the state values later.

There are five parameters which control the process. The label set for any given
object is a fixed set of possible depth values, Z. At any time t, the estimate of the
depth of object i, i/ E Z. In addition to the set Z, there are four parameters used in
the support calculation: ce, aa, ,a, and a&4.

3. Simulations of the Model

The model described above was used to simulate the computation of depth from
moving dot stimuli (KDE) for a variety of configurations. In this section we present the
results of several such simulations in which the number of points, number of relaxation
iterations per frame, and form of the update rule are varied.

3.1. Initial simulations

The first simulation of the model we shall discuss involves a simple three point
stimulus. These three points were rotated about a vertical axis through the origin. The
three points were rotated through two complete revolutions, for 48 frames, at an
i'icrement of 15 deg per frame.

While working on this initial simulation, a difficulty with the model was discovered
which, as we will see in the next section, gets to the heart of the kind of information
that the KDE provides. The model as outlined above operates purely on the assumption
of parallel perspective. Given this fact, a particular series of stimulus frames
representing rigid motion has an infinite number of possible rigid interpretations,
because a reversal of all depth values, or the addition of a constant amount of depth to
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all depth values would not change the image under parallel perspective. Thus, in a
particular frame, depth .1 at object 1 may support depth .6 at object 2, but depth .2 will
support depth .7, .3 supports .8, and so on, all to the same extent. The relaxation
process has no input or bias rooting it to a particular interpretation distance.

Precisely the same problem exists in Ullman's model8 . In replicating the results of
Ullman's model, solutions tend to oscillate greatly in absolute distance, showing more
about the order in which parameters are adjusted in the particular minimization
algorithm chosen, than about the stimulus per se. In the relaxation model, several
interpretations can be considered simultaneously, in effect, by keeping a probability
distribution over the depth values at each point. This absolute depth ambiguity then
prevents a single interpretation from winning out in the competition, and the model
operates extremely poorly.

In order to circumvent this problem. we have included a bias to keep the
interpretation rooted to the image plane. In particular, to any input stimulus, we insert
an extra stimulus point at the origin, which never moves. In terms of the algorithm,
there is an n-plus-lst point which is considered to be at a depth of 0 with total
confidence (i.e. f,+1 (0) = 1). This point takes part in the support calculation (Step 4
of the algorithm), but its portion of the state vector f is never changed in Step 5. This
is clearly an ad hoc solution to this problem. An alternative would have been to bias the
gain control git(zi ) for low depth values.

Later, we will discuss this problem in the context of other cues to depth and the
kinds of information they provide. For example, one might consider other cues which do
yield an absolute distance estimate, and use this information as an input to the process
which roots the solution to a particular depth region. The absolute size of the display is
not changing throughout the rotation, and so there is no size cue for recession or
approach. This information may also serve as an input to the process causing the
solution to remain in a particular depth region.

Insert Table 1 about here

With the addition of the phantom point at the origin, the model performs quite
well. The parameters that %ere used are given in Table 1. The actual depth values
computed by the model for several frames are illustrated in Fig. 4-a. The model starts
from a flat interpretation, and requires several frames of input to "grow out" to the
correct depth values. The errnr in the prediction as a function of frame number is given
in Fig. 4-b. The ordinate is a ncrrmalized predictive interpoint distance error given by~Error'l t I =E(d,', d.',:

Error'(1 ) (17)
rError'(0)
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This error metric is the same as that used by Ullman8 , and is normalized to unity for the
first frame, i.e. for a "fiat" interpretation of the first frame. It is based entirely on
interpoint distances, and thus reaches a minimal value (of zero) not only if the model
produces estimated depths identical to the intended depths, but also for alternative valid
interpretations including those with a constant added to all depth values, and those
including a mirror reflection about the image plane (a "depth reversal"). The error
value, after an initial rise, falls to a relatively low value. The small periodicity in error
after the first rotation is probably an artifact of the error metric.

Insert Figure 4 about here

3.2. Effect of dot numerosity, number of iterations, and focus of constraints
In Fig. 5-a, the normalized interpoint distance error is plotted as a function of the
number of dots in the stimulus. Each curve represents a single simulation for a single
multi-dot stimulus rotating about a vertical axis. In general, the model appears
relatively indifferent to the number of points, as long as there are at least three points in
the stimulus. Note that a two point stimulus often yields a poor depth impression in
human observers 13 . In Fig. 5-b an example of the model solution for a 6 point stimulus
is shown.

Insert Figure 5 about here

The effect of degree of rotation per frame is illustrated in Fig. 6. In Fig. 6-a the
error is plotted as a function of the frame number. It appears that the algorithm (after
an initial error), is much more effective with the stimulus rotated 60 deg per frame. In
Fig. 6-b the data are replotted as a function of rotation angle, rather than frame
number, and the convergence seems to be a function of the rotation angle, independent
of the amount of rotation per frame in this range. Evidently convergence behavior is
driven by information, in some generalized sense, rather than merely by additional
frames.

In the Ullman model convergence improves with amount of rotation per frame, for
amounts less than that used here. and then stops improving in the range from 30 to 60
deg8 ' 4 . These results are fairly consistent with those presented here. Given the
quantization of depth planes used in this model, it is clear that with very small amounts
of rotation per frame, the current model would also converge slower, and in the limit
would not find any depth at all.
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Insert Figure 6 about here

All of the stimuli discussed so far were gener-.ted using parallel projection, and
hence were "rigid" according to the model's internal ,epresentation of the world. In Fig.
7, the convergence behavior is shown for a stimulus generated using a fairly large
magnitude of polar projection. Since this stimulus is "nonrigid" as far as the model is
concerned, the comparison depth values are, in a sense, not something one could expect
the model to find. Nevertheless, the model does converge reasonably well for a time,
although near the end of the first rotation, the model loses track of the correct depth
values (in fact, it recovers during the next rotation).

Insert Figure 7 about here

The simulations so far discussed use a value for a, which effectively neutralizes the
gain control for locality in the image plane. As Ullman8 mentions, it would be
interesting to note whether a network model such as this would succeed when using only
local connectivity and constraints, rather than allowing every stimulus point to interact
with all others as we have been doing thus far. One can imagine such a localized
interaction as the first step towards a KDE model which can handle multiple objects
with separate motion paths. In Fig. 8 the convergence behavior is illustrated with a
much smaller value of a,, which effectively narrows the focus of the constraints on a
particular point to those arising from points nearer in the image (see Table 1; a was also
changed to keep the support values comparable in magnitude). Constraints on more
distant points arise only by propagation through intermediate points under these
conditions. The convergence behavior is certainly as fast using this narrow focus for hi
as compared to the original wider focus simulation, and in fact appears to be slightly
faster. Thus, local constraints can be used effectively in a KDE model.

Insert Figure 8 about here

3.3. Update rule and convergence behavior

As a model of human kinetic depth performance, the current model is lacking in
several directions. One problem is relaxation convergence time. The number of
relaxation iterations per stimulus frame has been fixed at 75 for all of the simulations
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illustrated thus far. For a network model which is intended to be carried out in a neural
substrate, this may well seem like an inordinately large number of iterations1 5 . In Fig. 9
we illustrate how the model operates as a function of the number of relaxation iterations
per stimulus frame. As the number is decreased from 75 to 25, the model is performing
noisily, and with a further reduction to 10 iterations, the model is completely incapable
of convergence. (The 180 deg periodic behavior is a function of the 180 deg periodicity
of the relative image plane positions of the points, not of the model's depth computation
- i.e. it is a side-effect of the particular error metric chosen.)

......................................-
Insert Figure 9 about here

--------------------------------------

The slow convergence problem is, in fact, even worse. As mentioned previously, the
original intent was to carry the depth distributions at each point fi' from one frame to
the next. This seemed sensible for two reasons. First, this would allow the state
information to be much larger over time, allowing prior knowledge of depths to influence
further computations (more on this later). Second, it is not clear why there is anything
special about the arrival of a new frame which should trigger a new process (the
resetting of the f1"s to be flat distributions). The KDE clearly doesn't suffer given true
motion input rather than sampled input; quite the contrary, in fact.

It would therefore be desirable to remove the flattening of the distributions that
occurs at the appearance of a new stimulus frame. Unfortunately, as it currently stands,
this can not be done without destroying the performance of the model. Several of the
above simulations were repeated without the flattening of the distributions (as was the
simulation with PLC discussed below). In all cases, the model totally failed to converge.
The problem is one of stability. After 75 iterations on frame 2, the distributions have
feached a certain strength at the chosen depth values. For the next frame, the
computation needs both to flatten that peak and to create a new peak at the new
appropriate depth value, if it is to succeed in converging to the correct depth values and
thus remain converged. In effect, it requires twice as much change in the f/t values as it
did on the previous iteration. At the present time, we have no solution for this problem.

The simulations discussed thus far all utilize the update rule described by Eq. 15.
This is only one of many update rules suggested for relaxation labeling, and the field of
possibilities grows quite large if this model is viewed in the general context of models for
the aggregation of evidence. \Ve have simulated the model using a variety of other
update rules, and support calculations. For example. as an attempt to accelerate
convergence, we tried raising the support values to various powers,

A t ( ) - - f , ( z , ) ( 1 4 - ( s ' ( Z ) ) ' l

:,:Z

Another version used a support calculation wherein only the depth value with the largest
confidence value is allowed to constrain other points and depth values' . Finally, we
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tried some variations on the Hummel/Zucker relaxation update formula 7 .

In general, these changes of support calculation and update rule had no major effect
on the convergence speed and operation of the model. As n grew larger in Eq. 18, the
model did exhibit noisier behavior and a tendency to lose the correct interpretation once
having gained it. The same problems occurred occasionally with the Hummel/Zucker
operator as the step size parameter of that operator was increased. An example of this
is shown in Fig. 10. The error quantity plotted here is normalized depth error, rather
than interpoint distance error, as follows:

Error'(t) ---- t_(z - t1)2
i

Error(t) - Error(t) (19)

Error'(0)"

The reason for using this new error measure is that it allows us to see that a depth
reversal occurred in this particular simulation. With the previous error metric, we would
have seen the average interpoint distance error climb at frame 43 and then quickly
return again to a low value. Plotted as z error, we can see that the interpretation was
lost and then quickly settled to the reflected interpretation.

Insert Figure 10 about here

4. Intermediate Discussion

One important question at this point is how does this model compare with the
Ullman incremental rigidity model? Looking into this question raises several issues about
the model's performance.

First of all, in one sense the use of a model utilizing relaxation labeling need not
result in behavior different from that of the global energy minimization proposed by
Ullman . Hummel and Zucker 7 proved that relaxation labeling with symmetric
constraints (as we have in Eqs. 7-8) and their update rule results in an algorithm
equivalent to a global energy minimization. Thus, with properly chosen constraints,
there exists a relaxation labeling model that is precisely equivalent to the incremental
rigidity model. Such a model would constitute a different choice of minimizing algorithm.
and that is all. Hummel and Zucker17 also prove convergence of the relaxation
algorithm, which means that on any given frame, a single depth value will eventually be
chosen for each point. We have not proven that the model converges to the correct
depth values over a sequence of frames. It certainly has done so in the simulations, and
in as much as the model is similar to that of Uliman, the convergence and stability
results of Hildreth and Grzywacz 14 should apply.

On the other hand, the actual support functions we have used (Eq. 6) differ from
the energy calculation of Ullman (Eq. 2). A minor problem with Eq. 2 is that the error
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measure blows up if any dit approaches zero. If two stimulus points happen to cross
paths in a particular frame, Eq. 2 may cause this pair of points to have an overriding
influence on the percept, if their estimated depths are similar. Rather than dividing by
di. (enabling points near each other in 3D distance to have a greater weight in the
energy calculation), we use a gain control, hit., which puts greater weight on pairs of
points that are close in the image plane (Eq. 11).

The quantization of the possible depth values makes direct comparisons with
Ullman's model difficult on a quantitative level. Clearly, this is an arbitrary feature of
the model, and a more realistic implementation would include units tuned to a
continuum of overlapping depth ranges. Quantizing depth implies quantization error in
the model's output. This is visible both in the noise in the error functions after
convergence (e.g. Fig. 4-b), and more importantly, in the higher average error after
convergence in this model as compared with that of Ullman.

Ullman refers to the occasional loss of the 3-D structure by his model, and states
that occasionally the recovered structure is reversed. Thus, his model suffers occasional
"depth reversals", as is also the case with human percepts, There are two remarks to be
made here. First, depth reversals in human perception are more complicated than an
occasional loss of structure and recomputation. Depth reversals occur quite frequentlyis

and appear to be related to, among other things, eye movements and tracking of
particular image features/points l . These aspects of reversals are clearly outside of the
scope of the two models.

The fact that reversals do occur in the models is no surprise. Both models consist
of an energy measure and a minimization algorithm. In both energy measures, the
"tcorrect" and "reversed" percepts are minimal in energy in the steady state - with
both measures, the veridical estimate of depth over a pair of frames should result in zero
energy, which is clearly minimal. Thus, if zero energy is ever achieved, then a pair of
shape estimates with no changes in interpoint distances has been found, and this is
almost certainly the veridical one (up to changes in absolute depth and reversal). Any
loss of this perfect estimate in later frames, including subsequent reversals following loss
of structure, is clearly a function of errors made by the minimization algorithm and of
the energy surface that the energy measure defines. A more robust function minimizer 2

need never suffer losses of structure.

One final note about contrasts between the relaxation labeling model and that of
Ullman. The state space used in relaxation labeling is clearly far larger than that given
by the Ullman algorithm. At any given time, the Ullman representation of the stimulus
consists of a single depth value for each point. In the RLP model, the state consists of a
probability distribution across the possible depths at each point. Although we have been
discarding these data across frames (by flattening the distributions), assume for the
moment that a future RLP model actually maintains this information. Why would one
want a representation of the stimulus that contains this extra information?

When placed in the general context of models for the aggregation of knowledge it
is clear that the RLP paradigm and [!llman's model are only two examples of a larger
class of models for combining evidence, where the amount of state information can vary
across a wide range. The RL' state provides, for example, a degree of confidence in a
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particular depth value once chosen. Thus, the RLP model can differentiate between a
fiat object in the zero depth plane (a set of distributions all peaked at the same depth
value of zero) and total ignorance of the object's structure (a set of fiat depth
distributions). The Ullman model represents these two situations in an identical
manner, and cannot differentiate between the two. It would be interesting to see if
biasing the degree of confidence in a current shape estimate can effect the time course to
converge on a new structure in the human percept (as has been studied recently by
Adelson and Hildreth, pers. comm.).

In this more general context. the relationship between the two models becomes
clear. In a sense, Ullman's model tracks the peak of the distributions over depth, and
the RLP model tracks the entire distribution over a discrete set of depths. Other

possibilities might include, for example, parameterizing the distributions (say, as
Gaussians), and tracking the mean and variance (related to the work of Hummel and
Landy 21). This would also provide a means of establishing confidence ratings of the
depth estimates - higher confidence would be modeled as lower variance.

In any case, these are interesting questions. They speak to the issue of
"representation" of objects in an internal estimation of shape, including the
representation of uncertain evidence about this estimate, and how that evidence is
combined. We now turn to the combination of evidence about the objects when the
sources of evidence include more than one cue.

5. Combining Cues

It has become apparent that the problem of combining different cues (e.g. cues to
depth) is an important one. Ever since Gibson 22 and others pointed out that there is a
multiplicity of cues to depth in the visual environment, there has been much work
demonstrating human sensitivity to a wide variety of cues to depth. But, saying that we
are sensitive to a particular cue does not answer the question of how the cue is derived
from the image and how it is used.

More recently there have been a series of models in computer vision which derive
depth from various single cues (stereo, motion, texture, shading, blur, 2D form cues,
etc. 23). These models have had varying success in reconstructing depth from image data,
demonstrating that the data may be there, but they are noisy and difficult to obtain.

The results of different models for different cues will each obtain evidence which may, in
fact, conflict. The problem of combining the outputs of these methods can be seen as

critical. The hope is that converging evidence from a variety of cues will result in less
noisy estimates of depth than those derived from each cue separately. 24

5.1. Experimental studies of cue combination

It is of interest in this problem of cue combination to probe the mechanism for cue
combination in human perception. This can be accomplished by creating stimuli in
which two cues are varied independently. This approach has been taken, for example, in
the study of shape from texture gradients (with cues such as density, texel shape and
orientation) 25. In KDE. such an approach has also been used 26

15:~~ 1 1a1111NaS6
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The results of Dosher et at2' are especially relevant for the current work. They
investigated the relative contribution of two cues as combined with a kinetic depth
stimulus. The basic stimulus was a Necker cube presented with polar perspective, and
rotated about a central vertical axis. Such a stimulus (see Fig. ll-a), like all KDE
stimuli, can undergo perceptual reversals. Given the polar perspective, the two percepts
are either of a rigid cube rotating (say, with the front face moving rightward), and of a
highly nonrigid truncated pyramid (rotating with the front face moving leftward). The
task was always to designate (e.g. at the stimulus onset) which percept was first seen
("Front-left" or "Front-right").

The image was manipulated in two ways. First, variable amounts of stereo
disparity were added favoring one or the other percepts. Second, variable amounts of
"Proximity luminance covariance" (PLC) were added. This rather effective cue consists
of brightening those edges that are intended to be closer in depth (Fig. ll-a). Again,
this cue may be used to favor either of the two percepts, and to varying degree
depending on the extent of the luminance difference from front to back. In the
experiment, varying degrees of stereo and PLC were added to the basic stimulus, and
the two cues were either in agreement or in conflict.

The interest in such an experiment is that it allows one to probe how cues are
combined. In Dosher et a127, the data for each individual subject were fit using a simple
additive cues model, wherein each level of a given cue adds a certain amount of bias to
which percept is chosen, and these levels for each of the two cues are simply added,
along with a subject bias term, resulting in a criterion for the rigid percept. The
resulting number was compared to an error value (a sample of a standard normal
random variable), and if the error value exceeded the criterion, the rigid percept was
chosen, otherwise the nonrigid one was chosen. This simple additive cues model was
very effective in fitting the data of several subjects, with individual differences appearing
in the parameters which estimate the effectiveness of each level of each cue.

The success of this simple model suggests that the combination of cues may be
effectively computed in a process model such as the one described here. Evidence in
RLP in the form of constraints is combined in an additive fashion (the support
calculation), so it seems reasonable to suppose that this model might be extended to add
some of the other cues which are often present in KDE displays, such as PLC, stereo
disparity, relative motion, occlusion, and so on.

Insert Figure 11 about here

5.2. Classes of cues to depth

Before discussing in detail how one might go about adding other cues to the model
(beyond incremental rigidity,'interpoint distance changes), it is of interest to examine the
type of information afforded by various cues. Depth cues give information about the

I"I
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distance from the observer of objects corresponding to image features. There are at least
three types of information available depending on the cue: absolute, relative, and ordinal
(akin to ratio, interval, and ordinal scales in measurement theory).

Absolute cues give information about the absolute distance from the observer to an
object. Stereo disparity can be considered an absolute cue, assuming the viewer knows
the eye positions and orientations, as can motion parallax under self-motion (both of
these may not be the case 2). Relative cues give information about the relative distances
of objects in depth, but not their absolute distance from the viewer. The failure to
provide absolute distance results from an underdetermination of the problem wherein
the same image would result either from adding a constant to all depths (in parallel
perspective) or by scaling the stimulus and the depths (in polar perspective). Examples
of relative cues include the kinetic depth effect (both interpoint distance and relative
motion cues), foreshortening, etc. Finally, there is the class of ordinal cues. These cues
only specify the order in depth of certain pairs of objects, without constraining the
relative distances. Examples of ordinal cues include PLC and occlusion. In addition,
there is some evidence for "ambiguous ordinal cues", such as motion shear or texture
accretion/deletion, where occlusion is indicated but depth order is ambiguous 2 .

Examining the effects of combining cues across classes is complicated. For example,
imagine a multi-dot KDE stimulus with added PLC. If the PLC is consistent with the
relative motions, then one would expect the PLC to simply bias the observer towards
one of the two reversed interpretations of the object, as was the case in Dosher et al2.
On the other hand, consider a stimulus in which the PLC is not consistent with either
interpretation, for example one in which the brightest dots are those at intermediate
depths, and the closest and furthest dots were darker. Here the two cues are in conflict,
and it is by no means obvious how this combination would be effected given the two
types of information provided by the cues.

Consider how one might reconcile these different types of cues in the current model.
Since constraints are already treated additively in the support calculations (Eq. 6), one
can simply add other cues into the support. The question is as to how the constraints
are to be computed for the various classes of cue. The only cue in the model as
described so far is a relative cue. The way it works as a relative cue is clear from the
calculation of Ali' (zi ,zi ) (Eq. 8), which depends only upon relative depth zi -z i .

With these considerations it becomes clear how other classes of cues might be
added to the support calculations. To add an absolute cue, the constraint would
support only the absolute depth indicated by the cue. For ordinal cues, the constraint
would support all depth values consistent with the indicated ordinal relationship.

Given a model which embodies combinations of different classes of cues, it becomes
possible to examine in simulations the effects of cue combination. For example, what
happens if stereo information is available for only one dot of a multi-dot KDE stimulus?
Does the absolute position of the entire structure follow that point around as its stereo
position changes? This might also be tested experimentally by putting a (sparse) KDE
stimulus in one eye, and only one matching point in the other eye. although it might be
difficult to force a particular correspondence for that point. (perhaps by vertical position).
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5.3. Modeling PLC

In order to begin to test these ideas, we added a constraint corresponding to PLC
to the model. PLC is an ordinal constraint; given a point j which is brighter (and
therefore prefers to be closer) than a point i, depth zj at point j should support all
depths zi at point i which are more distant (i.e. all zi such that zi < zj, see Fig. 11-b).
The change to the model is quite simple. The constraint calculation of Eq. 7 is replaced
with

ci,'(z ,zj) = G(AXl(zi,z) aA) + PLC-'(zi,z) (20)

where PLCi'.(zi ,zj) is defined to be

gPLc if object i is brighter than object j and zi >z

PLCi(zi ,zj) - gPLC if object j is brighter than object i and zi <z i  (21)

t0 otherwise,

and gPLC is a parameter defining the relative strengths of the PLC cue and the rigidity
cue. It can be considered a function of the difference in luminance of the two points.

This new model was simulated (with a value of gPLc = 0.1), using the same 6
point stimulus as in Fig. 5. The PLC was either used to bias toward the "front moving
to the right" (PLC+) or "front moving to the left" (PLC-) percept. As is visible in Fig.
11-c, the model with added PLC works reasonably well, converging slightly faster than
the model with no PLC. When plotted as interpoint distance error, the PLC+ and
PLC- curves are identical, as is to be expected given the complete symmetry of the
situation. On the other hand, when plotted as normalized predicted depth error (as
compared with the "front right" interpretation) as in Fig. 11-d, we see that PLC+ has
indeed biased the interpretation as it should have, and likewise for PLC-.

It is clear that it is possible to use a proness model of depth interpretation such as
the one outlined here to investigate cue combination. The addition of PLC to the
icremental rigidity cue had precisely the desired effects. In addition, it also led to faster
relaxation convergence. When the second frame appears in this stimulus, without PLC
only three of the six points develop any nonzero depth at all, and it takes most of the 75
relaxation iterations before the third of these three points develops this depth. On the
other hand, given the unambiguous character of the ordinal PLC cue, convergence is far
faster. Starting with flat distributions, in one single relaxation iteration all six points are
in the correct depth order as indicated by the PLC, which is why the PLC convergence
in Fig 11-c starts out so much quicker.

6. Discussion

We have described a model for the KDE in the form of a cooperative-competitive

network, described in the language of relaxation labeling. The model successfully
computes depth values in a manner similar to that of the incremental rigidity model of
Ullman , although the precise equations are somewhat different. In addition. we have
discussed how such a process model may be extended to investigate cue combination,
and have tried out these ideas on the simple case of proximity luminance covariance
(PLC).
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The model is not currently in a state where it might be used to fit psychophysical
data since it is completely deterministic. To remedy this would require inclusion of a
source of noise3° .

The model as it stands only represents one piece of the picture as far as KDE is
concerned. The model only concerns tracked dots, or any tracked feature points such as
endpoints of lines in vector drawings, or trackable features in natural images. The
assumption of known feature correspondences is a major one, and the robustness of the
model's computations under errors in correspondence should be investigated and
compared with human performance. Also. KDE from tracked features is only one form
of KDE, there is also KDE from tracked occluding contours which don't correspond to
single positions on an object 3 l .

In the context of multi-dot stimuli, the model uses only the cue of changing
interpoint distance/incremental rigidity. It ignores other cues such as relative motion of
dots (which may be a cue to relative depth, as in the optic flow models, or to ambiguous
ordinal depth, similar to motion shear), dot density, and the dynamic foreshortening of
groups of dots (i.e. deformation, as used by the model of Koenderink and van Doom 3 2),
any one of which may turn out to be more important for the human percept. This is a
matter for further study. Finally, any scheme of incremental rigidity should eventually
prefer a rigid interpretation of a stimulus if one can be found (although it may become
caught in a local minimum in the energy function which does not correspond to this
interpretation). On the other hand, in cases of objects extending more in depth than in

33visible breadth, nonrigid percepts of rigid objects are quite common .

To conclude, we have defined a model for the KDE. The model is by no means a
final answer, and we have identified a number of problems with it. On the other hand,
it is a real attempt at a process model of the KDE, and shows some promise for being
capable of dealing with some of the complexities of the phenomenon. Finally, we hove
discussed some of the difficulties of modeling cue combination in the context of this KDE

model, and have pointed the way towards solutions.
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Figure Legends

1) The Kinetic Depth Effect. A transparent cylinder with dots painted on it is
rotated in a series of discrete steps. Each position of the cylinder is projected onto an
image plane using parallel projection. A single frame has little or no cues to depth, and
yet the sequence of frames yields a strong and convincing impression of depth.

2) A physical analogue of the Ullman 8 incremental rigidity model. The rods
project out of the image plane at the positions of the dots in a KDE stimulus. The
springs are set to be at resting length for the current depth estimates of each point.
Given a new frame, the rods are moved to the new image points, and the springs ride up
and down the rods in order to achieve a minimal energy configuration. The new
endpoints of the springs constitute the new depth estimates.

3) Constraint and support in the relaxation labeling model of the KDE. This is a
top view of two points in a KDE stimulus. Next to each point is a line representing the
range of possible depth values that may be assigned to the point. The state value is a
probability distribution across those depth values, representing relative confidence in
each depth. The peak in each distribution is the current estimated depth for that point
ij'. Each depth at each point can constrain each depth at each other point. The value
of the constraint is basically the confidence value weighted by the connecting coefficient.
These constraints are summed to form the support for any particular depth at a given

point.

4) a) Top view of a three point stimulus, and the depths calculated by the model.
The estimate is initially flat (no depth), and slowly grows out to be an accurate estimate
of the actual object. b) Convergence behavior for the three point stimulus. The error
is the mean square error of the estimated interpoint distances, normalized to 1 for the
First frame.

5) a) Effect of the number of points. b) An example of the depths calculated by
the model for a 6 point stimulus (this is a top view as in Fig. 4-a).

6) Effect of the rotation angle per frame for a 3 point stimulus. a) Plotted as a
function of stimulus frame number. b) Plotted as a function of degrees of rotation.

7) Effect of a "nonrigid' input. Here the stimulus is actually a rigid 6 point
stimulus using polar projection. It is nonrigid in the model's terms, since the model
assumes parallel projection.

8) Effect of narrow focus for a 20 point stimulus. The focus of the interpoint
constraints is narrowed by decreasing a, (see Table 1).

9) Effect of number of relaxation iterations per stimulus frame for a three point
stimulus. The parameter is the number of iterations per frame.
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10) A perceptual "reversal", which occurred using the Hummel/Zucker update rule
with a three point stimulus. The error plotted is the mean square error in the estimated
z values as compared with the "correct" values, and as compared with the reflected
(sign-reversed) values (both normalized to 1 for the first frame). Around frame 44 the
structure was temporarily lost, and the recovered structure was reversed.

11) Effect of adding cues. a) A Necker cube in polar perspective with added PLC
(proximity luminance covariance 26 ), here represented as thicker lines. The face with the
thicker lines is more likely to be perceived as closer to the observer. b) A PLC
constraint for the KDE model. If the pair of points and depths are consistent with the
brightness cue, then a fixed amount of support, gPLc, is added. c) The effect of positive
and negative PLC on interpoint distance error for a six point stimulus. Convergence is
faster with PLC, and PLC+ and PLC- yield identical convergence. d) Plotted as z
error, it is clear that PLC+ created a bias for the "correct" interpretation, and PLC- for
the reversed interpretation.

Table 1) Parameter values used in the simulations.
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Parameter Meaning Normal Value Narrow Focus

k Relaxation step size 30 11

a, Strength of con- 4 4
straint for small
change in depth

Strength of 3 0.7
differential gain for
closer points in the
image plane ("lo-
cality")

Tightness of tuning 0.3 0.3
of constraint for
small change in 3-D
interpoint distances

Z Set of possible -1.1,-1.0,..., 1.0,1.1) {-1.1,-1.0, ... , 1.0,1.1)
depth values

gPLC Strength of PLC 0.1 NA
constraint

Table 1

Parameter values used in the simulations.
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