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cabbage crop was studied. It is proposed that such a parameter estimation

method can be a useful analytical tool to help develop appropriate models in
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I. Introduction

When constructing a mathematical model, one often finds it desirable

to estimate unknown parameters in that model based on actual observations of

the particular phenomenon under study. In the transport equations used by

mathematical ecologists to model population dispersal, one typically seeks

estimates of parameters representing diffusion, convection and "growth/death"

rates. Recognizing that these models are very naturally posed on a

two-dimensional domain, we develop a bicubic spline based parameter estimation

technique for a general two-dimensional transport equation. Our efforts are

guided by two important considerations: one, the necessity for a

computationally efficient procedure and two, a guarantee that such a procedure

will yield a set of parameter estimates that is "optimal" in some sense.

In Section II we give a precise mathematical formulation of what we

mean by an estimation problem. It will be seen that such a problem is

infinite dimensional in nature and thus difficult to solve; so one is led

quite naturally to define a sequence of finite dimensional "approximate

estimation problems" in an attempt to obtain a solution. A theorem is

presented relating this sequence of approximations to the full estimation

problem, and the result serves to clarify the sense of "optimality" alluded to

above. The actual implementation of the approximation technique formulated in

Section II will be described in Section III and numerical examples will be

given. Finally, in Section IV, we present the results of an analysis of real

biological data.

Throughout this report we shall adopt the following conventions.

Differentiation of a function, u, with respect to t, x, and y will be denoted

by ut, ux, and uy, respectively, with obvious extensions to higher order

derivatives. The symbol8will stand for the Kronecker product. We will let
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L 2 . L2() be the usual Hilbert space of square integrable functions on 2, a

bounded domain of R 2 , with norm II II0 and inner product <.,'>. Likewise,

L = L (Q) will be the usual Banach space of essentially bounded functions

with norm 11 • IH,. We will denote by Hi(Q), i = 0,1,2,..., the Sobolev

spaces with norm 11 • Ili of "functions" in L2(Q) whose ith "derivative" is

also in L2(). Furthermore H (9), i = 1,2,..., will be the Sobolev space of

elements of H i(Q) whose "derivatives" of order up to i-1 vanish on 3Q, the

boundary of 2. Finally, we will often use the terms parameter and coefficient

interchangeably, as well as estimation and identification.

II. Mathematical formulation

We consider the initial value-boundary value problem (IV-BVP) on

Q = (0,1] x [0,11:

ut + V.(Vu) = V.(D x Vu) + au + f, tE(O,T],

(2.1) u(0,x,y) = Uo(Y(xy)),

u(t,x,y) = 0 on 8Q,

where f = f(o,t,x,y) and D, V, a, and 6 are assumed to be functions of t,x,

and y, with D = (D1,D2 ) with V = (V,v 2). The dependent variable, u =

u(t,x,y), represents the population density of a species, whose dispersal over

a two-dimensional domain is assumed to result from an innate diffusive

mechanism, D, and a convective or "directed transport" mechanism, V. The

parameter a represents a general "source/sink" or "growth/death" term. (For

the definitive account of diffusion models in ecology we cite the excellent

book by Okubo (13]). Without loss of generality we have assumed homogeneous

Dirichlet boundary conditions, since any non-homogeneous boundary conditions,

with possibly unknown parameters, can be included in the parameters 0 and y

via a standard transformation. In fact, if we had the boundary condition u =
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F on ag, then we could define a new dependent variable to be v = u - g(x,y).F

where g(x,y) = 1 - xy(1 - x)(1 - y). Substituting this transformation into

(2.1) to get an equation for v, we see that we must assume the inhomogeneous

term F is C in t, and C2 in x and y. Notice however, that g(x,y) = 1 on 8Q

so that v(t,x,y) = 0 on MQ. Finally we note that solutions to (2.1) will be

considered in the sense of distributions so that we can use the abstract

framework of Lions [121 and invoke weak variational theory to discuss the

well-posedness of this IV-BVP.

Let q be a "vector" of parameters (D,V,e,O,y). Dropping the Kronecker

product symbol@ for ease of notation, we define the bilinear form

L(q): H1( ) x H 1(Q) - R by:

(2.2) L(q)(*,*) = <D'V,V*> - <V*,V*> - <oc,*>

and then rewrite (2.1) in its weak form in the state space L 2(Q):

<ut,#> + L(q)(u,O) = <f,*>, for all + in H1(9),
(2.3) u(O) = Uo(),

where <.,-> is the standard L2 inner product on 10,1] x 10,11. Note that the

boundary conditions have been incorporated into the equation of state.

We assume throughout that q belongs to some set Q of admissible

parameter functions that is compact in the space: X = (H([O,T];L2 ())) 2 x

0 3(H ((o,T) x Q))3. Furthermore we make the following assumptions:

(Al) 0 is a bounded subset of (Lm([O,T] x 9)) 5 with the bound m2;

(A2) There exists m1 > 0 such that for any q c 0, the components of D

satisfy Di m i 1 , i = 1,2 for all t, x, and y;
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(A3) The inhomogeneous term f is C1 in all of its arguments, the initial

data u0 belongs to H2 (Q), and the map y 4 u0 (y) is continuous from

L2( ) to H2 (2);

(A4) For any q in Q, Dt and V t C 01, a bounded subset of Lo([O,T] x 2) with

the bound m3.

Theorem 2.1: Under the assumptions (Al), (A2), and (A3), the initial value

problem (2.3) has a unique weak solution u(t,-,';q) c H1(9). Furthermore

this weak solution depends continuously on the initial data u .

Proof: We appeal directly to the weak variational theory of Lions, pp.

100-111, 1121. ///

With the state equation (2.3) in hand we now assume that for each time

t. in (0,T], i = 1,...,P we are given a matrix A(ti) of observations (taken at

the m-n locations (xlYl)...P,(Xm,Yn)). Associated with each A(ti) is a

matrix r(ti;q) = (u(ti,xjYk;q)) of model based "predictions", obtained by

evaluating the q-dependent solution u at the points (xj,y k ) I < j < m and 1

k < n. Using this information we seek a vector of parameters, q, that will

yield the "best fit" of the model to the data. Thus, we formulate the

parameter estimation problem as follows:
P(2.4) minimize J(q) = & ^(ti) - r(t2;q) H2

1=1

over all q belonging to the set of admissible parameter functions, 0. Here

the norm is taken to be the Euclidean norm in the space Rmn and it is clear

that J(q) is a pointwise least squares cost functional.

An unavoidable difficulty now arises, for the minimization problem we

have formulated is inherently an infinite dimensional one and thus hard to
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solve. Indeed, we must always contend with the infinite dimensionality of the

state, u(t,.,.;q), when we try to solve (2.3); and if we also consider

variable coefficients, we must then deal with a minimization over an infinite

dimensional set of parameters. Because we usually cannot solve equation (2.3)

exactly, we would like instead to compute an approximate solution to (2.3) and

thus generate a matrix of "approximate predictions" to use in the cost

functional J. We would also like to employ a similar strategy to reduce the

infinite dimensional minimization problem to a sequence of finite dimensional

minimizations. Since approximation schemes for these two cases will be

essentially independent of one another 12], it will greatly simplify our

notation if we focus first on the approximation of the state space and

postpone discussion of the parameter set approximation.

Galerkin schemes based on cubic splines are already well developed for

approximating solutions to transport equations on a one-dimensional domain

[11, [21, [31, [4], [51 and these are readily extended to two-dimensional

domains. Following the standard Galerkin technique, we define a sequence of

finite dimensional approximating state subspaces HN c L2 , N = 1,2,..., with

pN: L2 4 HN the canonical orthogonal projection. Furthermore, we assume that

HN c H1(Q) and that:

(B) For all z c C2() n H (Q), 1P Nz-zIJ0 and II(PNz-z)Io

are less than or equal to c(N)(I zxxI1o + 11Zyy Io) where

c(N) 4 0 as N4 .

We remark that by using arguments from Chapter 6 of 1141 and pp. 17-18 of 161,

it can be seen that a finite element approximation scheme based on bicubic

splines satisfies these conditions. In addition, the following L' convergence

rate can be shown to hold: IIPNz-zll, (c/N 2 ){I1zxx'IL + Ilzyy lU}.

}1
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N NRestricting the bilinear form (2.2) to H x H , we then define the

N NGalerkin approximation, u = u (t,.,.;q) to be the solution of:

<U N + L(q)(uN, ) = <f,*>, for all * in H
N

(2.5) N N
u (0) = P u0.

We note that we can view this equation as the result of projecting equation

N(2.3) into the finite dimensional subspace H , and as such (2.5) inherits the

well-posedness of its parent equation.

Theorem 2.2: Under the assumptions (Al), (A2), and (A3), the initial value

problem (2.5) has a unique weak solution u N(t,.,.;q), belonging to HN () and

depending continuously on the initial data. In fact, given the finite
N .

dimensionality of the equation, u is a strong solution.

Proof: As before, we appeal directly to the theory of Lions, pp. 100-111,

[121. ///

Having defined a sequence of equations approximating (2.3), we can

define a sequence of approximate estimation problems as follows:

N PN 2(2.6) minimize J (q) = i II A(ti ) - u (ti,x ,ykq) 2

over all q belonging to the set of admissible parameter functions, Q. We note

however, that (2.6) is still an infinite dimensional problem, and this fact

leads us to discuss the approximation of the parameter set Q.

In a manner similar to that for the state approximation scheme we

define a sequence 0M of finite dimensional sets that approximate 0 in a

certain sense. Recall that we have defined X to be the space:

1 2 2 0 3
(H ([o,T];L (Q))) x (H ((0,T) x Q))3. Then, following the ideas developed in

e%

'.. . . ..- . , . . . . ' -
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[2), we let 0 M , H = 1,2,..., be subsets of X defined by 0 f=i N (0), where i:

Q c X 4 X. In addition we assume:

(Cl) The mappings i : 0 4 X are continuous;

(C2) For each q C 0, M(q) 4 q as M 4 -, uniformly in 0.

We observe here that in Section III we shall discuss an approximation scheme

for 0 based on linear splines, and it can be shown that such a scheme

satisfies the above assumptions. In fact we will take the mappings iM to be

the Mth order interpolating linear spline operator. That is for q c 0:

iM(q) = E: qlt ixjYk)&ilt)XjlX)vk(y) i,j,k = 0,1,...,M

where &i. Xj, and vk are the standard linear splines defined on equal

partitions of [0,TJ, [0,11, and [0,11 with mesh sizes T/M, l/M, and I/M,

respectively (see [14]). With these definitions 0M can be characterized as:

QM = fq:[O,T] x - R I qn =  a nijk iX jk' where anijk ' 'nijk}.

Here the sum is of course taken over i,j,k = 0,1,..., M and nijk are

appropriate compact subsets of R. We also note that we have taken the same

degree of approximation, M, in each of the variables t,x, and y, but only for

illustrative purposes. For complete details of this construction see [21.

Given these approximating sets Q M, we can now define a sequence of

finite dimensional approximate estimation problems by restricting the

minimization of JN in (2.6) to be over the set of all q in 0M. The following

theorem relates the solutions of these problems to a solution of the full

estimation problem (2.4).

Theorem 2.3: Let Q be compact in X. Then for each M and N, the minimization

problem (2.6) has a solution q. Furthermore, there exists an element q of
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N
Q and a subsequence, denoted again by qN' that converges to q in X, and this

,

limit, q , is a solution to the full parameter estimation problem (2.3).

We will not present the entire proof of this theorem here, but rather will

outline just the essential arguments. For complete details see [17].

Let u N(-,q) be the Galerkin solution to equation (2.5). It can be

N
shown that for each tc(O,TJ, the mapping q 4 u (t,q) from the set of

admissible parameter functions, Q, to Lw(Q) is continuous. This immediately

Nimplies the continuity of the approximate cost functionals J . The sets 0

are compact since each is the image of the compact set Q under the continuous

map iM (see assumption (Cl) earlier). Hence for each M and N, there exists a

minimizer q of J over 0 . Furthermore, by definition of the sets Q , there"M-M MHH

exists a sequence (qN) C Q such that qN= i (qN ). Compactness of 0 then
M t

implies the existence of a subsequence, which we write again as qNthat

converges to some q in 0. It can then be shown that the corresponding
-M *subsequence N also converges to q*.

Finally, to argue that q solves the full estimation problem (2.4)

requires proving the fundamental result that "convergence of any sequence of

parameters qK to some q implies convergence of J N(q K) to J(q*) as N and K 4

-". Since the cost functionals JN and J represent pointwise least squares

fit-to-data criteria, we see that we must guarantee pointwise convergence of

our state approximations. That is, under an appropriate topology on 0, we

must show that convergence of qK to q implies u N(t,xjYk; q K) converges to

u (txjYk; q ) as N and K 4 ®, for each of the data points (xJYk) 1 j < m

and 1 < k < n. Notice that we are not asking for global pointwise convergence

of the state approximations. Rather, it will suffice to show local pointwise

convergence, and then piece together at most a finite number (in fact m-n) of

Will-
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such results. The arguments for this convergence rely on a general technique

from finite element theory that estimates a local Lm norm in terms of a global

H norm. We then use the weak variational framework of our approximation

scheme to derive inequalities from which we can obtain appropriate estimates

to establish convergence in this stronger norm. For another approach to

pointwise convergence in two-dimensional domains see ll.

PQ

'S I~'
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III. Numerical implementation and examples

We turn now to a description of the implementation on the computer of

the approximation framework formulated in Section II. For transport equations

on a one-dimensional domain cubic spline based Galerkin schemes have been used

successfully and their computational efficiency well-documented [1], [2], (31,

[41, [5]. We shall see shortly that the key feature of a bicubic spline based

approximation technique for two-dimensional transport equations is that the

necessary computations reduce in a natural way to those computations arising

in the one-dimensional problem. For notational simplicity we will illustrate

this feature for the case of constant parameters, then describe the

straightforward modifications needed when variable coefficients are

considered.

Recall that we have defined the Galerkin approximation to our original

IV-BVP to be the solution of:

<uN ,p> + <DVN,V,> = <VuNV*> + <uN,*> + <zf,*>
(3 ) N t N N

u (0) = P u O, for all * in HN ,

where we have rewritten (2.5) using the definition of the bilinear form

L(q). We take HN to be the span of )i,j=O (where Oij * Bi(x)Bj(y) are

the bicubic splines that arise as pairwise products of cubic splines Bi,

corresponding to the partition A = (i/N).= on [0,1] and satisfying Bi(0) -

1 =0 1

Bi(1) = 0. Thus we can write the Galerkin approximation uN as:

(3.2) uN(t) = wij(t)8.ij(x,y) ij = 0,1,21...,N

where we have suppressed the dependence of Oij on N. Notice that uN

automatically satisfies the homogeneous Dirichlet boundary conditions.



With this choice of the subspaces H N, equation (3.1) is equivalent to:

N N N
<t' ij + D ij )x >+Q2 y (ij )y>

(3.3) <V 1U N 0 ij )x> + <v 2 U N03jj y > + <u ,LU N .1i> +~ <f,1. .>

<u N(0),0i..> = <u ,'P.? for i,j =0,1,..., N.

Substituting the above expression for u N, equation (3.2), into (3.3), carrying

out the necessary differentiations, and using the linearity of the inner

product, we arrive at a finite dimensional system of ordinary differential

equations for the Fourier coefficients, wN()

[ AN (8A A N = (DIB NO ANIWN + DI2AN QB NIWN)

+ 04A N @ANIWN + F N ®NV

NN N..

[A ® AIWN(O) E E

where (recall B= BiN for each i)

A.. = IB.(x)B.(x)dx, B JBI(x)Bij(x)dx,

C.. = IB.(x)BI(x)dx, E. N B jB(x)B (y)u(y)dydx,

W j =v Ij (t), and F B J' fB(x)Dji(y)f (I)dydx,

and [ID NJ represents a Kronecker product of matrices. It is Important to

note that the entries of the matrices A N, B N, and C N are just the pairvise L 2

inner products on 10,11 of the one-dimensional cubic spline basis elements and

their derivatives; furthermore, the local support properties of cubic splines

guarantee a very nice banded structure for these matrices, in fact they are

hepta-diagonal. We also remark that we have factored the parameters Dip v1,
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and a out of the inner products in equation (3.3), something we could not do

if the coefficients vere spatially dependent. However, it will be seen that

the computational feature we are trying to illustrate is independent of

whether or not the coefficients are constant.

At this point we could rewrite (3.4) in matrix-vector form, but the

computational cost of numerically integrating the resulting system would be

prohibitive, due both to the size (dimension = (N+l) 2) and the sparse nature

of the matrices involved. Fortunately however, the action of the Kronecker

product [M )NJ on any matrix Z turns out to be given by:

(3.5) [M HN]Z = MZNt

where the multiplication on the right hand side is just ordinary matrix

multiplication. Hence the numerical solution of (3.4) requires operation

primarily involving the matrices that arise in a one-dimensional cubic spline

N N N
approximation scheme, namely A , B , and C . Indeed, we have:

A N.N.A = -(D1BN. WN.A + D2AN.VN. B)
( 3 .6 )NNNN 

N+ vcN WN.AN + v 2AN WN.(CN)t + aN. VNAN + FN

AN.VN(O).AN EN,
= tN

where we have used the fact that AN and BN are symmetric. It is here that the

computational attractiveness of this scheme really becomes apparent because

for a given level of approximation N, we compute and store ahead of time the

matrices A N , B N , C N , E N , and FN in eitheL band or band symmetric mode. Then

we call each one up as necessary when we are solving (3.6), taking advantage

of their banded structure to speed up the matrix multiplications. Once we

solve equation (3.6) (equivalently (3.4)), we can reconstruct the approximate
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solution (3.2) and generate a set of "predicted observations" to be compared

with the real data. However, before we discuss the computer code that

actually integrates (3.6) and produces the Galerkin approximation used in the

minimization of the cost functional JN(q), we describe the modifications to

(3.4) and (3.6) that must be made in the presence of variable coefficients

[2].

If we include only temporal variation in the parameters, there is

little to change, since we can still factor the coefficients out of the inner

products in equation (3.3). Taking a linear spline representation for each

of the parameters, e.g. Dl(t) = ' Sklk(t), k = 1,2,...,M, we simply

replace D1, D2, vl, v2 , O, 1, and y by their appropriate representations, thus

making (3.6) a non-autonomous equation due to the linear spline functions

Slk(t). Having solved this time-dependent analogue to equation (3.6) and

reconstructed the approximate solution (3.2), we then seek to minimize the

cost functional J N() over some finite dimensional set of Euclidean parameters

containing the admissible values for the coefficients in the various linear

spline representations for D1 , D2 , v1 , v2 , a, 1, and y.

Turning to the case of spatially varying parameters we see that it is

not quite so simple to handle because we can now no longer factor the

coefficients directly out of the inner products in (3.3). Nevertheless we can

preserve the Kronecker product structure and action given by (3.5). More

importantly, we will still be able to compute and store ahead of time a set of

"inner product matrices", analogous to AN , B N , and CN from (3.4) to be used in

the solution of the counterpart to the system (3.6).

As before we take a linear spline representation for each of the

parameters, this time in x and y. To illustrate, we examine what happens

'Oka"'''~.~
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to the first term <DlUN,( ij)x> of equation (3.3). For ease of notation
Ix ii x

we assume our coefficients are separable; however we hasten to aid that the

method will still apply in the more general case of non-separable parameter

functions. We write:

Dl(x,y) = Dx(x). D(y) = k = 1,2,...,M.

Substituting in this expression for D1 and the representation (3.2) for uN,

differentiating where appropriate, invoking the linearity of the inner

product, and using the separability of the coefficient D1 (x,y), we have that:

N N

(<D u ,(0..) >1 -[B (D1)09A(DY)IWN

BN(Dx )WN.(AN(,))t,

where A N(DY.) = EXk BoBi(z)B.(z)lk(z)dz k = 1,2, ,Mij 1'0 3o

and BN ( D B(z)B k= 1,2,...,M.ij I k f (Z)lk(z)dz
01 .

In a similar manner we can analyze the changes necessary in the remaining

homogeneous terms of equation (3.3) when the appropriate linear spline

representation is substituted for the parameter appearing in each. In

particular we have that:

(<D 2,U(ij)y>) = [AN(Dx) 0( BN (D)IN

= AN (D) •w . (B (Dy)) t

N Nx

a<v u N ij >) = N (v ) AN(vY)jWN

= AN(vx  N (AvN(y))t .

(<veu N ) = [A N an CN( ayr N
2x Nj Ny t

= A N(v2) W N.(C (v2))

and (<OLUN 1ij>) [A AN( x)(DA N(my)JWN

A N N aCx -WN .( m)t

Here the matrices A.) (N) (1 ad are just linear combinations of the
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N N N
elementary matrices A k, Bk, and Ck, whose entries are, in analogy to those of

(3.4), the pairwise L2 inner products on 10,1] of the one-dimensional cubic

spline basis elements and their derivatives, now weighted by the kth linear

spline, Ik(.), k = 1,2,.. .,M.

We note that it is the convective terms of (3.3) that give rise to the

matrices:

cN(.) = {)j.'kJoBi(z)B'(z)lk(z)dz) k = 1,2,.. .,M.

In addition, we observe that the local support properties of cubic splines

again guarantee a nice hepta-diagonal structure to these "weighted inner

product matrices"; furthermore for a given level of approximation, N for the

state space and M for the parameter space, we can compute and store these

matrices ahead of time just as in the simpler constant coefficient case

described earlier. We point out, however, that if the inhomogeneous term f(O)

and the initial condition u (y) are non-linear functions of the parameters

and y, then their respective projections into the subspace HN (i.e. the

matrices EN and FN of (3.6)) cannot be computed and stored ahead of time, but

rather must be continually updated during the minimization procedure.

Nevertheless this needs to be done only at the start of each integration of

the approximating system of ordinary differential equations, and the resulting

matrices will still exhibit a banded structure. Finally, we note that if

temporally and spatially dependent parameters are considered simultaneously,

our method still works since we would take a general representation:

q(t,x,y) =Eaklk(t)) • ( Ebklk(x)) • (Eckl1k(y)) k = 1,2,...,M

and then immediately factor the temporal dependence of q out of the inner

product and proceed as before.

7 . w aA~J? ~
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We now discuss the actual solution of the ordinary differential

equation (3.6). Since it is well known that approximation schemes for

parabolic partial differential equations often give rise to systems of stiff

ordinary differential equations, we use the IMSL code, DGEAR, with its option

for stiff systems. As a part of this solution process the general equation

IM0NZ = Y, equivalently M.Z.(N)t = Y, must be solved for Z. This task is

accomplished by two successive applications of a Cholesky decomposition

routine that enables one to solve FX = G for X. In fact one first lets X

Z.(N)t and solves MX = Y by a Cholesky decomposition of M followed by

back-substitution. Then one solves N'(Z)t = Xt by a Cholesky decomposition of

N again followed by back-substitution. The minimization of the cost
NI

functional JN(q) is performed by another standard IMSL code, called ZXSSQ,

which employs a modified Levenberg-Marquardt algorithm. The FORTRAN code

built around these two large IMSL routines is a modification of an original

program written by James Crowley [81. The testing of this code, which we

shall now describe, was performed on the computing system at Brown University

running either an IBM 370 or IBM 3081.

In the following examples, we considered a number of "data" sets

generated from various known solutions of the constant coefficient model on

Q = 10,11 x [0,1]:

ut = D(Uxx + Uyy) + VlUx + V2uy + au, t>0

(3.7) u(O,x,y) = u o(X,y)

u(t,x,y) = 0 on aQ

Values for D, v1 , v2, and a were specified, then a simple separation of

variables technique was used to calculate each explicit solution. At each of

the times t = .2, .4, and .6 a matrix of "observations" was then obtained by
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evaluating these solutions at the (x,y) grid points x = .1, .3, .5, .7, .9 and

y = .1, .3, .5, .7, .9.

We carried out a series of tests on each data set in which various

combinations of parameters were considered to be unknown and the remaining

parameters held fixed at their true values. Initial guesses of the "unknown"

parameters were input into the estimation code and a particular level of

approximation specified. The performance of the code could then be assessed

in light of factors such as the "error" made in the initial guess, the degree

of approximation chosen, or how many parameters were considered unknown. We

note that low levels for the state approximations were taken, N = 4,6, or 8.

This was done because the computational cost for any given two-dimensional

estimation problem far exceeds the cost for a comparable one-dimensional

problem (see results of numerical experiments in [11, [2], 13], and [51). Of

course the reason for this is obvious; namely that the two-dimensional setting

gives rise to a system (3.6), that consists effectively of (N + 1)2 ordinary

differential equations, as opposed to (N + 1) in the one-dimensional case. In

fact, just to integrate equation (3.6) for N = 12 takes roughly 12 minutes of

CPU time on the IBM 370 and for N = 14 that figure increases to 40 minutes.

If the faster IBM 3081 is used, these times decrease to 3 and 10 minutes, but

are still very large compared to a one-dimensional problem. Thus, with an eye

towards future real-time applications of our estimation technique, we believe

it would be fruitful to pursue the implementation of our code on vector

machines and other supercomputing processors.

We also remark that the efficiency of the Levenberg-Marquardt

minimization algorithm decreases as the number of unknown parameters

increases. This is particularly significant if we want to estimate variable

coefficients. Indeed, a simple constant coefficient model such as (3.7) has
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oiy four unknown parameters. However, if we take a general transport

equation such as (2.1), and implement the parameter approximation scheme we

have described, then the dimension of the unknown, and in this case

approximate, parameter space will increase dramatically. For example, if we

consider a constant diffusion model with temporally dependent convection and

"growth/death" terms V1 (t), V2(t), and a(t), and we assume a representation

for each as a linear combination of four linear splines, then we will have

thirteen unknown parameters to search for. Obviously this figure will

increase if we take a linear combination of more than four splines in our

representations; and if we also include spatial dependence in the convection

and "growth/death" terms, then we must deal with an even larger number of

unknown parameters. But the difficulty of minimizing JN () over a large set

of unknowns is not insurmountable, especially in light of recent advances in

computer technology. In fact, as new software (different minimization

routines) and hardware (array and parallel processors) become available, it

is likely that this aspect of this problem can be treated in a relatively

efficient manner.

Example 3.1 We considered the standard heat equation with the diffusion

coefficient, D, equal to 1.0 and the initial condition given by the product of

two one-dimensional "hat" functions. Convergence results were quite good, see

Table 3.1, with no significant improvement in accuracy obtained by increasing

the level of state approximation from N = 4 to N = 8. However, it is

important to note the dramatic increase in computing expense from the first

case to the second.

*'* le X%"e
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Example 3.2 In this example we chose D = 1.0, vI = -2.0, v2 = -2.0, and a =

19.7392 in equation (3.7) with u0 (x,y) = eXslnnxeYsinny. In the tests

summarized in Table 3.2 the level of the state approximation was held at N = 4

and it is seen again that the method produced good results.

Example 3.3 For this example we set D = .20, v1 = -1.0, v2 = -1.8, and a =

7.2478. The relative magnitudes of the coefficients were chosen to reflect a

typical example of population dispersal; and to ascertain whether our

technique would be able to estimate an asymmetric model (which is almost

always the case with real biological data), a directionally dependent

convective component, v1 not equal to v2, was considered. In Table 3.3 we

present a comparison of the method's performance at two levels of state

approximation and we see that the parameter estimates were almost all within

one-tenth of one percent of the true values. Thus, an improved fit-to-data is

obtained at the expense of increased CPU time, but with no great improvement

in parameter estimates.

Example 3.4 In this example we considered the problem of estimating

parameters in the presence of "noisy" data. We took the same model as in

Example 3.3 but introduced random error into the "observations" (see Appendix

for details). Representative results are displayed in Table 3.4 and Table

3.5, and together with other tests these suggest that our technique can

perform well given data containing noise. It is an interesting qualitative

result that in test 3 of Table 3.5 the method m? ,ged to estimate the correct

relative magnitudes of the true parameters.

p p ~~* ~ ~m .4 q e, ~ f,.
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Table 3.1

Initial Estimated value True Iterations1  CPU 2(IBM 370)guess N =4 N = 8 value N=4 N=8 N=4 N=8

1) DO = .05 D 1.0009 6 1.0003 D = 1.0 5 4 3 min 18 min

2) D =l1.95 =' =1.0009 b8 = 1.0003 D=l1.0 5 4 3min 18min

1 Number of iterations in the minimization algorithm
2 Cmuainlprocessing time
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Table 3.2

Initial Estimated True Iterations CPU(IBM 370)
guess value value

1) DO .50 5 1.0003 D =1.0 14 14.5 min

2) vi -1.0 - -1.999 v1  -2.0 6 9 min

3) vj =-_.1 v 4 _1.999 v1 =-2.0 8 10 min

4) vj -1.0 v4= -1.9996 v1  -2.0 4 6 umin

2 -1.0 v-2 -_1.9996 v2 =-2.0

5) v* -1.0 - -_1.9996 v = -2.0 5 7 min

v; = -3.0 v2 = _l.9996 v 2- -2.0

6) DO = .50 =1.00001 D = 1.0 13 12 min

1!=-. v 1 =_1.9994 1-2.

7) DO = .50 D= 1.00001 D = 1.0 16 20 min

4.0 v 199 1  -.

N 4
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Table 3.4

Initial Estimated True RSSQ Iterations CPU(IBM 3081)
guess value value

1) DO = .10 4= .2003 D = .20 .6835 5 45 sec

-4

vj =-.50 v14 =-_1.0031 v,= -1.0

-4
v=-.90 -2= 1.7958 v 2 = -1.8

3) DO = .10 = 2136 D =.20 .4856 B 148 sec

v 0 -=-1.5 v-lI_.069 v -1.0
1-14

-O -2.7 v -1.913 v = 1.822 2

= .6239 7.4 7.2478

N= 4
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Table 3.5
(Noisy data)

Initial Estimated True RSSQ Iterations CPU(IBM 3081)
guess value value

1) DO .10 4= .1987 D -. 20 59.4825 5 45 sec

2) DO .10 4= .1982 D =.20 54.2155 9 93 sec

-4
= -.50 v 1= -. 9628 v I = 1.0

v; =_.go 4- -1.8207 v2 = -1.8

3) DO .10 54= .331 D =.20 54.5492 9 170 sec

v!=1.5 v 1 = -1.6134 v1= -1.0

v;=-2.7 -v2 = _-.0303 v 2 = -1.8

(*=3.6239 = 13.4234 a 7.2478

N 4
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IV. Parameter estimation in a two-dimensional model of insect dispersal

In a series of mark-recapture experiments, Kareiva recorded the

movement of flea beetles along linear arrays of collard patches [101. A cubic

spline based parameter identification technique was subsequently used to

analyze this data and to assess the appropriateness of various forms of a

general transport equation as models for the observed movement [3], [4], [5].

While this analysis proved quite successful in identifying different

mechanisms of dispersal and quantifying their relative importance, it is

important to note that the experimental design restricted movement to a one

dimensional domain, thus allowing consideration of only one-dimensional

transport equations as models. It is apparent of course that a

two-dimensional domain provides a more natural setting for most models of

insect dispersal (indeed for most models of population dispersal) and in this

section we describe the application of our estimation technique to the

analysis of cabbage root fly dispersal on a two-dimensional domain.

Our data are taken from mark-recapture experiments by Hawkes in which

cabbage root flies (Erioischia brassicae) were related at a point adjacent to

and downwind from a cabbage (brassica) crop (9]. Although Wright [161 had

rejected anemotaxis as a mechanism of attraction and Thornsteinson [15]

claimed "there seems to be no critical evidence that insects orient to plants

beyond a few meters", wind tunnel experiments by Coaker and Smith [71

indicated that female E. brassicae do fly upwind in the presence of brassica

odor. To resolve this issue Hawkes sought to calculate dispersal rates of E.

Brassicae released from a point exposed to brassica odor.

When recapture data suggested random dispersal, an empirical model,

ln y = a-brx, was used to relate the number of flies captured, y, to the

distance from the release point, x, where a and b are constants. Average
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distances dispersed and thus average rates of dispersal were then calculated

on the basis of this model. However, in the case of non-random movement, no

such model was available to estimate rates of dispersal. We have subsequently

applied our parameter estimation technique to estimate dispersal rates for

this type of recapture data, focusing on Hawkes' data for gravid (i.e. egg

bearing) female E. brassicae, as this group was observed to exhibit the

greatest non-random movement. (We are quick to point out, however, that the

applicability of this estimation technique does not depend on any a priori

knowledge of a population's specific behavior. Indeed,it is precisely this

behavior that we usually wish to ascertain and then analyze).

The experiments were carried out in a large field bordered on the

north by a hedge. A 30 by 30 meter cabbage plot was planted immediately south

of the hedge with large areas of fallow ground to the south, east, and west of

the plot. Water traps spaced six meters apart were placed along the hedge,

within the crop, and in the surrounding fallow area as shown in Figure 4.1.

Since the prevailing wind direction was from the east-southeast, flies were

released from a point at the hedge 24 meters to the west of the northwest

corner of the cabbage crop. Direct observation and recapture data showed that

movement did not begin until 29.5 hours following the time of initial release.

After the onset of dispersal, data representing the distribution of the flies

was collected during two consecutive seven hour periods. (For further details

of the experiment see Hawkes' paper 191).

We considered the following two dimensional transport equation as a

model for describing the distribution of the flies:

(4.1) ut = D(Uxx + uyy) - V1(t)ux - v2(t)uy -a(t)u

(x,y) C 10,11 x [0,11, t > 0.
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Initial data were given by u(O,x,y) = 0 for (x,y) 0 (.5,.5) and u(0,.5,.5) =

1930 (the number of marked flies released). Since there were no cabbage

plants outside the furthest extent of Hawkes' trap grid, we assumed Dirichlet

boundary conditions, u(t,O,y) = u(t,l,y) = u(t,x,O) = u(t,x,l) a 0. Here the

variables x and y represent dimensionless quantities based on the scaling:

x = x meters/127.5 meters and y = y meters/127.5 meters. Thus the entire

field was rescaled to fit on the unit square, with the release point

corresponding to x = y = .5. The westernmost traps and the easternmost traps

corresponded to y = .3353 and y = .9, respectively, while the northernmost

traps (those along the hedge) and the southernmost traps corresponded to x =

.5 and x = .6647. Time was rescaled as t = t hours/24 hours, so that tI 1

.14583 corresponded to the midpoint of the first seven hour census period

following the beginning of dispersal and t2 = .4375 corresponded to the

midpoint of the second seven hour census period. The convection coefficients,

vM(t) and v2 (t), as well as the "growth/death" term, a(t), were represented by

a linear combination of four linear splines. The function a(t) was assumed

positive so that the entire negative term a(t)u would reflect the

disappearance of flies from the experiment (e.g. through actual death, long

range migration, wearing off of the radioactive marker, etc.).

We began our analysis by considering the simpler, constant coefficient

equation as a model. Then, by allowing one or more of the coefficients, % ,

v29 and a, to vary in time, we gradually increased the complexity of the model

to arrive at the general equation (4.1). At each stage we sought to minimize

the residual sum of squares of differences (RSSO) between model predictions

and observed data. Although it is true that we could have considered the full

equation (4.1) from the onset and asked the computer to identify all the

!I
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parameters in the model at once, we emphasize that this is not the procedure

we followed (see our earlier remarks in Section III regarding the minimization

algorithm employed). Instead, we estimated various combinations of parameters

while holding the remaining coefficients fixed at certain "nominal" values.

As a rule, these were taken to be the "best" values returned from the

consideration of a simpler model. For example, to identify the time-dependent

profile of the "death" term a(t), we first fixed the diffusion and convection

parameters at those values that provided the "best fit" of the constant

coefficient model to the recapture data, and then we estimated the "weighting
3

factors", uk, in the linear spline representation a(t) = Eaklk(t). All of

the computational work for this analysis was performed on the CDC 6600

computer at Southern Methodist University and the IBM 3081 at Brown

University.

In the constant parameter model we sought to estimate the four

parameters D, v1 , v2 , and c. This analysis immediately revealed a number of

interesting qualitative features (see Table 4.1):

(1) a relatively small diffusive term, D;

(2) the presence of some directional bias in the convection terms,

VI < v2;

(3) the importance of a large "death" term, a.

These results are not surprising, in fact they correlate quite well with what

even a casual perusal of the data suggests (see Figure 4.1). There is little

evidence of purely random dispersal, indeed some directed movement is almost

surely present. Also the fact that only fifty-five out of the original 1930

flies released were recaptured at the first census certainly indicates the

need for a large "death" term.



29

We next introduced temporal variation in the coefficients beginning
3

with the "death" term, a(t) =. oIlk(t), where lk(t) are the standard
k=O

linear splines as in Sections II and III. The terms D, v1 , and v2 were held

fixed and we sought estimates of the coefficients, a, that would lead to a

reduction in the RSSQ from the constant parameter model (see Table 4.2).

Though we were able to obtain some profiles for a(t) that could be considered

biologically plausible, we could not reduce the RSSQ significantly (RSSQ = 200

for the constant coefficient model, RSSO = 198 for the variable X model).
3

Time varying convection terms were considered next, vl(t) =- E klk(t)
3 k=O

and v2 (t) E Yklk(t). But as before, though we obtained some bio-
k=O

logically arguable profiles for the convection terms (see Table 4.3), we could

not reduce the RSSQ. What we did observe consistently was a general

intensitivity of the RSSQ to the latter two coefficients in each

representation for v1 (t), v2 (t), and ct(t). This indicated that our models

were simply not predicting the data at the second time point. At this stage

it was thought that the diffusion coefficient,though already very small, might

nonetheless also exhibit some temporal dependence. Accordingly, some tests

were performed to estimate a time varying diffusion term, but still there was

no corresponding improvement in the model's prediction of the data (RSSQ

remained at 198). In fact, it is interesting to note that for this data set,

the total sum of squares, TSSQ, equals 161. This implies that simply using

normally distributed noise as a model produced a better fit-to-data than any

of the "dynamic" models we had considered so far.

However, these tests were not without value, for they convinced us

that our difficulties lay with the magnitude and shape of the variable "death"

term, a(t). As a remedy we introduced a discontinuous *(t) into the model

with the discontinuity located at the first time point tI . We retained the
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profile of c(t) (taken from earlier testing) from to to t1 , then set a(t) a 0

for t > tl; in effect "turning off" the "death" mechanism after t1 . The

biological interpretation of such a profile is that immediately following the

time of release there is a large emigration of the population due to the

disturbance of marking and handling [5]. Emigration then settles down to its

more "intrinsic" low level, which we artifically took to be zero. It was

hoped that this would allow the convective and diffusive mechanisms to

redistribute the population over the next time period. In fact, the

introduction of this discontinuity resulted in a significant decrease n the

RSSO.

Since we had already determined the purely diffusive component of

dispersal to be small, we held the diffusion term fixed at its "best"

estimated value from the constant coefficient model testing. Ve also held the

"death" function fixed at the discontinuous profile described above. By

estimating various combinations of the coefficients ok and Tk in the

representations of the terms v1 and v2 , we were able to produce convection

profiles that reduced the RSSQ to a value of 98 (see Table 4.4). In light of

this result, the insensitivity of the RSSQ to i, Oi, and yi' i = 2,3, in the

expressions for v1, v2, and a can be understood. Before the introduction of

the discontinuous "death" term, the very large value of a(t) at t1 influenced

the model's behavior for a significant amount of time after tI (even If a2 -

a3 = 0.0). This large value dominated the mechanisms of dispersal and caused

the model to predict a population identically equal to zero at the second time

point, t2, regardless of the profiles of the convection terms. Only by

"turning off the decay", via the discontinuity, could we allow for convection

to be identified as a significant component of the motion (see Figure 4.2).
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Having produced a model which allowed more freedom to the dispersive

mechanisms, we proceeded to carry out a set of tests to try to "fine tune" the

convective terms. Since some of the profiles that we had estimated yielded a

good RSSQ but made little biological sense, we sought to estimate more

biologically reasonable convection functions. The results depicted in Table

4.5 show that our attempts met with qualified success. While the qualitative

feature of decreasing x-convection anr increasing y-convection that we

identified can be explained by the greater proximity of the cabbage crop to

the release point when measured in the x-direction than when measured in the

y-direction, we are quick to note that this set of profiles did not

significantly reduce the RSSQ from its previous best minimum value of 98. In

fact, we actually identified several sets of convection functions during our

analysis that produced this value for the RSSQ. Such an example of

non-uniqueness is of course not unexpected, being a reflection of the inherent

"ill-posedness" of many inverse problems of this type.

We also performed tests to try to "fine tune" the variable "death"

term. Recognizing the artificial nature of the discontinuity introduced in

a(t), we sought to identify a profile for t(t) with a steep gradient in a

neighborhood of the first time point t Here we considered the
S11

representation a(t) =. aklk(t) and set m0 a s 1 and % a a5 n a6 a ... a
7: k=0

alo. We then estimated the "weighting factors" ot1, a2, 3, and %4 . The

*results are displayed in Table 4.6 and we see the presence of a very steep

gradient in the estimated profile for t(t).

Finally, we have performed a series of tests to identify spatial

dependence in the convection terms. We assumed the representations

3 3 3 3
Vl(t,x) = (E. 1lk(t))-( E Cklk(x)) and v2 (t,y) = Yklk(t)).( EOVlklk(Y))

k=O k=O k=O =
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where the coefficients ok and Yk were set identically equal to 1.0 so that

purely spatial variation in convection was considered. Our estimation

algorithm was then applied to the "weighting factors" 1k and ,k see Table

4.7. Next, using the resulting spatially dependent profiles, new estimates

were sought for the parameters Ok and yk defining the temporally dependent

portions of convection, see Table 4.8. We caution, however, that while the

inhomogeneity of the experimental site certainly suggests that we consider

spatial dependence in the convective terms, the experimental feature of a

single point release does not allow the proper separation of temporal effects

on convection from spatial effects. So while we actually succeeded in

lowering the RSSQ to 92.42 (see Table 4.7) and subsequently to 89.68 (see

Table 4.8), it is not clear that our data can support these results.

We turn now to a discussion of a statistical criterion which we used

to help evaluate the relative strengths of our models. Following the method

described in 141 and [51 (an ad hoc modification of multiple regression

analyses and significance tests based on the F-distribution), we calculated

F-statistics comparing the variation explained by a particular model, TSSQ -

RSSQ, with the unexplained variation, RSSQ. The degrees of freedom for these

two quantities were taken to be k and (n - k - 1), respectively, where k

equals the number of unknown parameters in the given model and n equals the

number of data points. Hence, recalling that the TSSQ for our data set is

161, we see that the percent of the TSSQ explained by our "best" model, (TSSQ

- RSSQ)/TSSO, is 39.3%, with a corresponding F-statistic, F1 3 , 74 = 3.72 at a

significance level, p < .001. We note that in general the F-statistic can

also be used (albeit in an ad hoc manner) to measure the significance of

reductions in the RSSQ induced by adding parameters to a model, see [41 and

151. Indeed, we are tempted to use this statistic to assess the relative
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importance of different mechanisms of dispersal in our model for the cabbage

root flies. (After all, this was one of the motivations for Hawkes'

experiment). Unfortunately, the fit-to-data of our early models was so poor

that such a use was precluded. In fact, we observe that since the calculation

of such statistics requires that TSSQ > RSSQ, F-tests could not be applied to

the models of Tables 4.1, 4.2, and 4.3. This is because all of the testing

through that stage had resulted in values for the RSSQ that always exceeded

198, whereas we had computed the TSSQ to be 161. However, as we have seen, we

subsequently identified a model, which provided not only a statistically

significant explanation of the total sum of squares error, but more

importantly, a biologically meaningful explanation of the data in terms of

diffusive, convective, and "growth/death" mechanisms of dispersal.

We close this section with a brief discussion of some issues which our

analysis raised concerning experimental design and the data that results. A

characteristic feature of dispersal experiments is the use of a point release

of the initial population. While such a technique certainly facilitates the

actual execution of an experiment, any subsequent mathematical analysis must

deal with the problem of approximating a "delta function" for use as initial

data. But, more basic than a purely mathematical consideration, it has been

suggested that point releases give rise to data that over-represent the region

immediately surrounding the release site and under-represent the more distant

regions [5], thus masking the effect of any possible convective mechanism.

Furthermore, for the particular experiment we considered, the use of a point

release had an additional impact. Because the release point was located at

the edge of the array of traps, fully half of the initial population was lost

from the model almost instantaneously. As a remedy it would seem very

4,t, n
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reasonable to try to effect a distributed release of the initial population,

and to do so within the central regions of the array.

*,%

}
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Table 4.1

Constant parameter model

1) D and c searched; vI = v2 = 0.0, held fixed

Estimated: D = 349.103

o = 51.716

RSSQ = 387.98

2) vI, v2 , and o searched; D = 349.103, held fixed

Estimated: vI = 14.915

v2 = 39.618

c = 52.933

RSSQ = 308.31

3) v1 , v2 , and x searched; D = 3.49103, held fixed*

Estimated: Vi = 14.148

v2 = 31.598

= 59.551

RSSQ = 200.63

[D) = i2/day, [v1 1 = [v2J = m/day, [a] = day-1

N=4

*Note the reduction of D by two orders of magnitude. Subsequent reductions

did not lower the RSSO.
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Table 4.2

Time varying "growth/death" term added,

D, vI, and v2 held fixed at final values from Table 4.1

1) ak, k = 0, 1, 2, 3 searched

Estimated: o 59.551

a1  59.555

2 21.939

a3  154.200

RSSO = 200.35

2) O k = 0, 1 searched; ak = 1.0, k = 2, 3 held fixed

Estimated: mo = 67.773

a= 51.605

RSSQ = 197.98

[kJ = day
-1

N=4
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Table 4. 3

Time varying convection terms added,

D and m(t) held fixed at final values from Table 4.2

1) 0 k , k k 2,3 searched; Ok' YkI k = 0, 1 held fixed at final values

for v 1 and v 2 from Table 4.1

Estimated: 02 = 1007.704

03 = 282.792

=2 1272.759

Y3 m 23.053

RSSQ 196.99

2) 0 1, j =0, 1, 2,3 searched; =j10

Estimated: 10= 14.148

0.1 = 14.148

02 = 13.501

03 = 48.060

RSSQ = 197.79

3) Ok, Yk, k - 0, 1 searched; Ok =1/20, and y k l/2y,, k =2,3

Estimated: 0SO - 14.148

01 = 14.148

Y= 31.598

Y= 31.598

RSSQ 197.69

10k] ~ in) /day

N-4



38

Table 4.4

Discontinuous "growth/death" term introduced,

a(t) held fixed with a discontinuous profile

1) Okand ykk = 0, 1, searched; D = 3.49 fixed, Ok = 1/201 and =k

l/2yl, k = 2,3

Estimated: 00= 14.148

01 14.148

Yo = 31.598

Y= 31.598

RSSQ 168.63

2) Okand yk, k =2. 3 searched; D =3.49 fixed, Ok and yk 0, 1 held

fixed at final values for v1and v 2 from Table 4.1

Estimated: 02 = 504.519

03 = 1269.616

Y= 14.801

Y= 411.220

RSSQ = 98.11

3) Okand ykk 0, 1 searched; D 3.49 fixed, and yk k 2,3 held

fixed at values from test 2 above

Estimated: j = 14.148

0= 14.148

Y= 31.598

Y= 31.598

RSSQ = 98.00
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4) D,11 and yo searched; Oi = 00, Y1 = YO, Ok and yk k 2, 3 held

fixed as before

Estimated: D = 3.49

00=14.148

YO= 31.598

RSSQ 98.00

ID] m m2/day, [0k] = 
1 kl = rn/day, [01k1  day-1

N=4
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Table 4.5

"Fine tuning" of convection terms,

D = 3.49 and a(t) held fixed at a discontinuous profile

1) and Yk' k = 2, 3 searched; Ok = Yk = 31.6, k - 0, 1 held fixed

Estimated: 02 = 4.07

13 = 88.5

Y2 = 75.68

Y3 = 325.48

RSSQ = 105.00

2) 02 and 03 searched; all other coefficients held fixed at values from

test 1

Estimated: 32 = 3.424

03 - 4.143

RSSO = 100.37

3) 02 and 03 searched; 00 = 1 = 14.148 and remaining coefficients held

fixed at values from test 1

Estimated: 02 = 11.01

03 = .364

RSSQ = 97.73

[D] = m 2/day, 10k = [yk] = m/day, [akI = day - 1

N=4

.. ........
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Table 4.6

Final values of parameters for the "best" model

with a continuous an(t)

D = 3.49 mn2/day
3

v1(t) -E Oklk( t), where
k=0

030 = 14.15 rn/day

01= 14.15 rn/day

02 = 11.01 rn/day

03 = .364 rn/day

3
v 2(t) E~ Yklk(t), where

k=0

yo= 31.6 rn/day

Y1= 31.6 rn/day

y2 75.68 rn/day

Y3 325.48 rn/day

11
MM~t E Oklk(t), where

o ~olanda 4 mx 5 a 6 n... n all and

=t 67.773 day-

=2 67.773 dayf1

u3 61.804 day-1

4 .03 da) 1

RSSQ 104.71
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Table 4.7

Spatial dependence considered in the convection terms,

D and u(t) held fixed as in Table 4.6

7 7
Vl(x) = . klk(X) v2(y) = EkNkk(y)

k=O 0

Estimated: 0 = 11.851 Estimated: no = 10.685

C = 11.871 V11 = 19.114

S2 = 16.222 V12 = 44.514

C3 = 16.152 13 = 37.451

(4 = .673 % = 107.270

_5 = .885 V15 = 88.090

-6 = 34.978 -O6 = 105.171

C7 = 35.306 1 = 65.052

RSSO = 92.42

[Ck | = trk] = m/day

N=4

,~~~~~~tW diem ( , ,,r 'r ' t, |
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Table 4.8

Temporal dependence in convection terms

re-estimated based on results from Table 4.7

3 3
v1(t,x) E O ki'k(t))-vl(x) v 2 (t,y) =(E Yklk(t))-v2(Y)

k=0 k=0

Estimated: 00= 1.000 Estimated: YO= 1.001

Ol=.998 "1 = 1.000

0= 2.425 =1.222

03 = 2.519 Y3= 1.455

RSSQ = 89.68

10k) = =yk r/day

N=4



- * I I I I |I . .. ! . . .. . . ...... J .~.= u ..x..... .... f.. . .

44

Figure 4.1

First census:

2 2 3 1 6 4 3 3 1* * * * x * * * * • • , * ,

2 1 2 4 3 2 2 * * * ** * * * * * * * * * * * *

2 1 1 1 1 4 1 1 1
* ** * * * * * * * * * *

I 
1

fallow crop

Second census:

2 3 1 1 1 2 4 2* * * *X * * * * * * , , *

1 1 1 2 3 4 2 2 4* * * * * * * * * * * * *

1 1 3 3 1 2 3* , * * * * * * * * * * *

I3 1i * * * , ,

fallow crop

The cross marks the release point and the arrow indicates the .ind direction.



45

Figure 4.2
Residual error at each grid point

First census:
y-

-.98 -.51 -1.09 1.22 -3.67 -1.78 -1.03 -1.38 1.22 -.13 .51 .25 .08
* * * * x * * * * * * * * *

.99 -.56 1.86 1.16 .27 -1.84 -1.08 -.43 -.81 .81 .49 .25 .07

.88 -.71 .66 .92 2.02 .93 .71 1.4 2.92 -.28 -.56 .22 -.93

I,.76 .56 .32 .16 -.95

fallow crop

Second census:

-y -

-.09 .02 .18 .37 -1.46 .7 -2.13 .09 .38 .79 .25 -1.43 .5
* * * * X * * * * * * * * *

-.09 .02 .18 -.63 -.46 -.3 -1.13 1.09 -1.62 -2.21 .25 .57 -1.49
* * * * x * * * * * * * * *

-.08 .01 .17 .34 .5 -.35 -.2 .01 -1.72 -1.35 1.08 .37 -.69

.98 1.26 1.6 -1.18 .78
X* * * * *

fallow crop

The cross marks the release point and the arrow Indicates the wind direction.

RSSQ = 97.73
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Appendix

Introduction of Random Error into Data

We describe how we introduced random error into our data so that the

estimation scheme could be tested in the presence of "noise". We first used

the IMSL routine GGNML to produce a set of normal random numbers with mean 0

and variance 1 to correspond to our set of analytically generated data. Using

these random numbers we perturbed the data poipcb with the requirement that

the errors remain less than ten percent with 95% probability. That is, we

treated each data point as the mean of a normal distribution, then adjusted

the variance to insure that 1.96 standard deviations from the mean

corresponded to a ten percent deviation from the true value.

a t nxPAI
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