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SPLINE-BASED PARAMETER ESTIMATION
TECHNIQUES FOR TWO-DIMENSIONAL

CONVECTION AND DIFFUSION EQUATIONS

L.L. Zia

ABSTRACT

A general approximation framework based on bicubic splines is
developed for estimating temporally and spatially varying parameters in
tvo-dimensional convection and diffusion equations derived from mass transport
theory. The "parameter estimation problem" is first cast as an abstract
infinite dimensional minimization problem. Then a sequence of approximate,
finite dimensional minimization problems is defined, which yields a sequence
of parameter estimates. Convergence results relating the approximate problems
to the full infinite dimensional problem are presented, as well as a
discussion addressing computer implementation. Finally, the technique is
applied to the analysis of actual biological data from an insect dispersal
experiment, in which the movement of cabbage root flies in the presence of a
cabbage crop was studied. It is proposed that such a parameter estimation

method can be a useful analytical tool to help develop appropriate models in

population biology.
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I. Introduction

Vhen constructing a mathematical model, one often finds it desirable

%ﬁ: to estimate unknown parameters in that model based on actual observations of
532 ) the particular phenomenon under study. In the transport equations used by

" . mathematical ecologists to model population dispersal, one typically seeks

.y

§§ estimates of parameters representing diffusion, convection and "growth/death"
ng rates. Recognizing that these models are very naturally posed on a

two-dimensional domain, we develop a bicubic spline based parameter estimation
;h{ technique for a general two-dimensional transport equation. Our efforts are
guided by two important considerations: one, the necessity for a

computationally efficient procedure and two, a guarantee that such a procedure

ﬁﬁ' will yield a set of parameter estimates that is "optimal" in some sense.

E§§ In Section II we give a precise mathematical formulation of what we
R mean by an estimation problem. It will be seen that such a problem is

ig?. infinite dimensional in nature and thus difficult to solve; so one is led

§§§ 4 quite naturally to define a sequence of finite dimensional "approximate

;tr ] estimation problems" in an attempt to obtain a solution. A theorem is

;§? presented relating this sequence of approximations to the full estimation

553 problem, and the result serves to clarify the sense of "optimality" alluded to
i above. The actual implementation of the approximation technique formulated in
%é& Section II will be described in Section III and numerical examples will be

Eg} given. Finally, in Section IV, we present the results of an analysis of real
S biological data.

&é Throughout this report we shall adopt the following conventions.

E&g Differentiation of a function, u, with respect to t, x, and y will be denoted
jj by Upy Uy and uy, respectively, with obvious extensions to higher order

Eé& derivatives. The symbol @ will stand for the Kronecker product. We will let
fi?
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L2 = Lz(Q) be the usual Hilbert space of square integrable functions on 2, a

bounded domain of R%, with norm 1 ||0 and inner product <-,*>. Likevise,
L” = LG(Q) wvill be the usual Banach space of essentially bounded functions
with norm || + ||_. Ve will denote by Hi(Q), i=0,12,..., the Sobolev
spaces with norm || - ||i of "functions” in L2(Q) whose i'M "derivative" is
also in LZ(Q). Furthermore Hé(Q), i=1,2,..., vill be the Sobolev space of
elements of Hi(Q) vhose "derivatives" of order up to i-1 vanish on 3R, the

boundary of Q. Finally, we will often use the terms parameter and coefficient

interchangeably, as well as estimation and identification.

II. Mathematical formulation
Ve consider the initial value-boundary value problem (IV-BVP) on
Q= (0,1} x {0,1]:
u, 4 T-(Vu) = 9-(D x Wu) + o + £, te(0,T},

(2.1) u(0,x,y)

It

UO(Y(xvY))y

u(t,x,y) 0 on 99,

vhere f = f(B,t,x,y) and D, V, a, and B are assumed to be functions of t,x,
and y, with D = (Dl,DZ) vith V = (vl,vz). The dependent variable, u =
u(t,x,y), represents the population density of a species, whose dispersal over
a tvo-dimensional domain is assumed to result from an innate diffusive
mechanism, D, and a convective or "directed transport" mechanism, V. The
parameter « represents a general "source/sink" or "growth/death" term. (For
the definitive account of diffusion models in ecology ve cite the excellent
book by Okubo [13]). Without loss of generality we have assumed homogeneous
Dirichlet boundary conditions, since any non-homogeneous boundary conditions,

vith possibly unknown parameters, can be included in the parameters B and v

via a standard transformation. In fact, if we had the boundary condition u =

. .y
A LRy ALY A0 Yy i POy Ay L Vi o’
X1l DA SOCD DT AL AR AR OGS IR SRR NG VA

’
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F on 39, then we could define a new dependent variable to be v = u - g(x,y)'F
where g(x,y) = 1 - xy(1 - x)(1 - y). Substituting this trénsformation into
(2.1) to get an equation for v, we see that we must assume the inhomogeneous
term P is C1 in t, and C2 in x and y. Notice hovever, that g(x,y) = 1 on 3Q
so that v(t,x,y) = 0 on 32, Finally we note that solutions to (2.1) will be
considered in the sense of distributions so that we can use the abstract
framework of Lions [12] and invoke weak variational theory to discuss the
vell-posedness of this IV-BVP,

Let q be a "vector" of parameters (D,V,a,B,v). Dropping the Kronecker

product symbol ® for ease of notation, we define the bilinear form

L(q): Hé(Q) x Hé(Q) » R by:

(2.2) L(q)($,¥) = <DV, V> - <Vé, Wd> - <ad,y>

and then rewrite (2.1) in its weak form in the state space LZ(Q):

u., > + L(Q)(u,$) = <£, 4>, for all ¢ in HX(Q),
t 0
(2.3)
uw(0) = uy(v),
vhere <-,-> is the standard L2 inner product on [0,1] x [0,1]). Note that the
boundary conditions have been incorporated into the equation of state.
Ve assume throughout that gq belongs to some set Q of admissible

parameter functions that is compact in the space: X = {Hl([O,T];LZ(Q))}2 X

[Ho((O,T) X Q)}s. Furthermore we make the following assumptions:

(A1) 0 is a bounded subset of (L°(10,T] x 2}, with the bound m,;
(A2) There exists my > 0 such that for any q € Q, the components of D

satisfy Di > m i=1,2 for all t, x, and y;
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(Al) The inhomogeneous term £ is C1 in all of its arguments, the initial
data Yy belongs to HZ(Q), and the map v - uo(y) is continuous from

L2(9) to B2 (9);

(A4) For any q in Q, Dt and Vt € Ql’ a bounded subset of LQ(IO,T] X Q) with

the bound ms.

Theorem 2.1: Under the assumptions (Al), (A2), and (A3), the initial value
problem (2.3) has a unique weak solution u(t,-,°*;q) € Hé(Q). Furthermore

this weak solution depends continuously on the initial data ug-
Proof: Ve appeal directly to the weak variational theory of Lions, pp.

100-111, [12]. ///

Vith the state equation (2.3) in hand we nov assume that for each time
?i in (0,T}, i = 1,...,P we are given a matrix A(ti) of observations (taken at
the m+n locations (xl,yl),...,(xm,yn)). Associated with each A(ti) is a
matrix r(ti;q) = (u(ti,xj,yk;q)) of model based "predictions", obtained by
evaluating the g-dependent solution u at the points (xj,yk) 1 <j<mand 1 ¢ -
k < n. Using this information we seek a vector of parameters, q, that will
yield the "best fit" of the model to the data. Thus, we formulate the
parameter estimation problem as follows:

P

(2.4) minimize J(q) = EZ;] I At - Tesa) |1
over all q belonging to the set of admissible parameter functions, Q. Here
the norm is taken to be the Euclidean norm in the space R™ and it is clear
that J(q) is a pointwvise least squares cost functional.

An unavoidable difficulty now arises, for the minimization problem we

have formulated is inherently an infinite dimensional one and thus hard to
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o solve. Indeed, we must alwvays contend with the infinite dimensionality of the

state, u(t,-,-;q), wvhen ve try to solve (2.3); and if we also consider

15* variable coefficients, we must then deal with a minimization over an infinite
N ,55“’ -
‘f§= dimensional set of parameters. Because we usually cannot solve equation (2.3)

- exactly, we would like instead to compute an approximate solution to (2.3) and

12? thus generate a matrix of "approximate predictions" to use in the cost
}iﬁ functional J. Ve would also like to employ a similar strategy to reduce the
0

| infinite dimensional minimization problem to a sequence of finite dimensional
éﬁﬁ‘ minimizations. Since approximation schemes for these two cases will be
%zg essentially independent of one another [2], it will greatly simplify our
" notation if we focus first on the approximation of the state space and
-; postpone discussion of the parameter set approximation.
‘g;€ Galerkin schemes based on cubic splines are already well developed for
* approximating solutions to transport equations on a one-dimensional domain
§§§ [11, [2], (3], [4], [5] and these are readily extended to two-dimensional
?g; ) domains. Following the standard Galerkin technique, we define a sequence of
f)r i finite dimensional approximating state subspaces HN = LZ, N=1,2,..., with
$£’ PN: L2 2 HN the canonical orthogonal projection. Furthermore, we assume that
%ﬁé HN c Hé(Q) and that:
B
- (B)  For all z € ¢X(9) n By, ||P%z-z||, and |[9(B"z-2) ||,
g;i: are less than or equal to e(N){HzxxIIO + ]Izyyl]ol vhere
ne g&(N) >0 as N » =,
o
r ’ Ve remark that by using arguments from Chapter 6 of [14] and pp. 17-18 of [6],
5' : it can be seen that a finite element approximation scheme based on bicubic
" splines satisfies these conditions. In addition, the following L convergence
ig%i rate can be shown to hold: ||PNz-z||w < (c/Nz){||zxx||m + l]zyyllm}.

o
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Restricting the bilinear form (2.2) to HN b HN, ve then define the
Galerkin approximation, uN = uN(t,-,-;q) to be the solution of:

<u§,w> + QO = <E,¢>, for all y in HY, 4

(2.5) N

N

ui(0) =P uy- |
We note that we can viev this equation as the result of projecting equation
(2.3) into the finite dimensional subspace HN, and as such (2.5) inherits the

well-posedness of its parent equation.

Theorem 2.2: Under the assumptions (Al), (A2), and (A3), the initial value

problem (2.5) has a unique weak solution uN(t,-,-;q), belonging to HN(Q) and
depending continuously on the initial data. 1In fact, given the finite
dimensionality of the equation, uN is a strong solution.

Proof: As before, we appeal directly to the theory of Lions, pp. 100-111,

[12y. 77/

Having defined a sequence of equations approximating (2.3), we can
define a sequence of approximate estimation problems as follows:
N P N 2
(2.6) minimize J (q) = 2?;% i ACt;) - u (ti,xj,yk,q) |
over all q belonging to the set of admissible parameter functions, Q. We note
however, that (2.6) is still an infinite dimensional problem, and this fact

leads us to discuss the approximation of the parameter set Q.

In a manner similar to that for the state approximation scheme we
define a sequence OM of finite dimensional sets that approximate Q in a
certain sense. Recall that we have defined X to be the space:

lro, 71502212 x ®%((0,T) x 233, Then, following the ideas developed in

WAL
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[2], we let QH, M=1,2,..., be subsets of X defined by QH = i"(Q), vhere iM:

Q c X > X. In addition we assume:

3353 . (Cl) The mappings it Q » X are continuous;

Egg (C2) For each q ¢ Q, iH(q) »q as M » », uniformly in Q.

N . Ve observe here that in Section III we shall discuss an approximation scheme
:ji for Q based on linear splines, and it can be shown that such a scheme

satisfies the above assumptions. In fact we will take the mappings iM to be

the ch order interpolating linear spline operator. That is for q € Q:

s M
«i;:'gf;; 17(Q) =R at %,y )8 (DN (1) 1,5,k = 0,1,...,M

f:‘c‘

I vhere Si, Xj, and v, are the standard linear splines defined on equal
;&% partitions of [O0,T], [0,1]), and [0,1] with mesh sizes T/M, 1/M, and 1/M,

e d

‘.“‘
55 respectively (see [14]). With these definitions QH can be characterized as:
B
{!E",'i M 5

Q = {q:[0,T] x @ > R | q, = onijksixjvk, vhere %nijk © Anijk]’
:9.’;.!
sbﬁ‘ Here the sum is of course taken over i,j,k = 0,1,..., M and A {3k are
f:';:’ﬂ nij
¥ St
qa% * appropriate compact subsets of R. Ve also note that we have taken the same
-."f;lil
} degree of approximation, M, in each of the variables t,x, and y, but only for

;.'er‘
Qﬁk illustrative purposes. For complete details of this construction see [2].
(39
t“!‘l'
l{g& Given these approximating sets QM, wve can nov define a sequence of
Sl 'fc

h finite dimensional approximate estimation problems by restricting the
M
{&5 minimization of JN in (2.6) to be over the set of all q in QM. The following
‘eégl

(30
fﬂd' . theorem relates the solutions of these problems to a solution of the full
'ﬂ".

Ty

estimation problem (2.4).

)

v . Theorem 2.3: Let Q be compact in X. Then for each M and N, the minimization

problem (2.6) has a solution ﬁs. Furthermore, there exists an element q* of

PO TOEV O GRS DOUIIOn X TN &Y
B O G R R R e R e




2 Q and a subsequence, denoted again by ﬁ:, that converges to q* in X, and this

limit, q*, is a solution to the full parameter estimation problem (2.3).

Ve wvill not present the entire proof of this theorem here, but rather will

outline just the essential arguments. For complete details see [17].

) Let uN(-,q) be the Galerkin solution to equation (2.5). It can be
0 shown that for each t&(0,T), the mapping q - uN(t,q) from the set of
admissible parameter functions, Q, to LQ(Q) is continuous. This immediately

implies the continuity of the approximate cost functionals JN. The sets QM

gg: are compact since each is the image of the compact set Q under the continuous

“*; map iM (see assumption (Cl) earlier). Hence for each M and N, there exists a

2%2 minimizer ﬁ: of JN over QH. Furthermore, by definition of the sets QH, there

%&? exists a sequence {;:] <€ Q such that a: = iH(a:). Compactness of Q then

.gﬂ implies the existence of a subsequence, which we write again as &:, that

igg converges to some q* in Q. It can then be shown that the corresponding

%g subsequence ﬁ: also converges to q*.

'J; Finally, to argue that q* solves the full estimation problem (2.4)

e

ég requires proving the fundamental result that "convergence of any sequence of
;% parameters qK to some q* implies convergence of JN(qK) to J(q*) as N and K -

o', Since the cost functionals JN and J represent pointwise least squares

gg fit-to-data criteria, we see that we must guarantee pointwise convergence of

Eﬁf our state approximations. That is, under an appropriate topology on Q, ve

.;; must show that convergence of qK to q* implies uN(t,xj,yk; qK) converges to

% ﬁ u*(t,xj,yk; q*) as N and K » », for each of the data points (xj,yk) 1< j &m
:ﬁg and 1 <k < n. Notice that we are not asking for global pointwise convergence
lﬂ of the state approximations. Rather, it will suffice to show local pointwvise
o

:ig convergence, and then piece together at most a finite number (in fact m-n) of

\)
\
)
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such results. The arguments for this conQergence rely on a general technique
from finite element theory that estimates a local L” norm in terms of a global
Bl norm. We then use the weak variational framework of our approximation
scheme to derive inequalities from which we can obtain appropriate estimates

- to establish convergence in this stronger norm. For another approach to

pointwise convergence in two-dimensional domains see [1l1].
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III. Numerical implementation and examples

Ve turn now to a description of the implementation on the computer of
the approximation framework formulated in Section II. For transport equations
on a one-dimensional domain cubic spline based Galerkin schemes have been used
successfully and their computational efficiency well-documented [1], [2], {3],
[4], [5]. Ve shall see shortly that the key feature of a bicubic spline based
approximation technique for two-dimensional transport equations is that the
necessary computations reduce in a natural way to those computations arising
in the one-dimensional problem. For notational simplicity we will illustrate
this feature for the case of constant parameters, then describe the
straightforvard modifications needed when variable coefficients are

considered.

Recall that we have defined the Galerkin approximation to our original

IV-BVP to be the solution of:

<u':,¢> + <DP, 0 = <V, 0 + <o, u> + <zf,

N

(3.1) N N
u(d) =P Ugs for all ¢y in H,

vhere we have rewritten (2.5) using the definition of the bilinear form

N N
L(q). We take H to be the span of {Bij}i,j=0 (where 6ij = Bi(x)Bj(y) are
the bicubic splines that arise as pairwise products of cubic splines Bi’
corresponding to the partition 4 = {i/N]?-O on [0,1] and satisfying Bi(O) =

Bi(l) = 0. Thus wve can write the Galerkin approximation uN as:

(3.2) (6 = T w08 y) 1.5 = 0,1,2,...,N

vhere we have suppressed the dependence of ﬁij on N. Notice that uN

automatically satisfies the homogeneous Dirichlet boundary conditions.

4

TR .

gﬁ'..a! h .t!‘.ve
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B Vith this choice of the subspaces HN, equation (3.1) is equivalent to:

N N N
B <ut’8ij> + <Dlux,(Bij)x> + <Dzuy,(Bij)y> =
oG (3.3)

g?,.‘ N N N

$? . <v1u ,(Bij)x> + <v2u ,(Bij)y> + <ot ’5ij> + <f,Bij>

N .

| ) <u (0),Bij> = <u ’Bij> for i,j = 0,1,..., N.

:3 Substituting the above expression for uN, equation (3.2), into (3.3), carrying
ot

’2: out the necessary differentiations, and using the linearity of the inner

product, we arrive at a finite dimensional system of ordinary differential

A equations for the Fourier coefficients, wﬁj(t):
R
2 .
R 8" @ A" - o 18V @ AV 4 o, 1a" @ BV
s v 1N @ AN 4 v AV @ N
X 1 2
v%; (3.4)
Pt + oAV @ AN L P,
#
"Q‘.
N N N
(2" @ aV1v0) = £V,

1 wvhere (recall Bi = B? for each i)
L}
,'e.f ‘
2 AN - rn (x)B, (x)dx, B\, = rB’(x)B’(x)dx
! ij i j S & i 3 !

i 0 0
i N, - JJB (x)B (x)dx, E\. = J'l rs (X)B, (y)u.(v)dydx
i ij i j A & i 3 0 !
:‘0; 0 00
K
K N N

W= (1), and P\, = JJ JJB (x)B, (y) £(8)dydx,

13 7 Y13 13 7 Jg 1 1%
k)
‘]::v',
’;«: and [M@ N] represents a Kronecker product of matrices. It is important to
g note that the entries of the matrices AN, BN, and N are just the pairwvise L2
.;4 : inner products on (0,1] of the one-dimensional cubic spline basis elements and
Ay,
)
55 their derivatives; furthermore, the local support properties of cubic splines
) -
'.0
o guarantee a very nice banded structure for these matrices, in fact they are
s hepta-diagonal. Ve also remark that we have factored the parameters Di’ vir
"
1N
5.:
'

14
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and « out of the inner products in equation (3.3), something we could not do
if the coefficients were spatially dependent. However, it will be seen that
the computational feature we are trying to illustrate is independent of
vhether or not the coefficients are constant.

At this point we could revrite (3.4) in matrix-vector form, but the
computational cost of numerically integrating the resulting system would be
prohibitive, due both to the size (dimension = (N+1)2) and the sparse nature

of the matrices involved. Fortunately however, the action of the Kronecker

product [M @ N] on any matrix Z turns out to be given by:
(3.5) (M@®N]Z = M-Z-N'

vhere the multiplication on the right hand side is just ordinary matrix
multiplication. Hence the numerical solution of (3.4) requires operation
primarily involving the matrices that arise in a one-dimensional cubic spline

N N

approximation scheme, namely AN, B, and C'. Indeed, we have:

AN.gN. AN -(DIBN-VN-AN N DZAN-VN-BN)
+ vocNeyaN L va“-vN-(c")t + oaaNeyNaN L BN

1
AN N0y-aN - BN,

(3.6)

N and BN are symmetric. It is here that the

vhere we have used the fact that A
computational attractiveness of this scheme really becomes apparent because
for a given level of approximation N, we compute and store ahead of time the

N, EN, and FN in either band or band symmetric mode. Then

matrices AN, BN, C
we call each one up as necessary vhen we are solving (3.6), taking advantage

of their banded structure to speed up the matrix multiplications. Once we

solve equation (3.6) (equivalently (3.4)), ve can reconstruct the approximate
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solution (3.2) and generate a set of "predicted observations" to be compared
with the real data. However, before we discuss the computer code that
actually integrates (3.6) and produces the Galerkin approximation used in the
minimization of the cost functional JN(q), ve describe the modifications to
(3.4) and (3.6) that must be made in the presence of variable coefficients
[2}).

If we include only temporal variation in the parameters, there is
little to change, since we can still factor the coefficients out of the inner
products in equation (3.3). Taking a linear spline representation for each
of the parameters, e.g. Dl(t) =2z: Sklk(t), k=1,2,...,M, ve simply
replace Dl' DZ' Vit Vo 9 B8, and v by their appropriate representations, thus
making (3.6) a non-autonomous equation due to the linear spline functions
lk(t). Having solved this time-dependent analogue to equation (3.6) and
reconstructed the approximate solution (3.2), we then seek to minimize the
cost functional JN(-) over some finite dimensional set of Euclidean parameters
containing the admissible values for the coefficients in the various linear
spline representations for Dl’ D2, Vir Vor 9 B, and v.

Turning to the case of spatially varying parameters we see that it is
not quite so simple to handle because we can now no longer factor the
coefficients directly out of the inner products in (3.3). Nevertheless we can
preserve the Kronecker product structure and action given by (3.5). More
importantly, we will still be able to compute and store ahead of time a set of

N, and CN from (3.4) to be used in

"inner product matrices", analogous to AN, B
the solution of the counterpart to the system (3.6).

As before wve take a linear spline representation for each of the

parameters, this time in x and y. To illustrate, we examine what happens
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to the first term <Dlu§,(8ij)x> of equation (3.3). For ease of notation
we assume our coefficients are separable; however we hasten to aid that the

method will still apply in the more general case of non-separable parameter 4

functions. Ve write:

Dy (x,y) = DY(x)DY(y) = (D082, 00) - (AL ()  k =1,2,...,M

Substituting in this expression for D1 and the representation (3.2) for uN,

differentiating vhere appropriate, invoking the linearity of the inner

product, and using the separability of the coefficient Dl(x,y), ve have that:

(<D uyr (B ), ) = [BY(D)) @ A" (DY) 1"

8 })-w"- a"Yn*,
vhere ATJ.(D)II) =N ‘[;Bi(z)Bj(z)lk(z)dz k =1,2,...,M

N X , ,
and Bij(ol)==§:sk JzBi(z)Bj(z)lk(z)dz k = 1,2,...,M.

In a similar manner we can analyze the changes necessary in the remaining

homogeneous terms of equation (3.3) when the appropriate linear spline
representation is substituted for the parameter appearing in each. 1In

particular we have that:

N N N
(<Dyuy, (B ) >) = [47D5) @ B () 1w
- oy - ot
(vyu', (B ),0) = 16D @ A
- e - @lednt,
(<vpus (8D 01 = (A" @ v
S I R (A A PR
and {<unN,8ij>} - 1AV @ ANy W
N O RR AN CAI N

Here the matrices AN(v), BN(-), and CN(-) are just linear combinations of the

- o, L T ]

." ~ ‘.. PN ~ 1l
St "o L ANDNIN ARG

LAY PR
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elementary matrices A:, B:, and C:, wvhose entries are, in analogy to those of
(3.4), the pairwise L2 inner products on [0,1) of the one-dimensional cubic
spline basis elements and their derivatives, now weighted by the kth linear

spline, lk(-), k=1,2,...,M.

Ve note that it is the convective terms of (3.3) that give rise to the

matrices:

N 14
cC () = {zzznkJiBi(z)Bj(z)lk(z)dz] k =1,2,...,M.

In addition, we observe that the local support properties of cubic splines
again guarantee a nice hepta-diagonal structure to these "weighted inner
product matrices"; furthermore for a given level of approximation, N for the
state space and M for the parameter space, we can compute and store these
matrices ahead of time just as in the simpler constant coefficient case
described earlier. We point out, however, that if the inhomogeneous term f(B)
and the initial condition uo(v) are non-linear functions of the parameters 8
and v, then their respective projections into the subspace HN (i.e. the
matrices EN and FN of (3.6)) cannot be computed and stored ahead of time, but
rather must be continually updated during the minimization procedure.
Nevertheless this needs to be done only at the start of each integration of
the approximating system of ordinary differential equations, and the resulting
matrices will still exhibit a banded structure. Finally, we note that if
temporally and spatially dependent parameters are considered simultaneously,

our method still works since we would take a general representation:
a(t,%,y) =D3,1, (1)) + (Lb, 1, () « (Rie L, (¥)) k= 1,2,...,M

and then immediately factor the temporal dependence of q out of the inner

product and proceed as before.
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g Ve now discuss the actual solution of the ordinary differential

equation (3.6). Since it is well known that approximation schemes for

& parabolic partial differential equations often give rise to systems of stiff
B
f ordinary differential equations, we use the IMSL code, DGEAR, with its option

for stiff systems. As a part of this solution process the general equation

y (M@ N}z = ¥, equivalently M'Z-(N)t = Y, must be solved for Z. This task is

', accomplished by two successive applications of a Cholesky decomposition
routine that enables one to solve FX = G for X. In fact one first lets X =

. Z-(N)t and solves MX = Y by a Cholesky decomposition of M followed by

! back-substitution. Then one solves N-(Z)t = Xt by a Cholesky decomposition of
N again followed by back-substitution. The minimization of the cost

p functional JN(q) is performed by another standard IMSL code, called ZXSSQ,

f which employs a modified Levenberg-Marquardt algorithm. The FORTRAN code

built around these two large IMSL routines is a modification of an original

program vritten by James Crowley [8]. The testing of this code, which we

b .
i shall nowv describe, was performed on the computing system at Brown University
’ running either an IBM 370 or IBM 3081. -
g In the following examples, we considered a number of "data" sets
.k generated from various known solutions of the constant coefficient model on
: 2 = (0,1} x [0,1]:
u, = D(uxx + uyy) + Vqu, 4 vzuy + o, t>0
X (3.7)  w(0,x,y) = u (x,Y)
b u(t,x,y) =0 on 99
3 Values for D, vir Voo and o were specified, then a simple separation of
; variables technique was used to calculate each explicit solution. At each of
[}

the times t = .2, .4, and .6 a matrix of "observations" was then obtained by

) ()
4'"4'-,5’-'_3 Jp.‘ H .

RO

. . ” ) OO X
BB 2 A TR DA AN s B S A e e D



;l: i:‘ m
i
' 17
Al
;?g; evaluating these solutions at the (x,y) grid points x = .1, .3, .5, .7, .9 and
y = .1, .3, .5, .7, .9.
e
ié Ve carried out a series of tests on each data set in which various
i& combinations of parameters were considered to be unknown and the remaining
“ - parameters held fixed at their true values. Initial guesses of the "unknown"
B
ng; parameters were input into the estimation code and a particular level of
;:ﬁ. approximation specified. The performance of the code could then be assessed
vt in light of factors such as the "error" made in the initial guess, the degree
A
gé{ of approximation chosen, or how many parameters were considered unknown. Ve
%&2 note that low levels for the state approximations were taken, N = 4,6, or 8.
:l This was done because the computational cost for any given two-dimensional
o
45 { estimation problem far exceeds the cost for a comparable one-dimensional

problem (see results of numerical experiments in [1], [2], [3], and [5]). Of
course the reason for this is obvious; namely that the two-dimensional setting
gives rise to a system (3.6), that consists effectively of (N + 1)2 ordinary

differential equations, as opposed to (N + 1) in the one-dimensional case. In

A 3 fact, just to integrate equation (3.6) for N = 12 takes roughly 12 minutes of
LN R

Woel

Sh: CPU time on the IBM 370 and for N = 14 that figure increases to 40 minutes.
A

Eﬁ. If the faster IBM 308l is used, these times decrease to 3 and 10 minutes, but

are still very large compared to a one-dimensional problem. Thus, with an eye

et tovards future real-time applications of our estimation technique, we believe

A (7

-"‘Qv %

oy it would be fruitful to pursue the implementation of our code on vector
. machines and other supercomputing processors.

AR

e .

ﬁ'é Ve also remark that the efficiency of the Levenberg-Marquardt

Y

bt - . .

(AT minimization algorithm decreases as the number of unknown parameters

. increases. This is particularly significant if we want to estimate variable

)
$§‘ coefficients. Indeed, a simple constant coefficient model such as (3.7) has

P AT A ) AR
..b.!‘.a.’;‘.p,p, ?‘ b
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LN OO XN U I N AP AR M RO AN KA X 1 g‘.l,‘.:l'q,t",ih Wi 1% SN0

o Wy



s o .

-
-

LR

-

-
.

- -

FE IR

v Ao ) A
ln‘s‘-'l?.‘! K l‘.ﬂllﬁqi NI\ i SHRTA R

18

oixly four unknown parameters. However, if we take a general transport
equation such as (2.1), and implement the parameter approximation scheme wve
have described, then the dimension of the unknown, and in this case
approximate, parameter space will increase dramatically. For example, if we
consider a constant diffusion model with temporally dependent convection and

"growth/death" terms Vl(t), Vz(t), and a(t), and we assume a representation

for each as a linear combination of four linear splines, then we will have
thirteen unknown parameters to search for. Obviously this figure will
increase if we take a linear combination of more than four splines in our
representations; and if we also include spatial dependence in the convection
and "growth/death" terms, then we must deal with an even larger number of
unknown parameters. But the difficulty of minimizing JN(') over a large set
of unknowns is not insurmountable, especially in light of recent advances in
computer technology. In fact, as new software (different minimization
routines) and hardware (array and parallel processors) become available, it

is likely that this aspect of this problem can be treated in a relatively

efficient manner. -

Example 3.1 We considered the standard heat equation with the diffusion
coefficient, D, equal to 1.0 and the initial condition given by the product of
twvo one-dimensional "hat" functions. Convergence results were quite good, see
Table 3.1, with no significant improvement in accuracy obtained by increasing
the level of state approximation from N = 4 to N = 8, However, it is
important to note the dramatic increase in computing expense from the first

case to the second.

ATt Y
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o
U
e Example 3.2 In this example we chose D = 1.0, v; = -2.0, v, = -2.0, and « =
A;. 19.7392 in equation (3.7) with uo(x,y) = exsinnxeysinny. In the tests
g%ﬁ ' . summarized in Table 3.2 the level of the state approximation was held at N = 4
:§§ and it is seen again that the method produced good results.
Eké Example 3.3 For this example we set D = .20, v, = -1.0, v, = -1.8, and o =
fﬂ% 7.2478. The relative magnitudes of the coefficients were chosen to reflect a

. typical example of population dispersal; and to ascertain whether our

(3
ig;; technique would be able to estimate an asymmetric model (which is almost
%ii alwvays the case with real biological data), a directionally dependent
j} convective component, V1 not equal to Vys was considered. 1In Table 3.3 we
?#ﬁ present a comparison of the method’s performance at two levels of state
fagy
‘%; approximation and we see that the parameter estimates were almost all within
"’ one-tenth of one percent of the true values. Thus, an improved fit-to-data is
e
éég obtained at the expense of increased CPU time, but with no great improvement
=;g€ ’ in parameter estimates.

¥
;2? Example 3.4 1In this example we considered the problem of estimating
€Q$} parameters in the presence of "noisy" data. Ve took the same model as in

Example 3.3 but introduced random error into the "observations" (see Appendix
I for details). Representative results are displayed in Table 3.4 and Table
lié: 3.5, and together with other tests these suggest that our technique can
perform well given data containing noise. It is an interesting qualitative

5 é result that in test 3 of Table 3.5 the method me ‘ged to estimate the correct

Wiy ' relative magnitudes of the true parameters.
L)
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Table 3.1
Initial Estimated value True Iterations1 CPUZ(IBH 370)
guess N=24 N=-28 value N=4 N=8 N=4 N=8
1) p° - .05 B5*-1.0009 8% -1.0003 D-1.0 5 4 3 min 18 min
2) D°=-1.95 B* -1.0009 5% -1.0003 D<1.0 5 4 3 min 18 min

1Number of iterations in the minimization algorithm

2Computational processing time

- o . ’ y N h
: W Cr AR TIPS A R T e "" G‘ '%‘ N e iy "\'.‘ '.‘ﬁ‘-k ) De‘.l; At
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Table 3.2
, Initial Estimated True Iterations CPU(IBM 370)
K guess value value
.
' 1) p°=.50  B%-1.0003 D=<1.0 14 14.5 min
- -4
o - - - - - - 3
‘ 2) vy = 1.0 v, = 1.999 vy = 2.0 6 9 min
¢ o _ -4 _ _
3) v1 = -.10 vy = -1.999 vy = -2.0 8 10 min
: o _ 4 _
4) v1 = -1.0 v1 = -1.9996 v1 = -2.0 4 6 min
R _4
; o _ _ = - = -
i’ vy = 1.0 v, = 1.9996 vy = 2.0
_4
Y ° _ _ = - - - }
ft 5) V] = 1.0 vy = 1.9996 vy = 2.0 5 7 min
¢ v8 = 3.0 V¥ < -1.9996 v, = -2.0
y 5 = -3 9 . 2 .
W
3 6) D° = .50 5% - 1.00001 D - 1.0 13 12 min
:—: 4
| vi = -1.0 vy = -1.9994 vy = -2.0
&l
g 7) D°=.50  B*-1.00000 D=<1.0 16 20 min
‘- 0 v 9 2
Vi = -.10 vy = -1.9994 vy = - .0
¥ N =4
‘¥
of
;l
4
:
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v
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Table 3.4 g
Initial Estimated True RSSQ Iterations CPU(IBM 3081)
guess value value
1) D° = .10 5% - .2003 D= .20 .6835 5 45 sec
) 2) D° = .10 5* = .20057 D = .20 .479 9 90 sec
ve = .50 ¥ - 21,0031 v. = -1.0
1 = . 1 = . 1 = .
Ve = -.90 ¥ .1.7958 v. - -1.8
s .- ;= 1. ) X
3) D° = .10 5% - .2136 D = .20 .4856 8 148 sec
ve = _1.5 7421069 v, = -1.0
1 = L 1 = -1 1 =L
ve - _2.7 ¥4 . 21.913 v, - -1.8
2 = 2. 2 = 1. 2 = -1
«® = 3.6239 & = 7.848 « = 7.2478
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Table 3.5
(Noisy data)
Initial Estimated True RSSQ Iterations CPU(IBM 3081)
guess value value
1) D° =~ .10 5 - .1987 D-.20  59.4825 5 45 sec )
2) D° = .10 B* - .1982 D = .20 54.2155 9 93 sec
v® = -.50 v - -.9628 v. = 1.0
1 = . 1 = . 1 = .
4
v = .90 v, = -1.8207 v, = -1.8
3)  D° < .10 B* - .331 D= .20 54.5492 9 170 sec
ve = 1.5 74 - J1.6134 v, = -1.0
1= L 1= -1 1= L
4
v = -2.7 ¥, = -3.0303 v, = -1.8
4

a® = 3.6239 o =

"

DO A LE AT,

13.4234 o = 7.2478

K e LN )
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IV. Parameter estimation in a two-dimensional model of insect dispersal

In a series of mark-recapture experiments, Kareiva recorded the
movement of flea beetles along linear arrays of collard patches [10]. A cubic
spline based parameter identification technique was subsequently used to
analyze this data and to assess the appropriateness of various forms of a
general transport equation as models for the observed movement [3], [4]), [5].
Vhile this analysis proved quite successful in identifying different
mechanisms of dispersal and quantifying their relative importance, it is
important to note that the experimental design restricted movement to a one
dimensional domain, thus allowing consideration of only one-dimensional
transport equations as models. It is apparent of course that a
twvo-dimensional domain provides a more natural setting for most models of
insect dispersal (indeed for most models of population dispersal) and in this
section we describe the application of our estimation technique to the
analysis of cabbage root fly dispersal on a two-dimensional domain.

Our data are taken from mark-recapture experiments by Hawkes in which
cabbage root flies (Erioischia brassicae) were related at a point adjacent to
and downwvind from a cabbage (brassica) crop [9]. Although Vright [16] had
rejected anemotaxis as a mechanism of attraction and Thornsteinson [15]
claimed "there seems to be no critical evidence that insects orient to plants
beyond a few meters", wind tunnel experiments by Coaker and Smith [7]
indicated that female E. brassicae do fly upwind in the presence of brassica
odor. To resolve this issue Hawkes sought to calculate dispersal rates of E.
Brassicae released from a point exposed to brassica odor.

WVhen recapture data suggested random dispersal, an empirical model,
Iny = a-b;;, vas used to relate the number of flies captured, y, to the

distance from the release point, x, where a and b are constants. Average

»
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B distances dispersed and thus average rates of dispersal were then calculated

on the basis of this model. However, in the case of non-random movement, no

200 such model was available to estimate rates of dispersal. We have subsequently
)

:?; applied our parameter estimation technique to estimate dispersal rates for

¢

this type of recapture data, focusing on Hawkes’ data for gravid (i.e. egg

z bearing) female E. brassicae, as this group was observed to exhibit the

R greatest non-random movement. (We are quick to point out, however, that the
?

applicability of this estimation technique does not depend on any a priori

o knowledge of a population’s specific behavior. Indeed,it is precisely this
A

g% behavior that we usually wish to ascertain and then analyze).

o The experiments were carried out in a large field bordered on the

%% north by a hedge. A 30 by 30 meter cabbage plot was planted immediately south
i;g of the hedge with large areas of fallow ground to the south, east, and west of
N the plot. Water traps spaced six meters apart were placed along the hedge,

gi wvithin the crop, and in the surrounding fallow area as shown in Figure 4.1.

%ﬂ Since the prevailing wind direction was from the east-southeast, flies were

“ released from a point at the hedge 24 meters to the west of the northwest

ﬁ? corner of the cabbage crop. Direct observation and recapture data showed that
EE movement did not begin until 29.5 hours following the time of initial release.
3 After the onset of dispersal, data representing the distribution of the flies
§ wvas collected during two consecutive seven hour periods. (For further details
;ﬂ of the experiment see Hawkes' paper [9]).

~ Ve considered the following two dimensional transport equation as a

: model for describing the distribution of the flies:

A

. (4.1) u, = D(uxx + uyy) - vl(t)ux - v2(t)uy - a(t)u

": (x,y) € 10,1] x [0,1], t > 0.

ﬁ
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'
. Initial data were given by u(0,x,y) = 0 for (x,y) # (.5,.5) and u(0,.5,.5) =
§§§ ' 1930 (the number of marked flies released). Since there were no cabbage
Sg% | plants outside the furthest extent of Hawkes’ trap grid, we assumed Dirichlet
WT' : boundary conditions, u(t,0,y) = u(t,l,y) = u(t,x,0) = u(t,x,1) = 0. Here the
ggr variables x and y represent dimensionless quantities based on the scaling:
%%& X =X meters/127 5 meters and y = y meters/127.5 meters. Thus the entire

B field was rescaled to fit on the unit square, with the release point
%@' corresponding to x = y = .5. The westernmost traps and the easternmost traps
ig& corresponded to y = .3353 and y = .9, respectively, while the northernmost
,jﬁ traps (those along the hedge) and the southernmost traps corresponded to x =
'éﬁé .5 and x = .6647. Time was rescaled as t = ; hours/24 hours, so that tl =
3{ ‘ .14583 corresponded to the midpoint of the first seven hour census period
:: following the beginning of dispersal and t, = .4375 corresponded to the
ég&l midpoint of the second seven hour census period. The convection coefficients,
éiﬁ ) vl(t) and vz(t), as wvell as the "growth/death" term, a(t), were represented by
,;  . a linear combination of four linear splines. The function a(t) was assumed
ﬁ;i positive so that the entire negative term a(t)u would reflect the
gg? disappearance of flies from the experiment (e.g. through actual death, long
Vi~ range migration, wearing off of the radiocactive marker, etc.).
g‘é Ve began our analysis by considering the simpler, constant coefficient
jz? , equation as a model. Then, by alloving one or more of the coefficients, Vi
— Vo and a, to vary in time, we gradually increased the complexity of the model
éﬁ? to arrive at the general equation (4.1). At each stage we sought to minimize
%éé the residual sum of squares of differences (RSS5Q) between model predictions
_;; and observed data. Although it is true that we could have considered the full
o 4
§§$ equation (4.1) from the onset and asked the computer to identify all the
R
By
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parameters in the model at once, we emphasize that this is not the procedure
ve folloved (see our earlier remarks in Section III regarding the minimization
algorithm employed). Instead, we estimated various combinations of parameters
wvhile holding the remaining coefficients fixed at certain "nominal" values.

As a rule, these vere taken to be the "best" values returned from the
consideration of a simpler model. For example, to identify the time-dependent
profile of the "death" term a«(t), we first fixed the diffusion and convection
parameters at those values that provided the "best fit" of the constant
coefficient model to the recapture data, and then we estimated the "weighting
factors", o 0 in the linear spline representation a(t) = gigaklk(t). All of
the computational work for this analysis was performed on the CDC 6600
computer at Southern Methodist University and the IBM 3081 at Brown

University.

In the constant parameter model we sought to estimate the four
parameters D, Vis Voo and «. This analysis immediately revealed a number of
interesting qualitative features (see Table 4.1):

(1) a relatively small diffusive term, D;

(2) the presence of some directional bias in the convection terms,

4 < Voi

(3) the importance of a large "death" term, a.

These results are not surprising, in fact they correlate quite well with what
even a casual perusal of the data suggests (see Figure 4.1). There is little
evidence of purely random dispersal, indeed some directed movement is almost

surely present. Also the fact that only fifty-five out of the original 1930

flies released were recaptured at the first census certainly indicates the

need for a large "death" term.
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Ve next introduced temporal variation in the coefficients beginning
with the "death" term, a(t) =2§: aklk(t), vhere lk(t) are the standard
linear splines as in Sectionsk;g and III. The terms D, vy and v, vere held
fixed and we sought estimates of the coefficients, % that would lead to a
reduction in the RSSQ from the constant parameter model (see Table 4.2).
Though we were able to obtain some profiles for «(t) that could be considered
biologically plausible, we could not reduce the RSSQ significantly (RSSQ = 200

for the constant coefficient model, RSSQ = 198 for the variable o model).

3
Time varying convection terms were considered next, vl(t) =2§% Sklk(t)
and vz(t) =2{: yklk(t). But as before, though we obtained some bio-

k=0
logically arguable profiles for the convection terms (see Table 4.3), we could

not reduce the RSSQ. What we did observe consistently was a general
intensitivity of the RSSQ to the latter two coefficients in each
representation for vl(t), vz(t), and a(t). This indicated that our models
were simply not predicting the data at the second time point. At this stage
it was thought that the diffusion coefficient,though already very small, might
nonetheless also exhibit some temporal dependence. Accordingly, some tests
vere performed to estimate a time varying diffusion term, but still there vas
no corresponding improvement in the model's prediction of the data (RSSQ
remained at 198). 1In fact, it is interesting to note that for this data set,
the total sum of squares, TSSQ, equals 161. This implies that simply using
normally distributed noise as a model produced a better fit-to-data than any
of the "dynamic" models we had considered so far.

However, these tests were not without value, for they convinced us
that our difficulties lay with the magnitude and shape of the variable "death"

term, a(t). As a remedy we introduced a discontinuous «(t) into the model

with the discontinuity located at the first time point ty Ve retained the
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R S . T

profile of a(t) (taken from earlier testing) from tO to tl’ then set o(t) =0

\ for t > tl; in effect "turning off" the "death" mechanism after tl' The

“ biological interpretation of such a profile is that immediately following the !
't time of release there is a large emigration of the population due to the

disturbance of marking and handling [5]. Emigration then settles down to its

$
z more "intrinsic" low level, which wve artifically took to be zero. It was
%

" hoped that this would allow the convective and diffusive mechanisms to
. redistribute the population over the next time period. 1In fact, the
K, introduction of this discontinuity resulted in a significant decrease n the

% RSSQ.

Since we had already determined the purely diffusive component of

dispersal to be small, we held the diffusion term fixed at its "best"

v estimated value from the constant coefficient model testing. We also held the
. "death" function fixed at the discontinuous profile described above. By

.

8 estimating various combinations of the coefficients ﬁk and " in the

representations of the terms v and vy, We vere able to produce convection
profiles that reduced the RSSQ to a value of 98 (see Table 4.4). 1In light of
this result, the insensitivity of the RSSQ to @ Bi, and g i=2,3, in the

expressions for Vis Vo and « can be understood. Before the introduction of

the discontinuous "death" term, the very large value of «(t) at 3} influenced

i

E the model’s behavior for a significant amount of time after t1 (even if o, =

3 ay = 0.0). This large value dominated the mechanisms of dispersal and caused
" the model to predict a population identically equal to zero at the second time
é point, t2, regardless of the profiles of the convection terms. Only by

:; "turning off the decay", via the discontinuity, could we allow for convection

to be identified as a significant component of the motion (see Figure 4.2).

-nw AL

- 'n " a *! A * N
: Y g ' O O MO U A AN 2 (A i
S RANAERERRs, »"bx\"‘ﬂ'.'q".‘\'!‘s'.‘a’.'s‘»‘s‘-bq'"QL AN K l‘!ly\jnﬁ‘\‘-lj-.'L st -'1"“" Q' LG ERE




T S Y VD U ¢ U T S D P UR D U U VI GGy ST SR T T ey W R S R W
‘.‘:’\’ T
]
31
o
;.‘;.:..
‘t';':‘
Ami‘ -' I3 a s .
,fqi Having produced a model which allowed more freedom to the dispersive
» _',“
mechanisms, we proceeded to carry out a set of tests to try to "fine tune" the
QQH : convective terms. Since some of the profiles that we had estimated yielded a
ity .
Y
ﬁi% good RSSQ but made little biological sense, we sought to estimate more
i
- biologically reasonable convection functions. The results depicted in Table
ety
)
th&, 4.5 show that our attempts met with qualified success. While the qualitative
.‘;‘x"s‘
yg& feature of decreasing x-convection and increasing y-convection that we
0
identified can be explained by the greater proximity of the cabbage crop to
A'.-l“"{ . : : 3
3?%. the release point when measured in the x-direction than when measured in the
O ;
4 O
ﬁﬁ% y-direction, we are quick to note that this set of profiles did not
"5"\‘?
- significantly reduce the RSSQ from its previous best minimum value of 98. 1In
MY
Y0
jﬂx fact, we actually identified several sets of convection functions during our
b
.,ﬂ analysis that produced this value for the RSSQ. Such an example of
l.!‘!
non-uniqueness is of course not unexpected, being a reflection of the inherent
ue, . .
;33: "ill-posedness" of many inverse problems of this type.
DX
oy
wgﬁ Ve also performed tests to try to "fine tune" the variable "death"
»n
o5
‘ term. Recognizing the artificial nature of the discontinuity introduced in
I .
"A"'\
:@$f a(t), ve sought to identify a profile for «(t) with a steep gradient in a
it
Qﬁ? neighborhood of the first time point ty Here we considered the

u:,: 11
representation a(t) =EZ: aklk(t) and set oy = o and o, Toag Eog E... 0
k=0

:ﬁ’i 9y Ve then estimated the "weighting factors" @y Oy Oq, and @, The

:} ' results are displayed in Table 4.6 and we see the presence of a very steep
o gradient in the estimated profile for «(t).

eil; Finally, we have performed a series of tests to identify spatial

bﬁﬁ . dependence in the convection terms. Ve assumed the representations

N 3 3 3 3

.: vi(tyx) = (E) q(lk(t)»('?};(,)cklk(x)) and v,(t,y) = (k»;O Yklk“))‘(g"klk(m
A

i
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vhere the coefficients Bk and Y, vere set identically equal to 1.0 so that
purely spatial variation in convection was considered. Our estimation
algorithm was then applied to the "weighting factors" Ck and Nes see Table
4.7. Next, using the resulting spatially dependent profiles, new estimates
were sought for the parameters Bk and Yy defining the temporally dependent
portions of convection, see Table 4.8. Ve caution, however, that while the
inhomogeneity of the experimental site certainly suggests that we consider
spatial dependence in the convective terms, the experimental feature of a
single point release does not allow the proper separation of temporal effects
on convection from spatial effects. So while we actually succeeded in
lowering the RSSQ to 92.42 (see Table 4.7) and subsequently to 89.68 (see
Table 4.8), it is not clear that our data can support these results.

Ve turn now to a discussion of a statistical criterion which we used
to help evaluate the relative strengths of our models. Folloving the method
described in [4] and [5] (an ad hoc modification of multiple regression
analyses and significance tests based on the F-distribution), we calculated
F-statistics comparing the variation explained by a particular model, TSSQ -
RSSQ, with the unexplained variation, RSSQ. The degrees of freedom for these
two quantities were taken to be k and (n - k - 1), respectively, where k
equals the number of unknown parameters in the given model and n equals the
number of data points. Hence, recalling that the TSSQ for our data set is
161, we see that the percent of the TSSQ explained by our "best" model, (TSSQ

- RSSQ)/TSSQ, is 39.3%, with a corresponding F-statistic, = 3.72 at a

F13, 74
significance level, p < .001. Ve note that in general the F-statistic can
also be used (albeit in an ad hoc manner) to measure the significance of

reductions in the RSSQ induced by adding parameters to a model, see [4] and

[5]. Indeed, we are tempted to use this statistic to assess the relative
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importance of different mechanisms of dispersal in our model for the cabbage
root flies. (After all, this was one of the motivations for Hawkes’
experiment). Unfortunately, the fit-to-data of our early models was so poor
that such a use was precluded. In fact, we observe that since the calculation
of such statistics requires that TSSQ > RSSQ, F-tests could not be applied to
the models of Tables 4.1, 4.2, and 4.3. This is because all of the testing
through that stage had resulted in values for the RSSQ that always exceeded
198, whereas we had computed the TSSQ to be 161. However, as we have seen, we
subsequently identified a model, which provided not only a statistically
significant explanation of the total sum of squares error, but more
importantly, a biologically meaningful explanation of the data in terms of
diffusive, convective, and "growth/death" mechanisms of dispersal.

Ve close this section with a brief discussion of some issues which our
analysis raised concerning experimental design and the data that results. A
characteristic feature of dispersal experiments is the use of a point release
of the initial population. While such a technique certainly facilitates the
actual execution of an experiment, any subsequent mathematical analysis must
deal with the problem of approximating a "delta function" for use as in?*%ial
data. But, more basic than a purely mathematical consideration, it has been
suggested that point releases give rise to data that over-represent the region
immediately surrounding the release site and under-represent the more distant
regions [5], thus masking the effect of any possible convective mechanism.
Furthermore, for the particular experiment we considered, the use of a point
release had an additional impact. Because the release point was located at
the edge of the array of traps, fully half of the initial population was lost

from the model almost instantaneously. As a remedy it would seem very
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3 reasonable to try to effect a distributed release of the initial population,

and to do so within the central regions of the array.
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g Table 4.1
Constant parameter model

»

E";

ty

;? 1) D and « searched; vy =V, = 0.0, held fixed
N Estimated: D = 349.103

I « = 51.716

i RSSQ = 387.98

o

}f 2) V1» V9 and a searched; D = 349.103, held fixed

{3

5 Estimated: vy = 14.915

\ v, = 39.618

r b

o o = 52.933

"

a RSSQ = 308.31

S

N

;f 3) Vis V,, and a searched; D = 3.49103, held fixed*

I

9¢ Estimated: v, = 14.148

% 1

- vy = 31.598

K « = 59.551

T L

e RSSQ = 200.63

2

O

. [D] = m /day, [v;] = [vy] = m/day, [«] = day

- N=4

“

A":)

. *Note the reduction of D by two orders of magnitude. Subsequent reductions

ﬁﬁ did not lower the RSSQ.
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Table 4.2
Time varying "growth/death" term added,

D, Vs and 3 held fixed at final values from Table 4.1

1) o s k=0, 1, 2, 3 searched
Estimated: oy = 59.551
* = 59.555
@, = 21.939
@y = 154.200
RSSQ = 200.35
2) o kK =0, 1 searched; o =1.0, k = 2, 3 held fixed
Estimated: o = 67.773
@ = 51.605
RSSQ = 197.98
o) = day™

N=4
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.A"
s‘:
B
“ Table 4.3
Time varying convection terms added,

L, ) D and «(t) held fixed at final values from Table 4.2
.
L
. - 1) Bk’ Yier k = 2,3 searched; ﬁk, Yo k = 0, 1 held fixed at final values
g‘ for v, and v, from Table 4.1
[
§~ Estimated: 62 = 1007.704

53 = 282.792
o v, = 1272.759
e
) Y4 = 23.053

RSSQ = 196.99

'; 2) Bj' j =0, 1, 2, 3 searched; Yj = ZBj
Estimated: Bb = 16.148
Iy
% B, = 14.148
.1\; 8, = 13.501
. By = 48.060
b RSSQ = 197.79
»‘|
. 3) Bk, V! k = 0, 1 searched; Bk = 1/261 and Yy = 1/271, k=2,3
:’:, Estimated: By = 14.148
!4
?‘: B, = 14.148
- Yo = 31.598
T
0 v, = 31.598
Yo -
S
o RSSQ = 197.69
é (8] = [v] = m/day
.:;: N=4
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Table 4.4
Discontinuous "growth/death" term introduced,

a(t) held fixed with a discontinuous profile

1) Bk and Ye? k = 0, 1, searched; D = 3.49 fixed, Bk = 1/261 and Y =
1/271, k=2,3

Estimated: qo = 14.148
14.148

>

= 31.598

S
#

31.598

<
[ d
"

RSSQ = 168.63

2) Bk and Vi k = 2, 3 searched; D = 3.49 fixed, Bk and Vi k = 0, 1 held

fixed at final values for vy and v, from Table 4.1

Estimated: Bz = 504.519
53 = 1269.616
Yz = 14-801
Y3 = 411.220
RSSQ = 98.11
3) Bk and Yoo k = 0, 1 searched; D = 3.49 fixed, Bk and Yy k = 2,3 held

fixed at values from test 2 above

Estimated: BO = 14.148
By = 14.148
Yo = 31.598
vy = 31.598

RSSQ = 98.00
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4) D, 60 and Yo searched; Bl = 80, Y = Yoo Bk and V! k = 2, 3 held

fixed as before

Estimated: D = 3.49
- 30 = 14.148
Yo = 31.598
RSSQ = 98.00

1

D] = n’/day, 18] = [v] - n/day, [a] = day”
N=4
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Table 4.5
"Fine tuning" of convection terms,

D = 3.49 and o(t) held fixed at a discontinuous profile

1) Bk and V! k = 2, 3 searched; ﬂk =Y = 31.6, k = 0, 1 held fixed
Estimated: 62 = 4.07
83 = 88.5
72 = 75-68
Y3 = 3250“8

RSSQ = 105.00

2) Bz and 63 searched; all other coefficients held fixed at values from
test 1
Estimated: 52 = 3.424
53 = 4.143

RSSQ = 100.37

3) 82 and 83 searched; BO = Bl = 14.148 and remaining coefficients held

fixed at values from test 1

11.01

Estimated: 52
53 = .364
RSSQ = 97.73

(D) = n?/day, (8] = [v,] = m/day, (o] = day™"
N=4
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i Table 4.6
. - Final values of parameters for the "best" model
o vith a continuous a(t)
2
- D = 3.49 m“/day
3
vl(t) :2{: Bklk(t), vhere
k=0
Bo = 14.15 m/day

14.15 m/day

W

J:%: B, = 11.01 m/day
Gy
.,‘
»-"\: 83 = .364 M/day
xg'i 3
ned vo() =B, L (t), vhere
:‘35 k=0
I
,&: Yo = 31.6 m/day
)
vy = 31.6 n/day

u"‘
?3& Yy = 75.68 m/day
i’
Eg' - Yy = 325.48 m/day
" i 11
T a(t) =3{% o 1, (t), where
‘*‘"l =

sk% @) = o) and o, = % ¥ @ & ... # ), and
]

e -1
ot @ = 67.773 day
o -1
-ﬂi @ = 67.773 day
tigid
e o = 61.804 day™!
6

g o, = .003 day}
e
;“: RSSQ = 104.71

B

-
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Table 4.7
Spatial dependence considered in the convection terms,

D and a(t) held fixed as in Table 4.6

N=4

7 7
vix) = B 4 1.(x) vo(y) = n L (y)
k:o k=0

Estimated: CO = 11.851 Estimated: no
Cl = 11.871 nl
(2 = 16.222 n,
C3 = 16.152 n3
Ca = .673 n,
(5 = .885 Ng
C6 = 34.978 n6
(7 = 135.306 n,

RSSQ = 92.42

(4.} = tn ) = m/day

L}

10.685
19.114
44.514
37.451
107.270
88.090
105.171

65.052
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Table 4.8
Temporal dependence in convection terms

re-estimated based on results from Table 4.7

vi(tyx) = (é;(; B 1 (1)) vy (x) vy(tyy) = (k»:i(:) VAR (D) v, (y)
Estimated: By = 1.000 Estimated: Yy = 1.001

By = .998 " = 1.000

By = 2.425 v, = 1.222

By = 2.519 Yy = 1.455

RSSQ = 89.68

18] = Lv) = n/day

N=4
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' Figure 4.1

First census:

L. L

: - |
: 2 2 3 1 6 4 K 3 1

* * * * x k * * * * * * * *
K 2 1 2 4 3 2 2 % * * *
5 * * * * * * * * * * * * *

2 1l 1l 1 1 4 1 1 1

5 * * * * * * * * * * * * *
Y
';‘
r“

-
| Jp—
*

»*
*
%
* =

l';‘ '
§
W
N fallow crop
u
W
K Second census:
K -y -
't
K 2 3 1 1 1 2 4 2
g * * * * x % * * * * * * * *
W
i 1 1 1 2 3 4 2 2 4
X * * * * * * * * * * * * *
5
i
¥
1 1 1 3 3 1 2 3
A * * * * * * * * * * * * *
[ 3
A
A2
R
) | \ 3 1
X * * * * *
¢ I
M)
Y fallow crop ;
:
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o

The cross marks the release point and the arrow indicates the .ind direction.

2 J Ly ; M P . . AN
ot “'..“4_‘!";;,”“& ".e' f" .5! "tb C ‘l‘-“‘l N :“‘ IR U LI




45
N Pigure 4.2

Residual error at each grid point
First census:

.’L -y -
5 y -.98 -.51 -1.09 1.22 -3.67 -1.78 -1.03 -1.38 1.22 -.13 .51 .25 .08
:Z * * * *  x * * * * * * * * *
. .99 -.56 1.86 1.16 .27 -1.84 -1.08 -.643) -.81 .81 .49 .25 .07
: * * * * * * * * * * * * %*
.88 -.71 .66 .92 2.02 .93 71 1.4 | 2.92 -.28 -.56 22 -.93
* * * * * * * * * * * * *
;
R
A | 76 .56 .32 .16 -.95
X * * * * *
| ™~
’ fallow crop
[}
u Second census:
13 - y -
&
&' -.09 02 18 37 -1.46 .71 -2.13 09 38 79 25 -1.43 5
. * * * * x % * * * * * * * *
i:‘
- -.09 .02 .18 -.63 -.46 -.3 -1.13 1.09|-1.62 -2.21 .25 .57 -1.49
- * * * * x * * * * * * * * *
ﬁ
f: -.08 .01 .17 .34 5 -.35 -.2 .01/-1.72 -1.35 1.08 .37 -.69
. * * * * * * * * * * * * *
b,
§
g | 98 1.26 1.6 -1.18 .78
‘ X \ * * * * *
é fallow crop
't

L e

The cross marks the release point and the arrow indicates the wind direction.

RSSQ = 97.73
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Appendix .

Introduction of Random Error into Data

Ve describe how we introduced random error into our data so that the
estimation scheme could be tested in the presence of "noise". We first used
the IMSL routine GGNML to produce a set of normal random numbers with mean O
and variance 1 to correspond to our set of analytically generated data. Using
these random numbers we perturbed the data poir¢s with the requirement that
the errors remain less than ten percent with 95% probability. That is, we
treated each data point as the mean of a normal distribution, then adjusted
the variance to insure that 1.96 standard deviations from the mean

corresponded to a ten percent deviation from the true value.
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